
PREPRINT Towards Automated System and Experiment Reproduction
in Robotics

Florian Lier1, Marc Hanheide2, Lorenzo Natale3, Simon Schulz1,
Jonathan Weisz4, Sven Wachsmuth1 and Sebastian Wrede1

Abstract— Even though research on autonomous robots and
human-robot interaction accomplished great progress in re-
cent years, and reusable soft- and hardware components are
available, many of the reported findings are only hardly
reproducible by fellow scientists. Usually, reproducibility is
impeded because required information, such as the specification
of software versions and their configuration, required data sets,
and experiment protocols are not mentioned or referenced
in most publications. In order to address these issues, we
recently introduced an integrated tool chain and its underlying
development process to facilitate reproducibility in robotics.
In this contribution we instantiate the complete tool chain in
a unique user study in order to assess its applicability and
usability. To this end, we chose three different robotic systems
from independent institutions and modeled them in our tool
chain, including three exemplary experiments. Subsequently,
we asked twelve researchers to reproduce one of the formerly
unknown systems and the associated experiment. We show that
all twelve scientists were able to replicate a formerly unknown
robotics experiment using our tool chain.

I. INTRODUCTION

Research on autonomous robots and human-robot inter-
action achieved great progress over recent years. In order
to conduct research in these fields, the development of
highly integrated robotics systems that incorporate a broad
set of skills into a single architecture or demonstrate ex-
ceptional performance in a single domain is a prerequisite.
Furthermore, established “off the shelf” robot hardware,
simulators and programming frameworks already provide
a sound basis for development and reuse across different
system setups [7]. On the downside, given the inherent
complexity of these systems, consisting of soft- and hardware
components and capable of solving nontrivial tasks — many
of the reported results and experiments cannot easily be
reproduced by interested researchers and reviewers in order
to confirm reported findings [2]. In addition, most current
robotics systems are realized by implementing a component-
based architecture [5] that integrates not only in-house, but
also third party components from diverse publicly available
software repositories such as ROS [15] or OROCOS [6].
Therefore, these components do not necessarily share the
same ecosystem, build system, integration model, deploy

1Bielefeld University (CITEC/CoR-Lab), 33615 Bielefeld, Germany
[flier,sschulz,swachsmu,swrede]@techfak.uni-bielefeld.de

2University of Lincoln (L-CAS), Lincoln, LN6 7TS, United Kingdom
mhanheide@lincoln.ac.uk

3Italian Institute of Technology (IIT), 16163 Genova, Italy
lorenzo.natale@iit.it

4Columbia University, NY 10027, United States
jweisz@cs.columbia.edu

and execution environment. This “zoo of tools” introduces
additional challenges to (robotics) software development and
especially to the reproduction process of these systems. In
order to pinpoint these challenges, we introduced four key
problem statements with respect to reproducibility: a) infor-
mation retrieval and aggregation, b) semantic relationships,
c) software deployment, and d) experiment testing, execution
and evaluation in [10]. These challenges will be further
explained in a representative example in section II.

In [10] we also introduced an integrated software tool
chain and its underlying development process – The Cog-
nitive Interaction Toolkit (CITK). It supports system de-
velopers and experiment designers already in an early stage
of system development, in order to automate tasks and take
on the above challenges. Hence, in this contribution we
validate the complete tool chain in a practical user study
testing three hypotheses: (i) the tool chain is applicable for
different ecosystems and facilitates the reproduction process
of robotic systems as well as associated experiments, (ii) the
tool chain is usable for non-expert users, and (iii) the tool
chain provides enough information about relevant artifacts of
reproduced experiments. To this end we chose three different
robotics systems, that are available in simulation, from three
independent and spatially distributed institutions. We mod-
eled all three systems, including an exemplary experiment,
using the CITK.

In the user study, we asked researchers at Bielefeld Uni-
versity to replicate a formerly unknown system — using the
CITK process and tools. After having potentially replicated
the assigned experiment, we asked the researchers to assess
the CITK based on a structured set of questions with regard
to reproducibility issues identified in the current literature
and the tool chain’s usability. To the best of our knowledge
this is the first user study in this matter: the investigation
of a reproduction methodology for robotics incorporating
usability metrics and based on actual “production” systems
in a practical user study.

The remainder of this paper is structured as follows:
In section II we will introduce the problem statements.
In section III we will present related work from different
fields of study. In section IV we will shortly recapitulate
the concept and tools constituting the CITK. Section V will
give an overview of the reproduced systems and example
experiments, sections VI and VII will introduce the study
design and results. Finally, we will discuss and conclude
this contribution in VIII.

II. PROBLEM STATEMENTS

A publication or article and the therein presented results
are typically the only starting basis in order to technically
reproduce and thus practically verify results. On the one
hand, due to the commonly established peer-review process
of journals and conferences, the theoretical (formal or math-
ematical) approval of results can be assumed as assured.
On the other hand, the software artifacts which are the true
embodiments of the ideas and contributions cannot easily
be verified and reproduced. Why is that?

Given the fact, the paper of interest includes links or
references to source code repositories or other relevant
artifacts it is difficult and time consuming to identify and
aggregate all relevant artifacts that are required for repro-
duction of a software intensive robotics system. These are
for instance: all required software components, data sets,
and their documentation [problem statement a) information
retrieval and aggregation]. This is not surprising since regular
publications are not (yet) intended to precisely list and
describe this kind of information. However, a few journals
and conferences already offer the opportunity to submit
code alongside the corresponding publication, but this does
not scale for entire robotics systems. Moreover, in order to
practically replicate the system that produced the presented
results it is indispensable to also provide information about
the relationships between significant artifacts. These are,
e.g., the exact versions (i.e. commit hashes) of software
components in combination with an experiment-specific data
set (recorded sensory input and actuator output for instance),
hardware or setup variant utilized in the presented study
[problem statement b) semantic relationships]. Thus, simply
referencing source code repositories or binary downloads
is not sufficient. Moreover, the entire software stack must
be deployed, which is often non-trivial and time consum-
ing for diverse ecosystems (problem statement c) software
deployment). Linux containers, such as Docker1, are a pos-
sible solution in order to mitigate versioning and system
deployment issues. However, there are still more obstacles to
overcome. One of them is system and experiment execution.
If a download link to a docker container that contains the
system of interest is referenced in an publication, it is still
unclear how and what to execute inside the container in order
to obtain and verify the published results [problem statement
d) experiment testing, execution and evaluation].

Lastly, it is well known that a massive amount of time
is spent on robotics experiments because they require sig-
nificant effort with respect to initial prototyping, system
development, integration testing, evaluation and conservation
of results. These tasks are usually labour intensive — espe-
cially when performed manually. Thus in our opinion, after
completing all the required work that is necessary to publish
results, it is often hard to find the time and to motivate
researchers to “make their work fully replicable”, which
implies gathering and provide all the required information
as described above in a way that it is “ready to use”. Tools

1https://www.docker.com

are required in order to support researchers automating these
tasks [problem statement d) experiment testing, execution
and evaluation].

III. COMPUTATIONAL EXPERIMENTS & ENGINEERING

In this section we present related work from different fields
of study with respect to reproducibility of computational
experiments — which include experiments in the robotics do-
main as well. As a first case in point, Schiaffonati et al. [16]
point out that computer science, in contrast to fields like
physics or biology, focuses on the abstract concept of compu-
tation and therefore on the creation of technological artifacts
that implement these concepts. Thus, before reproducing an
experiment the subject of study, software in this case, must
often be produced beforehand. Furthermore, Schiaffonati et
al. emphasize the inherently different disciplinary nature of
computing that incorporates scientific and, at the same time,
engineering efforts.

Not surprisingly, this circumstance opens up additional
issues when reflecting on the role of reproducible results
in the robotics domain and the way findings are published.
Unfortunately, the impact of the engineering aspect is mostly
neglected in current literature. Thus, the provision of “tech-
nical artifacts” as a useful instrument for reproduction is to
be considered as crucial, e.g., a description of the software
used, its parameters and configuration. This demand is also
discussed by Jill Mesirov [13]. In her work, she discusses
experiments where results were derived from simulation
in chemistry, materials science and climate modeling. She
claims that the scientists are often skilled and innovative
programmers who develop and release sophisticated software
packages (which sounds familiar to scientists in the robotics
domain). Fellow scientists, who may not be software experts
themselves, conduct studies utilizing these tools. Usually,
the “standard usage” of these tools varies in a way that
researchers combine them in novel ways. According to
Mesirov this provides an enormous advantage. On the down-
side, the lack of implementation details and parametrization
of follow-up experiments poses new challenges for scientific
publications, replication and especially for traceability of
intermediate and resulting artifacts. In this context, Schwab
et al. [17] assert that publications, lacking those technical
details are:

“[...] merely the advertisement of scholarship
whereas the computer programs, input data, pa-
rameter values, etc. embody the scholarship itself.”

Unfortunately, references to the actual source code,
parametrization, configurations and related artifacts of the
“mashup” that produced these scholarships are usually omit-
ted or unknown and therefore lost and thus — not re-
producible. Fortunately, a few approaches can be found in
current literature tackling these issues. Most recently, in
“The Real Software Crisis: Repeatability as a Core Value”
Krishnamurthi et al. [8] stated that:

“[...] software artifacts play a central role: they are
the embodiments of our ideas and contributions.”

https://www.docker.com

Subsequently, they describe a newly initiated artifact eval-
uation process that allows publishing authors (of accepted
papers) to submit software alongside different kinds of non-
software artifacts, e.g., data sets, test suites, and models that
back their findings.

In “Reproducible Research — Addressing the need for
data and code sharing in computational science”, Stod-
den [18] proposed the following (and many others) goals
for reproducible research: foster the development of web-
based tools to facilitate the ease of use of software repos-
itories and related artifacts. Publish code accompanied by
software routines that permit testing of the software test
suites, including unit testing and/or regression tests. Develop
tools to facilitate both routine and standardized citation of
code and data. Develop deeper communities that maintain
code and data, ensure ongoing reproducibility, and perhaps
offer tech support to users. Without maintenance, changes
beyond individual’s control (computer hardware, operating
systems, libraries, programming languages, and so on) will
break reproducibility.

Besides these (more general) approaches, researchers in
the robotics domain also investigate current challenges with
regard to reproducibility. In Defining the Requisites of a
Replicable Robotics Experiment Bonsignorio et al. [3] list
requisites based on an exemplary experiment in visual ser-
voing. These requisites are, amongst others, provision of
a) technical specifications of the robot used, b) technical
specifications of the camera with respect to frame rate,
resolution, [...] c) description of computers’ used memory,
computation power, operating system, [...] and d) used soft-
ware libraries and configuration. Moreover, Bonsignorio et
al. investigated how “Good Experimental Methodology” in
diverse fields of robotics, towards publication of findings,
must be carried out in order to help reviewers recognize,
and authors write high quality publications of replicable
experimental and theoretical work. These methods include,
for example, that experimental results on real datasets must
be publicly available, experiments in simulation should be
made available including the simulator alongside with the
setup used for the experiments and what set of objects or
items were tested.

Another approach has been realized by the ROS commu-
nity. Here, scientific reports are linked to their associated
engineering component — software packages in this case
— thus, the ROS wiki provides dedicated web sites2 for a
few publications. These sites aggregate source code, data sets
and usage examples to improve the potential of reproducing
results, published in related papers. Lastly, in order to provide
a repository of aggregated artifacts the ROS community
has recently released a newly created package index for
software incorporated in the ROS ecosystem. This approach
was mainly realized based on the question “how do you know
what ROS software is available, where to find it, and how
to use it?”. To solve this issue, a community site 3 was

2http://wiki.ros.org/Papers
3http://rosindex.github.io/about/

created that aims at helping users to search across all ROS
repositories at once.

To summarize: the examination of related work from
diverse fields clearly indicates that reproducibility of com-
putational experiments is an important and “hot” topic —
not only in robotics research. Nevertheless, the increasing
notion of software, input data, parameter values, etc. as the
embodiment of scholarship itself is mutually shared across
disciplines. However, robotics systems additionally introduce
complexity due to their diversity and amount of required
(often non standardized) artifacts.

IV. CITK IN A NUTSHELL

Since reproducibility is considered a critical challenge in
robotics research, we developed an integrated tool chain
that incorporates the complete development, reproduction,
and refinement process of robotics systems: The Cognitive
Interaction Toolkit (CITK). The CITK consists of a software
tool set that is tied to an underlying artifact model, software
development and reproduction process. This process defines
how users, system engineers and empirical scientists interact
with our tool chain. It has been inspired by current best
practices in research and software development — especially
in robotics. While the CITK tool chain and its associated
development process is explained in greater detail in [10], the
following paragraphs will introduce the reader to the basic
concepts required in order to assess the study presented in
Section VI.

The basis of the CITK is a domain model for reproducible
robotics systems. This model is based on the concept of
a system version. A system version consists of multiple
software component versions (mandatory) — the functional
building blocks. Versioning is enforced by, e.g., referencing
specific source code repository tags, branches or binary
release identifiers. Moreover, documentation such as wiki
pages, API docs, etc. and publications as well as obtained
data sets are also associated with the system version. An
experiment protocol that was adhered in order to acquire the
published results must also be provided along with a system
version. Additionally, the system’s software components and
their configuration are frequently and automatically built,
deployed and tested on a continuous integration (CI) server
to provide functional monitoring. If feasible, a simulated
experiment must also regularly be executed on a CI server,
based on the experiment’s protocol and data sets to prevent
regressions over time.

From a researcher’s point of view (illustrated by the or-
ange path in Figure 1) the starting point for the reproduction
and development process of a robotics system is the source
code of her/his software components (Figure 1 (1)). These
components are often written in different programming lan-
guages and thus make use of diverse build environments:
CMake, Maven, Catkin to only name a few. Managing many
different environments either requires convention over con-
figuration and the use of ecosystem-specific tooling (cf. ROS
catkin) or is a rather cumbersome and time-consuming

http://wiki.ros.org/Papers
http://rosindex.github.io/about/

Researcher / Engineer

Compo
nent
Compo
nent
Compo
nentRepository

(1)

Recipes: C++, Java, Data Sets,
 Experiments, etc.

(2)

create

Distribution

System-v.0.1

compose

(3)

generate
build jobs

(4)
Building, Testing

& Verification deploy

connect/test

Robot

File System utilizeUser
Browse (5)

CITK Web Catalog

Read Instructions

reproduce
sync content

(1) (2)

(3)

(4)

Laboratory or at homeRobot

CI

Docker

CI Server

Fig. 1: Cognitive Interaction Toolkit: tool chain and work flow

task. We address this issue by applying a generator-based so-
lution that utilizes minimalistic template-based descriptions
— we call them recipes — of the different components that
belong to a system distribution (Figure 1 (2)). Recipes are
written by researchers and describe a software component by
inheriting a template for, e.g., CMake-based software, or for
downloading data set archives, an experiment description,
or any other publicly available artifact that is required in
order to replicate a system. Thus, the composition of different
recipe types comprises a distribution file (Figure 1 (3)).

Distribution files are interpreted by a newly implemented,
so-called “build-generator” tool. Firstly, the build-generator
analyzes all included recipes based on the nature of their
inherited template and the downloaded source code. Based
on this information, the build generator automatically derives
the following: a) how to build and deploy a component
and b) the sequence in which components must be built in
order to satisfy inter-component dependencies. Afterwards,
the build-generator creates per-component build jobs and
uploads them to a running (local or remote) CI server
instance (Figure 1 (3)). At this point the researcher is
provided with a set of build jobs that reflect her/his system.
Additionally, a special build job is created that, if triggered,
orchestrates the complete build and deployment process of
the system. After all jobs are finished, the system is deployed
(Figure 1 (4)) in the file system and is ready to use (Figure 1
(5)). Since setting up a CI server and the required plugins
takes time and requires expert knowledge, we provide pre-
packaged installations for CITK users. Moreover, we recently
introduced deployment of CITK-based systems using Linux
containers. For this, Docker [12] was integrated, the leading
application for using Linux containers, to create, package,
and distribute robotics systems. System descriptions and their
meta data, e.g., source code locations, wiki pages, issue
tracker, current build status, experiment descriptions, and so
forth are frequently synchronized to a web-based catalog
that also implements the CITK data model — providing
a global human readable and searchable platform.

Besides gathering information about a system and auto-
matically deploying it, successful reproduction also includes
repeating tests and experiments. To address this in the context
of robotics systems, we suggest to transfer the concept
of an experiment protocol to the orchestration of software

components involved in an experiment and to execute, test
and evaluate software intensive experiments in an automated
manner. To this end, CITK users are utilizing the FSMT [9]
framework. FSMT is a lightweight and event-driven soft-
ware tool that implements the aforementioned suggestions,
formalizing experiment execution with respect to configura-
tion and orchestration of invoked software components. It
supports automated bootstrapping, evaluation and shutdown
of a software system used in an experiment. An FSMT
experiment description includes three mandatory steps a)
environment definition, e.g, executable paths, required en-
vironment variables and runtime configurations, b) software
component descriptions such as, path to executable plus
command line arguments (configuration!) and c) success
criteria. After specifying the environment, components and
their success criteria, researchers must provide the execution
order of their components. Here, empirical scientists may
provide scripts (R, Python) to evaluate data produced in each
run or trial, to generate plots for instance. These scripts are
defined and executed like regular system components at the
time the system is completely bootstrapped by FSMT, hence,
is producing data. Here, existing solutions like workflow
engines (i.e. Taverna) are not sufficient since they do not
provide a deterministic execution behavior and do mostly
not support component health checks. Moreover, worflow-
engines are ususally data, and not event-driven. However,
this formalization of an experiment protocol allows to con-
sistently reproduce and acquire test results in an automated
fashion. FSMT experiment descriptions and related material
such as evaluation scripts are also deployed using the build-
generator and the CI server. Furthermore, required hard-
ware/robots can be connected to the CI server that runs an
experiment — software stack respectively. Thus live sensor
data can be evaluated directly when running an experiment
incorporating hardware-in-the-loop. Alternatively, the CITK
tool chain can also be instantiated directly on a robot itself
— if feasible (cf. Figure 1).

From a user’s perspective (illustrated by the orange path
in Figure 1), who is interested in replicating an experiment,
the starting point is the experiment representation in the
web catalog that has been referenced in a corresponding
publication (Figure 1 (1)). Here, she or he is directly pointed
to a system version. The first step for the user is to browse

the catalog and to load the page that contains a general
textual description of the system and meta information.
Subsequently, she/he follows the link to the build generator
recipes comprising the system and downloads the required
recipes4. Following the provided installation instructions for
a pre-packaged CI server the user bootstraps the CITK envi-
ronment on her/his computer (Figure 1 (2)). After starting the
local CI server instance, the generator is invoked in order to
configure the CI server with build jobs for the system. The
last step is to start the installation process. Therefore, the
user starts the aforementioned orchestration build job. After
this job has finished, the system is deployed on the user’s
computer Figure 1 (3)). Now, the user can focus on executing
experiments that have been defined and deployed alongside
the system. These experiments are also available as build
jobs on the CI server. Simply starting the associated build
job is enough. Moreover, the web catalog entry for the system
version lists all available experiments. Each experiment also
comes with a description of how to execute it. After the
experiment has been executed successfully, the resulting
output, i.e., in form of a plot or textual report, can be found
on the user’s computer (as well as all required logs and data
files). Besides the FSMT report, the generated plot can be
compared to a reference plot from the catalog entry of the
experiment Figure 1 (4)).

V. TARGET SYSTEMS AND EXPERIMENTS

After having briefly explained the CITK approach, we will
now describe the systems and example experiments that were
modeled using the CITK tool chain. It is noteworthy, that the
three systems are of different nature when it comes to their
deployment strategies and incorporated software parts. Even
though the STRANDS system is mostly based on Ubuntu
packages, a few components which utilize the ROS-catkin
build system, were modeled. The iCub system is consistently
built from source using CMake. The Flobi system is probably
the most “complex” with regard to its deployment. Here, the
different software components are built from source using:
CMake, catkin, Python-setuptools, Maven and even some
legacy shell scripts. Thus, by instantiating the CITK tool
chain, the desired target system can be deployed including
all relevant software components, required data sets, and a
formalized and executable example experiment.

A. STRANDS

As a system aimed at long-term deployment of intelligent
robotic functionalities in application domains of security and
care, the STRANDS project has a high demand of robust-
ness and, consequently, high software quality, to achieve
its objectives of deploying robots for autonomous operation
of 6 months. The scientific aims of STRANDS are to not
only achieve long-term autonomous behavior of its deployed
robots, but to actually exploit the experience these robots
gather over such long run-times.

The system realized for replication is based on the con-
tinuous patrolling demo, inspired by STRANDS’ security

4https://opensource.cit-ec.de/projects/citk/repository

deployment system, where a SCITOS G5 robot equipped
with two Kinect-type sensors, and a SICK laser scanner,
continuously patrols a known environment to a) gather long-
term data sets, and b) spot deviations from the normal
routine. The system studied for this paper is composed of
approximately 30 continuously running ROS components,
enabling the robot to localize, plan path utilizing metric and
topological representation, recover from navigation failures,
and perceive an environment. The overall area patrolled
by the robot is approximately 500m2 in an environment
simulated using the MORSE simulator.

Task and expected result: initially, the system as de-
scribed above must be completely and successfully deployed,
and the example experiment must be started by the test
subject — using the CITK tool chain. As soon as the system
is running, the robot is requested to patrol two predefined
waypoints in the simulated environment within 360 sec-
onds. After the given time period, the system’s functional
components are shutdown and the evaluation phase starts.
Thus, in the automated evaluation phase of the FSMT run,
the robot’s system logs are processed and evaluated due
to the predefined success criteria. Only if the waypoints
have been reached (“waypoint reached” reported in the
waypoint-request component), the experiment is evaluated
as successful. Finally, the evaluation results and associated
log files are automatically presented to the subject. Based
on the available information in the web catalog and the
FSMT output, the subject must assess the outcome of the
experiment.

B. iCub

In this case, the investigated system for replication is
part of the example applications distributed with the iCub
software [14]. This application is meant to help new iCub
users approach the software. In short, the investigated iCub
system replays the complete sensory data of the iCub as it
was recorded during a former experiment. In the original
experiment the robot was programmed to track a colored
object with the gaze. In this example experiment, a tool is
executed that replays the dataset with the original timing and
format. Furthermore, the GUIs for visualizing the original
images from the cameras and a 3D representation of the
iCub are utilized. The latter is animated starting from the
encoders and it includes a representation of the forces at the
arms and the inertial feedback from the head IMU.

Task and expected result: again, at first the system must
be installed and brought-up by the test subject. As soon as
the system is running, the currently produced joint values of
the iCub’s right arm are collected (via Yarp middleware) and
saved in a log file. After exactly 70 seconds all components
are shutdown. Next, in the automated evaluation phase of
the FSMT run, the recorded joint values are processed
and evaluated. In this case, the recently recorded joint
values are compared to a reference run (distributed with
the experiment). If the total axis angle offset, between the
reference run and the current run, for the right arm is
smaller than 5 degrees (for the first and last data point in

https://opensource.cit-ec.de/projects/citk/repository

Fig. 2: Systems (ltr): STRANDS navigation, iCub balltracking and Flobi face identification

the trajectory) the experiment is evaluated as successful.
Finally, the evaluation results and a plot of the compared
joint angles are automatically presented to the subject. Based
on the available information in the web catalog and the
FSMT output, the subject must assess the outcome of the
experiment.

C. Flobi

The robot Flobi was designed to facilitate social interac-
tion by designing the exterior in a way that allows facial
expression and emotional feedback, while at the same time
avoiding the uncanny valley effect by using a comic style
design [11]. The robot’s neck features three degrees of
freedom (DOF) for pan-, tilt-, and roll motion. In order
to facilitate a variety of facial expressions, a total of 14
actuators are responsible for moving the eyes, the eyebrows,
the individual eyelids, and the mouth. In this system setup
Flobi’s emotional feedback, as well as face detection and
recognition capabilities are demonstrated using the MORSE-
based Flobi simulator. Therefore, a total set of four images
are presented to the robot. The images are processed by a
person identification component. Based on the classification
result, a corresponding emotion is triggered and executed
by the robot’s high- and low-level control framework and
visualized in the simulator.

Task and expected result: As usual, at first the system
must be deployed and instantiated by the subject. The
example experiment must be started. As soon as the system
is running, the virtual Flobi starts to identify the presented
persons, a corresponding emotion is triggered. After 25
seconds all components are shutdown. In the evaluation
phase the robots emotion states are processed and evaluated.
In this case, the system is supposed to report “all four persons
found”. Finally, the evaluation results and associated log
files are presented to the subject. Based on the available
information in the web catalog and the FSMT output, the
subject must assess the outcome of the experiment.

VI. STUDY GOALS & DESIGN

The main objective of this study was to evaluate the CITK
tool chain from a user’s perspective (cf. Section IV). In
order to test our hypothesis as introduced in section I and
to gain insight, we defined three key questions targeting
different aspects of our tool chain: i) are the users able to
technically reproduce an example experiment at all? ii) how
is the usability of the tool chain perceived? iii) does the tool
chain provide enough information to confirm and assess the
expected outcome of an experiment?

Besides recognizing potentially unidentified disadvantages
or benefits of our tool chain, these three key questions
also address issues identified in the current literature (cf.
Section III). For instance, before actually reproducing an
experiment, the target system including all required software
component versions, as well as their configuration parameters
and execution sequence must be identified and deployed
on the user’s machine. Thus, question (i) addresses the
“frequently neglected” impact of the engineering aspect
on computational experiment replication. Subsequently, in
order to support users in the replication process, suitable
transparent and open tools are required (cf. Stodden). Hence,
the usability and effectivity of these tools will play an im-
portant role towards reducing the effort spent on reproducing
reported results — for reviewers as a case in point. This issue
is addressed in question (ii). Lastly, the outcome and success
criteria of an experiment must be clearly stated and traceable
(cf. Bosignoro) — this issue is addressed in question (iii). In
order to test our hypothesis and to answer the aforementioned
questions, we conducted this study as follows.

We recruited twelve subjects from the Faculty of Technol-
ogy at Bielefeld University. One subject was a postdoctoral
researcher, nine were PhD candidates and two subjects were
in their final year of a master’s degree program. The subject’s
academic background was: 9 participants had a computer
science background, while mechatronics, interaction design
and technologies, as well as chemistry was reported by 3
subjects. Two participants were women, ten men. All subjects
confirmed that they were neither involved in the development
of the CITK tool chain, nor that they were familiar with the
assigned system or experiment. The subjects were instructed
and supervised by a student worker who was also not part
of the CITK development team.

The subjects were asked to reproduce one of the exper-
iments presented in section V by utilizing the CITK tool
chain. Before actively starting the replication process, the
subjects were instructed to read a documentation manual
(PDF file) that specified all necessary steps, e.g., required
shell commands in order to deploy the assigned system
(cf. Section IV). The replication process incorporated the
following tasks: 1) bootstrap the tool chain and deploy the
entire target system. 2) navigate to the CITK web catalog, a
dedicated link was provided in the instruction set, and gather
information about the referenced experiment, its expected
outcome and how to execute the experiment. 3) execute the
experiment and fill in a questionnaire. In the interest of main-
taining consistency across all experiments, the instruction
manuals, as well as the web catalog sites, were structured

alike. All subjects utilized the same computer to provide
a uniform technical basis. The manual PDF was accessible
throughout the whole process and the subjects were allowed
to copy&paste required shell commands. Eventually, every
experiment was expected to be reproduced four times by
three different subjects.

VII. EVALUATION METHODS & OBTAINED RESULTS

In this section we will present the applied evaluation
methods and the study results. The discussion of these results
and their potential implications will be presented in the
final section of this contribution. In the questionnaire, we
used a 5-point Likert scale ranging from strongly disagree
(1) to strongly agree (5) where applicable. The remaining
categories were either “Yes/No” answers, or statements such
as “one — more than one — more than five”.

All participants had no or little knowledge about the topic
of computational reproducibility. However, surprisingly 84%
of the subjects strongly agree that reproducible and traceable
research is an important topic. One subject neither agrees
nor disagrees (3) and one subject disagrees (2) with this
statement. Thus, altogether the subjects had no or at most
little theoretical and practical experience in reproducing third
party systems and experiments.

The first notable result, based on the subject’s self as-
sessment and the supervisor’s evaluation, is that all 12
subjects were able to reproduce their assigned experiment
(key question i).

The second set of questions in the questionnaire was tar-
geted at the tool chain’s usability (key question ii). Therefore,
we applied the System Usability Scale (SUS) as proposed
by John Brooke [4]. The SUS is an elementary, standardized
ten-item attitude scale often used in systems engineering in
order to provide an overview of the system’s usability. The
resulting average score of 77.5, as well as the average score
of each item, is depicted in Table I

TABLE I: CITK SUS Evaluation

Subject SU Questions 1 - 10 SUS
1 - 12 4,0 1,8 4,1 2,1 4,0 1,3 3,9 2,1 4,0 1,7 77,5

Individual and overall scores are average values

According to Bangor et al. [1] an average SUS score above
70 can be considered “good”. Thus, based on the subjects
rating, the usability of the CITK tool chain is more than
acceptable. However, the predicate “excellent” would have
required a score equal to or above 85 (cf. Figure 3).

121

Journal of Usability Studies Vol. 4, Issue 3, May 2009

0 10 20 30 40 50 60 70 80 90 100

EXCELLENTGOODOKPOOR
BEST

IMAGINABLE

WORST

IMAGINABLE

ACCEPTABILITY

RANGES

ADJECTIVE

RATINGS

ACCEPTABLENOT ACCEPTABLE MARGINAL

LOW HIGH

SUS Score

ABCDF
GRADE

SCALE

Figure 4. A comparison of the adjective ratings, acceptability scores, and school grading scales,
in relation to the average SUS score

Finally, regardless of whether words or letter grades are used for such a scale, we believe that
the results from a single score should be considered to be complementary to the SUS score and
the results should be used together to create a clearer picture of the products overall usability.

The work presented here suggests several lines of future research that are needed in order to
further understand both the SUS and the use of an additional single question rating scale. First
and foremost, data collection will continue with the substitution of the mid-point adjective with

one that carries a stronger neutral connotation than the current term of OK. With this
substitution, we will also be including a letter grade scale to allow the users themselves to make
the determination of a grade assignment, rather than having to rely on the anecdotal evidence
presented to date. One virtue of the letter grade approach is that the subject could be asked
verbally to assign a letter grade prior to presentation of the SUS. This would help remove the
letter grade from the context of the SUS questions and perhaps increase the degree of
independence between the two measures. We hypothesize that users may be less reluctant to
give low or failing grades to poor interfaces because of their extensive exposure to this familiar
scale in other domains. We believe that users may have self-generated reference points across
the entire letter grade scale and because of their previous exposures could be more willing to
use the full scale. If this is true, it may prove to be a valuable extension of the SUS and help

solve the range restriction issue that is prevalent in SUS scores. If the letter grade score does
indeed prove to be reliable and useful, further investigations will need to focus on whether such
a single score assessment might be sufficient. One important element of these investigations
will be to examine the relationship between the SUS, the seven-point adjective rating scale, and
the letter grade scale with objective measures of usability such as time-on-task and task
success rates.

Fig. 3: Acceptability scores, school grading scales and ad-
jective ratings in relation to the average SUS score [1]

In the third and last section of the questionnaire we eval-
uated key question iii. The results are depicted in Figure 4
and 5. First of all, it is noticeable that the majority of the
participants assessed that it was clearly stated what was mea-
sured in the experiment. The median value for this statement
is 4 (agree) and the majority of all answers reside within a
range of 3.5 and 5 (first and third quartiles). Furthermore, is
was also clear to the subjects how the results were measured
(median is value is 4). However, it is also noteworthy that
the results for this statement are inferior to the previous
statement. Most of the participants also perceived that the
obtained results in the experiment addressed the system’s
capabilities in a reasonable manner. Lastly, the participants
strongly agreed that it was easy to assess whether the
experiment was successfully replicated, which is a promising
result. Here, the mean value is 5, the first and third quartiles
reside between 4.5 and 5. There is, however, one outlier
assessing this statement with neither agree nor disagree (3).
However, all subjects approved that automatable execution of
experiments is essential for replication (strongly agree 75%
/ agree 25%).

Furthermore, we asked the subjects about their notion of
included software components and their configuration, as
well as information about the hardware (computer) used in
the original experiment. With regard to included software
components the median value is 4. The median value for
included software configurations and parameters is compar-
atively low with 3.5 (first and third quartiles between 3 and
4). Surprisingly, the subjects also couldn’t neither agree nor
disagree (median 3) to the statement that sufficient informa-
tion about the hardware used in the original experiment was
available. It is noteworthy, that the first and third quartiles
range from 2 to 5 which depicts a wide distribution of ratings.
Lastly, the participants disagreed to the statement (median 2)
that they could have achieved the same results without using
the tool chain.

Fig. 4: CITK evaluation: experiment outcome and metrics

In order to also make this study traceable, the instruction
manuals and the questionnaire results, can be found on the
CITK catalog website 5

VIII. DISCUSSION & CONCLUSION

The goal of this study was to test the following hypotheses:
(i) the tool chain is applicable for different ecosystems and

5https://toolkit.cit-ec.de/citk-evaluation-study-i

https://toolkit.cit-ec.de/citk-evaluation-study-i

Fig. 5: CITK evaluation: information about included software
components and configuration

facilitates the reproduction process of robotic systems as well
as associated experiments, (ii) the tool chain is usable for
non-expert users, and (iii) the tool chain provides enough
information about relevant artifacts of reproduced example
experiments. Concerning (i): due to the fact that all systems
and experiments were successfully reproduced by all 12
subjects, using the CITK tool chain, we assert this hypothesis
is verified. Since all subjects had no or little experience in
reproducing third party systems, and an average SUS score of
77.5 was reached, we also assert (ii) is verified. Verification
for (i) and (ii) is additionally backed by the facts that is
was easy for the subjects to assess whether the experiment
was successfully replicated and that it was clear how and
what was measured. Moreover, the subjects could associate
their experiment result with the system’s capabilities. Lastly,
the subjects stated that they could not have achieved the
same results without the tool chain. Unfortunately, hypothesis
(iii) is not as well supported by our results as the others
hypotheses. While the subjects approved there was sufficient
information about included software components, it seems
that roughly one half of the subjects could not determine
whether there was enough information about component
configuration. However, since the component configuration is
explicitly modeled in the tool chain (cf. FSMT), we assume
that the available information source, the web catalog in this
case, needs refinement of the visual representation for this
kind of artifact. A first assumption is that, due to the fact that
FSMT configurations are “only” represented as hyperlinks on
the experiment web sites, only the minority of the subjects
did actually follow that link. Thus, although there are positive
tendencies, we assume this hypothesis can not be clearly
verified.

Current limitations: since our approach heavily relies on
the provision of previously recorded, or otherwise accessi-
ble sensor data (e.g. live via network/middleware), highly
interactive experiments, such as in HRI are difficult (and
sometimes impossible) to capture and thus difficult to re-
play/reproduce. Despite the fact that hardware is explicitly
modeled in the CITK, an (open) standardized hardware
description format is still lacking integration. The CITK tool
chain is directly runnable or at least connectable to robots
that are based on “consumer hardware” such as the PR2 or
iCub control PCs. However, specialized embedded systems

for instance are currently locked out — if not available in
simulation.

To conclude: in this contribution we assessed the appli-
cability and usability of a novel tool chain that addresses
current issues with respect to reproducibility in the robotics
domain in an applied and — so far — unique study. We
have shown that scientists were able to replicate a formerly
unknown exemplary experiment using our approach. While
we were not able to clearly verify all of our hypotheses,
we consider the results promising. We can hopefully expose
our approach to the general community in order to gather
additional data and use cases, as well as fields of application.

We invite the reviewers to watch accompanying video
submission and to browse the catalog:
https://toolkit.cit-ec.uni-bielefeld.de/
In order to get access to all features we provide a temporary
guest account.
user: guest password: AXJc9rZgW

REFERENCES

[1] A. Bangor, P. Kortum, and J. Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of usability
studies, 4(3):114–123, 2009.

[2] F. Bonsignorio, J. Hallam, and A. del Pobil. Good experimental
methodology-gem guidelines, 2007.

[3] F. Bonsignorio, J. Hallam, and A. del Pobil. Defining the requisites
of a replicable robotics experiment. In RSS2009 Workshop on Good
Experimental Methodologies in Robotics, 2009.

[4] J. Brooke. Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[5] D. Brugali and P. Scandurra. Component-based robotic engineering
(part i) [tutorial]. Robotics Automation Magazine, IEEE, 16(4):84–96,
December 2009.

[6] H. Bruyninckx. Open robot control software: the orocos project.
In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 3, pages 2523–2528. IEEE, 2001.

[7] S. Cousins, B. Gerkey, and K. Conley. Sharing software with ros [ROS
Topics]. Robotics & Automation Magazine, 17(2):12–14, 2010.

[8] S. Krishnamurthi and J. Vitek. The real software crisis: Repeatability
as a core value. Commun. ACM, 58(3):34–36, Feb. 2015.

[9] F. Lier, I. Lütkebohle, and S. Wachsmuth. Towards automated
execution and evaluation of simulated prototype HRI experiments.
Proc. 2014 ACM/IEEE Int. Conf. on Human-robot interaction, pages
230–231. ACM, 2014.

[10] F. Lier, J. Wienke, A. Nordmann, S. Wachsmuth, and S. Wrede. The
cognitive interaction toolkit – improving reproducibility of robotic
systems experiments. SIMPAR 2014, LNAI, pages 400–411. Springer
International Publishing Switzerland, 2014.

[11] I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, B. Wrede,
S. Wachsmuth, and G. Sagerer. The bielefeld anthropomorphic
robot head. 2010 IEEE International Conference on Robotics and
Automation, pages 3384–3391. IEEE, 2010.

[12] D. Merkel. Docker: Lightweight linux containers for consistent
development and deployment. Linux J., 2014(239), Mar. 2014.

[13] J. P. Mesirov. Computer science. accessible reproducible research.
Science (New York, NY), 327(5964), 2010.

[14] L. Natale, F. Nori, G. Metta, M. Fumagalli, S. Ivaldi, U. Pattacini,
M. Randazzo, A. Schmitz, and G. Sandini. The icub platform: A tool
for studying intrinsically motivated learning, 2013.

[15] M. Quigley et al. ROS: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, 2009.

[16] V. Schiaffonati and M. Verdicchio. Computing and experiments.
Philosophy & Technology, pages 1–18, 2013.

[17] M. Schwab, M. Karrenbach, and J. Claerbout. Making scientific
computations reproducible. Computing in Science & Engineering,
2(6):61–67, 2000.

[18] V. C. Stodden. Reproducible research: Addressing the need for data
and code sharing in computational science. Computing in Science &
Engineering, 12(5):8–12, 2010.

	INTRODUCTION
	PROBLEM STATEMENTS
	Computational Experiments & Engineering
	CITK in a Nutshell
	Target Systems and Experiments
	STRANDS
	iCub
	Flobi

	Study Goals & Design
	Evaluation Methods & Obtained Results
	Discussion & Conclusion
	References

