
On the Metatheory of Linguistics

Christian Wurm

Doktorarbeit zur Promotion

an der Universiät Bielefeld

Gutachter: Marcus Kracht, Jens Michaelis, Gregory Kobele

May 21, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211833099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

Contents

1 Introduction 7
1.1 What is Metalinguistics? . 8
1.2 A Note on Syntax and Semantics 13
1.3 The Goal of This Work . 14
1.4 The Philosophical Context... 15
1.5 ...and the Context of Learning Theory 16

2 Fundamentals and Problems of Linguistic Metatheory 19
2.1 The Creative Commitment . 20

2.1.1 What and Where is Language? 20
2.1.2 The Mathematics of the Creative Commitment 21

2.2 The Epistemic Foundations of Linguistics 22
2.2.1 The Epistemic Burden of Linguistics as Psychology 23
2.2.2 The Epistemic Burden of Linguistics as a Formal Science 25
2.2.3 The Epistemic Burden of Linguistic Judgments 26

2.3 Some Fundamental Concepts of Metalinguistics 27
2.4 The Projection Problem . 29
2.5 A Sketch of the History of the Problem... 30
2.6 ...and Why the Classical Solution does not Work 31
2.7 Questions Around the Projection Problem 32

2.7.1 Language is Not Designed for Usage 32
2.7.2 Insights by Descriptive Elegance 33
2.7.3 On Recursion . 33
2.7.4 Patterns and Dependencies 34
2.7.5 Weak and Strong Generative Capacity 35
2.7.6 Chunking . 38
2.7.7 pro-drop, Syntactic Complexity and Trivialization 39

2.8 Ontologies of Linguistics and their Construction 41
2.8.1 On the Semantics of Linguistic Theories 41
2.8.2 The Classical Ontology and Its Problems 42
2.8.3 The Intensional Ontology and its Motivation 44
2.8.4 The Finitist Conception of “Language” 47
2.8.5 Finitism in a Broader Sense 50

3 The Ontology of Metalinguistics 53
3.1 Preliminaries . 54
3.2 Linguistic Judgments . 55
3.3 Partial Languages . 56

3

4 CONTENTS

4 The Classical Metatheory of Language 59
4.1 The Classical Metatheory . 60
4.2 Introducing Pre-Theories . 61
4.3 Substitutional Pre-Theories . 69
4.4 Structural Inference . 74
4.5 Properties of Pre-Theories I . 77

4.5.1 Problems for Infinite Languages 77
4.5.2 On Regular Projection . 79
4.5.3 On Similarity . 81

4.6 Properties of Pre-Theories II . 82
4.6.1 Characteristic and Downward Normal Pre-Theories 82
4.6.2 Upward Normality . 88
4.6.3 Normalizing Maps . 92
4.6.4 Normality and a Normal Pre-Theory 96
4.6.5 Monotonicity . 96
4.6.6 A Weaker Form of Monotonicity 99
4.6.7 Fixed-point Properties . 100
4.6.8 Closure under Morphisms 101

4.7 Methodological Universals . 103
4.7.1 Which Languages Do We (Not) Obtain? 103
4.7.2 Unreasonable Restrictions of the String Case 105
4.7.3 Linguistic Reason . 106

4.8 Extension I: Pre-Theories on Powersets 107
4.8.1 Syntactic Concepts . 107
4.8.2 Syntactic Concepts: Definitions 108
4.8.3 Monoid Structure and Residuation 110

4.9 Analogies and Inferences with Powersets 111
4.9.1 Upward Normality and (Weak) Monotonicity 114
4.9.2 Reducing Lattices to Languages 116

4.10 Context-freeness and Beyond: SCLn 119
4.11 Transformational Pre-Theories 124

4.11.1 Ontological Questions . 124
4.11.2 Detour: an Alternative Scheme 128
4.11.3 Legitimate Functions . 129
4.11.4 Opaque Functions, and Why They Will not Work 132
4.11.5 Polynomial Functions . 134
4.11.6 Inferences with Polynomials 136
4.11.7 Polynomial Pre-Theories 137

4.12 Strings as Typed λ-Terms . 139
4.12.1 A Simple Type Theory . 139
4.12.2 Strings as λ-Terms . 141
4.12.3 Using λ-terms for Pre-Theories 142

4.13 Concepts and Types . 145
4.13.1 A Context of Terms . 145
4.13.2 Concept Structure and Type Structure 146
4.13.3 Generalizing the Language-theoretic Context 148
4.13.4 Putting Things to Work 150

4.14 Another Order on Pre-Theories 151
4.15 A Kind of Completeness . 152
4.16 A Kind of Incompleteness . 155

CONTENTS 5

5 The Intensional Metatheory of Language 159
5.1 Problems of the Classical Conception 160
5.2 The Intensional Conception: Philosophical Outline 162
5.3 The Thinking Speaker: Independent Evidence 166

5.3.1 Preliminaries . 166
5.3.2 Language Change . 167
5.3.3 Sociolinguistic Typology: Trudgill 169
5.3.4 Roy Harrison: The Language Makers 169
5.3.5 Coseriu on Knowledge of Language 170

5.4 The Mathematics of Intensional Linguistics 171
5.4.1 Languages as Structures 171
5.4.2 Language Definability . 173
5.4.3 Adequacy . 175

5.5 Some Notes on Intensional Linguistics 176

6 The Finitary Metatheory of Language 179
6.1 The Finitist Position . 180
6.2 FLP, PLP and Subregular Languages 181
6.3 Derivatives of Languages . 182
6.4 Infinitary Prefixes . 185
6.5 A Note on Learnability . 187
6.6 Conclusion . 188

7 Conclusion and Outlook 189
7.1 Things that have been done . 190
7.2 Things that should be done . 192

6 CONTENTS

Chapter 1

Introduction

7

8 CHAPTER 1. INTRODUCTION

1.1 What is Metalinguistics?

If we should define the goal of the science of language concisely in a sentence, most
scholars would say something like: it is the study of our implicit, unconscious
knowledge of language. We will see that this statement is very problematic; and
most of this first chapter will be devoted to show why it is problematic. We
start with some basic, uncritical observations.1

The subject of linguistics consists the study of languages and of language.
Study of languages means that linguists have to look at languages, which are
their primary object of study. Study of language means that what is interesting
to linguists are in particular general properties of all languages, rather than
properties of particular languages. In any way, linguistics is based on the
observation of ourselves as a species, because after all we are interested in the
“verbal behavior” of humans. This is maybe the main point which distinguishes it
from a science like physics. What distinguishes it from a science like psychology
is mostly the following: linguistics is typically not about what we actually
say in given circumstances, but about what we can say. It does not describe
our actual behavior, but rather our possible behavior. There might not be a
complete agreement on this point, still it seems to guide theoretical linguistics
in its current practice.2 So in the sequel, I take it for granted that if we are
to describe language, what we essentially do is to provide rules for well-formed
utterances, rather than providing rules which prescribe what we have to say in a
given circumstance. Linguistic rules are thus rules for possible behaviors, not for
actual behavior. Having said this, it is exactly this intensional character which
distinguishes linguistics from most of psychology, though of course not from all
of it.

A next distinguishing hallmark is the fact that language is one of the main
fields of human creativity : there is no upper bound to the number of utterances
we can make. There are two main arguments for this claim: firstly, the old
Chomskyan argument that given any sentence (say the presumably longest
sentence of my finite language of English), I can construct a new, longer sentence
(say by means of conjunction), which is again English. This is quite convincing,
though not strictly empirical, because it already presupposes an abstract notion of
“any sentence”, which is not an empirical notion or object. The second argument3

is based on the frequency distribution of our observations: as a matter of fact,
most sentences we observe, we observe only once. If we would have observed
a considerable portion of the language in question, this would be an extremely
improbable distribution; but it is very plausible under the assumption that we

1What is to follow can be read as the outlines of a theory of the science of language. It falls
in this sense under the general field of theory of science, as exemplified e.g. by Kevin Kelly,
[33]. However, as I lay out in the sequel, the peculiarities of linguistics seem to outweigh the
common ground with the general theory of science, at least for the aspects I am focussing on.

2This is surely not the place for a complete discussion of this point. So let me just say:
this position is not necessarily the correct one, but it seems to me the “working assumption”
of theoretical linguistics in the canonical sense. Moreover, to me it seems to be generally
unclear what theoretical linguistics would actually look like if we would think of it as a science
predicting verbal behavior in given circumstances. In my view, this depends on a lot of things:
for example, if we want to reconstruct canonical semantics in this view, I guess we first need a
good theory of communication, in particular a notion of what successful communication means.
As this and similar questions are complex and mostly open, I will just assume the standard
“working assumption” of linguistics being on possible rather than actual behavior.

3Put forward by Alexander Clark, as far as I know.

1.1. WHAT IS METALINGUISTICS? 9

have only observed a small fragment of the complete language. As there is not
the slightest evidence that this changes with a growing number of observations
we make, this points us towards the fact that the number of possible observations
is infinite. This argument is more empirical than the Chomskyan; yet it does
not exclude the fact that languages are extremely large yet finite.

Despite these problems, by now all linguists agree that linguistic descriptions
have to account for linguistic creativity. This is the main ingredient of our
problem, which is the following: we can of course observe linguistic behavior in
humans, but as languages are infinite objects, we can only observe finite fragments.
From a formal language-theoretic point of view, finite fragments tell us a priori
(that is, without further assumption) quite little about infinite languages, namely
exactly nothing beyond the fact that the language has a certain finite subset.
So we quickly come to the conclusion (we will also make this argument in much
more detail in the sequel) that the infinite dimension of language remains subject
to our stipulation. So as linguists, we first have to construct an infinite language
before we can describe it. This is a very conscious process, because as linguists,
it is not our implicit knowledge of language that counts but rather the explicit,
conscious knowledge. But this obviously conflicts with the claim that our main
goal is to describe an implicit, unconscious knowledge. It is important to be clear
about this point: even if I (implicitly) know an infinite language as a speaker,
as a linguist I do not know it in a way such that I can describe it. I can take
parts of my implicit linguistic knowledge and make them explicit by using my
intuition, but these parts will always be finite! As a linguist, I will never find
an infinite language as a given, empirical object, I always have to construct it.
How can we know that our conscious construction of language coincides with
the implicit knowledge? Well, we simply do not know. So the commitment
to describe linguistic knowledge and creativity conflicts with the claim that it
should be unconscious and implicit.

As is easy to see, there is some similarity between the child learning a
language, and the linguist constructing it: both construct an infinite language
from a finite amount of data. But whereas the child can in the end claim to
know the language (implicitly)4 by the very definition of what language is, for
the linguist, even if he knows the language implicitly, this is of no use, because
what counts is what he knows explicitly ; and for his explicit knowledge, there
is no way to ever tell whether he has constructed the correct language! So in
this sense, his situation is worse.5 Anyway, here and in the sequel, if we talk
about observation etc., we always take the perspective of the linguist rather
than the child learner, and we urge the reader to be aware of this rather unusual
perspective.

Now of course, in linguistics, nobody would ever think that the finite fragments
of language we observe (that is, the linguistic observations we have made as
linguists) are uninformative about the language as an infinite object, and this for
several reasons: maybe the strongest argument against this view is that the child
learner has to learn from the data he observes, and he will learn the language in
a way which is determined by his observations. Nonetheless, there is no a priori
reason we cannot claim a thing like: “The true pattern of language does only
reveal itself in sentences with more than 300million words; everything below

4Although in fact there are good arguments why even this is problematic, see [16]
5In another sense, as we will see, his situation is also much better.

10 CHAPTER 1. INTRODUCTION

is quite arbitrary.” This makes perfect sense from the point of view of formal
language theory.6 But from the point of view of a linguist, this would seem to
make the entire enterprise of linguistics ridiculous. The reason is: in linguistics
we always construct language on the basis of the finite fragments we observe;
if we do not rely on them, on what are we supposed to rely? But that is not
a linguistic argument, but rather a methodological, metalinguistic one. And
regarding the argument of learnability which has to be ensured, there is a simple,
well-known answer: it is only below the mentioned threshold of 300million words
that children even need to learn - beyond this threshold everything is innate!

So linguists have to rely on finite fragments they observe; they are bound
to the commitment that these fragments reveal the nature of language both
in a positive and negative sense: positively: the fragments we observe are
informative about the infinitary nature of language, and negatively: all that is
informative about the infinitary nature is in the fragment we observe. So the
infinite languages linguists construct are interpretations or projections of the
fragments they observe. But of course, finite fragments can be interpreted in
many ways, and the projection we perform depends heavily on the theoretical
devices we use, more bluntly: the shape of infinite language, as we construe it,
depends on linguistic tools and theories we use.

But if language as an object depends on the theory we make of it, in how
far can we make valid general statements on the formal properties of language?
These seem to be circular by necessity! This is in a word the problem I will
address in this work, and in fact I will argue that a priori we can hardly make
any claims on the nature of language just by observation, but only by making
in addition some pre-theoretical assumptions. Still, there are good arguments
which favor some pre-theoretical assumptions over others, and the matter turns
out to be rich and interesting. This is what I will study in this work, under the
label linguistic metatheory.

What is linguistic metatheory, or the metatheory of language? In a word, we
can say that in the same way as metamathematics is the theory of mathematical
reasoning, metalinguistics is the theory of linguistic reasoning. What is linguistic
reasoning? In a word, it is the thinking about what is part of our language
(semantically: which utterance has which meaning), beyond our immediate
intuition. By way of analogy, mathematical reasoning consists in deriving certain
consequences from premises; that is, infer the truth of a statement from the
truth of other statements. Linguistic reasoning, as we conceive of it, is inferring
a certain infinite language from a given finite set of data. The inferred language
will for theoretical reasons always be infinite; the dataset given to us will for
practical reasons always be finite. This is not a matter of learning or corpus
linguistics at all: even the most armchair linguist, trying to write a (fragment of
a) grammar for a language he is a native speaker of, will always only consider
only a finite set of utterances, before he can write a grammar; but the grammar
will have to cover infinitely many sentences, otherwise the (armchair) linguist
will consider his work to be idle. So linguistic reasoning consists in inferences of
the following form: we have some sentences in our language L, more formally,
we have a set of premises

6And in fact, Chomsky himself takes a related point of view when he says that the “perfect
regularity” of language is visible only when we look beyond the language we use, moving
towards the infinite, see [5]

1.1. WHAT IS METALINGUISTICS? 11

{` ~w ∈ L : ~w is in our dataset}; (1.1)

and from this we make inferences roughly of the form

` ~w ∈ L ~w is similar to ~v
` ~v ∈ L . (1.2)

So we have some means of deducing linguistic judgments from linguistic
judgments. The precise form of linguistic inferences we will consider later on in
much more detail. The resulting language will then simply be the closure under
deduction of the dataset we have. This is all very general: but at a certain point,
the linguist will have to decide how the infinite language should look like, given
the data he has considered. This is what we call linguistic reasoning; and this is
what we will study here.

In which way shall we study linguistic reasoning in this work? Again, a look
at mathematics might be helpful. Every profane mathematician, doing profane
mathematics as calculus, uses mathematical logic, even though mostly implicitly.
For example, he might say: “I can show that ’p and q’ is true; therefore, in
particular p is true”. This is a line of reasoning which seems to be unsuspicious.
he might as well say: “I can show that ’either p or q’ is true; and I can show
that p is not true. Therefore, q must be true.” This is a line of reasoning
which will also seem unsuspicious to many mathematicians. What is it that the
metamathematician will do? He might say: your first line of reasoning is fine,
this seems to be pure logic; however, your second line is not wrong, but depends
on certain metaphysical assumptions you make: for example, let us look at the
quantum universe, where “p is true” means as much as “p can be verified in some
physical system”. Now there are cases, where we can verify: “’p or q’ is true”,
for example in the following case: assume we look at a photon φ moving towards
a surface, and p means: “φ will cross the surface in the square interval α1”,
q means “φ will cross the surface in the square interval α2”. Choosing α1, α2

appropriately, we might be able to establish that “p or q is true”, that is, we
can verify it in the system under observation.This is because one measurement
can confirm that one of p or q must be true. Furthermore, having chosen α1, α2

appropriately, it might happen that we cannot verify whether “p is true”, nor
can we verify whether “q is true”, because they already are so small that the
path of φ cannot be determined as exactly by the uncertainty principle. So
setting up negation appropriately, we have “p or q are true”, yet “p is not true”
and “q is not true”. We can now ask again: given that “p or q is true”, and “p is
not true”, does it follow that “q is true”? In the quantum universe obviously not,
because it might well be that neither we can verify q! So the line of reasoning
which the mathematician doing calculus applied is not valid for the quantum
universe. His reasoning is valid under certain ontological assumptions, but not
under all. So, what the metamathematician does is: he uncovers the implicit
metaphysical assumptions, which have to be made in order to allow for certain
inferences and certain methods of mathematical reasoning.

In this way, the profane mathematician applies many different arguments he
considers to be valid. In the next step, the metamathematician will try to make
them fully explicit by finding find some enumeration of all valid arguments. And
as a third point, having made this explicit characterization, he will try to point
out how different ways of mathematical reasoning affect actual mathematics.

12 CHAPTER 1. INTRODUCTION

This is roughly what mathematical logic is about. Its goal is as this: we want
to find a position which 1. is both well-founded from a metaphysical and
ontological point of view, which can 2. be sufficiently formalized, that is, allows
an enumeration of all valid arguments, and which 3. in addition is working well
from a practical point of view: our valid arguments should give rise to a rich
and interesting mathematics.

What does the metalinguist do? First, we will give some examples for
linguistic reasoning, and show why some lines of reasoning are more problematic
than others. Let us consider the linguist writing some grammar fragment. For
example, he might say: “I can say: Peter is in love with Sally. But I can also
say: Peter is in love with Sally and Mary., and that is as good. Also: Peter is in
love with Sally and Mary and Gina.” The linguist might do this up to a certain
point, and conclude: “If my language contains Peter is in love with X., where X
is any conjunction of names, then it also contains Peter is in love with X and Y.,
where Y is a name. This is still problematic, as the linguist presupposes to know
what a name is, but if we grant him this knowledge, we should grant him the
conclusion. His main argument is as follows: “In principle, there is no upper
bound to the examples I can consider; for any example I can think of, I clearly
judge it to be in the language. Therefore, only practical restrictions prevent me
from effectively proving the infinity which I have to stipulate.”

We grant him this; but most probably not all of his inferences will be as neat.
Just consider the following line of reasoning: “I can say People see. I can also
say People people see, see. [Now things get tricky!] In principle, I could also say:
People people people see, see, see.; the fact that I do not say nor understand it
under normal circumstances is due to my restricted amount of working memory,
not to my knowledge of language.” Now, if we grant him this point, he will be
able to make the same argument as before, which we recognized to be valid.
The question is: should we also accept the other argument, that his incapability
to utter and understand a sentence like People people people see, see, see. has
nothing to do with his language in a proper sense? Linguists usually do, but
the metalinguist has to ask: well, but on what grounds? Obviously, this has to
do with the fact that it is possible to extend the structure at least once; but
note that this is a much weaker criterion than the first, where we could extend
it arbitrarily.

Let us consider a third inference. Our linguist might argue: “War in Vietnam
or no war in Vietnam, my son is gonna join the army. Now, is it possible to say:
War in Vietnam or no war in Vietnam or no war in Vietnam or no war in Vietnam, my
son is gonna join the army.? (For more examples and discussion, see [35], [48]) It
is doubtful whether this sentence would be accepted by any speaker. Pondering
about this sentence, we can somehow make sense of this, at least syntactically.
The fact that we probably cannot assign any meaningful interpretation to it
should not bother us, for the same holds for a sentence as At night it is colder
than outside. So, is the fact that we do not understand the former sentence
a restriction which is essential to knowledge or language, or due to language
external factors? In the last inference, we said that there is a pattern which
applies at least twice; in this case, we do not have this argument. Should we
allow the inference nonetheless? We do not know, and in this case linguists seem
to be generally unsure as well.

We thus acknowledge basic facts on natural language, which we will consider
in much more detail later on: 1. given some finite dataset, it is generally unclear

1.2. A NOTE ON SYNTAX AND SEMANTICS 13

how the corresponding infinite language does look like; 2. not all constructions,
which can be projected to the infinite, have the same status with respect to
projections; that is, projection has to be done according to different criteria in
different cases. 3. whether a linguist accepts a certain sentence or not seems to
depend on his trying to make sense of it, that is, his thinking about the sentence.
This is important, as the construction of language depends on the judgments we
have; but the judgments themselves are already influenced by our reasoning. 4.
The same seems to hold also for normal speakers.

Note that these observations strongly contradict two essential assumptions
of what we can call naive linguistics: the first one is: if we look at enough data,
then it is entirely clear how language looks like. The second one is: there is
such an object as language, which is completely determined in any regard; it
is usually situated in the mind of the speaker, and all thinking and reasoning
about language only spoils this mythical natural language. The first part of this
work will be mainly dedicated to showing why naive linguistics is inadequate.

If the object of study of metalinguistics is linguistic reasoning, what are the
goals of metalinguistics? We might say its main goal is to provide an explicit,
formal foundation for what naive linguistics takes for granted: the existence of
infinitary language. In doing so, it has to fulfill five main requirements:

1. It has to be based on datasets in a formally rigid manner; that is, we have
to think of it as a computable function from finite languages to languages.

2. It should have a good mathematical and linguistic motivation for projecting
certain patterns into the infinite.

3. Given the datasets we usually have in linguistics - with the usual restrictions
- it has to provide languages sufficiently rich and well-structured for a
satisfying linguistic theory.

4. It has to be strictly finitary in its methods. It is its goal to justify and
provide the infinite objects which linguistic theory requires; but it must
not take for granted the existence of any infinitary objects or methods.
Finally,

5. it has to be based on reasonable philosophical assumptions on the relation
of datasets and languages, and on the nature of linguistic judgments.

1.2 A Note on Syntax and Semantics

Note that we have to distinguish a purely syntactic conception of language
from a more comprehensive syntactic and semantic conception. In the syntactic
perspective, language consists of simple objects (less naively, languages are sets
of strings or trees); in the semantic perspective, it consists of pairs (less naively,
is a relation). The latter is surely more adequate a conception. Nonetheless,
we will mostly stick to the former, because syntax is so much more simpler
than semantics as regards both its primary objects and their decomposition.
Whereas for syntax, we can modulo some idealization easily think of the basic,
given objects as strings, for semantics, nothing the like seems to be at hand.
Whereas for strings, the possible decompositions are trivially given, for semantic
objects they are extremely unclear. So we will throughout this work simply

14 CHAPTER 1. INTRODUCTION

take the syntactic perspective, ignoring any other (semantic, phonological etc.)
component of language, and moreover take for granted that the decompositions
for our objects - strings - into the combinatorily relevant units - letters - are
given. This is by no means mandatory, but still a reasonable assumption.

Whereas it is quite unclear what are meanings, and what are the decompo-
sitions of meanings, it nonetheless seems clear that linguistic reasoning as we
conceive it applies equally well to semantics. For example, it is clear that the
sentence Every boy loves some girl has two readings. But how many readings has
the sentence Every girl thinks that some boy thinks that every girl thinks that some
boy thinks that she is stupid?

Before we can for this sentence devise the quantifier meaning, we have to
make up our mind on how many readings/meanings this sentence has (and many
other sentences); otherwise, we have no means of deciding its adequacy. But in
the latter example, this is clearly not a matter of intuition; there is no intuition
of the form: “this sentence has 16 readings”. So what we usually do is: we
conversely take our primitive quantifier interpretation, in order to find an answer
to the question how many readings the sentence has. But this is precisely the
same problem we encountered in syntax: we need the theory in order to properly
determine the data (or more clearly: to fix the data), and so all the problems
from syntax come also for semantics.

So metatheory of language is not the metatheory of syntax. It is the metathe-
ory of all infinite domains of language. If I mostly treat it as if it only concerned
language as a syntactic object, this is because I think that in order to do
otherwise, we would need much more elaborate methods and much more space.

1.3 The Goal of This Work

The goal of this work is a mathematical formalization and philosophical critique
of linguistic reasoning. It goes without saying that I can only give a broad
outline of this huge enterprise, and show results which only amount to showing
that some things are possible in principle.

The main goal is this to give an outline of the discipline of metalinguistics,
the subject of which is the construction of the subject of linguistics. It is this
crucial distinction between the level of describing (infinite) languages – which is
linguistics – and constructing infinite languages – which is metalinguistics – that
has to be kept in mind throughout this work. Moreover, I try to show that this
neat separation is not only possible, but useful and necessary if we want to avoid
some pervasive problems at the very foundations of modern linguistics. I work
out three different approaches to metalinguistics, which are based on different
philosophical assumptions. I show that they can be motivated, rigidly formalized
and give rise to interesting questions both of linguistic and metalinguistic nature.
I want to stress that if one wants to do linguistics, there is no way to avoid some
kind of metalinguistics. Usually, the procedure is kept implicit and is blurred
with linguistics itself, but that does of course not mean that we have avoided (or
even solved) the problems of metalinguistics. So what I do is twofold: I make
something which is usually done implicitly explicit, pointing out possible choices,
assumptions and consequences; and I make something, which is usually done in
a sketchy, intuitive manner mathematically precise.

I do not want to change linguistics fundamentally, and not even in principle

1.4. THE PHILOSOPHICAL CONTEXT... 15

endeavor to tell linguists how they should project languages to the infinite: rather,
I want to show certain possibilities of formalizing the procedure. In practice, I
can only give the rough outlines of the main problems and some solutions to
them; I will also show that for certain problems, there are no satisfying solutions.
So the main work is to give the rough outlines of a field which has been entirely
neglected in linguistics so far, though in my view, it is of crucial importance for
all formal approaches to natural language.

If the results of this work remain rather modest as compared to the huge
endeavor or metalinguistics, I think there is one important goal which has been
achieved in this work: there are ways to formalize and justify linguistic reasoning,
and linguistic metatheory can be studied properly. This is of fundamental
importance for formal linguistics: because it means that its arguments on natural
language need not always rest on a vague and unclear notion of projection. If
the reader will agree with me on that point after reading my work, then I can
be content with it.

In the next chapter we will consider a bit more closely the main ingredients
of the problem; these are the “creative commitment” of modern linguistics, and
the “epistemologic burden”, which any approach in this commitment has to
carry. We will also present some presumably linguistic problems which turn
out to be strongly entangled with metalinguistics. But first I will give some
contextualization of my work.

1.4 The Philosophical Context...

Linguists of all schools of thought have claimed that there is a distinction
between linguistics in the Cartesian tradition, assuming a mind (language faculty)
which is richly structured before all experience; and linguistics in the empiricist
tradition, assuming that the mind (language faculty) has the minimal structure
and knowledge a priori, and becomes rich only through experience. Cartesian
linguistics is usually identified with Chomskyan linguistics, whereas empiricists
are identified with people who do not think there is a (rich) language-specific
innate module. As has been pointed out by [10], this identification is not entirely
correct and even misleading, as the position of empiricists and Cartesianists
concerns the possibility of knowledge in the first place, which is a thing which
none of the linguists arguing on innateness ever calls into question. And in fact,
the old dispute between Cartesianists and empiricists seems to be more closely
related to my work than to the old debate on innateness and universal grammar,
because my work is concerned with a properly epistemic question: namely what
can we even know about language, the object we study? But the duality which
I consider most important is another one. One could say that most (almost all)
of approaches to language have been based on a metaphysical point of view:
one argues about the true nature of language, whether it is in the mind, an
abstract object or whatever else. The point which I promote could be said to
be epistemological : I am quite agnostic about the true nature of language; the
question which is important to me is rather the following: what can we even
know about language? So the duality which is crucial for my approach is the
one between epistemology and metaphysics. One major presupposition which
underlies this work is the following principle: epistemological questions have
priority over metaphysical questions. This is my fundamental commitment. Of

16 CHAPTER 1. INTRODUCTION

course, one does not have to share it; still: I do not see in how far it matters
whether language is in the mind or an abstract object, if I do not know how
it looks like. I will elaborate on this later on, and just mention it here to
contextualize my work.

1.5 ...and the Context of Learning Theory

One might say that in the end, my problem is one of learning: the linguist, as
the speaker, just has to learn the language he wants to describe. Sure, learning
is different in the sense that the linguist learns explicit knowledge, the speaker
implicit knowledge, but the mechanisms are the same, so we can just apply
learning theory to our problem. I will quickly explain why this is not the case.

The first main difference is the following: the speaker learns his language
effectively and by definition; at some point, he knows it – under any standard
definition of language. For the linguist, this does not obtain: he can always
be wrong about the true nature of language. This is not a matter of empirical
observation or mathematics, it is a matter of definition. This has an important
consequence: whereas for the speaker, we can quietly assume some limiting
procedure, which then terminates by linguistic definition at some point (when
the speaker has learned his language), for the linguist that does not make sense:
he never knows whether he has constructed his language correctly. So a limiting
procedure to him is completely useless: he wants to do linguistics at a certain
point, and therefore, he wants to terminate his metalinguistic procedure at a
certain point. As this excludes all limiting procedures, we can just take the
following stance: the linguist takes some finite datasets, and wants to map it
onto an infinite dataset. Then he can immediately begin his proper work of
grammar writing.

The second difference is the following: for the learner, it is a big open question
in how far he has access to negative data (see [10]). For the linguist, things are
much better: he can elicit judgments on any sentence, and can gather negative
data in abundance. His problem is another one: he will get way too much
negative data. This requires some explanation. We usually agree that there
is a difference between acceptability and grammaticality, the former being an
empirical notion, the latter a theoretical notion. The former is what we are
(partially) given; the latter is what we want to construct. Now, the central
problem is: there are many sentences we usually consider grammatical, which
are not acceptable. This means: we will get more negative judgments than we
want! So we either have to discard the notion of negative data altogether, giving
them no importance whatsoever, or we have to distinguish between different
sorts of negative judgments. We will take the latter road, as some negative data
will be necessary for our purposes. This leads us to the third difference.

As we have said, a speaker learning a language succeeds by definition, whereas
this does not hold for the linguist reconstructing it. Consequently, for the speaker
learning from data, once he has learned his language, there is no meaningful
question of the form: “did I learn the correct language?” For the metalinguist,
this is a very important question: given the data, did we reconstruct the correct
language? We cannot know for sure, of course, and this is very problematic:
because our construction should not be completely arbitrary – in that case it
could as well be skipped. Though we can never know which reconstruction of

1.5. ...AND THE CONTEXT OF LEARNING THEORY 17

language is correct, we should make our constructions at least falsifiable. This
can be achieved as follows: given that we have some (distinguished) negative
data, we can use this data to falsify the entire process of construction of the
language. If the reconstructed language contains any of the (distinguished)
negative data, we require that the language be constructed in another way. But
this of course presupposes that the process of the construction of language itself
does not have access to the negative data, otherwise we can trivially avoid any
falsification! So the construction of language has to be based on positive data
alone, if we want to aboid arbitrariness.

There is another consequence of the fact that the metalinguistic construction
can be wrong, contrary to the learner. This time, it concerns the general
mathematical paradigm. In learning theory, one generally departs from a class
of languages and look whether it is learnable. So in a sense, we always take for
granted that we know what is learned; and learning without this presupposition
seems to be a trivial thing (actually, things are a bit more complicated, cf. [10],
pp.89–95, but that is only of minor importance to us). The linguist constructing a
language, on the other side, never knows whether he is correct in his construction.
So for him, this process is in a sense open-ended: something should come out,
but there are few criteria to decide whether the outcome is satisfying or not.
This has some important consequences for this work. The first one is exactly
that we need at least some negative data: if we construct an infinite language
from a finite (positive) sample, then there should be a way to tell whether
the construction is complete nonsense, and for this, we need some sample of
utterances which should not be part of the constructed language. The second
consequence is the following: to my knowledge, there have not been any studies
focussing on questions on the form: given a learning algorithm A, what is the
class of languages on which A converges? So one usually departs from a given
class and check whether A converges for all members of this class. We will
here exactly focus on questions on the former kind: given a map π from finite
languages to languages, what is the class of languages π induces? What are its
properties, and what are its properties given only a certain kind of input? The
reason is that it is exactly this kind of question which our approach makes us
ask. So not only do we differ in the techniques we use, but also in the focus of
our study, just because it is the basic presupposition of this work that we really
know nothing about how language really looks like, except for a finite fragment
thereof.

So whereas learning theorists depart from assumptions like: “natural lan-
guages are not context-free”, for us this does not hold: these statements can
only be made given some projection of our data into the infinite, and this is
exactly what we want to provide in the first place. This does of course not mean
that considerations of complexity and expressivity are irrelevant to us: they are
most interesting, as we want our formal machinery to agree with the linguists
intuitions. But we are extremely open minded with respect to the outcome of
our procedures!

18 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals and
Problems of Linguistic
Metatheory

19

20 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

Summary of the Fundamental Problems

We first discuss the consequences of the commitment to describe language as
an infinitary object. Whereas there is broad agreement on the commitment
and no doubt about the fact that we only observe finite datasets, there is little
awareness of the fundamental problem of constructing infinite languages from
finite ones. We illustrate that this is not a secondary or trivial matter, by
showing some invalid conclusions on the nature of language, which have arisen
due to the confusion of theory and data in the projection problem. Furthermore,
we show some deep problems around the projection problem, suggesting that
the projection problem cannot be solved in straightforward fashion, and that
questions of projection are strongly entangled with central questions of linguistic
theory. If there is a reason why there is such a strong convergence on projections,
then it is the habit of a certain methodology, which is very widespread, but which
is questionable on a number of points. Finally, we give an outline of how, given
the ontology of meta-linguistics, we can construct different adequate ontologies
for linguistics.

2.1 The Creative Commitment

2.1.1 What and Where is Language?

We have already mentioned the fact that we have to assume that languages are
infinite. As this is of central importance for us, we will look at it in a bit more
detail.

The first question we have to address is: what is language? This is not
as trivial as it seems at the first glance: in (American) structuralism, there
was rather broad agreement that language is an abstraction of the collection
of all utterances we observe, where abstraction is meant in the rather narrow
sense of abstracting features from certain oppositions. This is so to speak an
extensional definition: language is a collection of physical objects in the real
world. This view, though it was never really unchallenged, was successfully
attacked by Chomsky with his famous infinity argument: as there is no upper
bound to the length of sentences speakers can utter, and consequently no upper
bound to the number of sentences, so there are infinitely many. Any account
of the extensional language, that is, the utterances we observe, will therefore
be defective. In particular, it will not only be inadequate as it will not account
for new, unuttered sentences, but it will be inadequate as it completely fails to
capture the central aspect of language: that it is infinite. And it will also fail to
capture the central aspect of the structure of language: this is only revealed if
we consider that there is a finite specification of the infinite set of utterances,
which is such that speakers learn their language in a finite amount of time.

The creative commitment is much weaker than Chomsky’s assumptions
about language, and we want to stay with this weaker, more fundamental claim:
whereas Chomsky goes on to say, that linguistics needs to describe speaker’s
knowledge of language, and thus a cognitive capacity, we only want to use the
argument to make sure: linguistics has to describe an intensional object ; that is,
the relation of language and the observable reality of what we consider part of
language is one of possibility. So language might well be a cognitive capacity, but

2.1. THE CREATIVE COMMITMENT 21

does not need to be. Other than a cognitive capacity, we can think of language
as the set of possible utterances, still in a physical sense (this is Michael Devitt’s
position, see [16]), or we can think of it as an abstract object such as is Peano
arithmetics (this used to be Jerrold Katz’ position, see [32],[31]). All these
positions are fine with the creative commitment.

Anyway, it is not the task of linguistic to account for what has been uttered
at some place, but what can be uttered; its range is not the actual, but the
possible. In an idealized setting, the possible would be a superset of the actual.
Things are, however, a bit more complicated: we observe actual utterances which
seem to be wrong according to our knowledge of language, and often even the
speakers who uttered them recognize them to be wrong and correct themselves.
So these utterances should not be among our possible utterances. There is a
lot of discussion where we have to draw the line, and in fact we will talk about
this at length later on; we just mention for completeness that there are actual
utterances we should not account for.

We conclude that it is the task of linguistics to account for (the structure
of) language as an intensional object, or to put it differently, to account for
linguistic creativity. An approach which aims at covering only the utterances
found in the British National Corpus, or only covering the utterances with less
than 20 words, we would not consider as satisfying or even relevant from the
point of view of linguistic theory - though these approaches might be useful in
many applications.

We will call this the creative commitment, which any serious linguistic theory
has to make. Note that this mostly concerns syntax and semantics, but not
exclusively: one might construct infinity arguments of the syntactic kind as well
for phonetics and phonology, though they might not be as convincing, or even
for pragmatics.

So there is broad agreement on this creative commitment, even among those
who consider language as an abstract object, and linguistics not to be entangled
with psychology. So one can adhere to the creative commitment without making
a “cognitive commitment”, which is to consider linguistics as part of psychology,
and consider language interesting only as a capacity of the mind/brain. On the
other hand, the cognitive commitment of the generative school and many others
just seems to be a particular stream within this creative commitment.

2.1.2 The Mathematics of the Creative Commitment

Usually, we lose the broad consensus as soon as we look for more particular
commitments, which are more concrete in a mathematical sense. However, among
formal approaches to natural language, there seems to be a broad consensus
how to fulfill this creative commitment: we treat languages as infinite sets (of
strings, trees, pairs, triples...), which are finitely characterized. This is what
we will call the classical conception. It is important to underline at this point:
subscribing to the creative commitment by no means is the same as subscribing
to the classical conception. The classical conception is maybe the most simple
and straightforward, but comes with its own problems, as we will see.

In this dissertation, I will look at justifications of the classical conception,
but also try work out alternative approaches. These will maybe be less simple
and clear, but as I argue, provide ways to avoid some fundamental problems of

22 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

the classical conception, and maybe also allow for more adequate descriptions of
some phenomena. Our fundamental problem is very briefly the following:

(1) The infinity of language cannot be conceived independently of the rea-
soning/theorizing subject.

That is, the languages we describe as linguists are never primary data. It
is always an object constructed according to some pre-theory, which lets us
interpret the finite fragment we observe in a certain way. In an interesting way,
this makes linguists very similar to speakers: speakers as learners make languages
infinite only in as far they construct theories around the language they observe
in the sense of learning; but we might think of it also differently: they derive new
utterances by explicitly thinking about the ones they already know, and this is
exactly what linguists do. This leads to an important ontological distinction: for
linguists, we must distinguish between actual (observable) and constructed data.
We might argue - and will argue later on - that the same holds also for speakers:
we must distinguish between the immediate use of utterances, where speakers
use utterances they have heard and know in advance, and creative use. This
distinction contradicts the usual assumption that all linguistic knowledge has the
same ontological status, which comes necessarily with the classical conception of
language as a set.

So we have, beforehand, an epistemic distinction for the linguist. This,
however, also corresponds very roughly with a cognitive distinction of the
speakers. Later on we will see how we might take this into consideration when
construing a non-classical linguistic ontology.

2.2 The Epistemic Foundations of Linguistics

There is yet another perspective on our problem, namely the one of epistemology
and ontology. It seems to be a basic issue in philosophy of science whether we
depart from the question of what is given as our subject, or the question: what
can we know of it? For example, in classical logic, we construct our ontology
regardless of the question what we actually (can) know, whereas in intuitionism,
this epistemic aspect is quite important. The same seems to hold for other
sciences, and in particular, for linguistics. To my impression, there is lots of work
on the ontology of linguistics, concerned with what language really is; but there
is very little work on the question: what can we even know about language?
This question is one of the guiding questions of this dissertation, so we look at
language from the perspective of epistemology.

Before I proceed, I want to argue that linguistics is always maculate with
epistemic concerns, no matter which perspective we take on it, and that for
this reason, firstly, the epistemical approach to language has priority over the
ontological one, and secondly, there is no way to get around linguistic metatheory
in our sense. It seems to be important to me to stress this point simply because
there seems to be so much ignorance of it. For example, Chomskyan scholars tend
to do away with epistemic arguments on language with the objection: I-language
has physical reality in the brain, so what we study is as real and tangible as any
physical object (for a recent example, see [47]). This might be even true - but it
does not change the point that we have no clue what it looks like - contrary to
many other physical objects.

2.2. THE EPISTEMIC FOUNDATIONS OF LINGUISTICS 23

Ever since its very foundation, linguistics is struggling to become a science.
It is not entirely clear, though, which one. One the one hand, the generative
school insists on the objective reality of language in the mind/brain, which is the
subject of linguistics proper. This is to say, first of all, linguistics is a branch of
psychology, as it aims at describing something which has psychological reality in
the mind of the speaker. But in a second step, it is even something like physics,
as it ultimately aims at describing something which has a physical reality in
the brain of the speaker. Note that one can go the first step without going the
second.

On the other side, it has been claimed that linguistics is similar to mathe-
matics. This claim is implicit in Montague’s seminal work (“I do not believe
there is any important difference between natural and formal languages”, see
[52], “English as a Formal Language”), and has been given a more explicit
philosophical underpinning in the work of Jerrold Katz (see [31]). The argument
goes roughly as follows: the logical structure of language is much more rich
than our cognition. In particular, natural language semantics seems to contain
very powerful logics, and we cannot say that these kinds of logics are part of
psychology, because in the end because they are more complicated than what we
can effectively handle. We therefore have to think of language as of arithmetics,
an abstract object which exists independently of us.

We will now review both positions, and quickly show that in either approach,
we fall back on the same limitations, and that in none of them, linguistics will
become a true and proper science. Note, by the way, that the position we try to
formulate here, seems to be that of Saussure, as the founder of modern linguistics,
as he repeatedly claimed that in the science of language, it is the point of view
which creates the subject, and that there is no way to think of the subject of
linguistics independently from a certain perspective on it (see the fragments
appeared in [15]).

We use this section to show that either way, linguistics in the creative
commitment always carries an epistemic burden with it, and there is simply no
way out of this. We show this first for the psychological conception of linguistics,
then for the “abstract” conception” (nominalist, platonist conception).

2.2.1 The Epistemic Burden of Linguistics as Psychology

A commitment much stronger than the creative commitment is the cognitive
commitment, which can be phrased as follows:

(2) It is the goal of linguistic theory to describe the native speaker’s knowledge
of language.

We ignore for the moment that this is heavily underspecified in many regards,
and just focus on the consequence that it is the ultimate goal of linguistics to
specify a cognitive capacity. This entails the following: (i) linguistics is a branch
of psychology, and (ii) it is its ultimate goal to describe something which has a
physical reality in the mind/brain. Regarding (i), we simply comment on the
fact that usually psychology is exactly not intensional in the way linguistics is:
it tries to account for concrete behaviors in concrete situations. This accounts
for the fact that linguistics looks so different from psychology, if not in theory,
then in practice.

24 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

We focus, however, on (ii). It is one of the fundamental claims of the
generative school, that one day we will be able to verify its theoretical claims by
directly looking into the physical reality of the brain. The huge gap between
physical reality and linguistic theory is mainly due to our lack of knowledge on
how the two interact, which does not hold only for linguistics, but virtually any
domain of psychology.

Chomskyan linguistics strongly ignores all epistemic arguments on language,
that is, arguments which say that we cannot know certain things (cf. the
reply to an argument of Quine, that weak generative capacity underspecifies
strong generative capacity; the answer is: “yes, but generative grammarians
directly look at strong generative capacity!” – as if the latter were accessible
independently from weak generative capacity). A major point seems to be the
following: generative linguists insist that all linguistic theory is preliminary in
the sense, that at a certain point, we will be able to directly read within the
language module of the brain, and thereby answer all question. So theories are
preliminary constructs, which will become obsolete (or confirmed), as soon as
we properly understand the brain. They are preliminary descriptions of what is
hard-coded in the brain, and linguistics will ultimately be a study of a physical
reality in the brain.

But now assume, one day we will bridge this gap between theories and “the
brain”: we will be able to verify the correctness of a theory by directly looking
into the brain. Then the brain must somehow satisfy our requirement of the
creative commitment: it must somehow specify language in the intensional sense.
If we look at it that way, by the assumption that we can read it, then it is
just some very weird notation. To understand this notation means that we can
translate into a notation which is closer to our usual language of mathematics.
Now assume we will one day manage to do so.

Then our process of understanding is a process of translation (whether explicit
or not), as we have to translate the code of the brain into a “human readable”
format. But now, in order to know whether a translation is correct or not, how
are we supposed to decide? Obviously, whether a translation is correct or not,
we can only decide when we have some notion of a meaning, in the most general
sense of something which remains invariant under the translation. Now, what is
the invariant for the translation of a (piece of) brain into a formalized theory,
or vice versa? As we have agreed on, they are both intensional descriptions of
language. If there is anything by which we can compare them, then it their
extension, and this is nothing but the possible verbal behavior they predict.

This in turn is nothing but language in the infinitary sense. Our ignorance of
what language really looks like makes us unable to say whether the translation is
correct. If we want to translate a text say from English or German, and we have
no idea what it means, then there is no way to say the translation is adequate
or not, and so the old problem strikes in once again! Of course, we are not
completely ignorant about language: we know finite fragments. But regarding
the infinitary nature of language, we are as ignorant as before, as we have no
idea what the brain actually “denotes” or specifies in the linguistic sense. This
in turn means: the entire decifration of the brain as a code, whether possible
or even meaningful or not, will not reveal to us anything new on the subject of
linguistics without further assumptions on the infinitary nature of language. And
so despite all efforts, the problems we have to face in the end are epistemical.

2.2. THE EPISTEMIC FOUNDATIONS OF LINGUISTICS 25

2.2.2 The Epistemic Burden of Linguistics as a Formal
Science

So how about the approach to language as an abstract object: does this prevent
our epistemic problems? We will sketch here while these problems also pursue
us in the latter approach.

Can we think of language in the same way as of arithmetics, such that the
study of language is like elementary number theory? Let us briefly review what
they have in common. Arithmetics arises, when we put down formally our
basic intuitions about numbers (any numbers!). This gives rise to an axiomatic
system, which is completely specified, and the properties of which we can study
without any appeal to our intuitions. So the important thing is: we appealed to
our intuitions once and nevermore; we put them down and now can study the
resulting system on purely formal accounts.

This analogy of language and Peano arithmetics has been worked out in
[41]. So how is this in linguistics? In principle, things go in a similar way: we
have some data, we fix the rules according to our intuition on the data, and the
resulting object is language, which is subject to our study. The fact that the
number of rules we need to fix a language is vastly larger than the number of
axioms for (Peano) arithmetics should not bother us for the moment. Neither
should the fact that in arithmetics, we speak of one sort of abstract object,
namely numbers, whereas in language we have to assume many sorts of objects,
as noun phrases, verb phrases, sentences etc. What should bother us is that there
are many ways to think of language: it is not clear at all which rules we take,
which abstract objects we assume etc. So language is heavily underdetermined
by the data; or put different, given one set of data, there are many languages
which I can construct thereof. And any linguist knows that this not only holds
in principle, but also in practice.

A more serious objection is the following: arithmetics is not affected of how
we actually calculate. If some people (in “primitive” cultures) do not use numbers
beyond three, that does not affect arithmetics. We can think of it, in fact, as
completely independent of any calculating person. So there is a point, where
we can simply say: we are not interested in people’s intuitions, but only study
formal systems. The same applies, maybe more neatly maybe, to logic. Logic,
originally conceived of as a single one (Frege), is supposed to be a formalization
of human reasoning (in the domain of mathematics). It comes under the implicit
assumption, that all propositions have the same status for logics, regardless of
how complex they might be, in the same way as we have made assumptions for
all natural numbers, regardless of their size in arithmetics. We thereby define a
field, formal logic, which we can study; and so it is independent of the fact that
maybe scholars fail to fully grasp some line of reasoning, or make a wrong one.
This is because we have used our intuitions to define a field. Can we make this
step in linguistics?

Let us put this question more precisely: can we formalize linguistics to an
extent, such that speaker judgments are completely irrelevant to it? So if a
speaker tells us: this sentence of your grammar is completely wrong in my
opinion, can we answer him at some point: “look, we have formalized reasonable
intuitions, and if you do not like this sentence, this is because you are not talking
about language in our sense”. Actually, this seems to be a common practice
in some cases, as we refute certain judgments for performance reasons. But

26 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

to do so in a systematic way, this would make linguistics meaningless: after
all, linguistics has to do with data - language - and if we say it does not, after
a certain formalization, then we would surely get the reply by any common
sense person that what we are doing is not the study of language. Otherwise,
any linguist could claim to be studying his own language, disconsidering other
linguist’s data and theories, all within what we would call one and the same
language. Again, this seems to take the very essence out of the enterprise of
linguistics, which after all is an empirical science.

So we have two major points: the first is, there are many possible linguistics,
as the field of language is not neatly bounded; and secondly, each of them is
open; there is not a definite formalization of the language we want to study, as
there is a definite formalization of arithmetics (which still comes with a lot of
problems of its own, see [3]).

2.2.3 The Epistemic Burden of Linguistic Judgments

So we see there are many ways to do linguistics, but none of them is immaculate
from epistemological concerns. We will always have to ask ourselves: how much
can we know about language? And the answer will always be: we will never be
able to know as much as we actually want to be covered by our theories. This is,
in a nutshell, because of the creative commitment and because the data depend
on our own judgments. We will now quickly review why even these judgments
do not come without epistemic concerns.

Roman Jakobson once attempted to formalize criteria for poetic language.
This, of course, was strongly connected to the attempt of giving formal criteria
of what we find aesthetic about certain linguistic expressions. He made a very
fundamental restriction to the attainable goals of this enterprise: we will never
be able to go beyond a certain threshold in formalizing aesthetic judgments,
because the more we formalize our judgments, the more our formalization will
come to have an influence on our judgments themselves. So our judgments lose
their innocence; if we are theorists of our own judgments, we cannot construct
theories without affecting our own judgments.

The same line of reasoning can be applied to linguistics, and in fact it has
been applied to linguistics: it is a frequent criticism of empirical linguists that
nobody understands the grammaticality judgments of theoretical syntacticians;
that these judgments are no longer “natural data”, because they are spoiled by
the theories which have been developed by the same people who make them.

Now, one could say (and empirical linguists often do say so:) there is a simple
solution to that issue: we simply take the judgments of innocent speakers, by
making experiments or looking at corpora. But in a sense, this would be the
same as saying: we solve Jakobson’s problem on aesthetic judgments, by letting
the part of judging to people who have never thought a minute about poetry in
all their life. But that is clearly not what Jakobson intended; the main point is:
making an aesthetic judgment on a poem, and reason on what is a good poem,
are intrinsically tied; even if the reasoning does not take place on the level of an
explicit formal theory. And we just do not want to rely on judgments of people
never having thought about poetry in their lives! Now, the same seems to hold
for linguistics: what theorists call their object of study is most emphatically not
what the naive speaker finds acceptable. We want many more utterances, namely,
we want infinitely many; and on the other side, we probably do not want some,

2.3. SOME FUNDAMENTAL CONCEPTS OF METALINGUISTICS 27

which sound acceptable at the first hearing. If the judgments of trained linguists
are problematic, so are the judgments of very naive speakers, who maybe a
minute after making their judgment become aware that they have been wrong
(see for example (16) and the discussion on intensional linguistics). So on the one
side, (naive) speakers sometimes make mistakes which they themselves consider
as such. On the other side, there is nothing which prevents the most naive
speaker from reasoning about his language (with whatever outcome). Given this,
we can ask: what does a “naive speaker” even mean, and is the naive speaker
not as much a fictional person as the infamous “ideal speaker” of Chomsky? We
will discuss these problems in much more detail in the section on intensional
linguistics.

Linguistics, in the end, is a science over judgments of speakers. But a
judgment itself presupposes a form of pre-theory. It is this inseparability of
theory and pre-theory, which makes linguistics particular in the sciences (or
more general, any science whose primary datum are human judgments). In these
sciences, empiric facts always have an epistemic flavor.

2.3 Some Fundamental Concepts of Metalinguis-
tics

We start with fixing some terminology. As we have said, the proper subject of
linguistics are infinitary languages. We will call such an object “language”. That
is to say, “language” is something we construct from a finite dataset, and which
is considered to be an adequate subject for linguistic theory. This is opposed to
what we call the observable fragment of language, or simply o-language. This is
the fragment of language we can observe in principle, that is, the set of utterances
we could observe at some point. Importantly, there is no upper bound to the
length of sentences we can observe, so the infinity argument as conceived for
“language” also holds for o-language. Nonetheless, the two do usually not coincide:
in the usual setting, linguists assume sentences to be grammatical, which are
not accepted or uttered by speakers (cf. the introduction), and this is where
“language” exceeds o-language. In principle, we could say that o-language is
contained in “language”; this is the standard assumption, but is not necessarily
the case: Haider ([22]) sketches a (meta-) theory in order to allow for sentences
of o-language not to be contained in “language”.

A third important concept is the one of an observed language. An observed
language is the set of data a linguist considers. Contrary to the observable
language, the observed language is always finite. The distinction between infinite
o-language and finite observed language is of a central importance for us for
two main reasons: first of all, as o-language is infinite, it is not clear what it
looks like: the fact that, by definition, we could observe all utterances it contains
does not entail that we know what these utterances look like. This might sound
paradoxical, as we call it the observable language; but still it is well-known to
the linguistic community that from time to time some new data come up, which,
though being observable, simply have not been considered by any linguist so
far (an important example of a “late” discovery are parasitic gaps, which were
unknown to early syntactic theory). So we have no right to claim that we exactly
know what o-language looks like, even though it consists only of utterances we

28 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

can get to know. On the contrary, an observed language is defined by the very
fact that we know it.

But also apart from this, there is good reason to distinguish the two: as we
have said, linguistic metatheory has to be strictly finitary in its methods. This
entails that we cannot just simply project an infinite language. That is, in general
there is no finitary procedure which ensures we get from o-language to “language”
(that is, without further assumption). Therefore, even if o-language would be
accessible, it would be a bad point of departure for linguistic metatheory, exactly
because it is infinite.

This gives rise to other important concepts. The first one is, put set-
theoretically, “language” minus o-language, where by “minus” we mean standard
set-theoretic subtraction; that is, the subset of language we cannot observe in
principle, or put differently, that will never be observed. This is what we might
call the “dark zone”, as it is the part of “language”, which is not accessible to any
empirical observations, and has to be distinguished from the part of “language”
we have not yet observed, but might observe at some point, which is o-language
minus observable language.

These are so to speak the main ingredients, the objects of the metalinguistic
universe (though of course not the objects which are given to the metalinguist!).
How does this relate to linguistic reality, that is, to natural languages as we
usually think of them? Regarding a natural language such as German, we can
think of it in two different ways: we can think of it of an empirical language,
which thus is an o-language – the set of all German utterances we can possibly
observe. The second way is to think of it as a theoretical language, as for
example, the entity which is the extension of the knowledge of language of a
German native speaker. Note that both conceptions presuppose considerable
idealizations such as the fact that all German speakers agree on all judgments
etc. But importantly, there are (infinitely) many observed languages with respect
this this one o-language, which is observable German, the set of all German
sentences we could hear. In fact, any finite fragment of o-language qualifies as
an observed language, though obviously not every fragment qualifies equally
well, as regards the projection: some fragments are presumably more informative
on the infinitary nature of “language” than others. This is quite intuitive. A
consequence which might be rather unexpected is that with respect to this one
o-language of empirical German, there is also an infinite set of “languages”,
namely possible theoretical “languages” of German. The reason for this is: there
are many ways of projecting observed languages to the infinite. And even if we
might “exclude” some of them later on - we will discuss later how this might
work - there are still infinitely many which only differ in the dark zone, such that
there is no way to empirically distinguish between their adequacy. The unity
of language in the empirical sense thus corresponds to the uniqueness of an o-
language, not to “language”; and in our ontology, i tis better to think of a natural
language as German or English as an o-language, not as a “language”. But note
that regarding a language as German, there is a difference between German as
an observable language, which corresponds to an o-language, and German as
a theoretical language, which qualifies as a “language”, and which might be a
model of what a German speaker knows. Note that both, the observable and
the theoretical German belong supposedly to the real world, but the former as a
datum, a source of evidence, the latter as a construction, which in some way or
other has to exist (in the mind of speakers or elsewhere), but for which there is

2.4. THE PROJECTION PROBLEM 29

no direct way of verification.

There is still one very important issue. From a metalinguistic point of view,
we cannot give negative evidence the same status as positive evidence, for then
there would be no space for a “dark zone”. In our approach, we must say that
there is positive evidence, and its absence. Still, this is somewhat unsatisfying:
whereas for some strings such as

(3) a. What are the chances good I left without caring about?
b. The cat the dog the man let loose, chased ran all over the place.

we might expect that they might be okay given some linguistic reasoning - or
more simply put: we simply want to remain agnostic about their grammaticality
- for others we are pretty sure they are not, such as

(4) Peter John be yesterday.

What does pretty sure mean? For us it means: we are as sure as we can be,
saying that if this sentence is okay, then just anything would be fine. Surely, this
is not what we expect or want, because it would make the entire procedure of
projection trivial: there would be no way of rejecting any projection as inadequate.
Therefore we would reject a projection which contains these strings. This gives
us a negative language, a set of strings we accept under no circumstances in our
“language”; but not because we know that they are wrong – we cannot know such
a thing – but because then we would have to accept that just anything is fine.
From this it follows that negative evidence has a fundamentally weaker status
than positive evidence: the fact that something is judged unacceptable is not
enough to make it a negative evidence. And even if we agree on some negative
evidence, we have to be careful in using it: if we use it in the construction
of “language” itself, then we cannot use it for rejecting certain constructions
anymore! This will play an important role in the sequel. Note that as there is
no way to enumerate this negative language, we have to assume that it is finite.
Moreover, to keep up a division of labor, I should add that though the negative
language is not observed but rather constructed, the task of its construction is
clearly a linguistic task, not a metalinguistic one, as the construction proceeds
over linguistic intuitions.

2.4 The Projection Problem

The projection problem is usually the term for a problem of the language learner:
he is exposed to a finite set of utterances, and has to learn an infinite language.
Therefore, at some point, the learner has to project the finite language into the
infinite. We use the term here and throughout this work in a different sense,
which is however so similar, that I think it would be wrong to coin a new term for
such a well-known concept. For us, the projection problem is the same problem,
but not for the speaker, but rather for the linguist. The linguist looks at a
finite dataset, and has to describe an infinite language. So at some point, he
has to make the transition from a finite language to an infinite language. This
is our version of the problem. Note that the problem poses itself in a slightly
different way: whereas the speaker has to do the transition “automatically”,
that is, without a conscious decision, the (meta-)linguist can do the projection

30 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

consciously after having gathered relevant data. The main difference between the
two is: the (meta-)linguist can reflect over the data and whether it is convenient
for a projection. So he has the great advantage that he can be aware of the
result of the projection, and depending on this, project or not project a dataset.

This difference means that the linguist is essentially in a much better position
than the learner. This also is the reason that we will not approach the problem in
an algorithmic fashion: we do not want to deprive the linguist of his choices and
automatize the projection of an infinite language of which we observe growing,
finite portions: because this is paramount to giving up our most important
advantages, which we have with respect to the naive learner, out of hand.
Another important difference is the following: our procedure is principally open-
ended. In a learning setting, there is always something that has to be learned.
But in our setting, we do not know what we are supposed to learn, because as
meta-linguists there is nothing we can say a priori on the nature of language. So
for us, the problem is essentially open ended: knowing nothing on the infinitary
nature of language, it makes little sense to speak of learning certain classes,
and make the question: “is the class C an adequate class for natural languages”
depend on the question “is the class C learnable”? Rather, things work the other
way round: knowing that projection always results in a class C, we know that
natural language being contained in class C is an artefact of our meta-theory.
This is, briefly, the outline of our version of the projection problem.

2.5 A Sketch of the History of the Problem...

Our projection problem is very closely related to another, even more fundamental
question of linguistic theory:

(5) What is the proper subject of linguistic theory?

Despite many scholars have contributed to this problem, probably only on two
names everyone will agree that they have truly defined (or re-defined) the matter
of linguistics: Ferdinand de Saussure and Noam Chomsky. Interestingly, the
problems we want to address are already present in Saussure’s original work. A
hundred years ago, the Cours de Linguistique Générale was published, giving for
the first time a preliminary definition of what should be the proper subject of
linguistics proper. Apart from some minor revisions, mostly done by Chomsky
within what is now called the ”cognitive turn”, Saussures definitions remain
valid up to today.1 As Saussure said, the proper subject of linguistics should be
langue, a concept which Chomsky renamed to competence, later I-language.2

The Cours de Linguistique Générale was published at a time when linguistics
mainly consisted in the study of the historical development of language and its

1Note that Saussure’s conception was not as antimentalistic as became the one of later
structuralism.

2Note that Saussure’s work is now judged to be a synthesis of what other theorists said,
such as Humboldt and von der Gabelentz. Also for Chomsky, there is a long discussion which
portion of his ideas have to be attributed to his supervisor Zellig Harris. We will however not
touch upon problems of authorship and editorship; so everything we say on persons has to be
taken cum grano salis: even if they had developed all their ideas on their own, they could not
have been as successful if there would not have been a broad acceptance and consensus that
their steps were steps to take.

2.6. ...AND WHY THE CLASSICAL SOLUTION DOES NOT WORK 31

geographical distribution3 (we nowadays say: diachronic and diatopic linguistics).
Saussure’s position in this regard was, to put it shortly: linguistics proper should
be interested in the system of a language, not in its history, not in its variations,
not in its individual aspects. One of his maybe most capturing pictures was the
one of the game of chess: studying chess proper, we should study the rules of
the game; it does not matter whether we have figures of wood or of ebony; and
it does not matter whether chess came from India through Arabia etc: that is
all interesting, but it is not chess proper. I can know all this without knowing
any chess, and I can know the game perfectly without knowing any of this.

Chomsky in turn started his work in the age of structuralism and behaviorism,
when everyone was interested in language as an extensional phenomenon: the
common picture of language was the one of a “structured inventory” of signs,
and the goal was to give a distributional analysis of all utterances and parts
of utterances. In particular, there was little attention paid to the fact that
languages consist of infinite sets of utterances, because the focus was put on
observable sets, which are always finite. The argument for infinity of languages
has in fact to be based on linguistic intuition, and the appeal to intuition was
ill-reputed as “mentalism”. So there was no good way to access the “intensional”
aspect of language, that is, the set of possible utterances.

Chomsky’s work gave rise to the so-called cognitive turn: he emphasized that
language has to be based on a mental capacity; the subject of the grammarian
is to give a description of a speaker’s knowledge of a language; and linguistics in
general has to describe the underlying mental capacity which allows humans to
learn a language. Chomsky’s focussed on the following point: language consists
of an infinite set of utterances, which speakers learn to master in a very short
amount of time. This focus on learning contains a more general problem: the
speaker has to get from a finite database (in a finite amount of time) to a
grammar which generates infinitely many utterances.

Chomsky found himself in front of a dilemma, which already Saussure en-
countered: Saussure said we are not interested in the individual aspects of single
speakers, but still in a psychological phenomenon. That led him to say that
langue is a collective, social object, while being at the same time psychological
(see [61],p.37). Also Chomsky was not interested at all into individual aspects
of language use, but strongly into the psychological, or rather cognitive aspect.
He escaped the paradox with the invention of the “ideal speaker”. It was the
grammarians task to describe the “competence/knowledge of language of the
ideal speaker”.4

2.6 ...and Why the Classical Solution does not
Work

Chomsky’s by now classical work “The Logical Structure of Linguistic Theory”
(henceforth LSLT,[4]) prescribes also a solution for our version of the projection
problem. By the way, it remains to my knowledge the only work explicitly
addressing this problem, so we can dub this solution “classical”. I also have
the impression that if linguists think on our problem, they normally come up

3As it did in fact for Saussure during his lifetime.
4This ideal speaker remains a weak point in the conception; we will discuss this later on.

32 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

with a similar solution. It works roughly as follows: we look at a language,
that is, observe a finite set of utterances of this language. We write a grammar,
which covers the data we have seen so far. As new data comes in, we change
the grammar, eventually make it describe an infinite language. We continue
this process as new data keeps coming in. At some point, our grammar will
converge, that is, for all new data we see, our grammar will cover it. This
grammar is then descriptively adequate. If we aim for more, we might have
additional criteria for evaluating grammars, which let us choose between the
different possible grammars, and the best grammar according to the criteria will
then be explanatorily adequate.

Either way, the resulting grammar, will describe an infinite language (oth-
erwise it could not remain unchanged given new data), and this grammar will
at the same time define “language”, the proper subject of linguistics. The trick
is obvious: it aims at making meta-linguistics part of linguistics, and solve the
projection problem and the problem of grammar writing at the same time. Now
why does this not work?

Apart from technical problems with this approach (all problems coming with
classical learning in the limit have to be considered, [21]), it is inadequate for
reasons of principle. The reason is as follows: the procedure and criterion of
convergence is not finitary. That is, we do never know after a finite amount of
time, whether our grammar converges or not. But we have said that linguistic
metatheory has to be finitary in its means, for otherwise it is useless. On the
other hand, assume we know at some finite point after a finite amount of steps
that our grammar will converge. But then we have to know independently what
“language” looks like, for otherwise, how could we know? So the whole procedure
is pointless for the purposes of metalinguistics: as it presupposes that we know
the shape of “language”, it does not tell us anything new.5 For completeness we
should also add that this is not the only approach taken to the problem in LSLT;
in fact, we find quite contradicting positions regarding the problem almost on
the same page, see p.96. But this approach seems to have become canonical, not
in practice, but as the theoretical solution to the problem.

In conclusion, the classical procedure from LSLT does not solve any of our
problems, because it is either infinitary, or circular.

2.7 Questions Around the Projection Problem

2.7.1 Language is Not Designed for Usage

To show that the above considerations are of relevance for linguistics proper, we
show some invalid arguments on language. As a first example, take the following
Chomskyan line of reasoning: Chomsky notes that we only use a small fragment
of “language” (as he defines it), and that this fragment is even quite messy (in
the dark zone, things are supposed to be more clear). He concludes that this is
strong evidence that language is not at all designed for usage, for then we would
not expect to find similar properties (this is taken from [5]).

After all we said, we need not explain why this argument is entirely based

5Another fundamental problem of this procedure is overgeneration: as the data which comes
in is positive, we can always write trivial grammars. So effectively, we would also need an
infinite amount of negative data in order to make this procedure work.

2.7. QUESTIONS AROUND THE PROJECTION PROBLEM 33

on Chomsky’s own untestable assumptions. Making different assumptions, we
could make different arguments on the nature of language, no more and no less
convincing and valid than the one above.

2.7.2 Insights by Descriptive Elegance

Another one is the argument that the generative program has achieved great
insights by looking for descriptive elegance (which of course is an arguable
notion, but let us accept it as it stands. If we just look at the data we have and
descriptions we have, it is hard to see how there is a great elegance: in fact, tiny
phenomena cause huge problems to strongly principled approaches to linguistics
as mainstream generative grammar. But the statement becomes suggestive or
true under two additional assumptions: there is a part of language which is
interesting for linguistic theory (the “core”), and a part which is uninteresting
(“periphery”) (where the core is defined by descriptive elegance). Furthermore,
only core grammar is projected into the infinite, whereas peripheral constructions
are limited to some constant bound (and therefore uninteresting). Also this line of
reasoning is self-fulfilling: the statement on language is rather a statement on the
approach to language taken. Note that the distinction between core phenomena
and periphery is a typical example of what is known as immunization in theory
of science: it makes a theory impervious to criticism, because anything which
goes against it, is almost per definition uninteresting (from the theory-internal
point of view).

2.7.3 On Recursion

One usually argues that center embedding is unbounded in principle, though in
performance we do not observe cases which would suggest that. The argument is
that we find the same distribution for simple NPs and NPs with relative clauses
which contain NPs. In fact, there has been a lengthy debate on whether there is
recursion in a language, based on the observation whether there is a category of
a certain kind embedded within the same category. However, on a more abstract
level all the arguments seem to be circular: they already presupposes the infinite
language which we are supposed to construe by recursive phrase structure rules.

The syntactic conception of distribution says that the distribution of two
strings ~x, ~y is identical, if they occur in the same contexts. A context is a pair
〈~w,~v〉, and 〈~w,~v〉 ∈ C(~x) exactly if ~w~x~v ∈ L for a language L. (We ignore at this
point the pervasive problems which result from a purely distributional analysis
of natural language, and just focus on a very particular one).

Any interesting grammar is recursive at some point. On the other side, given
our distributional definition, no finite dataset will ever be able to show this:

Proposition 1 Assume that ~x = ~w~y~v, where at least one of ~w,~v is non-empty.
Then there is no finite dataset with at least one occurrence of ~x or ~y where
C(~x) = C(~y).

We omit a proof, as this is quite obvious: there is always at least one
distinguishing occurrence of ~y; just take the longest string that contains ~y,
substitute ~x and you get a contradiction. This means that in finite datasets
there is no distributional evidence for recursion. But this also holds for the

34 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

non-trivial case of the infinite dataset of observable utterances in the case of
center embedding.

Now, recursion in the usual sense is a property of grammars, not of languages,
and when we write a grammar for a language, we have to ask ourselves which
rules are recursive and which not. If the language is infinite, we will of course
have to use recursive rules at some point. However, if we first have to project a
finite language into the infinite, then there is simply no argument which forces
us to do so using recursive rules: it will always be a matter of choice.

Note that this is not an argument against analyses using recursive rules or
even recursion in natural language; we just say that there is nothing which forces
us to adopt this kind of analysis - it is a theory, rather than a datum. This holds
for all the examples, whose failure consists in taking something for a datum
which is only a theory.

2.7.4 Patterns and Dependencies

One of the central assumptions of classical linguistics can be dubbed the phrase-
structure hypothesis (PSH). It is of fundamental importance for any theory which
aims at covering both syntax and semantics of natural language. In my view,
its importance lies exactly in the fact that it is mostly assumed to be without
alternative, up to the point that it is not even worth mentioning it.

There are two types of evidence for syntactic structures: (i) patterns in strings
we observe, and (ii) intuitions on which elements belong to each other in terms of
meaning. It is important to note that both are distinct; (i) is properly syntactic
in nature, whereas (ii) is rather semantic. Note also that this distinctness has
often played a prominent role in linguistic theory, as for example in the discussion
whether Dutch is context-free etc (see [27],[40]. Patterns are closely related to
the concept of distribution and weak generative capacity. To adequately model
them we simply need to generate the strings we observe in some way or other.
Dependencies are a bit more complicated. Let f be a function of syntactic
combination (which is usually concatenation, but let us try to remain more
general); so it is a function from an ordered pair of strings to a single string.
Now given a string ~z = f(~x, ~y), a dependency of ~x and ~y is simply an intuition
that the meaning µ of f(~x, ~y) is best expressed as a function on the meanings of
~x and ~y. Note that this is not a rigid notion: what we describe is simply the
intuition that the meaning is computed best in this way! As is well-known from
type logical grammar, appropriate meanings can be computed in many ways
and according to many syntactic compositions. Now the PSH can be roughly
stated as follows:

(6) If there is a dependency between ~x and ~y, then there is a rule α→ β γ,
where β →∗ ~x, and γ →∗ ~y.

That is to say, the hypothesis says that patterns and dependencies we observe
are due to the same mechanism. This is of course closely related to the question
of compositionality, a topic which is explored in much more detail and in a more
abstract and precise fashion than I can undertake it in [40]. Therefore, I will
only sketch the arguments in a very informal manner. It is quite easy to show
that it is mathematically possible to maintain this view given any finite relation
of form and meaning. On the other side, it remains an open problem whether

2.7. QUESTIONS AROUND THE PROJECTION PROBLEM 35

there exists is some relation for which there does not exist a semantics which
does conforms with the hypothesis. So it is still unclear whether the PSH or
compositionality is in fact an empirically testable issue given infinite languages.
On the other side, it is clearly a testable issue if we assume that the language
(one side of the relation) is generated by a restricted kind of grammar (see again
[40] for examples and proofs).

So given the commitment to a restricted formalism, compositionality and PSH
are empirically testable – if we are given an infinite relation, which for natural
language is not the case! So the PSH and the related notion of compositionality
are – for natural rather than formal languages – not empirical issues, but rather
issues of projection in a syntactic and semantic sense, namely the construction
of an infinite relation out of a finite one. I have to underline that Kracht is fully
aware of the fact that even if compositionality was an empirical question for
infinite relations, it surely is not for the finite fragments of “language” we observe
(see [40], introduction). Yet, he seems to be an exception among semanticists.
So again we have a topic which is usually considered to be empirical, but as a
matter of fact it is one of linguistic metatheory. We simply construct languages
in a way such that they conform to PSH, and if this is not possible, things
get problematic (see the example War in Vietnam or no war...). The PSH (and
compositionality) can only be thought of to be empirical, if we blur the distinction
between linguistics and its metatheory. On the other side, to see the interaction
of form and meaning to be a question of language construction rather than
observation seems to me an extremely interesting enterprise.

2.7.5 Weak and Strong Generative Capacity

In formal language/grammar theory, one distinguishes between weak and strong
generative capacity. The former designates the language as a set of strings,
which a given grammar6 generates, the latter designates the set of derivations
(in Chomsky’s terminology: structural descriptions) with the associated strings.
According to Chomsky, weak generative capacity is of little if any interest to
theoretical linguistics (see for example [5],p.16). This is somewhat surprising,
given their evident epistemic priority: in fact, all we can observe is actually
strings - no one has ever observed a derivation as a primary datum, nor will
anyone ever do so, probably; all we see is utterances and speakers judgements on
utterances. According to Chomsky, one reason for the neglect of weak generative
capacity and associated problems in the generative theory7 is the following: our
language use is restricted in such a way that what we actually observe and
need to handle is only a trivial fragment of the language we “know” (we use
“know” parallel to “language”, to say that this “knowledge” is not a datum, but
a theoretical construct. Therefore, matters of complexity in the sense of formal
languages, as decidability, parsing efficiency etc., are trivialized: for the fragment
we use, these matters are of no importance anyway. What in turn is important
is to get the derivations right, in order to achieve explanatory adequacy (and
get a semantics).

There is a good point in this; but from our perspective of the priority of
epistemology, we would see things exactly the other way round: if something

6We ignore for the moment other generating/recognizing devices.
7This only regards mainstream generativism; there is a tradition which is strongly concerned

with both weak and strong generative capacity.

36 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

is empirically unaccessible (like the presumed complexity of language), there is
no reason to assume its existence in the first place. The Chomskyan answer is
of course: the reason for assuming its existence is precisely strong generative
capacity and explanatory adequacy. Now from our point of view, accepting
this argument, we can also go one step further: if we assume that questions of
weak generative capacity are trivialized by language use, we might also ask: (i)
is “language use” (in our terms: the observable language) restricted in a way
such that it trivializes questions of generative capacity etc. within a precise
bound? And if this is the case, then (ii) it could be the case that it trivializes
questions of strong generative capacity! The first question is quite clear and
has been addressed various times ([65], [20]). The second point needs some
explanation. There are two main reasons derivations are interesting to linguistic
theory. The first one is: we usually want some kind of compositional semantics,
and semantic representations canonically depend on derivations. The second one
is less innocent: we usually formulate our theoretical requirements for explanatory
adequacy on derivations, not on associated strings. We have to explain what it
means for a dataset/language to trivialize strong generative capacity. We start
however by making the idea of trivialization precise for weak generative capacity.
Let G,G′ be classes of grammars; we write G ≤ G′ iff the class of languages
generated by grammars in G is a subclass of the class of languages generated by
grammars in G′.

Definition 2 Given two classes of grammars G,G′, G′ ≤ G, a class of languages
D, we say that D weakly trivializes G with respect to G′ if for any D ∈ D, if
there is G ∈ G with L(G) ⊇ D, then there is G′ ∈ G′ with L(G′) ⊇ D.

Now this is not a very strong notion: if for any alphabet Σ, there is a G ∈ G′

such that L(G) = Σ∗, then G′ trivializes any class of grammars. What should
give us a more adequate notion is a notion which considers both positive and
negative data. As we will argue later on, the linguist is provided with both
positive and negative data when performing his task. So assume we have a pair
of sets (D+,D−), such that D+ ∩ D− = ∅ (here D+ is the positive, D− the
negative data). Now we say the following:

Definition 3 Given two classes of grammars G,G′, G′ ≤ G, a class of pairs
of finite, disjoint languages D, we say that D trivializes G with respect to G′,
if for any (D+, D−) ∈ D, if there is G ∈ G with L(G) ⊇ D+, L(G) ∩D− = ∅,
then there is G′ ∈ G′ with L(G′) ⊇ D+, L(G′) ∩D− = ∅.

This is a meaningful notion, which we have to explain briefly. By D we intend
the class of observations we can make, and because observations are finite, we
can assume that they always form a subset of the class of all disjoint pairs of
finite languages. So we can take this class as an example, and it is in a sense
the strongest case: because if D trivializes G wrt. G′, and D′ ⊆ D, then also
D′ trivializes G wrt. G′. So assume Dfin is the class of all (L,L′) such that
L,L′ are finite and L ∩ L′ = ∅. What trivialization results do we obtain? One
obvious thing is the following: D trivializes any class of grammars wrt. the class
of regular grammars, for obvious reasons. Even smaller classes of grammars do
the same, take the star-free languages, and even the co-finite languages. So if
we go for trivialization, we finally end up with quite trivial grammars. Note, by

2.7. QUESTIONS AROUND THE PROJECTION PROBLEM 37

the way, the connection with learning and Angluin’s theorem (see [1]); we will
elaborate on these notions in chapter 6.

Weak trivialization is what according to Chomsky makes weak generative
capacity uninteresting for linguistics, and one might follow him in this point.
But the same concept can be defined for strong generative capacity, though
the definition requires a bit more work. When we start, we have to take some
concept of structural description (SD) for granted (this notion is taken from
LSLT; I will use it only here); and we denote by SD(~x) an SD which is associated
to a string ~x (but note that there are possibly many SDs for a single string).
We now assume that grammars, more than generating strings, generate strings
associated with structural descriptions.

Definition 4 Given classes of grammars G,G′, G′ ≤ G, and a class of disjoint
pairs of languages D , we say that D strongly trivializes G wrt. G′, if for
every (D+, D−) ∈ D, if there is a G ∈ G such that G assigns at least one SD
to every ~x ∈ D+ and no SD to any ~y ∈ D−, then there is a grammar G′ ∈ G′,
such that (i) G assigns an SD’ to every ~x ∈ D+ and no SD to any ~y ∈ D−, and
(ii) there is a bijective map φ : S[D+] 7→ S ′[D+], where S[D] (S ′[D]) is the set
of structural descriptions which G (G′) assigns to some ~x ∈ D.

Note that this definition is much more problematic than the first one, mainly
because it is not always very clear what counts as a structural description. Take
for example tree adjoining grammars (TAG). In most standard approaches to
their semantics (see [28]), we do not interpret the derived tree, which usually
counts as the structural description, but rather the derivation tree, which is a
regular tree (contrary to the derived syntactic tree). Kobele ([35]) provided a
semantics for minimalist grammars ([66], [50]) in a similar way. The reason this
is possible is that the derivation tree encodes the syntactic tree. Therefore, φ
just has to be an appropriate coding, which however might be difficult to find.
Note, by the way, the fact that we only need no encode the final SD, not all of
its derivation steps, and that the coding needs to work only for strings in D+ –
the structural descriptions on other strings do not matter at this point.

A by now classical example for what we here have defined as strong triv-
ialization was provided by GPSG: though GPSG-grammars are context-free,
they could handle phenomena of movement in much the same way as the much
more powerful transformational grammars. They therefore trivialized them for
what was considered to be “natural language” at that point. When this dataset
was enlarged with data from Swiss German, GPSG-grammars turned out to be
inadequate to describe some regularities (in the sense of structural descriptions).
So the question of strong trivialization is actually a very interesting one. There
has been some very interesting work on the topic of coding and codability of
properties within grammars, as ([37],[57]) which for reasons of space we can only
mention.

The intuition behind the definition of trivialization is that for the data we can
observe, we trivialize a certain grammar if we can simulate the strong generative
capacity of our desired grammar in terms of a weaker grammar. In this case,
though we abandon the phrase structure hypothesis, all our intuitions can be
captured and all our generalizations can be maintained (for the finite fragment we
have observed!) within a weaker grammar. One might think of these arguments
as essentially formal and non-linguistic, but if it is the case that our observable

38 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

fragment of language trivializes the grammars which we think to be descriptively
adequate, this would be a great insight into the structure of language. It would
mean that the patterns of our language are used precisely in a way such that we
can simulate complex patterns with a simple grammar.

This brings us back to our projection problem. The notion of trivialization
allows us for several choices: either we go the Chomskyan way, and say: we
do not need to care for any complexity arguments, because our formalisms are
trivialized by the data and much weaker formalisms. But this choice has a
somewhat unscientific flavor, after all. So we rather might want to go the other
way and say: why should we need stronger formalisms at all, given the data
we have and formalisms which (strongly) trivialize them, which means that
empirically speaking, they are as adequate? After all, scientific thought should
lead us to choose the simplest hypothesis! The point is that the choice between
the strong and the weak formalism is usually not based on the data we observe,
but on the data we construct, which is, in the Chomskyan reasoning, exactly the
more complex language! So this is another example where a question, which is
of presumably linguistic nature, turns out to depend on projections and thus on
linguistic metatheory. We will later on pursue the ideas we have sketched here
in the setting of finitary linguistics.

2.7.6 Chunking

As psychological research has revealed, humans tend to construct chunks of
subsequences when they perform complex action sequences (e.g. in dance: [62]).
There is a lot of evidence that they do the same for complex mental operations
(as for chess, see [13]). We might now ask: are there similar processes for natural
language? Psychologically, the answer is probably yes. From the linguistic point
of view, the question arises: are there any underlying regularities in the structure
of natural language which are not visible on the level of exhaustive analysis?
Most, if not all of generative grammar takes it simply for granted, that the most
exhaustive analysis results in the most compact description. Though this is not
implausible, from a mathematical point of view, there is no reason why this
should necessarily be the case (see [45], for example the concept of higher block
code). This question is thus not only motivated by cognitive considerations, but
also by considerations from coding theory.

The reason why this is interesting in this context is the following: if we
assume that our grammar specifies our language in terms of (distinct) rules for
constructing chunks and rules for combining chunks, and not in terms of rules
on categories and ultimately single words, then this might result in a completely
different projection into the infinite. Take for example the following:

(7) The cat which the dog chased ran quickly.

The dependency structure for this sentence seems pretty clear. Using phrase
structure rules (or any other kind of rules) to generate the desired dependencies,
it is quite obvious that there is an NP within an NP, so the rules involved in
generating this sentence are recursive, and therefore also generate sentences of
the type:

(8) The cat which the dog which the mouse woke up chased ran away.

2.7. QUESTIONS AROUND THE PROJECTION PROBLEM 39

This is, however, not an inevitable consequence of the assumption of a certain
structure: it only follows from the additional assumption that grammar rules
always provide an exhaustive analysis. This in turn has the consequence that
the embedded NP has the same status as the head NP. In an approach based
on chunks, this need not necessarily be the case. Note that we have to take
some care how we formally implement chunks. We can well do so using phrase
structure grammars, but we need to introduce new categories, which allow to
distinguish whether a category (say, NP) occurs within a chunk, or forms a
chunk by itself. This is of course only one way to capture the fact that there are
different levels of analysis, and it is the one we will adopt here.

So, there might be a chunk [NP RC], which is fully specified as such, and
which does not allow for another category RC within the RC already specified.
This is possible because the NP within the RC has a different status from the
one outside, and rules for combining chunks are different from rules generating
chunks.

Formally, we can easily translate chunks into phrase structure rules by
assuming additional categories, which are assigned to elements depending on
where they occur: as a chunk for themselves or within a chunk etc. So we can
take RC-chunk as a shorthand for a (possibly even infinite) number of sentence
generating rules. For example, RC could generate a set of non-terminals NRC ,
which equals the set of standard non-terminals, but does not contain any rules
introducing the category RC. This way, we can easily think of rules which make
the following example a sentence of our “language”, though not the previous:

(9) The cat ran away, which the dog chased, which the mouse woke up.

There are many more examples which could be handled like this. The concept of
levels is also quite well-known; just consider the well-known root transformation
from earlier generative theory (the concept of different levels of rule applicability
is closely related to chunking).

As another phenomenon consider the case of parasitic gaps, which do not
involve recursion at all (by definition!). Still they cause many formalisms to
enhance their descriptive power - unnecessarily, due to the concept of transfor-
mation of the underlying phrase structure.

Note that we do not argue that the way of construing language by chunks
is better than the usual one. We just want to point out that different analyses
also result in different “languages”. So chunking cannot be ruled out on the
assumption that “language” has a certain shape in the infinite. We will further
pursue this idea in the following sections, in particular in the context of what
we will call the finitist meta-theory.

2.7.7 pro-drop, Syntactic Complexity and Trivialization

As we have seen, descriptions tightly interact with projections. We will now
see a case where trivialization might play a crucial role not only for linguistic
metatheory, but linguistic theorizing itself. We will have a look at a very well-
known phenomenon. There are languages which allow for the so-called “little
pro” or simply pro in subject position. pro is the category assigned to invisible
arguments of verbs, as to phonetically empty subjects in languages as Italian
or Spanish, and any arguments in languages as Japanese or Korean. A priori,

40 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

pro is conceived of as a normal pronoun with the property of being phonetically
empty (we will restrict ourselves to Italian in what is to follow, but find a
similar behavior in all of the above mentioned languages). However, pro behaves
differently from “overt” arguments in an interesting way, as if it could take the
properties of both a resumptive pronoun and a trace at a time. Consider the
following well-known data:

(10) Who did you say t was there yesterday?

(11) *Who did you say that t was there yesterday?

(12) Chi hai detto ? c’era ieri?

(13) Chi hai detto che ? c’era ieri?

The first two examples exemplify a phenomenon which was attributed great
importance in mainstream generative theory: empty categories are not allowed to
be governed by a complementizer. These observations gave rise to the so-called
empty category principle (ECP). However, in (at least some) languages which
allow pro as subject, this does not seem to obtain, as can be seen from the
Italian examples.

The solution to this puzzle proposed by Rizzi ([56],p.142) is that in Italian,
INFL is a proper governor for empty categories in some cases. This accounts for
pro-drop and for (13) at the same time: and ECP violations can be circumvented
by first moving the subject into a postverbal position, and then extracting it.
This accommodates the two observations, which are intuitively interrelated,
within the framework and reduces them to a particular property. Nonetheless, it
is somehow unsatisfactory as an explanation in an intuitive sense.

We have the intuition that the explanation is the fact that an Italian core
clause is always well-formed without subject, and therefore, for such sentences,
one can always put an NP somewhere into the periphery, which is then interpreted
as the subject via some binding mechanism. In Chomskyan terms, we do not
need to assume a t in the subject position of the extraction clause; there could
also be a pro. But of course we cannot know what is the underlying structure of
a sentence as (13).

More generally, we can ask for all pro-drop languages and “extractions”
from a clause c, whether there is an invisible resumptive pronoun in the core
clause c, thus making the extraction “improper”. And whatever answer we
chose, it will not be an empirical one: the answer will rather depend on theory
internal considerations (i.e., which way do we get the best generalizations given
our approach and additional assumptions). From this fact we might draw the
consequence: maybe we need not even ask the question. Speakers of Italian, after
all, will probably not feel the necessity to represent their language in a manner
which is equally well-suited for English. Their theories of their language might
be simply underspecified in this regard; if both concepts do not make different
predictions, why should they care? And even if they would, how could they learn
the correct structure? On the other side, if languages with pro behave differently
than languages without pro, there is no point in reducing their behavior to the
categories we use for languages without pro. At some point, we will have to
express the difference in some way - as Rizzi did for Italian - but this seems
rather of matter of mastering a particular theoretical machinery, not one of
linguistic interest.

2.8. ONTOLOGIES OF LINGUISTICS AND THEIR CONSTRUCTION 41

We conclude that considerations on resumption are not very meaningful if
resumptive (and therefore unmarked) pronouns are invisible anyway. But actually,
we can put the intuitive explanation into a form which is very meaningful for
formal linguistics. In English, the clause from which the argument is extracted,
is not a well-formed clause on its own. We therefore have a slight context-
dependence, though it can be easily modelled by context-free grammars (as in
GPSG). In Italian, things are more simple: the extraction-clause is well-formed,
and therefore does not need a special licensing procedure. The extraction itself
can be accounted for rather in terms of binding than in terms of movement and
government, which is well-known to be much more liberal: and this for the reason
that we do not need any additional syntactic rules to license the substructure E:

(14) Chi hai detto che [è venuto]E?

To return to our above definition, we would say that the Italian standard grammar
trivializes subject extraction (as a grammatical rule). Weak trivialization is quite
obvious; do we also have strong trivialization? For this we have to encode the
trace coindexation as a binding relation, which seems easy to do. This way, we
see that issues of (strong) trivialization are relevant in order to capture linguistic
generalizations. We see that extraction and empty categories directly interact
with syntactic complexity. Of course our treatment was sketchy and intuitive.
We think it would be worthwhile to make this intuitive sense precise and look
whether it allows for a cross-linguistic generalization (after the generalization of
Rizzi was shown to be typologically false by Newmeyer, [54]).

2.8 Ontologies of Linguistics and their Construc-
tion

2.8.1 On the Semantics of Linguistic Theories

To prevent possible misunderstandings: we are not concerned with semantics of
natural language at this point, but with the meaning of linguistic theories. So
what is the domain in which linguistic theories are interpreted?

In our perspective, “language”, as the proper subject of linguistics, is the
semantics of a linguistic theory. So given a linguistic theory, we usually have
to also give a sort of interpretation, which specifies how we get from the theory
to “language”, that is, its model. This might be intended in analogy to the
technical, logical sense; but we here intend a larger meaning, yet without a
general technical formal specification. For example, if we approach language in
a logical fashion (see [37],[58]), then “language” comes close to the model of the
theory in the technical sense (though it is not the same, as in the model-theoretic
approach, the language is the class of all models of a theory). If we take a theory
to consist in a phrase structure grammar, then its model is the formal language
it describes, which is obtained in the usual way as the language generated by
the grammar.

In this general sense, doing linguistics is constructing theories for a model. It
is the task of the metalinguist to construct a model for linguistic theories, which is
satisfying in both the empirical, theoretical sense and in the sense of effectiveness
of construction. In this section we will informally discuss what we think are

42 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

possible conceptions of “language”, put differently, possible linguistic ontologies,
which satisfy all our requirements, and what are possible relations of the ontology
of linguistics and the ontology of metalinguistics. This discussion will remain
quite informal, and is mainly understood to provide a good motivation of the
mathematical notions and techniques developed in the next chapter.

As we have said, linguistic theories have to be intensional in a sense, as their
range is the possible, not the actual. In a technical sense, however, theories are
usually not intensional: they simply denote infinite sets, and creativity is simply
interpreted as infinity. One of our main points will be, though, that “languages”
do not need to be infinite sets; and that, consequently, linguistic theories might
have a different semantics.

We will now describe 3 different approaches to linguistic metatheory, which
we will for simplicity also call metatheories. The first one is the classical
metatheory, which is a formalization of the canonical approach. The second
one is the intensional metatheory, which is somewhat exotic in the sense that
its conception (to my knowledge) does not occur in the literature. It is more
complicated than the classical one, but helps to solve many intricate problems
of modern linguistics. The last one is the finitary metatheory, which bears
some resemblance to a position sometimes hold by linguists with a strong focus
on empirical data; but also might comply theorists who reject many common
idealizations of standard linguistics (see [67] for a recent and explicit discussion).

2.8.2 The Classical Ontology and Its Problems

As we said, in the classical (we could also say: standard) approach to linguistics,
“language” is nothing but an infinite set. So the task of classical meta-linguistics is
to get an infinite set out of a finite set. This is the classical “projection problem”.
The projection has to depart from a finite language. So we take an observed
language, and map it onto an infinite language. The most appealing property of
this approach is that it is so simple. In order to study its mathematics, the only
thing we need to study is the properties of maps f∗ : Σ∗ → Σ∗, such that for
I ⊆ Σ∗, I ⊆ f∗(I). For our purposes, we can restrict the domain of these maps
in a way such that the domain is always finite; but we have to make sure, that
at least for some subset of the domain, the range is infinite. So the advantages
of the classical approach are obvious; less obvious are the drawbacks, which we
will discuss now.

The first limitation to this approach is the following fragmentation-problem:
as we can only project an observed language, rather than the observable language,
this approach always remains preliminary, or rather, fragmentary, because o-
language is, by assumption, infinite. Say that a “language” is complete (with
respect to an o-language), if it contains this o-language; it is fragmentary, if it
does not.

The problem is: when we project a finite dataset, we never know whether
the result is complete or not, whether it is the one which gives us the entire
and proper “language”. Say that an observed language I is relevant wrt. an
o-language O and projection f∗, if f∗(I) ⊇ O, that is, f∗(I) is complete wrt.
O. In principle, there is the possibility that we got a relevant fragment, that
is, a fragment the projection of which yields a complete “language”. As we do
not have a finite description of o-language, however, there is no way to be sure
about it.

2.8. ONTOLOGIES OF LINGUISTICS AND THEIR CONSTRUCTION 43

This is obviously a problem for any meta-theory of language. But in the
classical approach to language, it comes with another, more fundamental problem.
Let I be an observed language; f∗(I) = L be the projection of I. Now assume
w /∈ I; and we observe the utterance w after we have performed our projection.
Now there are two cases: case 1 : w /∈ L. Obviously, we have to accommodate it
in our “language” and our theory. But before, we have to accommodate it in our
pre-theory, that is, we have to consider it for our projection. Now, the simplest
approach would be to say that our language is simply L ∪ {w}. However, this
seems methodologically wrong: w should be part of the observed language, and
therefore should be considered in the projection. We want a meta-theoretical
justification also for the new language containing w, because we do not want
the order of observation to influence our language as an artefact. Now, a priori
there is nothing to make sure that f∗(I ∪ {w}) = L ∪ {w}, and not even that
f∗(I ∪ {w}) ⊆ L ∪ {w}. In fact, f∗(I ∪ {w}) might look very different from
f∗(I); we might even have f∗(I ∪ {w}) (f∗(I). So the problem is that in the
worst case, if we make a new observation, our projection will be a language
very different from the old one, and it might happen that most of our theory,
that is description of the language, turns out to be worthless, and we have to
start all over again. But what is even more startling is case 2, where we have
w ∈ L. In that case, we could say: well, all is fine, as we have predicted w to
be in our language, and so our projection even got confirmed in a sense. But
this comes with problems of its own: assume we would have observed w before
we performed the projection. Maybe f∗(I ∪ {w}) looks entirely different from
f∗(I), even though w ∈ f∗(I). And this is really problematic, because the time
and order in which we make our observations affects what “language” looks
like! This problem strikes now with full generality: once we have projected our
language, any new observation might bring us into this trouble. On the other
side, we should expect to observe the strings we predict to be in “language”!

A similar problem might come up for the following reason: it is well-known
that there is only a limited agreement on linguistic judgments, that is, whether
certain utterances belong to a language or not; this holds especially in many
interesting cases. The question is: given the many “borderline” cases of gram-
maticality, do these cases affect the “core” language8, that is, the language which
results from the projection of the language on which judgments generally agree?
Whereas the problem before was one of changes which arise from adding new
strings to an observed language, now the problem is one of taking away strings,
or more generally, a problem of intersecting observations in order to provide
agreement. Unfortunately, in general intersections might affect the projection
in ways which cannot be predicted; we have no generally valid statements on
this problem. So again, small changes in the data might cause unpredictable
consequences.

Both problems will be addressed in the mathematical section; as we will see,
we can devise meta-theories such that they partially solve the problems; on the
negative side, we can show that there cannot be a satisfying solution for all of
these problems.

Finally, there is another point which might be considered problematic. In
the classical ontology, the properties of “language” depend on the properties of

8Note that we use the notion “core” here in a different sense than generative grammarians
do!

44 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

projections in most relevant aspects. This is to say, after all we can say little
about real language in the theoretical sense, because all of its major properties
are given to it by pre-theoretical assumption. Moreover, once we have adopted
a given projection, there is no way to redeem (or discharge) our assumptions:
because from the point of view of formal language theory, there is little of
interest we can say about a finite language; on the other side, everything we say
about “language” depends on our projection. We call this problem the circularity
problem, because statements on formal properties of infinite “languages” are
circular, in the sense that they depend on our own assumptions. We will later
on see that there is a way to get around this, by defining universal properties
modulo a pre-theory.

2.8.3 The Intensional Ontology and its Motivation

To introduce the intensional ontology, we will first discuss why one would consider
that an infinite set is not an adequate conception of “language”, and not an
adequate ontology for linguistics. Later on, we will discuss the formal problems
following from alternative conceptions, and how one might solve them. The
main linguistic problem with the classical ontology is the following: take the
(fairly standard) assumption that “language” is a model of what speakers know
(though not necessarily of their linguistic representation). If we then assume
that “languages” are infinite sets, we make some very strong commitments:

1. For all possible utterances, a speaker knows at any given point whether
the utterance is part of his language or not.

2. A speaker knows all utterances in his language in the same way.

Why would we possibly not accept the first commitment? We might want to
state that for some problematic utterances, whether or not a speaker accepts
them, might depend on the speaker making some reasoning (similar to the
linguist). The result of this reasoning might strongly depend on the speaker
himself, but also on the evidence he considers (or even the evidence at hand to
him), and therefore is essentially non-deterministic: not even for a single speaker,
we might be able to say in general whether he “knows” a certain utterance at a
certain point. We might rather think, that him accepting or refusing will be the
result of a process we cannot entirely predict. To illustrate this with some small
example, consider the following critical case:

(15) people4 see4

Asking a speaker whether this is a sentence of English or not might bring us
different answers: a speaker might answer “I do not understand this utterance
(immediately), therefore it is wrong”.9 He could also say: “thinking about it, I
understand it; yet, nobody would ever write or say it, so it is wrong”. Or he
could, as a linguist, say: “This sentence is okay, because it conforms to the rules
of English grammar”. One might object that this is the linguist talking, and
therefore the statement is not “naive”, and therefore invalid. But the intensional
linguist can answer: how do you know? Anyone can reason like this; and on the

9Often, psycholinguists shorten the procedure methodologically by showing sentences only
a short time. This amounts to allowing only this answer.

2.8. ONTOLOGIES OF LINGUISTICS AND THEIR CONSTRUCTION 45

contrary, it might be naive to think of something like an absolutely naive speaker
as a person who does not think about his language at all. In the sequel, we
will argue that there is good evidence that even the most naive speakers reason
about their language. There is even a forth possible answer of the speaker to
the above question: “I do not know what the question means: do you mean the
sentence is comprehensible or good according to rules?” So judgments essentially
depend on reasoning and choices we make. A second example is the following.
We consider the following famous “grammatical illusion”:

(16) More people have been to Russia than I have.

Any linguist will agree that this sentence is wrong. As concerns the speakers,
whereas the immediate, “intuitive” judgment is that the sentence is fine, a bit
of thinking brings most speakers to the conclusion that it is wrong. So also in
this case, the presumed “knowledge” changes with reasoning. If we think that
judgments get more adequate, the more we reason about them, this can be fine;
but this is exactly the contrary to what we usually think as linguists, being
out for the immediate judgment. The usual way out of this dilemma is that we
say: as linguists, we see the sentence as wrong, whereas speakers should judge it
as fine because of whatever reason (which is irrelevant to proper knowledge of
language). But, judging the sentence as wrong, how do we know it is the linguist
in us talking, not the speaker thinking about it? After all, there is no principled
difference between the two, and no formal criterion of superiority for the former.
To put the point more generally: we as linguists do not know, in how far we are
linguists and in how far we are just speakers thinking about language; and for
the “normal” speakers, we do not know in how far they might act as linguists in
their judgments, even though not being professionals.

This was the main critique for the first commitment. Why would we reject
the second commitment, that is, that all utterances of a language are known in
much the same way? Essentially, the reasons are similar. We can argue that
our linguistic knowledge is partial in the following sense: there are some things
we know for sure; our judgments are immediately available, so to speak. Other
facts we only “know” mediately: we can arrive at a certain judgment in certain
reasoning steps which derive it. But in these derivations, we make assumptions,
similar to the linguist who makes assumptions on language when he projects
it to the infinite. But there are two important things to consider: to have an
immediate judgment on something is different from deriving a judgment under
certain assumptions: because there are many different things we can assume, and
the conclusions of our reasoning might be different every time we use different
assumptions (compare the above discussion). Secondly, if we are not able to
make a certain judgment of the form w ∈ L at a certain point, this does not
mean that we are unable in general: we might be able to derive it in a certain
way we have not yet found. To but it simply, in the intensional view, the absence
of positive knowledge is not the same as negative knowledge.

Now, from a conceptual point of view this might sound very appealing, but
the question is: what should “language” then look like? We will approach this
problem in a more detailed fashion later on, and provide here only a sketch of a
possible solution.

In the intensional ontology, we do not interpret “creativity” as blunt infinity;
we rather construct a model of language which is intensional in a more proper

46 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

sense. This is achieved in the following way: “language” is a structure over finite
languages. We depart from a finite (observed) language, which we gradually
extend; all extensions at a given point are finite languages; but there are infinitely
many extensions. So the structure of language is essentially a tree, whose root
consists in observations (cum grano salis, as we will see), edges are possible
inferences on given assumptions, which connect languages with larger languages.

The linguistic ontology which underlies intensional “language” is the follow-
ing: we assume a (finite) set of utterances which speakers know immediately,
that is, without any reasoning. We can assume that we know them verbatim,
because it is a finite set. We will call this set i-language, which is to say, the
immediate language. From immediate knowledge, there is lots of knowledge
we can derive, using certain analogies and linguistic inferences (so essentially
the same mechanisms of the classical metatheory, only that they now form part
of linguistics). A certain branch in the tree corresponds to a certain line of
reasoning, connecting a set with a superset. It is here the infinity comes into
play, and this way we redeem the creative commitment. But importantly, a
intensional language is not an infinite set, but an infinite structure over finite
languages.

Call a function f on a set of sets majorizing if I ⊆ f(I) for any I of the
domain. More formally, an intensional language is a structure (I, {fi : i ∈
J}, {Ij : j ∈ J∗}), where I is is a language, the fi are majorizing functions
from (finite) languages to (finite) languages, and the set {Ij : j ∈ J∗} is a set
of languages, which is defined as follows: (1) I ∈ {Ij : j ∈ J∗}, where I = Iε;
and (2) if Il ∈ {Ij : j ∈ J∗}, fi ∈ {fj : j ∈ J}, then Iil = fi(Il), and thus
Iil ∈ {Ij : j ∈ J∗}. This is to say that each language carries as an index the
“reasoning” by which it has been derived. We leave it open whether the set J
is finite or infinite; for practical reasons it will remain finite in the sequel, but
in principle, it needs to be only finitely specified. If J is non-empty, then J∗ is
infinite, but in order to provide us with infinitely many distinct Ij , the functions
and/or I need to satisfy some additional requirements, which we will consider in
the sequel.

So in this model, creativity is interpreted in an intensional manner, not in an
extensional one, and results in a structure rather than a set. We might also say
that creativity in this interpretation is transcendent, as speakers are only creative
if they reason and thereby transcend their basic knowledge. Contrarily, the
classical conception is immanent, in that we assume that all possible creativity
is already present and fully specified in the knowledge of the speaker.

This approach solves the problems we have stated in the beginning: we
clearly distinguish between more or less immediate knowledge. We also abandon
the claim that speakers know everything at a given point, because our model of
knowledge is intensional. We furthermore have a more reasonable position with
respect to the last circularity problem, because we always remain aware of the
assumptions we make in deriving a certain string. So this model of language has
some quite appealing properties. But how does it relate to standard linguistic
theory? Obviously, linguistics in the intensional sense would look entirely
different from the linguistics we are used to. We will try to work this out later
on; currently, we only make some clarifications.

A new notion we have introduced is the one of an i-language, the set of utter-
ances we know immediately. Note that also under the intensional requirements,
it is perfectly fine to treat this language as a set. It would be tempting to equate

2.8. ONTOLOGIES OF LINGUISTICS AND THEIR CONSTRUCTION 47

i-language with an o-language or an observed language. But both seem wrong for
several reasons. The first one is: i-language is supposed to be a cognitive notion,
not a methodological one as o-language. Secondly, we cannot equate i-language
with o-language, as the first one is necessarily finite – we cannot immediately
know an infinite language – , the second one is necessarily infinite. Regarding
the relation of i-language and observed language, there are problems in both
directions. For the usual reasons, we cannot know whether we have observed
all utterances of an i-language, therefore we cannot say that a certain observed
language includes a certain i-language. But also in the other direction, we might
observe utterances which are not in i-language, that is, some utterances which
are only derived knowledge. After all, our intensional model does not prevent
speakers from using language beyond i-language! So the only thing we can really
say for sure is i-language must be contained in o-language, because all utterances
which speakers know immediately are clearly observable in principle. On the
other hand, o-language might contain some (infinite) branches of the tree, which
coincide with the reasoning we can perform online.

Note that this means that our ontology is more complicated, but also some-
what richer; in particular, this complication gives us considerably more flexibility:
whereas in the classical approach, we always have to base our projection on
a set of observed data; and as the data changes, the projection changes. In
the intensional ontology, “language” is based on an i-language, which need not
coincide with the observed data. So assume we observe a string w /∈ I, which is
derivable by a certain line of reasoning, that is, is in some Ij . In the classical
approach, we have to reconsider projection given this string. In the intensional
approach, we do not: we simply assume it is not in i-language, but is simply
some derived knowledge. As we will see later on, this can make a huge difference
and simplify things a lot for us.

2.8.4 The Finitist Conception of “Language”

There is a third alternative conception of “language, which we call finitist. The
finitist conception is based on the following assumption:

(17) “Language” is o-language.

This is a very strong assumption, which has some immediate consequences. The
first and most important one is:

(18) Natural languages are contained in the regular languages.

The reason is that human language processors are finite; therefore, we cannot
observe a language which is not recognized by some finite state automaton;
therefore, natural languages are regular languages. This is a claim which runs
against most linguists assumptions and intuitions, as in general natural languages
are assumed to be not even context-free. So the assumption (19) is a high price
to pay, but it comes at considerable gain, as we will see.

In order to proceed, we have to introduce a notion of being falsifiable by
finite languages. This slightly corresponds with finite model property in logic,
and we use this notion in a quite similar, though less technical sense. As we
said, a linguistic theory is a description which denotes a certain model, which
in turn might supposed to be a formal model of what we observe as language.

48 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

There is of course a more general notion of linguistic theory, namely in the sense
of a class of possible theories, or, using the word grammar instead of linguistic
theory, a linguistic theory in this more general sense is a specification of possible
grammars.

Whereas the model of a grammar is supposed to be the formal analogue
of a natural language, a linguistic theory in the more general sense specifies a
class of possible grammars, and thereby possible models. So the class of models
of a class of theories is the formal analogue of the class of languages which
we consider to be possible. We can call a theory in this more general sense a
framework. Theories/grammars are what we need in order to make statements
on particular “languages”; a framework is what we need to make statements on
all possible languages. Linguists are usually interested in both of them; and in
the classical/intensional metatheories, both topics are addressed equally. In the
finitary setting, as we will see, there is a slight focus on the second topic, namely
making statements on the nature of all languages. For us the question is: can
we do linguistics without projecting a language into the infinite? Is it possible
to reasonably work with finite languages? We will here try to work out how a
positive answer might be given.

First of all, we need to recall how the linguist works when he tries to make
statements valid for all possible languages. Therefore, we must first distinguish
positive statements of the form “all natural languages are context-free”, and
negative statements of the form “not all natural languages are context-free”. A
linguist can easily make statements of the negative form (though for a statement
as the one above, he has to perform a projection!); but he will not be able to make
positive statements of the positive form, except as a working hypothesis ; because
he does not know all languages; and even if he knew all actual natural languages,
he would not know all possible natural languages (on this dilemma, see [54]). So
all the linguist can do on this behalf is to falsify certain claims, and to corroborate
certain conjectures by our inability to find falsifying evidence. So what the general
linguist does is something like falsificationism. This falsificationism is the key to
finitary linguistics.

For the finitist, the fact that the “languages” we work with are finite does
not mean that also our theories have to be finitary in the sense that they denote
finite “languages”. On the contrary, we cannot assume this, because this would
be clearly in conflict with the creative commitment. So what we do is: we
consider finite languages, and write grammars for infinite languages which cover
them.

But of course there is a problem to that: if we do not project languages
to the infinite, adequacy becomes somewhat trivial, at least given the usual
frameworks. For example, a claim like: “not all natural languages are context-
free” cannot be made. The reason is that in formal language theory, regardless
which descriptive devices we use, all normal frameworks (in the sense of classes of
languages/grammars) contain the class finite languages. This means in particular,
that given a finite language which is not projected, we cannot falsify a given
framework, and therefore, we are unable to make any general statements on
the nature of language via falsificationism. So without an effective projection,
there is no empirical content to the construction of linguistic theories in the
usual frameworks. like context-free or mildly context-sensitive grammars. We
can falsify theories (grammars) by considering new data, but we cannot falsify
the entire framework, and this is what is needed to make general statements on

2.8. ONTOLOGIES OF LINGUISTICS AND THEIR CONSTRUCTION 49

language.
To make the process meaningful, we first introduce the notion of finite

language property (FLP). Let FT be a framework; for simplicity, we assume
that FT = C, where C is some class of languages. We say C has the finite
language property, if there is a finite language L such that L /∈ C.

The main proposal I want to make here is: we can do finitary linguistics,
but only within frameworks which have something like finite language property.
Translating this back into terms of linguistics: if we do finitary linguistics, we
have to assume that the class of possible languages (formal counterparts of
natural languages) does not contain the class of finite languages (FLP). As we
will see later on, this is still slightly inadequate, and there are some additional
subtleties to consider; but for this we need some more mathematical background.
In this sense, we say that a class of languages has the FLP if it does not contain
the class of finite languages.

A side comment is in order: not doing projection at all does not mean to do
no idealizations in order to obtain abstract models of natural languages. In fact,
there are plenty of idealizations which this meta-theory presupposes; but these
are not the focus of this work.

Now things get interesting again. In the finitary setting, it is the linguists
task to write his grammars according to a framework with FLP. Now, what the
linguist is doing is essentially falsificationism: considering always new data, he
is trying to falsify his framework, and thereby he is able to make some general
statements on the nature of language, in much the same falsificationist fashion
of the general linguist.

Note that the finitary linguists methodology is different from both in the
classical and the intensional. In the latter paradigms, we had an explicit proce-
dure for constructing infinite languages from finite ones (though not necessarily
as infinite sets). We could therefore say that we had a given object which we
had to describe adequately. In linguistic finitism, this is not the case: we do not
perform a task of projection. This means that the “proper subject of linguistics”
remains a finite object. At the first glimpse, this seems to conflict with our basic
tenet of describing infinite objects, but this is not the case. The trick is that the
finitist writes grammars for infinite languages, but being agnostic about their
model, and then takes a falsificationist stance. So it is falsificationism which
bridges the gap between finite and infinite, rather than projection. Both the
classical and intensional linguist devise their theories on a given set of data they
project; that means in particular, once pre-theory is done and theorizing starts,
new data is no longer considered. And if the two have to consider new (relevant)
data, then they have to start over, that is, once again they have to accommodate
the data in the pre-theoretic procedure, before they can again start theorizing.
So for these two schools, considering new data is not part of theorizing proper,
but part of the larger process of pre-theory and theory.

For the finitist, things are different: for him, studying new data is an essential
part of theorizing ; without this, his theorizing would be vacuous. The finitist
writes grammars/theories for infinite languages, but has only finite languages
at hand. So by definition, there is a discrepancy between the the subject of
his theorizing, and his theories. Put differently, he does not even construct
“language”. In particular, the adequacy of his theories/grammars is heavily
underdetermined: everything which covers the finite fragment is fine in principle.
This is why we have additional criteria: sub-regularity, FLP etc. But still, this

50 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

is insufficient. What we also need is that in theorizing, the finitist always has to
check whether his theory is still adequate as new data comes in.

Note that this shows some similarity of the intensionalist and the finitist
position: whereas the intensionalist considers a structure of possible utterances,
which models the speakers growing knowledge according to new inferences, the
finitist has to consider always new actual utterances, which comes to him not by
construction or inference, but by experience. So, what we are the formal tools of
finitary linguistics? We get the following easy observations:

Lemma 5 There is no smallest class C of languages (contained in the regular
languages) which contains all finite languages and some infinite language.

Lemma 6 There is no largest class C of languages (contained in the regular
languages) which does not contain the finite languages.

Both observations are quite obvious, so we omit the proof. What does that
mean for us? There is no clear upper/lower bound for the class of languages we
should consider. Whereas in principle, FLP does not provide us with an upper
bound for the class of languages we are interested in, our finitistic philosophy
does: as the regular languages are the largest class of languages which can
be recognized by finitary means, there is no non-regular language which is
observable, as this would necessarily involve projection anyway. But of course,
the class of regular languages does not have FLP, so it is not a candidate; that
even holds for smaller classes such as the star-free languages.

As in the finitary setting there is no proper construction of “language” and
we always stay within the observations, there is a great gain we have: we
simply avoid the entire problem of projection, circularity etc., sticking to a rigid
falsificationism. We construct theories for infinite languages only considering
observations. However, the price we have to pay will be considerable to most
linguists.

Note that the idea to treat natural language in a subregular fashion is by
no means new: see for example [55]. It has not found much support in the
community, because from the point of view of formal linguistics it is not very
appealing. Nonetheless, from the point of view of linguistic metatheory it is
quite appealing. If we connect it with the notion of trivialization, introduced
above, then it might become even a fruitful field of study in connection with the
“classical mathematics of language”, that is, the formal methods used in classical
linguistics.

2.8.5 Finitism in a Broader Sense

One might argue that there is a broader sense in which we might accept the
finitist commitment, which says that “language” is o-language. This is the
following: we allow for projection, but when we choose a projection π, we have
to make sure that for each finite language I, π(I) will be a regular language; in
particular, if we think of I as a set of observations being part of an o-language,
then π(I) has to be contained in this o-language – put differently, every string
in the projection has to be observable in principle, or still differently: our
projections have to preserve acceptability. We can call this approach broad
finitism, whereas the former position can be called narrow finitism. Note that
broad finitism is strongly related to the classical conception.

2.8. ONTOLOGIES OF LINGUISTICS AND THEIR CONSTRUCTION 51

What we will show here is that the two positions, though theoretically distinct,
in practice often coincide, and if not, narrow finitism seems to be preferable.
The main reason is the following: assume they do not coincide. That means,
we do not take a falsificationist stance based on something like FLP within
broad finitism. But from the point of view of complexity, all we can really say
about “language” in general is that it is regular - which it is by assumption. So
this is quite a vacuous way to deal with natural language. If we want to make
it more meaningful, we have to look for tighter upper bounds for “language”.
But again, this can be only achieved properties similar FLP; because if our
framework contains the class of regular languages, there is no way to falsify it.
So broad finitism as well has to recur to falsificationism if it is supposed to bring
us interesting generalizations.

Conversely, assume π(I) is a regular language. Then we can also in narrow
finitism write a grammar for π(I), and try to falsify it. This is, however, not
exactly what happens in broad finitism: because making a new observation
would lead us to reconsider entire the projection rather than falsify the grammar
– this would be the same as in the classical metatheory. So the differences between
broad and narrow finitism are mainly technical; and to put it bluntly, broad
finitism seems to unify the drawbacks of narrow finitism - restriction to regular
languages - with those the classical metatheory, which are all about the problems
and difficulties of projection. After all, the main advantage of narrow finitism is
that we avoid the critical step of projection altogether. Therefore, broad finitism
is not of too much interest for us now.

There is another fundamental doubt I have about broad finitism: given a
projection π, some dataset I, how can I ever know that π(I) is contained in
o-language? After all, o-language is an empirical notion, and even the fact that
π(I) is regular does not entail it is in o-language, as should be clear. Moreover,
as π(I) is supposed to be infinite, we can never test whether all its strings
are acceptable/observable. So the position of broad finitism, which I have
found sympathetic to many linguists, to me seems to be quite problematic and
not worth elaborating at this point. I will however treat some mathematical
questions which arise when we want π(I) to be contained in o-language, with
some surprising results (see subsection “On regular projection”, chapter on
classical metatheory).

As a final note, I am aware that there are still many different positions on
the metatheory of language, and in fact much more than I can mention here.
But I hope the ones I have outlined are the most important, reasonable and
interesting ones.

52 CHAPTER 2. FUNDAMENTALS AND PROBLEMS

Chapter 3

The Ontology of
Metalinguistics

53

54 CHAPTER 3. THE ONTOLOGY OF METALINGUISTICS

Summary of the Metalinguistic Ontology

The most fundamental datum of metalinguistics are judgments of the form
` ~w ∈ L. But we here justify a more elaborate ontology; in particular, we
introduce negative data. This negative data is however of a fundamentally
different nature: it is not an empirical datum, but rather constructed by the
argument: if we accept this, we have to accept anything. The reason we cannot
use negative judgments as primitives is that this way, we would become way too
much negative data: we usually want explicitly more than any speaker accepts.
The positive and negative data give rise to we call partial languages: pairs of
finite languages, their intersection being empty. The goal of metalinguistics is to
complete them to full infinite languages; but for this purpose we can only use
the positive data, which is given, not the negative data, which is a construction:
apart from methodological reasons, we still need the negative data to check
whether our pre-theories are adequate, that is, whether they agree with our
intuitions, because if we do not have this method of control, we have no other
and projections become quite arbitrary.

3.1 Preliminaries

As we have said, there are different possible conceptions of what “language” is.
We will work out three fundamental positions. Each of them is distinguished by
fundamental differences in the basic ontology of linguistics. In this introduction,
we do not work on the particular ontologies of linguistics, but we first try to sketch
an ontology for metalinguistics; that is, we want to give a formal inventory the
metalinguist is given, and what he has to provide. This ontology is then basic and
common for all three metatheories: so they are based on the same metalinguistic
ontology, though they construct different linguistic ontologies. Whereas we
already introduced the notions of “language”, “o-language”, observed language
(data) etc., we will here look at more formal foundations for the mathematical
procedures we use.

For now, the most important part of metatheory is the part which (meta-
)linguists are given pre-theoretically. Contrarily to the linguistic ontology, this
ontology must be finite, because we do not observe infinite languages or infinite
objects in general. Given this finitary ontology, it is the task to develop formal
procedures which develop an adequate ontology for linguistics. In this way,
we get infinite “languages”, out of our observations (or in the finitary setting,
grammars describing infinite languages). Keep in mind that “language” is only a
shorthand for “whatever we consider the proper subject of linguistics”, it is thus
a formally underspecified notion. This is the crucial step of linguistic metatheory:
we formalize a procedure, which given some finite input, gives something infinite
– namely “language” – as output. In the simplest, classical case, it is nothing but
a function; in the intensional case, there are some additional non-deterministic
choices to be made. So we have to determine the input of the function. But this
is not all a metalinguistic ontology has to provide. We would like in addition to
have some criteria of adequacy for metalinguistic procedures. That is to say,
we want some non-trivial criteria to tell whether a procedure does a good job or
not. There are two kinds of criteria: there are a priori criteria, which apply to
the procedure regardless of any input, that is, they concern abstract intrinsic

3.2. LINGUISTIC JUDGMENTS 55

properties of pre-theories. These should be in line with intuitions linguists have
on “language”, and its relation to the observed language. Secondly, there are
empirical criteria, which help to decide whether a pre-theory does a good job with
respect to a given input. That means, it should tell us whether the pre-theory
agrees with the intuitions of a linguist observing the data, whether it is convincing
to him. We will see that in order to allow for testing empirical adequacy, we
will need to enrich our ontology beyond simple finite languages. Adequacy in
this latter sense is not a general property of metalinguistic procedures. It rather
depends on the particular linguistic object to which it is applied. We find exactly
the same distinction in linguistics, where we can refuse a theory because, for
example, in general it is undecidable, but also because it cannot adequately
handle some linguistic phenomena.

We now want to construct a sufficiently rich ontology to be able to check
procedures for empirical adequacy, though in the sequel, that is, when we actually
develop the procedures, we will not be concerned with the empirical part itself,
but rather with intrinsic formal properties.

3.2 Linguistic Judgments

A notion which is very fundamental for us is the one of linguistic judgment.
Though we only use it technically, we should briefly explain its theoretical
importance. Given an utterance w, we denote the linguistic judgment sustaining
that w is in a language L by ` w ∈ L. So the difference between utterances and
judgments is similar to the difference in logic between formulas and judgments,
where the judgments sustains the truth/validity of the formula. We will be
concerned with linguistic judgments mostly in a technical way, as we develop
some different “proof theories” for these judgments, to keep up the analogy with
logic. So philosophical concerns about what these judgments really are, what
their true nature is, will not be a major topic of this work. Nonetheless, we
should be clear about what these judgments mean. Importantly, they are not
speech acts or anything similar, and in this sense, they are not “natural data”
for linguistics, as the term is currently used by empirically motivated linguists.
They are not the judgments which speakers make when they speak. They are
the judgments linguists make, and the judgments speakers make when they are
asked by linguists whether a sentence is correct/well-formed or not.

So a linguistic judgment is a judgment on an utterance, and it thus comes
with a metalinguistic flavor. For us, linguistic judgments are the “canonical
datum”, that is, the most fundamental notion of (meta-)linguistics, and a notion
which cannot be analyzed further. How does this contention go with the position,
nowadays taken by many scholars, that the priority has to be given to something
like “natural data”? Because whatever the latter means, linguistic judgments are
not natural data, this is clear. My point is the following: if someone would claim
the priority of “natural data”, I would reply: so assume you want to describe
German. You hear somebody speak, or take some written utterances. How do
you know they are not French, or English? How do you know they are of any
relevance to what you call German? After all, they might be French, we do not
know! The reply to this might be: well, that is my knowledge which tells me the
utterance is German; and my reply is: well, then you just transformed a piece of
“natural data” into a linguistic judgment. By this argument, I think we can use

56 CHAPTER 3. THE ONTOLOGY OF METALINGUISTICS

linguistic judgments as a basic and fundamental notion of linguistic metatheory.
Metalinguistic procedures will be thus concerned with deriving judgments from
judgments. What we need as premises, obviously, are sets of judgments, which
correspond to languages.

3.3 Partial Languages

We have already mentioned the important notions of metalinguistics: a finite
observed language, an infinite observable language (o-language), and “language”.
We have also mentioned that according to some views, it is not strictly necessary
or desirable that “language” comprises o-language (see [22] on “grammatical
illusions”); but by the same argument, one can argue that “language” does not
comprise the observed language. This seems to us a complication we cannot
take into account in metalinguistic procedures, as it would open the door to
complete arbitrariness. Rather, if the linguist wants an observation not to figure
in “language”, he has to exclude it from the observed language by not making
a linguistic judgment. So for us, things are as follows: observed language is a
subset of observable language. We want to construct “language” from observed
language in a way such that it comprises o-language. That is of course not an
empirical criterion: we do not know o-language, because though observability is
empirical, the whole language is infinite and therefore never actually observable
in its entirety. So observable refers to its members, not the whole language. So
this is rather just a theoretical requirement. Moreover, the reader should keep
in mind that we usually properly include o-language: we usually have objects in
“language” which are not observable.

So far there are three objects, only one of which is given. But as I already
pointed out, a simple finite language does not provide us with a satisfyingly rich
ontology, because it only tells us what we need to find within a “language”, but
give us no information on what we do not want to find within a “language”. We
therefore introduced a forth object, the so-called negative language, which
is also finite. The status of the negative language is very problematic: from
a metalinguistic point of view, all we know are positive judgments, and our
commitments are – except for the finitary approach – such that we explicitly
want to derive utterances which are not judged to be acceptable/observable
in the first place. So we have to be careful: we cannot just consider negative
evidence as it is given to us, we have to distinguish between “proper negative
data” and improper one. So how can we justify this? Note that in the finitary
setting, we also will need negative evidence for falsification, but it is much easier
to obtain: if “language” is just o-language, we can anything which is not judged
grammatical as negative evidence. For the other cases, we have to distinguish.
A typical case would be the two examples

(1) John Mary love

and

(2) People people people see, see, see

The former should probably not be in “language”, the latter should. But this
is surely not an empirical distinction! I would make the following point: we

3.3. PARTIAL LANGUAGES 57

have to make a theoretical distinction between utterances of which we would
say: they might be derivable, and those of which we say: they should not be
derivable. But still the problem remains: how do we tell the difference? Here,
we have to recall that we are doing metalinguistics rather than linguistics, so
firstly we cannot know whether an unobservable utterance is derivable, because
if at all, this holds by definition. Conversely, if we want to say that an utterance
cannot be in “language”, we would say that it cannot be derived by any amount
of linguistic reasoning. Here we see the circularity: we do not yet have a formal
notion of linguistic reasoning, but we are only on the way to formulate one!

The way out of this dilemma is the following: for a certain utterance w, it
would be fine with us if it belongs to “language”, because we are agnostic about
it. For another utterance v, we might say: if this v belongs to “language”, then
really anything can belong to “language”, and if this is the case, then there is
no way to test empirical adequacy. So if there is any set which should – to our
judgment – not be contained in “language”, then it should comprise v. And
this is our justification for the negative language: it is the only alternative to
arbitrariness.

This gives, of course, a fundamentally weaker status for the negative lan-
guage. Therefore, we agree that we will not use this language for metalinguistic
procedures, but only for testing their adequacy. We could also do otherwise,
but this would result in an entirely different paradigm, which would correspond
to learning with both positive and negative data. This might of course be
worthwhile looking at; but we will not do so for two main reasons: 1. on the
one side I think the negative data is too weak for these purposes; and 2. on the
other side, if we use the negative data for projection, we have used in up in the
sense that we cannot use it anymore for checking adequacy of pre-theories. We
thus lose the only instance of control, and any projection will be adequate. The
latter is the most convincing reason for keeping negative data out of projection,
because only this way, we have the possibility to check whether a projection
agrees with our intuitions or not.

Note that of course, introducing some utterance into the negative language
always requires an explicit linguistic judgment, and consequently, the negative
language is always finite. Having now an observed language and a negative
language, this introduce the concept of a partial language. Given a finite
alphabet Σ∗, we define a partial language as follows:

Definition 7 A partial language Lp over alphabet Σ is a pair of sets strings of
strings (L1, L0), such that L1, L0 ⊆ Σ∗ are both finite, and L1 ∩ L0 = ∅. Given
a language L ⊆ Σ∗, we say Lp = (L1, L0) is partial wrt. L, if

1. w ∈ L1 ⇒ w ∈ L, and

2. w ∈ L0 ⇒ w /∈ L.

If Lp is partial with respect to L and L is infinite, then we say L is a completion
of Lp. By comp(Lp) we denote the set of all completions of Lp. If Lp is partial
wrt. L and L is finite, then we say L is a refinement of Lp; denote the set of all
refinements of Lp by ref(Lp).

This notion requires some explanation. Maybe the best way to think of a
partial language is to think of it as a partial characteristic function. In this

58 CHAPTER 3. THE ONTOLOGY OF METALINGUISTICS

way, the notion of completion becomes very clear. Partial languages are thus a
model of partial knowledge of language. There are some (finitely many) strings
of which we know they are in a language, some (finitely many) of which we
know they are not in the language, and infinitely many of which we do not
know. If we think of a completion L of a partial language Lp, we can think of
it as a pair (L,L), that is the language and its complement. Obviously, this
presentation is redundant; it is however helpful to make clear that a completion
is genuinely more informative than a partial language. The underlying idea is
that for the creative commitment we have to assume that knowledge of language
is partial as long as it comprises only finite sets; as soon as we redeem the
requirement of infinity, there is no reason to assume this. Note the analogy
with intuitionistic/constructive mathematics: there are true statements, wrong
statements, and there are statements of which we do not know. The epistemic
aspect of language is thus made explicit in the ontology. As soon as we have
infinity, we can leave out our concerns regarding epistemology, and assume that
our knowledge is complete.

The notion of refinements is of no importance for the classical metatheory, but
crucial for the intensional metatheory, which is considerably more complicated,
as we assume that knowledge remains partial. We use refinements in constructing
non-classical ontologies for linguistics, that is, ontologies where languages are
not just simply infinite sets.

This is the formal notion of what we are given as (meta-)linguists. One might
also object that our basic assumptions are to weak, in the following sense: we
know a lot more about language, such as degrees of (un-)grammaticality etc.
The answer to this objection is simple: everything that can be obtained by our
ontology can be a fortiori by obtained with a richer ontology, so this does not
bother us.

So the procedures of metalinguistic theory are the following: 1. In the classical
case, we construct partial languages from observations. At a certain point, we
have to decide that our partial language is rich enough, and we project, according
to a certain procedure, the positive language, which is an observed language, to a
language which is hopefully infinite. Thereby, we construct “language”. Then we
check the resulting object for adequacy with respect to the partial language: it
must not contain any of the objects in the negative language. 2. The intensional
case is somewhat more complex: given a finite positive language, we have to
decide which portion of it is contained in i-language, and which not. This, in
my view, is nothing our formal apparatus should do, but the decision should
rather be based on linguistic considerations; so we allow the (meta-)linguist some
choices, which can be based on whatever information is available to him. In the
finitary approach, things are properly different: as we renounce to projection,
we always remain with the partial language. We then use it directly to falsify
linguistic theories rather than metalinguistic procedures, to which we renounce.

Chapter 4

The Classical Metatheory of
Language

59

60 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Summary of the Classical Procedure

The classical procedure of constructing “language” works as follows: we devise a
projection π (later on: pre-theory (f, P)); next, we gather some positive data I1,
and construct some negative data I0. Then we use the projection and project our
positive data; finally, we use the negative data to check whether the projection π
is adequate. If it is, we have constructed “language”. If not, either the projection
was bad, and we have to find a new one; or the data was bad, and we have to
gather more positive information and/or construct less negative data.

To illustrate the restrictions of information that we have, we can conceive of
this procedure as a sort of “game” between linguist and metalinguist : the linguist
gathers I1 and constructs I0. Then he hands only I1 over to the metalinguist,
who uses π to construct π(I), which he gives back to the linguist. The linguist
then controls for adequacy of π. In case π turns out to be inadequate, he can
either change his (positive and negative) data and repeat the procedure, or look
for another metalinguist.

Note that either way, it is not legitimate that we (or the linguist) disregard
any positive data: whatever we collect has to be used for projection. As a
consequence, it is not defined in this procedure what happens if the projection is
adequate but afterwards the linguist makes a new observation: in principle, he
has to repeat the entire procedure, thereby constructing a new, possibly different
language, even if the observation was part of the constructed language.

4.1 The Classical Metatheory

As we said, in the classical conception, “language” is an infinite set. This
means, the classical metatheory is concerned with mapping finite languages –
we only project positive data – onto languages. This is the core of the classical
metatheory, and the rest of this section will be concerned with maps of this kind.
In this introduction, we will shortly sketch a bigger picture, which still is simple
enough. The full metalinguistic procedure works as follows: we collect (positive)
data, and construct negative data, thereby obtaining a partial language (I1, I0).
Now comes an important point: at a certain point, we decide explicitly, that
(I1, I0) is sufficiently rich for our purposes. This is very important, because it is
the point which makes the classical metatheory different from classical formal
learning in the sense of Gold: in this paradigm, utterances keep coming in, and at
some point we converge towards the correct, underlying language (if we learn it).
For the classical metatheory that does not make sense: for either we never know
whether we have already converged or not, or we have to know the language
in advance. So the classical procedure is not about learning in the limit and
convergence: rather, we consciously choose a certain point (this is the decision of
the linguist), and then project the language. So we really only need a function
from finite languages to languages. When we have performed this projection,
we have to check whether our projection was adequate: first of all, we check
whether the result is really an infinite language; and secondly then we can use
our negative language to test adequacy of this language.

So far the simple procedure. There are some things we have to add. The first
thing is: we can interpret this procedure in two different ways. In the first way
(which is stricter), if we make a new observation, we have to repeat the entire

4.2. INTRODUCING PRE-THEORIES 61

procedure of projection, because the finite language we depart from changes.
This even obtains if the observation is in the resulting “language”. This would
be the correct position, because the resulting “language” could have been quite
different if we would have departed from the other observation. We could also
take a more relaxed position and consider a new projection necessary only if
we observe something which is not in our “language”. This is however not very
correct, because in the end it means that with the same observations I, we can
have different “languages”, depending on when we made the projection! This is
clearly a bad thing, so we just mention this position. Either way, making new
observations is never part of the metalinguistic procedure, and quite problematic.
Whereas there is no really good solution on this conceptual level, we will try to
implement a solution in the mathematical formalism, to make it invariant under
new observations which have been predicted; this is possible, though it comes
with quite some commitment, as we will see.

A second remark is the following: of course, we can interpret the resulting
objects in different ways: we can say it is what speakers “know” (“cognize”), or
it is an abstract object etc. So as far as its ontological nature is concerned, our
metalinguistic procedure is quite agnostic. However we make our projection, the
procedure has only solved one problem: “language” is now defined in a unique
and mathematically precise way. Still, it is an object we define by stipulation
of a projection, and all in all it is not an empirically testable object. So for
example, if we assume “language” is what speakers know, we have to live with
the fact that there are many ways to define it, none of which is preferable on
empirical grounds. This is what gives the major point of criticism of the classical
approach.

4.2 Introducing Pre-Theories

The classical metatheory is thus mainly a theory of mappings from finite languages
to languages, which satisfy some properties. These mappings have to satisfy some
additional properties. What we have mentioned in particular is: metalinguistic
procedures must be finitary. This has an important consequence for their
mathematical formalization: given a finite input language, projections must
compute a finite representation of the output language in a finite number of steps.
So they are not properly maps from (finite) languages to infinite languages, but
rather maps from (finite) languages to finite representations of languages, which
are furthermore computable in the standard sense. As we have to distinguish
a language from a representation (for example, a grammar generating it, we
introduce the operator L, which maps a representation of a language onto that
language. That is quite vague at this point, but we cannot be more precise
as long as we are lacking concrete projections. There are also some additional
requirements, which are given in the following definition:

Definition 8 A projection is a map π, such that for any finite alphabet Σ,
I ⊆ Σ∗, we have

1. π(I) is a finite representation of a language, such that that there is a
computable map L, and L(π(I)) is the language π(I) represents;

2. I ⊆ L(π(I));

62 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

3. if I is infinite, then L(π(I)) = I;

4. π is computable, that is, if I is finite, then π(I) can be computed in a finite
number of steps;

5. there are some finite languages I such that L(π(I)) is infinite.

So the images must be at least recursively enumerable and π must provide
an enumeration procedure. Furthermore, we need some infinite languages as
images. There are some more conditions which are very reasonable to require
from a projection. Let Σ, T be arbitrary alphabets. A string isomorphism is a
map i : Σ∗ → T ∗, such that 1. i(ε) = ε, 2. for all σ, σ′ ∈ Σ, if i(σ) = i(σ′), then
σ = σ′, and 3. i(σ ~w) = i(σ)i(~w).

Definition 9 A projection π is reasonable, if for any Σ, I ⊆ Σ∗,

1. L(π(I)) ⊆ Σ∗,

2. if i is a string isomorphism, then π(i(I)) = i(π(I)), and

3. for any finite alphabet Σ with |Σ| ≥ 2, there is an I ⊆ Σ∗ such that π(I) is
infinite.

These conditions should also be clear: we do not allow π to “introduce”
new letters, as these cannot be justified by patterns; also, π is closed under
isomorphism, which means that it treats all letters equally. The third condition
is a strengthening of the last of the first definition: it requires that the the
cardinality of the alphabet does not play a role for projection, except for the
unary case which is somewhat special. For example, we could have a projection
which only has infinite images for input languages over an alphabet of cardinality
5. This however is quite odd. But again, this only holds for |Σ| ≥ 2, because the
case where |Σ| = 1 is very problematic: there are many patterns which simply
cannot be observed in languages over one letter. Intuitively, one can see the
correlation with the fact that we can encode any alphabet in a binary alphabet,
but not in a unary alphabet.

This however still underspecifies the projections we are interested in; we are
interested in projections to which we can give some linguistic meaning, which can
be thought of as a formal analogue of what we have called linguistic reasoning.
Our main tool to describe projections of finite languages are pre-theories.
In the sciences, a pre-theory is a fixed way to interpret observations. This is
necessary to bridge the gap between the observations, finitary in nature, and
the theory itself, which is supposed to account for infinitely many phenomena.

As we will see, it is quite difficult to give a general definition of what counts as
a pre-theory. Rather than starting with an incomprehensible definition, we will
first present a simple example of the most important notions. The reason for this
difficulty is mainly that what we consider to be linguistic objects strongly differs
between different approaches to language. The most simple language-theoretic
universe will only comprise strings; but more elaborate approaches will also use
sets of strings as basic objects, then terms over functions from strings to strings,
and finally we will use a type-theoretic encoding of strings as our universe.

We will from now on use the following convention: finite languages are
usually denoted by letters I, J (possibly with subscripts), whereas L (possibly

4.2. INTRODUCING PRE-THEORIES 63

with subscripts) is generally used for infinite languages. This convention will be
redundant in the sense that we will be explicit about cardinalities of languages
if it really matters, but I hope it will enhance readability. Furthermore, in many
cases cardinality will play no technical role, but we will use this convention to
indicate whether the definitions are mainly intended and relevant for finite or
infinite languages.

Fix a finite alphabet Σ and assume I ⊆ Σ∗. A simple string-based
analogical map P is a map ℘(Σ∗) → ℘(Σ∗ × Σ∗). If we have (~w,~v) ∈ P (I),
we also write ~w ≈PI ~v, such that ≈PI ⊆ Σ∗ × Σ∗ (we use the two statements
equivalently). We will then write that the two words ~w,~v are P -similar for the
pre-theory P . We will, unless stated otherwise, assume that the languages in
the domain of pre-theories are finite. We say a simple string-based analogical
map is reasonable, if and only if the following hold:

1. if I is infinite, then P (I) = ∅,

2. P is recursive (membership in the set P (I) is decidable), and

3. for any string isomorphism i, P (i(I)) = i(P (I)).

The first conditions makes the case of infinite pre-images of pre-theories unin-
teresting. The intuition underlying analogical maps is that they tell us which
substrings of a language are similar (not only in distribution). In the sequel,
we will only work with reasonable analogical maps (as long as they are simple
string-based).

For any pre-theory P and language I, we assume ≈PI to be symmetric, as
it is a similarity relation. We therefore also say that ~w and ~v are P -similar in
I, if ~w ≈PI ~v. Actually, as similarity is clearly a reflexive concept, we could
also require that P be reflexive. This would not change anything, but it would
often amount to a trivial case which we have to mention explicitly, so we mostly
require that P be irreflexive, just to make things simpler. There is a third
property which is often attributed to similarity, namely transitivity. This is
the most arguable of the three, because it is intuitively valid, but quickly leads
to problems of the kind of the Sorites paradox: a number of small changes,
each one preserving similarity, can lead to arbitrarily large changes. Therefore,
transitivity for us is not an important criterion, but we will see that there are
both transitive and intransitive similarity maps.

Next, we introduce the two notions of analogy and inference: An analogy
consists in asymmetrically equating two objects, which are P -similar for a pre-
theory P , where by “asymmetrically equating” we mean: ascribe all properties
of one object to the other (it is clear that this is an asymmetric process for
distinct objects). Importantly, this is only an example scheme: we might have
more (or less) premises. What is general about this scheme that it infers an
analogy, and uses P -similarity as a premise.

~a ≈PI ~b ~a 6= ~b

~a⇐P
I
~b (4.1)

So this infers an analogy ~a⇐P
I
~b, which in turn is crucial for inferring linguistic

judgments. For this, we need other types of inferences. Let f : Σ∗ → Σ∗ be a
function from strings to strings. A quite general example scheme for inferences

64 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

then is as follows; note that also here, we might have more premises; we will
even encounter different conclusions.

` f(~a) ∈ L ~a⇐P
I
~b

` f(~b) ∈ L (4.2)

This reads as follows: from an analogy ~a⇐ ~b and a judgment that f(~b) ∈ L,
we can derive a new judgment, which consists in stating that f(~a) ∈ L. The
interesting thing is of course the question what f does, which in a sense determines
the property we talk about (so whereas f is a function, f(~x) ∈ L is a property,
so to speak parameterized by the function). The simplest and most obvious
instantiation of f could be the identity, so that we just speak about being part
of the language, as f(~a) = ~a. An inference then looks as follows:

` ~a ∈ L ~a⇐P
L
~b

` ~b ∈ L (4.3)

There are of course many other possibilities, and we will just look at the
most natural and/or linguistically meaningful ones. Another reasonable choice
would be the following: the property we talk about is that strings occur in the
same contexts in the language; that is, for some context (~w,~v), f(~w,~v)(~a) = ~w~a~v.
An inference then looks as follows:

` ~w~a~v ∈ L ~a⇐P
L
~b

` ~w~b~v ∈ L (4.4)

Whereas the function f seems to be suitable to illustrate the concept of
linguistic inferences from a didactic point of view, it would complicate things
considerably if we would use it when we formally set up a calculus for inferences.
We will therefore not use it later on. A pre-theory then simply specifies an
analogical map P and a set of inference rules f; the two combined allow us to
make analogies and inferences on finite languages. We now give the definition
of pre-theories for the general case; for all particular instances of pre-theories
we will present, we will be able to give more restrictive definitions, which we
present at due time.

Definition 10 A pre-theory is a pair (f, P), such that

1. P is an analogical map, such that for any alphabet Σ, there are some sets
M,N , such that P : ℘(Σ∗) → ℘(M ×N) maps languages onto relations
over M,N ,

2. f is a class of inference rules of the form (M,φ), such that

(a) M is a finite sequence of statements, φ is a single statement;

(b) for any alphabet Σ, ~w ∈ Σ∗, I ⊆ Σ∗, there is a rule (〈` ~w ∈ I〉,` ~w ∈
fP (I)) ∈ f,

(c) for P : ℘(Σ∗)→ ℘(M×N), (x, y) ∈M×N , there are rules (M,φ) ∈ f
such that (x, y) ∈ P (I) is among the statements in M .

4.2. INTRODUCING PRE-THEORIES 65

This definition is extremely general: it only requires that we can extend
linguistic judgments from ~w ∈ I to ~w ∈ fP (I), and use some analogies as premises.
Due to the lack of restrictions, our inference rules are proper classes, we cannot
even construe them as sets. An important notion is the following: we call the
language of the pre-theory (f, P) the set or class of statements ψ which figure
in some inference rule (M,φ) ∈ f, which do not have the form (i) ` ~w ∈ I, (ii)
` ~w ∈ fP (I), (iii) (x, y) ∈ P (I) or (iv) x⇐P

I y; we refer to this language with
Lf.

We just give this definition for the sake of generality, and work with more
restricted versions. For the beginning, we will consider pre-theories based on
strings only; these can be given a quite restrictive definition. The notion of a
structure is well-known from model-theory (for a classical presentation, consider
[3]; for a presentation independent from logic, consider [18]). We now introduce
language-theoretic structures as follows:

Definition 11 Let Σ be an alphabet. A language-theoretic structure M is
a tuple 〈Σ∗, ·, 〉, where · : (Σ∗)2 → Σ∗ is the concatenation operation.

We thus have a structure over domain Σ∗ with the distinguished function
of concatenation. We denote the class of all these structures by LTS. Next,
we introduce a signature for classical first-order logic, denoted by FOL. We
take the usual inductive definitions of terms and well-formed formulae over
x : x ∈ X,∧,¬,∃x : x ∈ X, where X is a countably infinite set of variables. We
also grant ourselves the equality with its usual syntax, and a binary function
symbol ?, such that we work with the logic FOL(=, ?), that is, first-order logic
with equality and a binary function symbol ?. We interpret equality always as
extensional equality, and ? as concatenation. Let M∈ LTS, φ ∈ FOL(=, ?); we
write M |= φ if φ is true in M under the usual definitions, interpreting ? as
·. By φ(x1, ..., xi) we denote a formula with exactly i free variables. We say
M |= φ(x1, ..., xi)[~w1, ..., ~wi], if φ(x1, ..., xi) is true inM, if each xj is interpreted
as ~wj .

We now define the relational language of a simple string based pre-theory,
which we call Lf. Such a language is characterized by a pair of a finite sequences
(〈P1, ..., Pi, 〉, 〈φ1, ..., φi〉), where for 1 ≤ j ≤ i, Pj is a relation symbol of arity nj .
We call these symbols the relational signature of f. Moreover, for 1 ≤ j ≤ i,
φj is a FOL(=, ?)-formula. We say that φj corresponds to Pj , and if Pj has arity
nj , then φj has exactly nj free variables x1, ...xnj .

We now define the relational language Lf as follows: ψ is in Lf, characterized
by (〈P1, ..., Pi, 〉, 〈φ1, ..., φi〉), if and only if it has the form Pj(~w1, .., ~wn), where
1 ≤ j ≤ i, the arity of Pj is n, and ~w1, .., ~wn ∈ Σ∗ for some alphabet Σ. We say
that Pj(~w1, .., ~wi) is true, if for φj(x1, ..., xn) the formula corresponding to Pj ,
there is an M∈ LTS such that M |= φ(x1, ..., xi)[~w1, .., ~wi].

We usually leave the definitions of such languages implicit, and use relation
symbols such asv for substring, corresponding to the formula ∃yz.?(?(y, x1), z) =
x2, and we write ~w v ~v instead of v (~w,~v). We reserve ′ =′ for the (extensional)
equality, and ′ 6=′ for the inequality. The reason for this slightly complicated
definition is that on the one hand we do not want to commit ourselves a priori
to an alphabet; but on the other hand we neither want to figure any meta-
language in our inference rules, but rather proper strings! We therefore define
the relational language over arbitrary alphabets, so that the relational language

66 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

itself is not a language in the proper sense of a set. Still, apart from that, the
language is very restricted: syntactically, we only allow simple statements of the
form P (~w1, ..., ~wi), and semantically, the truth of such a statement is restricted
via definability of relations in FOL(=, ?) in some language-theoretic structure
(see e.g. [17] on definability within these structures). The simple reason for these
restrictions is: it works just fine for our simple string-based pre-theories. As we
will introduce more complex pre-theories, we have to adapt these notions, for
examples to signatures containing more functions than just ?/·, and even to the
universe of λ-terms with =αβ congruence instead of strings etc. We will however
not spell these definitions out as we do here, as the underlying concepts should
be clear and it is nothing but an exercise in formalizing mathematics to formal
logic.

Definition 12 A simple string-based pre-theory is a pre-theory (f, P), such
that

1. P is an analogical map, such that for any language, if I ⊆ Σ∗, then
P (I) ⊆ Σ∗ × Σ∗,

2. f is a set of inference rules of the form (M,φ), where φ is either

(a) a linguistic judgment of the form ` ~v ∈ fP (I),

(b) a statement ~w ≈IP ~v (equivalently, ~w,~v ∈ P (I)) or ~w ⇐I
P ~v for some

pre-theory P ,

(c) or a statement (~w1, ..., ~wni) ∈ Ri, which is part of a fixed relational
language Lf,

and M is a finite sequence of any of these kind of statements.

We will henceforth use (f, P) as a meta-variable for pre-theories, whereas
particular pre-theories will have different names. We have still defined f in a
very general manner, thereby allowing many non-sensical pre-theories. But it
is important that there is a fixed (relational) language which labels our trees,
and for which there is some notion of truth; we will refer to this language as Lf.
So whereas in the general definition of pre-theories, we define the language Lf

in terms of the pre-theory, in the case of more restricted pre-theories we first
fix a (relational) language, which then restricts the pre-theory. The reason for
this becomes obvious in the definition of a (f, P)-derivation, where we need a
notion of truth of a statement. We now give the definition of a derivation for
pre-theories in full generality; it basically is the usual definition of transitivity
of deductive inference, with some additional features regarding the leaves of a
proof-tree.

Definition 13 The set of (f, P) derivations is the smallest set such that

1. If ~w ∈ I, then ` ~w ∈ I is an (f, P) derivation of ` ~w ∈ I.

2. If φ is a true statement of the (relational) language Lf of f, then φ is an
(f, P) derivation of φ.

3. If (x, y) ∈ P (I), then (x, y) ∈ P (I) is a (f, P) derivation of (x, y) ∈ P (I).

4.2. INTRODUCING PRE-THEORIES 67

4. If (〈φ1, ..., φn〉, ψ) ∈ f is an inference rule, T1 is a (f, P) derivation of
φ1,....,Tn a (f, P) derivation of φn, then

T1 ... Tn
ψ

is a (f, P) derivation of ψ.

Some notes are in order. Firstly, we now see why the definition of the
relational language and its semantics have been slightly complicated: we want to
have a notion of truth, but a language over arbitrary alphabets. We cannot – of
course – give a general definition of truth for arbitrary statements, and therefore
it is up to any particular pre-theory to define its notion; and therefore we have
given the definition only for the simple string-based case. Secondly, in virtue of
definition 10, if ~w ∈ I, then

` ~w ∈ I
` ~w ∈ fP (I)

is an (f, P) derivation of ` ~w ∈ fP (I). Moreover, in virtue of this definition, we
can derive any true statement of the relational language. We could also have
implemented this directly in the inference rules, but to me it seems preferable to
have a notion of truth figure in a derivation rather than the inference rules. Of
course, it is only 4. which gives the calculus its proper strength by transitivity of
inferences: we can derive any tree, as long as the local subtrees are well-formed
according to the inference rules in f. 1., 2. and 3. serve to get the correct
premises for inferences. So the set of (f, P) derivations are defined almost as the
usual derivations in proof-theory, with one important difference: the statements
(labels) of the leaves of a derivation tree are not written out explicitly in the
inference rules f, but are defined independently of the calculus.

As a consequence of this definition, we can use (f, P)-derivations in order to
define a map fP , which for any alphabet Σ is a map ℘(Σ∗)→ ℘(Σ∗), which is
defined by

fP (I) := {~w : there is an (f, P)-derivation of ` ~w ∈ fP (I)}. (4.5)

Mathematically, this is a deductive closure. This definition also allows us to
conceive of fP as a function fP : ℘(Σ∗)→ ℘(Σ∗), which for any I yields fP (I).
This is the way we will think of fP in the sequel. It cannot be checked in general
that fP defines a reasonable projection in the above sense: for example, the
condition that there is a finite language with an infinite image under fP depends
very much on the details of the pre-theory. Note that we assume that for ~w ∈ I,
the linguistic judgment ` ~w ∈ I “comes for free”.

So the finite languages we project determine the derived languages in two
main ways: firstly, by the set of analogies they allow us to make, and secondly,
by providing us with a set of premises for our inferences. The two factors are
quite different in nature. On the one side, they are too strongly entangled to
allow us to consider them separately. On the other side, they are to loosely
related to allow us to make strong inferences from one to the other in most cases.
This was the cause of some headache during writing what is to follow; yet I

68 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

do not see any other reasonable alternative to this “double usage” of observed
languages both for linguistic judgments and analogies. This also motivates some
additional notations. Let A ⊆ Σ∗ × Σ∗ be a relation (ontologically equivalent to
P -similarity). Then we put

fA(I) := {~w : we can derive ` ~w ∈ fP (I), by allowing ~u ≈PI ~v as a label iff (~u,~v) ∈ A}
(4.6)

That way, we can choose analogies and premises in I independently. By
definition we usually have fP (I) = fP (I)(I). This will turn out to be useful in
some proofs later on.

To sum up, there is considerable freedom in the instantiation of properties,
as there is in the choice of linguistic objects. But there is one crucial constraint:
(f, P) is a proper pre-theory, if and only if fP is a map from finite languages
to (some infinite) languages, where we conceive of it as a function as explained
above. So pre-theories uniquely define maps, which should be projections. And
if they do, they can be tested for adequacy.

We will now consider some interesting or illustrative pre-theories, which we
divide into some general classes, according to the properties we use. Unfortu-
nately, at this point I do not see how these pre-theories can be ordered within a
clear taxonomy; but there are several properties or parameters by which we can
distinguish them. The first one is the nature of the language theoretic objects
we talk about. We can have simply strings, bracketed strings which encode
some structure, but we can also use sets of strings or even sets of terms which
encode string-like entities. (This will be the main principle for the order of
presentation here). The second main parameter are the properties we talk about,
in the sense of ` f(w) ∈ L, as explained above. In the end, of course, we want
to derive linguistic judgments from linguistic judgments. But on the way we
can use many different tools, from simple substitution to recursive functions
on strings. The third main parameter consists in the criteria for establishing
the relation ≈PL between two objects in a given language L. This is the most
fine-grained one, but as we will see, in some sense it cuts across the boundaries
of the language theoretic objects, in that we can have very similar or equivalent
criteria on different classes of objects. To give an overview, we present a table
which considers only the first two parameters; note that the classes of languages
written do not mean that we induce all of their members, but only provide an
upper bound to the class of induced languages.

Strings Sets of Strings Sets of n-Tuples Terms Sets of Terms
Substitution undecidable uninteresting uninteresting uninteresting uninteresting

Structured Substitution CFL CFL n-MCFL does not work open
Functions PTIME? not covered not covered not covered not covered

Membership gives completeness uninteresting uninteresting uninteresting uninteresting

A word of explanation; I start by describing the labels. The first row describes
the objects we talk about, our “ontology”, so to say: we can just talk about
strings (first column), certain sets of strings (second column), sets of tuples of
strings etc. So our judgments have the form ` ~w ∈ I, ` M ⊆ I etc. The first
column describes the property we preserve over analogy; so, for the first row,
if we have an analogy ~w ⇐ ~v, then we infer ~x~v~y ∈ I from ~x~w~y ∈ I, that is, we
substitute. In the second row, we rather infer ~x(~v)~y ∈ I from ~x~w~y ∈ I; in the
last row, we just infer ~v ∈ I from ~w ∈ I. The label “gives completeness” in the

4.3. SUBSTITUTIONAL PRE-THEORIES 69

last row means: “allows us to simulate any projection”, a result to which we
refer as completeness, because it shows that pre-theories come with no loss of
generality wrt. projections.

Having said this, I have to add: the above table is only an attempt to
provide an intuitive taxonomy of the pre-theories we consider. This is to say:
in their technical definition, the changes work differently and not according
to this scheme. For example, in using sets of strings rather than strings, we
have to provide additional inference schemes in order to derive judgments of the
form `M ⊆ I from sets of judgments of the form ` ~w ∈ I, and vice versa. So
the table does not exactly reflect our formal treatment, but rather underlying
intuitions. Secondly, also the classes of languages figuring as an upper bound for
the languages which are induced have to be taken with care: they hold for the
pre-theories we have considered under this intuitive rubric. It does not mean that
for all pre-theories which fall in this rubric the same will hold. Also, we have to
explain what we mean by uninteresting, as this means different things in different
rows. In the first row, I explain this judgment as follows: a simple substitutional
pre-theory on strings turns out to induce languages which are not decidable.
This is for me an argument to not investigate substitutional pre-theories on more
complex objects. It does not follow that these will also be undecidable, but still
the treatment of the string-based substitutional pre-theories makes sufficiently
clear that these will not be very interesting. In the last row, we explain this
as follows: we show our completeness result – for every projection there is an
(extensionally) equivalent pre-theory – by means of the string based pre-theory
over simple membership. This is the only reason why I consider the inference
over membership interesting: it is hard to give it any linguistic meaning or
motivation. As this gives us the desired result, there is no reason to consider the
other ontologies, so I label them uninteresting. The reason I have not covered
the pre-theories with inferences on functions beyond strings is that they do not
seem to work in the desired way; so this does not seem to be promising to me,
but of course I cannot tell whether they are really uninteresting.

So as we can already deduce from the table, we will look at the most important
properties of pre-theories using only the simple string based pre-theories as
examples, and establish thereby some exemplary results. For pre-theories which
have a more complex ontology we will not be equally specific, in order to keep
this dissertation in a manageable size, and in particular because the results,
which are partly already complicated to obtain in the simple case become much
more complicated in more general cases and pre-theories. What we will do,
however, is to indicate how certain reductions to the string based case can be
put to work – or can no longer be put to work – if we lose for example freeness
of the underlying monoid. So we go very much into depth for the string based
pre-theories, and then present extensions together with results on (im)possibility
of reductions.

4.3 Substitutional Pre-Theories

The substitutional pre-theories comprise probably most of the pre-theories which
would be considered linguistically interesting, though not necessarily all of
them, in particular not from a transformational perspective. The reason is the
particular role substitution plays in linguistic theory: natural languages are

70 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

generally assumed to have underlying structures, and these structures often
seem to be a grammar-theoretic pendant of the language-theoretic notion of
substitution (but as we will see and most people know, this is true only under
some additional assumptions). We will stick with this, as it is our goal to find a
formal foundation for linguistics that linguists would judge to be adequate. But
it is important to keep in mind that many things which at the level of linguistics
seem to have the status of observations, at the level of metalinguistic have the
status of mere assumptions, and so does the presumably structural nature of
natural languages. So from a metalinguistic point of view, this choice is by no
means without alternatives, and later on we will in fact we will in fact consider
very interesting alternatives (or rather: extensions).

In the treatment of pre-theories, whether based on strings or not, it is much
easier for presentation to depart from a given alphabet; therefore, we will adopt
this convention. Note however that pre-theories are defined independently of
alphabets. So take a (finite) alphabet Σ and a language L ⊆ Σ∗. We now
introduce two relations over Σ∗ × Σ∗, which will be fundamental for what is to
follow.

1. Write ~v v ~w if and only if for some ~x, ~y ∈ Σ∗, ~x~v~y = ~w;

2. ~w ≤′L ~v if and only if ~x~v~y ∈ L⇒ ~x~w~y ∈ L.

The first one is anti-symmetric, reflexive and transitive, as can be easily
checked. It is quite self-explaining, and will be referred to as (contingent)
substring relation. To illustrate the second one, for I := {ab, a}, we have
a ≤I ab, but not ab ≤I a. The second relation is a pre-order, that is, it is
reflexive and transitive, but not anti-symmetric. Reflexive is obvious, transitivity
follows from the transitivity of the logical implication by which it is defined;
it is also antisymmetric modulo the distributional equivalence ∼L. Given a
language L, we call a string ~w trivial in L, if there is no ~v ∈ L, such that ~w v ~v;
triviality means the string has no occurrence in any word in L. Denote the set
of substrings of ~w by fact(~w); we extend this notion to sets on the natural way
and write fact[L]. ~w is then trivial in I if and only if ~w /∈ fact[I].

As ≤′L is defined by an implication, we allow any trivial string on its right
hand side. To avoid complication arising from this, we will assume that ≤L
is the restriction of ≤′L to strings which are non-trivial in L, that is, ≤L=≤′L
∩(fact(L)× fact(L)). Now to continue the example: if we have nontrivial strings
~w,~v, ~w 6= ~v, ~w v ~v and ~v ≤L ~w, then we can deduce that L is necessarily infinite,
as can be easily shown by iterated substitution. Showing that a language is
necessarily infinite is a type of argument which we will encounter quite some
times in what is to follow. To make these arguments neat, we need always the
restriction to non-trivial strings, so this is another good reason for excluding
trivial strings.

Now, given a finite language I, non-empty strings ~w,~v, we put ~w ≈P1′

L ~v iff

1. ~w v ~v, and

2. ~w ≤I ~v;

≈P1
I is the reflexive closure of ≈P1′

I .
This defines our first, simple analogical map P1, by putting P1(I) = {(~w,~v) :

~w ≈P1
I ~v}, provided I is finite. We define f1 as a set of inference rules over the

4.3. SUBSTITUTIONAL PRE-THEORIES 71

relational language defined by the structure 〈Σ∗, 6=〉, so what all statements of
the relational language have the form ~x 6= ~y. There are two rule schemata, which,
to enhance readability, we immediately write in the form of trees:

` ~w~y~v ∈ f1P ~y ⇐P
I ~x

` ~w~x~v ∈ f1P (I) , (4.7)

~x ≈PI ~y ~x 6= ~y

~x⇐P
I ~y (4.8)

Note that the P on the trees is a variable for analogical maps: they can be
used with arbitrary maps (as with arbitrary languages); the rules just make sure
the identities are preserved. Same holds for I and string symbols; so actually
these two schemes serve as a shorthand for infinitely many rule instances. We
will have a short look at an example to see this pre-theory at work:

Example 14 Take I := {ab, a}. Clearly, we have P1(I) = {(a, ab), (ab, a)}.
Therefore, we have f1P1(I) = a(b∗). To show how our calculus works, we will
show this result in a some detail. For example, consider the following derivation:

` ab ∈ I
` ab ∈ f1P1(I)

a ≈P1
I ab a 6= ab

a⇐P1
I ab

` abb ∈ f1P1(I)

a ≈P1
I ab a 6= ab

a⇐P1
I ab

` abbb ∈ f1P1(I) (4.9)

By this example it is easy to see that a(b)∗ ⊆ f1P1(I); to see the inverse
inclusion, consider that we cannot derive anything else by means of the analogy
a⇐P1

I ab; and moreover, we cannot derive anything else by the inverse ab⇐P1
I b

either: all derivable strings are already in the language. This can be easily seen
in considering the following example:

` ab ∈ I
` ab ∈ f1P1(I)

a ≈P1
I ab a 6= ab

a⇐P1
I ab

` abb ∈ f1P1(I)

a ≈P1
I ab a 6= ab

a⇐P1
I ab

` abbb ∈ f1P1(I)

ab ≈P1
I a ab 6= a

ab⇐P1
I a

` abb ∈ f1P1(I)
(4.10)

This simple pre-theory, though very elementary, has a considerable complexity,
which we will show for pedagogical reasons, so to speak.

Say a pre-theory (f, P) is undecidable, if for some word ~w and some finite
language I, the problem ~w ∈ fP (I) is undecidable. If a pre-theory is undecidable,
then its adequacy will be undecidable in general, so we would like our pre-theories
to be decidable in any case. The following theorem might be surprising at the
first glimpse, but is not surprising any more if we consider that in f1, our string
substitutions are completely unrestricted:

Theorem 15 The simple pre-theory (f1, P1) is undecidable.

72 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

We show this by reduction to the word problem for semi-groups, which
is well-known to be undecidable (see for example Kleene’s classical [34]). We
would get an almost immediate proof by Thue systems, if we would not have
the additional requirement of the substring relation v in order to allow for
substitution, so there is some work to do.

A semigroup is a structure (M, ·), where M is a set, · is an associative, binary
operation on elements of M , and M is closed under ·. As · is associative, we
omit brackets, and we write m1m2...mi as shorthand for m1 ·m2 · ... ·mi. A
semigroup is free, if for every m ∈ M there is a unique term denoting it; that
is, all equalities are trivial. Every free semigroup has a unique smallest set of
generators; if M has a neutral element 1, if is denoted by (X − 1)∗− ((X − 1)∗)2,
otherwise it is just X∗ − (X∗)2. We denote generator set of M by gen(M), so
that we have (gen(M))+ = (M, ·), where M is the closure of the generators
under the operation.

An unfree semigroup (M, ·) has a presentation ((Σ+, ·), ES) by the free
semigroup (Σ+, ·) over Σ and a set of equations ES of the form ~w = ~v, for
~w,~v ∈ Σ+. We obtain =S , the set of equalities holding on terms over M in
(Σ+, ES), as the smallest congruence over Σ+ containing all equations in ES .
So (Σ+, ES) presents (M, ·), if (M, ·) ∼= [Σ+]=S , the free semigroup modulo the
congruence. A semigroup is finitely presented, if both Σ and ES are finite. Now
the word problem for (finitely presented) semigroups is as follows:

Given a (finite) presentation (Σ+, ES), ~w,~v ∈ Σ+, does ~w =S ~v hold?

As we said, this problem is undecidable in general, and is also undecidable
for finitely presented semigroups. We will now reduce the decision problem
for (f, P1) to this problem. So assume we have a finitely generated semigroup
(Σ+, ES), and we want to decide whether the equation ~w = ~v is valid in (Σ+, ES).
We show that for every finite presentation (Σ+, ES), every ~w,~v ∈ Σ+, we can
construct a finite language I such that ~v ∈ fP1(I) if and only if ~w =S ~v. The
core of the proof consists in the construction of an appropriate language I(~w,~v).

So take an equation ~w =S ~v, the validity of which we want to decide. Recall
that ~w,~v in the sequel will always be used in this given sense. Before we construct
the language I(~w,~v), we have to construct its alphabet. Assume ~x = ~y ∈ ES ,
and ~x 6v ~y, ~y 6v ~x. We then take three letters ayx, b

y
x, c

y
x, which are unique for

any ~x, ~y, and which are not in Σ. Now assume ~x = ~y ∈ ES , and neither ~x
nor ~y are substrings of ~w. Then in addition take a letter dxy , which is also
unique (regardless of whether ~x v ~y or not). Furthermore, for any string in
fact[{~x : (~x = ~y) ∈ ES or (~y = ~x) ∈ ES or (~x) = ~w}], we take a unique letter exx.
Now we define I(~w,~v) as the smallest language, such that:

1. ~w ∈ I(~w,~v);

2. if ~x ∈ fact[{~x : ~x = ~y ∈ ES or ~y = ~x ∈ ES or ~x = ~w}], then exx~xe
x
x ∈ I(~w,~v).

3. if ~w = ~w1~x~w2, ~x = ~y ∈ ES (or ~y = ~x ∈ ES), ~x v ~y (or ~y v ~x), then
~w1~y ~w2 ∈ I(~w,~v);

4. if ~w = ~w1~x~w2, ~x = ~y ∈ ES (or ~y = ~x ∈ ES), ~x 6v ~y and ~y 6v ~x, then
~w1a

y
x~xb

y
x~yc

y
x ~w2 ∈ I(~w,~v), and ~w1~y ~w2 ∈ I(~w,~v).

5. if ~x /∈ fact(~w), ~x = ~y ∈ ES (or ~y = ~x ∈ ES), ~x v ~y (or ~y v ~x), then
dxy~xd

x
y , d

x
y~yd

x
y ∈ I(~w,~v);

4.3. SUBSTITUTIONAL PRE-THEORIES 73

6. if ~x /∈ fact(~w), ~x = ~y ∈ ES (or ~y = ~x ∈ ES), and ~x 6v ~y and ~y 6v ~x, then
dxy~xd

x
y , d

x
y~yd

x
y , d

x
ya
y
x~xb

y
x~yc

y
xd
x
y ∈ I(~w,~v);

This defines the language I(~w,~v). We can easily check that I(~w,~v) is finite,
because each condition only adds finitely many strings; in particular: each
condition has the form of an implication, where the premise does not get changed
by the other conditions being satisfied or not.

What is the first important point is P1(I(~w,~v)).

Lemma 16 We have (~s,~t) ∈ P1(I(~w,~v)), if and only if either 1. ~s = ~t ∈ ES
(or ~t = ~s ∈ ES), and ~s v ~t (or vice versa), or 2. ~t = ayx~sb

y
x~uc

y
x (or inversely),

where ~s = ~u ∈ ES, or ~t = ayx~ub
y
x~sc

y
x where ~s = ~u ∈ ES, and ~s 6v ~u, ~u 6v ~s.

Proof. The if direction is clear by definition of I(~w,~v). We show the
only if -direction. We have some (~s,~t) ∈ P1(I(~w,~v)) not satisfying the above
conditions. By assumption, we must either have ~s v ~t or ~t v ~s; assume wlog that
~s v ~t. But by assumption, ~t does not have the form in 2., and by assumption,
~s = ~t,~t = ~s /∈ ES . So there are strings ess~se

s
s, e

t
t
~tett, in which each of the two have

unique, distinct contexts, so we have ~s 6≤I(~w,~v)
~t,~t 6≤I(~w,~v) ~s; contradiction. �

From this it easily follows that:

Lemma 17 For ~w,~v ∈M∗, if ~w =S ~v, then ~v ∈ fP1(I(~w,~v))

Proof. Obvious, because each substitution corresponding to one equation
in ES can be simulated by at most two analogies. �

We now have to show the the other direction: for ~v ∈ Σ∗, if ~v ∈ fP1(I(~w,~v)),
then ~w =S ~v. To see this, we first make sure: if ~v ∈ fP1(I(~w,~v)), then ~v ∈
fP1(I(~w,~v))(~w), because all other strings in I(~w,~v) are either derivable as well
from ~w by means of the analogies, or they do not allow to derive ~v, because they
contain the letters dyx, e

x
x, for which there is no way to get rid of by means of

any analogy, and which by assumption do not occur in ~v. So we can see that
the statement we have to prove can without loss of generality be weakened to
the statement: if ~v ∈ fP1(I)(~w), then ~w =S ~v. So we prove:

Lemma 18 For any ~v ∈ Σ∗, if ~v ∈ fP1(I(~w,~v))(~w), then ~v =s ~w.

Proof. This is clear for all analogies (~s,~t), where ~s = ~t ∈ ES , and moreover
~s v ~t (or vice versa). For all analogies of the other kind, which introduce symbols
not in Σ, the argument is the following: each of these analogies introduces a
substring ayx~xb

y
x~yc

y
x. As ayx, b

y
x, c

y
x are unique, we can only get rid of them by the

two analogies which introduce them. This means in particular, we can either
substitute it by ~x or by ~y, where ~x = ~y ∈ ES ; there is no other to get it out from
a string.

So we have to use two analogies, one to introduce it, one to get rid of it, and
they exactly correspond to one equation in ES . �

This completes the proof of the above theorem: we have ~w =S ~v iff and only
if, for ~v ∈ Σ∗, ~v ∈ f1P1(I(~w,~v)). So if the latter were decidable, so would be the
former – contradiction.

So we see that already for this very simple pre-theory, which uses nothing but
substitution in contexts, we get an undecidability result. This means that the
adequacy of (f, P1) is undecidable. The main reason for this negative result is

74 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

obvious: there is no notion of structure in the pre-theory, substrings which result
from substitutions are neither marked nor recognized as such. This is not only
the main reason for undecidability, but also goes strongly against our intuitions
on the nature of language. The other main reason for undecidability is that
analogies do not make strings only longer, but also shorter, as the symmetry of
P1-similarity is transferred to analogies. We will therefore now introduce new
inference rules doing away with both problems, and to which we will refer as
structural inference.

4.4 Structural Inference

We now introduce a new set of inference rules g, which we will refer to as
“structural inference”. It uses special markers (,), which are supposed not to
be in the alphabet of any of the (finite) languages we consider as the range of
pre-theories. These mark the beginning and the end of any of the substrings
which has been altered by an inference, such that our inference rules – already
written in tree-form – now look as follows:

` ~w~b~v ∈ I ~b⇐P
L ~a

` ~w(~a)~v ∈ I ,

~x ≈PI ~y ~x 6= ~y ~x v ~y
~x⇐P

I ~y (4.11)

Henceforth, we use ~x @ ~y as an abbreviation for ~x v ~y and ~x 6= ~y. Again, these
schemes represent “metarules”, where we use strings as variables for arbitrary
strings and P as a variable for an arbitrary analogical map etc. Note that the
first rule properly introduces the bracket: it is not given or specified among the
premises! For I ⊆ Σ∗, we now have ~w,~v ∈ Σ∗ ∪ {(,)}. The important thing is:
we do not allow that (or choose the two such that) the two distinguished symbols
(,) figure in the language we observe; and consequently, they will not figure in
any of the analogies we get, if we define analogies in the usual and natural way.
We thus restrict the inferences to substrings which are either already present in
the original premise, or which have been introduced entirely in a single inference.

The introduction of structure into inferences also leads to a distinction of the
strong language, which contains the distinguished symbols (,) /∈ Σ, and is used
to make inferences; and the weak language, which is the result of inferences and
is obtained from the weak language through a homomorphism h mapping (,)
onto ε and computing the identity for anything else.

This is a significant modification of our ontology. Till now, there were only
strings and nothing else. We now assume that the languages our pre-theories
provide have structure. It now seems to be a matter of taste whether we want
to think of “language” as the set of derivable strings without any structure or
as structured entities; formally, whether “language” is supposed to be h ◦ gP (I)
or gP (I) for some P and I. The latter is more natural and immediate, but we
might also want to think of “language” as a set of structured objects, for example
a set of trees, as many people do. The latter perspective is usually strongly
put forward by generative linguists, who believe in the cognitive reality of the
structures they posit. We obviously disagree with this position for epistemic
reasons. But apart from this, in our case, things are slightly different, because we
only posit the structure we introduce by inference, which concerns strings we do
not observe in the first place, whereas (not only) generative linguists assume that

4.4. STRUCTURAL INFERENCE 75

languages are structured “all the way down”, that is, we have a tree structure
where we allow only visible words in the sense of atoms as leaves, not entire
strings. So linguists would probably not be happy with our results anyway.

The most simple and convincing argument for saying that structures are not
part of language is that we do not observe them, but only posit them for the
sake of our theories. A variant of this position is put forward for example in [16].
But note that this very convincing argument does not obtain in our case: our
pre-theoretic inferences are about deriving strings we do not observe anyway ;
so there is nothing really empirical we can say about these objects and their
nature, in principle it could be trees or anything we consider an adequate model
of natural language utterances. So again we must not confuse what we construct
with what we observe: there is a neat distinction between the level of linguistics
and metalinguistics. It might sound like a convincing argument that we observe
strings, and so we should also infer strings; conversely, one might reply that the
inferred objects have a different status, so why should they not be somewhat
different in nature? Given this, it seems basically a matter of taste and choice
what to assume as “language”.1

Also another remark is in order. If we use structured inference, there might
be inferences, which do not allow to derive additional strings, but allow to
derive additional structures. In particular, provided we have a simple string ~w
in our positive language from which we depart, we might be able to derive it
via inferences in a certain structured fashion. This is not very important for our
principal motivation here, but might be considered of some relevance if we think
that our utterances should be structured “all the way down”.

An easy example is the following: recall the simple analogical map P1, but
now with structured inference, yielding the pre-theory (g, P1). Take a language
I := {ab, aabb, aaabbb}. Now we have ab ≈IP1 aabb. So we can derive the strings
a(ab)b, a(a(ab)b)b etc. These inferences are obviously uninteresting for linguistic
metatheory in its primary sense, but they might be, up to a certain point, a
formal counterpart for what the linguist is doing when inferring the structure of
utterances he empirically knows to be part of the language in question. Note
however that I do not claim that any of the pre-theories I look at can actually
provide a complete model of this procedure. Also, none of them provides a
guarantee that all strings of a finite language can be structured “all the way
down”.

Our first analogical map was P1; we will now define a second one, which is
slightly more rigid in its premises. These two maps are very fundamental for
this work, because most analogical maps we consider are basically the one or the
other in some disguise or variation. The map we introduce now is the map Pr
of simple pseudo-recursion. Its crucial concept is the one of pseudo-recursion,
which is defined as follows:

Definition 19 In a (finite) language I ⊆ Σ∗, ~w,~v ∈ Σ∗, ~w 6= ~v, ~w and ~v are
pseudo-recursive, if for some ~x, ~y,

1. ~x~v~y = ~w (in other words: ~v v ~w);

1As a short remark, I might add at this point that I find the idea that language is structured,
but not all “the way down”, very appealing. This idea is also not totally out of linguistic
mainstream, as it seems to guide some work on chunking and construction grammar, as well
as work on data-oriented parsing.

76 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

2. ~v ≤I ~w, and

3. if (~z1, ~z2) does not have the form (~z′1~x, ~y~z
′
2), then ~z1~v~z2 ∈ I ⇒ ~z1 ~w~z2 ∈ I

(or vice versa for all three).

The notion of pseudo-recursion needs some explanation, in particular, the
meaning of the third condition. It is clear that in any finite language I with
substrings ~w,~v, ~w 6= ~v and ~w v ~v, ~w and ~v cannot have the same distribution,
that is, we cannot have ~w ∼I ~v (we showed this in the previous section). The
reason is that either we will find a distinguishing occurrence, or the language is
necessarily infinite. The essence of pseudo-recursion of two strings ~w,~v, ~v v ~w,
is that they are as similar in distribution as they can be in a finite language.2

To illustrate the concept of pseudorecursion, consider the following illustra-
tion:

~z′1 ~w ~z′2
~z′1 ~x ~v y ~z′2
~z1 ~v ~z2

You see that every occurrence of ~w introduces an occurrence of the ~v, with
a distinguishing context. We call this context a recursive context. So (~x, ~y) is
a recursive context for ~w,~v, if ~w = x~vy. Note that the third condition might
be thought to be unnecessarily complicated. This is not true, as it also covers
the case I = {b, bb}. In that case, we have two occurrences of b in bb, and
two contexts (ε, b) and (b, ε). Still, have the pseudo-recursion (b, bb) ∈ Pr(I)!
So there are critical cases where the recursive context in definition 18 is not
unique, and here we implicitly quantify over all (two) possible contexts. So
pseudo-recursion might be thought of as saying: except for the recursive contexts
which necessarily distinguish them, there are no other distinguishing contexts
for ~w,~v.

We give a small example. Say a language is pseudo-recursive if some non-
trivial substrings of it are. Then we have the following example languages:

1. I1 := {a, ab} is pseudo-recursive;

2. I2 := {a, ab, ac} is not;

3. I3 := {a, ab, ac, abc} is pseudo-recursive.

In I1, a and ab are distinguished only by the context (ε, b), which is a
recursive context for the two. In I2, we have the additional context (ε, c), which
is not recursive for a, ab, but distinguishes the two substrings. In I3, in turn,
(ε, c) is no longer a distinguishing context for a, ab, and so the two are again
pseudo-recursive, because the only context distinguishing them, which is (ε, b),
is recursive for a, ab.

We get the analogical map Pr by putting ~w ≈PrL ~v if and only if ~w,~v are
pseudo-recursive in L. We now use the rules in g, and so analogies will be

2Note that there is an interesting alternative definition of the third condition:
3. if (~z1, ~z2) does not have the form (~z′1~x

′, ~y′~z′2), such that ~x′~v~y′ = ~x~v~y, then ~z1~v~z2 ∈ I ⇒
~z1 ~w~z2 ∈ I (or vice versa for all three).

This definition gives rise to different analogies and is quite interesting; we will however not
investigate it at this point, and only mention it.

4.5. PROPERTIES OF PRE-THEORIES I 77

asymmetric, as we made it a precondition of analogies that we have a proper
substring relation. So finish with the scheme:

~w ≈PrI v ~w v v ~w 6= ~v

~w ⇐Pr
I ~v . (4.12)

h ◦ gPr is a reasonable projection. One might now think that for ~w ≈PrI ~v,
we have ~w ∼h(gPr(I)) ~v. This however is not true: we do have ~w ∼fPr(I) ~v, but
in the structural inference, we do not give ~w,~v an equal distribution, exactly
because of the brackets we introduce! So if we have ~w ≈PrI ~v, it is not clear at
all whether ~w ∼h(gPr(I)) ~v, though it might be the case. However, it is obvious
that structural inference makes it much easier to obtain some positive results on
complexity and expressive power:

Theorem 20 For any finite language I, h(gPr(I)) and h(gP1(I)) is a context-
free language.

Proof. We give a construction equally valid for both cases, but we only
illustrate it for P1. Take a fixed finite language I; the terminals of our grammar
are the alphabet of I. For any ~w ∈ fact[I] (!), we introduce a non-terminal N~w.
Now, for every ~v ∈ I, we introduce a rule S → N~w; for all ~u,~v, ~w ∈ fact[I], such
that ~u~v = ~w, introduce a rule N~w → N~uN~v, and finally, for all ~w ∈ fact[I], we
add a rule N~w → ~w. The resulting grammar G′ is finite because I is finite, and
it generates exactly I, though in all “possible ways”, that is, with all possible,
binary trees.

Now, for every analogy (~x, ~y) ∈ P1(I), we simply add a rule N~x → N~y. This
does the job as required, because we can decompose every N~y into its “substring
nonterminals”; but we cannot go the other way round, in the same way as we
can introduce brackets, but not get rid of them in derivations. �

4.5 Properties of Pre-Theories I

4.5.1 Problems for Infinite Languages

We show here that for infinite languages, things get undecidable very quickly.
This section is not meant to present any important positive results, but rather
supposed to show negative results, and in particular, motivate our mistrust in
infinite languages. Mistrust is to be understood in the sense: we do not want
to work with infinite languages. This has, of course, a linguistic/philosophical
motivation, which we discussed at length in the first section. But this is not
sufficient to justify our mistrust: we could, for example, investigate fixed points:
We could map a finite language I onto an infinite language fP (I). We could then
argue: as linguists we are realists, so for us, fP (I) is in some sense real. Now it
might be that some patterns, which we have not observed in I, become visible
only in fP (I), and these are nonetheless relevant to “language”. This is a valid
argument, as we might argue that I is insufficient in a strong sense, it does not
even show all the patterns we need; these patterns might become visible only in
fP (I). So rather than define “language” as fP (I), we could define it as (fP)∗(I),
the least fixed point of the iterated mapping.

This position, though linguistically/philosophically reasonable, from my
position is unsustainable on purely mathematical reasons, because the mappings

78 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

and their values very quickly become undecidable. This is what we will argue
for in this intermezzo. As regards the conclusion of this section, we should have
put it earlier in the order of contents. However as regards the methods applied,
we think at this point it will be much easier to understand by the reader. Our
first result is the following:

Theorem 21 Let G be a CFG, such that L(G) = L ⊆ Σ∗. Then the relation
≤L⊆ Σ∗ × Σ∗ is in general undecidable.

Proof. As is well-known, the universality problem for CFLs is undecidable,
that is, there is no algorithm which for any CFG G, tells us whether L(G) = Σ∗

or not. As is also well-known, the emptiness problem for CFGs is decidable,
that is, there is an algorithm which tells us whether L(G) = ∅ for any CFG G.

Now assume ≤L(G) is decidable. We show that under this assumption the
universality problem is decidable, yielding a contradiction. To check universality,
we first check whether L(G) = ∅, which is decidable. If it is, we can answer the
universality question negatively. So assume L(G) 6= ∅. Then there is a word
~w ∈ L(G). We check whether ε ∈ L(G). Next we check whether ε ≤L(G) a
for all a ∈ Σ. If both are answered positively, then we have L(G) = Σ∗; if
one is negative, then L(G) 6= Σ∗. This way, we can effectively decide whether
L(G) = Σ∗ for any CFG G. This is a contradiction, as this is an undecidable
problem. So ≤L(G) is undecidable. �

A similar result is the following:

Theorem 22 Let G be a CFG, L(G) ⊆ Σ∗. Furthermore, let W ⊆ Σ∗ be a set
of strings. Then it is undecidable whether W ∈ [Σ∗]∼L(G)

, that is, whether W is
an equivalence class of strings. Furthermore, it is in general undecidable whether
~w ∼L(G) ~v for some ~w,~v ∈ Σ∗.

Proof. The proof is very similar: assume that ∼L(G) is decidable. Then from
the decidability of the emptiness problem we can easily deduce that universality
is decidable, yielding a contradiction, because |[Σ∗]∼L(G)

| = 1 if and only if
L(G) = Σ∗ or L(G) = ∅, and the latter is decidable. �

So there is little we can say about interesting classes of infinite languages,
and we have to decide on things in the finite. This last result also shows
why equivalence classes are really of little use for us: for the infinite, they are
undecidable, and in the finite, they do not contain interesting patters, like strings
in a substring relation (this will change however in the sequel).

There are some further things to consider: for example, the relations ≤L and
consequently ∼L are compact in the following sense:

Lemma 23 Given an infinite language L ⊆ Σ∗, ~w,~v ∈ Σ∗, we have ~w ≤L ~v
(~w ∼L ~v) if and only if for every finite fragment I ⊆ L there is a finite J : I ⊆
J ⊆ L such that ~w ≤J ~v (~w ∼J ~v).

We have shown an equivalent result above. So the properties in the infinite
are determined by the finite fragments, even though, of course, there are infinitely
many. However, there are other properties of ≤L which are peculiar to the infinite.
For example, take the property of well-foundedness. Well-foundedness means:
for ≤⊆M ×M , for each m ∈M , the set {n : n ≤ m} is finite. Now obviously,
for any finite language L, ≤L is well-founded. This does however not hold for
infinite languages:

4.5. PROPERTIES OF PRE-THEORIES I 79

Lemma 24 There exists context-free languages L, such that ≤L is not well-
founded.

Proof. Take L := {ambn : m ≥ n}. In this case, we have am ≤L an iff
m ≥ n. This is obviously not well-founded. �

4.5.2 On Regular Projection

There is a good argument in favor of weaker forms of projection. For example,
one might be one of the advocates of the regularity of natural language. A more
reasonable position is the following: we want to allow inferences only if they
“preserve acceptability”; that is: we want to make sure, that if we infer a new
judgment, then it should be as acceptable as its premise. Whereas this sounds
simple from a linguistic point of view, from a formal point of view it is obviously
problematic: in the relevant case, we can derive infinitely many new judgments –
we cannot simply check whether they preserve acceptability. So in translating
this requirement into a formal theory, one has to do some work, and we will
investigate two approaches.

The first approach is the following: one might say: the set of observable
(acceptable) utterances is regular, so we have to take care that projected languages
are regular; everything else will be fine by that point. Therefore, we allow pre-
theories of the above type, but we restrict analogies to the scheme:

~x⇐ ~x~x1 (4.13)

that is, we make analogies roughly correspond to regular rules. Obviously,
this is a particular instance of our above scheme.

We can accordingly define the analogical maps RPr,RP1 by (~x, ~y) ∈ RPr(I)
(and ~x, ~y) ∈ RP1) if and only if

1. ~x ≈PrI ~y (and ~x ≈PrI ~y), and

2. ~x = ~y~y1 or ~y = ~x~x1.

So what we do is: in addition to the P1- or Pr-requirements on contexts
etc., we restrict the form analogies can have. What are formal properties that
come with this scheme? One might conjecture that, given that the scheme does
not allow for “center embedding”, for any finite language I, gRP1(I) is a regular
language. However, this is not true: just assume we have an analogy of the form
a⇐ aab, and a premise ab. Then we can make derivations of the form

` ab ∈ fP (I) a⇐ aab

` (aab)b ∈ fP (I) a⇐ aab

` (a(aab)b))b ∈ gP (I) (4.14)

Of course, we can also derive strings which are not of this form; but for
I = {ab}, P (I) = (a, aab), we obtain gP (I) ∩ a∗b∗ = {anbn : n ∈ N}. From this
we can conclude that we derive a non-regular language. So the restricted analogy
scheme alone does not prevent us from deriving non-regular languages! But
that does not show whether (g, RP1), (g, RPr) actually do derive non-regular
languages.

Lemma 25 There are finite languages I, such that gRP1(I) is not regular.

80 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Proof. Just take the language I = {ab, aabb}. That gives exactly the above
example. �

For RPr, things are more complicated: the example I = {ab, aabb} does
not work, as RPr(I) = ∅. In general, in RPr we cannot have any analogies of
the form (~x, ~x~y~x~z): because in this case, assume we have ~w~x~v ∈ I. Then by
the Pr conditions, we need h(~w(~x~y~x~z)~v) ∈ I (we write the brackets to make
our reasoning more comprehensible; h takes them out again so that we get a
simple string). But then we also need h(~w~x~y(~x~y~x~z)~z~v) ∈ I etc., such that I
needs to be infinite. Actually, this argument gives us a stronger result, namely
that if (~x, ~x~y) ∈ RPr(I), then there can be no analogy (~z, ~z~u) ∈ RPr(I) such
that ~z v ~x~y or ~x v ~z~u, unless ~x = ~z. Given this, we can conclude:

Lemma 26 For any finite language I, gRPr(I) is regular.

Proof. We show this by constructing a (non-deterministic) finite state
automaton: take a language I, and construct an FSA as follows: 1. for any
distinct input, it goes into a distinct state; the state is accepting, if the path
is labelled by ~w ∈ I; and all transitions not being reachable by a prefix of
a word in I are undefined. This automaton recognizes I, and each state is
uniquely characterized by a single input word; we therefore write q~w with the
obvious meaning. 2. Now for every (~x, ~x~y) ∈ RPr(I), we add a (distinct,
non-deterministic transition from all q~u~x to itself, which is labelled by ~y.

The important thing is that we cannot read a new ~x′ being on the left-hand
side of an analogy, before we go back into state we have been after reading ~u~x.
Therefore, this automaton recognizes gRPr(I), and obviously, it is finite. �

So we see that in this case, the induced languages are regular. That is what we
desired; however, it does not directly follow from the restriction of the substring
condition, but from properties of Pr. It is doubtful whether this argument is
really related to the fact that inferences preserve acceptability. Of course, this
has some advantages: as the projected languages are regular, they have much
easier decision problems; in particular, the above undecidability results do not
hold. This is however only a minor comfort, if we consider that it runs counter
to many intuitive arguments, we would a priori restrict our view to regular
languages – and we do not even know whether this conforms at all with our
intuitions on understanding!

We now come to the second approach to “regularity”. This approach is
more clever in the following sense: whereas the first approach assumes a priori
that “language” is regular, just by restricting possible substitutions, the second
approach just assumes stricter criteria for similarity: these do not necessarily
result in regular languages, but are chosen in a way that under the presumed
shape of datasets we observe, we only obtain regular languages. This presumed
shape of the restrictions is the following: we have observed that certain patterns
are observable only until a certain bounded depth, whereas for others we do not
have this restriction. We again restrict ourselves to substitution of substrings.
We write ~x ≈Pr−kI ~x1~x~x2, where k ∈ N, if the following hold:

1. ~x ≈PrI ~x1~x~x2

2. if (~w,~v) is not recursive for (~x, ~x1~x~x2), ~w~x~v ∈ I, then for every i ≤ k,
~w(~x1)k~x(~x2)k~v ∈ I.

4.5. PROPERTIES OF PRE-THEORIES I 81

The pre-theory Pr-k thus requires that the substitution already has k in-
stances in I. The underlying reasoning is the following: if we can do it k-times
(rather than once), we can do it arbitrarily often. For P1, there does not seem
to be a reasonable analogue. It is intuitively clear that in natural languages,
by choosing k large enough, we can exclude any analogy (~x, ~x1~x~x2) where both
~x1 6= ε 6= ~x2. Note that this argument, though obvious from a “performance
oriented” view, is very subtle from a metalinguistic point of view: even if there
were no experimentally measurable limits on center embedding etc., we could
still choose a k which would exclude these analogies for any finite dataset I. We
have no formal constraint to first fix the pre-theory, and then begin to gather
the data. However, an explicit part of our procedure is that after fixing the
pre-theory, we are still allowed to gather as much data as we want, before we do
the projection (though we are not allowed to discard data!). So we can choose
a reasonably small k, and performance constraints will make sure this actually
does the job we want it to do.

In principle, there is nothing we can say against this approach to “language”;
it can also easily be adapted to other pre-theories we have presented so far and
which we will present in the sequel. Note that the difference of Pr and Pr-k is not
so much of mathematical relevance, as of linguistic relevance: it is the particular
nature of the language we observe which makes a huge difference between the two.
As we focus on mathematical properties, we will not ponder very much about
this restriction. We mention however that Pr-k gives us a very good example
of what a property of “language” modulo a pre-theory means, a notion we will
scrutinize later on: the fact that with sufficiently large k, “natural languages” are
regular under (g, P r-k) is (might be) an empirical property of natural language.
Consequently, adopting (g, P r-k), natural languages being regular is still not an
empirical property, but neither is it a truism on methodological grounds (we will
call this a methodological universal), as it could be otherwise! So it is something
in between, and we thus say that “languages” are regular modulo (g, P r-k);
whereas they might not be modulo (g, P r)! So we can speak of properties modulo
pre-theories.

There is however also a mathematical difference between Pr and Pr-k.
Put, for example, k = 4 and I = {ab, aabb, aaa, caaac}. We get gPr(I) =
{anbn : n ∈ N} ∪ {cnaaacn : n ∈ N}. For Pr-4 we get gPr−4(I) = I.
This is clear; what is less clear that there is not even an extension J , such
that J ⊇ I, and gPr(I) = gPr−4(J)! To get {anbn : n ∈ N}, we need
{ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb}. But if we have these strings in a lan-
guage, there is no way of getting an analogy (aaa, caaac) anymore! (Note how
these examples relate to upward normality, a notion we consider later on). So
Pr-k is not only smaller in the sense of the results of projections of a given finite
language, but also in the sense that the class of languages it can induce from
any finite language seems to be quite restricted, and it seems to me that it is
not restricted in a very favorable way (we will prove this claim later on).

4.5.3 On Similarity

We will have a short look on some properties of the similarity relations we have
introduced so far. ≈P1

I ,≈PrI are symmetric by definition. As such, they are
both intransitive. To see this for P1, just but I = {a, ab, b}, where P1(I) =
{(a, ab), (ab, a), (b, ab), (ab, b)}. This is intransitive, because (a, b) /∈ P1(I). The

82 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

same holds for Pr, and can be seen with the same example. Is this a bad thing?
There seems to be dispute on whether similarity as such should be transitive or
not; there are good arguments in favor and disfavor. There seems to be a strict
conceptions of similarity, which is intransitive, and a broad conception, which
allows for transitivity and thereby is more liberal. We do not want to go into
this, but just point out the following: in its asymmetric reading, P1 is in fact
transitive, that is:

Lemma 27 If ~w ≈P1
I ~v ≈P1

I ~u and ~w v ~v v ~u, then ~w ≈P1 ~u.

The proof is simple: as both ≤I ,v are transitive, we know that ~w ≤I ~u, ~w v ~u.
So for P1, if we skip the symmetry, we get transitivity. For Pr, this does not
obtain, and in fact, the question for transitivity is meaningless:

Lemma 28 There is no finite language I, with distinct ~w,~v, ~u ∈ fact(I), such
that ~w ≈PrI ~v ≈PrI ~u and ~w v ~v v ~u.

Proof. Assume we have ~w = ~x,~v = ~y1~x~y2, ~u = ~z1~y1~x~y2~z2. Assume we have
~a~x~b ∈ I, where (~a,~b) is the shortest (in terms of string-length) context of ~x in I.
This entails that it is non-recursive for the analogies in question. If ~w ≈P1

I ~v,

then ~a~y1~x~y2
~b ∈ I. As ~v ≈P1

I ~u, we also have ~a~z1~y1~x~y2~z2
~b ∈ I. But then, we also

need ~a~z1~x~z2
~b ∈ I (downward Pr); and so we need ~a~z1~z1~y1~x~y2~z2~z2

~b ∈ I (upward

Pr); then we need ~a~z1~z1~x~z2~z2
~b ∈ I etc., such that I is necessarily infinite. �

So we might think of P1 as representing the liberal, transitive notion of
similarity, Pr representing the restrictive, intransitive one.

4.6 Properties of Pre-Theories II

4.6.1 Characteristic and Downward Normal Pre-Theories

Now we will scrutinize properties of string-based substitutional pre-theories with
structural inference. Our main question is now: what makes us prefer some
pre-theory over another? It is important to keep in mind that this is only to
a very small extent an empirical question. Adequacy with respect to partial
languages, as we have sketched it before, is for us not a very effective criterion
in any direction in the first place, because we are not going into “empirical
details” here (we do not actually construct realistic partial languages, as this
is the linguists task). So our only “hard” criterion of adequacy is the infinity
of some images. So there is some empirical aspect to evaluation, the partial
languages we observe/construct can show some pre-theories inadequate, but
firstly this will not be very rich, and secondly, this is a linguistic issue (as it
depends on actual linguistic observations) rather than a metalinguistic one. From
a metalinguistic point of view, there is at this point nothing we can say about the
“quality” of pre-theories. We will now consider general properties of pre-theories,
what we can call a priori properties. As we will see, these will lead to a priori
properties of the “languages” we can obtain, and properties of functions from
finite to infinite languages. The first important property we will consider is
characteristicity.

In this first discussion, we will introduce a theme which is of some importance
for this general work. Many problems of linguistics present themselves in a

4.6. PROPERTIES OF PRE-THEORIES II 83

similar form in metalinguistics. However, whereas in the linguistic view, there is
little we can do about it, in metalinguistics we can make it much more amenable
by choosing, in the classical paradigm, an appropriate pre-theory. We will first
discuss this with a variant of the problem of “private languages”.

A problematic fact for linguistic theory is the following: there is a considerable
incongruence in linguistic judgments, not only between different speakers, but
also regarding the same speaker and different contexts/times. Whereas it might
be plausible to attribute the former effect to the fact that different speakers know
different languages, this does not sound plausible regarding the same speaker
over different times, which in the case of some priming effects might even be
very short.

This question of “private languages” indeed poses fundamental problems to
linguistics (see [42]). Whereas we cannot deal with these here, there is certainly
a similar problem for the metalinguist: different linguists will surely not observe
exactly the same fragment of a language; even worse, one linguist will find the
same utterance one time to be acceptable, whereas another time it will not be
judged unacceptable. This is not as bad as one would think: if it is not judged
to be acceptable, it does not follow that it is in the negative language. Still,
this is problematic, and it should somehow be possible to yield an agreement
on the projected language despite differences in the observations. Note that
maybe a linguist, as concerned with the cognitive reality of speakers, might
think differently. But keep in mind that we are doing metalinguistics here, and
we have the goal of constructing the proper subject of linguistics, on which
linguists should agree! In a word, we would have a better situation if we can have
agreement on “language” despite some disagreement on the observed language.
So it would be very favorable to have a property of pre-theories which up to
a certain point can ensure this. This is done by the concept of characteristic
pre-theories:

Definition 29 We say a pre-theory (f, P) is characteristic, if for every lan-
guage L and for all languages I1, ..., In such that fP (Ii) = L : 1 ≤ i ≤ n, there is
a unique smallest language J such that f(J) = L and J ⊆

⋂
1≤i≤n Ii.

Note that this covers the special cases where there is no finite language I
such that f∗P (I) = L; because then the only language inducing L is L itself.
We can say that this unique smallest language is characteristic of L, and if
a pre-theory is characteristic, then for every language L it induces there is a
smallest characteristic language. As we said, this is motivated by the question of
critical data: with characteristic pre-theories we know which part of an observed
language I is essential for the language it generates under P , and which not.

A pre-theory (f, P) is injective, if for any I, J , if I 6= J , then fP (I) 6= fP (J).
Obviously, any pre-theory (f, P) such that fP is injective is trivially characteristic,
and in this case, the concept of characteristicity is entirely meaningless. We will
however not consider such pre-theories, because they would violate a fundamental
principle of linguistics: as linguists, and equally as speakers, we are exposed
to very different data (observed languages), yet still we agree broadly on what
“language” is. Obviously, we do not need to, but if we cannot agree, then there
is really no hope. We will later consider some other important properties of
pre-theories, which exclude the injective pre-theories categorically; such that
this simplistic solution is completely out of question.

84 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

For the pre-theories we have seen so far, we have seen in some examples
that different finite languages give rise to the same infinite language under some
pre-theory, and this is the case where things get interesting for us.

We have said that the disagreement on whether certain strings belong to
a language or do not is a big problem for us. In how far do characteristic
pre-theories address this? What we want is a kind of downward monotonicity:
we want to be sure that by taking certain strings away from our database,
we still obtain the same language. It is however unclear how we can make
this desideratum precise: a general version of downward monotonicity of the
form: if fP (I) = L, J ⊆ I, then fP (J) = L is out of the question, because
not only it is much too strong to have any linguistic plausibility, but it would
also have a devastating effect from a purely mathematical point of view: it
would trivialize the entire procedure of projection (contrary to a similar, upward
version of monotonicity, which we will discuss later on). Being characteristic
is in some sense a weak version of downward monotonicity, but much weaker
than the general downward monotonicity, and it seems reasonable to require
it. Characteristicity requires that if we have fP (I1) = fP (I2), then there is a
J ⊆ I1 ∩ I2 such that fP (I1) = fP (J). This says, among other, that if two
linguists agree on the “language” L, yet they disagree on their observations I1
on the one hand and I2 on the other, they will find an I3, on which they both
agree and which still yields the language L.

Contrary to what one might think, characteristicity is a highly non-trivial
requirement. And in fact, one might argue that it is way to strong: because it
makes the presupposition is that I1, I2 induce the same language. This however
might already by undecidable for many pre-theories we consider! That in turn
would make the strong requirement practically useless. We therefore formulate a
more careful version of this property, which addresses the same problem in a
fashion which is more satisfying:

Definition 30 A pre-theory (f, P) is downward normal, if for any I1, I2 such
that fP (I1) ⊇ I2, fP (I2) ⊇ I1, there exists a J ⊆ I1∩I2, such that fP (J) ⊇ I1∪I2.

Note that downward normality and characteristicity do not imply each other
in any direction. It is however clear that downward normality solves the above
problem in a very satisfying manner: assume we disagree over the symmetric
difference I1∆I2 (we put M∆N := (M ∪N)−(M ∩N)). Then there is a solution
with data we both agree on, such that still any string in I1∆I2 is contained
in the “language” resulting from projection. So we can reject arguable data
for projection, but we always find a way to make sure that the strings are still
part of “language”. Because this is fully effective – provided the pre-theory is
decidable – we will prefer this property over characteristicity.

So the question is: what are the requirements for analogies and inferences to
make sure that pre-theories are characteristic or downward normal? This is a
difficult question, and all our criteria so far are insufficient.

Consider the pre-theory (g, P1), where we allow for an analogy only if
~w ≤I ~v (that is, the set of contexts in which the two occur are in inclusion
relation) and ~w v ~v (provided ~w 6= ~v. These conditions are not sufficient:
take I1 := {axb, cxd, aixjb}, I2 := {axb, cxd, cixjd}. We can make the analogy
x ⇐ ixj in both languages; in I1 ∩ I2 = {axb, cxd} we cannot, as we have no
occurrence of the substring ixj, nor can we in any still smaller language. So P1

4.6. PROPERTIES OF PRE-THEORIES II 85

is neither characteristic nor upward normal, and we need stronger requirements.
The following is less obvious.

Lemma 31 (g, P r) is not characteristic and not downward normal.

Proof. For illustration purposes, we show this with two typical examples.

Counterexample 1 to characteristicity. Consider the following two lan-
guages: I1 := {ab, aabb, aaabbb} ∪ {cb, ccbb} ∪ {bbb, dbbbd}; I2 := {ab, aabb} ∪
{cb, ccbb, cccbbb} ∪ {bbb, dbbbd}. We have I1 ∩ I2 = {ab, aabb, cb, ccbb, bbb, dbbbd}.
In this case, we have bbb ≈PrI1∩I2 dbbbd, but we do not get this similarity in I1 or

I2. Yet, there is no J ⊆ I1 ∩ I2, such that bbb, dbbbd ∈ J but bbb 6≈PrJ dbbbd, as
can be easily seen (or checked by hand).

Counterexample 2 to characteristicity and downward normality. Put I1 =
{ab, aabb, aaabbb, xaaaxbbb}, I2 = {ab, aabb, xaaaybbb, xxaaayybbb}. We have
gPr(I1) = gPr(I2), as can be easily checked, but for I1∩I2 = {ab, aabb, xaaaxbbb},
we have gPr(I1 ∩ I2) (gPr(I1). �

So how can we ensure the two properties? The way to characteristicity is
long and complicated: basically, we have to ensure that an infinite language
uniquely encodes the smallest finite language that induces it. This is feasible
with more or less reasonable methods; yet, it is somehow counterintuitive from
my point of view: linguistic metatheory is all about having finite objects and
constructing infinite objects; whereas characteristicity is more about having
infinite objects and constructing (showing the existence) of finite objects. Even
worse, we cannot even claim to have the infinite objects: maybe its relevant
properties cannot be simply read off from our finite characterization. So it is
the concern about our commitment to finitary procedures which speaks most
strongly in favor of downward normality as opposed to characteristicity. We will
therefore only describe an approach to obtain downward normality.

What is most problematic about downward normality is that analogies are
permitted or prohibited by global properties of the language: we always have
to consider all strings of a language, unless of course we have some additional
information about them, such as that they do not contain a certain substring.
We will now present a pre-theory, where analogies can be determined locally,
that is, we can allow for a certain analogy in a certain context, though not in
some other context, and we can compute them only by looking at a certain
subset of the language.

We say a string ~w is elementary, if it does not contain any substring of
the form ~x1~x1~x~x2~x2, where ~x 6= ε 6= ~x1~x2. We define the analogical map P2 as
follows:

(~w~x~v, ~w~x1~x~x2~v) ∈ P2(I), if

1. ~w~x~v, ~w~x1~x~x2~v ∈ I,

2. ~w~x~v is elementary, and

3. (there is no ~z ∈ I such that ~w~x~v @ ~z @ ~w~x1~x~x2~v.)

Next, we define the inference (meta-)rules g2; note that here and in the
sequel, we have the convention that ~w represents a possibly bracketed string; to
refer to its unbracketed version, we write h(~w):

86 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

` ~w~x~v ∈ g2P2(I) h(~w~x~v)⇐P2
I h(~w~x1~x~x2~v) ~x ∈ Σ∗

` w(~x1(~x)~x2)~v ∈ g2P2 , (4.15)

where (,) /∈ Σ, and h is the usual homomorphism mapping (,) 7→ ε. As we
can see, our relational language thus comprises statements of the form ~x ∈ Σ;
we thus need a unary relation R = Σ∗ in the language-theoretic structure. This
scheme is complicated because we need the distinction between the bracketed
string on the one side (for judgments) and the unbracketed string for analogies
on the other on other; moreover, we want to make sure that the string ~x does not
contain any brackets (the third premise). Say a pair of brackets (,) in a string
~w(~x)~v is simple, if ~x does not contain any brackets. This first rule is necessary to
introduce simple brackets, so to speak, because the next rule presupposes them:

~w(~x1(~x)~x2)~v ∈ g2P2 ~w′~x~v′ ⇐P2
I ~w′~x1~x~x2~v

′

~w(~x1(~x1(~x)~x2)~x2)~v ∈ g2P2 , (4.16)

where ~w′, ~v′ are arbitrary and unrelated to ~w,~v. So once we have introduced
a bracketing of the form (~x1(~x1(~x)~x2), we can expand it without contextual
restrictions. This scheme thus only requires that there exists some context in
which the analogy is legitimate. Note that the second premise makes sure that
~x, ~x1, ~x2 to not contain any brackets, together with the third and last inference
rule of g2:

~w~x~v ≈P2
I ~w~x1~x~x2~v

~w~x~v ⇐P2
I ~w~x1~x~x2~v. (4.17)

This is sufficient. Note that already ≈P2 is asymmetric; we could make it
symmetric and only allow asymmetric analogies, but we skip this for reasons of
simplicity. We first make the following observation:

Lemma 32 Let I, J be two finite languages. If I ⊆ J , then g2P2(I) ⊆ g2P2(J).

We will call this property monotonicity, and later on devote a proper
subsection to it.

Proof. It is clear that P2(I) ⊆ P2(J), because if ~w,~v ∈ I, then ~w,~v ∈ J .
Also, the set of premises for g2P2(I) is a subset of g2P2(J). �

Lemma 33 Assume that h(~w) /∈ I, ~w ∈ g2P2(I). Then h(~w) is not elementary.

Proof. Assume that h(~w) does not contain a substring of the form ~x1~x1~x~x2~x2,
with ~x 6= ε 6= ~x1~x2. If ~w = h(~w), then ~w ∈ I and the claim follows. Assume that
~w contains substrings of the form (~x1(~x)~x2). Then each of these substrings has
been introduced by an inference which, by the last definitions, must have the
form

` ~w1~x~w2 ∈ g2P2(I) h(~w1~x~w2)⇐P2
I h(~w1~x1~x~x2 ~w2)

` ~w1(~x1(~x)~x2)~w2 ∈ g2P2(I) ,

which presupposes that h(~w1~x1~x~x2 ~w2) ∈ I (check the definition of P2). So
if h(~w) does not contain a substring of the form ~x1~x1~x)~x2~x2, then ~w ∈ I, and
by contraposition the claim follows. �

We can now show the following:

4.6. PROPERTIES OF PRE-THEORIES II 87

Theorem 34 (g2, P2) is downward normal.

Proof. Assume we have I1, I2 with h ◦ g2P2(I1) ⊇ I2, h ◦ g2P2(I2) ⊇ I1. We
show that every string ~w ∈ I1 ∪ I2 can be derived by a subset of I1 ∩ I2. By the
above monotonicity result, the claim then follows.

We prove only one part, namely that I1 ⊆ g2P2(I1 ∩ I2); the proof for
I2 ⊆ g2P2(I1 ∩ I2) is identical. We do this by an induction on the strings of I1,
using the partial order vω. By vω we denote the scattered substring relation,
that is, we have ~w vω ~v, iff ~w = ~w1... ~wi and ~v = ~v1 ~w1~v2...~vi ~wi~vi+1. Importantly,
we make an induction on the strong language containing brackets, where the
crucial step is the following: we show that for every ~w ∈ I1, ~v ∈ g2P2(I2) such
that h(~v) = ~w, we have ~v ∈ g2P2(I1 ∩ I2).

The induction base is clear: every vω minimal string of I1 is in I1 ∩ I2,
because inferences strictly increase string length.

Induction hypothesis: take a ~v ∈ I1, ~w ∈ g2P2(I2) such that h(~w) = ~v,
and assume the claim holds for all ~w′ ∈ g2P2(I2) such that ~w′ @ω ~w and
h(~w′) ∈ I1.

Case 1: ~w contains no brackets – in this case, we have ~w ∈ I2, and as ~w ∈ I1,
we have ~w ∈ I1 ∩ I2, and thus ~w ∈ g2P2(I1 ∩ I2).

Case 2: assume ~w can be derived in a derivation whose last step is

` ~w1~x~w2 ∈ g2P2(I1) h(~w1~x~w2)⇐P2
I2

h(~w1~x1~x~x2 ~w2) ~x ∈ Σ∗

` ~w1(~x1(~x)~x2)~w2 ∈ g2P2(I1) ,

and thus ~w = ~w1(~x1(~x)~x2)~w2 In this case, we know that h(~w1~x~w2), h(~w1~x1~x~x2 ~w2) ∈
I2, because otherwise there could not be an analogy as the one above. Moreover,
by assumption, we know that h(~w1~x1~x~x2 ~w2) ∈ I2 ∩ I1. But we also know that
h(~w1~x~w2) ∈ I1: as it is in I2, it must be by assumption in g2P2(I1), and as it is
the left-hand side of an analogy, it has to be elementary. So if h(~w1~x~w2) /∈ I1,
we contradict the last lemma. Furthermore, by induction hypothesis, we have
~w1~x~w2 ∈ g2P2(I1 ∩ I2). So the same analogy works with I1 ∩ I2. So we also have
~w1(~x1(~x)~x2)~w2 ∈ g2P2(I1 ∩ I2).

Case 3: there is a derivation of ~w, the last step of which is

~w1(~x1(~x)~x2)~w2 ∈ g2P2(I2) a

` ~w1(~x1(~x1(~x)~x2)~x2)~w2 ∈ g2P2(I2),

where a is an appropriate analogy. We know that ~w1(~x1(~x)~x2)~w2 ∈ g2P2(V)
for some V ⊆ I1 ∩ I2 by induction hypothesis; we also know that we have
an appropriate analogy over V at hand, because otherwise we could not have
introduced the brackets. Consequently, we have ~w1(~x1(~x1(~x)~x2)~x2)~w2 ∈ g2P2(V).

Note, by the way, that the three cases are not mutually exclusive, but they
cover all possibilities. This proves the induction step, and shows that any string
~w ∈ g2P2(I2) such that h(~w) ∈ I1 is actually also in g2P2(I1 ∩ I2). �

This proof even gives us a stronger corollary:

Corollary 35 Assume we have I1, I2 with h ◦ g2P2(I1) ⊇ I2, h ◦ g2P2(I2) ⊇ I1.
Then for every bracketed string ~w such that h(~w) ∈ I1∩ I2, we have ~w ∈ g2P2(I1)
iff ~w ∈ g2P2(I2).

88 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

This shows us how a downward normal pre-theory has to look like. The
crucial properties we need to obtain this result are firstly monotonicity, secondly
the fact that analogies are restricted to contexts, and thirdly another peculiarity
about analogies: the analogies introducing certain brackets actually presuppose
that exactly the strings, which are being inferred, are in the language in question.
I do not think that (g2, P2) is uninteresting as such; however, I think it is
preferable to not have these properties, that is, it is more interesting to compute
analogies globally regardless of the context in which they occur. But of course
it is also much more challenging, as we cannot easily make statements about
gPr(I) without observing I as a whole. This is the main reason that we do focus
here on (g, P r), (g, P1) in the sequel.

4.6.2 Upward Normality

Another important property is what we will call upward normality

Definition 36 A pre-theory (f, P) is weakly upward normal, if for every
infinite L such that there is a finite I with L = fP (I), there are infinitely many
distinct (finite) I ′, I ′′, ... such that fP (I ′) = fP (I ′′) = ... = L.

Note that the finiteness of I ′, I ′′ actually follows under our assumption that
pre-theories map infinite languages onto their identity.

The concept of upward normality is important for the following reason: If
we observe a finite language and construct an infinite language out of it, then
it is very plausible that there are many fragments of L which can induce the
same language L; in fact, there should be infinitely many. For otherwise, our
“language” L is plausible under a pre-theory (f, P) only if we have a bounded
number of observations; but this makes it implausible a priori : because we are
interested in pre-theories and languages, such that the languages are induced
by datasets, to which there is no upper bound. In fact, this is one of the major
premises of linguistic metatheory. It would be ridiculous to probably any linguist
to say: we think that “language” looks like this, but if we make more than
1000 observations, we can no longer think so - regardless of what we observe!
To prevent this situation, we have weak upward normality: for every infinite
language induced by (f, P), there are infinitely many finite languages inducing it
under P .

This requirement seems trivial from a linguistic point of view, but actually it
is from a mathematical viewpoint:

Lemma 37 (g, P r) is not weakly upward normal.

Proof. Take I := {xyz, xxyyz, xyyzz, xxyyyzz, yyy}. We have
Pr(I) = {(xy, xxyy), (yz, yyzz), (yyy, xxyyyzz)}.
Now assume (case 1) we add a string in (xx)jyyy(zz)j , where j ≥ 2. Then

we lose the analogies (xy, xxyy) and (yz, yyzz). We can of course add strings
to allow new analogies deriving the same strings; these analogies must have
the form (xkyk, xk+iyk+i), where k ≥ j. But then in turn we lose the analogy
generating the sublanguage {(xx)nyyy(zz)n : n ∈ N} ⊆ gPr(I), and we can
only restore it by adding((xx)k

′
yyy(zz)k

′
, (xx)k

′+i′yyy(zz)k
′+i′ , where k′ > k,

thereby again preventing the analogies generating {xnyn : n ∈ N}, and so on.
This argument can be iterated arbitrarily. The argument also clear why case

4.6. PROPERTIES OF PRE-THEORIES II 89

2 and case 3, where we add a string derivable by the analogy (xy, xxyy) or
(yz, yyzz) are completely parallel.

Consequently, there is no finite language J) I such that fPr(I) = fPr(J). �
So for “restrictive” pre-theories as Pr, weak upward normality is in fact

a problem. We will now introduce an even stronger requirement, the one of
strong upward normality or simply upward normality.

Definition 38 A pre-theory P is upward normal (in the strong sense), if for
every infinite language L such that fP (I) = L for some finite I, the following
holds: for every finite J ⊆ L, there is a finite J ′ ⊇ J such that fP (J ′) = L.

Obviously, strong upward normality entails weak upward normality, but
is much stronger: whereas in weak upward normality, there only needs to be
some arbitrarily large extension inducing the same language, for strong upward
normality we must be able to extend in “every direction”, so to speak. Upward
normal in this strong sense means: we cannot have too much data regarding a
language; whatever fragment of L we observe, there is a larger fragment which
convinces us that we are observing fragments of L. No finite fragment of L is
convincing evidence against L in the sense that it excludes it as a candidate
“language”. This is obviously motivated by the following fact: given a presumable
“language” L, we reasonably assume a priori that we can observe arbitrary and
arbitrarily large fragments thereof.3 Now the fact that we can observe arbitrary
fragments of “language” should make us exclude languages which are excluded
by fragments we can observe, because this is a contradiction, and it seems to
fundamentally contradict our sense of scientific positivism.

There are some points to note. Firstly, strong upward normality does not say
anything about convergence or about the fact that the larger the fragment of L
we observe, the more “plausible” L becomes. On the contrary, it might happen
that a fragment leads us onto the “wrong track” in the following sense: Given a
sequence of finite fragments Ii, such that for all i ∈ N, Ii ⊆ L, i ≤ j ⇒ Ii ⊆ Ij ,
|Ii| = i, L a language induced by (f, P), it might be that for each Ii, the smallest
Ij ⊇ Ii such that fP (Ij) = L has size at least ki. That is, we need exponentially
many strings to lead us back onto the right track. But this is not the kind of
question or problem we are interested in at this point.

Corollary 39 (g, P r) is not upward normal (in the strong sense).

This is because upward normality obviously entails weak upward normality,
but not vice versa, as we have seen. Consequently, upward normality is also
highly non-trivial, and we find plenty of counterexamples. Upward normality
even fails to hold for much less restrictive pre-theories such as P1:

Lemma 40 (g, P1) is not (strongly) upward normal.

Proof. Take the finite language I := {ab, xxaxxb, ayybyy, xy, xxyy}. We
have

P1(I) = {(a, xxaxx), (b, yybyy), (xy, xxyy)}.
If we however put I ′ = I ∪ {xxaxxyybyy} ⊆ gP1(I) =: L, then we have

xy 6≈I′P1 xxyy, because xy 6≤I′ xxyy. We cannot restore this analogy by adding

3Though this is not necessarily the case: compare our discussion on o-language and
“language”.

90 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

the string xxaxybyy, as it is not in L. On the other side, we can easily enrich
the language as to allow for additional analogies which work to the same effect,
allowing to derive {xnyn : n ∈ N}. For example, we can define I ′′ = I ′∪{xxxyyy}.
Now we have (xxyy, xxxyyy) ∈ P1(I ′′), and this is fine; but the problem is now
the following: we can apply this analogy also to the string xxaxxyybyy, thereby
deriving {xxaxnxyynbyy : n ∈ N}, which is not in L. So the problem is that our
resulting language is too big rather than to small.

Is there a way out of this problem? The answer can be shown to be negative.
Assume we have a finite language J : I ′ ⊆ J ⊆ gP1(I). In order to make sure
that {xnyn : n ∈ N} ⊆ gP1(J), we need some strings of the form xnyn ∈ J ;
and assume that xkyk ∈ J is the longest of these strings. Then there are two
possibilities:

Case 1: we do not have ~xa~x~yb~y ∈ J , such that xkyk v ~x~y. In this case,
(xy, xkyk) ∈ P1(J), and so, we can derive strings from xxaxxyybyy which are
not in L, as above.

Case 2: we do have ~xa~x~yb~y ∈ J , such that xkyk v ~x~y. In this case, whatever
analogies we have that allow us to derive the strings {xnyn : n ∈ N}, they are
also applicable to ~xa~x~yb~y, thereby again deriving strings not in L. �

So upward normality is quite problematic for pre-theories, though it is a most
natural requirement. A reason for that is that so far we have used the relation
≤L. But this relation, as we have seen, is not preserved under projection, and in
the worst case, it might even become undecidable under projection. This means
it also becomes undecidable for upward normality: assume that L = fP (I) for
some P based on ≤I . The question whether for every finite J ⊆ L, there is a
finite J ′ ⊇ J such that ~w ≤J′ ~v might turn out to be undecidable, as well as it
might be undecidable for L itself.

Lemma 41 Given a CFL L, the question whether for every finite fragment
I ⊆ L, there is a (finite) J : L ⊇ J ⊇ I such that ~w ≤J ~v is undecidable.

Proof. If for some finite I ⊆ L there is no finite J ⊇ I such that ~w ≤J ~v,
then ~w 6≤L ~v, for the following reason: assume ~w ≤L ~v. Then for every ~x~w~y ∈ I,
there is ~x~v~y ∈ L. Take the set of these strings, which is finite. This contradicts
the assumption.

Conversely, assume we have for every finite I a finite J ⊆ L such that ~w ≤J ~v.
Then we have ~w ≤L ~v. For assume we do not have ~w ≤L ~v. Then there is
~x~v~y ∈ L, ~x~w~y /∈ L. So for the finite set I = {~x~v~y}, there is no finite J ⊆ L such
that ~w ≤J ~v, otherwise we would have ~x~w~y ∈ J and so J 6⊆ L. Contradiction.

Thereby, we see that we have ~w ≤L ~v, for a CFL L, exactly if for every finite
set I ⊆ L, there is a finite J : I ⊆ J ⊆ L, such that ~w ≤J ~v. This in turn
means the decision problems are equivalent, and as the problem “for L a CFL,
is ~w ≤L ~v?” is undecidable, so is our current problem. �

On the other side, there are few meaningful alternatives to ≤L in substitu-
tional pre-theories. So if we want upward normality, there seems to be only one
reasonable way to go: when considering a finite language J , we first reduce it to
some relevant fragment thereof, and only afterwards project it.

As some simplistic solutions for characteristicity (as injective pre-theories)
have shown us the right way to go, we might want to look simplistic solutions for
upward normality. A first upward normal pre-theory might be constructed on the
basis of the following: Take a pre-theory (f, P) and fix a constant k ≥ 0. Define

4.6. PROPERTIES OF PRE-THEORIES II 91

the map pk, mapping stringsets on stringsets by pk(I) = {~w ∈ I : |w| ≤ k}.
We can now define P k := P ◦ pk. This does not ensure upward normality: for
(g, P rk), take the language I := {aaa, aaaa, ab, aabb}. If we add aaabbb, aaaabbbb
to the language, even if they do not have relevance for the analogies, they allow
to apply the analogy to new strings like anbm for n > m, where we use the
additional strings as premises for inferences, not analogies.

So in order to get upward normality, we must extend this map to the premises,
for example by defining (fk, P k), such that fkPk := fP ◦ pk. But in this case we
obviously fail a fundamental requirement, namely the requirements that our
maps be increasing, that is, that we have I ⊆ fP (I). So this is highly unsatisfying,
as it does not even define a projection

How can we proceed? There is another, more elegant approach. We mostly
look at pre-theories based on ≤L. Take an integer k ≥ 0, and define the relation
≤kL as follows:

Definition 42 For L ⊆ Σ∗, ~w ≤kL ~v if and only if for all (~x, ~y) ∈ Σ∗ × Σ∗, if
~x~w~y ∈ L and |~x~w~y| ≤ k, then ~x~v~y ∈ L.

So ≤kL is some kind of restriction of ≤L, but not in a set-theoretic sense:
in general, we can both have ≤L 6⊆≤kL and ≤kL 6⊆≤L for a given k and a given
language L. So from a set-theoretic point of view, the relations are incomparable.
Now take a pre-theory P≤L , which uses ≤L, and change all occurrences of ≤L
in the conditions to ≤kL, thereby obtaining P≤kL . This alone does not give us
upward normality for the same reason as above: using inference f , either we can
derive additional strings with the new premises (though they do not play any
role for the analogies), or there are strings we cannot recover.

We can solve this problem as follows: assume we have a pre-theory (f, P),
and, for a given alphabet Σ, a finite set of (infinite) languages {Lt : t ∈ T}, with
|T | ≤ k, which satisfies the following criteria:

1.
⋃
t∈T Lt = Σ∗;

2. for each t ∈ T , there is a finite I ⊆ Σ∗ such that fP (I) = Lt;

3. for each t, t′ ∈ T , Lt ∩ Lt′ is finite.

The motivation behind this definition is as follows: the first condition is
to say: no observation is impossible; the second one says: every one of these
languages is finitely induced, and the third condition is to make sure that each
of the languages can be uniquely characterized by a finite set. We can also avoid
making the alphabet explicit at this point, by defining a function L from any
alphabet to a finite set of infinite languages over this alphabet such that for any
Σ, L(Σ) is a set of languages satisfying the above constraint. We now devise a
projection as follows:

fLP (I) =

{
Lt, if t′ 6= t⇒ I 6⊆ Lt′ ,
I otherwise.

(4.18)

By this procedure, we can make any pre-theory upward normal. Note that
we did not actually define the pre-theory here, only the projection to which it
gives rise. The reason we can grant this is the following: we will show later on,
that every projection can be formalized as a pre-theory. So writing a projection

92 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

as a pre-theory is in this sense rather an exercise, which can be tedious and
not be very instructive, and therefore we skip it at this point. That does of
course not mean that it is useless to look at pre-theories at all: mostly, we define
pre-theories for their plausibility, and then look to which projections they give
rise.

Now, the price we pay for upward normality of (fL, P) is obvious: we get
a finite number of possible languages. Note that this is maybe not as bad as
it seems: many linguistic schools of thought have tried to restrain the space of
possible languages, and the mainstream generative school has tried to cut them
even down to a finite number (modulo some considerable abstraction).

From our point of view, this assumption has some interesting consequences:

Lemma 43 Let fP be a projection, such that there are only finitely many infinite
languages induced by fP over a given alphabet Σ. Then there is a finite set J ⊆ Σ∗

such that for all I : J ⊆ I, we have either fP (I) is finite, or we have fP (I) = Σ∗.

Proof. Let Σ∗fin denote all finite subsets of Σ∗; it is thus a subset of ℘(Σ∗).
Case 1:

⋃
I∈Σ∗fin

fP (I) (Σ∗. Then there is a finite set J ⊆ Σ∗ which is

contained in no infinite language induced by fP . Consequently, if J ⊆ I, I finite,
then fP (I) is finite. Note that in this case, J can be chosen to be a singleton
{~w}, thereby strengthening the result.

Case 2:
⋃
I∈Σ∗fin

fP (I) = Σ∗. Let Lt : t ∈ T be the languages induced by fP

over Σ∗. For all Lt : t ∈ T , if Lt 6= Σ∗, choose a ~w /∈ Lt. This yields a finite
set J . Assume (i) there is an Lt = Σ∗. In this case, we must have for I ⊇ J ,
fP (I) = Σ∗ or fP (I) finite, because there is no other possible image. Otherwise
(ii) if there is no Lt = Σ∗, for any I ⊇ J , fP (I) must be finite. �

The main point in the proof is that there are infinitely many finite languages
over Σ. This result seems to be of some relevance to a view of language as the
one put forward by the principles and parameters program, which is somewhat
in line with the approach of (fL, P) laid out above: it says that the number of
possible languages – modulo lexicon – are finite. This entails thus that we find
sets of strings of the above kind, which is very implausible in the first place.
But of course, in applying this purely language-theoretic result to a linguistic
theory one has to be very careful, and we will not work this out at this point.
Anyway, this result shows that pre-theories which induce only finitely many
infinite languages have some properties we would judge as disfavorable. So this
road is not very appealing.

And so the question remains open: how can we devise an interesting pre-
theory which is strongly upward normal?

4.6.3 Normalizing Maps

We see that for upward normality, the challenge is to obtain an upward normal
pre-theory which induces infinitely many infinite languages. On this occasion,
we can also note the following: we have said that every injective pre-theory is
characteristic, but as is easy to check, an injective pre-theory cannot be upward
normal, because for every infinite L there is at most one finite I generating it.

We will now use a normalizing map, which first reduces a language, to
get a subset whose projection is larger. We first define the linear radix order
rad on Σ∗ by first using length and then a lexicographic ordering; that is, we

4.6. PROPERTIES OF PRE-THEORIES II 93

presuppose a linear order ≺Σ on Σ, and define ~w rad ~v iff |~w| < |~v| or |~w| = |~v|,
~w = ~xa~y,~v = ~xb~z, and a ≺Σ b. This order is somewhat arbitrary, so there is
no particular importance of this choice; the only important thing is that rad is
well-founded, that is, for every element we want the set of its predecessors to be
finite (the lexicographic ordering for example is not well-founded).

We extend rad onto subsets of Σ∗ by defining rad∗ ⊆ (℘(Σ∗)2 as follows:
Mrad∗N , iff the rad-largest element of M∆N (symmetric difference) is in N .
Note that this trivially subsumes the case M ⊆ N . Given a set M ⊆ Σ∗, we
also denote its rad-largest element by maxrad(M); for sets of sets, we adopt the
same convention for rad∗.

Now we define the map p : Σ∗fin → Σ∗fin mapping finite languages onto finite
languages. Put per(f,P)(I) := {M ⊆ I : (I) ⊆ fP (I −M)}, the set of subsets of
strings whose subtraction does not prevent the projected language from including
the original language. We now define p(f,P)(I) := I−maxrad∗(per(f,P)(I)). That
is, we take the rad-maximal set of peripheral strings and subtract it from I. Note
that the map p(f,P), contrary to appearances, is not a fixed point map, because
p(I) is the rad-smallest set inducing a language larger than I; but p(p(I)) is
the smallest inducing a language larger than p(I), not I! Consider the following
example:

Example 44 Put I := {ab, aabb, aaabbb, aaaxbbbx, aaaxxbbbxx}. Then we have
p(g,Pr)(I) = {ab, aabb, aaabbb, aaaxbbbx}, and
p(g,Pr)(p(g,Pr)(I)) = {ab, aabb, aaaxbbbx}.
It is easy to see that gPr(p(g,Pr)(p(g,Pr)(I))) 6⊇ I.

The most important property of p is the following:

Lemma 45 If I ⊆ J ⊆ fP ◦ p(f,P)(I), then p(f,P)(I) = p(f,P)(J).

Proof. Recall that rad∗ is a linear order on Σ∗. Moreover, recall that
p(f,P)(I) is the rad∗-smallest subset of of I inducing a language larger than I (if
we subtract the rad∗-largest, we get the rad∗-smallest).

Now assume the claim does not hold, and p(f,P)(I) 6= p(f,P)(J). Then there
are two cases:

Case 1: Assume that p(f,P)(I)rad∗p(f,P)(J). But then, as fP (p(f,P)(I)) ⊇ J ,
it follows that p(f,P)(J) is not the rad∗ minimal language inducing a larger
language than J ; contradiction.

Case 2: Assume that p(f,P)(J)rad∗p(f,P)(I). But as I ⊆ J , we have
fP (p(f,P)(J)) ⊇ J ⊇ I, and thus p(f,P)(I) is not the rad∗ minimal language
inducing a larger language than I; contradiction

�
This is the crucial lemma; note however that the following, stronger claim is

wrong:

Lemma 46 Assume I ⊆ J ⊆ fP (I). Then we do not necessarily have p(f,P)(I) =
p(f,P)(J).

Proof. Just take the language I = {ab, aabb, aaabbb, aaaxbbbx}, J = I ∪
{aaaxxbbbxx}. Then we have p(g,Pr)(I) = {ab, aabb, aaaxbbbx}, p(g,Pr)(J) =
{ab, aabb, aaabbb, aaaxbbbx}. �

94 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

We now have to integrate this into a pre-theory. We can use any pre-theory
we like; we just have to make sure, that the inferences of the form

` ~w ∈ I
` ~w ∈ fP (I) (4.19)

are changed to the form

` ~w ∈ p(f,P)(I)

` ~w ∈ fP (I) . (4.20)

This allows us to define the pre-theory (pf, P ◦ p(f,P)) for any pre-theory
(f, P). The first result we obtain is the following:

Theorem 47 For any pre-theory (f, P), the pre-theory (pf, P ◦ p(f,P)) is upward
normal.

Proof. It can be easily checked that for any I,

pfP◦p(f,P)
(I) = fP ◦ p(f,P)(I).

Given this result, the claim follows from the preceding lemma, because if
I ⊆ J ⊆ fP ◦ p(f,P)(I), then we have fP ◦ p(f,P)(I) = fP ◦ p(f,P)(J). �

We will in the sequel simply write equations of the above form. We will call
this an implicit definition of a pre-theory, as opposed to the explicit definitions,
which accord to the standard scheme. The important thing is that every implicit
definition can be transformed into an explicit one, as we will prove later on.

The simple proof of theorem 46 gives us two further results: the first is that
there is no problem regarding the question whether the resulting projections
are increasing: an easy argument yields that fP ◦ p(f,P)(P)(I) ⊇ I, otherwise
we run into a contradiction. The other result is the following, which might be
discouraging:

Corollary 48 If I ⊆ J ⊆ pfP◦p(f,P)
(I), then pfP◦p(f,P)

(I) = pfP◦p(f,P)
(J)

This is immediate, and it shows that p is very expectable. So in a sense,
we might consider the normalizing map p to be too rigid. There is another
bad thing about the map p: the map itself is not a fixed point map, that is,
there are finite languages I such that p(p(I)) (p(I). For example, put I :=
{ab, aabb, aaabbb, aaaxbbbx, aaaxxbbbxx}. We then get p(I) = {ab, aabb, aaabbb, aaaxbbbx},
and p(p(I)) = {ab, aabb, aaaxbbbx}. So the finite language gets smaller, and
from this example we can also learn that in general, fPr ◦ p ◦ p(I) 6⊇ I. This
poses no problem in general, but still it seems to be somewhat awkward if we
think of the “relevant fragment” of a language as something being closed. There
is an alternative, which we will call q, which actually is a fixed point and only
slightly differs in definition:

Let (f, P) be a pre-theory. Define the q-periphery qper(f,P)(I) := {M ⊆ I :
fP (I −M) ⊇ fP (I)}, and q(f,P)(I) = I −maxrad∗(qper(f,P)(I)).

Despite the apparent similarity, the map q properly differs from p. For
example, we have

q(g,Pr)({ab, aaabbb, aabb, aaaxbbbx}) = {ab, aabb, aaabbb, aaaxbbbx},

4.6. PROPERTIES OF PRE-THEORIES II 95

despite the fact that aaabbb is derivable from {ab, aabb, aaaxbbbx}, because
otherwise we would lose an analogy and diminish the derived language; but of
course, we have p(g,Pr)({ab, aaabbb, aabb, aaaxbbbx}) = {ab, aabb, aaaxbbbx}.

It is easy to see that q is a fixed point: for assume that q(f,P)(q(f,P)(I)) (q(I).
Then there exists a J (q(I) such that fP (J) ⊇ fP (q(I), such that Jrad∗q(I),
contradicting the condition.

Does this give us an upward normal pre-theory? Things are now much less
simple. Upward normality for p could be obtained in full generality for any
pre-theory (f, P). For q this will not work. The main reason seems to be that
there is no analogue to lemma 45 and 46 for q; that is, if I ⊆ J ⊆ fP (I), we
cannot say anything about the inclusion relation of q(f,P)(I) and q(f,P)(J). So
we will not go for the general case, but rather for the particular case of (g, P r).
We now define the pre-theory (q(g,Pr)g, P r ◦ q(g,Pr)) implicitly by the equation

q(g,Pr)gPr◦q(g,Pr)(I) = gPr ◦ q(g,Pr)(I) (4.21)

What is crucial for obtaining normality for (q(g,Pr)g, Pr◦q(g,Pr)) is a property
of Pr, for which unfortunately I have not yet a proof:

Conjecture 49 Assume gPr(I) = L. Then for every J such that I ⊆ J ⊆ L
there is a J ′ such that J ⊆ J ′ and gPr(J

′) ⊆ L.

Note that in case gPr(I) = I, we have I = J = J ′. As I said, I do not yet
have a proof; yet the odds seem to be not bad: we can always think of new
strings we add in order to “spoil” analogies. These will possibly allow to make
larger analogies, which then derive a smaller language. The problematic point is
that these larger strings possibly function as additional premises for analogies.
Now we get the following result:

Theorem 50 If conjecture 48 is true, (q(g,Pr)gPr◦q(g,Pr)) is upward normal.

Proof. Assume I ⊆ J ⊆ gPr(I). We have to consider two cases:
Case 1: gPr(q(J)) ⊆ gPr(q(I)). Then we have q(J) ⊆ q(I). Put L :=

gPr(q(I))− gPr(q(J)).
If L is finite, we put J# = J ∪L. Then we define q(J ′) as a smallest language

J ′ ⊇ J# such that gPr(J
′) ⊆ gPr(I). By the conjecture, this language exists,

and thus upward normality obtains for this case.
Assume L is infinite. Then we put J# = J ∪ {~w}, for some ~w ∈ L, and

define J ′ as the rad∗-smallest J ′ ⊇ J# such that gPr(J
′) ⊆ gPr(I), which by

the conjecture exists.

Now we have q(g,Pr)(J
′) ⊆ q(g,Pr)(I). Put L

′
:= gPr(q(g,Pr)(I))−gPr(q(g,Pr)(J

′));

and construct J#′ := J ′ ∪ {~w′} for some ~w′ ∈ L
′
, and J ′′ as the rad∗-

smallest J ′′ ⊇ J#′ such that gPr(J
′′) ⊆ gPr(I). By this construction, we

have q(I) − q(J ′)) q(I) − q((J ′′), that is, the difference between the two
must properly diminish. So, by a finite iteration of this construction, we get
(..((J)′)..)′ ⊇ J such that q(g,Pr)((..((J)′)..)′) = q(g,Pr)(I), as the difference was
finite from the beginning. So for this case, upward normality follows.

Case 2: gPr(q(g,Pr)(I)) ⊆ gPr(q(g,Pr)(J)).
Assume that gPr(q(g,Pr)(I)) ⊆ gPr(q(g,Pr)(J)). We can prove the lemma

by choosing a J ′ ⊇ J such that gPr(J
′) ⊆ gPr(I). which by our conjecture

exists. Then we have q(g,Pr)(J
′) ⊆ q(g,Pr)(I), and, by definition of q, we also

96 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

have gPr(q(g,Pr)(J
′)) ⊆ gPr(q(g,Pr)(I)). This reduces the second case to the first

case. �
Conversely, assume that conjecture is wrong. We show that under this

assumption, qgPr is not upward normal.

Lemma 51 If conjecture 49 is wrong, then (q(g,Pr)g, Pr ◦ q(g,Pr)) is not upward
normal.

Proof. By assumption, we have finite languages I, J such that I ⊆ J ⊆
gPr(I), and there is no J ′ ⊇ J such that gPr(J

′) ⊆ gPr(I). That means that
for all J ′ ⊇ J , we have gPr(q(g,Pr)(J

′)) 6⊆ gPr(q(g,Pr)(I)), and hence we have
gPr ◦ q(g,Pr)(J

′) 6⊆ gPr ◦ q(g,Pr)(I). Therefore, upward normality fails. �
Of course, these last results do not refer to any particular properties of

(g, P r), so they can be easily seen to obtain in much more generality.

4.6.4 Normality and a Normal Pre-Theory

We now introduce the notion of general normality:

Definition 52 A pre-theory is normal if it is both downward and upward
normal (in the strong sense).

Theorem 53 (g2, P2) is normal.

Proof. We have already shown that (g2, P2) is downward normal. We now
show it is upward normal.

Assume we have I ⊆ J ⊆ g2P2(I), for finite I, J . If g2P2(I) is finite, then
g2P2(I) = I, and the claim follows. So assume that g2P2(I) is infinite, and
J 6= I. Then we know by monotonicity that g2P2(I) ⊆ g2P2(J). Now assume
that ~w ∈ J − I. Then ~w ∈ g2P2(I)− I, and by lemma 33, ~w is not elementary.
Therefore, we cannot use ~w neither as a premise for an inference, nor for any
new analogy (the two are identical by definition of (g2, P2)).

From this, it follows that if I ⊆ J ⊆ g2P2(I), then g2P2(I) = g2P2(J). �

4.6.5 Monotonicity

We will now consider the issue of monotonicity, which we have already mentioned
before:

Definition 54 An analogical map P is monotonic, if from J ⊆ I it follows
that P (J) ⊆ P (I). A pre-theory (f, P) is monotonic, if from I ⊆ J follows that
fP (I) ⊆ fP (J).

Note that if P is monotonic, it follows that if J ⊆ I, then fP (J) ⊆ fP (I).
The inverse however is not necessarily true: (f, P) can be monotonic without P
being monotonic – we could get less analogies, but all of them are inessential, in
that they make no difference for the language derived. Regarding Pr, we can
easily show the following:

Lemma 55 Pr is not monotonic; (g, P r) is not monotonic.

4.6. PROPERTIES OF PRE-THEORIES II 97

Proof. Take I := {a, bac}; I ′ = I ∪ {dae}. This works as counterexample
for both. �

The main point why Pr fails to be monotonic is that it is quite restrictive:
the criteria are implicational, and in this sense they do not only refer to what
has to be in the language, but also implicitly to what must not be in a certain
finite language in order to allow for an analogy. The same holds for the simple
P1:

Lemma 56 P1, (g, P1) are not monotonic.

Proof. Recall that we have ~w ≈P1
I ~v if ~w v ~v and ~w ≤I ~v. So just consider

I := {a, bac}, where P1(I) = {(a, bac)}; and I ′ = I ∪ {xbacy}, where P1(I ′) =
{(bac, xbacy), (a, abacy)}. Consequently, we have h ◦ gP1(I) = {bnacn : n ∈ N};
h ◦ gP1(I ′) = {xnbacyn : n ∈ N} ∪ {(xb)na(cy)n : n ∈ N}. �

But what kind of analogical maps/pre-theories are monotonic, and how do
we construct them? We will first look at analogical maps. As it turns out, there
is an easy and reliable way to construct them. Given any analogical map P , we
can use a powerset construction to immediately get a monotonic extension
of P :

Definition 57 The powerset extension ℘(P) of an analogical map P is defined
by ℘(P)(I) := {(~x, ~y) : (~x, ~y) ∈ P (J) for some J ⊆ I}.

If P is an analogical map, then so is ℘(P), and moreover:

Lemma 58 If P is an analogical map, then ℘(P) is an analogical map with the
same domain and range, and ℘(P) is monotonic.

The proof is an easy exercise. Now we can ask: is this construction a
reasonable one, is it desirable from a (meta-)linguistic point of view? This
question is of course hard to answer. Of course, monotonicity is desirable in some
sense; as a matter of fact it solves one of the main problems we stated in the
beginning: in view of the fact we can only observe fragments of the observable
language, we are unsure about our “language”, but with a monotonic analogical
map, we can at least give a partial answer, in that we know: a statement of the
form ~w is part of our ”language” will never be falsified by new evidence
(still we remain unsure about statements of the form: ~w is not part of our
”language”, see the discussion on negative evidence).

But whereas before, our problem was that an analogical map such as Pr is
probably rather too restrictive, we might now think that we are too liberal. In
particular, there is no evidence which might make a certain analogy illegitimate,
which is to say for the linguist that there is no evidence which can make a certain
projection implausible. I am not too sure whether this is desirable. But note
that this is a fault which is intrinsic to any monotonic analogical map.

We will not settle the question on whether monotonicity is necessary or
even desirable for pre-theories; this will remain, as many issues, a matter of
taste. However, what we can show is that, given that the problem of monotonic
pre-theories is that they are rather too liberal, the powerset construction is an
optimal solution in a strong sense:

Definition 59 Given two analogical maps P, P ′, say that P is smaller than P ′

(in symbols P ≤ P ′), if for all finite languages I, P (I) ⊆ P ′(I).

98 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Theorem 60 Given an analogical map P , ℘(P) is the smallest monotonic
analogical map which is larger than P .

Proof. Take an analogical map Q which is larger than P and monotonic,
and an arbitrary finite language I. As Q is larger than P , we know that for
every J ⊆ I, Q(J) ⊇ P (J). Furthermore, as Q is monotonic, we know that for
every J ⊆ I, Q(J) ⊆ Q(I). Therefore, assume a ∈ ℘(P)(I). Then a ∈ P (J) for
some J ⊆ I. Therefore, a ∈ Q(J); and by monotonicity, a ∈ Q(I). Therefore,
for any finite language I, Q(I) ⊇ ℘(P)(I). �

So the powerset construction is the smallest monotonic extension for any
given analogical map. So if one thinks that a given analogical map is linguistically
justified, and one thinks that monotonicity is necessary/desirable, then one just
has to use the powerset construction. Given two analogical maps P, P ′, we
denote extensional equality by P ≡ P ′, by which we mean that for all finite
I, we have P (I) = P ′(I).

Corollary 61 Given a monotonic analogical map P , we have ℘(P) ≡ P .

Actually, this follows immediately from the last lemma; for the sake of
exposition, we will give another proof.

Proof. Assume that P is monotonic. Then for any finite language I, J ⊆ I,
we have P (J) ⊆ P (I). Therefore, we have

⋃
J⊆I P (J) ⊆ P (I). Conversely, as

I ⊆ I, equality follows. �
Now that we have seen that there are very satisfying solutions for providing

monotonic analogical maps, we will see whether this can be transferred to pre-
theories. Obviously, for any pre-theory (f, P), we can construct a monotonic
pre-theory (f, ℘(P)). So for the projection we obtain the following equality:

f℘(P)(I) = f℘(P)(I)(I) = f⋃
J⊆I P (J)(I) (4.22)

But it turns out that f℘(P) is not the smallest projection which is larger than
fP and monotonic. We can show that it is possible to extend fP to a monotonic
map using a powerset construction in at least one smaller way:

℘(f)P (I) :=
⋃
J⊆I

fP (J) (4.23)

This actually gives us an implicit definition of a pre-theory (℘(f), P). It is
easy to see that this pre-theory is monotonic. We can also easily show that:

Lemma 62 1. For all finite languages I, pre-theories P ,
⋃
J⊆I fP (J) ⊆ f℘(P)(I)(I).

Furthermore,
2. there exist finite languages I and pre-theories (f, P) such that

⋃
J⊆I fP (J) (

f℘(P)(I)(I).

Proof. 1. ⊆: Assume that for some J ⊆ I, fP (J) = L. As P (J) ⊆ ℘(P)(I),
and J ⊆ I, we have L ⊆ f℘(P)(I)(I). As this holds for all J ⊆ I, the claim
follows.

2. (: Take (g, P r) and I1 = {axbyc, ax1xx2byc, axby1yy2c}. Then we have⋃
J⊆I1 gPr(J) = {a(x1)nx(x2)nbyc : n ∈ N0} ∪ {axb(y1)ny(y2)nc : n ∈ N0},

whereas g℘(Pr)(I1)(I1) = {a(x1)nx(x2)nb(y1)my(y2)mc : n,m ∈ N0}, which is
clearly a superset. �

4.6. PROPERTIES OF PRE-THEORIES II 99

So which definition is preferable? As the problem with monotonicity is that
it is pre-theories become rather too permissive on occasions, we would opt for
the smaller. This is confirmed by the following result:

Theorem 63 Given a pre-theory (f, P), projection fP , then ℘(f)P is the smallest
projection which is 1. monotonic and 2. larger than fP .

The proof is standard set-theoretic and almost identical to the one of theorem
59, and therefore omitted. So (℘(f), P) should be preferable to (f, ℘(P)). I have
the impression though that (f, ℘(P)) is much more elegant in its definition and
intuitive in its application.

We should at this point remark that there is an important property regarding
the interaction of upward normality and monotonicity:

Lemma 64 Let (f, P) be a pre-theory which is upward normal and (weakly)
monotonic. Then we have for all finite languages I, J , if I ⊆ J ⊆ fP (I), then
fP (I) = fP (J).

Proof. Assume I ⊆ J ⊆ fP (I), and fP (I) 6= fP (J). By (weak) monotonicity,
we have fP (I) (fP (J). But also, for all J ′ ⊇ J , we have fP (J) ⊆ fP (J ′). This
contradicts upward normality. �

So we get an immediate corollary:

Corollary 65 If I ⊆ J ⊆ g2P2(I), then g2P2(I) = g2P2(J).

So pre-theories being upward normal and monotonous are very predictable.

4.6.6 A Weaker Form of Monotonicity

As we have already said, the problem of monotonicity is that it is very strong
and makes pre-theories very permissive. We now define a related, but somewhat
weaker notion:

Definition 66 A pre-theory (f, P) is weakly monotonic, if from I ⊆ J ⊆
fP (I), it follows that fP (I) ⊆ fP (J).

Some remarks are in order: note that, contrary to the definition of mono-
tonicity, this makes reference to the entire pre-theory; it does not seem to make
sense for the analogical map. Apart from this, it is a restriction of monotonicity,
in that we say that monotonicity with respect to a set I should only apply to
strings in fP (I). It is clear that if (f, P) is monotonic, then it is also weakly
monotonic. Weak monotonicity means, that for a finite language I, only if
we add derivable strings the resulting language must not decrease. That is in
fact considerably weaker than monotonicity, and a requirement which only few
will find too strong, or put differently, as making pre-theories too liberal. The
condition shows an immediate relation to the “normalizing maps” p and q we
introduced for upward normality. And in fact, we can show the following result:

Theorem 67 Let (f, P) be a pre-theory. Then the map fP ◦ p(f,P), induced by
the pre-theory (p(f), P ◦ p(f,P)) is weakly monotonic.

100 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Proof. We have to show that if I ⊆ J ⊆ fP ◦ p(f,P)(I), then fP ◦ p(f,P)(I) ⊆
fP ◦ p(f,P)(J). But in fact, we have already seen above (corollary 47), that in
this case we have the stronger result that fP ◦ p(f,P)(I) = fP ◦ p(f,P)(J). So the
claim follows. �

This is a positive result, but also a bit disappointing: as we said, we might
want more richness in our pre-theories, we might want them to be less expectable.
We therefore also introduced the normalizing map q. As it turns out, this map
is more flexible, but fails to meet the requirements of weak monotonicity.

Lemma 68 gPr ◦ q(g,Pr) is not not weakly monotonic.

Proof. Take I := {ab, aabb, aaabbb, aaaxbbby}. We have q(g,Pr)(I) = I.
Take a J ⊆ gPr(I), where J := I ∪ {aaaabbbb}. In J , we do not get bbb ≈PrJ
xbbby; therefore q(g,Pr)(J) = {ab, aabb, aaaxbbby}. It is now easy to see that
gPr ◦ q(g,Pr)(J) (gPr ◦ q(g,Pr)(I). �

This also shows that strong upward normality does not entail weak mono-
tonicity. This is a negative result, but also has the positive effect of showing
that q is more rich and flexible than p.

There is a last important result on the relation of upward normality and weak
monotonicity. We see that upward normality does not entail weak monotonicity.
Also the converse entailment does not obtain: we can easily think of a projection
which is weakly monotonic, yet not upward normal - just think of any (trivial)
pre-theory as (f, P), where we have I (J ⊆ fP (I) ⇒ fP (I) (fP (J), and
where fP is injective. But there is a very precise characterization for the class
of pre-theories which are both weakly monotonic and upward normal, which
strengthens the result of the last lemma in the section on monotonicity:

Theorem 69 fP is weakly monotonic and upward normal, if and only if from
I ⊆ J ⊆ fP (I) it follows that fP (I) = fP (J).

If. Assume that from I ⊆ J ⊆ fP (I) it follows that fP (I) = fP (J). This
clearly gives upward normality, because if fP (I) is infinite, every finite J :
I ⊆ J ⊆ fP (I) induces fP (I). Also, it gives weak upwards normality, because
fP (I) = fP (J) entails fP (I) ⊆ fP (J).

Only if : Assume we have I ⊆ J ⊆ fP (I), and fP (I) 6= fP (J). By weak
monotonicity, we know that fP (I) ⊆ fP (J), and so, fP (I) (fP (J). But then it
holds for all J ′ : J ⊇ J ′ ⊆ fP (J) that fP (I) (fP (J ′), by weak monotonicity, and
a fortiori, the same holds for J ′ : J ⊆ J ′ ⊆ fP (I). But this contradicts strong
upward normality. �

This is a very interesting result, because it shows that pre-theory which
are both upward normal and weakly monotonic are quite predictable in their
behavior.

4.6.7 Fixed-point Properties

We have not yet considered another important point. We say that a pre-theory
P , projection fP is closed, if fP (I) = fP (fP (I)). This is generally well-defined,
because we have adopted the convention that for L infinite, we have P (L) = ∅,
and therefore, fP (L) = L. Note that nonetheless, this notion is not vacuous,
because if fP (I) is finite, it might well be that fP (fP (I)) 6= fP (I). We consider it
a favorable property for our pre-theories to be closed.

4.6. PROPERTIES OF PRE-THEORIES II 101

We can easily check that all the pre-theories we have considered so far are
closed, because we have either fP (I) = I, or fP (I) infinite, and this entails
closure. This holds because our analogies are necessarily such that they derive
infinite languages; so we have either no analogies at all, or we obtain infinite
languages. So this property is even stronger than being closed. However, we will
later on allow pre-theories and analogies which lack this property, as we allow
analogies which do not necessarily derive infinite languages. In these cases, the
matter of closure is serious, we have to take care of it. This will become a point
when we consider what we call transformational pre-theories.

4.6.8 Closure under Morphisms

We now come to the question, whether the projections our pre-theories define are
closed under various morphisms. This is a very important question, because we
have been deliberately vague on whether we want to apply them directly on the
words we observe, or on the categories we assign. To move from one conception
to the other, we need some morphism, so closure under certain morphisms is
quite desirable. For simplicity, we will now adopt the following convention:

Definition 70 Assume (f, P) is a pre-theory. Then by C(f, P) we denote the
class of all languages L such that there is a finite language I where fP (I) = L.
By C∞(f, P) we denote the class of all infinite languages L such that there is a
finite language I where fP (I) = L.

We get the following result:

Lemma 71 C(g, P r),C(g, P1) are not closed under (ε-free) homomorphism.

Proof. C(g, P r) is clear. For C(g, P1) take the language I = {aa, ccc}, and
h(a) = h(c) = a. This can be easily transferred to infinite languages by adding
an alphabetically disjoint language as above. �

Note that the fact that a class C(f, P) is not closed under homomorphism
entails that in general, fP (h(I)) 6= h(fP (I)). Conversely, the implication is
not true: if C(f, P) is closed under homomorphism, then we do not necessarily
have fP (h(I)) = h(fP (I)). What is obviously true by contraposition is that if
fP (h(i)) = h(fP (I)), then C(f, P) is closed under homomorphism. We urge the
reader to keep this in mind, as we will only present the strongest results we can
obtain.

What we should ask now is: do we even get closure under isomorphism?
This is usually taken for granted, as it is one of the most basic properties of
families of languages (usually, one defines a family of languages by closure under
isomorphism).

Lemma 72 For a letter isomorphism i, we have gPr(i(I)) = i(gPr(I)), gP1(i(I)) =
i(gP1(I)) and g2P2(i(I) = i(g2P2(I)).

The proof consists in a straightforward checking of the definitions, which is
quite tedious and therefore omitted. A more interesting question is whether our
pre-theories are closed under more liberal bijections, namely so-called codes
(see [46] for reference).

A code over Σ∗ is a set X ⊆ Σ∗, such that for all ~x1~x2...~xi : ~x1, ..., ~xi ∈ X,
~y1...~yj : ~y1, ..., ~yj ∈ X, it holds that if ~x1...~xi = ~y1...~yj , then i = j and for

102 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

each 1 ≤ k ≤ i, ~xk = ~yk. The closure of X under concatenation with itself is
denoted by X∗. One therefore can say that every string in X∗ has a unique
X-factorization, that is, a unique decomposition into factors in X. An alternative
and equivalent definition is the following: a code is a set X ⊆ Σ∗ such that
for every alphabet T : |T | = |X|, every bijection φ : T → X, the homomorphic
extension of φ : T ∗ → X∗ to strings is a bijection. So φ maps simple letters to
strings; but if X is a code, the mapping will be one-to-one. We will refer to the
homomorphic extension of a map φ as a coding.

Lemma 73 1. C(g, P r) is not closed under coding. 2. C(g2, P2) is not closed
under coding.

Proof. 1. Take the language I = {a, bab}, and the coding φ(a) = a, φ(b) =
bab; see above. 2. Take an arbitrary alphabet Σ, an arbitrary language I having
an infinite image, and define φ(σ) = σ5 for all σ ∈ Σ. φ(I) does not contain
elementary strings. �

Lemma 74 There is a coding φ such that φ(gP1(I)) 6= gP1(φ(I)).

Proof. Put I = {a, ab}, φ(a) = bab, φ(b) = aba. φ(I) = {bab, bababa}. We
then have P1(φ(I)) = (bab, bababa), and we can derive ba(bababa)a, which is not
in φ(gP1(I)). �

To improve this apparently bad situation we can do the following: we define
a very restricted notion of a code, namely so-called infix -code (as analogical
to the well-known prefix-codes, see [46]). This is a very strict notion, and in
fact it is more restricted than any notion of code which is known to me from
the literature. Unfortunately, we cannot obtain the following results with any
weaker notion.

Definition 75 An infix code is a code X ⊆ Σ∗ such that from ~w~x~v ∈ X∗,
~x ∈ X, it follows that for all ~x1, ..., ~xi ∈ X such that ~x1...~xi = ~wx~v, we have a j
such that ~x1...~xj = ~w, ~xj+2...~xi = ~v.

So we can recognize any infix in the code, and “translate” it accordingly,
without having to consider any of its context. An example of an infix code is
any code, where beginning and ending of strings in X is uniquely marked. For
example, we can encode an alphabet T with |T | = n in {0, 1}∗ with the infix
code {00, 010, 0110, ..., 01n−10}.

Lemma 76 Let φ be an infix coding. Then for all finite languages I, we have 1.
gPr(i(I)) = i(gPr(I)). 2. gPr(i(I)) = i(gPr(I)).

Proof. We can easily reduce this case to the letter isomorphism case, because
we know that ~w(i(~x))~v ∈ i[I] if and only if i−1(~w)~xi−1(~v) ∈ I. �

Note that this lemma does not obtain for (g2, P2)!

Lemma 77 C∞(g2, P2) is not closed under infix coding.

Proof. See the example above, where φ(σ) = σ5. This is an infix code. �

4.7. METHODOLOGICAL UNIVERSALS 103

4.7 Methodological Universals

4.7.1 Which Languages Do We (Not) Obtain?

All structural pre-theories we considered so far yield context-free languages, so
we have an upper bound for the class of languages we induce. However, we
do not get all context-free languages, as can be easily deduced from the fact
that 1. all finite languages are context-free, 2. we have finite languages which
are projected, so not induced by themselves, and 3. all induced languages are
infinite. This tells us that as a lower bound for the languages we obtain, we
cannot consider a class containing the finite languages.

But this result is not only very unspecific, it is also in some sense trivial, as
we only are interested in infinite languages (as candidates for “language”), so
the fact that we do not obtain certain finite languages is of no concern to us.
What should be a concern to us are the infinite languages which are context-free,
yet not induced by any finite language and some pre-theory under consideration.
We will first try to bring some order in the relation of languages induced by
(g, P r), (g, P1), (g2, P2), and the normalized pre-theories. Then we show some
interesting examples of languages we cannot obtain by them. This will then
also shed a better light on the properties of languages we can obtain. We will
restrict our attention mostly to C∞(f, P), because firstly the finite languages are
the ones which remain invariant under our pre-theories, and secondly they do
not have any relevance for us.

Lemma 78 We have C∞(g, P r) 6⊆ C∞(g2, P2) and C∞(g2, P2) 6⊆ C∞(g, P r)
and

Proof. C∞(g, P r) 6⊆ C∞(g2, P2) Take the language {anbn : n ≥ 4}. This is
in C∞(g, P r) but not in C∞(g2, P2) because of the elementary string condition.

C∞(g2, P2) 6⊆ C∞(g, P r) Conversely, take the language {aaabbb, aaaabbbb} ∪
L, where L is any infinite language in C∞(g2, P2) over an alphabet Σ such that
a, b /∈ Σ. �

So we have a relation of incomparability. The second part of the proof shows
that results of this kind are however not very meaningful, because we can always
recur to finite, alphabetically distinct sublanguages. So the case of the finite
languages falls back on us, and we have to be aware that inclusions are only
meaningful if they do not use this sort of argument. The reason why arguments of
this kind will always work with our pre-theories is the following general property
of our pre-theories so far, which we will have it for all pre-theories we look at.

Definition 79 A pre-theory (f, P) is alphabetically innocent, if for I ⊆
Σ∗, J ⊆ T ∗, Σ ∩ T = ∅, fP (I ∪ J) = fP (I) ∪ fP (J).

Lemma 80 (g, P r), (g, P1), (g2, P2) are alphabetically innocent.

This is immediate to see. So in a word, all our pre-theories are alphabetically
innocent.

Lemma 81 We have C∞(pg, P r ◦ p(g,Pr)) (C∞(g, P r).

Proof. ⊆ Assume we have L = pgPr◦p(g,Pr)(I). Then we put I ′ =
p(g,Pr)(I

′) = I, and then gPr(I
′) = L.

104 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

(Take a language as I = {ab, aabb, aaaabbbb}, such that gPr(I) = {ab, (aa)n(bb)n :
n ∈ N} := L. Obviously, we have p(g,Pr)(I) = {ab, aabb}. Furthermore, for any
finite I ′ such that {ab, aabb} ⊆ I ′ ⊆ L, we will have p(g,Pr)(I

′) = {ab, aabb}; so
we cannot induce L. �

So the normalizing map p comes with a decrease in “inducing power”. The
same result can be obtained if we substitute Pr with P1. The results regarding
P1 are the following:

Lemma 82 We have C∞(g, P1) 6⊆ C∞(g2, P2) and C∞(g2, P2) 6⊆ C∞(g, P1).

Proof. See the proof of the corresponding lemma for Pr. �

Lemma 83 C∞(g, P r) 6⊆ C∞(g, P1), C∞(g, P1) 6⊆ C∞(g, P r).

Proof. C∞(g, P1) 6⊆ C∞(g, P r): Take L = {((bab)na(bab)n : n ∈ N}. We
have L = gP1({a, bababab}). But assume we have I ′ such that gPr(I

′) = L. We
need a ∈ I ′, consequently bababab ∈ I ′. But then we also need bbabababbabab ∈ I ′
etc., so I ′ is infinite.

C∞(g, P r) 6⊆ C∞(g, P1). Put I = {ab, aabb, xaby} ∪L, where L is an infinite
language in C∞(g, P r) over Σ such that a, b, x, y /∈ Σ (again, we see that this
part of the lemma is quite meaningless, whereas the former is not). �

Why should we be interested in the languages we do not induce, or, more
generally, why should we be interested in the classes we induce, given they are
very unnatural from the point of view of formal language theory? In my view,
there is a very strong and good motivation for scrutinizing their properties, even
though to the “normal linguist” this motivation will seem a bit queer at the
first sight. They provide a first example of what we might call methodological
universals. These are universal properties of “language”, which are artefacts of
our projection. So assume we say that (g, P r) is the right pre-theory to adopt,
we formalize our linguistic observations and perform the projection under this
assumption. Then we might observe some universal properties of “language”
(recall that, after all, “language” is the proper subject of linguistics!). The most
obvious one is: “languages” are context-free. In addition, if we work with strong
“languages”, we will say that we only find phrase-structure style dependencies.
But these, obviously, are not properties of the observed languages; these are
properties due to our methodology, which will obtain no matter what we observe.

Formally, a methodological universal of a pre-theory (f, P) is a property of
the class of languages which are induced by some finite language under (f, P),
that is, a property of C(f, P). So it is important to know the methodological
universals of pre-theories we consider, for two main reasons: for the metalinguist
these are interesting in itself, as he can decide whether they make a pre-theory
preferable or not. For example, he might opt in favor of context-free or mildly
context-sensitive “languages”, or in favor of phrase-structure style dependencies.
For the normal linguist who simply applies a pre-theory it is also very important:
he has to know its methodological universals in order to exclude them from
the “linguistic” observations he makes, that is, his empirical observations. For
example, if he notices that all the “languages” he considers have a certain
property P, he should make sure that it is not a methodological universal of
his pre-theory – because otherwise his observation is void of content. If on the
other side P is not a methodological universal of his pre-theory, then he can
make the claim that he has made a meaningful, empirical observation (still taken

4.7. METHODOLOGICAL UNIVERSALS 105

“modulo the pre-theory”; we will work out what that means in the next section).
As I have tried to point out in the second chapter, the concern that we take
properties of pre-theories to be properties of languages is quite realistic.

So we have already presented some methodological universals regarding our
pre-theories; we will now go a bit more into detail. Obviously, by the fact that
there are finite languages which our pre-theories cannot induce, it is quite easy
to construct infinite languages which cannot be induced either: just take a
finite language I which cannot be induced, an infinite language L which can be
induced, such that I ⊆ Σ∗, L ⊆ T ∗, and Σ ∩ T = ∅, and put L′ = I ∪ L. We
have applied this argument repeatedly, which is based on our requirement of
“alphabetical conservativity”: our pre-theories must not introduce new letters,
and on the even stricter requirement of alphabetical innocence, namely that
sublanguages which do not share some letters do not interact in any way, which
our pre-theories satisfy.

Another point to note is the following: take the language L7 := {anaan :
n ∈ N0}. Is this language induced by some finite language under (g, P r)? The
answer is negative, the reason is as follows: if we have I7 := {a, aaa}, then we
have the same a in a new, non-recursive context, because we cannot distinguish
the a in the context (a, a) from the ones in context (ε, aa), and thus violate the
weak Pr-condition. So take I ′7 := {a, aaa, aaaaa}. Also the analogy (aaa, aaaaa)
is prevented for the same reason, and so on, and so, L7 /∈ C(g, P r). How about
L8 := {anabn : n ∈ N0}? This is in C(g, P r), but is only obtained by using larger
analogies, as in the language I8 = {a, aab, aaabb}, where we have aab ≈PrI8 aaabb.

4.7.2 Unreasonable Restrictions of the String Case

We now come to a final characteristic of the classes of languages induced by our
pre-theories, which in fact is an unreasonable restriction and will directly lead
to the first major extension of our linguistic universe. Assume there is a finite
language I, where we have ~y ≤I ~x, as well as ~x ≈PrI ~x1~x~x2. From this it does of
course not follow that ~y ≈PrI ~x1~y~x2; in fact, this only follows in a very particular
case, which almost amounts to ~x ∼I ~y (though not exactly, ~x and ~y might have
distinct contexts, as long as they are all recursive).

Consider I = {wxv,wx1xx2v, wyv, w1yx2v, yz}. In this setting, we have
x ≈PrI x1xx2, but y 6≈PrI x1yx2. This means in particular that the relation ≤I
is not preserved over projection, not even for the elements of Σ∗ in the strong
language. This is a problem to our intuition. That it is not preserved for the
weak language should not bother us, as it is undecidable anyway. But obviously,
for the strong language the relation ≤L⊆ Σ∗ × Σ∗, not containing any brackets,
is decidable, because it remains finite. For this reason, the fact ≤gPr(I) does not
extend ≤I should bother us, because intuitively, we know that y has a more
liberal distribution in I than x, and so it should have in gPr(I) for its free
occurrences.

This is not a problem of the more liberal pre-theories we considered before
Pr (as the simple pre-theory P1); it is a problem of the restrictive Pr-family.
Now the question is: can we be somewhat more liberal, yet not as liberal as P1?
We will answer this question positively in the sequel.

The last problem is a consequence and particular instance of a more general
problem of the pre-theories defined on sets of strings. We can only speak of
strings, not about strings in a certain distribution. For example, in I as defined

106 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

above, we might say that the ~y in the word ~y~z “means” something entirely
different from the ~y in the position where also ~x can occur (as far as we can say
something like this in a purely syntactic approach; linguistically speaking, we
would say it belongs to different categories). If we were able to say something
like this, then we would get rid of our problem: we would consider the set of
strings {x, y}, with respect to the contexts in which both can occur. This would
also solve some more general problems. Consider for example the language:

J := {a, ab, abb, abbb} ∪ {d, db, dbb, dbbb} ∪ {ac, de} (4.24)

In this language, there is no pseudo-recursion; but clearly, one would say
that there is a pseudo-recursive pattern in there, because it is only the strings
{ac, de} which spoil the pseudo-recursion. But as we said, for us there is no
way to speak of strings in certain positions. The extension we will introduce
later on will allow us to do so in a certain way, which is still based on purely
language-theoretic notions.

4.7.3 Linguistic Reason

Here we will consider the inverse question to the question we asked above. The
above question was: which of the properties that we ascribe to “language”, are
necessary, that is, methodological universals? Here we are interested in the
question: on the basis of our epistemological concerns, which empirical claims
can we make about “language”? As a first point, if we want to claim that
“language” has property P independently of any pre-theory, we must be careful
that there exists a finite language I such that I does not have P . In this case,
we say that P is finitary. Every property which is not finitary and which we
ascribe to “language” depends on a projection. Contrary to what people tend to
think, there are many interesting properties which satisfy this constraint. We
will discuss this at length in the section on linguistic finitism, so there is no need
to duplicate this discussion at this point.

What I want to point our here is the following: there are certain empirical
claims we can make on infinite languages, which are based on the observation
that for certain datasets I, fP (I) always shows a certain property P , even though
P is not a methodological universal of (f, P). As an example, let us reconsider
the family of pre-theories Pr-k we considered above. We have claimed that
if we choose k large enough, then gPr-k(I) will be regular for any dataset I
corresponding to a natural language dataset. This is a property in the above
sense, but only if we consider a certain pre-theory. So there could be a dataset
J such that gPr-k(J) is not regular, but empirically, we do not find any. We say
in this case that “language” has the property of being regular modulo (g, P r-k).
In general, we can say that “languages” have property P modulo (f, P), if there
is no dataset I corresponding to an observed language, such that fP (I) does not
have P, and if there is some finite language J such that fP (J) does not have
property P.

Take another example: assume there is a pre-theory (f, P) such that C(f, P) 6⊆
CFL. Assume then we do not observe any linguistic dataset corresponding to a
finite language I such that fP (I) is not context-free. Then we can claim that
natural languages are context free modulo (f, P). Or to reverse the example:
surely, we can make observations to the point that under the pre-theory (g, P1),

4.8. EXTENSION I: PRE-THEORIES ON POWERSETS 107

natural languages are not regular. Also this (negative) property is an instance of
a property modulo (g, P1), as there are finite languages I such that gP1(I) is
not regular.

As is easy to see, the notion of a property modulo a pre-theory is fundamental
for linguistics, and its importance can hardly be overrated. I think in a more
formally rigid foundation of linguistics, in most cases it has to take the place of
blunt statements of the form: natural languages have property P , because these
statements can only obtain if P is finitary.

Note however that the concept of P modulo (f, P) does not allow us to
use just any property: it must be a property which remains falsifiable under
the assumption of (f, P). This concerns in particular “universal properties” as:
natural language rules are structure dependent (whatever that is supposed to
mean exactly) under assumption of the structural inference g.

This small subsection could be said to be the germ of a critique of linguistic
reason, that is, an investigation on which properties of language we can see, and
which ones we cannot. But in order to achieve something which could carry this
name, one would have to do much more work than I am currently able to.

4.8 Extension I: Pre-Theories on Powersets

The pre-theories presented so far have some drawbacks. In particular, the Pr-
family seems to be somewhat too restrictive. We have so far considered analogical
maps as maps P : Σ∗ → Σ∗ × Σ∗, and we have called these maps simple string
based. We will now consider a new class. Unfortunately, the distinction by range
and domain, substitution, structure are really orthogonal to each other, so it
seems unavoidable to me that there is something arbitrary in the grouping; also,
because we do not scrutinize all possible pre-theories, but only those which are
of some mathematical and linguistic interest.

What we will now consider are analogical maps P : ℘(Σ∗) → ℘(Σ∗ × Σ∗),
and accordingly modified inference rules. The main idea in this approach
is the following: as we said, we have been vague on whether we intend our
simple string-based pre-theories to work on words we observe or categories we
already posit. Possibly, people will be more sympathetic to the latter case. But
then the question is: who makes the categorization, and according to which
criteria? This problem is addressed in this section, as syntactic concepts can
be seen as categories, which are defined by the intrinsic distributional structure
of a language. So the syntactic concept lattice provides us with a sort of
“automatic” pre-categorization, which is then the object of projection, rather
than the language itself. We will later on define under which conditions such
a categorization can be said to be meaningful. We have to go through some
definitions before we can present the next full pre-theory.

4.8.1 Syntactic Concepts

Syntactic concept lattices arise from the distributional structure of languages.
Their main advantage is that they can be constructed on distributional relations
which are weaker than strict equivalence. [6] has shown how these lattices can
be enriched with a monoid structure to form residuated lattices. Syntactic
concept lattices originally arose in the structuralist approach to syntax, back

108 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

when syntacticians tried to capture syntactic structures purely in terms of
distributions of strings (see, e.g. [24]). An obvious way to do so is by partitioning
strings/substrings into equivalence classes: we say that two strings ~w,~v are
equivalent in a language L ⊆ Σ∗, in symbols

~w ∼0
L ~v iff for all ~x ∈ Σ∗, ~w~x ∈ L⇔ ~v~x ∈ L. (4.25)

This defines the well-known Nerode-equivalence. We can use a richer equiva-
lence relation, by considering not only left contexts, but also right contexts:

~w ∼1
L ~v iff for all ~x, ~y ∈ Σ∗, ~x~w~y ∈ L⇔ ~x~v~y ∈ L. (4.26)

Of course, this can be arbitrarily iterated for tuples of strings. The problem
with equivalence classes is that they are too restrictive for many purposes: if
we want to induce our grammar on the basis of a given dataset; then it is
quite improbable that we get the equivalence classes we would usually desire
as linguists, as we have pointed out in the beginning. But even apart from
the intrinsic restrictions of finiteness there are notorious problems: there might
be constructions, collocations, idioms which ruin equivalences which we would
intuitively consider to be adequate.

Syntactic concepts provide a somewhat less rigid notion of equivalence, which
can be conceived of as equivalence restricted to a given set of contexts. This at
least partly resolves the difficulties we have described above.

4.8.2 Syntactic Concepts: Definitions

For a general introduction to lattices, see [12]; for background on residuated
lattices, see [19]. Syntactic concept lattices form a particular case of what is
well-known as formal concept lattice (or formal concept analysis) in computer
science. In linguistics, they have been introduced in [64]. They were brought
back to attention and enriched with residuation in [6], [7], as they turn out to
be useful representations for language learning. In this section, we follow the
presentation given in [6].

Given a language L ⊆ Σ∗, we define two maps: a map . : ℘(Σ∗)→ ℘(Σ∗×Σ∗),
and / : ℘(Σ∗ × Σ∗)→ ℘(Σ∗), which are defined as follows:

for M ⊆ Σ∗, M. := {(~x, ~y) : ∀~w ∈M,~x~w~y ∈ L}; (4.27)

and dually

for C ⊆ Σ∗ × Σ∗, C/ := {~x : ∀(~v, ~w) ∈ C,~v~x~w ∈ L}. (4.28)

That is, a set of strings is mapped to the set of contexts, in which all of
its elements can occur. The dual function maps a set of contexts to the set of
strings, which can occur in all of them. Obviously, / and . are only defined with
respect to a given language L, otherwise they are meaningless. As long as it
is clear of which language (if any concrete language) we are speaking, we will
omit however any reference to it. For a set of contexts C, C/ can be thought
of as an equivalence class with respect to the contexts in C; but not in general:
there might be elements in C/ which can occur in a context (~v, ~w) /∈ C (and
conversely).

The two compositions of the maps, /. and ./, form a closure operator on
subsets of Σ∗ × Σ∗ and Σ∗, respectively, that is:

4.8. EXTENSION I: PRE-THEORIES ON POWERSETS 109

1. M ⊆M./,

2. M./ = M././,

3. M ⊆ N ⇒M./ ⊆ N./,

for M,N ⊆ Σ∗. The same holds for contexts, where we simply exchange the
order of the mappings, and use subsets of Σ∗ ×Σ∗. We say a set M is closed, if
M./ = M . The closure operator ./ gives rise to a lattice LS := 〈BS ,≤〉, where
the elements of BS are the closed sets, and ≤ is interpreted as ⊆. The same can
be done with the set of closed contexts. Given these two lattices, . and / make
up a Galois connection between the two:

1. M ≤ N ⇔M/ ≥ N/, and

2. C ≤ D ⇔ C. ≥ D..

Furthermore, for LS the lattice of closed subsets of strings, LC the lattice
of contexts, it is easy to show that LS ∼= L∂C , where by [−]∂ we denote the
dual of a lattice, that is, the same lattice with its order relation inverted;
and by ∼= we denote that there is an isomorphism between two structures.
Therefore, any statement on the one lattice is by duality a statement on the
other. Consequently, we can directly conceive of the two as a single lattice,
whose elements are syntactic concepts:

Definition 84 A syntactic concept A is an (ordered) pair, consisting of a closed
set of strings, and a closed set of contexts, written A = 〈S,C〉, such that S. = C
and C/ = S.

Note also that for any set of strings S and contexts C, S. = S./. and
C/ = C/./. Therefore, any set M of strings gives rise to a concept 〈M./,M.〉,
and any set of C contexts to a concept 〈C/, C/.〉. Therefore, we denote the
concept which is induced by a set M , regardless of whether it is a set of strings
or contexts, by C(M). We speak of the extent of a concept A as the set of strings
it contains, which we denote by SA; the intent of A is the set of contexts it
contains, denoted by CA. For example, given a language L, we have SC((ε,ε)) = L,
as all and only the strings in L can occur in L in the context (ε, ε).

We define the partial order ≤ on concepts by

〈S1, C1〉 ≤ 〈S2, C2〉 ⇐⇒ S1 ⊆ S2; (4.29)

this gives rise to the syntactic concept lattice L:

Definition 85 The lattice of concepts of a language L, SCL(L) = 〈B,∧,∨〉,
with the partial order ⊆, is called the syntactic concept lattice, where > =
C(Σ∗), ⊥= C(Σ∗ × Σ∗), and for 〈Si, Ci〉, 〈Sj , Cj〉 ∈ B, 〈Si, Ci〉 ∧ 〈Sj , Cj〉 =
〈Si ∩ Sj , (Ci ∪ Cj)/.〉, and ∨ as 〈(Si ∪ Sj)./, Ci ∩ Cj〉.

It is easy to verify that this forms a complete lattice. Note the close connection
between intersection of stringsets and union of context sets, and vice versa. For
a given language, we obviously have L ∼= LS , which we defined before.

110 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

4.8.3 Monoid Structure and Residuation

As we have seen, the set of concepts of a language forms a lattice. In addition,
we can also give it the structure of a monoid: for concepts 〈S1, C1〉, 〈S2, C2〉, we
define:

〈S1, C1〉 ◦ 〈S2, C2〉 = 〈(S1S2)./, (S1S2).〉, (4.30)

where S1S2 = {~x~y : ~x ∈ S1, ~y ∈ S2}. Obviously, the result is a concept. ′◦′ is
associative on concepts:

for X,Y, Z ∈ B, X ◦ (Y ◦ Z) = (X ◦ Y) ◦ Z. (4.31)

This follows from the fact that [−]./ is a nucleus,4 that is, it is a closure
operator and in addition it satisfies

S./T ./ ⊆ (ST)./. (4.32)

Using this property and the associativity of string concatenation, the result
easily follows. Furthermore, it is easy to see that the neutral element of the
monoid is C(ε). This monoid structure respects the partial order of the lattice,
that is:

Lemma 86 For concepts X,Y, Z,W ∈ B, if X ≤ Y , then W ◦X◦Z ≤W ◦Y ◦Z.

We can extend the operation ◦ to the contexts of concepts:

(~x, ~y) ◦ (~w, ~z) = (~x~w, ~z~y). (4.33)

This way, we still have f ◦ (g ◦ h) = (f ◦ g) ◦ h for singleton contexts f, g, h.
The operation can be extended to sets in the natural way, preserving associativity.
For example, C ◦(ε, S) = {(~x,~a~y) : (~x, ~y) ∈ C,~a ∈ S}. We will use this as follows:

Definition 87 Let X = 〈SX , CX〉, Y = 〈SY , CY 〉 be concepts. We define the
right residual X/Y := C(C1◦(ε, S2)), and the left residual Y \X := C(C1◦(S2, ε)).

For the closed sets of strings S, T , define S/T := {~w : for all ~v ∈ T, ~w~v ∈ S}.
We then have SX/SY = SX/Y . So residuals are unique and satisfy the following
lemma:

Lemma 88 For X,Y, Z ∈ B, we have Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .

For a proof, see [6]. This shows that the syntactic concept lattice can be
enriched to a residuated lattice. Note that every language, whether computable
or not, has a syntactic concept lattice. An important question is whether it is
finite or not. This question can be answered in the following way.

Proposition 89 The syntactic concept lattice for a language L is finite if and
only if L is regular.

4See [19], p.173 for more on this notion.

4.9. ANALOGIES AND INFERENCES WITH POWERSETS 111

This is a rather immediate consequence of the Myhill-Nerode theorem. In
the sequel, we will denote by SCL the class of all syntactic concept lattices, that
is, the class of all lattices of the form SCL(L) for some language L, without any
further requirement regarding L itself except the ones stated above. There are
two important conventions we urge the reader to keep in mind. We have denoted
the set of concepts (for a language L) by BL. For simplicity, if we want to say
that X,Y are concepts of the lattice SCL(L) = (BL,∨,∧, ◦, /, \), we just write
X,Y ∈ SCL(L). The second convention is the following: concepts are ordered
pairs. Given the language of reference, we can however recover all their relevant
information from their extend, that is, their first component. Therefore, we will
be sometimes treat concepts as if they were simple sets of strings rather than
pairs. When we do so, we always refer to the first component of a concept.

We say a set (of strings) W is downward closed (with respect to ≤L), if
from ~w ∈W and ~v ≤L ~w it follows that ~v ∈W .

Lemma 90 Given a language L ⊆ Σ∗ and a set of strings W ⊆ Σ∗, if W = W ./,
then W is downward closed wrt. ≤L.

Proof. Assume W = W ./, ~v ≤L ~w, ~w ∈ W . We know that for all
(~a,~b) ∈ W ., ~a~w~b ∈ L. By ~v ≤L ~w it follows that also ~a~v~b ∈ L, if awb ∈ L.
Consequently, ~v ∈W ./, and so W ./ is downward closed. �

The converse implication does not obtain, that is: not every downward closed
set is closed under [−]./. This is because the [−]./-closure considers only the
L-contexts which are common to all strings in W . An interesting notion is the
following:

Definition 91 A language L ⊆ Σ∗ is distributionally simple, if for the set
of concepts SCL(L), we have |SCL(L)| ≤ |Σ|.

So distributional simplicity means: we have less concepts than letters. If
we go to natural language, where letters become words, the obvious conjecture
would be that our natural language datasets (just words!) are distributionally
simple. This is the assumption, under which the application of concepts is an
advantage – otherwise it can be arguable. Obviously, only regular languages can
be distributionally simple, provided we have a finite alphabet – but for us this is
no reason to worry, as we stick to finite languages.

4.9 Analogies and Inferences with Powersets

We start by providing some basic properties of the concept lattices of finite
languages.

Lemma 92 In any finite language I 6= ∅, we have {ε} = {ε}./.

Proof. Assume we have a ~w ∈ Σ+, ~w ∈ {ε}./. As we have some ~v ∈ I, we
have ~vε ∈ I, and so ~v ~w ∈ I, and so v ~wε ∈ I, and so ~v ~w~w ∈ I and so on. �

Assume ≤ is an arbitrary partial order. We say that a covers b (in ≤), if
a ≤ b, a 6= b, and if a ≤ c ≤ b, then a = c or b = c.

Lemma 93 Assume I ⊆ Σ+ is a non-empty, finite language. Then there are
concepts of the form C(a) : a ∈ Σ which cover ⊥.

112 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Proof. Assume for every C(a) : a ∈ Σ there is an X ≤ C(a). As a is the
≤I -largest string in C(a), X ⊆ C(a), we have some ~w ≤I a with |~w| > 1 for all
a ∈ Σ. As we have some ~xa~y ∈ I, this means we have ~x~w~y ∈ I; as ~w = ~x′a′~y′,
and as some ~w′ ≤ a′, we have ~x~x′ ~w′~y′~y ∈ I; as ~w′ = ~x′′a′′~y′′ etc., and I is infinite.
�

This result is strongly related to the fact that for every a ∈ Σ, if there is a
~w ≤I a, then a 6v ~w.

Lemma 94 In a finite language I, C(ε) covers ⊥; in other words: there is no
~w ≤I ε.

Proof is immediate after all. We now come to the definition of the analogical
maps. We first define the map CP1, the conceptual counterpart of P1.

Definition 95 Given a finite language I, V,W ∈ SCL(I), W 6= V , we have
(V,W) ∈ CP1(I) if and only if

1. V ≤SCL(I) W , and

2. there are X,Y ∈ SCL(I) such that X ◦ V ◦ Y = W .

Moreover, we have (W,V) ∈ CPr(I) if and only if

1. V ≤SCL(I) W

2. there are concepts X,Y such that X ◦ V ◦ Y = W ,

3. for X ′ 6= Z1 ◦X,Y ′ 6= Y ◦Z2, we have X ′ ◦V ◦Y ′ ≤ C(I)⇔ X ′ ◦W ◦Y ′ ≤
C(I).

We also write V ≈CP1
I W for (V,W) ∈ CP1(I), and if (V,W) ∈ CPr(I), we also

write V ≈CPrI W or say that V,W are pseudo-recursive in I.

This differs somewhat from the definition on strings; we quickly show that
the two nonetheless coincide in the case we talk about concepts on strings.

Lemma 96 Assume ~w @ ~v, and I is a finite language. Then we have (~w,~v) ∈
P1(I), if and only if (C(~w), C(~v)) ∈ CP1(I).

Proof. We prove the bi-implication by proving bi-implications of the two
conditions.

1. Assume ~w ≤I ~v. Then it follows that if ~x ∈ C(~w), then ~x ∈ C(~v), and so
C(~w) ≤ C(~v).

Conversely, C(~x) = {~y : ~y ≤I (~x)}. So it follows that if C(~w) ≤ C(~v), then
~w ≤I ~v.

2. Assume ~w v ~v. Then ~x~w~y = ~v for some ~x, ~y. Consequently, there are
C(~x), C(~y), and C(~x) ◦ C(~w) ◦ C(~y) = C(~v) (this equation generally holds in a
SCL).

Conversely, assume there are concepts X,Y such that X ◦ C(~v) ◦ Y = C(~w).
By assumption, ~v v ~w, and ~w 6= ~v, because otherwise C(w) = C(v). �

So we have a proper generalization of P1, in that we allow P1 also for sets
of strings, whereas the two coincide, if used for simple strings. For the case of
Pr, things are slightly more complicated, we do not get a correspondence which
is so simple, because we cannot characterize the recursive contexts in terms of
strings. Still, there is an implication:

4.9. ANALOGIES AND INFERENCES WITH POWERSETS 113

Lemma 97 Assume I is a finite language. If (~w, ~x~w~y) ∈ Pr(I), then (C(~w), C(~x)◦
C(~w) ◦ C(~y)) ∈ CPr(I).

Proof. The first two conditions are clear from the previous proof. Assume
~x~w~y = ~v, and if (~a~w~b) ∈ I, (~a,~b) 6= (~a′~x, ~y~b′), then ~a~v~b ∈ I. Now assume there
are concepts Z1, Z2 such that Z1 ◦ C(~w) ◦ Z2 ≤ C(I) and Z1 ◦ C(~v) ◦ Z2 6≤ C(I).
Then there is ~z1~v~z2 ∈ Z1◦C(~v)◦Z2, such that ~z1~v~z2 /∈ I, because ~v is ≤I -maximal
in C(~v). At the same time, ~z1 ~w~z2 ∈ I, because Z1 ◦ C(~w) ◦Z2 ≤ C(I). Therefore,
by assumption we must have ~z1 = ~z′1~x, ~z2 = ~y~z2. Therefore, Z1 ≥ Z ′1 ◦ C(~x),
Z2 ≥ C(~y) ◦ Z ′1. So we just have to show equality. Assume Z ′1 ◦ C(~x) < Z1 for
arbitrary Z ′1. It follows that Z1 ◦A ≥ Z ′1 ◦ C(x) ◦A for all concepts A; same for
Z2. So there is a string ~z1 ∈ Z1, ~z1 6= ~z′~x, ~z1 ∈ Z2, ~z′ 6= ~y~z′′, such that both
~z1~v~z2 /∈ I, ~z1 ~w~z2 ∈ I. Contradiction. �

What we also get another characterization of recursive contexts in CPr:

Lemma 98 Let X,Y be concepts of SCL(L). We have W ≤ V , X ◦W ◦Y = W ,
iff and only iff C(ε) ≤ X ∧ Y .

Proof. If : W ≤ V if and only if W ⊆ V (speaking of extents rather than
concepts). Now assume X ◦W ◦ Y = V . If C(ε) ≤ X ∧ Y , then ε ∈ X ∩ Y . So
we have W ⊆ XWY ⊆ X ◦W ◦ Y .

Only if : Conversely, assume we have W ≤ V and X ◦W ◦ Y = V , and
assume ε /∈ X ∩ Y . Then every string in V must be strictly longer than a string
in W . But this contradicts W ⊆ V . �

Note that this property is not restricted to the finite, but also holds for
infinite languages. What about a pre-theory as (g2, P2)? Here we see the full
disadvantage of the conceptual approach: there does not seem to be a meaningful
way to transfer it to this level. For example, try the following:

We have A ◦ C ◦ E ≈P2
I A ◦B ◦ C ◦D ◦ E, if and only if (A ◦ C ◦ E) ∨ (A ◦

B ◦ C ◦D ◦ E) ≤ C(I).
For the elementary condition, there is no reasonable way of transferring it,

because the composition of a concept by ◦ tells us little if anything about the
shape of the strings it contains – a concept of the form (A ◦B ◦C ◦D ◦E) might
contain strings of one letter etc. There is however some hope:

Lemma 99 In a finite language I, concepts X1 6= C(ε) 6= X2, of SCL(I), we
always have X1 ◦X2 6≤ X1 ∧X2.

Proof. Assume X1 ◦X2 ≤ X1. As X1 6= C(ε) 6= X2, for each string in X1,
we find a string in X1 ◦X2 which is strictly longer. As there is an upper bound to
string length, we cannot have X1X2 ⊆ X1. Same for X2, and the claim follows.
�

So in a sense, in finite languages the ◦-operation is more informative on
the vertical structure than in infinite languages, but still there are many open
problems we cannot address here.

We now come to our inference rules. Obviously, these have to look differently,
as they proceed over sets of strings. For ~w,~v ∈ Σ∗, A ⊆ Σ∗, write ~wA~v for
{~w~a~v : ~a ∈ A}; similarly for ~wA~vB~u etc. To get in line with the previous formats,
we now have inference rules of the following kind:

` ~w~x1~v ∈ I ... ` ~w~xi~v ∈ I
` ~w{~x1, ..., ~xi}~v ⊆ fP (I) (4.34)

114 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

We allow this for all finite sequences of premises. Thereby, we get the premises
we need to apply our analogies on concepts. We also need to be able to get rid
of sets and go back to simple linguistic judgments; we do this as follows:

` ~wV ~v ⊆ fP (I) ~x ∈ V
` ~w~x~v ∈ fP (I) (4.35)

By the requirement that the number of premises be finite (though arbitrarily
large), we only allow finite sets to figure in our inferences. Now we can come
to the “major” inference rules. To motivate our treatment, we first present a
scheme which is inadequate. The problem is that by using only concepts, we
lose the structure inherent in the strings, or put differently, we do not see it any
more and thus cannot refer to it when making inferences. Take the following
inference rule:

` ~wB~v ⊆ L B ⇐P
L A

` w(A)~v ⊆ L (4.36)

That does not work recursively, because we do not “see” B within A. So we
have to find another solution. We will use the following: we write analogies on
explicit terms (which is sufficient by our conditions), that is, for A = C ◦B ◦D,
instead of B ⇐P

L A we write B ⇐P
L C ◦B ◦D, which is just another equivalent

way of writing the same concept. Now, inference rules do not introduce the
resulting concepts, but rather the concatenation of their extents:

` wB~v ⊆ L B ⇐P
L C ◦B ◦D

` w(CBD)~v ⊆ L (4.37)

The interpretation – that is, string denotation – of (CBD) is not C ◦ B ◦
D = (CBD)./, but simply CBD, the pointwise concatenation without closure.
This makes subconcepts accessible and allows us to refer to the same concept
recursively. But more than this, it also warrants us from unwanted inferences.
Assume we have the language I = {x, axb, y}. Here we have C(x) ≈CPrI C(axb),
and y ∈ C(axb). However, we do not want to make inferences on y, as it is
not involved in any pseudo-recursive constellations. So our solution is both
necessary and preferable on conceptual grounds. So we denote the inference
rules – inference rules in (4.34),(4.35),(4.37), plus standard inference of analogies
from similarity – by Cg, so that we get two new pre-theories: (Cg, CP1) and
(Cg, CPr).

4.9.1 Upward Normality and (Weak) Monotonicity

Obviously, things are more complicated with concepts than with strings. What
are the main factors in this complication? The main reason is easily identified
as the following: the monoid of concepts with ◦, (BL, ◦, C(ε) is not free, and
so we cannot think of ◦ as in terms of concatenation. This means we lose the
uniqueness of decomposition property. What consequences does this have? First
of all, if we strive for characteristicity or downward normality, this makes the
search much more complicated. For us, the main step was the proof of downward
normality was that from the derivability of a certain string in fP (I), we could
conclude that there was a certain string in I. Now this is much more complicated,

4.9. ANALOGIES AND INFERENCES WITH POWERSETS 115

if possible at all, because analogies do not directly reveal the strings which are
involved.

Upward normality, weak and strong monotonicity on the other side are
unproblematic: the normalizing maps can be adapted accordingly, and the
powerset construction will still work; we can also easily make sure that our
projections are closed.

Regarding upward normality, things are quite easy again. We can take the
normalizing maps p(Cg,CP1), p(Cg,CPr), Recall that from the definitions of the last
section, it follows that

p(Cg,CPr)(I) = I −maxrad∗(per(Cg,CPr)(I)), (4.38)

where per(Cg,CPr)(I) := {M ⊆ I : I ⊆ CgCPr(I−M)}; and pCgCPr◦p(Cg,CPr)(I) =
CgCPr ◦ p(Cg,CPr)(I).

This yields an upward normal pre-theory and projection, as already follows
from the previous results. The proof of upward normality in the last section did
not make reference to the pre-theory itself, just to the set-theoretic properties of
the order rad∗. The same holds for weak monotonicity. So whereas our ontology
in terms of analogy has changed, the resulting projections itself still map sets
of strings to sets of strings, so everything which works on the level of sets and
projections works fine as before. So we have the following corollary:

Lemma 100 (pCg, CPr ◦ p(Cg,CPr)), (pCg, CP1 ◦ p(Cg,CP1)) are upward normal
and weakly monotonic.

More problematic is the map q. Already above, we could not prove that q
yields upward normality, but only under the assumption that for a pre-theory
(f, P), we find for every language I, J : I ⊆ J ⊆ fP (I), a language J ′ ⊇ J such
that gP (I) ⊇ gP (J ′). If we could not even prove this for Pr, we cannot prove it
for CPr either, because of the following theorem:

Theorem 101 Given a finite language I, we have 1. gP1(I) ⊆ CgCP1(I) and 2.
gPr(I) ⊆ CgCPr(I).

Proof. 1. Follows from lemma 96 above: assume we have (~x, ~y) ∈ P1(I),
~w~x~v ∈ I. Then we have C(~w)C(~x)C(~v) ⊆ I, and (C(~x), C(~y)) ∈ CP1(I). So the
claim follows.

2. This follows by the same argument from lemma 97. �
So even if q is normalizing for Pr, it is not guaranteed that it is normalizing

for CPr; but the converse is true.

Regarding monotonicity, there is nothing which has changed considerably, that
is: the powerset construction works as before, and all results can be obtained
as before. The reason is that all results on monotonicity and the powerset
construction for pre-theories and projections were obtained by purely set-theoretic
methods, not by language-theoretic techniques, so they hold regardless of the
pre-theory and its primary objects. As we have given the definitions in their full
generality already in the preceding section, we urge the critical reader to verify
our claims checking the section on monotonicity.

116 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

4.9.2 Reducing Lattices to Languages

The main problem is that we cannot treat concepts like letters in a language. We
will now show some preliminary results on how we might nonetheless reduce them
in some way to simple languages. The technical side will be quite self-explaining,
but one has to be careful what these results mean. They do not mean that results
from string-based pre-theories can be carried over to concepts. They mean that
the results can be transferred if we are happy with thinking of our concepts as
the basic letters of a new language, that is, the basic language-theoretic objects,
which only in the very final spell-out are substituted by strings. This might
be quite desirable: we can think of our concepts as syntactic categories (or
rather: pre-categories), and project not the string language, but the language of
syntactic categories. I guess most linguists would be fine with this procedure,
and many would prefer it over a procedure which simply works with strings. The
main reason is: presumably, it makes language less messy than it is on the level
of visible strings. And from a language-theoretic point of view, our procedure of
pre-categorization is very well-defined, so on grounds of formality there is nothing
to object. Still we have to be aware that we lose the very immediate touch with
the “visible language” we had before, regardless of whether we consider this an
advantage or rather a disadvantage.

Given a language L ⊆ Σ∗, we denote by S(L) the partially ordered monoid
([Σ∗]∼L ,≤L, •), where ≤L is the linguistic order, which is extended from strings,
where it forms a pre-order, to equivalence classes of the form [~w]L := {~v : ~v ∼L ~w},
where it forms a partial order; and • is defined by [~w]L • [~v]L = [~w~v]L. Note
that the monoid operation • is also not free, and in general, we might have
[~w]L[~v]L 6= [~w~v]L. (see [9] on this problem).

We now present the extensionality lemma, which correlates the extension
of concepts (set-theoretically) with their combinatorial properties in the lattice.
This result does not hold in all residuated lattices, but only for syntactic concept
lattices! The reason that this can be despite the completeness theorem in
[72] is that it is not an inequation of the lattice itself, but a statement in our
meta-language.

Lemma 102 (Extensionality Lemma)

1. For X,Y ∈ SCL(L), if X 6= Y , then there are X1, X2 ∈ SCL(L), such
that X1 ◦X ◦X2 ≤ C(L) and X1 ◦ Y ◦X2 6≤ C(L) or vice versa.

2. If for all X1, X2 ∈ SCL(L), we have X1 ◦ X ◦ X2 ≤ X1 ◦ Y ◦ X2, then
X ≤ Y .

Proof. 1. Assume we have X 6= Y . Then we also have X. 6= Y .. Assume
wlog that there is (~x, ~y) ∈ X., (~x, ~y) /∈ Y .. Then it follows that C(~x)◦X ◦C(~y) ≤
C(L), because ~xX~y ⊆ L, and for all ~x′ ∈ C(x), ~x′ ≤L x, for all ~y′ ∈ C(~y), ~y′ ≤L ~y.
Conversely, as (~x, ~y) /∈ Y ., we have ~xY ~y 6⊆ L, and so C(~x) ◦X ◦ C(~y) 6≤ C(L).

2. Contraposition: assume we have X 6≤ Y . Then by the Galois-connection,
we have Y . 6⊆ X., and so there exists (~x, ~y) ∈ Y ., (~x, ~y) /∈ X.. As in 1., we
know that C(~x) ◦ Y ◦ C(~y) ≤ C(L), but C(~x) ◦ X ◦ C(~y) 6≤ C(L). From this it
follows that C(~x) ◦X ◦ C(~y) 6≤ C(~x) ◦ Y ◦ C(~y). �

In the sequel, we will embed (monoid reducts of) concept lattices in languages.
In all of what is to follow, we are interested in (combinations of) concepts being

4.9. ANALOGIES AND INFERENCES WITH POWERSETS 117

smaller than C(L), the concept of the strings of the language with respect to
which we form our concepts. There is one problem about this approach: let
L ⊆ Σ∗. There is always a largest concept C(Σ∗); and it can easily happen
(though not necessarily) that we have (Σ∗). = ∅. In that case, there are no
concepts X,Y such that X ◦ C(Σ∗) ◦Y ≤ C(L), and consequently, the techniques
presented below do not work for this concept. In particular, there is no general
way to translate this concept into an equivalence class, because there might be a
language, where each string in Σ∗ figures as some substring, yet the language
does not equal Σ∗ – just think of the palindrome or copy languages! So for all
that is to follow, we exclude this concept from consideration, which does no
harm as it is trivial and syntactically uninformative anyway.

Definition 103 We say a SCL over a language L′ is embedded in a language
L ⊆ Σ∗, if there is a injective map i : SCL(L′)→ [Σ]∼L , such that i(C1 ◦ C2) =
[i(C1)i(C2)]L, and C1 ≤ C2 ⇔ i(C1) ≤L i(C2). In other words, we require there
to be an embedding of the reduct (BL′ , ◦, C(ε)) in S(L). If in addition, i is
surjective, we write S(L) ∼= SCL(L′).

A first reduction result goes as follows:

Theorem 104 For each finite language I, concept lattice SCL(I), there is a
finite language J over a finite alphabet such that S(J) ∼= SCL(I).

Proof. Let I be a finite language and SCL(I) its concept lattice. We
construct Σ as follows: for every X ∈ SCL(I), we have a letter x ∈ Σ, such that
there is a bijection i : SCL(I)→ Σ. We now define IC ⊆ Σ∗ by x1x2...xi ∈ IC,
if and only if we have i−1(x1) ◦ i−1(x2) ◦ ... ◦ i−1(xi) ≤ C(I).

We now prove that S(IC) ∼= SCL(I). First, we extend i−1 to strings in the
usual fashion: i−1(a~w) = i−1(a) ◦ i−1(~w); we thus have a homomorphism i−1

from Σ∗ onto the syntactic concepts.
1. There is a bijection from SCL(I) to [Σ∗]∼IC .
Let Y ∈ [Σ∗]∼IC be an equivalence class over IC , and let Y . be the set of its

contexts in IC. Then by definition, for (x1...xi, xj ...xk) ∈ Y ., xl...xn ∈ Y , we
have x1..xixl...xnxj ...xk ∈ IC, and thereby i−1(x1..xixl...xnxj ...xk) ≤ C(I). In
turn, by the extensionality lemma, this means that for every Y ∈ [Σ∗]∼IC , we
have a separate concept. Now assume we have two concepts X,X ′. Then by the
extensionality lemma, we have a distinguishing context in IC . This shows that
there is a bijection between concepts of I and equivalence classes of IC .

2. ◦
We just have to show that if X◦Y = Z, then we have i(X)i(Y) ∼IC i(Z). This

is straightforward, because we have i−1(xy) ≤ C(I) if and only if i−1(z) ≤ C(I).
3. ≤
We show that X ≤ Y if and only if i(X) ≤IC i(Y).

Only if : assume X ≤ Y . Then it follows that if have X ◦ Y ◦ X ′ ≤ C(I),

then X ◦X ◦X ′ ≤ C(I). So if i(X)i(Y)i(X
′
) ∈ IC , then i(X)i(X)i(X

′
) ∈ IC .

If : Assume we have ~z ≤IC ~u. Then we have ~x~u~x′ ∈ IC ⇒ ~x~z~x′ ∈ IC;
consequently, i−1(~x) ◦ i−1(~u) ◦ i−1~x′ ≤ C(I)⇒ i−1(~x) ◦ i−1(~z) ◦ i−1~x′ ≤ C(I).

By the extensionality lemma part 2, it follows that i−1(~z) ≤ i−1(~u). �
Note that the proof works equally well with an infinite language L; but if the

language is not regular, we will have an infinite alphabet for LC . This is a very

118 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

good result, but note that the usage of equivalence classes puts some difficulties
to us:

Lemma 105 Let I ⊆ Σ∗ be a finite language, and assume that we have ~x ∼I
~y, ~x1 ∼I ~y1, ~x2 ∼I ~y2, where ~x 6= ~y and ~xi 6= ~yi for i ∈ {1, 2}. Then ~x 6≈PrI ~x1~x~x2,
and ~y 6≈PrI ~y1~y~y2.

Proof. Assume wlog that ~x1 6= ~y1. First of all, we have to make a premiss
explicit, which is implicit in the assumption that I is finite, namely that ~x 6v ~y,
and ~x1 6v ~y1, and vice versa. That follows from a basic lemma on finite languages.

By assumption, that ~x ≈PrI ~x1~x~x2, it follows that we have some ~w~x~v ∈ I,
where (~w,~v) is not recursive for (~x, ~x1~x~x2). Then we have ~w~x1~x~x2~v ∈ I. By
~x ∼I ~y we can infer ~w~x1~y~x2~v ∈ I. Now, (~w~x1, ~x2~v) is not a recursive context
for (~y, ~y1~y~y2) (otherwise ~x1 would be a substring of ~y1 or vice versa); therefore
we have ~w~x1~y1~y~y2~x2~v ∈ I. Therefore, we have ~w~x1~y1~x~y2~x2~v ∈ I, and for the
same reason as above, (~w~x1~y1, ~y2~x2~v) is not recursive for (~x, ~x1~x~x2), therefore
we have...and so on, so I must be infinite, contradiction. �

So this shows us: we cannot just talk about equivalence classes as we can talk
about strings; the notion of pseudo-recursion is fundamentally at odds with the
notion of equivalence classes. This result also puts us in guard: in interpreting
concepts as equivalence classes we have to be very careful, and the first reduction
theorem is not as useful as it seems.

Now the question is: assuming we can perform a reduction back to strings
without any substantial loss, we are (almost) back where we have been before;
maybe we have not lost anything substantial with respect to the simple approach
– but what have we gained? The answer to this question lies in the properties
of our concept language, which has particular properties corresponding to the
concept lattice. For example, we recognized the problem that with string-based
pre-theories we cannot distinguish between different distributions of strings, for
example: ~x in the position where both ~x, ~y occur. Concepts obviously solve this
problem. How is the solution preserved in the language reduction? The key is a
property of the reduction language.

Definition 106 We say a language L ⊆ Σ∗ is distributional, if every X ∈
SCL(L), there is a ~w ∈ Σ∗ such that X =↓L ~w := {~v : ~v ≤L ~w}.

This means: for every distribution (closed set of contexts), which is charac-
terized by the occurrence of some set of strings, we find a single word which
characterizes it; more explicitly: for every S ⊆ Σ∗, there is a word ~w ∈ Σ∗ such
that ~x~w~y ∈ L iff ~xS~y ⊆ L (excluded the special case where there is no context
for S). For distributional languages, we find the following nice property.

Given a set S ⊆ Σ∗, we have Su := {~t : for all ~s ∈ S, ~s ≤L ~t); and similarly,
Sl := {~t : for all ~s ∈ S, ~t ≤L ~s). In the context of the order induced by a
language, the set Su denotes the set of all strings ~t, such that for any ~x, ~y ∈ Σ∗,
if ~x~t~y ∈ L, then ~x~s~y ∈ L for all ~s ∈ S. So it is the set of substrings, for which
we can substitute all ~s ∈ S. Sl conversely is the set of strings, which we can
take as substitute for all ~s ∈ S: if ~w ∈ Sl, ~s ∈ S, then from ~x~s~y ∈ L it follows
that ~x~w~y ∈ L.

The DM -completion of a partially ordered set (P,≤) is the lattice ({A ⊆
P : Aul = A},⊆). For a partially ordered monoid, it respects the monoid
operation, and creates unique preserves meets and joins, where we define for

4.10. CONTEXT-FREENESS AND BEYOND: SCLN 119

A,B closed sets, A ∧ B = A ∩ B, A ∨ B = (A ∪ B)ul, and A · B = (AB)ul,
where AB := {a · b : a ∈ A, b ∈ B} (for reference on this procedure, consider
[19], p.173). We will show the following:

Lemma 107 Let L ⊆ Σ∗ be a distributional language. The syntactic concept
lattice of L is isomorphic to the DM-closure of the partially ordered monoid
(Σ∗/∼,≤L).

(It is only isomorphic because the elements of concept lattices are pairs of
sets of strings and sets of contexts given by a Galois connection; the elements of
the DM completion are only sets of strings. These, however, are identical.)

Proof. We only show that the two closure operators [−]ul and [−]./ coincide
on any set S ⊆ Σ∗; the rest follows from properties of the connectives in terms
of closure. So what we show is: S./ = Sul.
⊆ Let S ⊆ Σ∗, and ~w ∈ S./. We show that ~w ∈ Sul. In case ~w ∈ S, this is

trivial as [−]ul is a closure operator. So assume ~w /∈ S. If ~w ∈ S./, this means

that for all contexts (~a,~b), such that for all ~s ∈ S,~a~s~b ∈ L, we also have ~a~w~b ∈ L.
Su is the set of all words, for which all ~s ∈ S can function as substitute. So
regarding the contexts (~a,~b) ∈ S., Su consists of all and only the words which
occur only (i.e., if at all) in the contexts in S.. Now as ~w ∈ S./, we know that ~w
can occur in all these contexts. Consequently, we can substitute ~w for all words
~t ∈ Su; therefore, ~w ∈ Sul.
⊇ As L is distributional, there is ~u ∈ Σ∗ such that ~x~u~y ∈ L iff ~xS~y ⊆ L, and

so ~u ∈ Su. Now, every ~w ∈ Sul must satisfy ~w ≤L ~u; so this means by the above
bi-implication: if ~x~w~y ∈ L, then ~xS~y ⊆ L; consequently, ~u ∈ S./. �

Note that we used the premise of L being distributional only on the proof of
⊇; so otherwise, we still get an inclusion. On the other side, the lemma can be
proved to be wrong without this additional premise. Furthermore, we have the
following:

Lemma 108 Given a language L, syntactic concept lattice SCL(L), the concept
language LC is distributional.

Proof. As SCL are complete lattices, we have, for any set X ⊆ SCL(L),∨
X ∈ SCL(L). This means that i(W)i(Xi)i(V) ∈ LC for all Xi ∈ X, if and

only if i(W)i(
∨

X)i(V) ∈ LC . �
So the distributionality of the concept language makes sure: even though

we just speak about words, not about strings, there is nothing we lose, because
every distributional property of a set of strings is the distributional property of a
single string. I have to admit at this point that the reduction is still incomplete
and does not permit substantial insights. Still it is an interesting way to go for
further research. Now instead we will look at the first pre-theory which brings
us beyond the context-free languages.

4.10 Context-freeness and Beyond: SCLn

The extension based on syntactic concept lattices was mainly useful to make
pre-theories more liberal and to capture additional patterns; it does not make
us transcend the bounds of context freeness:

120 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Lemma 109 Given any finite language I, the language CgCPr(I) is a context-
free language.

The proof is immediate and can be done using grammar construction as in
the proof of theorem 20. So we have C(Cg, CPr) ⊆ CFL. So we are still in the
situation that context-freeness of “languages” is a methodological universal, a
result which goes against intuition of most researchers in the field of formal
linguistics. We will now make our first attempt to transcend this boundary.

Syntactic concept lattices can be extended in a very natural way (see for
example [8],[53]). The change is first of all in the underlying monoid. Whereas in
the simple case, we had the monoid (Σ∗, ·, ε) underlying the concept analysis, we
can now switch to the monoid ((Σ∗)2, ·, (ε, ε)), where we have (~w1, ~w2) · (~v1, ~v2) =
(~w1~v1, ~w2~v2). Obviously, this can be generalized to a monoid ((Σ∗)n, ·, (ε, ..., ε))
for any n ∈ N. For sake of brevity we will denote ((Σ∗)n, ·, (ε, ..., ε)) simply by
(Σ∗)n. All what is to follow can be read as holding for all n ∈ N, though we will
mostly exemplify it with n = 2.

One might ask now the following question: why do we introduce this extension
only for concepts, why do we not devise string-based pre-theories using this
extended monoid? There is a good answer to this question: the problem with
the monoids (Σ∗)n : n ≥ 2 is that it is no longer free either. To see this, take
a, b ∈ Σ; then we have in (Σ∗)2: (a, b) = (a, ε) ·(ε, b) = (ε, b) ·(a, ε). So we lose the
property of freeness, which in turn makes it very hard with our current methods
to find characteristic or downward normal pre-theories.5 So the situation is
similar to the situation with concepts, which also yield an unfree monoid. So we
can conclude: once we have lost freeness, the extension from (Σ∗) to (Σ∗)n gives
us a clean gain. But as this step makes us lose freeness anyway, it does not seem
to be very worthwhile to pursue this monoid in simple string-based pre-theories,
as the main advantage of the simple string based pre-theories was that it was
based on a free monoid.

We thus now extend syntactic concepts over (Σ∗)n, exemplifying the construc-
tion with n = 2. As extents of syntactic concepts, we take subsets of Σ∗ × Σ∗

(instead of subsets of Σ∗), and as intents, we take subsets of Σ∗×Σ∗×Σ∗ (instead
of Σ∗ × Σ∗), such that we have [−]. : Σ∗ × Σ∗ → Σ∗ × Σ∗ × Σ∗, and dually
[−]/ : Σ∗ × Σ∗ × Σ∗ → Σ∗ × Σ∗. Given a language L ⊆ Σ∗, and M ⊆ Σ∗ × Σ∗,

we put M. := {(~x, ~y, ~z) : ∀(~a,~b) ∈ M,~x~a~y~b~z ∈ L}; [−]/ is defined inversely.
Obviously, this can be easily generalized to sets of arbitrary n, n+ 1 tuples.

A syntactic concept is a pair (M,N) such that M = N/, N = M.; but
for convenience (as before), we sometimes simply ignore the second component.
We define ∨,∧ as usual: (M1, N1) ∨ (M2, N2) = ((M1 ∪M2)./, N1 ∩ N2), and
dually (M1, N1) ∧ (M2, N2) = (M1 ∩M2, (N1 ∪N2)./). And finally, we define
(M1, N1) ◦ (M2, N2) = ((M1M2)./, (M1M2).), where M1M2 = {~w1 · ~w2 : ~w1 ∈
M1, ~w2 ∈ M2}; but note that · here denotes the generalized concatenation in
(Σ∗)n!

Denote the class of (generalized) syntactic concept lattices, where extents
are sets of n-tuples, intents sets of n+ 1-tuples, by SCLn. On the level of the

5As a side note, and to make visible of what kind the complications are, I want to point
out that all complications, which arise when we go from simple finite automata to finite state
transducers, can be traced back to this simple fact that the underlying monoid of transducers
is not free in exactly the same way we described above. This leads, among other, to: no closure
under intersection and complement, undecidability of inclusion and equivalence.

4.10. CONTEXT-FREENESS AND BEYOND: SCLN 121

concepts themselves, everything is the same as before, and we would hardly
see the difference if we would not know that the underlying monoid is different.
But there are some differences. For example, the neutral element of a lattice
SCLn(L) is C((ε1, .., εn)). This is fine; what is more problematic is that C(L) =
(ε1, .., εn+1)/ = C({(~w, ..., ~wn) : ~w1... ~wn ∈ L}). This illustrates how there is
not one concept corresponding to a single word, but rather one for each of its
decompositions. Recall that in SCL, we had C(~w) =↓ ~w. In SCLn, things are a
bit different, and it is undefined what C(~w) even means: we rather get a possibly
different concept for every decomposition ~w1... ~wn = ~w, namely C(~w1, ..., ~wn).

So whereas on the level of concepts, everything looks neat as before, the
relation from concepts to strings is considerably more complicated. And this is
a complication with real consequences, because our ultimate point of reference
is a language L, that is, a set of strings. So the question is: can our results
be generalized from SCL (that is, SCL1) to SCLn for any n ∈ N? The most
important result for the relation from strings to the abstract concept language
is the extensionality lemma. We will now show that a generalized version holds.
We therefore need a new symbol: for M ⊆ (Σ∗)n, N ⊆ Σ∗, we write M b N if
for all (~w1, ..., ~wn) ∈M , ~w1... ~wn ∈M .

Lemma 110 (Generalized Extensionality Lemma)

1. For X,Y ∈ SCLn(L), if X 6= Y , then there are X1, X2 ∈ SCLn(L), such
that X1 ◦X ◦X2 ≤ C(L) and X1 ◦ Y ◦X2 6≤ C(L) or vice versa.

2. If for all X1, X2 ∈ SCLn(L), we have X1 ◦X ◦X2 ≤ X1 ◦ Y ◦X2, then
X ≤ Y .

Proof. 1. Assume we have X 6= Y . Then again we have X. 6= Y .,
because all laws of Galois connections still hold in the general case. Assume
wlog that there is (~x1, ..., ~xn) ∈ X., (~x1, ..., ~xn) /∈ Y .. Then it follows that
(C((~x1, ε, ..., ε))◦C((ε, ~x2, ..., ε))◦ ...◦C((ε, ..., ~xn−1)))◦X ◦C((ε, ..., ε, ~xn)) ≤ C(L),
because (~x1, ~x2, ..., ~xn−1) · X · (ε, ..., ε, ~xn) b L. Conversely, as (~x1, ..., ~xn) /∈
Y ., we have (~x1, ~x2, ..., ~xn−1) · Y · (ε, ..., ε, ~xn) 6b L, and so (C((~x1, ε, ..., ε)) ◦
C((ε, ~x2, ..., ε)) ◦ ... ◦ C((ε, ..., ~xn−1))) ◦ Y ◦ C((ε, ..., ε, ~xn)) 6≤ C(L).

2. Contraposition: assume we have X 6≤ Y . Then by the Galois-connection,
we have Y . 6⊆ X., and so there exists (~x1, ..., ~xn) ∈ Y ., (~x1, ..., ~xn) /∈ X.. As
in 1. we know that C((~x1, ε, ..., ε)) ◦ C((ε, ~x2, ..., ε)) ◦ ... ◦ C((ε, ..., ~xn−1)) ◦ X ◦
C((ε, ..., ε, ~xn)) 6≤ C(L), but C((~x1, ε, ..., ε)) ◦ C((ε, ~x2, ..., ε)) ◦ ... ◦ C((ε, ..., ~xn−1)) ◦
Y ◦ C((ε, ..., ε, ~xn) ≤ C(L). From this it follows that there are X1, X2 such that
X1 ◦X ◦X2 6≤ X1 ◦ Y ◦X2. �

So we can transfer this important result, which makes syntactic concept
lattices more well-behaved for our purposes than residuated lattices in general.
We now define the pre-theories and projections based on SCLn. We can now
define CnP1 as follows:

Definition 111 Given a finite language I, V,W ∈ SCLn(I), W 6= V , we have
(V,W) ∈ CnP1(I) if and only if

1. V ≤W , and

2. there are X,Y ∈ SCLn(I) such that X ◦ V ◦ Y = W .

122 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

One now might think that we can define CnPr in the same fashion:

Definition 112 (Preliminary Definition) Given a finite language I, V,W ∈
SCLn(I), W 6= V , we have (V,W) ∈ CnPr(I), if and only if

1. V ≤W

2. there are concepts X,Y such that X ◦ V ◦ Y = W , and

3. for X ′ 6= Z1 ◦X,Y ′ 6= Y ◦Z2, we have X ′ ◦V ◦Y ′ ≤ C(I)⇔ X ′ ◦W ◦Y ′ ≤
C(I).

On the level of concepts, this is perfectly fine, because concepts behave as
before. If we go down to the string level however, we find that this does not
do what we intend it to do: because for concepts over Σ∗, we had for every
M ⊆ Σ∗ a unique N ⊆ Σ∗ such that M ·N = MN (in fact, M ·N and MN are
notational variants). So we do have uniqueness up to [−]./ closure. This does
not obtain for (Σ∗)n; we have already demonstrated this for elements of (Σ∗)n;
and the same holds a fortiori for subsets of (Σ∗)n. This in turn means that for
every concept X, we might have a number of distinct concepts X1, ..., Xi and
Y1, ..., Yi such that for 1 ≤ j, j′ ≤ i, we have Xj ◦X ◦Yj = Xj′ ◦X ◦Yj′ , because
we already have Xj ·X ·Yj = Xj′ ·X ·Yj′ . So the definition of CnPr, as it stands
above, is useless, it cannot be satisfied.

We therefore must introduce a new notion, namely the notion of ◦-equivalence.
For SCLn, we define ∼◦⊆ (SCLn(L))4, and write (X1, X2) ∼◦ (Y1, Y2), if for
all Z ∈ SCL2(L), we have X1 ◦ Z ◦X2 = Y1 ◦ Z ◦ Y2. ∼◦ is thus an equivalence
relation; note that in our convention, it does not make explicit reference to L
or SCLn(L), though in principle it should. The same however already holds
for [−]. etc., so we just use the concept in a way that avoids any possible
confusion. Note that for SCL1, ◦-equivalence is not necessarily vacuous, that
is, (X1, X2) ∼ ◦(Y1, Y2) does not entail X1 = Y1, X2 = Y2. It is however quite
restricted and bound to cases which are not relevant to pseudo-recursion. In
the case of SCLn : n ≥ 2, it is absolutely crucial, because there is no way to do
without.

Definition 113 Given a finite language I, V,W ∈ SCL2(I), W 6= V , we have
(V,W) ∈ C2Pr(I) iff

1. V ≤W

2. there are concepts X,Y ∈ SCL2(I) such that X ◦ V ◦ Y = W , and

3. for Z1 6= Z ′1 ◦ X ′, Z2 6= Y ′ ◦ Z ′2, where (X ′, Y ′) ∼◦ (X,Y), we have
Z1 ◦ V ◦ Z2 ≤ L⇔ Z1 ◦W ◦ Z2 ≤ L.

This gives us the notion we need. Take for example a language I :=
{abcd, axbyczd}. Here we have C2Pr(I) = {(C(b, c), C(xby, cz)), (C(b, c), C(xb, ycz))},
as can be checked (checking such conditions becomes more tedious with growing
n, but is a good exercise though). Note that the two analogies illustrate a further
problem: assume y in the above example is a word ~y of length n. Then if we have
one analogy, we already get n+ 1 analogies, namely one for each decomposition
of ~y. This is another complication we have to be aware of. So problems regarding
closure under coding etc. will get much more complicated.

4.10. CONTEXT-FREENESS AND BEYOND: SCLN 123

We also have to adapt our inference rules; the old ones will no longer
work, because our inferences now proceed over sets of tuples, and we do not
have primitive judgments of the form ` (~w,~v) ∈ I. Rather, we first have to
“deconstruct” judgments of the form ` ~w ∈ I. Also, we have to take into account
the fact that inferences now proceed over an unfree monoid, and therefore,
“representation matters”; so we need to implement the equivalence of ((Σ∗)n, ·)-
terms in inferences. We do this by the map γ, where γ(~x1, ..., ~xi) = ~x1...~xi; so γ
is nothing but the classical concatenation function.

` ~w ∈ I w = γ((~x1, ~y1) · ... · (~xi, ~yi))
` γ((~x1, ~y1) · ... · (~xi, ~yi)) ∈ fP (I) , (4.39)

γ((~x1, ~y1) · ... · (~xi, ~yi)) = γ((~x′1, ~y
′
1) · ... · (~x′j , ~y′j)) ` γ((~x′1, ~y

′
1) · ... · (~x′j , ~y′j)) ∈ fP (I)

` γ((~x1, ~y1) · ... · (~xi, ~yi)) ∈ fP (I)
(4.40)

Keep in mind that these decompositions are by no means unique, not even
the maximal ones! So to accommodate this extension in the general notion of
pre-theories, we have to extend our language-theoretic structures; we leave this
implicit, as it is nothing but an exercise in formalization, without being of any
immediate usage for our purposes. Furthermore, of course we need the rules to
infer sets, as above:

` γ((~w1, ~v1) · (~x1, ~y1) · (~w2, ~v2)) ∈ fP (I) ... ` γ((~w1, ~v1) · (~xi, ~yi) · (~w2, ~v2)) ⊆ fP (I)

` γ((~w1, ~v1) · {(~x1, ~y1), ..., (~x1, ~y1)} · (~w2, ~v2)) ∈ fP (I)
(4.41)

And in addition the rules to go back from sets of terms to terms, which
are completely parallel (check CP1, CP1). Moreover, we need the inferences for
concepts; but luckily, these look exactly like the ones for CP1, CP1, because they
only refer to sets, not to underlying entities; so they can be taken over without
change. We will denote this set of (meta-)rules by Cng for n-tuples, so that
this way, we get the pre-theories (Cng, CnP1), (Cng, CnPr). We will not further
scrutinize the properties of this generalization; we just mention the following:
all constructions working set-theoretically also work in this case without loss
of generality, such as upward normality using p and monotonicity using the
powerset construction. Properties relying on language-theoretic constructions are
beyond reach with our current methods. An issue we have to settle at this point,
however, is the complexity of the class of languages induced by (Cng, CnPr). We
can provide an upper bound as follows:

Theorem 114 For any finite language I, CngCnPr(I), CngCnPr(I) are n-multiple
context-free languages.

For the (somewhat tedious) definitions of multiple context-free grammars
and languages, see [63], also [38]). We only prove the claim for CnPr, for CnP1 it
is exactly the same. In the proof, we write ~w for strings, w for tuples of strings,
and x for tuples of variables. Note that for variable tuples, we have the same
convention as for string tuples: (x1, x2) · (x3, x4) = (x1x3, x2x4).

Proof. We make the usual grammar construction: for each X ∈ SCLn(I),
we grant us a non-terminal NX ; We add have NX(~w1, ..., ~wi) ⇐ if and only

124 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

if (~w1, ..., ~wi) ∈ X; and we have rules X(x1 · ... · xi ⇐ Y1(x1), ..., Yn(xn) iff
Y1 ◦ ... ◦ Yn ≤ X. Finally, we add the rule S(γ(x))⇐ NC(I)(x), which reduces
tuples to strings and gives us the language the grammar generates. Call this
(preliminary) grammar PGIi , where i refers to the tuple size. It can be easily
seen that we have L(PGIi) = I, and moreover, any string can be derived in a
large number of ways according to the concepts to which it belongs.

Now we simply add rules NW (x1 · x2 · x3)⇐ NX(x1)NW (x2)NY (x3) if and
only if (W,X ◦W ◦ Y) ∈ CPr(I). Call the resulting grammar GIn; this obviously
is an MCFG.

As it might not be immediately clear that GIi does the job, consider the
following. Checking inclusions in both direction would be very tedious, but
luckily, there is a simpler way: as all our (non-terminal) MCFG-rules have the
form NW (x1y1z1, ..., xnynzn) ⇐ NX(x1, ..., xn)NW (y1, ...yn)NY (z1, ..., zn), we
can read it as a simple context-free grammar, with the only difference that it
generates terms of (Σ∗)n instead of Σ∗, but where juxtaposition is interpreted
as normal concatenation in ((Σ∗)n, ·) (note that this does not hold in general,
only for the grammars we construct)! So we obtain the proof from theorem 20
(and lemma 109) and the following considerations: we have ~w ∈ CngCnPr(I) if
and only if there is v such that γ(v) = ~w and NC(I)(v) is derivable; this holds if
and only if ~w ∈ L(GIn). �

So we get a clear upper bound for the complexity of languages induced by
CnPr. The question of lower bounds can be answered as follows:

Theorem 115 For every n ∈ N, there is an m ∈ N and a finite language I,
such that gCmPr(I) is not an n-MCFL.

Proof. Fix an n ∈ N. We now take the language I := {a1...am, a1b1a2...bm−1am},
where m > 2n. Then we obtain gCmPr(I) = {a1(b1)ia2...am−1(bm−1)iam : i ∈
N}. This is not an n-MCFL. �

So we here have a pre-theory which brings us into the realm of what is
known as mild context-sensitivity. Most linguists consider this to be the class
of languages which contains all possible natural languages (or formal models
thereof), though there is a lively discussion on that issue. So could we just be
happy with this result? In my view we cannot; because if we stay with these
results, then the fact that natural languages are mildly context sensitive is a
methodological universal ; and we want it to be an empirical fact, at least partially;
in our terminology: we would be satisfied if the mild context-sensitivity would
follow from some reasonable pre-theory (f, P) as a property modulo (f, P). But
for this to be the case, the pre-theory must necessarily induce languages which
are not mildly context-sensitive! So there is still plenty of work to do.

4.11 Transformational Pre-Theories

4.11.1 Ontological Questions

So far, we have only used the mechanism of substitution, even though we lifted
it from simple strings to sets of strings. In a sense, this is the “structuralist
heritage”, as substitution was the main tool of structuralism. However, pre-
theories are by no means necessarily restricted to the mechanism of substitution,
as we will show in this chapter: regarding the techniques and functions we can

4.11. TRANSFORMATIONAL PRE-THEORIES 125

use, there are virtually no restrictions. The main question, to which we have
already pointed before, is rather which operations on strings are “linguistically
meaningful”. This is a difficult question, to which the answer will be rather a
matter of taste than one of conclusive argument, and we will be lucky enough if
we yield a very broad agreement.

This question also has a long history; this relieves us from discussing it
extensively, because we think the main arguments have been exchanged, and our
focus is very different: for us, the main question is whether a technique yields
satisfying results in a purely mathematical fashion; whether it is linguistically
meaningful is of secondary importance. We will however shortly sketch in how
far this history is relevant for us. The switch from structuralism to the generative
paradigm proceeded along several “dimensions”: firstly it was ontological one,
as scholars went from considering language as an extensional, almost physical
object to considering it as a cognitive capacity (see [31]). A second switch was
in the formal methods linguists used: the main method of structuralists was
substitution, whereas generativists used the more powerful techniques of phrase
structure grammars and transformations. This change in methods in turn came
with a change in methodology: while methods of generativists became much
richer, they gave up on the strict structuralist methodology of gaining linguistic
insight; finding the “correct description” was more a matter of linguistic intuition
than the application of a rigid methodology. This switch in methodology seems
to be strongly related to the more elaborate methods generativists used, as they
make it much harder to formulate a precise methodology for gaining linguistic
insights. Though this correlation is fairly obvious, I do not know whether it
has been acknowledged explicitly. Be that as it may: one of the points of this
section is to try to untighten this correlation, and the question is: can we keep
up our strict methodology while enriching the techniques we use? Of course we
are not doing linguistics, but rather metalinguistics, but the problems are very
similar. We will put to use classes of functions within the framework of linguistic
metatheory. We formulate a precise methodology for handling transformation-
style functions in a language-theoretic context, where “transformation style”
should be read in the very broad sense of any functions beyond mere substitution.
As we will see, to make this work, we can use functions beyond substitutions,
but we have to make very essential restrictions on them.

Let us return to the first question, namely the linguistic meaning of language-
theoretic observations. Everyone will agree that substitution is in fact meaningful
for linguistics, as it seems to be the most innocent of all of the linguists tools.
(Though maybe not in the somewhat excessive way in which we have used it up
to this point.) The main theme of this chapter is the following: If we decide
to go beyond the concept of substitution, we open up a whole new world of
possibilities. On the downside, it seems to me that there will be broad agreement
that most of these possibilities are “linguistically meaningless”, because they will
be much too liberal, they will allow to project patterns to which we would never
attribute any linguistic relevance. So the main goal is here to find reasonable
restrictions of transformational pre-theories, which yet are powerful enough to
provide us some substantial gain. One main source of inspiration, as the title
suggests, will be transformational syntax, both for the things we have to allow,
and things we must not allow.

But as we will see, the issue of allowing certain operations is by no means
only of linguistic nature, it also has a mathematical content: allowing larger

126 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

classes of functions to make inferences does not necessarily result in larger classes
of induced languages; quite the contrary can be the case. This (not being very
deep) paradox will be the main motivation for us to consider more restricted
classes of functions.

Let us say a pre-theory is simple transformational, if it is structural and
based on strings. Our ontology thus contains strings, and in addition it contains
unary functions on strings. Our analogical maps map finite languages onto sets
of functions, that is, we have P : ℘(Σ∗)→ (Σ∗)Σ∗ . Inferences have broadly the
form:

` ~w~x~v ∈ fP (I) f ∈ P (I)

` ~w(f(~x))~v ∈ fP (I) (4.42)

Regarding the above scheme, note that we are quite close to the substitutional
structural pre-theories on strings, in fact, these appear to be special cases of
the transformational pre-theories. Therefore, there is obviously no reason to
consider the non-structural case, because we will get the same undecidability
results. This scheme needs however some explanation; in particular, there are
two ways to read it. These two readings are as follows: reading 1 : ~w(f(~x))~v is
just our abstract variable notation for a simple string, where (f(~x)) denotes the
value of f(~x). So for f(~x) = ~y, we thus just use f(~x) instead of ~y, because in the
general case we have to somehow correlate the two. Reading 2 : we literally read
f(~x) as a term. We thereby get a new distinction of weak and strong language:
for the weak language, we need to “spell this term out”, that is, replace it by its
value, because we want strings rather than terms. But for the strong language,
we can make inferences on simple strings, or on terms, and both of them make
sense. Call these two options, in analogy with some linguistic usage, “early
spell-out” and “late spell-out”.

It is easy to see that there can be a proper difference between the two. For
example, assume f(~x) = ~y~z~y′. In the early spell-out, we can now apply some
function to ~z. In late spell-out, this is impossible (in general): we do not see
this string, until we spell-out, and then it is too late. In particular, note that
in LAN spell-out, we always evaluate “inside out”; that is, if we derive a term
f1(...fi(~x)...), then we have to apply first fi, ... and then f1; otherwise functions
are undefined; this even though f1 was introduced first in the derivation, and fi
last. In early spell-out, it is quite the contrary: whatever is introduced first, is
applied first. Both options seem to be interesting for some, and problematic for
other reasons; so we will consider them both with some care.

In favor of “early spell-out” we have the following: there is no “hidden layer”.
So we do not apply functions to strings we do not really see. For example, one
can verify that f(~x) is be well-defined before introducing it. In late spell-out, on
the other side, one does not immediately know what f(~x) yields, so it is unclear
whether f(f(~x)) is even defined. On the other side, if we assume f(~x) to be
a variable in the sense of placeholder for a string, where f(~x) = y, there is no
problem.

In favor of late spell-out, let us recall that the main motivation for our
functional analogies was to provide some sort of recursive inferences beyond
substitution. However, with early spell-out this not always happens as we would
expect. Let us illustrate this with an example. Assume we have a function
f(an) = a2n. In a finite language we might have the analogy a ≈PI f(a) in some

4.11. TRANSFORMATIONAL PRE-THEORIES 127

analogical map P . Now if we have just a single word a as premise, late spell out
yields the language {a2n : n ∈ N}. Immediate spell out yields the language a∗,
because the possible inputs of f are always the single as!

This is clearly not what we intend, and this simple example already provides
us with the main argument for late spell out: as the analogies are always based
on finite languages, the early spell out would thus have the consequence that we
always instantiate the functions in one of a finite number of ways. Put differently:
a consequence of early spell-out is that our functions effectively are finite in a
set-theoretic sense; they are always instantiated on a finite number of arguments.
But this is not a reasonable requirement to us, as one main motivation for
introducing functions into our ontology are patters like duplication. To capture
these, we have to make sure that functions apply on larger and larger arguments.

This is for us the main argument for preferring inference on terms (late spell
out), but as we will see, there are also drawbacks, which lead us to considering
both. But first of all, we have to make the notation unambiguous. We have said
that there is a necessary distinction between weak and strong language, but now
in a different way: the strong language consists of a set of terms over strings and
functions from strings to strings; the weak language consists of a set of strings.
One is mapped to the other, if each atomic function term is substituted by its
value. We define this as follows.

Let Σ be an alphabet, FΣ be a set of functions f : Σ∗ → Σ∗.

1. If ~w ∈ Σ∗, then ~w ∈ Term(F ,Σ).

2. If t ∈ Term(F ,Σ), f ∈ FΣ, then f(t) ∈ Term(F ,Σ).

3. If t, t′ ∈ Term(F ,Σ), then tt′ ∈ Term(F ,Σ).

So let t ∈ Term(F ,Σ) be a term. Its value ‖t‖ is defined as follows:

1. If t = ~w : ~w ∈ Σ∗, then ‖~w‖ = ~w.

2. If t = f(t′), then ‖f(t′)‖ = val(f(‖t′‖)), where val(f(~x)) is the value of
the function.

3. If t = t′t′′, then ‖t′t′′‖ = ‖t′‖‖t′′‖.

So we take the convention that in an inference scheme, f(~x) is a term rather
the value of the function; and by ‖f(~x)‖ we denote its value f(~x). This allows
us to present the unambiguous inference rule for “early spell-out”:

` ~w~x~v ∈ fP (I) f ∈ P (I) ‖f(~x)‖ = ~y

` ~w~y~v ∈ fP (I)I (4.43)

Conversely, the late spell-out scheme would look as before; but we have to
be aware that context consist of terms rather than strings:

` t~xt′ ∈ fP (I) f ∈ P (I)

` tf(~x)t′ ∈ fP (I)I (4.44)

We will denote the two variants of inference rules with gearly, glate respectively.
So we have settled the first ontological issue. The next major question is the
following: given a transformational pre-theory P , I ⊆ Σ∗ a finite language,
we assume that it maps a language onto a set of functions, so it gives a map

128 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

P : ℘(Σ∗)→ (Σ∗)Σ∗ . Without further restrictions, this might well be an infinite
set! This might be problematic given our requirements that all procedures
be finitary. But actually, for late spell-out this is entirely unproblematic: we
just need a finite specification of the set, and thereby we can derive the term-
language without any further computation: we do not actually have to calculate
all the functions or even have the slightest idea what they look like. When
we then compute the value of terms, we have to compute the functions, but
even here, things are unproblematic: we just have to compute their values on
a certain, finite set of points, and as long as functions are computable, this
is no problem. The same holds for the early spell-out, except that we change
order of things. But there is a further simplification we can perform: in fact,
we do not to distinguish between different function which do the same thing
on some input; therefore, given a transformational pre-theory P , we can define
PR(I) :=

⋃
{|f | : f ∈ P (I)}, where by |f | we denote the graph of a functions,

that is, its set-theoretic interpretation. In the early spell out, we can replace the
entire set of functions with the relation PR(I), and make analogies according
to these pairs. Note however that if P (I) is infinite, even if all f ∈ PR(I)
are computable, the question whether (~w,~v) ∈ PR(I) might turn out to be
undecidable. Still, there are no difficulties which cannot be overcome.

4.11.2 Detour: an Alternative Scheme

There is a choice we have made, and which we should explain. In the above
scheme we have assumed that a pre-theory maps a language directly onto a set
of functions, and that these functions are universally applicable to any string in
fact(I) in inferences. An equivalent way of expressing the same thing would be:

` tyt′ ∈ fP (I) ∀~x ∈ fact(I) : ~x⇐P
I f(~x)

` t(f(~y))t′ ∈ fP (I) (4.45)

Here we make the universal quantification explicit, which was implicit in the
first scheme. We allow an analogy f only if for all ~x ∈ fact(I) it satisfies certain
requirements; as gain, we can apply it universally to any substring. Now the
question is: do we really need or even want this universal quantification? We
could state an inference scheme as follows:

` t~xt′ ∈ fP (I) ~x⇐P
I f(~x)

` t(f(~x))t′ ∈ fP (I) (4.46)

or in the early spell-out:

` ~w~x~v ∈ fP (I) ~x⇐P
I f(~x)

` ~w(‖f(~x)‖)~v ∈ fP (I) (4.47)

In this case, we have no universal requirements for f - the only thing which
matters is how it behaves on ~x. As a consequence, we can then only apply it
to ~x. In this case, let F be a class of functions which our pre-theory allows. P
does not map I on a set of functions, but rather on a set of pairs (~x, f(~x)) :
~x ∈ fact(I), f ∈ F . This means that our pre-theories have to determine both
arguments and functions on the same time. We can however use the same
reduction as above. Assume P : ℘(Σ∗)→ (Σ∗)Σ∗ . We can reduce this without
any loss to a relation PR(I) = {(~x, ‖f(~x)‖) : (~x, f(~x) ∈ P (I)}.

4.11. TRANSFORMATIONAL PRE-THEORIES 129

Under this formulation it is clear that this alternative scheme is much more
liberal: assume we have f ∈ P (I) in the first formulation. Then, under reasonable
assumption, it has to satisfy certain requirement on all points in fact(I); in
the second formulation, we can also apply functions which satisfy constraints
only on some points. Assume we have f(~x) = ~y, where ~y ∈ fact(I); but f(~y)
is “unjustifiable”, that is, f does something with ~y which can never allow us
to build an analogy (~y, ‖f(~y)‖). Then in the first approach, we would not have
f ∈ P (I); But in the second approach (using late spell-out), we might derive

` ~w~x~v ∈ fP (I) ~x ≈IP f(~x)

` ~wf(~x)~v ∈ fP (I) ~x ≈IP f(~x)

` ~wf(f(~x))~v ∈ fP (I) (4.48)

Effectively, we can apply f to ~y, though ~y ∈ fact(I) and there is no justification
such as ~y ≈ ‖f(~y)‖. So let us fix conventions. We denote the standard scheme

gF , the alternative scheme gF , with the variants gearlyF , glateF etc. So for any
transformational analogical map we get 4 pre-theories. Assume we have a class of
functions F , used for all for schemes, and a pre-theory P : ℘(Σ∗)→ ℘(Σ∗ ×Σ∗).
We expand P to FP as follows: we say (~x, f(~x)) ∈ FP (I) if (~x, ‖f(~x)‖) ∈ P (I);
to obtain the inference scheme gF , we need an additional inference rule of the
form

∀~x ∈ fact(I) : x ≈FPI f(~x)

f ∈ FP (I) (4.49)

On the other side, for gF we only need

x ≈FPI f(~x)

x⇐FPI f(~x) (4.50)

By what we have said it can be seen that gF is more liberal than gF . However,
we get a proper set theoretic inclusion only in the case of late spell-out, because
in early spell-out, functions can be applied to substrings which do not even figure
in fact(I), and we know nothing about what happens in this case.

Lemma 116 For all finite languages I, glateFP (I) ⊆ glateFP (I).

This discussion was informal, because it is simply a side note on an option we
have not taken. For us, this is the main reason to stick to the “standard” mode
of inference: the problem of the transformational pre-theories is in general that
they are too liberal and allow too many inferences (cf. the subsequent results).
So among the two options, for us it seems the reasonable choice to take the
more restrictive one. So in the sequel, we will use neither of the two schemes
presented in this section; however, we should be aware of their existence, at
the very least because they make it more clear to us what is peculiar about the
choice we made.

4.11.3 Legitimate Functions

The next main question we investigate is the following: which functions should
we allow for analogies? The following requirement is immediate: all functions

130 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

we use must be computable. Otherwise pre-theories become undecidable. A
second requirement is the following: all our functions should be alphabetically
conservative; that is: for a pre-theory P using functions, it should hold that
if f ∈ P (I), I ⊆ Σ∗, then f ∈ (Σ∗)Σ∗ . There is another basic requirement,
which is already implicit in the above requirements: we do not allow for partial
functions. This is important, as partial functions can create a lot of problems: if
we use terms for analogies, we never really know whether the terms are actually
defined. On the other side, the fact that we consider finite “datasets” suggests
that our functions may be undefined for maybe infinitely many inputs, just
because they are underspecified from our analogies. To remedy, I would propose
the following simple solution: given a partial function f : Σ∗ → Σ∗, we define
the canonical completion f̂ : Σ∗ → Σ∗ by f̂(x) = f(~x) if f(~x) is defined, and

f̂(~x) = ~x otherwise. So can use canonical completions, in order to make sure
that all our functions are complete; and we will in the sequel always assume our
functions to be complete.

The good thing of our major analogical maps so far is: they can be transferred
with some modification to the transformational approach. For example, we can
devise FP1 by: ~x ≈FP1

I f(~x) iff

1. if ~x v ‖f(~x)‖, then ~w‖f(~x)‖~v ∈ I ⇒ ~w~x~v ∈ I; if f(~x) v ~x, then ~w~x~v ∈
I ⇒ ~w‖f(~x)‖~v ∈ I.

2. otherwise, ~w~x~v ∈ I ⇔ ~w‖f(~x)‖~v ∈ I.

Note that the condition ~x v f(~x) of P1 has been changed, as it is rather a
particular case than a pre-condition. In our more general case this is neither
necessary nor sufficient, so there is no reason to keep this condition. On the
other side, we need the new conditional statement, in order to make sure there
is a sufficient similarity in distribution. If ~x v ‖f(~x)‖ holds, then we cannot
have ~x ∼I ‖f(~x)‖ for a finite language I; but in case we have ~x 6v ‖f(~x)‖, we
can have ~x ∼I ‖f(~x)‖, and so in my view there is no reason not to require it.

We can also adapt the more restrictive Pr, defining FPr as follows: ~x ≈FPrI

f(~x) iff

1. if ‖f(~x)‖ = ~x1~x~x2, then ~w‖f(~x)‖~v ∈ I ⇒ ~w~x~v ∈ I; and if (~w,~v) 6=
(~w′~x1, ~x2~v

′), then ~w~x~v ∈ I ⇒ ~w‖f(~x)‖~v ∈ I. If ~x = ~x1‖f(~x)‖~x2, then
~w~x~v ∈ I ⇒ ~w‖f(~x)‖~v ∈ I; and if (~w,~v) 6= (~w′~x1, ~x2~v

′), then ~w‖f(~x)‖~v ∈
I ⇒ ~w~x~v ∈ I.

2. otherwise, ~w~x~v ∈ I ⇔ ~w‖f(~x)‖~v ∈ I.

For both, we have the obvious restriction that f be computable, alphabetically
conservative and total. Call such functions legitimate. We could read the F in
FP1, FPr as representing these legitimate functions. We get the pre-theories
(glate, FP1), (glate, FPr), where glate contains the standard inferences and the
scheme

∀~x ∈ fact(I) : x ≈FPI f(~x)

f ∈ FP (I) (4.51)

A point to note is that there are infinitely many legitimate functions which
behave in exactly the same way on fact(I), which are thus indistinguishable from

4.11. TRANSFORMATIONAL PRE-THEORIES 131

the point of view of possible analogies. So a consequence is: we will get infinitely
many distinct premises of the form f ∈ FP1(I), and we will be able to derive
many strings.

One could think that this makes the unrestricted transformational pre-theories
quite trivial, because they are completely arbitrary: if f is used in an analogy, we
must specify the values of f on the set of factors of I. What f does on any other
strings is completely unspecified, and could in fact have no relation or similarity
to its behavior on fact(I). This is however not exactly true: the conditions above
ensure for example, that if ~x 6v f(~x), ~x ≈FPrI f(~x), then if ~x ∈ fact(I), then
also f(~x) ∈ fact(I). There is thus no way to move out of fact(I) by means of
application of functions, as long as we do not satisfy ~x v f(~x)! However, once
we have “moved out of” fact(I), that is, derived a term f(...(f(~x))...) such that
‖f(...(f(~x))...)‖ /∈ fact(I), the values of f are completely “free”, so to speak. We
need the substring condition to move out of fact(I), but once we have a term
f(...f(~x)...) /∈ fact(I), we can basically derive anything we want from it. This is
because the values ‖f(~y)‖ : ~y /∈ fact(I) are completely irrelevant to the analogies
we draw. This in turn has the following consequence: let Σ be an alphabet to
which we restrict f , and I ⊆ Σ∗. Then we easily obtain:

Lemma 117 Let I ⊆ Σ∗ be a finite language containing two words ~x, ~x1~x~x2 ∈ I
and satisfying ~x ≤I ~x1~x~x2. Then glateFP1(I) = glateFPr(I) = Σ∗.

Proof. Because we have ~x, ~x1~x~x2, we can devise a function f such that
(1) f(~x) = ~x1~x~x2, (2) f((~x1)k~x(~x2)k) = (~x1)k+1~x(~x2)k+1, if (~x1)k+1~x(~x2)k+1 ∈
fact(I), and (3) for all y ∈ fact(I) such that y 6= (~x1)k~x(~x2)k for all k ∈ N0,
we put f(~y) = ~y. This surely allows for an analogy, such that regardless of its
behavior on other strings, we have f ∈ FP1(I) and FPr1(I).

We can order Σ∗ − fact(I) in a linear and well-founded fashion, and so get
a bijection i : N → Σ∗ − fact. Choose in particular a bijection i such that
i(1) = (~x1)k~x(~x2)k for the smallest k such that (~x1)k~x(~x2)k /∈ fact(I).

Now we complete the definition of f : (4) for all ~y ∈ Σ∗ − fact(I), n ∈ N, we
put f(i−1(n)) = i−1(n+ 1). This means, we can derive all strings in Σ∗− fact(I)
from ~x. Thus we already have glateFP1(I) = glateFPr(I) = Σ∗, and by a single function
f ∈ F (P1)(I) and FPr(I)). �

This is obviously a very negative result, as it not only strongly contradicts
what we think a pre-theory should do, but it trivializes the entire procedure. It
is a good example of what we have to be aware of if we include functions into
our ontology: if we have a large class of functions at our disposition, this does
not mean that we have a large class of languages we induce - quite the contrary
can be the case, as the above lemma shows. The reason is: we get too many
analogies, and in the derived language, of course we have to take the union over
the derivable strings.

In case the condition ~x, ~x1~x~x2 ∈ I, with ~x ≤I ~x1~x~x2 is not satisfied, things
are a bit more complicated. Nonetheless, we can get an easy generalization of
the above result: if we have some words ~w~x~v, ~w~x1~x~x2~v ∈ I with ~x ≤I ~x1~x~x2,
then we have ~wΣ∗~v ⊆ glateFPr(I) ∩ glateFP1(I). The argument is essentially the same,
but we obviously do not get an equality, as we do not know about other strings
in the language. We can also easily derive the following lemma from what we
have demonstrated so far:

132 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Lemma 118 (1) If P1(I) = ∅, then glateFP1(I) = I. (2) If Pr(I) = ∅, then
glateFPr(I) = I.

Note that this lemma shows the close relation of P1, P r on the one, and
FP1, FPr on the other hand.

Proof. We only show (1), because (2) can be shown in much the same
way. Assume that P1(I) = ∅, a function f ∈ FP1(I). Then by assumption,
if ~x ∈ fact(I), f ∈ FP1(I), we have ~x 6v f(~x), f(~x) 6v ~x. From FP1 it follows
that ~w‖f(~x)‖~v ∈ I ⇔ ~w~x~v ∈ I. As the ~x is arbitrary, the same holds for ‖f(~x)‖;
so we have ~w‖f(~x)‖ ∈ I ⇔ ~w‖f(f(~x))‖~v ∈ I. So all strings we can derive are
already in I. �

These results together give us the following:

Theorem 119 For any finite language I, glateFPr(I) and gFP1(I) are regular.

Proof. We can show this by the set of premises I. Assume we have no
~w ∈ I with an ~x such that ~w = ~w1~x~w2, ~x ≤I ~x1~x~x2. Then glateFP1(I)(~w) is finite

by the last lemma. Otherwise, glateFP1(I)(~w) = ~w1Σ∗ ~w2 for all (finitely many)
decompositions.

This yields a finite union of finite languages and languages of the form ~wΣ∗~v.
This is a regular language. �

It is quite clear that this bound is not optimal, that is, it can be improved.
As a matter of fact, we can see immediately that the claim can be strengthened
to:

Theorem 120 For any finite language I, glateFPr(I) and glateFP1(I) are star-free
languages.

The proof is exactly the same. Still this bound is not optimal, of course, but
I do not see how it can be substantially improved, at least not involving any
known class of languages. However, we also get another corollary which is rather
positive:

Corollary 121 glateFP1, g
late
FPr are closed.

Proof. For one direction, see lemma 118; if the conditions of this lemma are
not satisfied, it is easy to see that we get an infinite language. �

So we see from these results that we induce only star-free languages, and this
not despite, but rather because we allow for any recursive functions in FP1(I)
and FPr(I). The main point why this is a restriction is that we must use all
functions which satisfy the analogy condition, which are again countably many.
So the only reasonable way to get more powerful pre-theories is to restrict the
space of possible functions.

4.11.4 Opaque Functions, and Why They Will not Work

So which classes of functions form meaningful restrictions? To consider a first,
very important class, take the rational functions, that is, functions computed by
finite state transducers. These are quite restrictive, among other because they
can be computed with finite resources and in linear time (see [70] for a proof).
Nonetheless, this class is quite rich and allows to compute a lot of functions on

4.11. TRANSFORMATIONAL PRE-THEORIES 133

strings. So what if we reduce the space of legitimate functions to the rational
functions? Still, the above results obtain for the following reason: it is clear
that any restriction of a function to a finite domain is rational. Moreover, there
is also a rational bijection i : N→ Σ∗ − fact(I), even though it is less obvious:
we simply choose a representation of N in base |Σ|; as Σ∗ − fact(I) is finite,
we only need to perform the subtraction of a finite number in order to get the
desired result, which can be easily done by finite-state means. So the above
“trivialization” results already obtains for rational functions, and a fortiori for
every larger class. The same argument as before obtains even for a smaller class,
the so called regular or synchronous regular functions (see [60] for reference).

This means we have to look at classes which are not necessarily smaller, but
which are by no means larger. What classes should we consider? Of course,
there are many of classes which would allow to derive mathematically interesting
results. But if we do not see any linguistic meaning in them, it would be quite
sterile and off the point for this work scrutinizing them. We will therefore
proceed as follows: first, we will provide an exact characterization of classes of
functions which are too strong/too large for our purposes. Next, we show that
there are some really interesting candidates regarding classes of functions. There
are however also fundamental problems before we can put them to use. These
lead to our next major pre-theory and next major change in ontology.

By dom(f) we denote the domain of f . We say a function f is proper
infinite, if there are infinitely many x ∈ dom(f), such that f(x) 6= x. f is
finite, if it is not proper infinite. So a finite function is not to be understood
in the set-theoretical sense! But a finite function is the canonical completion
of a function finite in the set-theoretic sense. A class F of functions is proper
infinite, if there is a (finite or infinite) set {f1, f2, ...} ⊆ F , and an infinite
set M ⊆ dom(f1) ∩ dom(f2) ∩ ..., such that for every finite N ⊆ M , we have
f ∈ {f1, f2, ...} with f(x) 6= x for all x ∈ N . Note that if F is proper infinite, it
need not contain a proper infinite function; but then it has to contain an infinite
set of functions. Conversely, however, any class containing a proper infinite
function is proper infinite. The reason for this slightly complicated definition is
that we are not so much interested in the behavior of single functions, but of
possibly infinite sets of functions (satisfying certain criteria). The reason should
be clear by the above considerations.

We distinguish between a function f and its graph |f |; so for f : M → N , we
have |f | ⊆M ×N , |f | = {(m, f(m)) : m ∈M}. We say a class of functions F
is opaque, if it contains functions which are infinite in the set-theoretical sense,
and if for every finite relation R, such that there is f ∈ F with R ⊆ |f |, and for
each Q ⊆ R, we have a f ′ ∈ F , with Q ⊆ |f ′|, and R − Q 6⊆ |f ′|. So for each
finite subset of a graph of a function, we have a function which behaves differently
on this subset. One might say that opaqueness is a functional analogue of the
notion of infinite flexibility of classes of languages (see [29]). The following is
easy to see:

Lemma 122 If F is opaque, it is proper infinite.

Proof. Assume F is opaque. Assume furthermore, F does not contain a
proper infinite function (otherwise the claim follows immediately). Then we
have a function f ∈ F , M ⊆ dom(f), such that f(x) = x for all x ∈M , and M
is an infinite set. Then for each finite N ⊆M , we have a function f ′ for which

134 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

f(x) = f ′(x) if and only if x ∈ O ⊆ N . We now take an increasing sequence
N1, N2, ..., with N1 (N2 (..., and put Oi = Ni. This way, we get a sequence
of functions (fi), where for all x ∈ Oi, we have fi(x) 6= f(x). We then have an
infinite set P :=

⋃
i∈NOi, and for each finite Q ⊆ P , we have an Oi ⊆ P such

that Oi ⊇ Q, and thus fi with f(x) 6= x for all x ∈ P . �
The motivation behind these definitions is the following: if a class of functions

is opaque, we cannot really do anything with it. The reason is: if we have a
finite language, we only see a finite number of “instantiations” of the function.
If our class of functions if opaque, then this finite number of instantiations does
not tell us enough about the functions in question to identify a unique function;
we have to take all the functions compatible with this finite fragment, which
are infinitely many. So the whole idea of functions becomes quite problematic,
because in inferences in a sense we throw them together to a relation.

On the other side, assume we work out some criteria to restrict the functions
of a given opaque class and their application in analogies, that is, to prefer a
function f1 over f2, even though they coincide on the finite set of factors we
observe. This might be possible in principle, but note that it is exactly the same
problem we address here in the first place: determining infinite sets from finite
sets is basically the same as determining infinite functions from finite subsets of
their graphs. I conclude (maybe prematurely) that this way does not lead to a
solution for our problem, but rather into a new version of our old problem. So
when we look for interesting classes of functions, we have to make sure these
classes are not opaque. Note that the classes of functions we mentioned so far,
such as rational or regular functions are all opaque, as is easy to show.

We now introduce the dual of opaqueness. A class of functions F is trans-
parent, if for all f ∈ F , there is a finite relation R, such that R ⊆ |f |, and if
f ′ ∈ F and R ⊆ |f ′|, it follows that f ′ = f . We say then that R is characteristic
of f in F . Note that being transparent is much stronger than not being opaque:
a class of functions F is not opaque if there is at least one f ∈ F satisfying the
transparency criterion, and a class F is not transparent if there is at least one
f ∈ F satisfying the opaqueness criterion. So the two properties can be seen as
opposite extremes.

4.11.5 Polynomial Functions

What we want are functions which are proper infinite, because finite functions
do leave us within the realm of finite languages under the inference with “late
spell-out”:

Lemma 123 Let F be a class of finite functions. Then for any transformational
pre-theory (glate,FP), finite language I, glateFP (I) is finite.

Proof of this is immediate: we derive infinitely many terms; however, if our
class of functions is finite, each term spells out to a finite number of strings. So
how about the alternative scheme with early spell out? Here we get the following
result concerning finite functions:

Lemma 124 Let F be a class of finite functions. Then for any transformational
pre-theory (gearly,FP), finite language I, gearlyFP (I) is a CFL.

4.11. TRANSFORMATIONAL PRE-THEORIES 135

Proof. To see this, just take the grammar construction we used in the last
section: every string ~w ∈ fact(I) is encoded by a nonterminal N~w, and re-writes
as N~w → N~v1...~vi , for all ~v1...~v2 = f(~w). As these are finitely many substrings,
we have finitely many rules. �

So using finite functions is out of question. On the other side, we want
function which are not opaque, or even better, transparent. This leaves still some
options; but there is in fact a class of functions satisfying these requirements,
which is well-known and well-studied in formal language theory. These are what
we call polynomials functions, or simply polynomials over an alphabet Σ.
These are functions f : Σ∗ → Σ∗, which have representations of the form

f(x) = ~w1x~w2... ~wi−1x~wi : i ≥ 0, (4.52)

where ~w1, ..., ~wi ∈ Σ∗, and x /∈ Σ∗ is a variable, such that for any ~w ∈ Σ∗, we
have

f(~w) = ~w1 ~w~w2... ~wi−1 ~w~wi (4.53)

We denote the above representation of f by pol(f), its polynomial, which is a
string over (Σ∪{x})∗. Note that polynomials are in principle well-defined for any
input string over any alphabet; but we will assume that all functions come with
a specified domain; and once its domain of a polynomial function is specified,
so is its range. Denote the class of polynomial functions by P. A function in
this class thus copies the input string an arbitrary number of times (possibly 0),
while putting any constant strings between the copies. It is easy to see that P is
proper infinite. We can also show that this class is not opaque: There is only
one function f ∈ P such that f(~w) = ~w~w, f(~w~w) = ~w~w~w~w for any ~w ∈ Σ∗. In
fact, we can show that the class of polynomial functions is transparent:

Lemma 125 P is transparent.

Proof. Though this seems quite obvious, we need a bit of work to show
this. Assume f ∈ P. We have to find a relation N ⊆ |f | characteristic of
f in P. What we first do is we choose two words a, aa : a ∈ Σ, and put
N = {(a, f(a), (aa, f(aa)}. This allows us to uniquely identify the number of
variable occurrences in the representation of f by a simple numerical argument.
Now assume that Σ∗ = dom(f).

Case 1. Assume |Σ| = 1. Let n(f) be the number of variables occurrences
of pol(f). Then if n(f ′) = n(f), we have f(a) = f ′(a) if and only if f = f ′,
because they always output strings of the same length, and there is only one
such string of a given length given a unary alphabet. Note, by the way, that the
case where |Σ| = 1 is the only one where identical functions can have different
representations. So for the case that |Σ| = 1, we might have pol(f) 6= pol(f ′),
but still if f(a) = f ′(a), f(aa) = f ′(aa), we have f(~w) = f ′(~w) for all ~w ∈ Σ∗,
and so all distinct functions can be distinguished by their behavior on a finite
set {a, aa}.

Case 2. Conversely, assume there is b ∈ Σ, b 6= a. we can safely assume that
n(f) = n(f ′) = k, otherwise we distinguish the two by {a, aa}. Now assume
f(a) = f ′(b). We have f(a) = ~w1a~w2... ~wka~wk+1 = f ′(a). Now we take the
representations of f, f ′. Assume the ith letter in pol(f) is a constant; say c;
if it is a constant in pol(f ′), then it has to be c as well; if it is not in Σ, we

136 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

have the ith letter in f ′(a) different from the ith letter in f ′(b) - and so either
f ′(a) 6= f(a) or f(b) 6= f ′(b). Now assume the ith letter in pol(f) is a variable;
then the ith letter in f(a) is a, whereas in f(b) is b; as a 6= b, either the ith
letter in pol(f ′) is also a variable, or we have either f(a) 6= f ′(a) or f(b) 6= f ′(b).
Conversely, assume the ith letter in pol(f) is a variable.

This shows that in the case of |Σ| ≥ 2, a 6= b, from f(a) = f ′(a), f(aa) =
f ′(aa), f(b) = f ′(b) it follows that pol(f) = pol(f ′), and so f = f ′. So all distinct
functions can be distinguished by their behavior on a finite set {a, aa, b}. �

So we see that P is an adequate class of functions.

4.11.6 Inferences with Polynomials

Given this encouraging result, we will devise a pre-theory over P . The definitions
for PP1,PPr are as before, except for the fact that we have the additional
requirement for f ∈ PP1(I), namely that f ∈ P . But before we look at these pre-
theories in particular, let us look what we can infer with the help of polynomial
functions. For inferences, we now use the rules glate:

` t~xt′ ∈ fP (I) f ∈ P (I)

` tf(~x)t′ ∈ fP (I) , (4.54)

Here, the premise that f ∈ P is meant to be implicit in the choice of P . For
example, assume we have a duplicating patterns as in Ie := {a, aa, aaaa}, and we
have f(x) = xx, and P (I) = {f}. This looks very much like what we look for when
we want to capture this pattern: we get to derive f(a), f(f(a)), f(f(f(a))).... It
is clear that this allows us to derive a language which is not semilinear. However,
things are much more complicated than one would guess at the first sight. The
surprising fact is that even in this case, we have glateP (I) 6= {a2n : n ∈ N}. The
reason is: we also get to derive terms as f(f(a))a, f(f(a))af(a)a. So if we do not
get the language {a2n : n ∈ N0} which we (probably) desire – but what language
do we get? Call this language Le. It takes some patience to recognize its true
face; for n ≤ 20, we can derive all an. We can however find a number i such that
ai /∈ Le. We find it as follows. First of all, we can transform the terms resulting
from derivations into arithmetic terms denoting their length; concatenation is
interpreted in addition, as concatenation of strings over a singleton alphabet
is commutative; and f(~x) is transformed into x+ x. So what we look for is a
number k ∈ N, such that there is no equation

1. 2n1 + 2n2 + 2n3 + 2n4 = k,

2. 2n1 + 2n2 + 2n3 = k

3. 2n1 + 2n2 = k

4. 2n1 = k

5. 2n13 + 2n2 = k,

6. 2n13 = k,

etc. corresponding to a term having a a solution with n1, n2, n3, n4 ∈ N0.
Each equation corresponds to a set of derivations in the strong language;
for example, the first equation corresponds to all derivations of the form

4.11. TRANSFORMATIONAL PRE-THEORIES 137

f(...f(a)..)f(...f(a)..)f(...f(a)..)f(...f(a)..); in equation 5, we derive f(...f(aaa)..a)f(...f(a)...)
etc.

We first take the number 3 as the smallest natural number not in {2n : n ∈
N0}. Next, take an l ∈ {2n : n ∈ N0} such that the difference with the 2n+1 is
larger than 3. We choose the 8. We now iterate this, taking next the 32, and
the 128. We add this up, and get 171. My claim is: there is no solution for
k = 171 for any of the above equations; that means, a171 /∈ L. From construction
it follows that there is no solution for the first equation; the third and forth
can be subsumed under the first. There is one additional possible derivation we
have to check: it might be that a171 has the form f i(aaa)f j(a); thus we have
2n13 + 2n2 = 171. Again, it can be easily checked manually that there is no
solution for n1, n2 ∈ N0.

From this, it can be easily inferred that the “gaps” in the language, that
is, the proportion of strings an /∈ L become larger for n → ∞, so we have L
becoming more and more sparse in an exponential fashion. From this it follows
that L is not semilinear. This shows that we are in fact expressive in going
beyond certain classes. On the downside, we cannot claim that this approach
behaves in a way we would want it to behave. To put it in an intuitive fashion:
we are lacking “control”; we cannot determine the contexts in which we ought
to apply functions/analogies; and obviously this is what we need: we only want
to apply f to entire strings in L, not to its substrings. As a side note, note also
that the “early spell-out” and the alternative scheme do not change this!

There is still another substantial problem with P . Assume we have a language
I with a duplication pattern, but some other unrelated strings and patterns.
By assumption, polynomial functions are total. However, if f(x) = xx and we
have f ∈ P (I), then it follows we can really duplicate everything. Polynomial
functions cannot distinguish between different input strings. We could remedy
this by allowing functions to use different polynomials depending on their input -
but in the very moment we allow this, we lose transparency. So to get functions
to work seems to be difficult.

4.11.7 Polynomial Pre-Theories

So far we have looked at classes of functions and found P very promising.
However, our standard inference rules glate lead us away from what we actually
desired, and we actually have no good solution for this. We now show that
exactly the same problem strikes if we devise our analogical maps, in a way
that we cannot say how a reasonable pre-theory for P should look like. Let us
consider PP1 and PPr, which are like FP1,FPr above, except for the fact
that we exchange the class of legitimate functions, and we put the universality
requirement into the analogical map:

PP1 is defined by: f ∈ PP1(I) iff

1. f ∈ P;

2. for all ~x ∈ Σ∗, if ~x v ‖f(~x)‖, then ~x ≤I ‖f(~x)‖;

3. for all ~x ∈ Σ∗, if ‖f(~x)‖ v ~x, then ‖f(~x)‖ ≤ ~x.

4. for all ~x ∈ Σ∗, if neither of the two holds, then ~x ∼I ‖f(~x)‖

138 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Note that cases 3.,4. occur only if if we have the case of a constant function
f(x) = ~w for ~w ∈ Σ∗. However, constant functions do not allow to derive anything
new, in virtue of their being constant, the condition and our inference rules;
so we will just ignore them in the sequel. This approach can in principle work.
However, it probably does not exactly do what we want it to do: take the language
I1 := {a, aa}. Here we have three non-trivial functions f1, f2, f3 ∈ PP1(I1),
where f1(x) = xx, f2(x) = ax, f3(x) = xa. So f1 captures a duplication scheme,
but it is “covered” by f2, f3, in the sense that we derive the language a∗.
This is not bad all together, as we might say that I1 does not yet clearly
show a duplicating pattern. But now take Ie := {a, aa, aaaa}. What happens
now? Surprisingly, we have PP1(I2) = ∅ (apart from constant functions and
the identity function)! Why is that? We can easily check manually that all
f1, f2, f3 are out of question; we only demonstrate this for f1. Assume we
have f1 ∈ PP1(I2). Then ~w1‖f1(~w2)‖~w3 ∈ I2 ⇒ ~w1 ~w2 ~w3 ∈ I2. Now we have
a‖f1(a)‖a = aaaa ∈ I2; but aaa /∈ I2 – contradiction. So the unsolved problem
which we described above now strikes in a different form, prohibiting any analogy
in the first place. In particular, it shows us that we cannot simply transfer ideas
from the substitutional approach to the functional approach.

What are the possible solutions? I see two options: the first is: we go back
to the inference rules in g. We have discarded it because it was too liberal,
but now that surely does not hold any more. In this case, we do no longer
derive functions, but single analogies, so we have a whole different ontology. Our
analogical map thus looks like this:

(~x, f(~x)) ∈ PP1′(I) iff

1. f ∈ P;

2. if ~x v ‖f(~x)‖, then ~x ≤I ‖f(~x)‖;

3. if ‖f(~x)‖ v ~x, then ‖f(~x)‖ ≤ ~x.

4. if neither of the two holds, then ~x ∼I ‖f(~x)‖

So we have just skipped the universality conditions. Inferences have the
following form:

~x ≈PP1′

I f(~x)

~x⇐PP1′

I f(~x),

` ~w~x~v ∈ glatePP1′(I) ~x⇐PP1′

I f(~x)

` wf(~x)~v ∈ gPP1′(I) . (4.55)

This seems reasonable, and we get in fact (restricting ourselves to non-trivial
functions)

PP1′({a, aa, aaaa}) = {(a, f1(a)), (aa, f2(aa))}, (4.56)

where f1(x) = xxxx, f2(x) = xx. So we see that ‖glatePP1′({a, aa, aaaa})‖ is a
language which is not semilinear. But still, it does not behave in the way we
would expect it to, yielding a simple language such as {a2n}.

It might also be worthwhile to investigate how a pre-theory as (g2, P2) can be
adapted to polynomial functions; we will however not undertake this at this point.
Instead of pursuing the problem of transformational (functional) pre-theories
in further ramifications, we will present some additional means to enlarge our
language-theoretic ontology. These will also lead to our next major pre-theory.

4.12. STRINGS AS TYPED λ-TERMS 139

4.12 Strings as Typed λ-Terms

4.12.1 A Simple Type Theory

The objects on which inferences were based in the previous pre-theories went
beyond simple language-theory. However, the conditions for analogies themselves
were based on pure language-theoretic criteria; they did not refer to any objects
except for strings. This will change now. We will now use what is known as the
encoding of strings as typed λ-terms. This has been worked out and attracted
considerable attention in the research on abstract categorial grammars
(ACG). We will not have to do with ACG themselves, but most of the techniques
we show have been developed within this research community.

We first have to introduce the basic notions of type theory; the following
concepts are standard and can be looked up in many places.6 Type theory starts
with a (usually) finite set of basic types, and a finite, (usually) small set of type
constructors. Types are usually interpreted as sets; we denote the set of all
objects of type τ by ‖τ‖. We will consider only a single type constructor, the
usual →, where for types σ, τ , σ → τ is the type of all functions from ‖σ‖ to
‖τ‖. Basic objects are assigned some type, and all new objects we can construct
in our universe must be constructed in accordance with a typing procedure, that
is, we have to make sure that they can be assigned at least one type. Objects
which are not well-typed do not exist in the typed universe.

Given a non-empty set A of atomic types, the set of types Tp(A) is defined
as closure of A under type constructors: A ⊆ Tp(A), and if σ, τ ∈ Tp(A), then
σ → τ ∈ Tp(A). The order of a type is defined as ord(σ) = 0 for σ ∈ A,
ord(σ → τ) = max(ord(σ) + 1, ord(τ)).

We define a higher order signature as Θ := (A,C, φ), where A is a finite set
of atomic types, C is a set of constants, and φ : C → Tp(A) assigns types to
constants. The order of Θ is max({ord(φ(c)) : c ∈ C}). Let X be a countable
set of variables. The set Tm(Λ(Θ)), the set of all λ terms over Θ, is the closure
of C ∪X under the following rules: 1. C ∪X ⊆ Tm(Λ(Θ)); 2. if m, n ∈ Tm(Λ(Θ)),
then (mn) ∈ Tm(Λ(Θ)); 3. if x ∈ X, m ∈ Tm(Λ(Θ)), then (λx.m) ∈ Tm(Λ(Θ)).

We omit the outermost parentheses (,) for λ terms, and write λx1...xn.m for
λx1.(. . . (λxn.m)...); furthermore, we write m1m2 . . . mi for (. . . (m1m2) . . . mi). The
set of free variables of a term m, FV (m), is defined by 1. FV (x) = {x} : x ∈ X,
2. FV (c) = ∅ : c ∈ C, 3. FV (mn) = FV (m) ∪ FV (n), and 4. FV (λx.m) =
FV (m) − {x}. m is closed if FV (m) = ∅. We write m[n/x] for the result of
substituting n for all free occurrences of x in m. α-conversion is defined as
λx.m α λy.m[y/x]. A β-redex is a term of the form (λx.m)n. We write β

for β reduction, so we have (λx.m)n β m[n/x]. The inverse of β-reduction is
β-expansion. Let [m]β denote the β normal form of m, that is, the term without
any β redex. This term is unique up to α-conversion for every term m. We denote
by =αβ the smallest congruence which contains both α and β (recall that
a congruence is an equivalence relation closed under subterms). We thus write
m =αβ n, if n can be derived from m with any finite series of steps of β-reduction,
expansion or α-conversion of any of its subterms. Later on, we will extend =αβ

to sets of terms; assume M, N ⊆ Tm(Λ(Θ)) (we will define this set in a minute);
we then write M =αβ N, if for every m ∈ M, there is a n ∈ N such that m =αβ n,

6Here I follow in particular my own presentation given in [71], which in turn follows the
presentations given in [30], [25].

140 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

and for every n ∈ N, there is a m ∈ M such that m =αβ n.
We now come to the procedure of assigning types to terms.7 A type environ-

ment is a (possibly empty) set {x1 : α1, . . . xn : αn} of pairs of variables and types,
where each variable occurs at most once. A λ-term m with FV (m) = {x1, . . . , xn}
can be assigned a type α in the signature Θ = (A,C, φ) and type environment
{x1 : α1, . . . xn : αn}, in symbols

x1 : α1, . . . xn : αn `Θ m : α, (4.57)

if it can be derived according to the following rules:

(cons) `Θ c : φ(c), for c ∈ C;

(var) x : α `Θ x : α, where x ∈ X and α ∈ Tp(A);

(abs)

Γ `Θ m : β

Γ− {x : α} `Θ λx.m : α→ β, provided Γ ∪ {x : α} is a type environment;

(app)

∆ `Θ n : α Γ `Θ m : α→ β

Γ ∪∆ `Θ mn : β , provided Γ ∪∆ is a type environment.

An expression of the form Γ `Θ m : α is called a judgment, and if it is derivable
by the above rules, it is called the typing of m. A term m is called typable if
it has a typing. If in a judgment we do not refer to any particular signature,
we also write Γ ` m : α. Derivations of judgments have the forms of trees; the
derivation tree of a judgment Γ `Θ m : α is called its deduction. When m is
β-normal, every typing of m has a unique deduction. Regarding β-reduction, we
have the following well-known result:

Theorem 126 (Subject Reduction Theorem) If Γ ` m : α, m β m′, then
Γ′ ` m′ : α, where Γ′ is the restriction of Γ to FV (m′).

We define the set WTT to be the set of all well-typed, closed λ-terms, that is,
all n such that ` n : α is derivable for some α (we might refer to a signature Θ by
writing WTT(Θ). Keep in mind that WTT(Θ) (Tm(Λ(Θ)); it is WTT which is most
interesting and important for us. Let m β m′ be a contraction of a redex (λx.n)o.
This reduction is non-erasing if x ∈ FV (n), and non-duplicating if x occurs free
in n at most once. A reduction from m to m′ is non-erasing (non-duplicating) if
all of its reduction steps are non-erasing (non-duplicating). We say a term m is
linear, if for each subterm λx.n of m, x occurs free in n exactly once, and each free
variable of m has just one occurrence free in m. Linear λ-terms are thus the terms,
for which each β-reduction is non-erasing and non-duplicating. We will be mainly
interested in a slightly larger class. A term m is a λI term, if for each subterm
λx.n of m, x occurs free in m at least once. λI terms are thus the terms which do
not allow for vacuous abstraction (see [2], chapter 9 for extensive treatment).
Another important, well-known result for us is the following: obviously, by our
typing procedure a single term might be possibly assigned many types. We call
a type substitution a map ts : A → Tp(A), which respects the structure of
types: ts(β → γ) = (ts(β))→ (ts(γ)), for β, γ ∈ Tp(A).

7We adopt what is known as Curry-style typing: in Church-style typing, terms cannot be
constructed without types; in Curry-style typing, terms are first constructed and then assigned
a type; so there might be the case that there is no possible assignment.

4.12. STRINGS AS TYPED λ-TERMS 141

Theorem 127 (Principal Type Theorem) Let m be a term, and let Θ := {α :
Γ ` m : α is derivable} be the set of all types which can be assigned to m. If Θ 6= ∅,
then there exists a principal type β for m, such that Γ ` m : β is derivable, and
for each α ∈ Θ, there is a substitution tsα such that α = tsα(β).

Obviously, β is unique up to isomorphism; we will write pt(m) for the principal
type of m. The proof of the theorem is constructive, that is, β can be effectively
computed or shown to be nonexistent, see [25].

4.12.2 Strings as λ-Terms

The following, type theoretic encoding of language theoretic entities has been
developed in the framework on on abstract categorial grammars (introduced
in [14]). We follow the standard presentation given in [30]. Given a finite
alphabet T , a string a1 . . . an ∈ T ∗ over T can be represented by a λ term over
the signature Θstring

T := ({o}, T, φ), where for all a ∈ T , φ(a) = o → o; we
call this a string signature (over alphabet T . The term is linear and written
as /a1 . . . an/ := λx.a1(. . . (anx) . . .). Obviously, the variable x has to be type
o, in order to make the term typable. We then have, for every string ~w ∈ T ∗,
`ΘstringT

/~w/ : o→ o.

Under this representation, string concatenation is not entirely trivial, and
cannot be done by juxtaposition, as the result would not be typable. We can con-
catenate strings by the combinator B := λxyz.x(yz), which concatenates its first
argument to the left of its second argument, as can be easily checked.8 We can also
represent tuples of strings by terms. Let /~w1/, . . . , /~wn/ represent strings. Then a
tuple of these strings is written as /(~w1, . . . , ~wn)/ := λx.((. . . (x/~w1/) . . .)/~wn/).
The type of x here depends on the size of the tuple. We define α →n β by
α→0 β = β, α→n+1 β = α→ (α→n β). In general, for a term m encoding an
n-tuple , we have `ΘstringT

m : ((o → o) →n (α))) → α. So the types get larger

with the size of tuples; the order of the term however remains invariantly 3.
We indicate how to manipulate tuple components separately. The function

which concatenates the tuple components in their order is obtained as follows:
Given a tuple /(~w,~v)/ = λx.((x/~w/)/~v/), we obtain /~w~v/ through application
of the term: λx1.x1(λx2y.Bx2y)). We can also manipulate tuples to form new
tuples: take again /(~v1, ~w1)/ = λx.((x/~v1/)/~w1/); we want to convert it into
a tuple /(~v1~v2, ~w1 ~w2)/ = λx.((x/~v1~v2/)/~w1 ~w2/). This is done by the term
λyx1.y(λx2x3((x1Bx2~v2)Bx3 ~w2)). This term takes the tuple as argument and
returns a tuple of the same type. If we abstract over the term /(~v2, ~w2)/, this
gives us a function which concatenates two 2-tuples componentwise. It is easy
to see that this way, we can represent any polynomial function by a λ-term.

However, the general componentwise concatenation of tuples of arbitrary
size (considering strings as 1-tuples) cannot be effected by a typed λ-term. The
reason is: if we do not fix an upper bound on tuple size, the types of tuples
get higher and higher, and there is no finite upper bound. So there is no finite
term which could have the appropriate type.9 This means that in this setting,

8See [30] for more examples, also for what is to follow. A combinator is in general a function
over functions.

9On the other side, once we fix an upper bound k to tuple size, it is easy to see how to
define ◦ as λ term: for i ≤ k, we simply encode all tuples as k-tuples with all jth components,
i < j, containing the empty string. Then ◦ is simply componentwise concatenation of k-tuples,
which is λ-definable, as we have seen.

142 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

we must refrain from a notion of general concatenation of any type. This will
however do little harm, as we will see.

4.12.3 Using λ-terms for Pre-Theories

Take a finite alphabet T , and fix a language L1 ⊆ T ∗. As we have seen in the last
section, there is a injective map i : T ∗ → WTT(Θstring

T) from strings in T ∗ into the

set of λ-terms of the signature Θstring
T . Note that i is properly injective and not

up to =αβ equivalence; we map strings only onto their standard encoding, using
a standard variable. We thus obtain i[L1] ⊆ WTT, where i[−] is the pointwise
extension of i to sets. We close i[L1] under =αβ , and obtain L := {m : there is
n ∈ i[L] : n =αβ m}. This is the language we are working with, the type theoretic
counterpart of L1. In the sequel, for any M ⊆ T ∗, we will denote the closure of
i[M] under =αβ by Mλ; so we have L = (L1)λ. Given an analogical map P for
T ∗, now want to devise λP for Iλ, referring to subterms instead of factors of
the language.

There is however a fundamental problem with that. Take a finite, non-
empty language I. It is the easy to see that Iλ is infinite; so we do not
have a finite language to depart from. This in itself is no need to worry:
for a set M of terms, let us denote by [M]αβ the partition of M into =αβ-
equivalent subsets. For our language-theoretic purposes, we need to consider
terms only up to =αβ , and [Iλ]αβ is (by assumption) finite. But we have
to consider not only the terms, but also their subterms! Define sub(Iλ) :=
{sub(m) : m ∈ Iλ}. Now unfortunately, the quotient [sub(Iλ)]αβ is in gen-
eral infinite; so we have infinitely many distinct subterms even modulo =αβ !
We can show this by a simple example: put I = {a}. Then we have Iλ =
{λx.ax,(λyx.yx)a, ((λzyx.(zy)x)(λz.z))a, (((λz1zyx.((z1z)y)x)(λz1.z1))(λz.z))a, ...}

It is easy to see that the leftmost closed terms (λyx.yx), (λzyx.(zy)x),
(λz1zyx.((z1z)y)x) are all not αβ-equivalent, and we can iterate the above
expansion as often as we want. So we have a major problem, because the factors
we have to consider are infinitely many even modulo αβ-equivalence. So what
are we supposed to do? There does not seem to be very good solution at this
point, so the only solution I can present is the following: rather than using =αβ ,
we define a relation =k

αβ , which we define inductively for every k ∈ N. Let =α

be the smallest congruence containing α.

1. if m =α n, then m =0
αβ n; (closure under α-conversion)

2. if m =k
αβ n, then m =k+1

αβ n (monotonicity over k)

3. if m =k
αβ n, then n =k

αβ m; (symmetry)

4. if m β n, then m =1
αβ n (definition for k = 1)

5. if m =k
αβ n, then o[m] =k

αβ o[n]; (closure under subterms)

6. if m =k
αβ n, n =k′

αβ o, then m =k+k′

αβ o. (transitivity for addition of k, k′)

So =k
αβ is the rewriting relation which involves k β-reduction or expansion

steps, and an arbitrary amount of α-conversions. Of course, we have (
⋃
k∈N =k

αβ

4.12. STRINGS AS TYPED λ-TERMS 143

) = (=ω
αβ) = (=αβ). To make this restriction sufficient, we will now and for

the rest of this chapter reduce our focus to λI-terms.
What we intend to do is: for a finite language I, close i[I] under =k

αβ for some
k, rather than close it under =αβ . We denote this closure and the intersection
with the set of λI terms by Iλk; Iλk does thus only contain λI-terms. It is clear
that for a finite set of terms I, Iλk := {m : there is n ∈ I : n =k

αβ m} modulo

=α is a finite set; we can easily show this by induction: [Iλ1]α is finite; and if
[Iλk]α, then also [Iλk+1]α is finite. By the same argument, we can conclude that
for each set Iλk, I finite, there is a constant k ∈ N such that for all m ∈ Iλk,
we have |m| ≤ k, where | − | denotes the length of the term. From this it easily
follows that sub(Iλk) is a finite set, as actually, as the terms of Iλk are constantly
bounded in length, so are the terms in sub(Iλk). It follows that [sub(Iλk)]α is
finite, and a fortiori, [sub(Iλk)]αβ is finite. Note that all the arguments – except
for the very last – are wrong when we do not restrict ourselves to λI.

So there is a solution to the infinity problem for λP1: we just have to consider
families of the form λkP1, λkPr. The problem is of course: there is always
something arbitrary to a pre-theory of this form, as there is no real criterion for
choosing k.

Our goal is by now clear: we want to use the language of terms just as a
“normal language”, putting our old concepts to work. There are however some
things we have to take care of: typed terms are not just strings: we do not
have associativity of concatenation in the first place. So we need to respect the
bracketings. But there is more: we have to take care that all objects we talk
about are indeed typable terms; if not, we would take about things which are
non-sense from the point of view of type theory.

Our major asset now is the following: concatenation on the level of strings
interpreted as terms is now quite independent of the juxtaposition of terms,
and mn corresponds to applying a function m to an argument n. For us, this
means we can restrict our focus to analogies of the form (n, mn). But instead
of writing ~w~x~v to indicate substrings, we will use the subterm notation: by
m[n] we denote a term m which contains a term n as a subterm; importantly, we
always require that n, m ∈ WTT; we thus only refer to closed, well-typed terms
as terms and subterms. Another important thing is that we denote a single
occurrence of n within m; but there are possibly many of them. And if we use
m[n] subsequently, we always refer to the same occurrence of n. We could make
this explicit by adding subscripts to [,], so that they refer to positions in the
term; explicitly, this is written as m[in]j. Importantly, we count the left index
from the left, and the right index from the right. We omit this for simplicity
and because it is common usage. Then, by m[o/n] we denote the term which
results in a substitution of this subterm n in m[n] by o (so this usage is somewhat
different from m[n/x], by which we intend the substitution of all free variables).
To indicate multiple occurrences of subterms, we simply write m[n1, ..., ni], where
we make no statement on position and order of the n1, ..ni Now we can define
the following analogical map:

Definition 128 Given a finite language I, we have n ≈λP1k
I mn, if and only if

o[mn] ∈ Iλk ⇒ o[n/mn] ∈ Iλk.

Some notes are in order. There does not seem to be a reasonable type-
theoretic variant of Pr. From the basic results of type theory it follows that

144 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Iλ ⊆ WTT. By notation, we already required that m, n ∈ WTT. So all our objects
are in the universe of well-typed terms over the string signature of a given
alphabet. This also takes the worries from us that our objects are actually
meaningless; to all terms in WTT we can – at least in a very broad sense – assign
some meaning. In what consists this meaning? We know that all entities will be
functions, so they will be in the end some higher order functions from (functions
from functions...to) strings to (functions to functions ..to) strings. Another
problem for which now there is a unique and natural solution is the question of
weak and strong language: the weak language - the first input and final output
- consists of strings over an alphabet. The strong language, which is used for
inferences, consists of terms in WTT(ΘΣ

string), for Σ an alphabet.

Recall that we have the bijection i : Σ∗ → WTT(ΘΣ
string), and the map [−]λk,

which is i composed with closure under =k
αβ . I propose the following inference

rule, here denoted by gλ:

o ≈λPIλ no m[o] ∈ gλλP (Iλk)

m[no] ∈ gλλP (Iλk) (4.58)

Note how surprisingly simple the schema has become again. But the map
getting us back to the weak language is a bit more complicated: we have to
take the map j : ℘(WTT(ΘΣ

string)) → ℘(Σ), where j(M) = i−1[M ∩ i[Σ∗]]. In
words, we first intersect the set of terms with the set of terms i[Σ∗], the terms
representing strings in canonical form, and then take the inverse image under i.
This leads us back to a language, and frees us from a deep worry. This worry,
on which we will speak more explicitly later on, is the following: assume we
derive a term m. The premise we use is of course in (Σ∗)λ; but how about the
conclusion? We might derive terms which are not αβ-equivalent to any string
encoding. This is surely not a virtue, but by our map j, this also will do no
harm: these entities are simply sorted out.

So there is no problem if we derive terms that do not reduce to strings. a
negative answer. However, a positive answer would allow us to derive a couple
of positive results; the first one being: we could say that λP1 is closed, in the
sense that it either generates an infinite language or the identity. The second
result we could derive would be that there are some non-trivial boundaries for
languages we can generate, by means of growth ratio. But so far there is little
hope.

We have said that given a finite language I, it is clear that Iλ is infinite.
This is problematic for analogical maps; for inferences, it rather seems desirable
to close inferences under =αβ , because we want to be able to reduce as much as
possible in the end. Here, it turns out that we can simply include α-conversion
and β-reduction/expansion into the rules of our calculus. This means, in addition
to the above rule, we have the following in gλ:

m ∈ gλλP (Iλk) m =αβ n

n ∈ gλλP (Iλk) (4.59)

For those who object to this scheme that the relation =αβ is not finitary, we
answer that we might read this scheme as a shorthand for complex derivations
where each single step consists of α-conversion, β-reduction or β-expansion. So
we can reduce the infinite set to a finite set by introducing additional inferences

4.13. CONCEPTS AND TYPES 145

for terms, which again are finitary in nature. We thus just make the derivation
steps of the λ-calculus part of our inference mechanism. This seems to be a good
solution.

So our procedure works as follows: given a finite language I, we first take
Iλk, and let our analogical map compute the analogies. Then we depart from Iλ

then form the deductive closure under the inference rules above, thereby yielding
gλλP1k(Iλ). So whereas for λP1, we take the Iλk, the premises for inferences are
not restricted in a similar way. Finally, given a finite language I, the infinite
language we are after is j ◦ gλλP1 ◦ [I]λ.

What class of languages do we induce, that is, what is the class of languages
L such that there is a finite I with L = j ◦ gλλP1 ◦ [I]λ? It might be worth a try
to show how the resulting language can be generated by an abstract categorial
grammar; however, as there are no known non-trivial upper bounds for the
expressive power of ACGs, this would be quite uninformative, and so there would
be little point in this exercise. Also for other upper possible bounds, there does
not seem to be any class which would be worth the effort one has to put in
for a result. We can however easily see that this approach generalizes most of
our previous approaches: we can encode tuples of arbitrary size without any
problem, as we have seen; we can also encode things as duplication with a term
as λ.(Bx)x. In fact, we can easily represent any polynomial function in this way,
as well as tuple concatenation etc.

The most urgent problem is however: our original problem regarding Li :=
{a2n : n ∈ N} still remains: we do not induce the language Li from any fragment
thereof such as Ie := {a, aa, aaaa}, for the same reasons as above. We encounter
exactly the same problem as before, in that we cannot control to which strings
we should apply a function and to which not. We will therefore by re-introduce
formal concept analysis.

4.13 Concepts and Types

4.13.1 A Context of Terms

We now take a more general perspective on formal concepts. A context is a
triple (G,M, I), where G,M are sets and I ⊆ G ×M. In FCA, the entities in G
are thought of as objects, the objects inM as attributes, and for m ∈M, g ∈ G,
we have (g,m) ∈ I if the object g has the attribute m. This is all we need as
basic structure to get the machine of FCA going. For A ⊆ G, B ⊆M, we put
A. := {m ∈M : ∀a ∈ A, (a,m) ∈ I}, and B/ := {g ∈ G : ∀m ∈ B, (a,m) ∈ I}.
A concept is a pair (A,B) such that A. = B,B/ = A. We call A the extent
and B the intent. A is the extent of a concept iff A = A./, dually for intents.
The maps [−]., [−]/ are called polar maps. As before, we order concepts by
inclusion of extents, that is, (A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2.

Definition 129 Given a context C = (G,M, I), we define the concept lattice
of C as L(C) = 〈B,∧,∨,>,⊥〉, where > = (G,G.), ⊥= (M/,M), and for
(Ai, Bi), (Aj , Bj) ∈ C, (Ai, Bi)∧(Aj , Bj) = (Ai∩Aj , (Bi∪Bj)/.), and (Ai, Bi)∨
(Aj , Bj) = ((Ai ∪Aj)./, Bi ∩Bj).

We define our type theoretic context as follows. Recall that Tm(Λ(Θ)) is the
set of all λ-terms over Σ. We put Tmc(Λ(Θ)) := {m ∈ Tm(Λ(Θ)) : FV (m) = ∅},

146 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

the set of closed terms, and we call Tmc(ΛI(Σ)) the set of all closed λI terms.
Furthermore, define WTT as the set of all closed and well-typed terms, that
is, the set of all terms m such that ` m : α is derivable for some α by our
rules; WTTI = WTT ∩ Tm(ΛI(Σ)). Recall that =αβ is a congruence. Let σ be a
given type, and L′ ⊆ ‖σ‖ be a distinguished subset of the terms of type σ; we
define L := {m : ∃n ∈ L′ : m =αβ n}, that is, as closure of L′ under =αβ . Put
G = M = Tmc(Λ(Θ)), and define the relation I ⊆ Tmc(Λ(Θ)) × Tmc(Λ(Θ)) as
follows: for m, n ∈ Tmc(Λ(Θ)), we have (m, n) ∈ I if nm ∈ L. So the relation of
objects in M and G is that of function and argument, and the relation I tells us
whether the two yield a desired value. Same can be done with Tmc(ΛI(Σ)).

Obviously, we have ⊥= (∅, Tmc(Λ(Θ))). Regarding upper bounds, we have
to distinguish two important concepts: we first have a concept we denote
ᵀ := (WTT,ΛV), where ΛV (V for vacuous) is the set of all terms of the form
λx.m, where m ∈ L and x /∈ FV (m). There is however a larger concept > ≥ ᵀ,
which is defined as > := (Tmc(Λ(Θ)), ∅). The reason for this slight complication
is as follows: we want our terms to be closed, because open terms are meaningless
for us. Now, it holds that the concatenation of closed terms is again a closed
term; but the concatenation of well-typed terms need not be well-typed: for
m, n ∈ WTT, it might be that nm /∈ WTT. Furthermore, there are λ-terms n with
vacuous abstraction such that the set {nm : m ∈ ᵀ} � ᵀ; we would however like
our > to be absorbing; and in fact, if m /∈ WTT, then for any term n, nm, mn /∈ WTT.
So for every term m /∈ WTT, {m}. = ∅. For all interesting results we have to
restrict ourselves to WTT, but for completeness of some operations we have to
consider Tmc(Λ(Θ)). Note however that if we restrict Tmc(Λ(Θ)) to Tmc(ΛI(Σ)),
then > and ᵀ coincide.10

4.13.2 Concept Structure and Type Structure

We have seen that each term can be assigned a most general type. Importantly,
the same holds for sets of types:

Lemma 130 Let T ⊆ WTT be a set of terms, such that the set of principal types
{pt(m) : m ∈ T} is finite. If there is a non-empty set of types Θ, such that for
each m ∈ T and all θ ∈ Θ, ` m : θ is a derivable judgment, then there is a (up to
isomorphism) unique type α, such that for every m ∈ T , ` m : α is derivable, and
every θ ∈ Θ can be obtained by α through a type substitution.

α is usually called the most general unifier of Θ; for a set of terms T , we
also directly call it pt(T), the principal type of T ; for Θ a set of types, we denote
it by

∨
Θ. A proof for this fundamental lemma can be found in [25]; again the

proof is constructive. Note that if we do not assume that the set of principal
types of terms m ∈ T modulo isomorphism is finite, then there is no upper bound
on the length of types, and so there cannot be a finite common unifier. For
convenience, we introduce an additional type > /∈ A, such that our types are
the set {>} ∪ Tp(A). If a set of types Θ does not have a common unifier, then
we put

∨
(Θ) = >, thus making the operation complete and defined in all cases.

This is of immediate importance for us, as it allows us both to speak of
the principal type of a set of terms, as well as of the least upper bound of a

10This is actually not straightforward; this follows however easily from the results presented
in [71].

4.13. CONCEPTS AND TYPES 147

set of types. From there we easily arrive at the greatest lower bound of two
types α, β, which we denote by α ∧ β, and which intuitively is the amount of
structure which α and β share. Write α ≤ β, if there is a substitution ts such
that ts(α) = β. This is, modulo isomorphism, a partial order. We now can
simply define α ∧ β :=

∨
{γ : γ ≤ α, β}. It is clear that the set {γ : γ ≤ α, β}

modulo isomorphism is finite, so the (finite) join exists in virtue of the above
lemma. So Tp(A) is lattice ordered up to isomorphism, even though we do
not have an explicit smallest element ⊥: modulo isomorphism, α is the unique
smallest type.

How does type structure behave wrt. concept structure? First of all, if
A ⊆ B, then pt(A) ≤ pt(B). So the inclusion relation reflects type structure.
This entails that pt(A) ≤ pt(B./). Stronger results are hard to obtain; for
example, if we know pt(A), there is nothing we can say in general about an upper
bound for pt(A./). Fortunately, there is more we can say about the lattice order
of concepts and type order. Define ∨ and ∧ on concepts as usual. For a concept
(A,B) over the term context, we put pt1(A,B) = pt(A), pt2(A,B) = pt(B).

Lemma 131 For concepts C1, C2 of the term context, the following holds: (1)
If C1 ≤ C2, then pt1(C1) ≤ pt1(C2), and pt2(C2) ≤ pt2(C1). (2) pt1(C1 ∧ C2) ≤
pt1(C1) ∧ pt1(C2), and (3) pt1(C1) ∨ pt1(C2) ≤ pt1(C1 ∨ C2).

Proof. The first claim is immediate by set inclusion. To see the second,
consider that for every m ∈ A1 ∩A2, we must have pt({m}) ≤ pt(A1), pt({m}) ≤
pt(A2) by set inclusion; and so pt({m}) ≤ pt1(C1)∧pt1(C2). To see the third claim,
consider the following: we can easily show that pt(A1) ∨ pt(A2) = pt(A1 ∪A2).
Then the claim follows from considering that pt(A1 ∪A2) ≤ pt((A1 ∪A2)./). �

Definition 132 A term m is a left equalizer, if we have ` m : θ1 → α, ` m :
θ2 → α, and θ1 6= θ2. m is a right equalizer, if ` m : α1, ` m : α2, and α1 6= α2.

Easy examples of left equalizers are terms with vacuous abstraction; easy
examples of right equalizers are terms which do not contain constants. Note
that every left-equalizer is a right equalizer; and so a term which is both a left
and right equalizer is λyx.x. The following results are a bit tedious to obtain,
yet not very significant; we therefore omit the proof.

Lemma 133 Let T ⊆ WTT, such that pt(T) = >. Then each m ∈ T . is a left
equalizer.

We can thus also speak of equalizer concepts. If we restrict our context to
λI terms, we get a stronger result:

Lemma 134 Let m be a left equalizer and λI-term, such that `Θ m : θ1 → α and
`Θ m : θ2 → α. Then both θ1, θ2 must be types inhabited by terms in Tm(ΛI(Σ)),
that is, there are terms mi, for which `Θ mi : θi is derivable for i ∈ {1, 2} and
mi ∈ Tm(ΛI(Σ)).

So when we restrict ourselves to ΛI, we have proper restrictions on the class
of possible equalizers, in the general case we do not. For example, assume there
is a set T of terms, and pt(T) 6= >. Still, we might have pt(T .) = >. Conversely,
from the fact that pt(T) = >, it does not follow that T . = ∅.

148 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Of course, all general results of FCA also hold in this particular setting. For
us, the question is not in how far is the type theoretic context interesting as a
particular context, but rather: in how far can we use type theoretic contexts in
order to generalize the approach taken before using syntactic concept lattices?
There we had the (implicit) context CS(L) = (Σ∗, (Σ∗)2, IL) (S is for “string”),
where (~w, (~x, ~x)) ∈ IL iff ~x~w~y ∈ L. We will now transfer this conception to type
theory, using our type-theoretic encoding of strings.

4.13.3 Generalizing the Language-theoretic Context

Take a finite alphabet T , and fix a language L′ ⊆ T ∗. As we have seen in the
last section, there is an injective map i : T ∗ → WTT from strings in T ∗ into the
set λ-terms of the signature Θstring

T . We thus obtain i[L′] ⊆ WTT, where i[−]
is the pointwise extension of i to sets. We close i[L′] under =αβ , and obtain
L := {m : there is n ∈ i[L] : n =αβ m}.

We now define a context CT (L) = (G,M, I), where G =M = Tmc(Λ(Θstring
T)),

that is the set of closed terms over the signature Θstring
T ; and for m, n ∈

Tmc(Λ(Θstring
T)), we have (m, n) ∈ I iff nm ∈ L. So for S a set of terms, we

have S. := {t : ∀s ∈ S : ts ∈ L}, and S/ := {t : ∀s ∈ S : st ∈ L}.

Definition 135 A t-concept is a concept (S, T) over the context CT (L), where
S = T /, T = S.. The syntactic t-concept lattice of a language L is defined
as LT (CT (L)) =: SCLT (L) := 〈BT

L,∧,∨,>,⊥〉, where BT
L is the set of syntactic

t-concepts of L, and with all constants and connectors defined in the usual way.

What we are still missing is an operator which allows us to define fusion
and residuation. Recall that for terms, our primitive objects, juxtaposition
is interpreted as function application. We extend this interpretation to sets
of terms: for S1, S2 ⊆ Tmc(Λ(Θstring

T)), we define S1S2 := {mn : m ∈ S, n ∈
T}. Next, for t-concepts (S1, T1), (S2, T2), we simply put (S1, T1) ◦ (S2, T2) :=
((S1S2)./, (S1S2).). That is, as before we use the closure of concatenation of
extents to define ◦. But there is an important restriction: concatenation of
terms is not associative. Consequently, the operation ◦ is not associative on
concepts, we have, for concepts M,N,O ∈ SCLT (L), (M ◦N)◦O 6= M ◦ (N ◦O).
For example, M ◦N might be >, because MN contains a term mn /∈ WTT, and
consequently we have (M ◦N) ◦ O = > ◦ O = >. Still, M ◦ (N ◦ O) might be
well-typed. So the structure of (BT

L, ◦) is not a monoid, but rather a groupoid.
We furthermore have a left identity element 1l, such that for every concept S,
1l ◦ S = S. This is the concept of the identity function ({λx.x}./, {λx.x}.).
(By the way, the identity function is also the encoding of the empty string /ε/).
There is no general right identity, though: for assume we have a term m : α for
a constant atomic type α; then there is no term n such that mn can be typed.
Consequently, no n can be the right identity for m.

What are the residuals in this structure? Given the fusion operator, they
are already implicitly defined by the law of residuation O ≤M/N ⇔ O ◦N ≤
M ⇔ N ≤ O\M ; what we have to show that they exist and are unique. In
the sequel we will use residuals both on sets of terms and on concepts; this
can be done without any harm, as the extent order and the concept order are
isomorphic. To see more clearly what residuation means in our context, note that
for S ⊆ Tmc(Λ(Θstring

T)), we have S. := L/S; because S. is the set of all terms

4.13. CONCEPTS AND TYPES 149

m, such that for all n ∈ S, mn ∈ L. Dually, we have S/ := S\L. Consequently,
we have S./ = (L/S)\L, and dually, we get S/. = L/(S\L). So we see that the
polar maps of our Galois connection form a particular case of the residuals, or
conversely, the residuals form a generalization of the polar maps. The closure
operators are equivalent to a particular case of what is known as type raising.
More generally, we can explicitly define residuals over a ternary relation: put
(m, n, o) ∈ R if and only if mn =αβ o. Then we define

1. O/N := {m : ∀n ∈ N, ∃o ∈ O : (m, n, o) ∈ R}; dually:

2. M\O := {n : ∀m ∈M,∃o ∈ O : (m, n, o) ∈ R}.

As is easy to see, M. := {n : ∀m ∈ M,∃o ∈ L : (m, n, o) ∈ R}; and
M/ := {n : ∀m ∈ M,∃o ∈ L : (m, n, o) ∈ R}. This way, we explicitly define
residuals for sets of terms. Given this, it easily follows that residuals also exist
and are unique for concepts: (S1, T1)/(S2, T2) = ((S1/S2), (S1/S2).).

So residuals allow us to form the closure not only with respect to L, but
with respect to any other concept. This provides us with a much more fine-
grained access to the hierarchical structure of languages. On the negative side,
the ◦ operation and residuals do not tell us anything about directionality of
concatenation on the string level. This however is unsurprising, as our treatment
of strings as λ-terms serves precisely the purpose of abstracting away from
this: concatenation is done by terms automatically, and we need no longer take
care or even notice of this. Obviously, concepts of SCLT (L) provide a vast
generalization of the concepts over strings in SCL(L). An immediate question
is whether this extension is conservative, in the sense that each set closed in
SCL(L) is, under the usual translation, closed in SCLT (I). This is generally
wrong, but holds with some restrictions:

Theorem 136 Let M,L ⊆ T ∗; let Mλ, Lλ be their type theoretic counterpart in
the signature Θstring

T . If M = M./ is closed wrt. the language theoretic context
CC(L), then we have Mλ = (Mλ)./ ∩ (T ∗)λ, where (Mλ)./ is closed wrt. the
type theoretic context CT (Lλ).

Proof. Let M be c-closed; every string context (~w,~v) ∈M. corresponds to
a function of the form λx.B(B/~w/x)/~v/, which takes a term /u/ as argument,
concatenating it with a /~w/ to its left and /~v/ to its right, resulting in a term
/wuv/. Call the set of these functions (Mλ)I. We now take (Mλ)I/. Obviously
we have Mλ ⊆ (Mλ)I/. We show that Mλ ⊇ (Mλ)I/ ∩ (T ∗)λ: if we have, for
~w ∈ T ∗, ~w /∈ M , but /~w/ ∈ (Mλ)I/ ∩ (T ∗)λ, then we have i−1(/~w/) ∈ M./,
because each type context in (Mλ)I corresponds to a string context in M.. This
is a contradiction, as M is closed under [−]./.

So we have Mλ = (Mλ)I/ ∩ (T ∗)λ, and (Mλ)I/ is a closed set. Furthermore,
as (Mλ)I ⊆ (Mλ)., we have (by the laws of Galois connections) (Mλ)I/ ⊇
(Mλ)./. So we get Mλ ⊇ (Mλ)./ ∩ (T ∗)λ. To see that Mλ ⊆ (Mλ)./ ∩ (T ∗)λ,
consider that as M ⊆ T ∗, we have Mλ ⊆ (T ∗)λ; furthermore, Mλ ⊆ (Mλ)./.
Therefore, Mλ ⊆ (Mλ)./ ∩ (T ∗)λ. This completes the proof. �

As expected, the converse does not hold, not even for terms which encode
strings. In this sense t-concepts yield a proper generalization of c-concepts.
This however does not obtain for the extension of the lattice with fusion and
residuals: fusion in the t-concept lattice is completely incomparable to fusion in
the c-concept lattice of a language.

150 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

4.13.4 Putting Things to Work

From our above argument on sub(Iλ), it follows that for a finite language I,
SCLT (Iλ) is in general an infinite lattice. Therefore, if we want to put our
analogical maps to work, we have to restrict also the context and the concept
lattice to Iλk; but as we will see later on, this only makes sense for the extent,
not for the intent! The context we use for a conceptual analogue of λkP1 is thus
CT (Iλk). We now develop an inference scheme. Recall how we used concepts in
the language theoretic setting; we will make a similar approach. We write Ckt (L)
for the concept of all terms m ∈ Iλk. Again, for M, N ⊆ WTT, by MN we denote the
set {mn : m ∈ M, n ∈ N}. By m[N] we denote the set {m[n] : n ∈ N}. We now define
the inference rules denoted by gλC .

M⇐P
I NM m[M] ⊆ gλCP (I)

m[NM] ⊆ gλCP (I) (4.60)

Note that we slightly abuse notation, because I is here not a language, but a
set of terms. In the end, we also need a “spell-out” scheme to get back from sets
of terms to terms; we just mention this by way of example, and skip the dual
inference rule to infer a set from its element.

m[N1, ..., Ni] ⊆ gλCP (I) n1 ∈ N1, ..., ni ∈ N1

m[n1, .., ni] ∈ gλCP (I) (4.61)

This seems satisfactory. What we still need is a “decent” analogical map.
Again, we can simply look at string based concepts and transfer what we have
worked out there. We can devise λCP1 as follows: We have N ≈λkCP1

I MN, if and
only if m[MN] ⊆ Iλk ⇒ m[N] ⊆ Iλk. Note that in these rules and with this map, we
do talk about (term)-concepts in the narrow sense, but only about the extents,
that is, sets which are closed under [−]./. We have done this before, and we
proceed with this for notational convenience.

Already the pre-theories on terms are quite abstract; for the pre-theories on
concepts over terms it is almost impossible to have an intuition on how they work
at this point. So we just present a small example; we go back to our language
Ie := {a, aa, aaaa}. We have i[I1] = {λx.ax, λx.aax, λx.aaaax}. Next, we have
to fix a k. Let us put k := 2, so that we consider the language Iλ2

1 . What does
this language look like? We have

(I1)λ2 ⊇ i[I1] ∪ I ′, where I ′ := {λx.xm : m ∈ i[I1]} ∪ {λx.xm : m ∈ I ′}. (4.62)

This is the subset of (I1)λ2 which is quite uninteresting. But there is more
to it; we also have

(I1)λ2 ⊇ {λx.Bxx(λx.ax), λx.Bxx(λx.ax)}. (4.63)

So what is the concept CT (λx.Bxx) in Iλ2
e ? Here we encounter another

problem: there is no term in m such that mλx.Bxx ∈ Iλk1 ! So we see in this
example that we actually have to build concepts with respect to the entire set
(Ie)

λ! So whereas it is necessary to restrict the intent, it is unreasonable to
restrict the possible extents; the context we have to consider is (WTT, WTT, I),
where (m, n) ∈ I, if 1. nm ∈ Iλ, and 2. m ∈ sub(Iλk); but there are no restrictions

4.14. ANOTHER ORDER ON PRE-THEORIES 151

on n. It is clear that nonetheless I is infinite, because there are infinitely many m

satisfying the criteria. Nonetheless, there are only finitely many distinct concepts,
because there are only finitely many distinct extents, and of course concepts
with the same extent are identical.

Let us return to the example. We have a concept of λx.Bxx. This exists,
because we have λy.((y(λx.ax)λx.ax), λy.((y(λx.aax)λx.aax) ∈ {λx.Bxx}..
It turns out that – at least in the full calculus – this is not unique (up to
=αβ), because there are the terms λxy.x, λxy.y. So we have [λx.Bxx./]αβ =
{λxy.x, λxy.y, λx.Bxx}. and there is (up to αβ-equivalence) no other m such that
λy.((y(λx.ax)λx.ax)m, λy.((y(λx.aax)λx.aax)m ∈ Iλ. From this it follows that
{λx.ax, λx.aax}./ = [{λx.ax, λx.aax}]αβ ; because any m ∈ {λx.ax, λx.aax}./
must be in Iλ, and λx.aaaax /∈ {λx.ax, λx.aax}./, as can be easily concluded
from our above considerations. Put N1 := CkT ({λx.ax, λx.aax}), N2 := CkT ({λx.Bxx}).

Do we have (N1, N2N1) ∈ λ2P1(Ie)? We can check this manually: assume we
have m[N2N1] ∈ Iλ2. Then there are two possibilities; Let β(m[N2N1]) be the set of
β-normal forms of the terms.

1. Assume β(N2N1) ⊆ sub(β(m[N2N1])). In this case, λx.aaaax is a subterm of
β(m[N2N1]), and we must have m[N2N1] =αβ N2N1. Now we have N2N1 ⊆ Iλ2, and
so we also have N1 ⊆ Iλ2, so the condition is satisfied.

2. Assume β(N2N1) 6⊆ sub(β(m[N2N1])). In this case, the abstraction is vacuous
and we can just put any term in there: so for any N, we have β(m[N2N1]) =αβ

β(m[N]). This means in particular: if m[N2N1] ∈ Iλ, then m[N1] ∈ Iλ. Moreover,
as m[N1] has less reduction steps to the unique β-normal form in i[Ie], it follows
that m[N2N1]) ∈ Iλk ⇒ m[N1] ∈ Iλk for all k ∈ N.

So we actually now do have the analogy which we desired: we know at least
{a2n} ⊆ j ◦ gλλ2CP1([I]λ). It would be tedious to show that we also have the
converse implication, so we leave it with that. But we see how complicated
pre-theories of the kind we investigated here can get – even working on very
simple languages. And this is the awkward thing about it.

4.14 Another Order on Pre-Theories

We have so far considered the inclusion order of classes of the form C(f, P) or
C∞(f, P). We have seen that these orderings are not very meaningful, because
the classes we consider are quite unnatural in the first place; most arguments
can be brought back to finite languages because of alphabetical innocence, which
in turn makes even results of the form C∞(f, P) ⊆ C∞(f′, P ′) quite meaningless.
We now present a different order, which is maybe more informative and more
meaningful. This order corresponds to the order of functions according to their
graphs.

Definition 137 Given two pre-theories (f, P), (f′, P ′), we say (f, P ′)� (f′, P ′)
if for all finite languages I, we have fP (I) ⊆ f′P ′(I). We write P � P ′, if for all
finite languages I, P (I) ⊆ P ′(I), and we write f� f′, if for all analogical maps
P , we have fP (I) ⊆ f′P (I).

It is easy to see that the relation � is completely independent of the order
⊆ or ⊆∞ on C(f, P),C(f′, P ′). For example, there is an analogical map which is
maximal according to �, namely Pmax, where for all finite I ⊆ Σ∗, Pmax(I) =
Σ∗ × Σ∗. Of course, for I 6= ∅, we then have fPmax(I) = Σ∗ for any reasonable

152 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

set of inference rules f. The order � is transitive and reflexive; note however
that � is not antisymmetric: from (f, P)� (f′, P ′), (f′, P ′)� (f, P) it does not
follow that P = P ′, f = f ′. In that case, we can however say that pre-theories
are equivalent: we do not see a difference from the languages induced. We
can thus transform this pre-order to a partial order by looking at pre-theories
modulo equivalence. Note that � for P, P ′ on Σ∗ × Σ∗ is in fact antisymmetric.
But firstly, for us languages are more interesting than analogies. And secondly,
the underlying objects of analogies are not always be comparable: how should
we compare simple, powerset, or type-theoretic pre-theories. So what is more
interesting is the order on pre-theories.

So � does have a maximal element (f, Pmax) for sets of rules f for strings we
considered, and which is unique up to equivalence. On the other side, for the
relation ⊆ and on C(f, P) and C∞(f, P), there is no maximal element, as we will
see in the next section. The order � is somewhat more easy to put to use on
pre-theories. Note that if P � P ′, then (f, P) � (f, P ′). We can easily derive
the following results:

Lemma 138 1. Pr � P1
2. (g, P1)� (glate,PP1)� (glate, FP1)
3. (g, P r)� (glate,PPr)� (glate, FPr)

Proof. 1. As the conditions for P1 are a subset of the Pr-conditions, for all
finite I, we have Pr(I) ⊆ P1(I).

2. P1 � PP1 is quite trivial, as substitution is a polynomial function.
Moreover, every polynomial function is computable. Moreover, in the scheme ga
we can simulate string substitution with the introduction of terms.

3. See 2. �
So there is a number of immediate results we get. Another one we have

already proved, but repeat for convenience is the following:
(Theorem 101) We have (g, P1)� (gC , CP1) and (g, P r)� (gC , CPr).

�
So we have here a formal foundation for the use of concepts in pre-theories:

they serve to make pre-theories larger in the�-order. These results are somewhat
partial and preliminary: further investigation in this direction seems to be
promising, and we might obtain more general results without too much effort.
This however presupposes much more abstract notions of pre-theories and their
correspondence, as in the above example. We leave this open for further research.

4.15 A Kind of Completeness

Before we close this section on the classical metatheory of language, there are
two important general results which I have to present. These do not concern
particular pre-theories, but rather pre-theories in general, what they can do, and
what they cannot do.

The first result is a sort of “completeness” result, which can be stated as
follows: recall that we are looking for projections, that is, maps from finite to
infinite languages; pre-theories were a particular “operationalization” of this
concept, a way to approach these functions. The first result states that this
interpretation comes without loss of generality: every (computable) projection

4.15. A KIND OF COMPLETENESS 153

function can be described as a pre-theory. So we can equate projections and
pre-theories. This also justifies our use of “implicit definitions” of pre-theories,
where we simply defined them by the projection to which they give rise.

The second main theorem on the other hand is a sort of “incompleteness”
result: technically, it shows that given an alphabet Σ, there is no computable,
surjective function from the finite languages over Σ onto the recursive infinite lan-
guages over Σ. This means, rather philosophically speaking: for every decidable
pre-theory/projection there is a “blind spot”; there are always languages which –
being recursive and infinite – are philosophical candidates for “language”, but
which our pre-theories cannot induce, not given any finite language.

We will now introduce the most general inference rules. It is a scheme which
we have not adopted before, as it does not seem to be particularly interesting
from a linguistic point of view. It is however very interesting from a mathematical
point of view, as it can – with a suitably adapted pre-theory – simulate any other
set of inference rules. As we have said, inference rules always “pass down” some
kind of property; we have illustrated this in the beginning by the function f . In
this illustration, we can infer from f(~w) ∈ L, ~w ⇐ ~w′ that f(~w′) ∈ L. Now, the
most general inference scheme is exactly the case where f is simply the identity
function. We thus assume simple, string based analogies as usual of the form
~w ⇐ ~w′, and inferences of the form:

~w ∈ I ~w ⇐ ~w′

~w′ ∈ I ,

~w ≈PI ~w′

~w ⇐P
I ~w′ (4.64)

Denote this scheme by mg (so it is this tree, and the usual trees we need for
any pre-theory). It would be tedious to show that for every pre-theory (f, P)
there is an extensionally equivalent pre-theory (mg, P ′). As all pre-theories (are
intended to) define projections, this however follows from the main theorem of
this section.

Recall that a map f : ℘(M)→ ℘(M) is increasing, if for all X ⊆M , we have
f(X) ⊇ X. We have said a projection π : ℘(Σ∗) → ℘(Σ∗) is a map such that
π(L) ⊇ L, π(L) = L if |L| = ω, and there is at least one I such that |I| < ω and
|π(I)| = ω.

So projections are increasing maps on languages. Finally, we have also
required that projections be computable. This is a trivial requirement if the
image is a finite language. But if π(I) is an infinite language, this is problematic,
because we cannot just write out π(I); what we rather need is an algorithm
which either enumerates π(I), or an algorithm which decides for any ~w whether
~w ∈ π(I). So we must read π(I) in two senses: 1. π(I) as an infinite language;
we will denote this in critical cases by ‖π(I)‖, or by the extension of π(I). 2.
π(I) as a finite characterization of ‖π(I)‖; we will call this the intension of
‖π(I)‖. A very satisfying solution is to require that π maps I onto the code
of a Turing machine recognizing ‖π(I)‖. For simplicity, we omit the “code of”
part and act as if π directly maps I onto a Turing machine. So intensionally
speaking, a projection map is a map f : ℘(Σ∗)→ TM, where TM is the class of
all Turing machines (recognizing a language over the alphabet Σ), and where
f(I) = TM only if L(TM) ⊇ I.

All we need for our main theorem is that π be increasing and computable in the
above sense, and for mathematical purposes, we formulate the result in the most
general fashion; but of course, a fortiori the same also holds for projections in a

154 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

more restricted sense (satisfying requirements such as alphabetical conservativity,
closure under isomorphism etc.).

Of course, it would be quite tedious to let a pre-theory construct a Turing
machine. We therefore take another characterization of languages. Assume
we have a pre-theory (f, P) and a language I. We can associate with the
extensional deductive closure fP (I) a finite, intensional characterization of the
infinite language. This characterization is a triple (f, I, R)), where f is a set of
inference rules of the type we have used above, I is the input language and the
set of premises we have for our inferences, and R is a recursive relation which
equals P (I). Importantly, a relation R ⊆ M × N has to be recursive; that
is, for all (m,n) ∈ M × N , we can decide whether (m,n) ∈ R or (m,n) /∈ R.
R has to be recursive rather than recursively enumerable, because if R is only
recursively enumerable, we cannot guarantee that the resulting deductive closure
is recursively enumerable. So we will, given a TM, we construct a triple (f, I, R)
which characterizes the same language.

It is obvious that if I is finite, R is recursive, this procedure results in a
recursively enumerable language. What our “completeness” shows is that also
the converse obtains: we can simulate any TM with a triple (f, I, P (I)) satisfying
the above requirements.

Theorem 139 Let f : ℘(Σ∗)→ ℘(Σ∗) be a computable, increasing map, such
that f(L) = L if L is infinite. Then there is a pre-theory (mg, P) such that for
every finite language I, f(I) = mgP (I).

Proof. Assume ‖f(I)‖ = L, where f(I) = TM . Then L is recursively
enumerable. Thus there is a computable bijection δf(I) : N→ L, for which there
is a k ∈ N such that (δf(I))

−1[{i : i ≤ k}] = I. We now show how this bijection
δf(I) can be obtained; the crucial point is to show that it is recursive rather than
recursively enumerable.

Put orderTM (~w) := |~w|+ C(~w), where C(~w) is the number of computation
steps TM needs in in order to accept ~w. Note that we assume that orderTM :
Σ∗ → N only assigns finite order; so if we have ~w /∈ L(TM), orderTM (~w) is
undefined (or ω). Importantly, 1. it is decidable whether orderTM (~w) = k, 2. for
every k ∈ N, the set {~w : orderTM (~w) ≤ k} is recursive (rather than recursively
enumerable). We can make this order antisymmetric by ordering strings of the
same order by rad; this gives the linear order linordTM ⊆ Σ∗ × Σ∗, which is
defined by: ~w linordTM ~v iff and only if

1. orderTM (~w) < orderTM (~v), or

2. orderTM (~w) = orderTM (~v), and ~w rad ~v.

Note that by definition of rad, this order is irreflexive. Now we define δf(I) :
N→ Σ∗ by δf(I)(n) = w iff |{~v : ~v linordTM ~w}| = n− 1, mapping n on the nth
element of the linord-order. This is a computable function.

Thus there is a computable function jδf(I) such that for all i ∈ N, jδf(I)(δf(I)(i)) =
δf(I)(i+ 1). This map is also recursive, as long as it is restricted to strings in
‖f(I)‖ = L. So we have |jδf(I) | ⊆ Σ∗ × Σ∗. This is easily adapted such that

there is a k ∈ N such that (δf(I))
−1[{i : i ≤ k}] = I.

As we have established this, we can simply define the analogical map Pf by

Pf : I 7→ jδf(I) .

4.16. A KIND OF INCOMPLETENESS 155

With the most general inference rules, we obtain then mgPf (I) = L, because
every string ~w ∈ L is derivable by (jδf(I))

n(~v) for some ~v ∈ I and n ∈ N.
Moreover, every string in mgPf (I) is in L, as we can show by an easy induction.

So we have L(mg, I, Pf (I)) = L(TM). �
So actually, for every projection we can devise a pre-theory. This mans that

our somewhat special treatment - due to linguistic intuitions - of projections
comes with no loss of generality.

Actually, this proof has an interesting corollary, which we state because it
will have some importance in the proof of the next main result:

Corollary 140 Let L be recursively enumerable. Then 1. there is a recursive
bijection δL : N→ L, and 2. a well-order ≤⊆ L× L, where for every ~w ∈ L, we
can effectively compute the immediate ≤-successor.

Proof. Just take the map δL as bijection, and jδL as well order. Both
results follow from the last proof: if we know that ~w ∈ L, we can also effectively
compute (δL)−1(~w); and consequently, compute δL(((δL)−1(~w)) + 1). �

So we can effectively enumerate strings in a given order, and consequently,
there is a well-order ≤⊆ L× L, such that there is an algorithm which for any
~w ∈ L, provided there is a ~v ∈ L with ~w ≤ ~v, gives us a ~v′ ∈ L with ~w ≤ ~v′ after
a finite number of steps.

4.16 A Kind of Incompleteness

So far, we have seen plenty of pre-theories, where for most of them we could
make statements of the form: “for the pre-theory (f, P), there is a class of
languages C such that for no L ∈ C, there is a finite I such that fP (I) = L.” So
we knew there are languages which cannot be induced in any way. From the
point of view of linguistic theory, this is what makes a formalism interesting and
relevant: because we know it can be falsified by some “languages” (at least in
my view, though not in everyones view). If we use a framework for linguistic
theory, we assume that “language” is given. If the framework is restrictive, the
linguistic question is: is it adequate to model “language”? This is then supposed
to be an empirical question, which can be answered in some way, though the
answer will always remain preliminary, because we can never have all possible
“languages”. However, if it is not adequate, we have learned something about
natural language, and if it seems impossible to falsify it, we have also learned
something about language. If the formalism is on the other side not restrictive,
none of these obtains.

For a linguistic metatheory, things are very different. A pre-theory cannot be
falsified, and there is no empirical content to it, except for the checking against
partial languages. So for a pre-theory, being unable to induce certain languages
is not a merit, making empirical predictions, but is rather the formal counterpart
to a methodological bias: we are blind to certain patterns. It entails that there
are certain statements on “language” which cannot be falsified given any amount
of any data, because of intrinsic properties of our pre-theory. So whereas from a
linguistic point of view, there is good reason to be unable to describe certain
languages; but from a metalinguistic point of view, there is very good reason to
be able to induce any language.

156 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

In a word, we should be eager to devise a pre-theory which can induce any
language which is recursive. On the other side, we should also devise it in a way
such that it only induces recursive languages: otherwise, adequacy becomes an
undecidable problem. We have already considered the “most general pre-theory”,
and seen that it can model any computable increasing map on languages, so a
fortiori every projection. This tells us that we can safely just look at increasing
maps/projections instead of pre-theories. For us, the question of completeness
(“do we induce all mathematically possible languages”) can actually be reduced
to infinite languages, because regarding the images of our pre-theories, we are
not interested in finite languages. So the question is:

Given an alphabet Σ, is there a computable increasing map π : Σ∗ → Σ∗, such
that 1. for every finite I ⊆ Σ∗, π(I) is recursive, and 2. for every infinite
recursive language L ⊆ Σ∗, there is a finite language I ⊆ Σ∗, such that

π(I) = L?

Note that in this statement, increasing map and projection can be inter-
changed arbitrarily. Our “incompleteness” result is the following: we will answer
this question negatively. There is no pre-theory which induces all and only
infinite recursive languages. We call this general result incompleteness with the
following motivation. We might define a pre-theory (f, P) as complete, if for every
infinite recursive language L, there is a finite I such that fP (I) = L, and every
language L such that fP (I) = L for some finite L is recursive. Our result then
says: there is no complete pre-theory. As this result is of some general relevance,
our first formulation of it will be somewhat more general. We can also relativize
this concept, saying: given a class of languages C, a map f : ℘(Σ∗) → ℘(Σ∗)
is complete wrt. C, if for every language L ∈ C, there is a finite I such that
f(I) = L, and for every finite I, f(I) ∈ C.

Theorem 141 (Incompleteness) For every increasing, computable map f :
℘(Σ∗) → ℘(Σ∗) such that for all finite I ∈ ℘(Σ∗)fin, f(I) is recursive, there
exists a recursive language L, such that there is no finite I ∈ ℘(Σ∗) with f(I) = L.

The proof is based on an idea of diagonalization, where in our case com-
putability plays a crucial role.

Proof. Take an increasing, computable map f : ℘(Σ∗)→ ℘(Σ∗) for a (non-
empty) alphabet Σ. Fix a well-founded linear order on Σ∗, say, the radix order
rad. Now take the singleton set {~a0} =: A0, where ~a0 = minradΣ

+ is minimal
wrt. rad. Next, construct f({~a0}). Now take the immediate rad-successor of

~a0; call it ~b0. As f({~a0} is recursive, we can decide whether ~b0 ∈ f({~a0}) or

not. Now assume ~b0 ∈ f({~a0}); in this case we define ~a1 to be the immediate

rad-successor of ~b0. Conversely, in case ~b0 /∈ f({~a0}), we put ~a1 := ~b0.
Then, we put A1 = {~a0} ∪ {~a1}. This was in a sense an induction base. We

now construct successor sets An+1 for any set An which has been constructed in
this fashion.

Assume we have a given set An. Now we define ~an+1 to be the rad-smallest
string in Σ∗, such that

1. for all ~a ∈ An, ~a rad ~an+1 (rad is not reflexive!)

2. For every X ∈ ℘(An), we have either ~an+1 /∈ f(X), or there is an ~a′, such
that ~a′ ∈ f(X), maxrad(An)rad ~a′, and ~a′ rad ~an+1.

4.16. A KIND OF INCOMPLETENESS 157

We have to show that for every finite set An, ~an+1 exists; uniqueness follows
from the linear well-order rad. As An is finite, ℘(An) is finite. Put maxn :=
maxrad(An). Consider the immediate rad-successor of maxn, say ~x. Assume
a) forall X ∈ ℘(An), we have ~x /∈ f(X). Then ~an+1 = ~x. Conversely, assume
b) there is X ∈ ℘(An) with ~x ∈ f(X). Then we just move on to consider the
immediate rad-successor succrad(~x); but now we have to check the condition
a) only for ℘(An)−X. We iterate this, such that we always have to check for
strictly smaller subsets, and as ℘(An) is finite, at some point we will satisfy a).

Now as we know that for any finite set An, ~an+1 uniquely exists, we simply put
An+1 := An∪{~an+1}, which is again a finite set. Next, we define Aω :=

⋃
n∈NAn.

Aω is infinite, because we always have An (An+1. We have to show two things
to prove our theorem.

1. Aω is recursive.

2. Aω is not induced by any of its finite subsets under f .

1. Aω is recursive. What we first have to show is that given any finite An,
~an+1 can be computed in a finite number of steps. The procedure we have
indicated above consists firstly in checking whether for a string ~a, we have
a ∈ f(X). As f(X) is recursive, we can decide this in a finite number of steps.
Now as An is finite, we have to check this for ~a and a finite number of sets
X ∈ ℘(An). So for each candidate ~a, the procedure is finitary. Moreover, from
the above considerations it follows that we will find an ~an+1 for An after checking
a finite number of candidates.

So more than existent, for each An, ~an+1 is effectively computable. It follows
immediately that Aω is recursively enumerable. But moreover, we have an
enumeration which proceeds in line with the well-founded linear order rad: we
enumerate ~a0,~a1,~a2, ..., and if m < n, then we know that ~am rad ~an. So in order
to decide whether ~w ∈ Aω, we just enumerate Aω until we reach a first string ~v
such that ~v ∈ Aω and ~w radrefl ~v, radrefl being the reflexive closure of rad; it is
obvious that this condition can be checked. This can be done in a finite number
of steps (well-foundedness of rad, effectiveness of computing ~an+1 from An). At
this point, we either have ~w = ~v and so ~w ∈ Aω, or ~w 6= ~v, and consequently,
~w /∈ Aω.

2. Aω is not induced by any of its finite subsets under f .

Assume Aω = f(I), where I ⊆ Aω and |I| ≤ k : k ∈ N. Then there is a
smallest integer i ∈ N such that I ⊆ Ai, and thus I ∈ ℘(Ai). But then by
construction, there is a string ~ai+1 ∈ An+1 such that either (i) ~an+1 /∈ f(I), or
(ii) there is a string ~a such that maxrad(Ai) rad ~a rad ~ai+1, where ~a ∈ f(I) and
~a /∈ An+1.

Consider case (i): as An+1 ⊆ Aω, ~ai+1 ∈ Aω, while ~ai+1 /∈ f(I) – contradic-
tion. Consider case (ii): by construction, all strings ~w in Aω − An+1 satisfy:
maxrad(An+1) rad ~w. As ~a rad ~ai+1, ~ai+1 ∈ Ai+1, we have ~a /∈ Aω −Ai+1; but
also, ~a /∈ An+1, so ~a /∈ Aω, while ~a ∈ f(I) – contradiction. �

This theorem is in my view not only quite interesting in general; it is also of
fundamental importance for linguistic metatheory. We will therefore present an
alternative formulation, which underlines its relevance for our purposes.

Corollary 142 For every decidable pre-theory (f, P), there is are infinitely many
infinite recursive languages Li : i ∈ I such that for every Li there is no finite
language I such that fP (I) = Li.

158 CHAPTER 4. THE CLASSICAL METATHEORY OF LANGUAGE

Proof. Basically, this restates the above theorem. We obtain the stronger
claim that there are infinitely many unobtainable languages by a slight modi-
fication of the proof: instead of choosing ~ai+1 as smallest successor of Ai, we
can choose it as s(i)th successor, for any computable sequence s; and there are
infinitely many such sequences. �

So how should we interpret this result? In one interpretation, it is clear why we
have given it the great name of “incompleteness”, though it has technically little
to do with the matter of completeness in logic. The reason is that conceptually,
it is very similar to the importance of completeness in early metamathematics.
For the Hilbert-programm, the completeness of a logic for a formal system (that
of arithmetics) basically meant that there is a complete formalization of that
system; every statement can be formally proved or disproved, because the logic
came together with a proof theory. Gödel’s incompleteness result then stated
that this is not possible in general; we cannot entirely formalize mathematics
(arithmetics) by means of a formal proof-theory. Our result can be interpreted
in a similar fashion: there is no pre-theory which allows us to look at “language”
without any methodological bias. There will always be patterns to which we are
blind.

In one view, one could say that this is a very negative result, as there is no
“master”-pre-theory; there will always be something unsatisfying about it. But
note that Gödel’s incompleteness theorem, though it was the fall of Hilbert’s
programm of the complete formalization of mathematics, has also a positive
reading: under this reading, it says that the creativity of the mathematician is
beyond any formal proof system. For us, there might be a similar reading: even
though pre-theories are a formalization of the linguists reasoning on language - in
the same way as mathematical logic is a formalization of mathematical reasoning
- we cannot finally replace the linguist. There will always be some doubt about
the correct pre-theory. Pre-theories will (hopefully) constitute a useful tool in
linguistic reasoning, but they cannot ultimately defy the creativity and intuition
of the linguist. The underlying, intuitive reason could be said to be: the nature
of the data we observe influences what we consider to an adequate, meaningful
pre-theory. In my view, this is a positive result.

Chapter 5

The Intensional Metatheory
of Language

159

160 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

Summary of the Intensional Procedure

In the intensional procedure, we devise a set of extensive functions from finite
languages to finite languages. We base these on pre-theories and the notion of
atomic derivations. Then we gather some positive data and construct negative
data. Next, based on whatever additional information we have, we choose a
subset of the positive data, which we declare to be the immediate language
(i-language). This i-language is then used to construct the intensional language.
The intensional language is then tested for adequacy with respect to the entire
collection of positive data and the negative data. If it is adequate, we are done;
if not, there are several choices: either (i) we change the extensive functions, or
(ii) we change the choice of i-language, or (iii) we collect more positive and/or
construct less negative data, before we then choose a new i-language. Then, we
repeat the procedure.

Again we illustrate the availability of information by using two persons: the
metalinguist devises his extensive functions. The linguist first gathers positive
data and constructs negative data. Then he chooses – based on whatever
information – a subset of the positive data as i-language. He hands the latter
to the metalinguist, who then constructs the intensional language and gives it
back to the linguist. Then the linguist checks for adequacy wrt. his full positive
and negative data. If the intensional language is adequate, they are done; if not,
either (i) the linguist complains to the metalinguist to change his functions, or
(ii) he changes the choice of i-language, or (iii) he collects more positive and/or
constructs less negative data, before he chooses a new i-language and goes back
to the metalinguist.

Note that we now have considerably more freedom of choice, because the
linguist can choose his i-language freely from his observations, based on linguistic
criteria. This also means: if the linguist has an adequate intensional language
and makes a new observation which is already contained in his full intensional
language, he does not need to worry: he can just claim that this observation
would not have been in i-language anyway. But this freedom comes at a price:
when testing adequacy, we have to make sure the resulting intensional language
comprises all positive observations we have made. Therefore, we can exclude
some positive data from projection, but have to make sure they figure in our
final intensional language.

5.1 Problems of the Classical Conception

As we have said, linguistics in any modern sense is about possible utterances. So
there is an intensional aspect to linguistics we cannot avoid. However, in the
classical approach, once we have fixed “language”, there is nothing intensional
left: “language” is nothing but an infinite set. In the intensional paradigm, we
want to have an intensional model of language in a proper sense. If we assume
the cognitive (conceptual) perspective on language, the classical conception is
a claim on the mind of the speaker: if we consider “language” as infinite set
as being represented in the mind/brain of speakers of language, we find that
we accept two important consequences, which are by no means innocent, and
which in our view can only be maintained at a considerable price: for reasons of
principle

5.1. PROBLEMS OF THE CLASSICAL CONCEPTION 161

1. for each string of words ~w, every speaker “knows” at every time that either
~w ∈ L or that ~w /∈ L; and

2. for all strings ~w, he knows this in the same way.

By “knows” we mean knowing in the same sense, in which we say that a speaker
knows his language. We mark this explicitly, as it is by no means clear what kind
of knowledge that is (as this is actually a critical point, Chomsky sometimes uses
the term more neutral “cognizes”. See [47] for a praise of Chomskyan wisdom).

The first point is the strong claim, that for any sentence, we know whether it
is in our language or not; even if we have to sit down for three hours with paper
and pencil to come to this decision – if we are able to come to a decision it at
all, and if we want to count that what we did in the three hours as linguistic
understanding. So the process of reasoning whether an utterance belongs to
our “language” is a process of recognition, which deterministically yields either
a positive or a negative answer. For example, consider the sentence:

(1) Who did the man the mouse the cat chased saw see?

Now assume that two years ago, I thought about this sentence, and came to the
conclusion that it is English. In the meantime however, I have changed my mind
– I only consider English what I can immediately understand, because I have
been converted from a generative grammarian to a ”usage-based” grammarian.
In the classical paradigm, technically we would either have to admit that my
“language” has changed, whereas most people would agree that it is only my
attitude on language which has changed – or we would have to admit that my
judgments are actually unrelated to “language” in the relevant sense. The latter
is the standard move, as we will see, but for us, there is good reason to renounce
to it.

Just for the sake of comparison, consider the following line of reasoning:
assume we make the assumption, that we are able to recognize valid mathematical
reasoning always and infallibly. We can make this assumption, and it is often
made for example in constructive mathematics. However, from there it is a long
way to saying that we “know” every theorem, simply because we recognize every
proof. This is an assumption no one has ever seriously made, at least to my
knowledge. So even if we assume that speakers reason infallibly, there is still a
long way to go to claiming they “know” every result.

Usually, linguists reject the kind of argument we presented here in its entirety.
It is very instructive to see on what grounds precisely they do so. The usual
move is to say: linguistic knowledge is implicit, whereas mathematical knowledge
is explicit, and the explicit reasoning leads us outside of the realm of linguistics.
Our answer is: well, the matter of knowledge being implicit and intuitive only
works for a small fragment of what we consider to be “language”. The linguists
answer would then probably be: fine, but we have to make the distinction
between acceptability and grammaticality; we might go outside of acceptability,
but not grammaticality. Interestingly, the reasoning of the speaker does not have
any relevance for either of the two: it is irrelevant to acceptability, because it is
not intuitive and immediate, and it is irrelevant to grammaticality, because the
latter is a notion defined by the theoretical linguist, not by reasoning speakers.
But our answer to the linguist will be the following: we see, but the move you
made is not legitimate for us: we have the priority of epistemic concerns, and

162 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

your move consists in moving the proper subject – grammaticality – beyond
what we can know for sure. We can now only define it, and have lost the
empirical access to it. This hurts our fundamental assumption of the priority of
epistemology.

The second point above is the strong claim that there is no way in which some
utterances are more derived than others, and others are more fundamental. So
whether I immediately understand an utterance, or I take two hours, again really
makes no difference for the fact how this utterances belongs to “language”; it is
a side issue which is considered to have no relevance with respect to linguistic
theory. This point is strongly related to the former, and the reason why it is
problematic similar: we have to make a strict separation between acceptability
and grammaticality, as long as we do not assume that “language” coincides with
o-language (which leads to the finitary meta-theory).

NB: the problem of defining “language” in a satisfying manner was addressed
by the previous section; but is was not solved, and it was clear from the beginning
that there cannot be a solution to our epistemic problems: because at best, we
can define “language” in a satisfying way, but nonetheless, we do not have any
empirical access to this notion.

Note that the problems we sketched here do not arise from explicit assump-
tions, but follow from the simple fact that we regard languages as infinite sets.
The reason is that sets have the obvious properties: 1. for each set S and object
o, we have o ∈ S or o /∈ S (definiteness), 2. we have no other information on the
relation between o and S; put differently, if for all objects o, o ∈ S1 ⇔ o ∈ S2,
then S1 = S2 (extensionality). These two points are the reason why we can
identify sets with their characteristic function, and everything we have said in
this section follows from the simple assumption, that languages as sets (sets
of strings, or, as many linguists prefer, sets of trees) are an adequate model of
language.

Again, there is a rather old objection: “the set of utterances is the most
uninteresting part of “language”; we want to have the intensional description”.
And again, we will answer: that move is not legitimate for us, because it moves
the focus from an epistemologically remote object to an even more remote object;
so from our perspective, it is like saying: “No problem the grapes are too high
up, I wanted the clouds anyway”. So we see that already the commitment to the
priority of epistemic concerns over ontological concerns leads us to the intensional
metatheory in a natural way, and prevents us from doing most of the standard
moves.

5.2 The Intensional Conception: Philosophical
Outline

So what is the position of the intensional metatheory? We make a very compact
statement here, which we will explain in the sequel. Firstly, from the intensional
point of view, the reasoning speaker is relevant for linguistics. That leads us
to intensional languages: languages, in which the process of reasoning figures.
Furthermore, as in principle, the speaker can reason as much as any linguist
(in fact, the linguist is a speaker as well), there is no reasoning which a priori
a speaker cannot perform, nothing which is impossible in principle. One main

5.2. THE INTENSIONAL CONCEPTION 163

question of intensional linguistics is however: what do speakers actually infer
when they (mainly) speak, and what do they actually infer when they write
– that is: which inferences do they actually perform, and which ones can be
made “on the spot”? From this it follows that 1. it is not the linguists task to
fix the speakers language in a very restrictive sense: intensional language are
quite open, and provide more than speakers need to infer or ever do infer; they
rather implement possible choices or more generally, possibilities of inferences.
2. The methods of classical metalinguistics become the methods of intensional
linguistics. The main problem is the following: it is easy to criticize languages
as sets; it is difficult to provide an alternative. So what we mainly undertake
here is to lay out the philosophical and ontological foundations of the alternative
conception.

In the classical approach, linguistic creativity is seen to be inherent in the
knowledge of language. That is to say, the entire creativity is already contained
in my knowledge, and once I have it, there is no way to transcend it, unless I
change my language. Infinity makes sure there is no need to do so: once we learn
a language, we already have an infinity of objects at our disposition, and this
infinity contains any possible creativity we might observe. So the philosophical
assumption that creativity is inherent in our knowledge of language coincides
with the (methodological) assumption that languages are infinite sets. There is
an alternative account of linguistic creativity. The alternative conception is that
linguistic creativity is transcendental. That is to say: when we are creative in
language, we transcend our basic knowledge, adding something genuinely new
to it. In this view, language is open, in the sense that not all possible utterances
are covered by the basic knowledge of language: speakers can go beyond it. That
is also to say that there is a proper difference between just using language on the
one hand, and being creative in language on the other: I can also use language
without being creative at all.

So what should then “languages” look like? The underlying intuition for
the structure of “language” is as follows: speakers have a (finite) amount of
utterances, which they know in some immediate sense; for example, we could
say that they know them verbatim, that is to say, we are literally acquainted
with them (a similar idea has been pursued in logic by [39]). Call this language
i-language; empirically, it is the set of strings, which we immediately understand
and accept as grammatical (so i is for immediate). An alternative description
would be: they are the utterances whose grammaticality cannot be reduced
to any other utterances. Note that i-language is theoretically different from
any other notion we have introduced so far: i-language can be equal to an
observed language only by assumption; we can never be sure neither that we
have observed all utterances we immediately know, nor that the utterances we
have observed are part of i-language, as speakers can be creative. There is also a
fundamental difference in cardinality: whereas observed languages are assumed
to be unbounded – though finite – , that is, there is no upper bound to their
size, it is unreasonable to assume that there is no upper bound to i-language;
our immediate knowledge is limited by quite rigid constraints. So the upper
bound to i-language is given by cognitive restrictions, as i-language is a cognitive
notion; the bounds to observable language are given by practical restrictions to
collect data. So we have to keep i-language and observed languages separate.
Neither can we equate i-language with o-language, though in this case, there
is a clear inclusion: every utterance in i-language us observable. The converse

164 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

cannot obtain, as o-language by our fundamental assumptions is infinite, whereas
i-language has to be finite by assumption: having an infinitude of utterances we
immediately know would make the concept pointless. For immediate knowledge,
we have to presuppose acquaintance.

So we have a finite i-language we immediately know, but this is of course not
sufficient. In addition to i-language, we have some devices, which allow us to
derive new utterances from the ones we already know, either immediately or by
derivation. These deductive mechanisms now account for linguistic creativity,
and it is when we use these devices that we are being creative. What should
these devices look like? What we need is a formalization of linguistic reasoning;
and luckily, this is what the entire classical metatheory is about: So we can
use exactly the pre-theories we have scrutinized in the last chapter. When
we put this machinery to use again, we should be aware that these tools have
changed their status: in the classical approach, they were just tools for the
metalinguist. Now, they become a model of the creative speaker, and thereby
belong to the subject of (intensional) linguistics. So the tools to define “language”
in the classical metatheory become models of “language” itself in the intensional
approach. Though this is quite a big change, we have been prepared for this:
the main argument in favor of a certain pre-theory in the classical paradigm –
apart from intrinsic mathematical properties – was that it formalizes linguistic
reasoning as a working linguist would do it; and working linguist in turn would
reason in a way he in turn thinks a speaker of a language would do.

This is all we need to construct intensional “language”. But there are some
more ontological differences. The first one is: in the classical approach, we had
to take an observed language and project it to the infinite. In the intensional
approach, of course we need an observed language to depart from; but there is
an additional step in between: we have to decide which part of this observed
language is actually i-language. So we have some freedom of decision here; but
note that the choice of i-language, though arbitrary from a metalinguistic point of
view, is an interesting empirical question from a linguistic point of view, because
it makes a strong statement about the mind of the speaker. So this choice
or freedom is not part of metalinguistics anymore, but rather of (intensional)
linguistics proper. This is the reason we do not want it to become deterministic
after all: we want to formalize the metalinguistic procedure, not linguistics itself.
i-language is a cognitive notion, and to decide on it, linguists should consider all
data which is relevant and available (such as reading times etc.).

The next important change is: rather than simply constructing the closure
under the inferences, we keep track by which means inferences a certain set of
strings has been derived. So rather than deriving a single infinite language, we
aim at deriving a set of languages, which is structured by inclusion and the
inference steps we used to get from one language to another.

Giving up the set conception solves many problems at once: gradience and
acceptability becomes a matter of which analogy people can draw ad hoc; the
difference of “language” and o-language is the difference between inferences
linguists draw and inferences which speakers draw when they speak. This in turn
is mostly the difference between “paper and pencil” inferences and inferences
which can be made on the spot.

So given that we have so deep changes in our view on language, are there
similarly deep changes in the underlying ontology of metalinguistics? Maybe
surprisingly, there are only minor changes we have to make; the big changes

5.2. THE INTENSIONAL CONCEPTION 165

concern the part of “language” which we have to construct, not the one we are
given.

The “canonical datum” of linguistics is still the judgment that ~w ∈ L or, in
a considerably weaker form, ~w /∈ L. We have called this a linguistic judgment.
As we said, for us a linguistic judgment need not be based on some immediate,
implicit knowledge, but can also be derived. So we might want to distinguish
between immediate judgments and derived judgments, which are derived from
other linguistic judgments by means of analogy. The latter are thus no longer
implicit and immediate, but require reasoning about language. This is however
not visible to us; so it is our decision to classify them.1

So the positive language is given, and we do not have to make changes to
that. The important difference is: we do not need to make the positive language
the base of our analogies: we can also take a subset. We then only have to make
sure that the rest of the positive language is derivable from the fragment we
have used. Regarding the negative language, there are really no changes: for us,
it was simply an instrument of control, and this it will stay. The content of the
negative language was highly intensional in the first place, so there is nothing
we need to change.

But for the object we construct, our ontology is much richer, we can distin-
guish the following languages:

1. i-language, which is immediately known

2. the language of sentences which can be derived ad-hoc (≈ o-language) or
“online” (in principle, there might be several of this)

3. the language of sentences which can be derived with arbitrary resources
(in principle, there might be several of this)

4. a negative language, which should not intersect with any of the former.

This corresponds to a distinction of linguistic subjects. Regarding the first
item, it does not seem that there has been research on i-language in our sense;
but maybe it is worth the while: maybe the fact that this topic has not received
attention is that there was no theory which pointed out its existence. The second
point has gathered considerable attention, as it concerns the speaker as he is
intuitively speaking (“natural data”). It can be thought of as the linguistic
universe the speaker lives in, that is, the utterances he can make and understand.
The third point corresponds to the linguistic universe of the linguist rather than
the one of the speaker: it is the analogies we can make with paper and pencil.
This roughly corresponds to the proper subject of linguistics in the classical
conception.

So formal questions which arise most naturally are the following: 1. what are
the features of the first, second and third? The first is an entirely new construct,
so what does it look like? What are its formal/empirical characteristics? The

1Note that there are some terminology issues to be considered here, on the roles of explicit
and implicit knowledge. In the terms of Hintikka ([26]), knowledge is implicit if it can be
derived from what I know explicitly. In this sense, i-language is explicit, and what is beyond is
implicit. On the other side, i-language can be said to be implicit, as I do not need to make
any reasoning in order to arrive there, whereas what goes beyond can be said to be explicit on
the grounds of (conscious) reasoning. We will therefore use the terms immediate - derivative
in the latter sense.

166 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

next question is: 2. how can we characterize the second within the third?
Questions regarding the third class roughly coincide with questions asked in
the classical paradigm. The important difference is: we do no longer fix the
“language” of the speaker, but rather “possible languages”; and which ones the
speaker uses is an empirical matter.

On the downside, there is of course the danger that we solve all these
problems and avoid all problems of the classical approach at the price of getting
eve bigger ones. The main downside of our new approach is: the resulting
intensional “languages” are very different from anything we are used to see as
“language”; in particular they are much more complex. It is of course interesting
to do linguistics with these structures, but surely not in the same fashion as
in the classical conception, where all formalisms are, in one way or other, are
characterizations of (infinite) sets. We will devote a small subsection to the
question what intensional linguistics actually looks like. As we will see, this
is not too obvious; but still, intensional linguistics seems to be interesting to
pursue, and maybe might even put into practice what some linguists already
implicitly consider to be a “better linguistics”, without being too explicit about
it.

5.3 The Thinking Speaker: Independent Evidence

5.3.1 Preliminaries

Going down this road, we challenge another fundamental assumption of linguistics.
We already said that linguistics is usually supposed to be about the implicit,
immediate knowledge of language. We have already said that this is very
problematic and cannot be true from an epistemic point of view. So far, we
have challenged it as a methodologic claim for theoretical linguistics, that cannot
be sustained for the constellation of finite and infinite underlying linguistic
theory. Now, we also challenge it as a programmatic guideline for linguistics:
linguistics in the narrow sense is simply not interested in what happens when
speakers think about their language. In this view, the thoughts and reasoning of
speakers is essentially noise to the mythical, original competence, and has to be
filtered out either by experimental methods (short presentations of stimuli), or
by considering “natural data” as spontaneous speech, which is supposed to be
immaculate by the reflections of the speakers.

The intensional view is quite different: the statement that knowledge of
language is an implicit, unconscious knowledge for us is true only for i-language,
which is a finite language without an interesting (syntactic, semantic) structure,
because we assume it is characterized just by immediate acquaintance. This is not
true for o-language, and much less for “language”, the proper subject of linguistics.
In intensional linguistics, the central notion is now the extension (rather than
projection) of i-language, which is again effected via certain inferences. We
think that we can use this term in more or less the same sense as we did in the
classical metatheory, but on another level: it would be unjustified to assume that
linguistic inferences are of any other kind as inferences in everyday reasoning,
they are automatic and effortless up to a certain limited threshold, and beyond
they become fallacious or even impossible. But now, they form part of knowledge
of language.

5.3. THE THINKING SPEAKER: INDEPENDENT EVIDENCE 167

What this is to say, however, is the following: “language” cannot be separated
from the reflecting speaker, who thinks about his own language; and knowledge
of language cannot be separated from reasoning about language. We have gone
some way to find this conclusion acceptable (or maybe even necessary). Looking
back at the traditional concepts of linguistics, we find it at odds with almost all
standard approaches, be they cognitive in the Chomskyan or anti-Chomskyan
sense, or not interested in cognition at all.

Many people will without hesitation adopt the classical metatheory; probably
the same will hold for the finitist metatheory. In fact, we can say that our
treatment of these metatheories consists in making explicit and mathematically
concise what many scholars do anyway. For the intensional metatheory I cannot
make this claim; it is surely the most non-standard, and it deviates a lot from
what (to my knowledge) all linguists usually think and do. In particular, the
claim that the speaker who is explicitly reasoning should be subject of linguistics
proper will be hard to accept for most scholars. For this reason, I think it
is the only one of the meta-theories presented here which needs an explicit,
independent justification and motivation. Therefore, before we go into the
formal foundations, we give a short overview of theories and observations, which
provide an independent motivation for a notion as the reasoning speaker.

The most important point we want to make here is that in most “peripheral
disciplines” of linguistics, the thinking speaker plays an important role. This
mostly concerns sociolinguistics, historical linguistics, but also some non-standard
views on theoretical linguistics. So all we want to do is to bring him from the
periphery of linguistics to the core. We do not want to make a conclusive
argument why the thinking speaker should be the proper subject of linguistics
proper; neither do we try to give a complete picture of the role he plays in the
disciplines we have mentioned here. Both enterprises would result in a book
on their own. What I undertake is rather: I present some topics and literature
where the thinking speaker plays a crucial role. I know the only thing I can
achieve thereby is to show that it is a conception which should not be dismissed
easily; I content myself with that.

Granted that the speaker reasoning about his language is quite well-established
in many areas of linguistics and it seems quite hard to “explain him away” (even
though probably it is not impossible), the intensional metatheory only to brings
him from the periphery of linguistics to the very core.

5.3.2 Language Change

In historical linguistics, we can hardly overestimate the reasoning processes of
speakers. Firstly, there are rather peculiar phenomena as popular etymology,
which cause processes capitolium → campidoglio (’fields of oil’), which rein-
terpret a word which has become meaningless in a language into a meaningful
one, even though there is no semantic motivation for it. It is clear that this kind
of change presupposes a process of reasoning. Another example is the following:
it has been observed that vowel systems in Australian languages are somewhat
more narrow than elsewhere in the world, that is, they occupy only a subspace
of the space of possible vowels. This contradicts an old and often repeated
hypothesis which was first made by Martinet ([49]), which says that if a language
has n vowels, then it will most probably have the n most distinct vowels, in
terms of articular and acoustic vowel space. That means that these vowels will

168 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

be most probably found at the outer ends of the vowel space (except for the case
where a language has only one vowel, which is not attested to my knowledge).
For example, a language with three vowels will most probably have the vowels
[a],[i],[u]; a language with five vowels will most probably have [a],[i],[u],[e],[o] etc.

This is a very natural hypothesis, which also has often been empirically
confirmed (as a statistical universal, though). So it is puzzling that there is
a geographical group of languages, the Australian aboriginal languages, which
systematically deviates from this pattern. There is however a good explanation
for this: in the area of Australian languages, there is a very common ear infection,
which used to strike about half of the child population. This infection results in
a loss of hearing mostly at the outer spectra of the human range, whereas the
medium range rests quite intact. The Australian vowel systems are thus a direct
adaptation to the needs of a large part of population with impaired hearing. The
interesting thing is that this change cannot be triggered by language learners,
as the disease strikes children which already master their language. Therefore,
it has to be a (more or less) conscious change of the language by the speakers
which has resulted in these vowel systems (see [68]).

Note that there are even more clear cases of language change: there seem
to be changes which have been performed by conscious decision of a respected
speaker or group of speaker. While the importance of these examples should
not be underestimated, it should neither be overestimated: in the end of the
day, these examples count as peculiarities. We will now consider one of the
core processes of language change, namely analogy, which is (arguably) the
most frequent and fundamental process to drive language change. We will see
that analogy presupposes reasoning speakers, at least in the most plausible
conception.

Let us take the case of sound change. Sound change often happens across
the board, that is, a certain change equally affects all phones/phonemes in some
phonetically/phonologically defined environment. Of course, there are exceptions
to this: a sound change might affect only a particular item, say a very frequent
one. Thinking about this, in fact, in fact it seems much more natural that sound
change affects particular items rather than going across the board: surely sound
change is triggered by speaking, and so it should not affect forms which are not
affected by speech, such as rare forms, forms which belong to written language.
So in the end, it is across the board sound change which need an explanation;
and the most (only) natural explanation seems to be analogy. This of course
presupposes that sound change is in fact triggered by capable speakers rather
than language learners: otherwise, we would have to challenge the assumption
that the same sounds are heard in the same way by humans (see also Lehmann,
[44] p.209 for a similar criticism of the position that sound change only proceeds
via language acquisition). So sound change must be triggered by what speakers
do in their lifetime as capable speakers, and the fact that changes happen across
the board must be due to their (more or less) conscious decisions on how to speak.
This however seems to be impossible without analogy of phonological contexts.
The same applies to morphologic change: we often see inflection paradigms
change. Now if we make the (arguable) assumption that these paradigms do not
exist as such in the mind of the speakers, these changes have to go by analogy.
So in order to get morphological changes across the board, we need analogy. If
we admit that these changes are performed by capable speakers (even though
not necessarily adults), then we have to admit that speakers think about their

5.3. THE THINKING SPEAKER: INDEPENDENT EVIDENCE 169

language, because drawing analogies (and inferences) is pretty much the essence
of what we have treated as linguistic reasoning so far.

5.3.3 Sociolinguistic Typology: Trudgill

The “reasoning speaker” is also very well acknowledged in sociolinguistics. It is
known since a long time that the spread of linguistic change crucially depends on
social factors (see the famous work of Labov, [43]). There is a more recent and
less widely accepted claim that not only the spread of linguistic innovations, but
also the type of linguistic change depends on social factors (see [68]). For example,
there is strong evidence for the claim that languages which are rarely learned
as a second language and which moreover are spoken in stable societies tend to
become rather complex, contrary to language which are frequently learned by
L2 speakers and/or develop in socially instable environments.

In this perspective it is much more plausible that language change is triggered
by adults as well as by children: because how would children know about the
need to make themselves comprehensible to a wide community of different native
speakers, or the lack of this need? Moreover for language change to happen
the way it does, it is necessary that adults reason about their language, reason
about comprehensibility etc., and make conscious decisions based on their social
experiences. Of course, this sharply contrasts with the classical, generative
stair model of language change being triggered only by L1-learners; but it
also contrasts with the conceptions that language and linguistic knowledge is
untouchable for the reasoning of speakers. For an extensive treatment, we refer
to [68].

5.3.4 Roy Harrison: The Language Makers

The main point we want to make here has already been made very explicitly by
Roy Harris (see [23]). He claims that languages are social constructions, made up
by the attitudes and ideology of speakers towards it. So whereas all communities
have some language, this object is strongly underdetermined from various points
of view. The object speakers think to be their language is determined by certain
social/cultural/intellectual background conceptions. This is a direct approach
to the same question we are after, though it has a very different background
motivation, and also very different goals. The observation is however the same:
language as the collection of linguistic phenomena is a very incomplete object.
In order to make it the object of scientific study, we have to “complete” it by
adding some feature. The topic of this work is a case in point: in order to be a
satisfying model, “language” has to be infinite, whereas the linguistic objects we
observe lack this quality. So even before we can look for a satisfying theory, we
first need a satisfying model of reality.

We can pick up one particular aspect of Harris’ work. As Harris argues,
our (modern) view of language is strongly determined by writing. Whereas he
focusses on phonology, this is an important point also for syntax: can anyone be
convinced that our standard projection and competence/performance distinction
would be the same, if we did not consider written language at all? Not only as
data, but just imagine also doing linguistics would be completely oral! Then
it is easy to imagine that our usual conceptions rely to a huge extent on the
fact that we write down sentences and ponder about them. Now assume we did

170 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

not have this possibility (or would not make use of it). I think many things
which we claim to be “only performance restrictions” would actually be coded
into competence, because we would not even see how to exceed them. This is
actually a good point, as modern linguistics (at least linguistics proper) since
de Saussure always underlined the priority of spoken language – but our usual
linguistic conception of language is crucially based on writing. I do not think this
in itself is a bad thing; but I think it is easy to agree that writing changed our
conception of what is “language” – for the linguist as much as for the speaker;
and this is exactly because language is shaped by speakers thinking about it.

5.3.5 Coseriu on Knowledge of Language

Another place where we find many traces of the ideas we lay out here is the
work of Coseriu. Actually, this is not very surprising: as Coseriu does not have
a strong cognitive commitment, he is quite open minded on the structure of
language. In fact, I think it has been the Chomskyan strong focus on “language”
as being something real in the mind/brain which has suffocated a lot of interesting
discussions. We will therefore quickly review the work of Coseriu, mostly based
on [11]. According to Coseriu, knowledge of language is quite fine-grained. This
is firstly because he introduces the notion of the various norms of a language.
He establishes a well-known three-valued distinction, as opposed to the classical
dualities: there is firstly the parole - habla - rede, which corresponds roughly
to the notion in Chomsky and Saussure. There is the system, which roughly
corresponds to langue in Saussure. As a third and mediating object, he introduces
the norm, which specifies how one should speak, that is, it constrains the use of
the system. In a natural language with a normal history, he goes on, there are
always many norms, according to the (diaphasic, diastratic, diamesic) variations
of the language, and usually speakers are fluent in more than one norm. So
the system is more liberal than the norm, it has less constraints. Extensionally
speaking, the system is larger than the norm, but for Coseriu, the system does
not have an extension and it cannot be instantiated without a norm.

Why is this interesting? The norm is a social thing and not part of the
language system; nonetheless it guides the way in which speakers speak. But as
by assumption it is not part of proper linguistic knowledge, it must be extra-
linguistic knowledge of the speaker which he puts to use while speaking. Actually,
this is a clear thing: nobody ever claimed speakers do not think while they
speak. But the thing is that norm really concerns the structure of language,
it is a necessary instance for the instantiation of the system. Elaborating on
this thought – to be honest – it is difficult for me staying in line with Coseriu,
maybe because he thinks in structuralist terms, so often it remains unclear to
me when he talks about the speaker’s mind or just about some abstract system
of language.

However, there is another very interesting notion Coseriu introduces. In
([11],p.272,277), he introduces the notion of Sprachtypus (language type) as an
additional concept, which is still more abstract and general than the system,
which describes

”die Gesamtheit der funktionellen Zusammenhänge zwischen Funktionen und
Verfahren, die auf der Ebene des Systems als verschieden auftreten.”

For Coseriu, type is rather functional than directly connected to language

5.4. THE MATHEMATICS OF INTENSIONAL LINGUISTICS 171

structure; nonetheless, it describes something which is above the system, so in a
sense, it is creative and transcends the language itself, while still being part of
knowledge of language in the broadest sense.

We can change the norm, whereas the system remains the same; the converse
is not supposed to happen, as changes propagate from the speech to norm to
system. In the same way, the system might change, whereas the type remains
unaltered. Coseriu is quite vague on this notion of language type. So with some
interpretation on my behalf, we can describe the type as follows: it determines,
in which way a language expands, changes and creates new possibilities. So
Sprachtypus comes into play, where the system does no longer specify anything;
and it remains constant even when the system changes. But note that the
language type is not coded explicitly at any point, but is rather implicit in
the knowledge of the linguistic system. In my interpretation, it arises from
reasoning about the system. Language type could be said the line of abstraction
of language; it determines the way in which we construe and construct new
structures in the grammar, rather than in the utterances it describes.

In whatever way we want to make this concept precise, it is clear that
there is something to it transcending the normal notion of a grammar. It is
somehow encoded in the language, but surely it is not part of linguistic knowledge.
Importantly, this is the same way that the intensional linguist thinks that certain
structures (introduced by inferences) are encoded in the rules and i-language,
though not explicitly represented. Phenomena we can typically connect with this
type of a language might be ellipsis, which is always somewhat metagrammatical,
in particular, the direction of ellipsis (left in German and Japanese, right in
English, romance languages). Another topic is the one of drift (see [69]), that
is, the fact that languages tend to change their word order consistently into
one direction, even in unrelated structures. So the type specifies things which
transcend the system.

We should also mention that these conceptions can already be found in Hum-
boldts work, who is also quoted by Coseriu. Unfortunately, these interesting ideas
have not yet found their way into formal or even canonical linguistics. Maybe
this might change, in case the intensional metatheory gains some popularity.

5.4 The Mathematics of Intensional Linguistics

5.4.1 Languages as Structures

We now come to the formal treatment of intensional languages. We call a
function f on a set of sets extensive if I ⊆ f(I) for any I of the domain. Let
J be an arbitrary index set. A constructive language is a structure (I, {ηi : i ∈
J}, {I~j : ~j ∈ J∗}), where I is a finite language, the ηi are extensive functions

from (finite) languages to (finite) languages, and the set {I~j : ~j ∈ J∗} is a

set of languages, which is defined as follows: (1) I = Iε ∈ {I~j : ~j ∈ J∗};
and (2) if I~l ∈ {I~j : ~j ∈ J∗}, ηi ∈ {ηj : j ∈ J}, then Ii~l = ηi(I~l), and thus

Ii~l ∈ {I~j : ~j ∈ J∗}. The η is now mnemonic for “extension” (rather than

projection).

This is to say that each language carries as an index the inferences by which
it has been derived from I, which is the immediate language. We leave it open

172 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

whether the set J is finite or infinite; for practical reasons it will remain finite in
the sequel, but in principle, it needs to be only finitely specified. Note that even
if I, J are non-empty, {I~j : ~j ∈ J∗} modulo (extensional) equality of languages
need not be infinite. In order to provide us with infinitely many distinct I~j , the

functions ηi and/or the language I need to satisfy additional requirements.
This is what we have already stated in the last chapter. We can now elaborate

on this. We can define η to convert a pre-theory into an extension function
rather than a projection. Let (f, P) be a pre-theory. Unfortunately, we cannot
define a general notion of an atomic (f, P)-derivation, just because different
pre-theories are so diverse (some can derive new linguistic judgments in one step,
others need several intermediate steps); so we just define the general conditions
which atomic derivations of a pre-theory must satisfy, where this definition still
leaves considerable options in most cases.

Definition 143 Let (f, P) be a pre-theory. We say X is a set of atomic
(f, P)-derivations, iff

1. every derivation T ∈ X is an (f, P)-derivation,

2. for any finite language I, only a finite set of ~w ∈ fP (I) can be derived by
some derivation in X,

3. every (f, P)-derivation tree can be decomposed into subtrees in X, such that
every node of the (f, P)-derivation tree, which belong to two X-trees, is
labelled by a linguistic judgment.

We say an (f, P) derivation is atomic wrt. X if it is in the set X and X is a set
of atomic (f, P)-derivations.

Of course not every pre-theory does even admit a set atomic derivations; but
we assume that all reasonable ones do so, and if a pre-theory does not, then it is
not suitable for our purposes here. If we speak of a pre-theory and its atomic
derivations in the sequel, we assume they have been defined in some way in
accordance with definition 143. Let X be a set of atomic (f, P)-derivation. We
now define η(f,P,X)(I) as the set of all strings ~w, such that either ~w ∈ I, or there
is an atomic (f, P) derivation of ` ~w ∈ fP (I). Coming back to our index set
J , we now assume there is a bijection φ from J to a set of pre-theories each
associated with a set of atomic derivations. For simplicity, we write ηi for ηφ(i).

Furthermore, we define, for ~j ∈ J∗, i ∈ J , η~ji(I) = ηi(η~j(I)), such that we have
the general equality η~j(I) = I~j , in an appropriately defined intensional language.

This definition has one arguable feature, namely the following: for each
extension, everything we have derived so far has the same status as the original,
immediate language. Under this definition, we therefore do not get, for φ(i) =
(f, P,X),

fP (I) =
⋃
~j∈i∗

η~j(I) (5.1)

because we always recompute new analogies for each new set we derive. From
this results an incomparability to the classical pre-theories. But for example if
(f, P) is strongly upward normal and weakly monotonic, under these assumptions,
the equation can be shown to hold, as follows from lemma 64. In general, this
definition might be acceptable, as we always stick with finite languages; but

5.4. THE MATHEMATICS OF INTENSIONAL LINGUISTICS 173

on the other side, we might want to treat immediate knowledge and derived
knowledge differently.

We therefore also have an alternative definition. Let I1, I2 be (finite) lan-
guages, (f, P) be a pre-theory, X a set of atomic (f, P)-derivations. By ηI1(f,P)(I2)

we denote the set of all strings ~w, such that either ~w ∈ I2, or there is an atomic
(f, P)-derivation of ` ~w ∈ fP (I1)(I2), that is, from premises ~v ∈ I2 and analogies
in P (I1). The alternative construction of intensional languages is by the usual
map φ connecting indices with pre-theories and atomic derivations, and by ηI :
we define the language as (I, ηIi : i ∈ J, I~j : ~j ∈ J∗). So in this language, the
extending maps always refer to I for their analogies. For an intensional language
constructed in this fashion, equation (5.1) always holds, and so in the case we
only use pre-theories being both upward normal and weakly monotonous, the
two ways of constructing intensional languages should not differ essentially.

But of course, what is really interesting about intensional languages is that
in the intensional paradigm, we have a number of pre-theories, which all yield
possibly different languages, and we put all of them to use at the same time. For
strings, define the relation pref as follows: for ~x, ~y ∈ Σ∗, we have ~x pref ~y iff there
is ~z ∈ Σ∗ such that ~x~z = ~y. We obviously have the following: in some intensional
language (I, {ηi : i ∈ J}, {I~j : ~j ∈ J∗}), if ~j pref ~j′, then I~j ⊆ I~j′ . Still, though
sets are always growing, it is important to keep in mind the difference between
(I, {ηi : i ∈ J}, {I~j : ~j ∈ J∗}) and

⋃
~j∈J∗ I~j . The reason is that in the former we

do have some structure, whereas the latter is simply a set. For example, we can
define a regular language R ⊆ J∗, and define

⋃
~j∈R I~j ; this might actually be a

set which cannot be defined by any pre-theory we have used!
So the big advantage for us is that though “language” in the intensional

paradigm looks really different from “language” in the classical sense, we can
transfer the classical methods, i.e., we can put our pre-theories to use. This also
means: many formal questions can be answered by means of the classical answers.
For example, assume we have a given intensional language (I, {ηi : i ∈ J}, {I~j :

~j ∈ J∗}), J representing a set of pre-theories. What is the language
⋃
j∈J∗ ηj(I)?

There is no easy answer to this, but one might think that for extension functions
of the form ηIi : i ∈ J there might be one. Given two pre-theories (f, P), (f′, P ′),
define their least upper bound by fP∨f′P ′(I) = fP (I)∪f′P ′(I). By our completeness
result, this implicitly defines a pre-theory, and of course, we can extend this
to arbitrary finite sets. Assume J is finite, and each ηIi : i ∈ J has the form:
ηI(fi,P i,Xi), where (fi, P i) is a pre-theory, X its atomic derivations. We can easily
show the following equation to be valid under the above assumptions:⋃

~j∈J∗
I~j = (

∨
i∈J

fiPi)(I) (5.2)

The proof is immediate from our definitions. Note however that it is wrong
if our extension functions do not have the form η rather than ηI !

5.4.2 Language Definability

There is now type of question which arises: given a set J of (representatives
of) pre-theories, a language R ⊆ J∗, what is the class of languages:

⋃
~j∈R I~j

for some finite I? Or more generally, given a class of languages C, a set a set
J of representatives of pre-theories, what is the class of languages of the form

174 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

⋃
~j∈R I~j for some finite I and some R ∈ C? In this case we say a language/class

of languages R/C defines a language within (I, {ηi : i ∈ J}, {I~j : ~j ∈ J∗}); we

call this notion language definability (or shortly, l-definability).
A notion like l-definability seems to be far off from current linguistics. How-

ever, we would like to explain why such a notion might be interesting. In a
word, it might be a way to find a bridge between the classical and the finitist
approach. The finitist approach sticks to what is strictly visible; the classical
approach tries to project any locally visible pattern into the infinite, regardless of
whether speakers in the end are able to actually understand, utter or judge such
an utterance. As we have pointed out in the last chapter, there are inferences
which seem to preserve acceptability, there are those which do not, and there are
inferences which preserve acceptability on a certain restricted, local scale. Now
the main advantage of the intensional view is that we do not fix “language” for
the speaker; an intensional language is not a model of effective knowledge, but
rather a model of all possible inferences. So this paradigm allows us to investigate:
which is the largest substructure of an intensional language, such that it still
preserves acceptability? That is, by means of language-definability we can use
analogies which only locally preserve acceptability, but we can require them
to be used in a restricted fashion; whereas analogies, which globally preserve
acceptability, might be used in an unrestricted fashion.

This shows us that the additional structure of intensional languages is not
just for the sake of itself: we can (try to) define the acceptable strings within
the language in a way we cannot do in the classical paradigm. More generally
speaking, we have freed ourselves of a fundamental worry. In the classical
approach, once we have fixed our meta-theory, there were only two possible
answers to the question whether ~w belongs to “language”: either yes or no.
Now we can give in principle infinitely many answers: it belongs (or does not
belong to) the language defined by R etc. The linguistic challenge is to boil
these infinitely many answers down to a reasonable number of answers, say
3: 1. yes, in the sense of the most general extensions; 2. yes, in the sense of
acceptable extensions, 3. no. Or to get a still more fine-grained distinction, we
can distinguish between 1. immediate knowledge, 2. “online” acceptability, 3.
“offline” acceptability (or grammaticality), and 4. ungrammaticality.

The notion of l-definability seems quite appealing, but we can easily construct
an example why it is unsatisfying from a linguistic point of view. Consider the
pre-theories (g, RPr), (g, P r); we put J = {1, 2}, and φ(1) = (g, RPr,X1),
φ(2) = (g, P r,X2). Recall that RPr is the regular restriction of Pr. We define
their sets of atomic derivation X1,X2 in the most obvious way, as the smallest
non-trivial derivations of linguistic judgments. It is easily checked that this
defines atomics derivations for (g, P r), (g, RPr). Next we consider a language

I := {wxv,wxvw′xv′, wy1xy2v, wy1xy2v, wy1xy2vw
′xv′, wy1xy2vw

′y1xy2v
′, wxvw′y1xy2v

′}.
(5.3)

We then get RPr(I) = {(wxv,wxvw′xv′), (wy1xy2v, wy1xy2vw
′xv′), ...};

and Pr(I) = RPr(I) ∪ {(x, y1xy2)}. Now we get the structure (I, {ηi : i ∈
{1, 2}}, {I~j : ~j ∈ {1, 2}∗}). We have⋃

~j∈{1}∗
I~j = {wxv,wy1xy2v} · ({w′xv′, w′y1xy2v

′})∗; (5.4)

5.4. THE MATHEMATICS OF INTENSIONAL LINGUISTICS 175

and we have

⋃
~j∈{1,2}∗

I~j =
⋃

~j∈{2}∗
I~j = {w(y1)nx((y2)ny : n ∈ N0}·({w′(y1)mx(y2)mv′ : m ∈ N0})∗.

(5.5)
It is actually not too difficult to construct languages of the form⋃

~j∈(1∗+(1∗21∗))

I~j (5.6)

etc. As we said above, we might think thatRPr-inferences preserve acceptabil-
ity, whereas Pr inferences in general do so only on a very local level. For example,
we can conjecture that strings in {w(y1)nx(y2)nv : n ∈ N0} · {w′(y1)mx(y2)mv′ :
m ∈ N0}∗ are acceptable as long as n,m ≤ 3. This small example allows us some
criticism of our method so far: assume we use l-definability for an R ⊆ {1, 2}∗.
What we want to restrict is the number of 2s in words in R; for ~w a string, by |~w|a
we denote the number of as in ~w. So for example, R := {w ∈ {1, 2}∗ : |w|2 ≤ 6}.
We use 6, because this 6=3+3, the maximum values for m,n. But here is the
problem: the number 6 is too liberal, because it can be that n = 6, m = 0.
But at the same time, it is to restrictive: we can have in many iterations
of w′y1y1xy2y2v

′, each time using a single inference in 2, and still preserve
acceptability, because the inferences are not “nested” in the intuitive sense.

So l-definability does not seem to be a good way to go: it is too restrictive
and too liberal at the same time. This is because languages do not give us
any information on where exactly we can use the inferences; they only tell us
about cardinality and order, but this underspecifies many things. In particular,
one would think that we should in some way refer to the structures we induce –
presupposing a sort of structured inference as in g. We could further investigate on
definability in intensional languages. The reason we do not do so is the following:
I think that this already leads us into the realm of intensional linguistics rather
than metalinguistics; because the question whether an intensional sublanguage
preserves acceptability is clearly a linguistic and empirical question. In virtue of
this fact, this is no longer covered by the topic of this thesis, which is “strictly
metalinguistics”. Nonetheless I think these considerations have their place here,
because they give us an idea of what the intensional linguist is doing.

5.4.3 Adequacy

As we have stated above, in the intensional approach we can, as in all linguistic
metatheories, assume that there is a partial language (I1, I0), which we are
given as primary data. What has become slightly more complicated is the
procedure for adequacy. We have to test for three things: a partial language
(I, ηi : i ∈ J, I~j : ~j ∈ J∗) is adequate wrt. a partial language (I1, I0), if

1. I ⊆ I1;

2. I1 ⊆
⋃
~j∈J∗ I~j ;

3. I0 ∩
⋃
~j∈J∗ I~j = ∅;

4.
⋃
~j∈J∗ I~j is infinite.

176 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

The last three conditions are clear: no extension must contain any of the
negative data, and all positive data must be contained in some extension; there
must be infinitely many strings in some extension. The first one needs explanation:
I here corresponds to i-language, not the observed language, and as we have said,
i-language and observed language need not be in either direction included in one
another. This, however, holds only in principle. Once we put our metatheory
to work, we cannot assume that i-language contains any string we have not
observed: if we have not even made an observation, how can we assume we
immediately know it? If this would be the case, we should be able to verify that
it belongs to our positive data, and so we have to assume that we can add it to
I1: what is legitimate as a general possibility, is not a legitimate assumption for
the construction of a concrete “language”, and therefore we require I ⊆ I1.

5.5 Some Notes on Intensional Linguistics

Before I close this section, I add some notes on what I think intensional linguistics
looks like. This is because I have the impression that in this paradigm, the
line between linguistics and metalinguistics is easily blurred. So what does
intensional linguistics look like? Of course, its methods are very different from
classical methods, as the latter mostly consist in characterizations of infinite sets.
So what would an intensional metatheory mean for the working linguist?

Firstly, it is of course the meta-linguists task to provide a sufficiently rich
set of pre-theories. The first task of the linguist is then to make observations.
Then, assuming he has a dataset D of observations, the first important linguistic
question is: which part of D is i-language? This is of course a cognitive and
therefore an empirical question, so it is proper linguistics, and the linguist should
use all his tools and gather all information he can to decide on this question.
Such information can be reaction times (for grammaticality judgments), reading
times, and might even involve the brain. This is a first major task.

Now assume the intensional linguist has fixed an i-language I. Then by
the pre-theories, we already have an intensional language. We then have the
usual question for adequacy, which is rather part of the metalinguistic work.
Now assume we have an adequate intensional language. By our philosophical
assumptions, this is by no means the “language” of the speaker; it rather is
a structure of all linguistic inferences he can possibly make. We now come to
the second main task of the linguist: he should try to find the fragment of the
intensional language which the speakers actually use (in various senses). So here
we come to the question of definability, which we have outlined above. Note
that there are two main questions: the first one is empirical and asks in how far
certain extensions preserve acceptability. The second one is: which tools can we
develop in order to define certain intensional sublanguages? Our approach using
l-definability turned out to be unsatisfying even for the most simple examples,
so I guess there will be plenty of work to do developing appropriate tools.

Once we have defined a certain sublanguage of the intensional language, what
else is to do? At the first glance, quite little, because the pre-theories already
determine the structure of language, so most of the “classical” linguistic work is
redundant. But there is one thing we should keep in mind: as pre-theories now are
models of reasoning speakers, there might be different criteria speaking in favor
or disfavor of one or another, even though they might be extensionally equivalent

5.5. SOME NOTES ON INTENSIONAL LINGUISTICS 177

(or indistinguishable): again, there might be additional data suggesting that
speakers draw inferences in a certain way rather than in another, equivalent
one. For an intensional linguist, the structure of an intensional language should
– as much as this can be possible – contain some counterpart of the cognitive
processes of speakers. And having said this, most linguists might agree they
would not quickly run out of work in this paradigm.

So intensional linguistics is not as simple and straightforward as it might seem
at the first glance. One should also bear in mind that it is not only the classical
metatheory which does the work for the intensional linguist, but also vice versa:
his considerations on “cognitively adequate inferences” should be quite relevant
for the classical metalinguist, because he also is looking for “plausible” notions
of analogy and inference.

Note also that we can always move back from the intensional to the classical
paradigm: we simply take the union of all derivable strings or the union of
the strings of a definable sublanguage; with the resulting sets, we can just do
classical linguistics. I guess this is no longer in line with the strict “intensionalist
philosophy”, but it shows how the notion of intensional languages and definability
might bring some new concepts and ideas even into the paradigm of classical
linguistics.

178 CHAPTER 5. THE INTENSIONAL METATHEORY OF LANGUAGE

Chapter 6

The Finitary Metatheory of
Language

179

180 CHAPTER 6. THE FINITARY METATHEORY OF LANGUAGE

Summary of Finitary Conception

The finitary metatheory renounces to any explicit metalinguistic procedure: we
gather positive data and construct negative data, and then directly devise our
theories of language (in the sense of classes of possible grammars/languages). Our
theories have to characterize infinite languages, whereas our data still consists
of finite languages. Thus we necessarily have a mismatch between the two,
and falsification becomes a non-trivial thing. Therefore, to make our theories
meaningful, we have to make sure that they can be falsified in some way by
some finite (partial) language we observe. Moreover, to ensure the possibility
of falsification, linguists have to continue considering new data to try to falsify
existing theories.

Note that strictly speaking, this is all (finitary) linguistics, rather than
metalinguistics. If there is any explicit function for a finitary metalinguist, it is
the one of a referee, who (i) controls that the theories which linguists use are
in fact falsifiable by finite data in some way, (ii) controls that linguists in fact
consider all existing data, and (iii) controls that they continue gathering new
data.

So gathering new data, being problematic in the classical metatheory, accept-
able in the intensional metatheory, becomes essential in the finitary metatheory.

6.1 The Finitist Position

We already have laid out the finitist philosophy above. We just quickly repeat
the most important points to keep in mind: the finitist believes that “language”
is o-language, in words: the proper subject of linguistics consists only in the
observable utterances. From this it follows that “language” is regular by a simple
argument: as the memory of all speakers is bounded by some constant, even
hearing them speaking for an infinite amount of time, we would still not be able
to observe a non-regular language.

As another consequence, the finitist renounces to project observed languages
at all; he wants to stay only with observed data. There are two main reasons for
this: firstly, he has little reason to do so: why should he project if the data he
desires will come to him? But there is also a good reason not to project: using
a projection, how can we know that all utterances of the projected language
are really observable? Of course, there are inferences which seem to preserve
acceptability, but can we really be sure? That inferences preserve acceptability
already seems to be a strong assumption on the infinitary nature of “language”.
So we skip basically the entire metatheory and stick with what we have.

We stress however that this does not mean that the finitist does not believe
that “language” is infinite: o-language is infinite, as there are no bounds to
our observations; what is finite are observed languages (recall our discussion
in chapter 2.8). So in finitist linguistics, we still write grammars for infinite
languages; it is only the metalinguist which does not perform any form of
projection. So whereas the intensionalist renounces to commit himself to a
particular pre-theory, the finitist renounces to pre-theories entirely. But now
of course there remains a gap between the finite and the infinite. In order to
bridge this gap, he takes the approach of falsificationism: he devises theories,
which he then falsifies by the data. This is not so much different from “normal”,

6.2. FLP, PLP AND SUBREGULAR LANGUAGES 181

classical linguistics; what is important however is that he must be able falsify
his theories by means of finite languages, or at least by partial languages. As
a consequence, he requires that his theories (classes of languages) C have a
property as the finite language property (FLP, there exists a finite language
I /∈ C), or the partial language property (PLP), which we will define below.

As we said, finitism is in a sense the “simplest” solution to the problem of
linguistic metatheory. This is surely the case from a philosophical point of view.
From a mathematical point of view, the finitist metatheory does not need any
formal tools. The only challenge consists in devising linguistic theories which
are well-suited for finitism. There has been some work in this vein, but nearly
nothing compared to the extensive work on the “classical paradigm” of linguistics.
For this reason, we will here present the outlines of some formal methods to
approach finitist linguistics. But note that strictly speaking, these already form
part of finitist linguistics, not of metalinguistics.

There is also a downside to this property of being simple. As far as we can
see from the approaches to finitist linguistics that exist in the literature, the
generalizations and techniques are unfortunately not nearly as rich and thrilling
as in “classical linguistics”. We will therefore present some new techniques
and ideas to make finitist linguistics more substantial, showing that there are
interesting concepts and notions, which also have been put to work up to a
certain extent. However, I do not think that changes the overall picture: still the
techniques of finitary linguistics are much less developed than those of classical
linguistics, and I guess few formal linguists would find it thrilling to work within
this paradigm. That does however 1. not make them more or less true, and 2.
is only a first impression, which might also be falsified by further research.

6.2 FLP, PLP and Subregular Languages

Let REG be the class of regular languages, FIN the class of finite languages.
Linguistic theories in our general sense consist of classes of languages, or for-
malisms characterizing these classes. As we are committed to the priority of
epistemic concerns, we just focus on the languages, no matter how they are
characterized, because these are the empirically most accessible objects. As we
have sketched above, we have two requirements for a class of languages which
should qualify for finitary linguistics. Let C be a class of languages; in order
to be adequate for finitary linguistics, we must have 1. C ⊆ REG, and 2. we
must be able to falsify C by the data we have. There are two main ways to
achieve this; the most simple one is: we require that FIN 6⊆ C (this is what
we call FLP). What do classes look like which qualify in this sense? There are
well-known classes of languages which satisfy these requirements; consider, for
example, the local languages, co-finite languages, languages piecewise testable
etc. There is quite some work on these subregular language classes; and as these
are well-established, there is little need to expose them at this point (we refer
the reader to [59]). There is however a problem with the “canonical” subregular
language classes: they are not quite apt for our purposes. We would, for example,
not think that local languages form a good model for the regularities of natural
languages. We will therefore take a slightly different approach, which we hope
will be considered more adequate for linguistic purposes.

One can correctly object that the FLP is not very useful in the end: also the

182 CHAPTER 6. THE FINITARY METATHEORY OF LANGUAGE

finitist acknowledges that “language” is infinite; he is only agnostic about how it
looks like. Consequently, the finitist linguist also writes grammars for infinite
languages; that he cannot write grammars for certain finite languages does not
bother him: he would not write them anyway. What is rather important: his
theory C prevents him to write a grammar for an infinite language which contains
a dataset D he has observed. We have already mentioned this property: not
every finite language has an infinite extension in C, that is: there exists a finite
language I, such that there is no infinite L ∈ C with I ⊆ L. This is however an
extremely restrictive property; in particular, it would disallow us to have Σ∗ ∈ C
for any alphabet Σ. None of the classes we presented above has this property.
We do not really know how to define this property in a reasonable way. However,
there is a way out: recall also for the finitist, data consists in partial languages
rather than simply finite languages; this makes falsification much easier. Recall
that L is a completion of (I1, I0) iff 1. L is infinite, 2. I1 ⊆ L and 3. L ∩ I0 = ∅.

Definition 144 A class of languages C has the partial language property
(PLP), if there exists a partial language (I1, I0) over Σ∗, such that there is no
completion L ⊆ Σ∗ of (I1, I0) such that in L ∈ C.

Note that this property of classes of languages is closely related to the property
described by Angluin’s theorem (see [1]). The PLP is a reasonable property
for classes of languages, but consider that using PLP instead of FLP requires a
stronger ontology: for FLP, we only need finite sets of positive observations; for
PLP, we also need to make use of the negative data, which has a critical status.
So though PLP is surely preferable on conceptual grounds, this comes at a price.

Before we proceed, let us characterize which classes of languages do not
have the PLP. Let Co-FIN denote the class of cofinite languages, that is, the
class of languages L such that for Σ the smallest alphabet such that L ⊆ Σ∗,
Σ∗ − L ∈ FIN .

Lemma 145 Any class of languages C such that Co-FIN ⊆ C does not have
PLP.

Proof. For any partial language (I1, I0), where I1, I0 ⊆ Σ∗, we can form the
completion Σ∗ − I0. As I1, I0 are finite by assumption, this is cofinite. �

In particular, assume FIN ⊆ C, and C is closed under complement. Then
C does not have PLP. So the PLP is quite a strong restriction. Note however
that the inverse of the above lemma is wrong: there are classes C such that Co-
FIN 6⊆ C, but which still do not have PLP; just consider the class of co-infinite
languages, that is, the class of languages whose complement wrt. the smallest
alphabet is infinite.

6.3 Derivatives of Languages

Let rad be the radix order over Σ∗, which is defined by an (irreflexive) linear order
< on Σ, and where ~w rad ~v, if either |~w| < |~v|, or |~w| = |~v|, ~w = ~xa~y, ~v = ~xb~z,
and a < b. By minrad(M) we denote the rad-minimal element of M . As rad is
linear, this is a unique object in M . Let L ⊆ Σ∗ be a language. Then we define
suf L(~w) := {~v : ~w~v ∈ L}. Next, we put der(L) := {~v : ~v = minrad(suf L(~w))
for some ~w ∈ Σ∗}. We thus have the set of rad-minimal sufficient suffixes; by

6.3. DERIVATIVES OF LANGUAGES 183

sufficient suffixes we mean: sufficient to complete any word in pref (L) to a word
in L, where pref(L) := {~w : ~w~v ∈ L}. The rad-minimality is quite arbitrary to
make suffixes unique, but makes sure the suffix we choose is unique and among
the shortest. The following is easy to obtain:

Lemma 146 Let L ∈ REG. Then der(L) is a finite language.

Proof. There is a deterministic finite automaton A such that L = L(A).
This means, that after reading ~w, we are in one state q of a finite set of states.
For each state, there is a rad-minimal word ~v such that for some q′ ∈ F , we
have δ(q,~v) = q′. �

The converse does, of course, not obtain: there are non-regular languages
such that der(L) is finite. In fact, there are languages which are not even
recursively enumerable which satisfy this condition: as is well-known, there are
uncountably many infinite words over an alphabet Σ, provided that |Σ| ≥ 2.
In the sequel, we mark infinite words with an overline, as in w. For each of
these words w ∈ Σω, the set of its finite prefixes, denoted by pref ({w}), is a
language such that der(pref ({w})) = ∅. Now, as there are only countably many
recursively enumerable languages over a given alphabet Σ, it follows that most
(uncountably many) languages of the above form are not recursively enumerable.
We now define the derk-languages:

Definition 147 L is a derk language, iff max{|~w| : ~w ∈ der(L))} ≤ k.

So a derk-language L has a fixed upper bound for strings in der(L). This is
an interesting class:

Lemma 148 For each k ∈ N,

1. derk has the finite language property, and

2. derk has the partial language property.

Proof. 1. Assume k′ > k; then {ak′} /∈ derk. 2. Assume k′ > k; put
(I1, I0) = ({ak′}, {ai : i < k′}). �

Of course, the first counterexample is uninteresting for our purposes, because
also the finitist linguist writes grammars for infinite languages. Of course, we
can easily construct an infinite language out if this example: just consider this
finite language and take the union with an infinite language which is over a
completely different alphabet. This technique can be applied in most cases which
are to follow, but the resulting examples do not seem to be considerably more
interesting.

What is more relevant is the following. If a language is derk, this means
that if someone you speak to begins any sentence (we now switch to linguistic
terminology) and stops at an arbitrary point, you can finish this sentence with
at most k words. Here we see an immediate relation to natural languages: the
notion of derk-languages is immediately related what we normally call “unre-
solved dependency” (see for example [20]) if we talk about (speaker’s) language
processing. From a language-theoretic point of view, these “dependencies” are
just things which still have to be said to make the sentence complete, and derk
simply puts an upper bound to them. Actually, similar considerations are known
in the literature and have been put to test to some extent, see [36]. Though

184 CHAPTER 6. THE FINITARY METATHEORY OF LANGUAGE

the approach is somewhat different, Kornai comes to the result that for natural
languages, k = 4 is sufficient. This is a perfect example of a finitist approach to
natural language.

So this is a promising approach, and we will try to elaborate it further. The
approach using derivatives seems to be unsatisfying in one regard: in general, we
assume that natural languages have “structure”. We will not ponder a lot what
this means in a purely language-theoretic sense, but one important property
which seems to be implied by being “structured” is the closure under inversion:
there is no fundamental asymmetry of left and right, the (global) linear order can
be inverted, without affecting membership in the class. So if there is a language
L ∈ C, so should be its inversion. Define (a1...an)−1 = an...a1, the inversion
of a word. By L−1 := {~w−1 : w ∈ L}. A class of languages C is closed under
inversion, if from L ∈ C it follows that L−1 ∈ C. We now close derk under
inversion, by defining an inversion of der.

We define prefL(~w) := {~v : ~v ~w ∈ L} Put der−1(L) := {~v : ~v = minrad(pref L(~w)
for some ~w ∈ Σ∗}. Now we come to a new definition:

Definition 149 L is an iderk language, if 1. max{|~w| : ~w ∈ der(L)} ≤ k, and
2. max{|~w| : ~w ∈ der−1(L)} ≤ k,

Note that derk ⊆ iderk; for L ∈ derk, we have L ∈ iderk only if also
L−1 ∈ derk. From this it follows immediately that iderk has FLP; also the
following is immediate:

Lemma 150 For all k ∈ N, iderk is closed under inversion.

Proof. We have der−1(~w) = der(~w−1); der−1(~w−1) = der(~w). �

Corollary 151 For all k ∈ N,

1. iderk has the finite language property, and

2. iderk has the partial language property.

What is the intuition behind these properties? Thinking in structures/trees,
as many linguists do, one could say: derk imposes a restriction on the depth
of center-embedding; there is always a “way out” in at most k words. iderk in
addition requires: to any kind of structure, there is a shortest “way in” of at most
k words. For example, I cannot start a sentence with a relative clause, but I can
reach a relative clause after k words. Or take a language such as {anbm : n > m}.
This language is an der1, because I can always immediately finish a prefix of a
word in this language. But it is not in iderk for any k: for a suffix of the form
bk, I require a prefix of length at least k + 1! What is thus interesting about
the notions underlying iderk is that they have their counterpart in our intuition
over linguistic descriptions in form of trees and dependencies.

These properties are quite interesting. As we have already said, we exclude,
among others, languages of the form {ak′}, where a is a letter, for some fixed
k′, where k′ > k. iderk comes with additional constraints: consider a language
pref (ak

′
b). This is in derk; however, it is not in iderk. This seems to be a good

thing; in particular we seem to exclude something like: there is finite word of
arbitrary length, only the prefixes of which are in L. We might think that for
iderk, if we make some observations beyond the bound k, we can make strong

6.4. INFINITARY PREFIXES 185

conclusions on the infinitary nature of the pattern. However, this is not always
true. To see this, just take factors of an arbitrary word ~w (or infinite word w);
we always have fact(~w) ∈ iderk. This is what we will address next.

6.4 Infinitary Prefixes

We do not consider it plausible that languages just consist of prefixes and suffixes
of a finite or infinite word. We rather think that if a patterns is visible up to a
certain length, then it is also “infinitary”, that is, it is visible up to an arbitrary
length. We approach this problem as follows: we say a prefix ~w ∈ pref (L) is
infinitary in L, if there are infinitely many ~v ∈ Σ∗, such that ~w~v ∈ L. We
surely do not want to require that all prefixes in a language are infinitary: that
would even exclude a language such as a∗b (as b ∈ pref(a∗b). What we consider
reasonable is that for every ~w ∈ pref (L), there is a ~v ∈ pref (w) such that 1. ~v
is infinitary in L, and 2. |~w| − |~v| ≤ k for some fixed k. This leads to our next
definition:

Definition 152 A language L is infinitarily k-prefix closed (in k-IPC), if
for each ~w ∈ pref (L), there is a ~v ∈ pref (~w), such that 1. ~v is an infinitary
prefix in L, and 2. |~w| − |~v| ≤ k

Lemma 153 For all k ∈ N,

1. k-IPC has the finite language property, and

2. k-IPC does not have the partial language property.

Proof. 1. is trivial, as k-IPC requires languages to be infinite. For 2.
just, just consider: given a partial language (I1, I0), we just complete it to
L := {~v ~w : ~v ∈ I1, ~w ∈ Σ∗, ~v ~w /∈ I0}. This is a completion, and as I0 is finite, it
is firstly infinite, and secondly every prefix of it is infinitary. �

So k-IPC by itself is unsatisfying. To see another example, take the language
{ak′ , bn : n ∈ N}. If k′ > k, this language is not in k-IPC. But the requirement
is still stronger: k-IPC actually requires that every prefix of the language has an
at most k-shorter prefix, such that this prefix is infinitary. To put in a simplified
fashion, if there is a “dead end” in our word which forces us to quite after a
bounded number of steps, then there is an upper bound to the length k of this
“dead end”.

This is a very satisfying and reasonable restriction. But again, we should
look for an extension of this property which is closed under inversion. The
inverse property is quickly defined as follows: put suf(L) = {~v : ~w~v ∈ L}. We
say ~w ∈ suf (L) is an infinitary suffix, if there are infinitely many ~v ∈ Σ∗ such
that ~v ~w ∈ L.

Definition 154 A language L is infinitarily k-suffix closed (in k-ISC), if
for each ~w ∈ suf (L), there is a ~v ∈ suf (~w), such that 1. ~v is (suffix-) infinitary
in L, and 2. |~w| − |~v| ≤ k.

It is easy to see that this is exactly the dual notion (under inversion). Putting
the two together, we get:

186 CHAPTER 6. THE FINITARY METATHEORY OF LANGUAGE

Definition 155 A language is infinitarily k-closed (in k-IC), if it is 1. in k-IPC,
and 2. in k-ISP.

Lemma 156 If L ∈ k-IC, then L−1 ∈ k-IC.

Proof. Easy to see, because L ∈ k-IPC iff L−1 ∈ k-ISC. �
Note that, as above, we always have to work with fixed k, not with arbitrary

finite k; the reason is that otherwise we lose the FLP! There are some simple
results we obtain:

Lemma 157 1. k-IC is closed under ε-homomorphism.
2. k-IC is closed under union.

Proof. 1. By definition of a homomorphism, they preserve prefixes: if ~v ∈
pref (~w), then h(~v) ∈ pref (h(~w)). Moreover, length is preserved or diminished:
|h(~w)| ≤ |~w|.

2. For all ~w ∈ pref (L ∪ L′) we have either ~w ∈ pref (L) or ~w ∈ pref (L′), so
the claim follows; same for suffixes. �

Closure under intersection and complement can be easily shown to be false,
because the intersection of two languages in k-IC can be finite, and no finite
language can be in k − IC. We now put it all together:

Definition 158 A language is k-structured (in k-S), if it is in k-IC and iderk.

Corollary 159 For all k ∈ N,

1. k-S has the finite language property, and

2. k-S has the partial language property.

This follows a fortiori. Is there something else we can say about k-S? A first
question to ask is: are there languages which are not regular/computable, which
are in k-S for some k ∈ N? This is slightly more complicated, but there is still a
negative answer.

Lemma 160 Let w be an infinite word. Then fact(w) ∈ 0-S.

Proof. We can check the condition: prefix and suffix-condition is fulfilled,
and every word, consequently every factor, is infinitary. �

The problem is: this is not sufficient to show that there are uncountably
many such languages over a given alphabet, because it is possible that w 6= v, yet
fact(w) = fact(v) (see [46]). However, consider the following. Let s : N→ N be
sequence; we write sn for s(n). We define an infinite word bas1bas2bas3b.... Call
this word w(s) Obviously, for every distinct sequence we get a distinct word. But
the following is more important: say a sequence s is strictly monotone increasing,
if n < m⇒ s(n) < s(m) holds.

Lemma 161 Let s, s′ be two distinct, strictly monotone increasing sequences.
Then fact(w(s)) 6= fact(w(s′)).

6.5. A NOTE ON LEARNABILITY 187

Proof. As s 6= s′, N is well-founded, there is a unique smallest n ∈ N
such that s(n) 6= s′(n). We then know that for m < n, we have s(m) =
s(m) < min(s(n), s′(n)). Furthermore, for m > n, we have both s(m), s′(m) >
min(s(n), s′(n)). Now assume w.l.o.g. that s(n) < s′(n). It immediately
follows that there is no m ∈ N, such that s′(m) = s(n). Then it follows that
bas(n)b ∈ fact(w(s)), but bas(n)b /∈ fact(w(s′)). �

Now all we have to show is that there are uncountably many strictly monotone
increasing sequences. This is easily done: as is well-known, we can represent
a sequence as an infinite word over an infinite alphabet. Assume they are
only countably many – then we can write them in a countable list. We can
now apply Cantor’s diagonalization argument – the only thing we need to take
care of in addition is to always increase the numbers we change, so that the
sequence resulting from diagonalization is still strictly monotonous increasing.
This together proves the following:

Theorem 162 There are languages in 0-S which are not computable.

Proof. As there are uncountably many strictly monotone increasing se-
quences, there are uncountably many distinct languages of the form fact(w(s));
and they are all in 0-S; consequently, most of them are not computable. �

This result shows that the k-S criterion alone is still much too liberal; but
we can simply stick with our “philosophical” premise, and require that:

Claim: natural languages are regular and in k-S for some k.

The strive for generalizations on natural languages then would, for example,
be the search for a smallest k. Note how different this is from the canonical
approach in linguistics; from the usual machinery of modern syntax, there is
almost nothing left.

6.5 A Note on Learnability

I only mention that despite appearances, finitist linguistics bears a strong relation
to formal learning theory, in fact much stronger than the classical pre-theories. A
concept which is very important for learnability is the notion of finite elasticity:

Definition 163 A class of languages C has infinite elasticity, if for some
infinite L ∈ C there exists an infinite sequence Li : i ∈ N, such that for all i ∈ N,
Li is finite, and we have L1 ⊂ L2 ⊂ ⊂ L.

A class of languages has finite elasticity, if it does not have infinite elasticity.
Finite elasticity is extremely important for learning in the limit in the sense
of Gold, because provided a class C has finite elasticity, we can identify any
(infinite) language in L ∈ C in the limit ; that is, given an infinite sequence
of words ~wi : i ∈ N, after reading a finite number thereof we can say: this
characterizes a language L ∈ C uniquely (this is a very intuitive and imprecise
description; for formal definitions and more, consider [21],[10]).

So much for learning. Finite elasticity can however also be important for
finitist linguistics. The reason is as follows: assume we have a class C with
finite elasticity. In finitary linguistics, similarly as to Gold-learning, we have a

188 CHAPTER 6. THE FINITARY METATHEORY OF LANGUAGE

sequence of observations, which by the assumption on the infinitary nature of
“language” (which the finitist shares!) is infinite. Recall that C is actually our
linguistic theory. Now, as C has finite elasticity, at a certain point we know that
there is only one L ∈ C which is compatible with the data. And even before
this point, there might be only one infinite L ∈ C compatible with the data, or
there might be a small set of languages compatible with the data. Once we have
reached this point, we can easily falsify our theory C: the only thing we need is
to find a ~w in our data, such that ~w /∈ L. So the concept underlying the classical
learning theory is identification; and from (almost) unique identification, it is
only a very small step to falsification.

So what we see is: learning in the sense of Gold is much more closely related
to finitary linguistics than it is to classical linguistics – despite the contrary
appearances!

6.6 Conclusion

We have seen that the strive for linguistic generalization in the finitist paradigm
looks very different from the “classical approach”. Work in this direction has been
done, but most linguists would consider this work as research on “performance”,
which is more about memory etc. than about “language” itself; this is to
say: as part of psycho-linguistics or corpus-linguistics rather than of linguistics
proper. This is however not necessarily true: we have argued that in fact these
approaches belong to linguistics proper, but under the assumption of a very
different philosophy (or metatheory) of language.

So I hope to have achieved two things: firstly, to lay out a finitist metatheory
of language. This metatheory might not only allow for substantial insights
both on the empirical and theoretical side; it might also be a “philosophical
backup” to some existing approaches to “language”, which however are rather
marginalized in theoretical linguistics. Secondly, I also hope that the formal
methods presented here might might be of some help in this approach, and might
serve as an inspiration for some linguist more empirically interested than I am.
In particular, PLP seems to be very satisfying both from a mathematical as
from a theoretical point of view; we must however take for granted that linguists
gather both positive and negative data for their falsificationism. If we do disagree
with this theoretical assumption, that is, deny the relevance of negative data,
then things get hard, though not impossible: still the approach using classical
learning theory might work for us.

Chapter 7

Conclusion and Outlook

189

190 CHAPTER 7. CONCLUSION AND OUTLOOK

7.1 Things that have been done

I will not try to summarize my work in this conclusion. Rather, I will first give
a list of things I consider important and I think have been sufficiently addressed
by this work, and then give a list of things I consider important that should be
addressed in further research. In the first list, many of my maybe more “covert”
motivations will figure.

My most urgent concern was maybe the following: the situation in current
linguistics is such that strictly speaking, we probably cannot even speak of one
field of linguistics. This is not only due to the fact that there are many facets of
language, and many different phenomena, such as its social dimension, historical
dimension, psychological dimension etc. As a matter of fact, there are many
different approaches to the same “core phenomena” of language, which diverge
both in their methods as in their goals in a tremendous way. What we completely
lack nowadays is an underlying theory which ensures that people can at least
talk to each other; we seem to have lost this “common denominator”. One
example is the following: scholars from one school of thought say it has been
shown that “languages” are not context-free; scholars from another school of
thought deny that this statement even has any meaning at all, as we cannot
speak of “languages” as formal languages.

The first thing I hope to have achieved is exactly this: providing a common
denominator for different approaches to “core linguistics”. My approach was
to take a step back away from the subject of linguistics, and look at how we
construct it. It turned out that we can construct it in different ways, and
each of these ways has a good justification and interesting consequences. So if
scholars have totally different views on “language”, one still can have reasonable
arguments on “language”, but on the metalinguistic level rather than on the
linguistic level. So there is no need for the polemics which (to my impression)
has become somewhat overwhelming in the communication between schools. So
the first point is: communication between schools should always be possible,
though on the level of metalinguistics rather than linguistics.

The second thing I wanted to achieve is: scholars making claims about the
formal nature of “language” should be able to formally lay out the premises
they make in deriving their consequences. Of course, this is well-known, and
it should be well-known to any linguist that a statement as: X proves that
natural language are not regular is way too bold: this claim only holds
under certain assumptions (note on the contrary that a statement of the form:
X proves that natural language are not strictly local can be made –
finite language property). So it seems rather lack of awareness or simply laziness
rather than ignorance which makes people forget to mention these assumptions.
But this might to a large extent due to the fact that there are no theories
about these assumptions. I hope to have provided such a theory and raised
some awareness to these questions. I have the impression that formal linguists
sometimes think that the projection of the language is the uninteresting part of
their argument which is quickly done, while the rest of the formal argument has
to be done very carefully. On the other side, when it comes to really deciding
on a critical case of projection, linguists are often quite lost, as they do not
have any hard criteria to guide their decisions. But neither of the two are
inevitable: metalinguistics has its own interesting and complex mathematics;
and assumptions we make can be formally included in any argument via the

7.1. THINGS THAT HAVE BEEN DONE 191

notion of methodological universal and universal property modulo (f, P).
The third thing I wanted to achieve is the following: even though there are

many different views on language in their own right, this does not open the
door to arbitrariness: each assumption and position comes with consequences,
commitments and challenges. And this is an important thing: we cannot just
conceive of “language” as we like it on different occasions: in order to do proper
linguistics, we have to take one position and elaborate it consistently. For
example: if we say we skip the whole projection, then we have to make sure our
theories verify something like the finite language property or partial language
property, and generalizations proceed via finitary falsificationism. Again, I think
that formulating consistent positions and working within them consequently
might lower the mistrust between different schools of thought. (But as a note:
maybe also not; the Chomskyan paradigm is quite consistent, but still evokes
most of the mistrust.)

A fourth thing I wanted to achieve is the following: the theory of linguistic
formalisms has reached a very high level of abstraction and sophistication. But
it sometimes seems that “real linguistics” is not catching up: linguists see too
much of arbitrariness in formalizations and too many foundational problems in
the languages we observe to follow into sophisticated formal arguments. Maybe
the formalization of linguistic metatheory might help to lift linguistics to a more
abstract level, making “real linguistics” more interesting to people with a major
interest in formal methods. This of course would require that linguists (roughly)
follow the arguments and methods I have laid out. And, of course, it requires
that the methods of linguistic metatheory become much more elaborate than
what I presented here: after all, I have only tried to lay out possible solutions,
and I have not put them to the test against real datasets of languages.

A fifth point is the following: in theoretical linguistics, there is a long and
ongoing debate on the ontological nature of its subject: is “language” in the mind,
an abstract object, a social convention etc. For example, the entire consistency
of the Chomskyan program seems to rely on the assumption that “language” is
in the brain (more than in the mind) in a very strong sense, and this assumption
is used to “kill” any epistemic concerns (see for example Ludlow, [47]). The main
presupposition of this entire work is the priority of epistemological questions
over ontological questions: it does not matter in the first place what “language”
is, but rather what we can know about it; in particular, the discussions on what
language is are meaningless if they go beyond what we can know. To make a
stronger claim: any assumption on what “language” is which goes beyond what
we can know is illegitimate. This view is very old in philosophy – I guess it is
the essence of Kant’s Critique of Pure Reason – but does not seem to have found
access to linguistics yet. Sure, linguistics is a young discipline, and to promote a
research program one needs strong assumptions. But in the light of the current
situation, I think there is very good reason to switch to the epistemological
position.

So this is my fifth main motivation: promote the priority of epistemology
in linguistics. At a certain point I found it startling to find linguists speak of
acceptability and its difference to grammaticality, that we only see acceptability
but want grammaticality, without the slightest care about the fact that gram-
maticality is then no longer an empirical notion, and that consequently it is
completely undefined what it means unless they explicitly define it in some way.
Linguists just think they know “language” or grammaticality by the grammars

192 CHAPTER 7. CONCLUSION AND OUTLOOK

they write, and I have not found out what makes them be so sure.
One might ask: how can I promote the epistemological point of view, if I

presuppose it? As far as I can see, there is no way to falsify the ontological
point of view from the epistemical one or vice versa, because for the sake of any
argument, we presuppose one of these positions. So the argument for one point
of view is rather: taking this point of view, the questions we ask and the answers
we get are richer and more meaningful than in the other. And this is the sense
in which I wanted to push forward the epistemological point of view: by showing
that it opens a whole new world of meaningful, fascinating questions, and that
it allows to bridge the gaps between different schools of thought, which at least
partly are due to different ontological assumptions and commitments.

7.2 Things that should be done

As there exists a critique of reason, can there exist a critique of linguistic reason?
By a critique of linguistic reason I mean: a reasonably precise study on what
we can know about “language” and what not. A part of what we have done
already can be interpreted in this direction: there are many things on language
we cannot know, and basically any statement which presupposes that language
is infinite is a statement conditional on a pre-theory. But this is in a sense very
coarse and obvious. What about a more fine grained distinction of statements
which can be made and such that cannot be made? It turns out that in this
view, my work is mostly concerned with the conditional statements we can make,
premises and conclusions. Though it seems to be really interesting to scrutinize
this line between admissible and inadmissible statements, I have not done this
here, as it seems to me that it might end in a work twice as big as this one; so I
leave it for further research.

A second problem I have not talked about is semantics. I think it would
be very interesting and even necessary to extend the work I have done from
languages to relations, thereby including semantics. However, I am doubtful that
it can be achieved with the methods I have presented here: the combinatorics
of relations is much more complicated than the one of languages (see [40]), and
I guess we will have to rethink most of the problems in order to make them
accessible for semantics. This is the reason I have not addressed this problem at
all.

The third question I have not addressed at all is the following: how do we
even get from the data we have to strings? I think this is an interesting question;
the reason I have not addressed it here is twofold: firstly, I think this problem
is very different in nature from the problem I have addressed. This means in
particular that the methods which are needed are very different. The second
point is: I do not think this question really interacts with the question I have
addressed. Granted, to address the problems I have addressed, I presuppose
there is a solution to the other problem. Still I think that the two problems can
be separated quite neatly.

A fourth problem I have left partly open is the problem of what I have called
linguistic intensionalism. Whereas I think I have given a satisfying treatment of
the classical and finitary position, I dare not say the same about the intensional
position. I have already said there is a lot more to say from a philosophical and
linguistic point of view than what I have said. Yet, I also think the formalization

7.2. THINGS THAT SHOULD BE DONE 193

of intensional languages I have presented might be unsatisfying in many regards
– the foremost being: it seems hard to do linguistics with it. This is a general
problem of the intensional position: whereas in the classical and finitist approach,
the philosophical position quite clearly determines the ontology, in the intensional
approach the ontology (what is “language”?) is rather mysterious, and there
are many possible answers. So it is another big challenge to work out this
position to the point where I can say: whoever has this philosophical position
wrt. “language” has to accept our mathematical conclusions. I hope to address
this in further research.

There is a fifth problem I have not addressed at all, which concerns my work
in particular, but also most of formal linguistics in general. I have not found it
mentioned explicitly except for one place, and there only in connection with a
formal argument (see Mohri [51]). I will call it the problem of fragmentation.
A concrete instance is the one brought up by Mohri. Everyone reading this
should be familiar with the proof of non-regularity of English; we construct a
sublanguage {peoplen seen : n ∈ N} of English, intersect English with people∗

see∗, and there we are. There is however a flaw in this argument: how do we
know that if peoplen seem is English, then necessarily n = m? That is a point
we have not made yet, which however is strictly necessary for the argument!
And just think about

(1) People see, see, see

– syntactically, that should be as fine as

(2) People talk, talk, talk.

We will not argue about whether the argument for the particular non-regularity
of English can be saved in some way or rather not. For us, the interesting point
is rather: making statements of the form: “English is not a regular language” are
not only made dependent on a certain projection; they also depend on the fact
that we only look a certain fragment of English. This means: statements of this
kind are not only dependent on a pre-theory, but also depend on the assumption
that further data we have not yet considered will not spoil the argument. Note
that neither monotonicity nor upward normality are of any use in preventing
us from this problem: we either cannot help the projection of a pattern being
blocked, or we cannot help it being “covered” by a “larger” pattern.

To put it simply: claims of the above type are always based on fragments.
In our ontology, we never know whether we have observed all relevant data for a
certain pattern. So what can we do to make them complete? There does not
seem to be a solution, because we have nothing but fragments at any point (by
finiteness). Could we improve the situation by making claims of the form: there
is a fragment of English such that ...? But this is highly unsatisfying:
we can also easily find a fragment of English where utterance length grows
exponentially, if choose it appropriately. What we rather want to say is: the
fragment is somehow coherent, we have not ignored any strings which naturally
belong to it. That of course does not entail that there are no strings which are
relevant, but of which we are not aware yet. And this seems to be the best we can
do: we can say to the best of our knowledge, which means we have chosen
the relevant data for projection without deliberately ignoring anything. So there
remains still a further condition on which statements of the form: natural

194 CHAPTER 7. CONCLUSION AND OUTLOOK

languages are not regular depend, and there is nothing we can do about
it.

An issue which I should also mention is the following: in some discussions on
this work,1 we discussed the question whether linguistic metatheory can simply
take over linguistics; that is: the classical tasks of linguistics (with the cognitive
commitment) should be solved by linguistic metatheory, or at least with its
methods. My position is the following: I think this goes too far. I have stressed
for all possible positions that there is a proper difference between linguistic
theory and linguistic metatheory.

In the classical approach, this difference is as follows: the linguist takes a
certain dataset, and chooses to project it into the infinite. If we want to use
this as a model how the speaker learns his language, we immediately encounter
a problem: the speaker does not have this choice. He has to stay open; more
concisely: he cannot just define his subject, as does the linguist – he has to
respect all external constraints. As linguists, it is inevitable that we always work
with fragments; for the speaker – in the classical perspective – this is impossible:
a speaker by definition learns his language, so by definition he must have all
relevant data and succeed on all possible (or plausible) presentations of the
relevant data, at least in the usual idealized paradigm (see [10] for criticism and
alternatives). The linguist on the other side is free in his decision, because he can
possibly be wrong : he need not succeed in reconstructing the unique language a
speaker knows, though this is what he strives for. So the (classical) speaker is in
a much weaker position than the metalinguist; and if our methods are sufficient
for metalinguistics, it is not said at all that they will also do for linguistics. That
is, in short, my position: I will not say my methods are useless for linguistics, as
say, for a theory of learning of the speaker. But I am not convinced they are
sufficient. Just consider in how far our projections deviate from classical learning
in the limit, which gives much weaker results, exactly because we cannot choose
the point of projection.

In the finitist approach, there is an obvious difference between pre-theory
and theory: this is because the meta-theory is basically inexistent – it is just
a philosophical position, nothing more. What we have described in the above
section was rather already theory.

What is maybe most delicate is the separation of linguistics and metalin-
guistics in the intensional meta-theory; for this reason we have discussed this
issue separately. In the intensional approach, we can assume an arbitrary set
of pre-theories as given from the metalinguist. From what we have seen, inten-
sional linguistics mostly consists in in fixing i-language and defining acceptable
sublanguages, as they correspond to inferences speakers can perform on the spot.
In this sense, there is a very sharp boundary between meta-theory (defining the
whole intensional language) and theory (e.g. defining sublanguage). The whole
point of the intensional approach is: we do no longer fix “language” as what
speakers actually know, but rather: as what they can know, if they reason. What
they do reason in a sufficiently immediate and intuitive sense is an empirical
question, and that is linguistics. So there is a sufficiently sharp distinction
between linguistic theory and linguistic metatheory also in this approach.

There is also a principled concern I have regarding the idea of using the
techniques of linguistic metatheory (say pre-theories) for linguistics within the

1Mostly with Udo Klein.

7.2. THINGS THAT SHOULD BE DONE 195

cognitive commitment. Metalinguistics as a discipline in its own right is only
meaningful as long as we believe in the priority of the epistemological point of
view. As soon as we convince ourselves that language is in the “mind” and we
just have to see what it is like, there is no place for it. Now, if we do linguistics
with the cognitive commitment, it is clear that we want to describe something
in the mind of the speaker. But that in turn leads to the working hypothesis
that linguistic metatheory can be neglected, if it has any meaning at all. If
linguistic metatheory is irrelevant at best, that does not necessarily mean its
techniques are. Still, I do not see why we should have pre-theories if we do
not share the basic assumptions of linguistic metatheory. Just consider the
strictly language-theoretic ontology of all metatheories. Adopting the cognitive
commitment, one is quickly led to the (Chomskyan) conclusion that the part of
language which we observe (that is, strings) is actually the most uninteresting
of it. What is interesting from this perspective is rather the representation of
language in the mind. It is immediately clear that this focus is diametrically
opposed to any epistemological perspective: in the latter, we have a strong focus
on the observable objects; in the former, we consider the observable objects
negligible from a theoretical point of view. But why should we use pre-theories
if we consider strings to be of minor interest?

So I see there is a dissonance between my approach and the commitment to
a cognitive ontology, as it is prominent not only in the Chomskyan approach,
but in most modern approaches to linguistics. I know that some researchers
will see my major points very clearly, yet they will not easily be convinced to
abandon their cognitive ontology. So as a very last point, let me stress that I do
not think that the two cannot be unified: in fact, once we adopt a metatheory
and construct “language”, nothing prevents us from conceiving of that object as
something “cognitively real”. What is impossible to unify with our approach is
the absolute priority of the “hard reality” of “language” in the brain over any
epistemic concern.

196 CHAPTER 7. CONCLUSION AND OUTLOOK

Bibliography

[1] Dana Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45:117–135, 1980.

[2] Henk Barendregt. The Lambda Calculus. Its Syntax and Semantics. Number
103 in Studies in Logic. Elsevier, Amsterdam, 2 edition, 1985.

[3] C. C. Chang and H. Jerome Keisler. Model Theory. North–Holland, Ams-
terdam, 3 edition, 1990.

[4] Noam Chomsky. The Logical Structure of Linguistic Theory. Plenum Press,
New York, 1975.

[5] Noam Chomsky. The Minimalist Program. MIT Press, 1995.

[6] Alexander Clark. A learnable representation for syntax using residuated
lattices. In Philippe de Groote, Markus Egg, and Laura Kallmeyer, editors,
Proceedings of the 14th Conference on Formal Grammar, volume 5591 of
Lecture Notes in Computer Science, pages 183–198. Springer, 2009.

[7] Alexander Clark. Learning context free grammars with the syntactic concept
lattice. In José M. Sempere and Pedro Garćıa, editors, 10th International
Colloquium on Grammatical Inference, volume 6339 of Lecture Notes in
Computer Science, pages 38–51. Springer, 2010.

[8] Alexander Clark. Logical grammars, logical theories. In Denis Béchet and
Alexander Ja. Dikovsky, editors, LACL, volume 7351 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2012.

[9] Alexander Clark. Learning trees from strings: a strong learning algorithm
for some context-free grammars. Journal of Machine Learning Research, to
appear.

[10] Alexander Clark and Shalom Lappin. Linguistic Nativism and the Poverty
of the Stimulus. Blackwell, 2011.

[11] Eugenio Coseriu. Sprachkompetenz : Grundzge der Theorie des Sprechens,
volume 508 of Tbinger Beitrge zur Linguistik ; 508. Narr, Tbingen, 2007.

[12] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, Cambridge, 2 edition, 1991.

[13] Adriaan de Groot. Thought and Choice in Chess. Mouton De Gruyter, 1978
(Reprint from 1966).

197

198 BIBLIOGRAPHY

[14] Philippe de Groote. Towards Abstract Categorial Grammars. In Association
for Computational Linguistics, 39th Annual Meeting and 10th Conference
of the European Chapter, pages 148–155, Toulouse, 2001.

[15] Ferdinand de Saussure and Elisabeth Birk [Bearb.]. Wissenschaft der
Sprache. Neue Texte aus dem Nachlaß. Suhrkamp-Taschenbuch Wissenschaft
; 1677. Suhrkamp, 2003.

[16] Michael Devitt. Ignorance of Language. Clarendon Press, Oxford, 2006.

[17] S. Eilenberg, C. C. Elgot, and J. C. Shepherdson. Sets recognized by n-tape
automata. Journal of Algebra, 13:447–464, 1969.

[18] Roland Fräıssé. Theory of Relations. Studies in logic and the foundations
of mathematics ; 118. North-Holland, 1986.

[19] Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono.
Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier,
2007.

[20] Edward Gibson. Linguistic complexity: Locality of syntactic dependencies.
Cognition, 68:1–76, 1998.

[21] Mark E. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[22] Hubert Haider. Grammatische Illusionen: Lokal wohlgeformt, global deviant.
Zeitschrift für Sprachwissenschaft, 30:223–257, 2011.

[23] Roy Harris. The Language-Makers. Duckworth, London, 1980.

[24] Zellig S. Harris. Structural Linguistics. The University of Chicago Press,
1963.

[25] Roger Hindley. Basic Simple Type Theory. Number 42 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge,
2008.

[26] Jaakko Hintikka. Knowledge and Belief. An Introduction into the logic of
the two notions. Cornell University Press, Ithaca, 1962.

[27] R. Huybregts. Overlapping Dependencies in Dutch. Utrecht Working Papers
in Linguistics, 1:3–40, 1984.

[28] Aravind K. Joshi and K. Vijay-Shanker. Compositional semantics with
Lexicalized Tree-Adjoining Grammar (LTAG): How much underspecification
is necessary? In H.C. Bunt and E.G.C. Thijsse, editors, Proc. IWCS-3,
pages 131–145, 1999.

[29] Makoto Kanazawa. Indentification in the limit of categorial grammars.
Journal of Logic, Language and Information, 5(2):115–155, 1996.

[30] Makoto Kanazawa. Second-order Abstract Categorial Grammars as Hyper-
edge Replacement Grammars. Journal of Logic, Language and Information,
19(2):137–161, 2010.

BIBLIOGRAPHY 199

[31] Jerrold J. Katz. Language and Other Abstract Objects. Basil Blackwell
Publisher, Oxford, 1981.

[32] Jerrold J. Katz and Paul M. Postal. Realism vs. conceptualism in linguistics.
Linguistics and Philosophy, 14:515–554, 1991.

[33] Kevin T. Kelly. Uncomputability: the problem of induction internalized.
Theor. Comput. Sci., 317(1-3):227–249, 2004.

[34] Steven C. Kleene. Introduction to Metamathematics. North–Holland, Ams-
terdam, 1964.

[35] Gregory M. Kobele. Generating Copies: An investigation into structural
identity in language and grammar. PhD thesis, UCLA, 2006.

[36] András Kornai. Natural languages and the chomsky hierarchy. In Proceedings
of the 2nd European Conference of the ACL 1985, pages 1–7, 1985.

[37] Marcus Kracht. Syntactic Codes and Grammar Refinement. Journal of
Logic, Language and Information, pages 41–60, 1995.

[38] Marcus Kracht. Mathematics of Language. Mouton de Gruyter, Berlin,
2003.

[39] Marcus Kracht. Gnosis. J. Philosophical Logic, 40(3):397–420, 2011.

[40] Marcus Kracht. Interpreted Languages and Compositionality. Springer,
2011.

[41] Manfred Krifka. In defense of idealizations: A commentary on Stokhof and
van Lambalgen. Theoretical Linguistics, 37,1-2:51–62, 2011.

[42] Saul A. Kripke. Wittgenstein on Rules and Private Language. An Elementary
Exposition. Blackwell, Oxford, 1982.

[43] William Labov. Principles of Language Change: Social Factors, volume 29
of Language in society. 2001.

[44] Winfred P. Lehmann. Historical linguistics : an introduction. Routledge,
London [u.a.], 3. ed. edition, 1992.

[45] Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics
and Coding. Cambridge University Press, Cambridge (UK), 1995.

[46] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of mathe-
matics and its applications ; 90. Cambridge Univ. Press, 2003.

[47] Peter Ludlow. Philosophy of Generative Linguistics. Oxford University
Press, Oxford, 2011.

[48] Alexis Manaster-Ramer. Copying in natural languages, context–freeness
and queue grammars. In Proceedings of the 24th Annual Meeting of the
Association for Computational Linguistics, pages 85–89, 1986.

[49] André Martinet. Économie des Changement Phonétiques. Maisonneuve &
Larose, Paris, 2005, 1st edition: 1955.

200 BIBLIOGRAPHY

[50] Jens Michaelis. On Formal Properties of Minimalist Grammars. PhD thesis,
Universität Potsdam, 2001.

[51] Mehryar Mohri and Richard Sproat. On a common fallacy in computational
linguistics. In Mickael et.al Suominen, editor, A Man of Measure: Festschrift
in Honour of Fred Karlsson on this 60th Birthday, volume 19 of SKY Journal
of Linguistics, pages 432–439. 2006.

[52] Richard Montague. Formal Philosophy: Selected Papers of Richard Mon-
tague. Yale University Press, New Haven and London, 1974. edited by
Richmond H. Thomason.

[53] Glyn Morrill, Oriol Valent́ın, and Mario Fadda. The displacement calculus.
Journal of Logic, Language and Information, 20(1):1–48, 2011.

[54] Frederick J. Newmeyer. Possible and Probable Languages: A Generative
Perspective on Linguistic Typology. OUP, Oxford, 2005.

[55] P. Reich. The finiteness of natural language. Language, 45:831 – 843, 1969.

[56] Luigi Rizzi. Issues in Italian Syntax. Foris, Dordrecht, 1982.

[57] James Rogers. Studies in the Logic of Trees with Applications to Grammar
Formalisms. PhD thesis, Department of Computer and Information Sciences,
University of Delaware, 1994.

[58] James Rogers. A Descriptive Approach to Language-Theoretic Complexity.
Studies in Logic Language and Information. FoLLI, 1999.

[59] James Rogers. Cognitive and sub-regular complexity. In Proceedings 17th
Conference on Formal Grammars, 2012, to appear.

[60] Sasha Rubin. Automata presenting structures: A survey of the finite string
case. Bulletin of Symbolic Logic, 14(2):169–209, 2008.

[61] Ferdinand de Saussure. Cours de Linguistique Générale. Payot & Rivage,
Paris, 5 edition, 2005.

[62] Thomas Schack. Building blocks and architecture of dance. In Neurocognition
of Dance. Psychology Press, Dordrecht, 2009.

[63] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On
multiple context–free grammars. Theor. Comp. Sci., 88:191–229, 1991.

[64] A. Sestier. Contributions à une théorie ensembliste des classifications
linguistiques. (Contributions to a set–theoretical theory of classifications).
In Actes du Ier Congrès de l’AFCAL, pages 293–305, Grenoble, 1960.

[65] Edward P. Stabler. The finite connectivity of linguistic structure. In
C. Clifton, L. Frazier, and K. Rayner, editors, Perspectives on Sentence
Processing, pages 303–336. Lawrence Erlbaum, 1994.

[66] Edward P. Stabler. Derivational Minimalism. In Christian Retoré, editor,
Logical Aspects of Computational Linguistics (LACL ’96), number 1328
in Lecture Notes in Artificial Intelligence, pages 68–95, Heidelberg, 1997.
Springer.

BIBLIOGRAPHY 201

[67] Martin Stokhof and Michiel van Lambalgen. Abstraction and idealization.
the construction of modern linguistics. Theoretical Linguistics, 37,1-2:1–26,
2011.

[68] Peter Trudgill. Sociolinguistic Typology : Social Determinants of Linguistic
Complexity. Oxford linguistics. Oxford Univ. Press, Oxford, 2011.

[69] Theo Vennemann. An explanation of drift. In C. N. Li, editor, Word Order
and Word Order Change, pages 269–305. University of Texas Press, Austin
and London, 1975.

[70] Christian Wurm. Modularization of regular growth automata. In Matthieu
Constant, Andreas Maletti, and Agata Savary, editors, FSMNLP, ACL
Anthology, pages 3–11. Association for Computational Linguistics, 2011.

[71] Christian Wurm. Concepts and types - an application to formal language
theory. In Laszlo Szathmary and Uta Priss, editors, CLA, volume 972 of
CEUR Workshop Proceedings, pages 103–114. CEUR-WS.org, 2012.

[72] Christian Wurm. Completeness of Full Lambek calculus for syntactic
concept lattices. In Proceedings of the 17th Conference on Formal Grammar,
Springer Lecture Notes in Computer Science, in press.

