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1 Introduction

Over the last decades most parts of the economic world has moved from the classical

theory of supply and demand to models of interacting agents. Instead of taking

demand functions as given, economists try to resolve the motives behind individual

behavior and how this aggregates to market parameters. Decision theory advanced

to a point where it is already quite predictive about what is possible and what is not

possible with rational decision makers.

Game theory has made an important contribution to the way we look at these

economic interactions. Instead of reacting to given, �xed market behavior, market

participants need to optimize and make their decisions, having in mind the motives

of their contract partners and competitors. Moving away from the classical theory,

actors are aware of the impact of their actions on market parameters like prices. The

concept of Nash equilibria and similar constructs more and more replaced the one of

Walrasian equilibria in many �elds of economic theory.

A big question to further develop this theory is the one of information. Not only may

some elements of the environment not be known to decision makers, there may be

information which is only available to some of them while others do not have access

at all or for di�erent conditions. These information asymmetries lead to even more

complex phenomena. Private information of one agent can willingly or unwillingly

be transferred to others, either by consciously transmitting the information or by

behaving in a way which lets others (partly) deduce this knowledge from observed

behavior. As it turns out, these model uncertainties and information asymmetries

largely in�uence the outcome and structure of market behavior.

This thesis primarily focuses on the question of information, how it is obtained and

- most of all - the impact of information asymmetries on the equilibria in a classical

one-good market. In particular, we focus on quality information. Quality, in the sense

used in our context, is a general term which determines the overall value of a product

to its buyer. When faced with a take-it-or-leave-it o�er like in a supermarket, the

good's quality needs to at least even out the disutility of paying the price (willingness-
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1 Introduction

to-pay). Otherwise a consumer would not decide to purchase the good. While

di�erent potential buyers may prefer di�erent characteristics of a product (so-called

horizontal properties like color, taste), there are other features which are considered

to be agreed upon to be either good or bad (vertical properties, like the durability of a

car). We focus on the latter, speaking about quality as something which is universally

true for everyone. These markets with quality uncertainty (so-called lemon markets)

are well-known in the economic literature every since they were introduced by George

Akerlof in 1970. They were analyzed under various assumptions and with di�erent

focuses.

In the course of the described transition from the classical economic analysis to

the issue of information there appeared a very important question, known as the

Grossman-Stiglitz paradox. Analyzing a (�nancial) market with publicly known

information, standard results dictate that the market prices in equilibrium fully

re�ect the available information and hence, in fact, having the original information

is not necessary for optimal behavior. But thinking this to the end, there is no

incentive for anyone to actually acquire this knowledge, no matter how little e�ort it

might cost. The assumption of public information seems absurd, having such results.

The �rst chapter of this thesis uses the idea that this is not only relevant in �nancial

markets but basically in every context where public information is perfectly re�ected

in equilibrium behavior. In particular, if quality is assumed to be known in a classical

one-good economy, prices in the market perfectly match this quality. Hence nobody

would actually need to acquire quality information when they see the prices. Espe-

cially in this every-day context it is very important to resolve this paradox to get

to the ground of what constitutes an equilibrium. The original analysis of Akerlof

is not able to cover this approach in the market context and little has been done so

far to explain the consequences of this oddity and how it can be resolved. The work

in the �rst chapter provides a credible explanation how and to which extend this

paradox can be settled.

For this, we use a quite standard model and introduce the possibility for the con-

sumer to acquire information. She can decide on her own how much e�ort she wants

to put into this process. The probability of receiving the correct information depends

on this e�ort. By analyzing the equilibria of these markets we �nd that this ability

is not always bene�cial for the consumer. Although her possibility to reduce the

information gap between her and the �rm should intuitively improve her situation,

the market equilibria can shift to a state in which this behavior is exploited by the
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producer of a high quality product. This happens in particular in situations where

the information is relatively cheap. Transferred to real-life applications, the result

implies that the modern possibilities of easily obtaining quality information may not

empower customers in a way one would expect. Moreover, the analysis of this case -

when information gets cheaper and approaches the limit of being costless - resolves

the paradox described above, showing that a certain amount of information acqui-

sition is always performed, no matter how cheap the information is and how close

the market prices match the true quality values. We show that the case of perfect

information can never be reached or even approached, no matter how easy it is to

acquire information.

The second chapter tackles a technical question in the context of lemon markets with

two-sided asymmetric information. It is very common in the literature to model qual-

ity uncertainty with two di�erent possible quality values. Having such a high and a

low value is the obvious minimum requirement for modeling lemon market situations

but it is, of course, not very realistic. Many quality aspects like the expected time

for which one can use a second hand car or the quality of a TV picture, can assume

a continuum of di�erent levels.

Two justi�cations prevail in the literature for this simpli�cation. The technical one

is that assuming more than two quality levels very often makes the model analytically

unsolvable. This argument, which we also make in the �rst chapter, is hard to argue

with. A model witch yields no results, although being more realistic than others, is

still a bad model. The other reason, however, is that two quality levels are considered

to be not only necessary but also su�cient to capture the relevant e�ects in these

markets. The second chapter investigates this argument, �rst providing an example

setting in which it is indeed true. The two main features of separating lemon market

equilibria - adverse selection and a positive price-quality relationship - are preserved

when extending the classical model to a setting with a continuum of quality types.

In the spirit of the �rst chapter we then continue to analyze a similar market in the

presence of an additional signal for the consumer. We �nd that, although the positive

price-quality relation is still present, adverse selection is not a relevant phenomenon

in the market equilibria.

We then proceed, as in the �rst chapter, to investigate the perfect information limit.

Adverse to previous results and also defying the intuition, increasing signal precision

does not imply convergence to the full information case and even the opposite is true

in some sense. Instead of admitting full sales of all types, as it would be under perfect
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1 Introduction

information, contagion e�ects between similar quality types let the maximal achiev-

able sale probability go to zero; the market breaks down. Although this stunning

result is surely not the ultimate truth and the model is certainly imperfect in many

other ways, the observed behavior is a warning to revisit the two-quality assumption

in lemon markets.

Both, the �rst and the second chapter, show that there is a discontinuity in the limit

of perfect information. In both models, letting information be arbitrarily perfect or

arbitrarily cheap does not lead to convergence of market behavior to the analysis

under perfect information. This shows that the information structure in such mar-

kets is crucial and can not just be overlooked with the argument that information is

su�ciently high or easy to obtain.

Finally, the last chapter tackles additional important questions in markets with qual-

ity uncertainty. For one, what is the di�erence between the static concept of Bayesian

equilibria to a setting with multiple time periods? Most of the literature on lemon

markets focuses on static equilibrium concepts. In fact, equilibria may be expected

to be the steady state of a time-dynamic process and hence their analysis might be

su�cient to capture the main e�ects of the market behavior. On the other hand,

Bayesian equilibria with their belief de�nition are very di�erent from the dynamic

concept of experienced-based consumer beliefs. We �nd a substantial di�erence to

the classical outcome of the lemon market literature, regarding this question. Al-

though quality is not known in the classical lemon market models and the consumer

has no possibility of acquiring any reliable information, every equilibrium is either

pooling or admits a positive price-quality relationship, meaning that a high price

roughly signals high quality. This is due to the nature of the used equilibrium con-

cept and the rationality of the consumers who, when faced with a di�erent situation,

would rather buy with certainty for low and not at all for high prices. In many

markets, however, consumers are neither informed nor very rational. In combination

with the time-component there are incentives for a �rm to price high quality goods

with a low price to acquire customers and boost overall sales. We �nd that this e�ect

is indeed quite strong in markets with not too many informed customers, i.e. when

there is an experience good about which quality information is either not available

or too costly (in comparison to the product price) to obtain. Supermarket wine is a

prime example for such a product.

An important and active research area is the debate of how rational people react
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in situations in which there is no rational decision, so-called out-of-equilibrium play.

When being in a stable, non-changing environment, there are some situations which

are never observed because they are never rationally played by any of the agents. Al-

though these situations in theory never occur, the hypothetical reaction of the market

participants is a very important aspect for the existence and stability of equilibria.

Multiple re�nements on out-of-equilibrium beliefs and behavior have been introduced

in the literature. This thesis adds to the theory by introducing two new concepts

of deciding what is rational or realistic and hence which equilibria are more credible

than others.
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2 Markets with Quality Uncertainty

and Imperfect Information

Acquisition

2.1 Introduction

Along with the price, the quality of a product is one of the two major characteristics

relevant to a purchase decision. While price information can be tricky to obtain

in situations with negotiation possibilities or multiple retailers, it is usually even

harder to get a good idea about the quality of a product. This phenomenon occurs

not only in classical examples like second hand cars but is also present in almost every

potential purchase for goods with which you do not have much experience. Whether

you have not bought a TV for many years, want to buy wine in an unfamiliar

supermarket, consider to buy an upgrade of the operating system on your computer

or to invest in a �nancial product. You do not have full information about what

you really get for your money if you are not an expert for these products or at least

inform yourself prior to the purchase.

On the other hand, the seller of a product usually has much better information

about the quality. A second hand car has been used by the owner for many years,

giving him the knowledge of any accident, repair or defects that occurred over the

last years and might still exist or be relevant. In the same way, a producer knows

the characteristics and weaknesses of the product for sale. While positive qualities

might be advertised or otherwise pointed out to the buyer, there is no incentive for

the seller to do the same for bad qualities or missing features if not mandated by

law.1 If the consumer wants this information, she usually has to acquire it on her

own. And even the advertised positive qualities may be exaggerated, untrue or not

1Dziuda (2011) shows that, in a game theoretic setting in which an expert might be biased or not,
some bad properties may be disclosed even by a biased expert. In our market setting, however,
there is no such ambiguity over the goal of the �rm.
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

relevant to the consumer. In any case, it takes e�ort of the consumer to either gather

information or check and �lter the information provided.

This asymmetry of quality information has been present in the literature ever since

George Akerlof's famous paper of 1970 and his previously mentioned second hand

car example. The question of how such quality uncertainty in�uences the market

outcome has since been discussed in many papers. There have been various attempts

to mitigate between the extreme nature of Akerlof's model and the classical case of

perfect information. For instance, Bagwell and Riordan (1991) introduce multiple

periods in which �rms can set di�erent prices. High quality �rms can then acquire

customers by setting low prices in the �rst period and use this to charge highly

afterwords. Milgrom and Roberts (1986) allow the �rms to give an additional, costly

advertising signal to distinguish oneself and keep low quality sellers from imitating

the high quality sellers' behavior.

While these examples follow the idea of giving high quality �rms certain additional

possibilities to signal their excellence, it is only natural to also look at the other

side of the market, namely the consumer. In the Akerlof model buyers do not have

any other possibility than either to trust the �rms or not, their posterior beliefs

about quality depending on the price and being determined by Bayes' law in an

equilibrium. Having the examples of the �rst paragraph in mind, the idea of the

consumer having no further information is obviously a very strong assumption and

not true in most purchasing situations. A second hand car can be tested before

buying, a bottle of wine can be bought and tried out before you decide to serve

it at your dinner party and for most products you can �nd multiple tests, ratings

and reviews online. Especially with the Internet, the amount of quality information

available to consumers has dramatically increased in recent years. With more and

more people owning smartphones, this information is available and can be looked up

even inside the shop.

Few papers have so far considered to relax this part of Akerlof's model. Bester and

Ritzberger (2001) let the consumer decide about buying a perfect quality signal and

base their decision on the additional information. In Voorneveld and Weibull (2011)

the buyer receives an additional, costless but noisy signal which is correlated to the

true quality. One can interpret this as an independent, non-perfect test review that

is observed by the consumer in any case. These two models of additional quality

information do not quite capture the real life situations, as it is usually not costless

(in terms of money or time) to acquire information and this information does not

have to be perfect. Even if there are free tests and reviews on the Internet, one has
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2.1 Introduction

to take the time and put e�ort in �nding and reading these sources. These tests,

on the other hand, may not contain all relevant information and can be incorrect,

biased or based on a faulty product. The same holds for the information from friends

and experts. Testing a TV in the store can not fully simulate the home environment

and how the TV works together with other devices, etc. All this adds some unre-

liability to the information acquisition procedure and suggests some probability of

false information.2

This chapter simultaneously covers both ideas of these two works; the consumer

is able to choose how much e�ort or costs she wants to invest in acquiring quality

information and this will result in a quality signal. This signal, on the other hand,

will be more precise when exerting more search e�ort to such an extend that one

might even reach perfect information.

Our analysis shows that in the market with imperfect information acquisition, di�er-

ent kinds of equilibria can occur. Under reasonable re�nements, the most important

two categories of equilibria are one in which the consumer does not spend e�ort on

quality information and one in which she does. Only in the �rst type of these equilib-

ria she has positive utility. Her ability to search, although not executed, lowers the

price to below the expected quality. In equilibria with search, on the other hand, the

price of the product is relatively high and all the consumer's possibility of acquiring

information provides market power for the �rm, not for the consumer.

Starting from these insights, we investigate how the existence and outcomes of these

equilibria develop when information is available more easily. We �nd that a higher

ability of acquiring quality information stops the existence of the consumer-friendly

equilibrium and thus takes away all consumer utility.

At last, we investigate the limit behavior of the model in the case when quality infor-

mation is very expensive or very cheap. Surprisingly, making information acquisition

arbitrarily easy does not lead to convergence to the full information case in that the

error probability of the signal stays bounded away form zero and a non-vanishing

share of high quality products is not traded. Although the possibility of imperfect

information acquisition generally lowers adverse selection phenomena, it does not get

rid of them even in the limit of perfect information. Making the information very

expensive can lead to the outcomes of the classical models of quality uncertainty

but often also, for a wide range of parameters, converges to an equilibrium that was

2It is worth noting that the work of Kihlstrom (1974) was motivated by the same ideas as this
paper. His analysis, however, solely focuses on the consumer side (the market for information)
and does not give any indication about the implications for market equilibria.
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

previously disregarded in the literature.

The paper is structured as follows. The �rst section describes the model of quality

information acquisition and the market participants. We then proceed by analyzing

the consumer behavior. This is embedded in a formally de�ned monopolistic mar-

ket model and the rational Bayesian equilibria are analyzed. Finally, we compare

outcomes of di�erent levels of search e�ciency to investigate the market impact of

cheaper or more expensive quality information.

2.2 The Model

We consider a monopolistic market with one product and one potential consumer

(or �buyer�)3. The quality of the product can take two �xed values and is drawn by

nature with a publicly know probability η of high quality.4 The realization is known

only by the �rm and will be denoted by its type θ ∈ {H,L}.
A high quality �rm faces production costs cH > 0 while the low quality �rm pays

cL > 0 for producing one unit of the product. This cost is only incurred when the

good is actually sold. We assume cL < cH so that high quality production is at least

marginally more costly than for low quality. These costs can also be seen as losing

an outside option. For example, the seller of a second hand car could also bring the

vehicle to a professional dealer who would pay him the amount cθ. This option is

lost in case of a successful sale.

The seller (or �rm) makes a take-it-or-leave-it o�er and is a risk-neutral payo�

maximizer. Selling one unit of the good for a price p with probability δ yields the

payo�

πθ(p, δ) = δ · (p− cθ), θ ∈ {H,L} .

Only observing the price p set by the �rm, not the quality of the product, the risk-

neutral consumer maximizes her expected gains from trade. After a purchase she

learns her valuation; her utility from having bought a product of quality q for price

p then is q − p.
3The analysis would not change if we assumed multiple, identical buyers. For simplicity, we only
speak of one consumer.

4The assumption that quality is not a strategic decision of the �rm is crucial in lemon markets.
While quality uncertainty may also exist in equilibria under di�erent models, they allow for
separation even at the quality level. See Shaked and Sutton (1982) for an example of such a
result.
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2.2 The Model

We denote qH > qL the consumer's valuation for the high and the low quality

product, respectively. To always ensure possible gains from trade, we assume cL < qL

and cH < qH .5

The buyer always has a certain, endogenous belief of the quality after observing a

price. Fix a price p and let µ̂ ∈ [0, 1] be the conceived probability of facing a high

type �rm. Then the consumer's expected utility from buying the good is

ub(p, µ̂) :=µ̂qH + (1− µ̂)qL − p

while the utility from not buying the good is un := 0.

She faces a third option, namely to pay a cost (or to exert e�ort) of a chosen level

k ≥ 0 to then obtain a binary signal s ∈
{
sH , sL

}
about the product quality. This

signal might be incorrect with an error probability of ε(k) ∈ [0, 1
2 ]. Mathematically

this means6

Prob(sH |θ = L) = Prob(sL|θ = H) = ε(k).

The exogenously given error function ε satis�es the following assumptions.

• ε : R+ → [0, 1
2 ] is continuous and non-increasing.

• ε(0) = 1
2

• Denote k̄ = inf {k ∈ R+|ε(k) = 0} the costs for a perfect signal where inf ∅ :=

∞. Then ε is twice continuously di�erentiable on (0, k̄).

• ε′(k) < 0, ε′′(k) > 0 ∀ k ∈ (0, k̄)

While the �rst and third points are of technical nature, the second assumption says

that the signal does not contain any information if the consumer exerts no e�ort.

The last point ensures that higher e�ort always leads to a strictly higher signal

precision while the marginal precision gain is diminishing. This accounts for the

fact that information acquisition, such as reading reviews, will often give redundant

5Adriani and Deidda (2009) focus on a case in which trade would not always be bene�cial under
full information. They show that this leads to market breakdown in their setting under the
D1-Re�nement of Cho and Kreps (1987).

6The assumption of both error types being the same is certainly somehow restrictive but is not
believed to have a qualitative impact on the results. See Martin (2012) for the use of a more
complex information structure. In his analysis, however, the �rm can choose only between two
exogenously given prices.
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

information and thus the amount of new information gained via a certain increase of

search e�ort is decreasing. Due to the second point we can assume that the consumer

also receives the (non-informative) signal when she chooses k = 0.

Note that we allow for obtaining a perfect signal, i.e. there may be a �nite cost k̄

for which the error probability is zero. Depending on the error function, this value

might also be in�nite so that perfect information would not be achievable. We do

not restrict attention to any of these cases.

By the last assumption the expression

ε′(0) := lim
k→0
k∈(0,k̄)

ε′(k) = inf
k∈(0,k̄)

ε′(k) ∈ [−∞, 0)

is well-de�ned. This value is important in the analysis. For illustrating results, we

use the simple function ε(k) = max
{

1
2 −
√
k, 0
}

which satis�es the assumptions

above.

Naturally, agents on this market do not act simultaneously. At the time when the

consumer makes her decision, the price was already set by the �rm and this requires

the quality level to already be realized. Figure 2.1 outlines the timing of the market.

Firm’s type
θ is chosen
by nature.

The firm
learns its
type.

The firm
chooses
a pricing
strategy.

The consumer ob-
serves the price and
decides whether to
search and for which
costs.

The consumer
observes the
additional
signal.

She decides
whether to
buy or not.

Figure 2.1: The timing of the market

The consumer holds a belief system µ : R+ 7→ [0, 1], later determined by the equi-

librium de�nition, which assigns to each possible price p a belief µ(p) about the

probability that the product is of high quality conditional on the observed price. In

the analysis it is sometimes useful to consider a �xed price p and a �xed correspond-

ing posterior belief µ(p). In this case we abbreviate the latter by writing µ̂ instead

of µ(p). We de�ne the expected quality based on such beliefs by

q̄µ̂ := µ̂qH +
(
1− µ̂

)
qL.
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2.3 Consumer Behavior

In the same way, to avoid imprecisions, single values of other functions are denoted

similarly. Note that the true a priori probability of high quality is denoted by η while

the letter µ is reserved for posterior belief values.

2.3 Consumer Behavior

Since we analyze a multi-stage game, we proceed by backward induction, thus �rst

dealing with the buyer's decision problem. This problem itself has two stages. When

observing the price p ∈ R+, she has to decide about the search amount k ≥ 0. In

the second step, she receives the signal and decides whether to buy the good or not.

We allow for mixed strategies, so it is possible for the consumer to buy the good

only with a certain probability. Remember that the two possible quality valuations

qL, qH as well as the a priori probability η of facing a high type producer is known

to the consumer.

2.3.1 After Receiving the Signal

Assume for now that k has been chosen. Let ε̂ := ε(k) be the corresponding error

probability and µ(p) ∈ (0, 1) the posterior belief that a product with price p has

quality qH . In this section, p and µ(p) can be viewed as �xed so that we write µ̂ for

the posterior belief.

Conditional on observing the high signal sH , the probability of the quality being

high is

(1− ε̂)µ̂
(1− ε̂)µ̂+ ε̂(1− µ̂)

which follows from Bayes' law.

The expected utility from buying (not taking into account the sunk cost k), given

this situation is then

(1− ε̂)µ̂
(1− ε̂)µ̂+ ε̂(1− µ̂)

qH +
ε̂(1− µ̂)

(1− ε̂)µ̂+ ε̂(1− µ̂)
qL − p.

Note that with ε̂ = 1
2 this is the original utility from buying without the additional

signal.

The case on observing sL is computed similarly. Clearly, the consumer will buy

the good if this utility is above zero and not buy it if it is strictly below this value.

The interesting insight here is that the signal is only relevant to her if not for all
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

signals sH and sL the utilities lie both above or both below zero. Remember that

she made a rational choice to pay an amount k > 0 and thus she can intuitively not

be indi�erent between the signal outcomes.

Lemma 2.3.1. Let a price p with corresponding posterior belief µ̂ be given. If the

consumer has optimally exerted positive search e�ort, she buys if and only if she

receives the signal sH .

This result may not come as a surprise. If it was optimal to ignore a signal, it

would be pointless to pay for its precision. The lemma is in the same spirit as

the corresponding statement in Bester and Ritzberger (2001). It shows that the

two pieces of information, namely the inherent information of the price given by

the corresponding posterior belief µ̂ and the additional signal, are essentially not

considered simultaneously. The former is used to decide about how much search

e�ort to exert and if zero e�ort is chosen, it is used to determine whether to buy

the good or not. Once the consumer decides to pay for signal precision, the buying

decision only depends on the signal, not on the value µ̂ of the posterior belief. This,

of course, does not occur in situations where an additional, informative signal is

received regardless of the decision of the consumer as in Voorneveld and Weibull

(2011).

While this e�ect also arises in Bester and Ritzberger (2001), consumers in their

model observe a perfect signal and it is natural to dismiss prior information after

learning the true state. In the situation at hand the reason is more subtle, basically

lying in the backward induction argument. The probable implications of receiving

various signals of a certain error probability are taken into account before the decision

of costly acquiring the information is formed. Essentially, also the choice to buy only

at a high signal is already made at that stage.

The proof of this lemma is straightforward. Like all others, it can be found in the

appendix.

2.3.2 Choosing the Optimal Search E�ort

We proceed by determining the optimal search costs k. Assume therefore that the

consumer pays a cost k > 0 for search and that this level is optimal. We know by

the previous lemma that the only possible behavior after receiving the signal is to

buy if and only if the signal is sH , i.e. if the quality is high and the signal is correct
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2.3 Consumer Behavior

or if the quality is low and the signal is wrong. Then the expected utility, given price

p and posterior beliefs µ̂, is

us(p, µ̂, k) := µ̂(1− ε(k))(qH − p)︸ ︷︷ ︸
correct high signal

+ (1− µ̂)ε(k)(qL − p)︸ ︷︷ ︸
false high signal

−k.

This formula consists of three terms. The (possibly subjective) probability of facing

a high good is µ̂. The consumer then buys if she receives a correct signal which has

the probability 1 − ε(k). This yields the utility qH − p. The second term of the

formula re�ects the possibility and consequences of buying a low quality product

because of a false high signal. The search costs k have to be paid regardless of the

quality and the buying decision.

We want to stress that this is the expected utility after observing the price and

before receiving the signal, and only if the optimal search cost is positive. Lemma

2.3.1 allows us to ignore the updated beliefs after observing the additional quality

information.

Maximizing this utility with respect to search costs, we get the �rst order condition

µ̂(−ε′(k))(qH − p) + (1− µ̂)ε′(k)(qL − p) = 1

⇔ ε′(k) =
1

−µ̂(qH − p) + (1− µ̂)(qL − p)
=

−1

µ̂(qH − p) + (1− µ̂)(p− qL)
=: d(p, µ̂) =: d̂.

The parameter d̂ depends both on the price p and the posterior belief µ̂ and is

always negative in the relevant range of prices [qL, qH ] and when µ̂ ∈ (0, 1). Its value

is roughly an indicator of whether the price �ts the expected valuation given by the

belief. If p and µ̂ are both high or both low, ε must have an extreme slope and thus

the optimal k is low. If there is a discrepancy between p and µ̂, d̂ is closer to zero

and thus k is higher. This shows that search is used more extensively if the consumer

has reason not to trust the price. Figure 2.2 depicts this e�ect.

Note that we can rewrite the utility in the form

us(p, µ̂, k) =
[
µ̂(qH − p) + (1− µ̂)(p− qL)

]
(−ε(k))− k + µ̂(qH − p)

so that the function is strictly concave in k in the range (0, k̄) for all values µ̂ ∈ (0, 1)

and p ∈ [qL, qH ]. The �rst order condition thus provides the interior solution if and

only if there is one.
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

It follows that the utility maximizing search cost for the consumer problem is

k∗(p, µ̂) :=


0 d̂ ≤ ε′(0)

(ε′)−1(d̂) ε′(0) < d̂ < ε′(k̄)

k̄ d̂ ≥ ε′(k̄).

(2.1)

This function is continuous and piecewise di�erentiable in both arguments. How-

ever, its form presents some problem for the analysis, namely that there is a saddle

point at ( q
H−qL

2 , 1
2). Figure 2.2 shows an example of this function. It also shows the

e�ect that search e�ort is high in the areas in which µ̂ and p do not correspond to

each other.

Figure 2.2: The function k∗ for ε(k) = max
{

1
2 −
√
k, 0
}
.

As mentioned above, this analysis is based on Lemma 2.3.1 and thus gives a neces-

sary condition. If the consumer optimally pays a positive cost, it has to be given by

the function k∗. To ensure that paying this cost and then acting in accordance to the

signal (provided k∗ is positive) is optimal, the corresponding error probability must

be low enough to yield positive utility when the signal is sH and negative utility in

case of receiving sL. We thus have to test whether k∗ meets this condition. In gen-

eral, this is not the case for all pairs (p, µ̂) ∈ [qL, qH ]× (0, 1). The following lemma,
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2.3 Consumer Behavior

however, shows that this is never an issue when utility implied by the optimal search

behavior exceeds the one from not buying or from buying without extra information.

De�nition 2.3.2. Let

u∗s(p, µ̂) := us(p, µ̂, k
∗(p, µ̂))

denote the maximal achievable utility if the consumer was committed to buy if and

only if she receives signal sH .

Lemma 2.3.3. Let (p, µ̂) ∈ [qL, qH ] × (0, 1) be given and denote k̂∗ := k∗(p, µ̂).

Moreover, assume

u∗s(p, µ̂) > max{0, q̄µ̂ − p} = max{un, ub(p, µ̂)}. (2.2)

Then we have k̂∗ > 0 and the error probability ε(k̂∗) is low enough so that the

consumer buys the product if and only if she receives the signal sH .

We denote the optimal utility, given a price p and a corresponding posterior belief

µ̂ by

u∗(p, µ̂) := max {ub(p, µ̂), un, u
∗
s(p, µ̂)} .

Having the three options of searching, not buying and buying without search, the

consumer acquires information if the condition (2.2) of the previous lemma is met

(while there can be mixed strategies in case of equality). We continue by investigating

when this is the case and when the consumer prefers either of the two other options,

depending on the observed price p and the corresponding posterior belief µ̂. Note

that, due to the complicated behavior of the optimal search costs and hence the signal

precision, the area in which positive search e�ort occurs is not trivially well-shaped.

Lemma 2.3.4. For all µ̂ ∈ (0, 1) there are prices p
µ̂
, pµ̂ such that

qL < p
µ̂
≤ q̄µ̂ ≤ pµ̂ < qH

and the consumer strictly prefers buying without search whenever the price p is below

p
µ̂
, she strictly prefers searching whenever p ∈ (p

µ̂
, pµ̂) and she strictly prefers not

buying whenever p > pµ̂, provided that µ̂ is the corresponding posterior belief to p.

Figure 2.3 gives a graphical intuition for how the utility of each of the three options

depends on p for a �xed value of µ̂. There is a counter-intuitive e�ect when µ̂ > 1
2 .
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

The optimal search e�ort k∗ is then decreasing in the price and hence a price increase

could have a positive e�ect for the consumer's utility. The proof of Lemma 2.3.4

shows that this e�ect is, however, negligible such that we indeed always have a

decreasing behavior of the search payo� in the price variable. The thicker line in

Figure 2.3 depicts the function u∗, the maximum utility value of all three options

�search�, �buy� and �don't buy�. Note that u∗s is not a linear function but the proof

shows that its slope is always below zero and above the slope of ub which leads to

the result above.

Figure 2.3: The utility development with p and determination of the prices p
µ̂
and

pµ̂ for �xed µ̂. The function u∗ is given by the thick upper contour line.

Having this lemma, we are particularly interested in situations where the interval

(p
µ̂
, pµ̂) is not empty. As it turns out, this is always the case as long as the marginal

gain of signal precision from search e�ort is su�ciently high at zero.

Lemma 2.3.5. For all µ̂ ∈ (0, 1), the strict inequality p
µ̂
< pµ̂ holds if and only if

ε′(0) <
−1

2µ̂(1− µ̂)(qH − qL)
.

In this case, one even has p
µ̂
< q̄µ̂ < pµ̂.
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2.4 The Market and Equilibrium Behavior

In other words: Every non-degenerate posterior belief can lead to search behavior

if the marginal bene�t from search is su�ciently high.

Note that search and hence a positive probability of trade exists even with prices

above expected quality q̄µ̂. It is of importance for the later analysis that the state-

ment of this lemma is always true if we have ε′(0) = −∞.

A similar result to Lemma 2.3.4 is true for the dependence of consumer's behavior

on the posterior belief µ̂. This follows from the following, stronger observation.

Lemma 2.3.6. The values p
µ̂
and pµ̂ are continuous and piecewise di�erentiable in

µ̂. Moreover, we have

∂

∂µ̂
p
µ̂
> 0 and

∂

∂µ̂
pµ̂ > 0

for each point in which the respective function is di�erentiable and

lim
µ̂→0

p
µ̂

= lim
µ̂→0

pµ̂ = qL lim
µ̂→1

p
µ̂

= lim
µ̂→1

pµ̂ = qH .

This relatively nice behavior of the lower and upper bound for prices for which

search is optimal comes as a surprise considering the shape of the optimal search

e�ort function. It is needless to say that these properties facilitate the following

equilibrium analysis.

To give a better feeling for how the three options of �search�, �buy� and �don't buy�

are distributed, we give a graphical example. Figure 2.4 shows the various areas for

qH = 1, qL = .5, ε(k) = max
{

1
2 − 3

2

√
k, 0
}
. Note that this error function satis�es

ε′(0) = −∞ and hence for every non-degenerate value of µ̂ there is a price for which

search is strictly optimal.

2.4 The Market and Equilibrium Behavior

Having determined the behavior of the consumer, we investigate how this leads to

various equilibria. We �rst need to formally de�ne the game, i.e. the strategies and

the equilibrium concept.

De�nition 2.4.1. A consumer strategy is a function b : R+ → R+ × [0, 1]2 where,

for every price p, b(p) = (k, γH , γL) denotes the amount of search e�ort k and the

probabilities γH , γL of buying the product conditional on receiving the high or low

signal.
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

0 1µ̂

qH

qL

p

pµ̂

p
µ̂

search

buy

don’t buy

Figure 2.4: The areas of consumer behavior and the development of p
µ̂
and pµ̂.

A �rm's strategy a : {H,L} → ∆(R+) is a mapping that maps each type to a

probability distribution over the price space R+.

We write aH and aL instead of a(H) or a(L). Using Lemma 2.3.1 of the previous

section, we know that the consumer optimally either pays a positive search cost and

then buys if and only if a positive signal arises or she does not search and buys with

a certain probability γ ∈ [0, 1] independent of the signal that does not convey any

information7. Based on this behavior, it is convenient to narrow down the set of

possible consumer strategies.

De�nition 2.4.2. A consistent consumer strategy is a strategy where for all p ∈ R+

we have b(p) = (k, 1, 0) or b(p) = (0, γ, γ) with k > 0 and γ ∈ [0, 1].

Having this, we give the formal de�nition of an equilibrium in this setting.

De�nition 2.4.3. Let (a, µ, b) be a tuple where a is the �rm's strategy, µ : R+ →
[0, 1] is a posterior belief system of the consumer and b is a consistent consumer

strategy.

This tuple is an equilibrium if

7Of course, still having di�erent probabilities for each (meaningless) signal is possible. It is clear,
however, that playing a strategy b(p) = (0, α, β) is equivalent to playing b(p) = (0, γ, γ) with
γ = 1

2
α+ 1

2
β.
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2.4 The Market and Equilibrium Behavior

• Every price in the support of aH and aL maximizes the pro�t of the respective

type

• µ is determined by Bayes' law whenever possible8

• b maximizes the consumer's utility with respect to µ(p) for each prize p.

Note that this is similar to the classical weak Perfect Bayesian Equilibrium as used

in the text book by Mas-Colell et al. (1995) but adapted to the general strategy

space of this model. An equilibrium in which aH = aL is called a pooling equilibrium

while a separating equilibrium is one in which the supports of aH and aL have an

empty intersection. We call any other equilibrium a hybrid equilibrium.

For an equilibrium EQ = (a, µ, b), any price p that is in at least one of the supports

of aL or aH is called an equilibrium price of EQ. If additionally b(p) has the form

(k, 1, 0), we call p a search price of EQ, otherwise a no-search price. Abusing no-

tation, we denote u(p, µ(p), b(p)) the consumer's expected utility when observing a

price p with corresponding posterior belief µ(p) and playing strategy b(p). For each

�rm type θ we de�ne the equilibrium pro�t πθ(EQ) as the expected pro�t when

setting a price in the support of aθ. This value is well-de�ned by the �rst point in

the equilibrium de�nition.

It is trivial to see that there can be a separating equilibrium in which the high type

always sets price qH , the low type sets the price qL, the consumer has the belief

system µ(p) = 1{p=qH} and only buys for prices smaller than or equal to qL. For this

to actually be an equilibrium, one must have cH ≥ qL so the high quality �rm has

no strict incentive to set the price qL. This equilibrium would also occur if one did

not allow for information acquisition and is present in many other models of markets

with quality uncertainty. Note that high quality is not traded at all in this setting.

We thus refer to this constellation as the total adverse selection (TAS) equilibrium.

To emphasize the relation to the classical model of quality uncertainty and the perfect

information case, we brie�y discuss these two cases.

With full information, the situation is quite obvious. Since the consumer always

knows the type, the �rm can always demand the true value qθ and the buyer buys

8This point is often not precisely formulated in the literature. Formally, we apply the classic
version of Bayes' law for every price p where aH({p}) + aL({p}) > 0. For prices that are in the
support of exactly one of the two distributions, we assume that the posterior belief is either 1 or
0, according to the type that uses p. No restriction is made for prices that are in both supports
but have probability 0.
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

with probability one. Otherwise, any slightly lower price would lead to sure buying

and thus causes the �rm to deviate. There are no other equilibria.

If the consumer had no possibility of obtaining information about the product qual-

ity, the described situation corresponds to a lemon market model in the spirit of

Akerlof that is similar but not quite equal to the analysis of Ellingsen (1997)9. It

appears as a boundary case of our model if we set ε(k) = 1
2 for all k (which, of course,

would not satisfy the assumptions). In that setting, if cH ≤ q̄η
10, pooling equilibria

exist for a price in [max{qL, cH}, q̄η] while separating equilibria with prices qL and

qH always exist in which the low quality �rm sells with probability one and the high

quality �rm with a probability in[
max

{
0,
qL − cH
qH − cH

}
,
qL − cL
qH − cL

]
.

In particular, the total adverse selection equilibrium exists if and only if qL ≤ cH as

was already observed in the setting of this paper. There are other, hybrid equilibria in

Ellingsen's setting. While they are disregarded due to his re�nements and although

his analysis is not completely applicable to this setting, such equilibria also appear

here.

2.4.1 Equilibrium Analysis

We start with observing some rather obvious and intuitive features that are quite

standard and can be found in similar form in other models. They are nevertheless

important for the analysis of equilibria.

Lemma 2.4.4. In every equilibrium, the following statements hold.

i) The support of aL is a subset of [qL, qH ], the support of aH is a subset of

[qL,∞).

ii) The low type does not set the price qH with positive probability.

iii) The low type's pro�t is weakly larger than qL − cL.

iv) Every price in (qL, qH) is either in both supports of aL and aH or in neither.

9Ellingsen assumes equal di�erences between valuation and production costs for each type, thus
corresponding to the case qH − cH = qL − cL.

10Although Ellingsen excludes this case in his paper, the set of pooling equilibria is easy to derive.
The separating equilibria are the same.
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2.4 The Market and Equilibrium Behavior

These points are not surprising considering the nature of an equilibrium. Any price

below qL would induce sure buying and thus always yield a lower pro�t than a higher

price with the same property. The low type thus always has the option to deviate to

a price arbitrarily close to qL and to receive a pro�t close to qL−cL which shows iii).

For the low type, setting a price qH or higher with positive probability would lead

to a posterior belief below 1 and hence the consumer does not buy. The resulting

pro�t is zero and contradicts iii).

If a price is set by one type but not by the other, the equilibrium de�nition implies

that the consumer knows the true quality. If it was a low type and the price was

above qL, this would result in not buying at all, making it irrational for the low type

to set this price. On the other hand, a price below qH set by only the high �rm

would result in sure buying and this would attract the low quality �rm to imitate

that behavior. The formal versions of these arguments can be found in the appendix.

Since the consumer never buys a product for a price higher than qH , every such

strategy is at least weakly dominated by any price in (cH , qH ]. We thus assume that

also the high type does not set a price above qH .

We now know that, apart from the prices qL and qH , every price is either in both

types' support or in neither of them. However, there could in principal still be

a large number of such prices, making further analysis even more complicated by

adding measure theoretic obstacles. We show that this is in fact not the case and

that there cannot be more than two such non-boundary prices played in equilibrium.

Lemma 2.4.5. In an equilibrium, there are no two prices that are in both supports

of aL and aH and for which the consumer searches.

Lemma 2.4.6. In an equilibrium, there cannot exist two di�erent prices that are in

both supports and for which the consumer does not search.

For both of these lemmas, the �rst property of the equilibrium de�nition implies

that both types must be indi�erent between the prices in the support of their price

distribution. In the proof, we show that this can not be the case for two search

prices or two no-search prices. It is, however, possible that both types are indi�erent

between a search price and a no-search price.

These observations already signi�cantly reduce the set of possible equilibrium strate-

gies. Although we put no a priori restrictions on the �rm's price-setting behavior, in

equilibrium, each type does not play more than two prices in the set (qL, qH).
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

If the error function ε satis�es an additional, Inada-like condition, we can rule out

even more equilibria. As seen in Lemma 2.3.5, the value of ε′(0) is of importance

when it comes to determining the consumer reaction. It has to be low enough to

ensure the existence of a search price for any given posterior belief µ̂ ∈ (0, 1). The

bound itself depends on this belief and hence may vary between di�erent equilibria

or even between di�erent equilibrium prices. It is hence convenient to de�ne the

following property.

De�nition 2.4.7. An error function ε satis�es the assumption (I) if

ε′(0) = −∞.

Having this, we can even go further in narrowing down the set of equilibria.

Lemma 2.4.8. Assume that ε satis�es assumption (I) and let p ∈ [qL, qH) be a

no-search equilibrium price. Then b(p) = (0, 1, 1) so that the consumer buys with

probability one.

This statement follows from Lemma 2.3.5. If the consumer buys with a probability

in (0, 1), she is indi�erent between buying and not buying, hence qµ(p) = p. This

price, however, leads to search when ε′(0) is low enough. Having b(p) = (0, 0, 0)

would give zero pro�t to both �rms and thus violates Lemma 2.4.4 iii).

The previous lemmas now allow us to de�ne quite precisely the form of possible

equilibria in the model.

Proposition 2.4.9. If assumption (I) is satis�ed, in every equilibrium the inclusions

supp(aL) ⊂
{
qL, ps

}
supp(aH) ⊂

{
ps, q

H
}

or supp(aL) = {p1} supp(aH) ⊂
{
p1, q

H
}

hold where ps is a search price, qL and p1 induce sure buying and if qH is played, we

have b(qH) = (0, γ, γ) with γ low enough to not attract the low type �rm.

Summarized, these are the di�erent types of potential equilibria in the model

• Separating adverse selection equilibria

• Pooling equilibria without search in which both types set the same price p1 ≤ pη

• Pooling equilibria with search and a price ps ∈ [p
η
, pη]
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2.4 The Market and Equilibrium Behavior

• Hybrid equilibria in which the high type �rm demands a high search price ps

and the low type plays aL(ps) = α, aL(qL) = 1− α for some α ∈ (0, 1).

• Other equilibria with qH ∈ supp(aH) and b(qH) = (0, γ, γ), γ > 0.

All these equilibria exist provided the buyer and the high type �rm make non-negative

pro�t and the low type earns at least qL− cL. We denote the pooling search equilib-

rium with the highest possible price pη as PEs and the pooling no-search equilibrium

with the price p
η
as PEb. If at least one hybrid equilibrium exists, the one with the

highest search price ps is denoted as HE. These are the important equilibria due to

the following robustness check.

The set of potential equilibria is signi�cantly narrowed down but still too large to

draw qualitative conclusions from the model. In what follows, we argue in which

way some of these equilibria, and in particular the belief systems by which they are

supported, can be disregarded.

2.4.2 Selection of Equilibria

There are various, well established re�nements to eliminate implausible equilibria

in signaling games. Bester and Ritzberger (2001) use a modi�cation of the well-

known Intuitive Criterion introduced by Cho and Kreps (1987). In this model, as

well as in theirs, the original version of the Intuitive Criterion is not su�cient. The

modi�cation used by Bester and Ritzberger, however, is not well de�ned in our

setting since the �rms' pro�t functions are not monotone in beliefs. We thus follow

another approach of arguing which consumer beliefs are unconvincing and hence rule

out the equilibria supported by these beliefs.

1µ̂
u(qH , µ̂, (0, 0, 0))

u(qH , µ̂, (0, γ, γ))

Figure 2.5: Buying for the price qH leads to negative utility if µ̂ < 1

To illustrate the idea of the following re�nement, consider an adverse selection equi-

librium in which the high type �rm makes positive pro�t, i.e. a separating equilibrium

in which the low type sets price qL, the high type price qH and the consumer buys the

high quality product with some probability γ > 0. From the equilibrium property

we must have µ(qH) = 1 so the consumer knows the quality when she sees the high

price. Note that she is then indi�erent between buying and not buying since the price
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matches her valuation. If she had any doubts about her posterior belief µ(qH), i.e.

if she admits that there is even the smallest possibility to be wrong about her belief,

�not buying� would be strictly better than her strategy b(qH) = (0, γ, γ). Since �not

buying� is optimal even for her rational belief µ̂ = 1, her strategy is dominated in a

certain sense. This idea is depicted in Figure 2.5 and formally written down in the

following re�nement.

De�nition 2.4.10. Let p, µ(p) be given. The action b ∈ R+ × [0, 1]2 is locally

dominated in beliefs if there exists another action b∗ ∈ R+× [0, 1]2 and a δ > 0 such

that

u(p, µ̂, b∗) ≥ u(p, µ̂, b) ∀ µ̂ ∈
(
µ(p)− δ, µ(p) + δ

)
∩ [0, 1]

and the inequality is strict for µ̂ 6= µ(p).

An equilibrium (a, µ, b) has belief-robust responses if for no equilibrium price p and

corresponding belief µ(p) the action b(p) is dominated in beliefs.

This condition re�ects some doubts about the posterior beliefs. A best response b

which violates this criterion is not a strict one, meaning that there is another best

response b∗ to (p, µ(p)) that yields the same payo�. Moreover, choosing b over b∗ is

not a robust behavior and only rational if the buyer is absolutely con�dent about

the �rm's strategy.

The criterion is one of local robustness of the strategy. Other criteria in the same

spirit can be found in the literature, for example the robust best reply de�nition in

Okada (1983).

Note that this condition does not in general rule out mixed strategies of the con-

sumer. In this case, however, it leads to eliminating all equilibria in which the buyer

plays a mixed strategy for the highest possible price qH , including the classic adverse

selection equilibria, mentioned above, in which the high type makes positive pro�ts.

Lemma 2.4.11. Let assumption (I) be satis�ed. For an equilibrium, the following

is equivalent.

i) The equilibrium has belief-robust responses.

ii) The price qH is not an equilibrium price or the equilibrium is the separating

equilibrium with total adverse selection.

The reason why most adverse selection equilibria are ruled out is not speci�c to

this setting. In fact, a similar re�nement excludes these equilibria e.g. in Ellingsen
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(1997).11 In that paper, he uses another re�nement under which only the separating

equilibrium with the highest possible high type trade probability survives. While

this is a legitimate approach, the richness of equilibria in our setting allows us to

exclude these equilibria and still obtain interesting results.12

As one can see, a lot of the equilibria survive this re�nement. This gives us the

opportunity to address another issue of implausible consumer behavior, namely the

possibility of extreme belief changes.

Imagine two situations in which the consumer observes a price p or a similar price

that is very close to p. It does not seem intuitive that the posterior beliefs should

di�er too much, especially if we let the di�erence of the two prices be arbitrarily

small. Even if one admits that real prices usually can not di�er by less than one

cent, posterior beliefs that assign µ(p) = 1 and µ(p + 0.01) = 0 seem quite ex-

treme. In fact, marginal price changes are often due to retailer behavior and may

not even be perfectly perceived by consumers.13 It is thus more realistic that the

consumer acknowledges the closeness of the prices by assigning a similar posterior

belief. Formally, we postulate continuity of beliefs in those prices that actually occur

in equilibrium.

De�nition 2.4.12. An equilibrium (a, µ, b) satis�es the locally continuous beliefs

condition if for every equilibrium price p the function µ is continuous in p.

Local continuity is not a very strong assumption considering that it just excludes

jumps in beliefs but still allows for arbitrarily strongly increasing or decreasing pos-

teriors. The described behavior for the one-cent di�erence in the motivating example

would actually still be possible under locally continuous beliefs. However, this slight

step has a big impact on the number of equilibria.

Before we determine the consequences of this re�nement, note that it usually14 rules

out the pooling equilibrium without search (PEb) if we have ε(k
∗(p

η
, η)) = 0 so that

11Compare Proposition 5 of Ellingsen (1997). Note that elimination of strategies that are locally
dominated in beliefs could be substituted by elimination of weakly dominated strategies in this
paper without changing the results.

12Interestingly enough, Ellingsen justi�es using his other re�nement by saying �in reality, a seller
will typically not know exactly the buyer's valuation� which is true. In the same spirit, however,
the idea that the consumer might not be perfectly con�dent about her posterior beliefs should
not be ignored. Ellingsen's idea of �elastic demand� is incorporated in the next re�nement and
thus our approach covers both aspects of imperfections to some extend.

13See Zeithaml (1988) for an overview on perception of price and other product characteristics by
consumers.

14There can be cases in which the pair (p
η
, η) is exactly on the border de�ned by (2.1) so that

there might be a continuous �path� µ(p) of posterior beliefs under which the PEb equilibrium
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there is perfect search for the border case of a pooling equilibrium price in which

�buy� and �search� yield the same outcome to the consumer. The reason for this

is that, with continuous beliefs, the high quality �rm would want to deviate to a

slightly higher price than p
η
which, because the consumer receives a perfect signal,

also yields a selling probability of one for high quality products.

Proposition 2.4.13. Let assumption (I) be satis�ed. The strategies (a, b) can form

an equilibrium with a posterior belief system that satis�es locally continuous beliefs

and such that it has belief-robust responses if and only if they are the strategies of

one of the following equilibria:

• the pooling no-search equilibrium PEb with price p
η
. This equilibrium exists if

and only if p
η
≥ cH and ε(k∗(p

η
, η)) > 0

• the pooling search equilibrium PEs with price pη. It exists if and only if pη ≥ cH
and πL ≥ qL − cL

• hybrid equilibria in which the high quality �rm sets a price p = pµ̂ and the

low quality �rm sets this price with probability α ∈ (0, 1) while setting qL with

probability 1−α and we have µ̂ = µ(p) = η
η+α(1−η) > η. This equilibrium exists

if and only if pµ̂ ≥ cH and πL = qL − cL.

• the total adverse selection equilibrium (TAS). It exists if cH ≥ qL.

While three of these equilibria are unique within their class if they exist, there may

be multiple hybrid equilibria. Every value µ̂ > η for which the equation

ε(k∗(pµ̂, µ̂)) · (pµ̂ − cL) = qL − cL

holds yields such an equilibrium if cH does not exceed the price pµ̂. The reason is

that a low quality �rm must be indi�erent between the prices pµ̂ and qL. Figure 2.6

shows such a constellation in which not only multiple hybrid equilibria but also the

pooling search equilibrium PEs exist at the same time. It is useful to note that the

existence of a hybrid equilibrium implies

1

2
(qH − cL) > ε(k∗(pµ̂, µ̂)) · (pµ̂ − cL) = qL − cL

⇒ qL − cL < qH − qL.

can be sustained. Since this is a non-generic case, we omit the detailed analysis and just write
ε(k∗(p

η
, η)) > 0 as condition for the existence of PEb.
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Figure 2.6: The coexistence of PEs and multiple hybrid equilibria. The function de-
picts the low type pro�t for each µ̂ when setting the price pµ̂. The values

µ1 and µ2 are the posterior beliefs of search prices in hybrid equilibria.

It is a common result in lemon markets that all equilibria are not e�cient (so that

some goods are not traded with full probability) or the consumer has a chance of

buying a good for a higher price than his valuation. We also observe this, here. Note

that, although we focus on take-it-or-leave-it o�ers, the famous result of Myerson and

Satterthwaite (1984) suggests that this can not be overcome when using a di�erent

mechanism.15

To give an overview over the qualitative implications of these equilibria, their prop-

erties are summarized in the following table. The �&� symbol indicates generic strict

inequalities, i.e. the set of parameters for which equality occurs is a Lebesgue null

set in the parameter space.16

15Their formal result does not apply here. To give the connection, production costs c can be seen
as the seller's valuation, q as the buyer's value. In contrast to the original result, they are not
independent and not drawn from an interval [cL, cH ], [qL, qH ]. The only e�cient (unre�ned)
equilibrium that guarantees non-negative pro�ts and consumer surplus in every outcome is the
pooling equilibrium on the price qL. It exists if and only if cH ≤ qL which directly translated
to a violation of the assumption of Myerson and Satterthwaite that the intervals [cL, cH ] and
[qL, qH ] overlap.

16For example, in the PEs equilibrium if pη happens to be exactly cH , the high type makes no

pro�t. The value of pη does not depend on cH so this is a Lebesgue null set.
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πH πL cons. utility existence condition

PEb & 0 > qL − cL > 0 p
η
≥ cH and ε(p

η
) > 0

PEs & 0 & qL − cL 0 pη ≥ cH and πL ≥ qL − cL
hybrid > 0 qL − cL 0 ∃µ̂ > η : pµ̂ ≥ cH and πL = qL − cL
TAS 0 qL − cL 0 cH ≥ qL

Table 2.1: The properties of equilibria surviving the re�nements

This table shows an interesting aspect especially about the consumer utility. There

is only one equilibrium in which she has positive utility and this does not involve

search. The possibility of search does not allow the PEb equilibrium to have a higher

price than p
η
. Remember that in the classic lemon market this price would be equal

to q̄η so that the consumer had zero expected utility if we apply the same re�nements

to the pooling equilibria of the classical case. Introducing search can thus bene�t the

consumer but only if she does not use this new �ability�. Naturally, this consumer

friendly equilibrium only exists if the price is still high enough for a high quality �rm

to make positive pro�t. It also shows, however, that if the optimal search e�ort on

the pooling price leads to perfect information, this equilibrium fails the re�nements.

In this case, the consumer's ability to search destroys her only chance of having

positive utility. We elaborate on this e�ect in the next section.

Quality uncertainty situations being famous for their adverse selection e�ects, we

can now investigate how the model behaves in this regard. The following shows that

introducing search, as one would assume, indeed reduces the advantage of low quality

goods over high quality goods in terms of traded amount.

Observation 2.4.14. In PEb and PEs, a high quality �rm has a weakly higher

probability of selling the good than the low type. In any hybrid equilibrium of

Proposition 2.4.13, the probability for a high �rm of selling the good is higher than

in any separating adverse selection equilibrium.

Note that in a hybrid equilibrium, the low type �rm can have a higher chance of

selling its good than the other type. This value is 1 − α + αε̂ where α is the share

with which it sets the high search price and ε̂ is the error probability of that price.

To go even further, observe that there is a partial ranking in Pareto dominance

between the existing equilibria.

32



2.4 The Market and Equilibrium Behavior

De�nition 2.4.15. An equilibrium (a, µ, b) Pareto dominates another equilibrium

(ã, µ̃, b̃) if the equilibrium payo�s satisfy

πH ≥ π̃H , πL ≥ π̃L and u∗ ≥ ũ∗

and at least one of these inequalities is strict.

This de�nition of Pareto dominance is taken after the quality of the �rm is revealed,

thus taking each type's pro�t into account separately. This gives a stricter version

than an a priori Pareto dominance in which one would only consider the expected

pro�t before the �rm learns its type. However, an interesting dominance ranking

holds even with this stronger condition.

Lemma 2.4.16. Ignoring non-generic cases, the following items re�ect the full

Pareto dominance ranking between the equilibria of Proposition 2.4.13.

• If multiple hybrid equilibria exist, the one with the highest search price (HE)

dominates the others.

• TAS is dominated by PEb, PEs and HE whenever one of these equilibria

exists.

• PEs and HE are dominated by PEb if and only if πH(PEs) ≤ πH(PEb) or

πH(HE) ≤ πH(PEb), respectively.

It is quite natural to observe that the equilibria PEs and HE are somehow similar.

In both equilibria, there is a search price on the upper border of the search area and

the consumer has zero utility. Indeed, the coexistence of these equilibria is rare and

does never occur if the probability of having high quality is su�ciently high.

Lemma 2.4.17. Let qL − cL < qH − qL. There is a lower bound η < 1
2 such that

whenever η > η, there exists either PEs or HE provided that the search price of one

of these equilibria exceeds cH .

The reason for having this lower bound lies in the pro�t of the low quality type. It

strictly increases when the posterior µ̂ goes from 1
2 to 1 and the price is pµ̂. Thus,

the PEs condition πL ≥ qL − cL implies that for all higher beliefs the low type's

pro�t is even larger. In HE, however, the pro�t must exactly attain this bound.

The situation in Figure 2.6 corresponds to a case in which η < η. In this �gure, η

can be chosen to be µ1.

33



2 Markets with Quality Uncertainty and Imperfect Information Acquisition

Notice also that the actual value of η might be zero so that the negative pro�t e�ect

of losing customers never outweighs the positive e�ect of a higher price for the low

type �rm. The condition qL− cL < qH − qL of the lemma follows from the existence

condition of a hybrid equilibrium. If this is violated, a hybrid equilibrium can never

exist.

The so far established results already shed some light on how the market outcome

is in�uenced by introducing information acquisition costs in the classical model of

quality uncertainty. It shows that if the cost for high quality production is low, a

pooling equilibrium without search exists. While this is also true in the classical

model, there are qualitatively di�erent aspects, namely that the actual price to pay

in the pooling equilibrium is strictly below the average quality valuation and hence

the consumer has strictly positive utility. Of course, this e�ect is caused by the same

issue that rules out these equilibria for high quality costs between p
η
and q̄η. In these

cases, introducing the possibility of information acquisition leads to search behavior

but does not help the consumer.

A di�erent phenomenon can be observed in the PEs and HE equilibria. They

exist whenever p̄ is high enough. Since these equilibria contain search prices, they

do not occur in the classical model but dominate and thus eliminate the otherwise

existing separating equilibria. Although also the payo�s are di�erent, the main

contribution of these equilibria is the weakening or complete elimination of adverse

selection phenomena.

2.5 Search E�ciency

The previous section investigates a market in which the search possibility for the

consumer is �xed by the function ε. As mentioned in the introduction, we are also

interested in comparing situations in which consumer might have higher or lower costs

for searching. Since the actual costs k are endogenously chosen by the consumer,

we have to clarify what �lower search costs� means in this setting. It is rather to

be viewed as higher �search e�ciency� which means that the consumer gets a more

precise signal for the same search e�ort. Think about someone who wants to buy a

TV in 2013 or someone in the 1980s. Getting information about a certain product is

much easier now than it was back then, due to the Internet, multiple test magazines

and websites. It is safe to say that it is both less time consuming and cheaper to get

the same amount of information now than it was back then.
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To capture this e�ciency in the model we introduce a parameter a to the function

ε. The extended function satis�es the following properties.

• ε : R+ × R++ → [0, 1
2 ], (k, a) 7→ ε(k, a) is continuous.

• For every a > 0, ε(·, a) satis�es the assumptions from section 2.2 on page 13

and assumption (I). Denote k̄(a) the perfect information cost for parameter a.

• The function is twice continuously di�erentiable on

K :=
{

(k, a)|0 < k < k̄(a)
}

=
{

(k, a)|0 < ε(k, a) < 1
2

}
,

the area in which information is neither perfect nor meaningless.

• εa(k, a) := ∂
∂aε(k, a) < 0 for all (k, a) ∈ K.

• For all k > 0 we have lima→∞ ε(k, a) = 0 and lima→0 ε(k, a) = 1
2 .

Having ε(·, a) satisfy the same conditions as before, one can use the results of

the previous model and perform comparative statics by varying parameter a. The

fourth point ensures that for increasing a, the signal precision for the same search

e�ort becomes higher. Finally, the last item ensures that in the pointwise limit, the

error function re�ects perfect information (for a→∞) or the classical lemon market

without information acquisition (for a→ 0). Hence, it allows us to use the parameter

as a mediator between these two widely acknowledged models. One simple example

for such a function is

ε(k, a) = max
{

1
2 − a

√
k, 0
}
. (2.3)

Most expressions of the previous sections now depend on the new parameter. We

denote them in the same way but adding the value a as the last argument of every

function.

The aim of this section is to compare the various types of equilibria and their level

of price, consumer utility, average quality etc. under a change of search e�ciency. Is

is also interesting to see whether the limit behavior of the error probability function,

when taking a → ∞ or a → 0, also leads to market behavior that converges to the

equilibria of the classical lemon market or the perfect information case as discussed

above.

This analysis is necessarily di�erent from the one of Bester and Ritzberger (2001)

since their cost has an exogenously given value and could thus just be directly in-

creased or decreased. Here, the e�ort level is chosen by a rational consumer. A

35



2 Markets with Quality Uncertainty and Imperfect Information Acquisition

direct change of the costs can thus not be done. We rather facilitate the access to

information by giving more signal precision for the same e�ort.

2.5.1 Analytical Results

The �rst result analyzes the price behavior under pooling equilibria where no search

occurs. Remember that the consumer is indi�erent between searching and buying

without search in the pooling price p
η
of these equilibria.

Proposition 2.5.1. The price p
η
(a) of the PEb equilibrium is continuous, piecewise

di�erentiable and non-increasing in a. Moreover,

lim
a→0

p
η
(a) = q̄η and lim

a→∞
p
η
(a) = qL

holds. If qL < cH < q̄η, there are values 0 < a ≤ a such that the pooling no-search

equilibrium PEb exists if a ≤ a and it does not exist for a ≥ a.

The reason why a 6= a can not be excluded despite the monotonicity of the price

in PEb is that the condition ε̂ > 0 for PEb to be an equilibrium might be violated

for some lower a but be true for a higher search e�ciency. This, however, appears

for rather special parameters and is not further investigated. A direct consequence

of this proposition is that the pro�t of both �rms decreases with increasing search

e�ciency while the consumer's utility rises in the pooling equilibrium without search.

This can be seen by just observing that neither the average quality nor the amount

of trade is di�erent between each of these equilibria.

Remember that in the end of the last section we conclude that the existence of

PEb is due to moderate production costs of high quality goods. The proposition

provides a similar statement in terms of search costs. Only when search costs are

high, pooling no-search equilibria can exist. However, as long as a < a, making search

more e�cient lets the equilibrium price decrease and thus gives a higher utility to

the consumer. This supports the �rst intuition that a more e�cient way of searching

should increase the consumer's power and thus increases her surplus. Note, however,

that no search occurs in these equilibria. Instead, all products are sold for a price

that decreases with better search e�ciency. Here, the possibility of search is rather

used as a threat than as a tool. If search gets too e�cient, there is no low-price

equilibrium and thus only those equilibrium can exist which provide zero consumer
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utility. In a sense, quality information is too cheap from the view of the consumer,

the producer of a high quality product bene�ts from the higher information level.17

One can deduce a similar proposition for the upper bound pη of the consumer's

search area.

Proposition 2.5.2. For every µ̂ ∈ (0, 1) the function pµ̂(a) is continuous, piecewise

di�erentiable and non-decreasing in a. Moreover, we have

lim
a→0

pµ̂(a) = q̄η and lim
a→∞

pµ̂(a) = qH .

Inferring to equilibrium behavior from this proposition is not as easy as it was

before, since both PEs and HE make use of search prices. It is not obvious which

of these equilibria exist for a given a. However, noticing that the high price of HE

is always higher than pη, it follows that the equilibrium search price behavior for

a→∞ is not in�uenced by this question.

Corollary 2.5.3. Let cH > qL and qL−cL < qH−qL. For a→∞, all undominated

equilibria converge to a separating state in which the high type sells with probability

1− qL−cL
qH−cL .

This result is quite interesting in the background of the Grossman-Stiglitz paradox

which stems from their 1980 paper. Essentially they argue that in situations in

which all arbitrage opportunities are eliminated because all available information is

re�ected in the prices, there is no incentive for any market participant to obtain

this information. Hence the assumption of freely available information would not

be justi�ed anymore. While their reasoning originally applied to �nancial markets,

it is in the same way questionable how (in the perfect information case) quality

information can be public knowledge when prices perfectly signal the quality and

thus the consumer does not need to obtain this information. Here, we see that even

with arbitrarily easily accessible information, this paradox does not occur since there

is always an incentive for the consumer to obtain information. However, this comes

with the cost of the high type not being able to sell with full probability.

If the condition cH > qL was violated, the pooling equilibrium without search PEb

would exist for all a. The second condition ensures the existence of HE even for

high values of a. If this inequality is not true, neither of the equilibria PEb, PEs

17In a related but weaker result, Bar-Isaak, Caruana and Cu nat (2012)[5] show, in a setting with
quality investments, �xed prices and an information acquisition procedure close to Bester and
Ritzberger (2001), that consumer utility can be non-monotone in the acquisition costs. The
reason for this e�ects are, however, quite di�erent from our setting.
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and HE exist for high values of a. It follows that the TAS equilibrium is the only

equilibrium and hence e�cient information would lead to an even worse outcome for

the high quality �rm. Since every equilibrium in this setting has only a �nite number

of prices and we are not interested in the out-of-equilibrium beliefs, convergence of

equilibria is just taken as convergence of the �rms' actions.

This result is striking in that even though the information costs approach zero, the

consumer still makes errors and does not get perfect information. The �rm's behavior

converges to the separating state that would appear in the perfect information case

but the probability of selling does not approach one. Note that there is an important

di�erence to the similar result by Bester and Ritzberger (2001). They show that in

their setting, letting the information costs k approach zero, a non-vanishing share of

consumers still acquires information but the high type still sells to all buyers that

would by the product under perfect information. In contrast, the limit behavior at

hand shows a sustainable loss in sales for the high quality type.

In the setting of Voorneveld and Weibull (2011), they show that for the limit of

perfect information there exists a continuum of limit equilibria between the perfect

information equilibrium and the one given in Corollary 2.5.3. Their result is thus

similar but weaker. Moreover, they argue that between these equilibria, the perfect

information equilibrium with full sales of high quality Pareto dominates all the other

limit situations.

The analysis of equilibria in the direction of high search costs is quite tricky. When

search becomes ine�cient, the prices of PEb and PEs necessarily converge to q̄η and

the question if this is an equilibrium depends on whether the high quality production

costs exceed this value. If they do, PEb and PEs do not exist for low values of a

but TAS does. In other words, these equilibria converge to the two possible classic

lemon market equilibria with the exact same existence conditions. One might expect

that this price convergence is also true for HE since pµ̂(a) is the high quality price.

The issue here is that in HE, the posterior µ̂ for the search price itself depends on

a so that the convergence result from Proposition 2.5.2 does not apply and may, in

fact, not be true for the equilibrium price.

Proposition 2.5.4. Let η(qH − qL) < qL − cL < qH − qL and cH < 2qL − cL.

Then, for each value of a which is close enough to 0, HE exists and for a→ 0 these

equilibria converge to a semi-separating state with the high type setting p̂ := 2qL− cL
while the low type mixes between this price and qL.
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The limit state of theHE equilibria involves a high price p̂ = 2qL−cL and a posterior
belief µ(p̂) = qL−cL

qH−qL while the probability of selling is 1
2 . If q

H − cH = qL − cL, this
situation corresponds to one of the semi-mixed equilibria computed by Ellingsen

(1997) in his model without information acquisition. There, this equilibrium exists

with many others of a similar type and fails the D1 re�nement by Cho and Kreps

(1987). However, the behavior here shows that this equilibrium, if it exists, is robust

with respect to costly information acquisition.

2.5.2 A Numerical Example

To increase the understanding of what happens with various levels of search e�ciency,

we continue with a concrete example. Even with a relatively simple error function

satisfying the assumptions, the model is too complex to solve for explicit expressions

of the various equilibria. We thus rely on numerical calculations to illustrate the

results on the development of the model outcomes.

Figure 2.7: Price and error probability development for increasing search e�ciency

For these calculations we choose the error function (2.3) and set η = .6, qH = 1,

qL = 1
2 , c

H = 3
4 and cL = .45. Note that since cH < q̄η = .8, the existence of pooling

no-search equilibria is possible for small values of a. Choosing η ≥ 1
2 ensures, using

Lemma 2.4.17, that PEs and HE do not exist at the same time to obtain clearer

pictures. Corollary 2.5.3 is applicable to this setting but Proposition 2.5.4 is not.

We give a second example to illustrate its result.
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Figure 2.7 shows the development of the price and the corresponding error proba-

bility for the various search prices. The thin black line is the price qL for the low

quality in HE. To show the convergence even of the dominated pooling search equi-

libria, their values are displayed as dotted lines. One observes that for low values of

a, the pooling no-search equilibrium exists and that its price is decreasing. While at

�rst the other equilibrium is dominated, there is an interval of values of a in which

both pooling equilibria exist at the same time until the lower price falls under the

production costs of the high type. As search gets more e�cient, the error probability

decreases and converges to qL−cL
qH−cL ≈ 0, 091 as predicted by Corollary 2.5.3.

Figure 2.8 illustrates the pro�t development of the di�erent types in these equilibria.

Figure 2.8: The pro�ts of both types, depending on the search e�ciency and the
equilibrium. Dotted Lines show Pareto dominated equilibria.

One can see very well how pro�ts decrease in PEb and how PEs stops being Pareto

dominated when its high type's pro�t catches up with the one from PEb. The low

type's pro�t never falls below qL − cL = .05 and attains this value in the hybrid

equilibrium.

We look at the consumer side of the market in Figure 2.9. The utility of the

consumer behaves exactly as predicted, dropping to zero when PEb does not exist

anymore. An interesting e�ect is observable for the search costs. Although search

gets more e�cient with increasing a, the absolute e�ort increases in the pooling
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2.5 Search E�ciency

Figure 2.9: Utility and search e�ort of the consumer

search equilibrium. This e�ect has already been observed by Bester and Ritzberger

(2001) and is reproduced here under a di�erent model of search behavior. It shows

how the power given to the consumer by allowing for information acquisition can

be exploited by the high type to increase prices, search behavior and thus also the

probability of selling the high quality product.

Finally, Figure 2.10 depicts the development of some market �gures. Welfare here

is simply computed as a sum of the �rm's expected pro�t ηπH + (1− η)πL and the

consumer utility. The high welfare value in PEb stems not only from the higher con-

sumer utility but mostly from the fact that all products are traded with probability

one and no utility is �wasted� on search e�ort. All possible gains from trade are thus

exploited and distributed among the market participants.

In contrast to markets with quality uncertainty being famous for their adverse

selection phenomena, average traded quality in this setting is even higher than the

o�ered one. This is of course due to the higher trade probabilities for the high

type on search prices and thus occurs in PEs and HE (except for very high search

e�ciency). As search gets more e�cient, the low type shifts its price distribution

more to qL and hence sells with an overall higher probability which causes average

traded quality to go down and, because of the not vanishing error probability, to go

even below the a priori expected quality.

To also give an example of Proposition 2.5.4, we consider the case where qH =

1, qH = 0.5, cH = 0.7, cL = 0.2 and η = .35. Note that this also implies that PEb
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

Figure 2.10: The development of various market characteristics

and PEs do not exist if a is close to 0 because of their low price close to qη = .675.

The values are explicitly chosen so that they �t the model of Ellingsen (1997) in

which we have qH − cH = qL − cL. As mentioned before, his re�nements forecast

a separating equilibrium for this case without information acquisition. This result

may serve as a hint that these equilibria might not be disregarded, after all.

2.6 Conclusion and Possible Extensions

The paper shows the outcome of a monopolistic market with quality uncertainty

in which the consumer has the possibility to costly acquire information about the

product quality. This information could be perfect or imperfect, the exact precision

depending on the endogenous search e�ort exerted by the consumer.

Given the optimal consumer behavior, the market o�ers many possible equilibria,

some of which are already present in the classical model without information acquisi-

tion. After eliminating implausible and Pareto dominated equilibria, we are left with

three main categories of market behavior. In pooling equilibria without search, the

consumer has a positive pro�t and the highest possible welfare was reached. Equi-

libria which comprise search leave no utility to the consumer but, except for when

information is extremely cheap, have an average traded quality that is above the

actual average and thus show the opposite e�ect to the classical adverse selection
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Figure 2.11: The convergence of HE for vanishing search e�ciency.

results on lemon markets. The third category of total adverse selection occurs when

high quality production costs are high and search is very e�cient. The analysis shows

that information acquisition possibilities only bene�t the consumer if she does not

acquire any information. If she can use her search abilities as a threat rather than

actually acquire costly information, she forces prices to be lower than the average

quality and thus have positive utility. In contrast, actual quality search in equilib-

rium leads to a higher market power of the high type and thus to higher prices. The

consumer welfare is zero in these equilibria.

An important contribution of this paper is the comparison of situations with dif-

ferent search e�ciencies. We show that an increase in e�ciency can bene�t or hurt

the consumer and that the consumer's utility will with certainty drop to zero after

a certain threshold of search e�ciency.

At last, the analysis shows that the case of perfect information is not the limit case of

high search e�ciency. Even when making information acquisition arbitrarily cheap,

the probability of consumers receiving a false signal does not vanish. Moreover,

this limit error level does not depend on the error function. Making information

acquisition ine�cient can lead to the same behavior as predicted in the classical

models but for a substantial range of parameters the limit equilibrium is one that

was previously disregarded.
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

Starting from this model, certain extensions come to mind to enrich the analysis and

lead to a more realistic behavior.

As most other papers in this �eld, this work does not incorporate competition

between multiple �rms. The consumer is always confronted with exactly one good

and her only choices are on how much to search and if to buy the product. In the

same way the �rm does not have to worry about actual competition. The type of

�rival� it faces exists only theoretically in the head of the consumer who has to �gure

out which type she is facing. Extending this setting to an oligopolistic market will

certainly proof to be interesting.

We only look at one consumer. As we have pointed out, this could be extended to

multiple identical consumers without changing the analysis and thus the outcome.

In reality, this is not realistic. Besides di�erent valuations or outside options that

people might have, the relative e�ciency of today's quality information is mainly due

to new technologies which in return can not be assumed to be accessible for everyone

with the same e�ciency, even when restricted to single countries. Some people are

more adapt or have better access to these new technologies than others and this

di�erence can be quite severe from one person to another. It is hence important to

account for this in a more realistic model.

Other restrictive aspects of the model might be generalized such as the amount

of quality levels and signals. Especially this former aspect is important to obtain

meaningful results about the relationship between prices and quality in lemon mar-

kets with information acquisition.

2.A Appendix

Proof of Lemma 2.3.1. Fix a price p and a corresponding posterior belief µ̂ ∈ (0, 1),

assume that the consumer has paid a cost k ≥ 0 for the signal precision and denote

ε̂ := ε(k) the error probability. Receiving the high signal sH , the updated posterior

belief is

µ̂H := Prob(qH |sH) =
µ̂(1− ε̂)

µ̂(1− ε̂) + (1− µ̂)ε̂

which is just Bayes' law applied.

The expected quality with respect to this information is then

q̄µ̂H := µ̂Hq
H +

(
1− µ̂H

)
qL.
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With similar calculations, let q̄µ̂L be the expected quality on receiving a low signal.

We have

µ̂H − µ̂L =
µ̂(1− ε̂)

µ̂(1− ε̂) + (1− µ̂)ε̂
− µ̂ε̂

µ̂ε̂+ (1− µ̂)(1− ε̂)

=
µ̂(1− ε̂) (µ̂ε̂+ (1− µ̂)(1− ε̂))− µ̂ε̂ (µ̂(1− ε̂) + (1− µ̂)ε̂)

(µ̂ε̂+ (1− µ̂)(1− ε̂)) (µ̂(1− ε̂) + (1− µ̂)ε̂)

=
µ̂(1− µ̂)(1− 2ε̂)

(µ̂ε̂+ (1− µ̂)(1− ε̂)) (µ̂(1− ε̂) + (1− µ̂)ε̂)
≥ 0.

The inequality follows from ε̂ ∈ [0, 1
2 ]. Thus

q̄µ̂L ≤ q̄µ̂H

where equality holds if and only if µ̂H = µ̂L which is equivalent to ε̂ = 1
2 .

There are now three cases that can occur, regarding the level of the price p.

First case: q̄µ̂L < p < q̄µ̂H
This implies that ε̂ < 1

2 , k > 0 and that the consumer only buys if she receives the

high signal.

Second case: p ≤ q̄µ̂L
The consumer would either by with each signal or mix between �buying� and �not

buying� in the case where p = q̄µ̂L and the low signal appears. In both cases, the

payo� (with search costs and before observing s) is

µ̂qH +
(
1− µ̂

)
qL − p− k

which clearly has a maximum at k = 0.

Third case: p ≥ q̄µ̂H
The consumer would not buy on any signal (while with equality she may buy on sH

but gets utility q̄µ̂H − p− k = −k) so also here optimality implies k = 0.

⇒ If k > 0, the consumer buys if and only if the signal is sH .

Proof of Lemma 2.3.3. We write k̂∗ := k∗(p, µ̂) and ε̂ := ε(k̂∗). Note �rst that with

k̂∗ = 0 we would have ε̂ = 1
2 and thus

u∗s(p, µ̂) = 1
2 µ̂(qH − p) + 1

2(1− µ̂)(qL − p) = 1
2ub(p, µ̂) ≤ max {ub(p, µ̂), un}
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

which contradicts the assumptions. De�ne

EH :=
µ̂(1− ε̂)

µ̂(1− ε̂) + (1− µ̂)ε̂
qH +

(1− µ̂)ε̂

µ̂(1− ε̂) + (1− µ̂)ε̂
qL − p (2.4)

EL :=
µ̂ε̂

µ̂ε̂+ (1− µ̂)(1− ε̂)q
H +

(1− µ̂)(1− ε̂)
µ̂ε̂+ (1− µ̂)(1− ε̂)q

L − p (2.5)

the expected utility from buying, disregarding the sunk search costs, when receiving

a high signal or a low signal, respectively.

The following two important relations are immediate from these formulas.

u∗s(p, µ̂) =µ̂(1− ε̂)(qH − p) + (1− µ̂)ε̂(qL − p)− k̂∗

=µ̂(1− ε̂)qH + (1− µ̂)ε̂qL − (µ̂(1− ε̂) + (1− µ̂)ε̂)p− k̂∗
(2.4)
= (µ̂(1− ε̂) + (1− µ̂)ε̂)EH − k̂∗ (2.6)

u∗s(p, µ̂) =µ̂(1− ε̂)(qH − p) + (1− µ̂)ε̂(qL − p)− k̂∗

=µ̂(qH − p) + (1− µ̂)(qL − p)− µ̂ε̂(qH − p)− (1− µ̂)(1− ε̂)(qL − p)− k̂∗

=q̄µ̂ − p−
[
µ̂ε̂qH + (1− µ̂)(1− ε̂)qL −

(
µ̂ε̂+ (1− µ̂)(1− ε̂)

)
p
]
− k̂∗

(2.5)
= q̄µ̂ − p−

(
µ̂ε̂+ (1− µ̂)(1− ε̂)

)
EL − k̂∗ (2.7)

Assume that the signal is not precise enough in the sense of the lemma. This can

have two reasons. Either the expected value from buying is below zero even when

receiving a high signal (EH ≤ 0) or it is above zero even on receiving a low signal

(EL ≥ 0).

In the �rst case, equation (2.6) implies u∗s(p, µ̂) < 0 = un which contradicts the

conditions of the lemma.

In the second case, equation (2.7) implies

u∗s(p, µ̂) = q̄µ̂ − p−
((
µ̂ε̂+ (1− µ̂)(1− ε̂)

)
EL + k̂∗

)
︸ ︷︷ ︸

>0

< q̄µ̂ − p = ub(p, µ̂)

which is a contradiction for the same reason.

These contradictions prove that EL < 0 < EH . Hence the consumer buys if and

only if she receives the high signal.

46



2.A Appendix

Proof of Lemma 2.3.4. We begin by �nding values p
µ̂
≤ pµ̂ such that the strict

inequalities hold.

ub(p1, µ̂) > max
{
un, u

∗
s(p1, µ̂)

}
∀ p1 ∈ [qL, p

µ̂
)

u∗s(p2, µ̂) > max
{
ub(p2, µ̂), un

}
∀ p2 ∈ (p

µ̂
, pµ̂) (2.8)

un > max
{
ub(p3, µ̂), u∗s(p3, µ̂)

}
∀ p3 ∈ (pµ̂, q

H ].

It is obvious from µ̂ ∈ (0, 1) that the �rst inequality is satis�ed for p1 = qL and

the last inequality for p3 = qH . It is thus only left to show that there is monotonic

behavior in p in the pairwise di�erences between ub(p, µ̂), u∗s(p, µ̂) and un. We show

that the inequalities

∂
∂pub(p, µ̂) < ∂

∂pu
∗
s(p, µ̂) < ∂

∂pun

hold on the interval (qL, qH) wherever k∗ and thus u∗s is di�erentiable in p. The left

and right component of this expression are obvious from their de�nitions.

∂
∂pub(p, µ̂) = ∂

∂p(µ̂qH + (1− µ̂)qL − p) = −1 ∂
∂pun = 0

By the shape of the function k∗ (on page 18), we know that u∗s(p, µ̂) is continuous

and piecewise di�erentiable in p on some (possibly empty) intervals (qL, p′), (p′, p′′),

(p′′, qH) and we have

u∗s(p, µ̂) =


us(p, µ̂, 0) = µ̂1

2(qH − p) + (1− µ̂)1
2(qL − p) if p ∈ I1

us

(
p, µ̂,

(
ε′
)−1

(d̂)
)

if p ∈ I2

us(p, µ̂, k̄) = µ̂(qH − p)− k̄ if p ∈ I3.

In this expression we have I2 = (p′, p′′) and I1, I3 are the sets [qL, p′) and (p′′, qH ].18

While the �rst and third components are easy to di�erentiate, the middle one be-

comes

∂
∂pus

(
p, µ̂,

(
ε′
)−1

(d̂)
)

= ∂
∂p

(
µ̂
(
1− ε(k∗)

)
(qH − p) + (1− µ̂)ε(k∗)(qL − p)− k∗

)
=− µ̂(1− ε̂)− µ̂(qH − p) ∂∂pε(k∗)− (1− µ̂)ε̂+ (1− µ̂)(qL − p) ∂∂pε(k∗)− ∂

∂pk
∗

18Their order depends on the value of µ̂ which determines whether search e�ort increases or de-
creases in p. For µ̂ = 1

2
, search e�ort is constant and two of the intervals are empty.
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=− µ̂(1− ε̂)− (1− µ̂)ε̂+ 1
d̂
∂
∂pε(k

∗)− ∂
∂pk
∗

=− µ̂(1− ε̂)− (1− µ̂)ε̂+ 1
d̂
ε′(k∗) ∂∂pk

∗ − ∂
∂pk
∗

=− µ̂(1− ε̂)− (1− µ̂)ε̂+ 1
d̂
d̂ ∂
∂pk
∗ − ∂

∂pk
∗

=− µ̂(1− ε̂)− (1− µ̂)ε̂ ∈ (ε̂− 1,−ε̂),

using the chain rule, omitting the arguments of k∗ and writing ε̂ := ε(k∗).

Summarized, we end up with the following expression

∂
∂pu
∗
s(p, µ̂) =


−1

2 if p ∈ I1

−µ̂(1− ε̂)− (1− µ̂)ε̂ if p ∈ I2

−µ̂ if p ∈ I3.

which is always strictly between −1 and 0 and even continuous. This proves the

inequalities (2.8).

It follows from Lemma 2.3.3 that the consumer really searches in the region (p
µ̂
, pµ̂).

Finally, the price p = q̄µ̂ implies

un = ub(p, µ̂)

so that we must have p
µ̂
≤ q̄µ̂ ≤ pµ̂ for (2.8) to be true.

Proof of Lemma 2.3.5. Set p̂ = q̄µ̂. Clearly ub(p̂, µ̂) := q̄µ̂− p̂ = 0 = us(p̂, µ̂, 0) holds.

Moreover, we have

∂

∂k
us(p̂, µ̂, k) =− ε′(k)µ̂(qH − p̂) + ε′(k)(1− µ̂)(qL − p̂)− 1

for all k ∈ (0, k) and thus, taking the limit k → 0

lim
k→0

∂

∂k
us(p̂, µ̂, k) =− ε′(0)

[
µ̂(qH − p̂) + (1− µ̂)(p̂− qL)

]
− 1

p̂=q̄µ̂
= − ε′(0)

[
µ̂
(
qH − (µ̂qH + (1− µ̂)qL)

)
+(1− µ̂)

(
(µ̂qH + (1− µ̂)qL)− qL

)]
− 1

=− ε′(0)(2µ̂(1− µ̂)(qH − qL))− 1.

This is positive by the assumption. Hence, u∗s(p̂, µ̂) > us(p̂, µ̂, 0) = ub(p̂, µ̂) = un

which proofs qµ̂ = p̂ ∈ (p
µ̂
, pµ̂).

48



2.A Appendix

Assume now that the inequality stated in the lemma is not true. Then, by the

calculations above and the strict concavity of ε, us(p̂, µ̂, k) is decreasing in k so that

k = 0 is the optimal choice of search e�ort. Thus

u∗s(p̂, µ̂) = us(p̂, µ̂, 0) = ub(p̂, µ̂) = un.

From the proof of Lemma 2.3.4, we know that

∂
∂pub(p, µ̂) < ∂

∂pu
∗
s(p, µ̂) < ∂

∂pun

for all p ∈ (qL, qH) and thus ub(p, µ̂) > u∗s(p, µ̂) for all p < q̄µ̂ and un > u∗s(p, µ̂) for

all p > q̄µ̂. Hence we have pµ̂ = pµ̂ = q̄µ̂.

Proof of Lemma 2.3.6. We only show the claim for p
µ̂
since the other part is basically

the same proof with even simpler arguments. Note that, given µ̂ ∈ (0, 1), p
µ̂
is

uniquely determined19 by solving

ub(p, µ̂) =u∗s(p, µ̂)

⇔ µ̂qH + (1− µ̂)qL − p =µ̂(1− ε)(qH − p) + (1− µ̂)ε(qL − p)− k∗ (2.9)

and since these expressions are continuous and piecewise di�erentiable, the function

p
µ̂
also has these properties. 20

In the areas of di�erentiability, we either have k∗(p, µ̂) = 0 (implying ε = 1
2),

k∗(p, µ̂) = k̄ (with ε = 0) or k∗(p, µ̂) = (ε′)−1
(
d(p, µ̂)

)
. In the �rst two cases, (2.9)

yields

p
µ̂

= qµ̂ = µ̂qH + (1− µ̂)qL or p
µ̂

= qL +
k̄

1− µ̂

which both induce a strictly positive derivative in µ̂.

19This is also true if p
µ̂

= qµ̂. From Lemma 2.3.4 it follows that in this case k∗(p, µ̂) =

0, ε(k∗(p, µ̂)) = 1
2
and the equation (2.9) holds.

20 For the di�erentiability, the only problem occurs on the set

{µ̂ ∈ [0, 1] | d(pµ̂, µ̂) = ε′(0) or d(pµ̂, µ̂) = ε′(k̄)}

in which the possible non-di�erentiable points of k∗ are touched. By continuity, this set is
closed and hence compact. It can thus be written as the union of �nitely many open intervals
and �nitely many singletons. Within these intervals, the di�erentiation for k∗(p, µ̂) = k̄ or
k∗(p, µ̂) = 0 applies. The singletons are the only candidates in which pµ̂ may not be di�erentiable
in µ̂.
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In the third case, di�erentiating (2.9) with respect to µ̂ yields

qH − qL − p′
µ̂

=(1− ε̂)(qH − p̂) + ε̂(p̂− qL)− µ̂( ∂
∂µ̂ε)(q

H − p̂)

+ (1− µ̂)( ∂
∂µ̂ε)(q

L − p̂)− p′
µ̂
(µ̂(1− ε̂) + (1− µ̂)ε̂)− ∂

∂µ̂k
∗

=(1− ε̂)(qH − p̂) + ε̂(p̂− qL) + 1
d̂
( ∂
∂µ̂ε)

− p′
µ̂
(µ̂(1− ε̂) + (1− µ̂)ε̂)− ∂

∂µ̂k
∗

where we left out the arguments for d, ε and k∗ and wrote p̂ = p
µ̂
, ε̂ = ε(k∗(p̂, µ̂)).

Reordering this equation and using ∂
∂µ̂ε = ε′(k̂∗) ∂

∂µ̂k
∗ = d̂ · ∂∂µ̂k∗, we get

p′
µ̂

=
ε̂(qH − p̂) + (1− ε̂)(p̂− qL)

1− µ̂(1− ε̂)− (1− µ̂)ε̂
> 0.

The limit behavior limµ̂→0 pµ̂ = qL is clear, since we have qL < p
µ̂
≤ qµ̂ for all

values µ̂ ∈ (0, 1).

For µ̂ going to one, note that the convergence of p
µ̂
is guaranteed by the strict

monotonicity. Since k∗ can not be higher than qH for the equation (2.9) to be true,

it is bounded and hence there is an increasing sequence (µ̂n), converging to 1, for

which k∗(p
µ̂n
, µ̂n) converges to a value κ ≥ 0. Take such a sequence and the limit

n→∞ in (2.9). We then obtain

qH − lim
µ̂→1

p
µ̂

=
(
1− ε(κ)

)(
qH − lim

µ̂→1
p
µ̂

)
− κ

⇔ ε(κ)

(
qH − lim

µ̂→1
p
µ̂

)
= −κ

which, since the left hand side is weakly positive, implies κ = 0, thus ε(κ) = 1
2 and

�nally

lim
µ̂→1

p
µ̂

= qH .

Proof of Lemma 2.4.4. As seen from section 2.3, the consumer would buy for any

price below qL. This shows that no such price p < qL can be part of an equilibrium

because a deviation to any price in (p, qL) would yield a higher payo�. This shows

the lower bound of i).
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Assume that the equilibrium pro�t πL for the low type is strictly below qL− cL. A
deviation to the price qL − qL−cL−πL

2 would then yield the pro�t

qL − qL−cL−πL
2 − cL = qL−cL

2 + πL

2 > 2π
L

2 = πL.

This concludes the proof of statement iii). Having the low type set the price qH

with positive probability, the equilibrium de�nition implies µ(qH) < 1 and thus it is

optimal for the consumer to not buy the product, implying zero pro�t for the low

type. This contradicts iii). Using an obvious similar argument, we conclude that the

low type can not have any price above qH in its support. This shows ii) and the rest

of i).

It is left to show statement iv). Let p ∈ (qL, qH) be a price that is in the support

of aL but not of aH . By the equilibrium de�nition we must have µ(p) = 0 so the

consumer would know the true quality when observing price p. Hence, he would

not buy the product and the low type would make no pro�t which contradicts the

previous point.

Assume now that p ∈ (qL, qH) is a price in the support of aH but not of aL. Since

µ(p) = 1 and p < qH , the consumer buys with probability 1. So there must be at

least one price pL > p, pL ∈ supp(aL), otherwise the low type would deviate from

any price to p. Since only consistent strategies are played in equilibrium, we are left

with two cases.

First case: b (pL) = (0, γ, γ), γ ∈ [0, 1]

By optimality of the low type's strategy, this price satis�es

p− cL ≤ (pL − cL)γ. (2.10)

That is, the low type must make at least as much pro�t with setting price pL than

with price p. By the previous part of the proof, pL is in the support of aH . Hence

the high type must be indi�erent between setting prices p or pL.

p− cH = (pL − cH)γ

(2.10)⇒ (pL − cL)γ + cL − cH ≥ (pL − cH)γ

⇔ (1− γ)cL ≥ (1− γ)cH

which, since the �rst equation also implies γ 6= 1, is not compatible with the assump-

tion cL < cH .
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Second case: b (pL) = (k, 1, 0), k > 0

Let ε̂ := ε(k) be the probability of a false signal. This equals the chance that the

low type will sell her product for the price pL. Again by optimality of the low type's

choice the following inequality holds.

p− cL ≤ (pL − cL)ε̂ (2.11)

As before, the price pL must also be in the support of the high type. This yields

p− cH = (pL − cH)(1− ε̂)
(2.11)⇒ (pL − cL)ε̂+ cL − cH ≥ (pL − cH)(1− ε̂)
⇔ ε̂(pL − cH) ≥ (1− ε̂)(pL − cL)

which gives a contradiction for the same reason as before and using ε̂ < 1− ε̂.

Proof of Lemma 2.4.5. Let p < p′ be two such prices, ε̂, ε̂′ the corresponding error

probabilities. For search to be possible, the prices have to be in both supports and

hence, by the indi�erence principle for both types,

(p− cH)(1− ε̂) = (p′ − cH)(1− ε̂′)⇒ (1− ε̂) > (1− ε̂′)⇔ ε̂ < ε̂′

(p− cL)ε̂ = (p′ − cL)ε̂′ ⇒ ε̂ > ε̂′

which gives a contradiction.

Proof of Lemma 2.4.6. Without search, there are two probabilities γ, γ′ ∈ [0, 1] of

the consumer buying for the prices p < p′. By the optimality of the �rm's strategy

we have

(p− cH)γ = (p′ − cH)γ′

(p− cL)γ = (p′ − cL)γ′.

Note that, since the low type always has positive pro�t, all of these factors must be

strictly above zero. Reassembling these equations gives two di�erent values for the

ratio γ
γ′ since p 6= p′ and cL 6= cH .21 This is a contradiction.

21Here, we use that the fraction p′−c
p−c for p 6= p′ is strictly monotone in c for c < p, p′. This

statement is easy to check via di�erentiation.
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Proof of Lemma 2.4.8. Assume such a price p ∈ (qL, qH) exists for which the con-

sumer buys with probability lower than one. Then, because of Lemma 2.4.4 iv) and

iii), not buying is not possible so she buys with probability γ ∈ (0, 1). She is thus

indi�erent between buying without search and not buying. In this case p = q̄µ(p)

holds. Since ε′(0) = −∞, she would search on that price by Lemma 2.3.5.

The case q = qL follows from the same argument as the proof of Lemma 2.4.4 iii).

If sales had less than full probability, a slightly lower price would yield full sales and

hence a higher pro�t.

Proof of Proposition 2.4.9. The previous lemmas already show that not more than

two equilibrium prices can exist in (qL, qH). We then show that there can not be a

search price ps and a no-search price p1 played by both types. If this was the case,

we must have p1 < ps since otherwise there would be incentives to deviate from ps

to p1. For this, remember that Lemma 2.4.8 shows that the price p1 induces sure

buying.

Let now be p1 and ps be played in an equilibrium by both types. Applying the

indi�erence principle for both �rms we get

p1 − cH = (1− ε̂)(ps − cH)

p1 − cL = ε̂(ps − cL)

and thus

1− ε̂ =
p1 − cH
ps − cH

p1<ps
cH>cL
<

p1 − cL
ps − cL

= ε̂

which contradicts ε̂ ∈ [0, 1
2 ].

Finally, note that if the price p1 is played, the consumer buys with certainty and

p1 is thus the lowest price in the equilibrium. Thus, qL /∈ supp(aL).

The statement about the low value of γ for b(qH) = (0, γ, γ) is obvious. If we denote

the low type's equilibrium pro�t by πL, one upper bound for γ is πL

qH−cL which is

strictly smaller than one. Note that there might also be a lower bound for this

value, e.g. if cH < qL. See for example the existence condition for the total adverse

selection equilibrium.
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Proof of Lemma 2.4.11. Let (a, µ, b) be an equilibrium in which qH is played by the

high �rm and the consumer has strategy b
(
qH
)

= (0, γ, γ), γ > 0. This is a best

response because of µ̂ := µ
(
qH
)

= 1 and thus the consumer's utility

γ · ub(qH , µ̂) + (1− γ) · un︸︷︷︸
=0

= γ(µ̂qH + (1− µ̂)qL − qH) = γ(1− µ̂)(qL − qH)

attains its maximum in all values of γ. For slightly lower µ̂, however, this value has a

unique maximum in γ = 0 and thus the original strategy b
(
qH
)
is locally dominated

by (0, 0, 0). On the other hand, the total adverse selection equilibrium does not have

this problem since (0, 0, 0) is the equilibrium strategy for qH .

Every other equilibrium price is a search price ps or a non-search price p1 being in

both supports of the �rm's strategy or the price qL, set by only the low type. We

show that non of these prices is locally dominated in beliefs.

Let ps be an equilibrium search price (implying that µ(ps) ∈ (0, 1)) with consumer

behavior b(ps) = (k, 1, 0), k > 0. By the analysis of section 2.3, this strategy is the

unique maximum over all search behaviors. The remaining candidates for domination

are thus (0, 0, 0) (�don't buy�) and (0, 1, 1) (�buy�)22. If �don't buy� had the same

utility, we had

us(ps, µ(ps), k) = µ(ps)
(
1− ε(k)

)
(qH − ps) +

(
1− µ(ps)

)
ε(k)(qL − ps)− k

= 0 = un.

Di�erentiating this with respect to the posterior belief, one sees that

∂

∂m
us(ps,m, k) =

(
1− ε(k)

)
(qH − ps) + ε(k)(ps − qL) > 0

such that we have us(ps,m, k) > un for all m > µ(ps). The strategy b(ps) is thus

not locally dominated by the strategy (0, 0, 0).

If �buy� had the same utility as b, we had

us(ps, µ(ps), k) = µ(ps)
(
1− ε(k)

)
(qH − ps) +

(
1− µ(ps)

)
ε(k)(qL − ps)− k

= µ(ps)q
H + (1− µ(ps))q

L − ps = ub(ps, µ(ps)).

22Note that the proof shows that also their convex combinations can not be local best responses in
this case and thus are no candidates for dominating strategies.
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and the derivatives

∂

∂m
us(ps,m, k) =

(
1− ε(k)

)
(qH − ps) + ε(k)(ps − qL) (2.12)

≤ max
{
qH − ps, ps − qL

}
< qH − qL =

∂

∂m
ub(ps,m).

This shows that b(ps) is strictly better than (0, 1, 1) for any m < µ(ps). The strategy

b(ps) is thus not locally dominated.

Now let p1 < qH be an equilibrium price. If b(p1) = (0, 1, 1) is not a unique best

response, there is a search strategy (k, 1, 0) with the same payo�23. This also implies

µ(p1) ∈ (0, 1) since search being optimal is not possible for degenerate posteriors. Us-

ing (2.12), we know that for a marginally higher posterior belief, this search strategy

is worse than �buy�. Strategy b(p1) is thus not locally dominated.

The last price to check is qL for which the equilibrium behavior (0, 1, 1) is clearly

the unique best response for any posterior belief m > 0 so that local domination is

also excluded here. This also concludes the proof for showing that the total adverse

selection equilibrium has belief-robust responses.

Proof of Proposition 2.4.13. Let (a, µ, b) be an equilibrium. We �rst show that there

are no equilibrium prices p which di�er from qL, qH , p
µ̂
and pµ̂ where µ̂ is determined

according to Bayes' law.

First, assume that there is an equilibrium no-search price p in (qL, qH) which is

not equal to p
µ(p)

. In this case, Lemma 2.3.4 shows that ub(p, µ(p)) > u∗s(p, µ(p)).

Assuming that µ is continuous in p, the continuity of ub and u
∗
s implies that �buying�

will still be better than �searching� for a marginal increase of the price. This is an

incentive for both types to deviate which contradicts the equilibrium property. If

p = qL but played by both types (thus µ(p) > 0), the non-emptiness of (qL, p
µ(p)

)

shows that the same argument holds.

Second, assume the existence of an equilibrium search price p 6= pµ(p). It follows

again from Lemma 2.3.4 that we must have u∗s(p, µ(p)) > un. Again the continuity

of these expressions implies that the consumer will also search for a marginal higher

price, although the search e�ort and thus the error probability ε̂ might change. Note

that the pro�t of the �rm, depending on the type, is (p − cH)(1 − ε̂) or (p − cL)ε̂

such that, for a higher price, at least one of these values will increase. This gives an

incentive for at least one type to deviate.

23Lemma 2.3.5 rules out no-search strategies giving the same payo�.
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These two arguments together with Lemma 2.4.11 rule out all the equilibria from

Proposition 2.4.9 that are not mentioned in Proposition 2.4.13. We thus only have

to show that the rest of the equilibria can be supported by a locally continuous belief

system.

Since all equilibria have a �nite number of prices, these prices can be considered

independently from each other by looking at non-intersecting environments of them.

The price qL, if only played by the low quality �rm, can obviously be supported

by µ(p) = 0 in any environment of qL. For the price qH note that for all values of

µ̂ = µ(qH) the interval (pµ̂, q
H) is non-empty and the lower bound is continuously

increasing in µ̂ (see Lemma 2.3.6) so that there is an invertible, continuous function

p(µ̂) with p(µ̂) ∈ (pµ̂, q
H) for all µ̂ ∈ (0, 1). By the de�nition of pµ̂, the inverse µ(p)

of this function satis�es

un > max
{
ub(p, µ(p)), u∗s(p, µ(p))

}
∀p ∈

(
p(1

2), qH
)

so that the consumer would not buy with that belief system for any other price and

hence there is no incentive for a deviation by any �rm.

Let now ps be an equilibrium search price on the upper line of the search area. That

is

ps = pµ(ps).

Keeping the function µ constant above ps leads to the consumer not buying for higher

prices. This was shown in the proof of Lemma 2.4.11. For lower prices, we can use

the same argument as before of pµ̂ being strictly increasing in µ̂ to show that there

exists a continuous and even increasing belief system µ(p) for p < ps for which the

consumer does not buy on lower prices.

At last, assume p1 = p
µ(p)

for a no-search price, implying that the consumer buys

with probability one. Moreover, assume ε(k∗(p1, µ(p1))) < 1. Independent of the

belief system, no �rm would deviate to a lower price since the probability of selling

can not grow (p1 induces sure buying). Keeping the posterior belief constant to µ(p1)

for higher prices leads to search behavior for these prices. By continuity of ε(k∗), we

have

lim
p↓p1

(1− ε(k∗(p, µ(p))))(p− cH) = (1− ε(k∗(p1, µ(p1))))(p1 − cH)
ass.
< p1 − cH
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so that a high quality �rm has a lower pro�t for slightly higher prices. It is straight-

forward to show the same for the low type.

The existence conditions are obvious from the proof, the minimum payo�s of both

types and the indi�erence principle for all prices in a type's price support.

Proof of Observation 2.4.14. In PEb, both types trade for sure while in PEs the high

type �rm has some trading probability 1− ε̂ > ε̂. It su�ces to show the observation

for any hybrid equilibrium.

Remember that the existence of a hybrid equilibrium implies qL − cL < qH − qL.
In this case, the selling probability for the price qH in a separating equilibrium can

not exceed

qL − cL
qH − cL =

qL − cL
qH − qL + qL − cL <

qL − cL
qL − cL + qL − cL =

1

2
.

to not make the low �rm deviate to the higher price. The selling probability for a

high quality �rm in a hybrid equilibrium, however, is 1 − ε̂ > 1
2 which proofs the

observation.

Proof of Lemma 2.4.16. If two or more hybrid equilibria exist, the consumer surplus

and the low type's pro�t are both at their minimum. Observe that the latter implies

that the search precision ε(k∗(pµ̂, µ̂)) in these equilibria is higher if the price pµ̂ is

higher. This also implies a higher chance of selling high quality goods and thus an

overall strictly higher pro�t for the high type. Hence, HE dominates all other hybrid

equilibria.

Let either of PEb, PEs or HE exist. We know that in all these equilibria we have

πL ≥ qL − cL, πH ≥ 0 and u∗ ≥ 0 which are the payo�s of the TAS equilibrium.

In PEb, the consumer has positive utility while in PEs and HE, the high type �rm

has positive pro�t. Hence TAS is dominated.

Now let EQ either denote PEs or HE and denote ps and ε̂ the search price and

its corresponding signal imprecision in EQ. We know that the consumer is strictly

better o� in PEb. Assume πH(PEb) ≥ πH(EQ). It then follows, since ps ≥ pη

p
η
− cL

ps − cL
≥
p
η
− cH

ps − cH
=

πH(PEb)
1

1−ε̂π
H(EQ)

≥ 1− ε̂ > ε̂

⇒ πL(PEb) = p
η
− cL > ε̂ · (ps − cL) = πL(EQ).
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This shows that PEb dominates EQ.

It is straightforward to show that HE and PEs do not dominate each other. The

low type pro�t in PEs is higher than in HE but this, together with the higher search

price in HE, implies a lower sale probability for the low type and hence a higher

probability for the high type. Hence the pro�t of the high type is higher in HE.

Proof of Lemma 2.4.17. Note �rst that the existence of PEs implies that the low

type's pro�t ε̂ · (pη − cL) is at least qL − cL. In the hybrid equilibrium, this bound

must be attained for the low type to justify playing both prices. We show that this

condition can not be met in both equilibria.

Taking the derivative of πL(pµ̂, µ̂) with respect to the posterior belief µ̂ (for values

in which this is di�erentiable) yields

∂

∂µ̂
πL(pµ̂, µ̂)

=
∂

∂µ̂
ε(k∗(pµ̂, µ̂)) · (pµ̂ − cL)

=

(
∂

∂µ̂
ε(k∗(pµ̂, µ̂))

)
(pµ̂ − cL) + εp′µ̂

=

0 if ε = 0

ε′(k∗)
([

(ε′)−1
]′

(d̂) ∂
∂µ̂d(pµ̂, µ̂)

)
(pµ̂ − cL) + εp′µ̂ if ε > 0

=

0 if ε = 0

ε′(k∗) 1
ε′′(k∗) d̂

2
(
qH − qL − 2pµ̂ + p′µ̂(1− 2µ̂)

)
(pµ̂ − cL) + εp′µ̂ if ε > 0

.

For this, we had to use standard results for the derivative of the inverse function[
(ε′)−1

]′
= 1

ε′′ and the quotient di�erentiation theorem for the derivative of d.

While the right hand side of the lower term is always positive, the left hand side

is positive if µ̂ ≥ 1
2 and pµ̂ ≥ qH+qL

2 . Note that the former condition implies the

latter as we always have pµ̂ ≥ qµ̂. It is thus su�cient to have µ̂ ≥ 1
2 . Moreover, in

an equilibrium where the high type always sets the search price, Bayes' law implies

µ̂ ≥ η on that price. The derivative of the low type's pro�t it thus always non-

negative for µ̂ ∈ [1
2 , 1). It is even strictly positive for all beliefs in which ε(pµ̂, µ̂) > 0

which must be the case in equilibrium. If η ≥ 1
2 , this monotonicity results hold for

all posterior beliefs that can occur on equilibrium search prices.
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By Lemma 2.3.6, this pro�t converges to 1
2(qH − cL) when taking µ̂→ 1. Using the

condition qL − cL < qH − qL, we know

1
2(qH − cL) = 1

2(qH − qL + qL − cL) > qL − cL.

Let η ≥ 1
2 and ε(k∗(pη, η))(pη − cL) < qL − cL. It then follows from the strict

monotonicity and the convergence that there exists exactly one µ̂ ∈ (η, 1) with

ε(k∗(pµ̂, µ̂))(pµ̂−cL) = qL−cL. On the other hand, if we had ε(k∗(pη, η))(pη−cL) ≥
qL − cL, we have no such value for µ̂.

We see that the conditions of the low type having a higher pro�t than qL − cL

in one equilibrium and exactly this pro�t in the other are mutually exclusive. By

continuity, this extends to an open interval of values of η below 1
2 which proofs the

existence of η.

Proof of Proposition 2.5.1. In this proof, we often write p(a) instead of p
µ̂
(a) for

expositional reasons. De�ne

P :=
{

(p, a)|d(p, η) < εk(k̄(a), a)
}

the open area for which ε(k∗(p, η, a), a) is positive.

Note that k∗(p, η, a) as de�ned by (2.1) is continuous24 and piecewise di�erentiable

in (p, a) in P and its complement P c. It thus also holds for the composition ε(k∗, a).

Hence p
η
(a) has the same properties25 , being the unique implicit solution of the

equation

ub(p(a), η, a) = u∗s(p(a), η, a)

q̄η − p(a) = η
(
1− ε(k∗, a))

)(
qH − p(a)

)
+ (1− η)ε(k∗, a)

(
qL − p(a)

)
− k∗ (2.13)

24While k̄ can take the value ∞, k∗ can not. Since k̄ is continuous when restricted to the open set
on which it is �nite, k∗ is continuous.

25A similar di�erentiability argument as in footnote 20 on page 49 applies here. The set

{a|d(p(a), η) = εk(k̄(a), a)}

might not be bounded and hence not compact. But every intersection with [0, A], A > 0 is
compact. The previous argument applies to these sets and hence there are countably many,
ordered potential discontinuities a1 < a2 < . . . .
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where we left out the arguments of k∗. Di�erentiating this expression with respect

to a, in the areas where this is di�erentiable, and writing pa := ∂
∂ap(a) yields

− pa
= η

[
(− ∂

∂aε)(q
H − p) + (1− ε)(−pa)

]
+ (1− η)

[
( ∂
∂aε)(q

L − p) + ε(−pa)
]
− ∂

∂ak
∗

= −
(
η(1− ε) + (1− η)ε

)
pa −

(
η(qH − p) + (1− η)(p− qL)

)
∂
∂aε− ∂

∂ak
∗

= −
(
η(1− ε) + (1− η)ε

)
pa + 1

d(p,η)
∂
∂aε− ∂

∂ak
∗

and

∂
∂aε = ∂

∂aε(k
∗, a) = εk(k

∗, a) ∂
∂ak
∗(p(a), a) + εa(k

∗, a)

= εk
∂
∂ak
∗ + εa

= d(p, η) ∂
∂ak
∗ + εa.

whenever (p(a), a) ∈ P and

∂
∂aε = ∂

∂a0 = 0

in every open subset of P c. Combining these expressions, we either get

− pa = −
(
η(1− ε) + (1− η)ε

)
pa +

εa
d

⇔ pa =
η(qH − p) + (1− η)(p− qL)

1− η(1− ε)− (1− η)ε
εa < 0

or

pa =
1

1− η(1− ε)− (1− η)ε
∂
∂a k̄(a) ≤ 0.

It is left to show the limit of p(a) when we let a go to 0 or ∞. We begin with the

latter case.

First claim: lima→∞ ε(k
∗(p

η
(a), η, a), a) = 0

We write k∗(a) := k∗(p
η
(a), η, a). Assume that lim supa→∞ ε(k

∗(a), a) =: e > 0.

This also implies

εk(k
∗(an), an) = d(p

η
(an), η) and ε(k∗(an), an) > e

2 ∀ n ∈ N
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for some sequence (an) going to in�nity and having limn→∞ ε(k
∗(an), an) = e. Since

p
η
(an) converges (due to the monotonicity), so does d(p

η
(an), η) and we have

lim
n→∞

εk(k
∗(an), an) = lim

n→∞
d(p

η
(an), η) =: δ ≤ −1

max{η, 1− η}(qH − qL)
< 0

which implies εk(k
∗(an), an) > 2δ for large n. Choose k = − e

8δ > 0 and n large

enough such that this inequality holds. We then have for all these n either

ε(k, an) ≥ ε(k∗(an), an) >
e

2

if k ≤ k∗(an) or

ε(k, an) = ε(k∗(an), an) +

∫ k

k∗(an)
εk(l, an)︸ ︷︷ ︸

≥εk(k∗(an),an)>2δ

dl >
e

2
+ (k − k∗(an))2δ

≥ e

2
+ k2δ =

e

2
− e

4
=
e

4

otherwise. This is a contradiction to limn→∞ ε(k, an) = 0.

Second claim: lima→∞ k
∗(p

η
(a), η, a) = 0

The argument here is almost the same. Assume lim supa→∞ k
∗(p

η
(a), η, a) =: κ > 0.

Take a sequence an, limn→∞ an = ∞ with limn→∞ k
∗(an) = κ and k∗(an) > κ

2

for all n. Let δ be as before, and let n be large enough so that the inequality

εk(k
∗(an), an) > 2δ holds. We then have

ε(κ2 , an) =ε(k∗(an), an)−
∫ k∗(an)

κ
2

εk(l, an)dl ≥ ε(k∗(an), an)−
(
k∗(an)− κ

2

)
δ
2

≥−
(
k∗(an)− κ

2

)
δ
2 → −κ

2
δ
2 > 0, n→∞,

contradicting limn→∞ ε(
κ
2 , an) = 0.

From the two claims, it now follows easily by equation (2.13) that

q̄η − lim
a→∞

p
η
(a) = η(qH− lim

a→∞
p
η
(a))

⇒ lim
a→∞

p
η
(a) = qL.

This concludes the proof for the case a→∞.

The proof for a → 0 is quite similar. Using basically the same arguments, we show

61



2 Markets with Quality Uncertainty and Imperfect Information Acquisition

that lima→0 ε(k
∗(p(a), a), a) = 1

2 and that lima→0 k
∗(p(a), a) = 0. Hence the limit of

equation (2.13) yields

q̄η − lim
a→0

p
η
(a) =

1

2
η(qH − lim

a→0
p
η
(a)) +

1

2
(1− η)(qL − lim

a→0
p
η
(a))

⇒ q̄η − lim
a→0

p
η
(a) =

1

2
q̄η −

1

2
lim
a→0

p
η
(a)

⇒ lim
a→0

p
η
(a) = q̄η.

The last part of the proposition follows from this convergence of p
η
(so that for low

values, the price of PEb is above c
H and for high a it is not) and the previously

shown

lim
a→0

ε(k∗(p(a), a), a) = 1
2 > 0

which ensures that ε > 0 for low values of a. This is part of the existence condition

for PEb.

Proof of Proposition 2.5.2. The arguments here are basically the same as in the pre-

vious proof, using that pη(a) is implicitly de�ned by the equation

un = u∗s(p(a), η, a)

0 = η
(
1− ε(k∗, a))

)(
qH − p(a)

)
+ (1− η)ε(k∗, a)

(
qL − p(a)

)
− k∗.

The derivative is thus either

η(qH − p) + (1− η)(p− qL)

−η(1− ε)− (1− η)ε
εa > 0 or

1

−η(1− ε)− (1− η)ε
∂
∂a k̄(a) ≥ 0.

The arguments for the convergence to q̄η and q
H are again very similar to the previous

proof and are thus omitted.

Proof of Corollary 2.5.3. It follows from the convergence of p
η
(a) that PEb does

not exist for high values of a, since its price would be lower than the high quality

production costs cH from some point on. The search prices of both, PEs and HE,

converge to qH . The proof of Proposition 2.5.2 shows that for PEs, the corresponding
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2.A Appendix

signal error ε
(
k∗(pη(a), η), a

)
converges to 0 when a goes to in�nity. Thus for high

values of a we have

ε
(
k∗(pη(a), η), a

)
(pη(a)− cL) < qL − cL (2.14)

so that PEs does not exist. The convergence of pη(a) to qH also shows that for high

values of a we must have pη(a) > cH . For each of these values of a, since the left

hand side of (2.14) converges to 1
2(qH − cL) > qL − cL when η goes to one, there

exists µ̂ ∈ (η, 1) so that

ε
(
k∗(pµ̂(a), µ̂), a

)
(pµ̂(a)− cL) = qL − cL.

This constitutes the existence of a hybrid equilibrium and thus of HE.

The above equality combined with the limit behavior

qH ≥ pµ̂(a) ≥ pη(a)→ qH , a→∞

implies the convergence of ε
(
k∗(pµ̂(a), µ̂)

)
to qL−cL

qH−cL .

Proof of Proposition 2.5.4. From the proof of Proposition 2.5.2 we know that

lim
a→0

pη(a) = qη, lim
a→0

k∗(pη(a), η, a) = 0 and lim
a→0

ε(k∗(pη(a), η, a), a) =
1

2
.

The low type pro�t in PEs thus converges to

lim
a→0

ε
(
k∗(p

η
(a), η, a), a

)
(pη(a)− cL) = 1

2(qη − cL)

= 1
2(ηqH + (1− η)qL − cL)

= 1
2(η(qH − qL)︸ ︷︷ ︸

<qL−cL

+qL − cL)

< qL − cL

which shows that for low a this equilibrium type does not exist. It follows from the

proof of Lemma 2.4.17 that for each such a there is at least one belief µ̂(a) > η for
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2 Markets with Quality Uncertainty and Imperfect Information Acquisition

which the low type exactly attains the pro�t qL − cL at price p̂(a) := pµ̂(a)(a) if the

consumer behaves optimally. Writing k̂∗(a) := k∗(p̂(a), µ̂(a), a), this means

ε(k̂∗(a), a)︸ ︷︷ ︸
=:ε̂(a)

·(p̂(a)− cL) = qL − cL.

We can use a similar argument to the one in the proof of Proposition 2.5.1 to show

that

lim
a→0

k̂∗(a) = 0 and lim
a→0

ε̂(a) =
1

2
.

The above equality then dictates that lima→0 p̂(a) = 2qL−cL and, since the posterior

belief satis�es

µ̂(a)(1− ε̂(a))(qH − p̂(a)) + (1− µ̂(a))ε̂(a)(qL − p̂(a))− k̂∗(a) = 0

for all a, taking the limit and applying the result yields lima→0 µ̂(a) = qL−cL
qH−qL .

Finally, the condition cH < 2qL− cL = lima→0 p̂(a) ensures that these prices indeed

form hybrid equilibria for low values of a.
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3 A Model of Quality Uncertainty with

a Continuum of Quality Levels

3.1 Introduction

Markets with quality uncertainty have been well discussed in the recent decades,

starting from the famous paper by George Akerlof (1970). Since then, many articles

have formalized the idea in di�erent ways, most of which focused on a particular

market feature to implement into the classical model. Some works like Bagwell and

Riordan (1991) enriched the market by introducing multiple periods and thus letting

the market price not only be determined by equilibrium posterior beliefs but also by

past experience of the consumers. Others focused on advertising possibilities in terms

of wasteful spending and thus costly signaling (Milgrom and Roberts (1986)) or on

the possibility of the consumers to receive additional information before the pur-

chase (Bester and Ritzberger (2001), Voorneveld and Weibull (2011), Martin (2012)

and the previous chapter). Some e�orts were made in transfering the monopolistic

setting into a model with multiple sellers. See Adriani and Deidda (2011) for a case

with �nitely many sellers and buyers. Daughety and Reinganum (2007) consider

a duopolistic setting in which the good di�ers in a �safety� aspect. Wilson (1980)

introduced a setting with a continuum of sellers and buyers.

Most of the literature has an assumption in common which seems innocuous. While

quality is modeled to be unknown to the consumer, it can only have �nitely many

di�erent values in the real numbers. In most cases, there is only a �good� and a

�bad� quality level. Two objections directly arise to this assumption. For one, when

we think about the quality of a car, we think of many di�erent aspects which are

relevant and enter the computation. Performance, safety, handling, comfort are only

some broad categories, each of which could be split into multiple characteristics of

a car. Quality should thus intuitively be something multidimensional. However, it

is widely known that under relatively mild assumptions, preferences over multidi-

mensional objects can be expressed by a von Neumann utility function and thus the
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

comparison can be made in the real numbers. One sure has to be careful of whether

even these weak assumptions apply to all real-life situations but in this chapter we

do not focus on relaxing this assumption.

The other objection, which is the more severe one, is the assumption of �nitely

many quality levels. Certainly, some characteristics, like the resolution of a TV

screen, only have �nitely many possible values but others, like its life period or

the quality of its colors, would better be modeled on a continuous scale. Most of

the literature ignores this aspect, the predominant reasons being the mathematical

simplicity, expositional bene�ts and the idea that two quality levels are enough to

capture the relevant market e�ects.

This chapter takes a closer view at the last point. Is it really the case that having

a continuum of quality levels does not lead to qualitatively di�erent phenomena

compared to only two possible values? Is this true in every model or could some

positive answers to this question hide other issues which occur only when the setting

is enhanced?

We present a model with quality uncertainty and a continuum of quality levels that

resembles the classical monopolistic model of quality uncertainty as similarly stated

in Ellingsen (1997). We show two examples in which under �regular� assumptions,

having many quality values either leads to undetermined behavior or does not add

interesting phenomena to the comparable model with only two quality levels.

We then continue modifying the model by adding private information to the con-

sumer. When receiving a free signal which is correlated to the true quality, there

naturally arise mathematical problems when trying to update beliefs about the qual-

ity distribution in a mathematically correct way. The form of the objective function

of a �rm bears the problem that the type space can not directly be split into convex

subsets, all in which types set the same price. Consequently, Bayesian updating can

be impossible or at best highly complex for the consumer to realize.

To overcome this issue, we introduce an elegant generalization of building an ex-

pected quality level, demanding Bayesian updating only in the easiest cases and

otherwise allowing for non-perfectness or (to some degree) irrationality of the con-

sumer while at the same time preserving the possibility of full rationality.

Analyzing the structure of equilibria, we characterize their pricing function and

�nd that there is always a positive prize-quality relationship in every equilibrium.

Moreover, adverse selection phenomena do in general not occur. Since pro�ts are

non-decreasing in the quality, only low quality types can completely be excluded from

trade. We further investigate the limit behavior when the consumer's information
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3.2 The Model

becomes perfect, i.e. the signal precision approaches perfect information. We show

that in this case, the market breaks down uniformly over all existing equilibria. Fur-

thermore, the proof shows that this e�ect is mainly caused by the interval structure

of available quality levels.

The paper is structured as follows. We shortly present the model before we show

two cases with a continuous quality set but with only one-sided asymmetric quality

information. We show that these models do not provide interesting or previously

not known behavior. We then proceed by analyzing the model with two-sided asym-

metric information. After de�ning a generalization of expected quality with respect

to Bayesian updating, we analyze the equilibria of the market. Interesting aspects

of equilibria can be found already at this stage. Applying a re�nement to these

equilibria, we �nally �nd that approaching the perfect information case drives low

quality �rms out of the market and leads to market breakdown in equilibrium.

3.2 The Model

We consider a minimalistic market with one �rm and one consumer. The �rm (or

seller) produces and o�ers an indivisible good of random quality q ∈ [0, 1], unob-

served by the consumer. The consumer (or buyer) can buy this good for a certain

price which is set by the �rm as a take-it-or-leave it o�er. For each quality, the buyer

has a certain, publicly known utility u(q). For simplicity, we normalize u(q) = q and

speak equivalently of the �rm's quality or type.

This type q is drawn by nature by a distribution on [0, 1] with a continuous,

everywhere-positive density function f . This distribution is known by the consumer,

while the realized quality is not. The price p is set by the �rm after observing the

quality q. The action set of a �rm is the set of all price functions

π : [0, 1]→ [0, 1]

q 7→ π(q).

The consumer buys at most one unit of the good. In addition to the price, she

observes a signal s before the purchase decision. This signal is costless and can be

interpreted as the private observation of a test result or of the result of an own quality
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

information acquisition process with a �xed cost.1 Having the realized quality level

q, the signal is uniformly distributed on the interval [q−κ, q+κ] and hence depends

on the true quality q. The error variable κ is �xed, strictly positive and known to the

seller and the buyer. Denote S := [−κ, 1 + κ] the set of possible signal realizations.

The buyer is a risk-neutral utility maximizer. Observing the price and the signal

and having built an expectation E(p, s) of the realized type, her expected utility is

E(p, s)− p

from buying the good and 0 otherwise. Whenever these values are equal, she buys

with some indi�erence probability α ∈ [0, 1], chosen by her. The strategy of the

consumer can thus be characterized by this value.

We need some notation for the analysis. We denote the complete Lebesgue measure

on R by λ. In Particular, a set A ⊂ R is called a null set if and only if there exists

a Borel set B with λ(B) = 0 and A ⊂ B. Having two sets A and B, we denote

A4B = (A \ B) ∪ (B \ A) the symmetric di�erence of these two sets. If A,B 6= ∅,
we use the notation

A < B ⇔ a < b ∀ a ∈ A, b ∈ B.

An element a is a limit point of the set A if there exists a sequence (an) in A with

limn→∞ an = a.

3.3 One-sided Asymmetric Information

Before we deal with the model, we consider the simpler case in which the consumer

does not get the additional signal but only observes the price before making the

buying decision. This would be the natural extension of the standard lemon market

models. Two types with the same pricing strategy then have the same chance of

selling since the buyer receives the identical information and hence behaves the same.

From the optimality in an equilibrium2, each type's pricing strategy must maximize

1For example, if you always do a test drive before buying a second hand car, the resulting in-
formation is available to you and the (�xed) cost of the test drive does not enter your utility
maximization considerations.

2In this section, we speak of Bayesian equilibria without giving the formal de�nition. Updating
behavior is rather easy in these cases (as long as the price function is well-behaved) and the
optimality conditions of seller's and buyer's behavior is obvious. Since all the results in this
section state necessary properties of equilibria and do not deal with existence, we do not have
to worry about out-of-equilibrium beliefs.
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3.3 One-sided Asymmetric Information

the payo�s. Since there are no payo� di�erences between types, every strategy which

is used by some type yields the same payo�. Note that for each price and without

further information, the consumer reaction can only be �not buying�, �buying� or

�buying with probability α� where α can not di�er between prices. Since every price

of every pricing strategy must yield the same payo�, this leaves only two possible

prices for each equilibrium.

Proposition 3.3.1. Let there be no extra signal for the consumer. Then in every

equilibrium in which some type makes positive pro�t, there are at most two prices

p = αp′ where α ∈ (0, 1) is the consumer's indi�erence strategy.

It is interesting to notice that the order of types setting these two prices is not

clearly determined. From the consumer reaction it is clear that the set of types

setting the high price p′ must yield the expected quality p′ because the buyer uses

its indi�erence strategy α. In the same way, the expected quality from the set of

types setting price p must be strictly above p. Each constellation which satis�es

these assumptions constitutes an equilibrium. This, however, is not very restrictive

and allows for many types of behavior, all of which only involve two prices but can

have positive or negative price correlation. One example of such a setting is shown

in Figure 3.1.

q

p

p′

π(q)

Figure 3.1: An example of a possible price function in the case without additional
signal.

This behavior might actually stem from some of the other restrictions we make

about the market. In particular, we assume one value α for all consumer reactions in
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

which she is indi�erent. Instead, one might think about allowing a di�erent reaction

for each price in which neither buying nor the absence from the purchase is the

unique best reply. The result of only having two prices certainly stems from this

restriction.

In the same spirit, quality-depending production costs (or outside options) could

be present in the market which implies that the same price yields not only the same

chance of selling but not the same pro�t for all types setting the price. This is what

drives the high indeterminacy of the pricing function which was observed above.

However, although getting rid of these restrictions does indeed help to overcome this

behavior, it does not lead to new insights.

Proposition 3.3.2. Let c : [0, 1] → R+ be a strictly increasing cost function and

let the consumer strategy have the more general form γ : [0, 1] → [0, 1]. Then in

every equilibrium, if one exists, the price function is monotonically increasing and γ

is strictly decreasing when being restricted to the equilibrium prices π−1([0, 1]).

Knowing the results in the classical two-quality case, this statement is not very

surprising and does not provide anything new to the matter. The monotonicity of

the price function admits a positive price-quality relationship. This, in combination

with the decreasing willingness of the consumer to buy with higher prices, also implies

an adverse selection e�ect. Higher quality has a higher price and thus a lower chance

of selling.

We could generalize this even more and allow the �rm to have a mixed strategy.

One can see in the proof that this modi�cation would not change the result.

This detour shows that generalizing the standard model in a way just to incorporate

a continuum of quality levels does not enrich the results in any way. Our model

component of having the extra signal s is thus crucial for the following analysis and

results. We now go back to the model presented in the previous section.

3.4 The Consumer

The notion of consumer's utility involves the building of an expectation based on the

observed price and signal. The question, of course, is how this expectation is formed.

If we followed classical Bayesian theory, a buyer would observe her information, in

this case the price p and the signal s, and then hold a posterior belief µ(p, s) ∈ ∆[0, 1]

about the actual product's quality. In an equilibrium, this probability distribution

would be derived by Bayes' law whenever p and s correspond to at least one possible
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quality realization, given the signal distribution and the equilibrium price function

π. While this works well in settings with �nitely many quality levels, there are issues

in our model that can not easily be overcome when sticking to this posterior belief

assumption. In particular, the relatively unrestricted shape of the function π in the

equilibrium de�nition below causes problems which are not easy to overcome.

Bayesian equilibria have of course been analyzed before, also in settings with con-

tinuous state spaces. A famous example is the signaling paper by Crawford and

Sobel (1982). They analyze a sender-receiver setting in which the sender is biased

and tries to induce a receiver's action which is not optimal for the receiver. In their

setting, however, they show that no matter what the receiver's strategy, the optimal

behavior of the sender is to divide the state space into (almost surely) convex sets

and send messages depending on the set the state space is in. It is easy to show

that Bayesian updating is always well-de�ned on these convex sets.3 Similar ar-

guments apply for extensions of this model to the multi-dimensional case (Metzger,

Jäger, Riedel (2011)) and for uncertainty about language competence (Blume, Board

(2013)).

To approach this issue in our setting, imagine that the function π is �xed and known

to the consumer and she observes a price p and a signal s. From the price p, and

knowing the price function π, she infers that the true quality must be in the set

Qπp := π−1({p}) = {q ∈ [0, 1]|π(q) = p} .

She also knows that the quality level is not more than κ away from the observed

signal which yields

q ∈ Qs := [s− κ, s+ κ] ∩ [0, 1] = {q ∈ [0, 1]|s ∈ [q − κ, q + κ]} .

If the quality level was outside of this set, the received signal would not be in the

support of the signal distribution and could thus not be received. Altogether, she

can infer that the true quality level must lie in the preimage

Qπp,s = Qπp ∩Qs = π−1({p}) ∩ [s− κ, s+ κ].

3Their de�nition of the posterior belief (the function p in point (2) on page 1434), is not well-
de�ned if the integral

∫ 1

0
q(n|t)f(t)dt is zero. The points (5),(6) and (7) in the proof of Lemma

1 show that they do not have to tackle this problem.
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

If Qπp,s is a Borel set with positive Lebesgue measure and with non-empty interior,

a posterior distribution µ is given by the density function

gµ(q|p, s) =


f(q)∫

Qπp,s
f(x)dx

q ∈ Qπp,s

0 else
(3.1)

which is the normalized restriction of the original density function f to the set Qπp,s.
4

A similar expression is possible for the case in which this set is �nite.5

In general, however, the set Qπp,s can not be assumed to have this form and does not

even have to be measurable. Even when assuming measurability, Qπp,s could in theory

be an in�nite null set. Even if we excluded all these cases and agree on updating on

�nite sets, we would still be forced to distinguish situations in which we face a �nite

set or one of positive measure. We thus take a di�erent, more general approach that

allows us to keep the basic idea of a posterior distribution without having to further

restrict the set of possible price functions π.

Note that if we had a posterior belief µ(p, s), the consumer would buy the product

if the expected quality exceeds the price p, while there can be mixed behavior in

the case of equality. In particular, the buying decision does not depend on the

distribution µ itself but on the expected quality derived from this belief. Using this,

we restrict ourselves to only consider expected quality instead of posterior beliefs.

De�nition 3.4.1. Let a price function π be given. An expectation system with respect

to π is a function E : [0, 1]× S → [0, 1] such that

(i) For every pair (p, s) for which Qπp,s is not empty we have

E(p, s) ∈
[
inf Qπp,s, supQπp,s

]
.

(ii) The function is non-decreasing in s.

(iii) For each two pairs (p, s), (p, s′) with Qπp,s = Qπp,s′ 6= ∅, we have E(p, s) =

E(p, s′). If Qπp,s = Qπp,s′ = ∅ and s < s′, E(p, s) < E(p, s′).

(iv) For two signals s < s′, if Qπp,s4Qπp,s′ is not a null set, then E(p, s) < E(p, s′).

4Updating only f - and not the joint distribution of the type and the signal - is possible due to
the uniform distribution of the signal.

5Voorneveld and Weibull (2011) use a version for the �nite case in which the distribution over the
set is just the normalized values of the density function. This can be justi�ed as approximation
from conditioning on environments around each point and letting these environments go to zero.
In the strict sense, however, conditioning on null sets is problematic.
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(v) Whenever Qπp,s is a non-empty interval, E(p, s) is the expectation of the distri-

bution given in (3.1).

We say that E is an expectation system if there exists a price function π̃ so that E

is an expectation system with respect to π̃.

Property (v) ensures that Bayesian updating is used at least in the simple case when

we have an interval. The other items translate properties of this Bayesian updating

to situations in which it can not be applied. Item (i) ensures that the consumer

rationally does not assume a value outside the extremes of the set of possible quality

levels. Property (ii) captures the fact that the induced quality distribution of a

signal s, namely the uniform distribution on the interval [s − κ, s + κ] �rst-order-

stochastically dominated any other such distribution induced by any lower signal.

Moreover, the signal is objective and not in�uenced by the �rm. It is easy to check

that when Qπp,s is a Borel set with positive measure for two signals, Bayesian updating

leads to this monotonic behavior in the signal. This e�ect is captured in an even

stricter form by (iv). Whenever a signal increase removes or adds a set of qualities

which is not a null set, the expectation must strictly increase, as it would in a

Bayesian setting.

Property (iii) already contains an important re�nement about the rationality of the

consumer. On the one hand, having the same (non-empty) set of possible types for

the same price should lead to the same expectation. Even if the signal s′ is higher

than s, the consumer rationally infers that there is no di�erence in the quality and

thus the expectation is the same. This is di�erent if Qπp,s is empty. In this case it is

clear that there was a deviation from the price function π. Although the de�nition is

not very restrictive on these cases, we do need that a higher signal leads to a higher

expectation when two of these deviations are observed for the same price. After all,

the set of quality levels who could send the signal s is strictly lower (in an obvious

sense) than the set for s′. While the information is proof for out-of-equilibrium

behavior, the signal is the only objective, non-strategic information available to the

consumer.

Overall, the concept of an expectation system not only allows to overcome measura-

bility and Bayesian updating issues but also relaxes assumptions on the rationality of

the consumer. She could be completely rational, using Bayesian updating whenever

she can, or she can behave di�erently if the problem of updating is too complex.

Heuristics or other forms of bounded rationality could be applied here.
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Having introduced this new mathematical construct, one might wonder whether

such an expectation system always exists or if one has to put assumptions on the

price function.

Lemma 3.4.2. For each price function π, there exists an expectation system.

In particular, the concept of an expectation system does not impose a further re-

striction on the pricing function.

The proof is constructive, the �rst insight being that the de�nition of an expectation

system does not contain restrictions across prices. We can thus de�ne the value

E(p, s) for a �xed price. This is done by �rst using property (v) when it applies and

then extend it to all signals for which Qπp,s is not empty. The extension to the empty

cases is then always possible.

Having this structure, there are some interesting consequences for the behavior of

the consumer.

Lemma 3.4.3. Let E be an expectation system and let p be a price. Then there exist

unique values s ≤ s in S with

E(p, s)


< p s < s

= p s < s < s

> p s > s.

Moreover, we have s− s ≤ 2κ.

In the situation of the lemma, de�ne q = s− κ, q = s+ κ, q = s− κ, q = s+ κ, the

quality levels which can just �reach� the signals s or s. From s−s ≤ 2κ it also follows

that we have q− q ≤ 2κ. We say that the interval [q, q] has full length if q− q = 2κ.

This describes the special case s = s so that the consumer is almost surely never

indi�erent between buying and not buying. Note that the order q ≤ q ≤ q ≤ q is

always satis�ed.

To illustrate these values, assume that Qπp is an interval [a, b] of length smaller than

2κ and that the expected quality, restricted to that interval, matches the price p.

This situation occurs regularly in equilibria as is shown in the equilibrium analysis

below. If a signal is higher than the value a+κ, it can only have come from a certain

fraction of the right side of the interval, which yield a higher expectation and thus

must lead to sure buying. In the same way, a signal lower than b − κ causes the

buyer to not spend anything. Any signal between b − κ and a + κ would, on the
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other hand, give no further information to the consumer and she would thus stay

indi�erent. These boundary signals are the values of s and s from the lemma above.

s qq

sq q

Figure 3.2: The di�erent values in the case of an interval

It is worth mentioning that all these values are completely characterized by only

knowing the pair (s, s) or the pair (q, q). Note also that in the example of the interval,

q and q are the interval's end points a and b.

The values depend on the price p so we would have to write s(p), s(p), . . .. For

readability, we introduce a notation to leave out these arguments. A price denoted

by pq implies that the values q, q, q and q are determined with respect to this price.

In the same way, prices pr and pt have the corresponding values r, . . . and t, . . .,

respectively. If only one price is considered at a certain point, the values s and s are

taken with respect to that price.

Using the concept on an expectation system, we can analyze a basic property of what

will later be an equilibrium. If we �x such an expectation system and assume that

the �rm knows it as well as the consumer indi�erence reaction α, every �rm type

should set a price that yields the highest pro�t of all prices.

Lemma 3.4.4. Let E be an expectation system and α ∈ [0, 1] be an indi�erence

strategy. De�ne

φ(q, p;E,α) := p
1

2κ

∫ q+κ

q−κ
α1E(p,s)=p(s) + 1E(p,s)>p(s)ds

the pro�t of type q when setting price p. Moreover, let π be an optimal price system6

to the buyer's behavior. Then the function

φπ(q;E,α) := φ(q, π(q);E,α)

is continuous and non-decreasing.

6A price system is optimal if for every type q the price π(q) maximizes the type's pro�t, given the
consumer reaction.

75



3 A Model of Quality Uncertainty with a Continuum of Quality Levels

Whenever E and α are given, we just write φ(q, p) instead of φ(q, p;E,α). A short

way of writing the pro�t function is by de�ning the probability γ of selling a product

of quality q for a certain price p

γ(q, p) :=
1

2κ

(∫ q+κ

q−κ
α1E(p,s)=p + 1E(p,s)>pds

)
=

1

2κ

(
αλ
(
[q − κ, q + κ] ∩ [s, s]

)
+ λ

(
[q − κ, q + κ] ∩ (s,∞)

))

=



0 q + κ ≤ s
1

2κα(q + κ− s) q + κ ∈ (s, s)

1
2κ(α(s− s) + (q + κ− s)) q − κ ≤ s, s ≤ q + κ

1
2κ(α(s− (q − κ)) + (q + κ− s)) q − κ ∈ (s, s)

1 q − κ ≥ s

=



0 q ≤ q
1

2κα(2κ− (q − q)) q ∈ (q, q)

1
2κ(α(2κ− (q − q)) + (q − q)) q ∈ [q, q]

1
2κ(α(2κ− (q − q)) + (q − q)) q ∈ (q, q)

1 q ≥ q

(3.2)

and writing φ(q, p) = p · γ(q, p).

Given an expectation system E, an indi�erence strategie α and some price p, the

form and slope of the pro�t function φ(q, p) is of high importance for the under-

standing of the proofs in the analysis. Note that we can have E(p, s) < p for every

signal, e.g. if no type is associated to the price p, so Qπp = ∅.7. If this happens, the
pro�t of the �rm is always zero whenever it sets the price p, regardless of its quality.

In the other cases, however, the function looks as shown in Figure 3.3.8

This form of the pro�t function is why the classical concept of a Bayesian equilibrium

is problematic in our setting and why the standard approach does not work. For two

di�erent prices p, p′, it is possible to have types q′ < q < q′′ with q′ and q′′ preferring

the price p′ while the optimal price for q is p. This, given a �xed consumer reaction,

7An example of such a construction is given in the proof of Lemma 3.4.2.
8Technically, this is not a special case but is equivalent to s = s = 1 + κ.
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q q q q q

αp
2κ

(1−α)p
2κ

p
2κ

p

Figure 3.3: The typical form of φ(·, p) and its slope for a non-trivial price.

allows for non-convexity of type regions Qπp setting the same price, even when the

�rm's behavior is optimal.9

De�nition 3.4.5. A tuple (π,E, α), consisting of a price function π, an expectation

system E and an indi�erence strategy α is called an equilibrium if the price function

π assumes �nitely many values, E is an expectation system with respect to π and for

every type q ∈ [0, 1] the price π(q) maximizes the �rm's pro�t, given E and α.

This de�nition is the natural adaptation of a Bayesian equilibrium, using the notion

of expectation systems. The usual assumption of correct updating is replaced by the

property of E being an expectation system for π. The optimality of the consumer's

behavior is implicitly assumed, leaving her only α as choice variable. We assume

that this price function can only take �nitely many values, as is the case in most

markets.10

De�nition 3.4.6. Let an equilibrium (π,E, α) be given. We call a price p an equilib-

rium price if there exists a type q ∈ Qπp which makes positive pro�t in the equilibrium.

For an equilibrium price p, denote Q∗p := Qp ∩ {q ∈ [0, 1]|φπ(q) > 0} the set of

types setting this price and making positive pro�ts in equilibrium. In this notation,

we drop the superscript π for expositional reasons. We call a type q pro�table if

q ∈ Q∗π(q). Types that are in Qπp but have zero gains from the market are not

9To see this in Figure 3.3, take some pr > αp with [r, r] having full length (so that r− r = 2κ and
the graph has only one increasing line, going from 0 to pr) and r = r ∈ (q, q). One can calibrate

this so that the new graph is above the existing one in q while it is below this graph in a point
on the left and a point on the right side of q.

10The most obvious example would be product prices in a supermarket. But it also applies to
goods which can have even �ner pricing like petrol at a gas station. Since the good we have is
indivisible, it is also natural to assume a �nite number of values for the pricing strategy.
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

bounded by incentive constraints and thus their behavior is quite arbitrary. Many

statements about equilibrium behavior have to be restricted to pro�table types.

3.5 Equilibrium Analysis

The obvious next step is to determine under which conditions a market equilibrium

exists and what its main features are. The following result shows the structure of

equilibrium price behavior.

Theorem 3.5.1. An equilibrium exists. Let (π,E, α) be an equilibrium and let qmin

be the in�mum of all pro�table types. Then π restricted to (qmin, 1] is almost surely

a non-decreasing step function.

In terms of price-quality relation, this is a strong statement, at least for the prof-

itable types. One can argue that �rms with a product of quality lower than qmin

would not survive in the market and eventually drop out. Prices then monotonically

increase with quality which implies that a higher price corresponds to higher quality.

Although the relation is not one-to-one (so some ambiguity is left to the consumer

for every price), prices roughly signal the right quality.

This result, does not come natural. The formal proof involves a series of technical

lemmas and is given in an extra section. Note that this statement also holds if κ

is large, so that the additional signal does not convey much information. It is thus

implied that even in the case of a rather uninformative signal, the indeterminate

behavior which was shown in section 3.3 for the absence of a signal is prevented.

Having arrived at this result, our de�nition of an equilibrium and the construct of

an expectation system may seem like overkill, considering that now the sets on which

to update are well shaped. Nevertheless, we need the expectation system concept

to reach this point of having convex sets of types setting the same price. This step

was not easily given to us as it would be in other models, e.g. the classical signaling

game of Crawford and Sobel (1982).

To give an intuition on the proof, we continue to state the informal version of the

needed steps. The most important observation, �xing an equilibrium price pq and

having in mind the points q, q, q and q, is to see that one of the types q and q must

have the price pq as its optimal choice. They are the types which can just reach the

signal s as upper or lower bound of the corresponding signal range. By the de�nition

of s, the expectation of the consumer must di�er when receiving signals slightly

above or below this value. In an equilibrium, this means that the information, i.e.

78



3.5 Equilibrium Analysis

the set of quality levels assigned to a signal, must di�er between these signals. But

the only di�erence in types can occur in environments of q and q. Applying a limit

argument, we see that at least one of the points q and q is a limit point of the set

Qπpq . Using continuity, setting price pq must yield the optimal pro�t for this limit

type. In the same way, this holds for the points q and q.

This observation is then extended to further statements. We show that q and q, if

they are di�erent, can not both be limit points at the same time. Moreover, in this

case, there must be a type in an environment of [q, q] actually setting the price pq.

Finally, we show that essentially no type in the sets (q, q) and (q, q) sets the price

pq. While the �rst points require rather technical arguments, the last property stems

from item (iv) of the de�nition of an expectation system. If more than a null set of

types in the two sets set the price pq, it would contradict the de�nition of the signals

s and s.

Having these observations, we compare each two equilibrium prices pq > pr for

all di�erent possible orders of the points q, q, r and r. In each case we �nd that

the situation is either impossible or the order Q∗pr < Q∗pq holds almost surely which

shows the monotonicity and thus the step function form of the equilibrium pricing

behavior.

Existence of an equilibrium is shown quite easily by just noting that every single-

price setting can be an equilibrium.

This equilibrium existence proof reveals a �aw of our so-far used equilibrium concept.

Setting E(p, s) low for all non-equilibrium prices, deviation is never pro�table for the

�rm and thus every constant price function can be an equilibrium, independent of

whether the market price is high or low. This phenomenon is not new and essentially

the same as in regular Bayesian equilibria. To resolve these issues, we look closer at

an equilibrium with a particularly low price. Consider the price function π(q) = .1

for all q ∈ [0, 1] in a setting with κ = 1
10 . The type q = .8 then sells for this very low

price but with probability 1. The consumer, when facing such a type, observes the

price p and a signal s ∈ [.7, .9], indicating a far higher quality than the price would

suggest. While it is not counter-intuitive that the consumer does not hesitate to buy

the product for the price .1, it is harder to believe that for any slightly higher price

p′ she would assign a much lower expectation to any (also high) signal and never

buy. Our next re�nement captures this idea.
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

De�nition 3.5.1 (Locally continuous equilibrium). An equilibrium (π,E, α) is called

locally continuous if for every signal s the function E(·, s) is continuous in every

equilibrium price.

This re�nement is in the same spirit as in the �rst chapter. It ensures that marginal

price deviations do not cause a jump in equilibrium beliefs (and thus expected values).

In the example above, the lowest possible signal coming from a type of quality .8 is

.8− κ = .7. Receiving this low signal, the consumer knows that the quality must be

at least .6. Hence the value E(.1, s) is at least .6 for every signal that could come

from type .8. The local continuity of E(·, s) at the price p = .1 shows that for some

marginally higher price the expectation must still be above p for every signal possibly

induced by the quality level. The �rm would thus still sell with probability 1 and

this makes a deviation pro�table. The constant-price equilibrium would then not be

possible, at least for such low prices.

Lemma 3.5.2. A locally continuous equilibrium exists. Let (π,E, α) be a locally

continuous equilibrium. Then for every equilibrium price pq - except for the lowest

one - Q∗pq is an interval with endpoints q and q. For each of these intervals, the

expected quality matches the price, i.e.

pq = Exp(q|q ∈ [q, q]) = 1
F (q)−F (q)

∫ q

q
qf(q)dq

This result shows how step function behavior is further enforced by the re�nement.

Although single-priced equilibria are still possible, the corresponding price can not

be too far away from the highest possible quality level.11 Moreover, the unre�ned

equilibrium de�nition in general allows for types that sell for sure in a way that every

of their possible signals induces a consumer expectation strictly above the price. With

local continuity, this �high reputation� can be used by the �rm to demand a higher

price, as described above. Note that even with this re�nement, it is possible for a

�rm to sell with probability one but only in equilibria with α = 1.

To illustrate the market outcome, we can now look at such an equilibrium. We

choose κ = .25 and a uniform quality distribution. From this, it follows that for each

step of the price function (except the lowest one), the price is the middle point of the

quality interval. Choosing the �rst discontinuity to be at .99, we get the following

equilibrium price function. The value of qmin is positive in this example, as one can

11This can be seen in the proof of Lemma 3.5.2.
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Figure 3.4: The equilibrium price, pro�t and selling probabilities in our example
.

see in the pro�t function. Note that the price setting of types below qmin could be

chosen di�erently to some extent. For expositional reasons, it is chosen to match

the lowest price. The selling probabilities are increasing within the areas of same

prices but are overall not continuous and not monotonic. One can hardly speak of

an adverse selection e�ect in this equilibrium.

Adverse selection is thus not a big issue, anymore. Unlike in the classical model of

Ellingsen (1997), high quality is in general not traded with a lower probability than

low quality. Selling probabilities can go down but this is always compensated by a

higher price so that pro�ts still increase with quality. This result is partly driven by

the missing production costs in this model. With such costs, this part of the result

may be di�erent. Note, however, that the existence of the lower bound qmin is not

mainly caused by this assumption.

Regarding this cuto� value of pro�table types, we did not yet say anything about its

exact value and its dependence on the parameters. In particular, the signal precision

variable κ does not appear in the so far established results. The example does not

show the upper and lower bound of possible values of qmin over all equilibria. Clearly,

choosing a di�erent location for the last discontinuity (instead of .99) would change

the point from which pro�ts start to be positive.

Before we present the next result, we brie�y think about the case of perfect in-

formation. With κ = 0, quality information would be public and hence the only

equilibrium in such a market is that every type q sells its product for the �fair� price

p = q with probability one. The product would always be sold regardless of its

quality. Of course, our assumption of only having a �nite number of equilibrium

price rules out this behavior. Nevertheless, looking at the previous result, one may
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

expect the lower bound qmin to approach zero in a comparative static analysis when

κ becomes small. Otherwise convergence to the full information case would not be

possible in any sense.

The next result shows, however, that even the opposite phenomenon occurs. The

result is stated for the special case in which the type's distribution is uniform.

Theorem 3.5.2 (Market breakdown on perfect information). Let the �rm type q be

uniformly distributed over [0, 1]. With signal precision approaching perfect informa-

tion (κ→ 0), the maximal12 expected amount of sold goods over all locally continuous

equilibria converges to zero.

The following proof of this theorem shows very nicely that the market breakdown

is caused by the interplay of quality types who are close to each other. The incentive

compatibility constraints for types on adjacent steps of the price function dictated

that the length of these steps can not get arbitrarily large. This e�ect gets more

extreme in a way that even the sum of these length is bounded with the bound going

to zero as κ becomes small.

Proof. For �xed κ > 0, let (π,E, α) be a locally continuous equilibrium. Proposition

3.5.2 implies that for all equilibrium prices pq the setQ
∗
pq is an interval with endpoints

q and q or pq is the lowest equilibrium price. Using this, we have q − q = 2κ or

E([q, q]) = pq. The former case of having full length is only possible for the lowest

price. Otherwise, the pro�t of type q would be zero which is impossible for types

strictly above qmin.

Theorem 3.5.1 shows that π is almost surely a step function. Because of the pro�t's

continuity, each type that lies on a discontinuity of the price function must be indif-

ferent between setting either of the two adjacent prices.

In the case where π is a constant function above qmin, note that we have13 qmin ≥
1 − 2κ which converges to one with κ → 0. In the same way, convergence of all

price functions with two steps can be shown. In fact, for every �xed number of

steps, the corresponding equilibria must yield uniform convergence of qmin to 1. But

there is still an in�nite number of possible steps and thus the convergence result

12Technically, the existence of a maximum is not guaranteed and we should speak of a supremum,
here.

13This is shown in the existence proof for locally continuous equilibria. Intuitively, having steps
of a size larger than 2κ, some types always send signals above s. This is not compatible with
locally continuous equilibria. The proof for any �nite number of steps follows with the same
argument.
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does not follow from these thoughts. However, it shows that for the following proof

we can assume the price function to have at least three di�erent prices. This also

implies α > 0, otherwise the lowest type of each step would get zero pro�t which is

a contradiction.

rq t
p1

p2

Figure 3.5: The situation of q,r and t in the proof

Let q < r < t be three types that lay on adjacent discontinuities and denote p1 < p2

the corresponding prices as depicted in Figure 3.5. Assume that p1 is not the lowest

equilibrium price. For κ low enough we can choose these values so that r is above
1
2 +κ. The prices must be equal to the expected qualities over the intervals [q, r] and

[r, t], respectively. From the uniform type distribution it follows that p1 = q+r
2 and

p2 = r+t
2 . Because of the continuity of the pro�t function, the type r is indi�erent

between setting price p1 or p2. Hence the following equation holds.

φ(r, p1) = φ(r, p2)

(3.2)⇔ p1
1

2κ(r − q + α(2κ− (r − q))) = p2
1

2κ(α(2κ− (t− r)))
⇔ q+r

2 (r − q + α(2κ− (r − q))) = r+t
2 (α(2κ− (t− r)))

⇔ r2 − q2 + α(2κ(r + q)− (r2 − q2)) = α(2κ(t+ r)− (t2 − r2))

Reordering this, one gets

αt2 − 2καt+ (1− 2α)r2 − (1− α)q2 + 2ακq = 0

t2 − 2κt+ 1−2α
α r2 − 1−α

α q2 + 2κq = 0

and solving this for t yields

t =κ±
√
κ2 − 1−2α

α r2 + 1−α
α q2 − 2κq

=κ±
√

(κ− r)2 − 1−α
α (r2 − q2)︸ ︷︷ ︸

>0

+ 2κ(r − q)

α∈(0,1]

≤ κ+
√

(κ− r)2 + 2κ(r − q).
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

In other words, for each pair q, r we get an upper bound for the next discontinuity t

which is independent of the parameter α.

For expositional purposes, we introduce the notation t′ := t−κ which we use similarly

for the other variables. The inequality then becomes

t′ ≤
√
r′2 + 2κ(r′ − q′)

=
√
r′2 +

∫ r′2+2κ(r′−q′)

r′2

1

2
√
z
dz

≤r′ +
∫ r′2+2κ(r′−q′)

r′2

1

2
√
r′2
dz

=r′ +
1

2r′
2κ(r′ − q′)

r′≥1
2≤ r′ + 2κ(r′ − q′)

which shows that for the adjacent values q, r and t we have

t− r = t′ − r′ ≤ 2κ(r′ − q′) = 2κ(r − q).

Take q0 the smallest (satisfying q0 >
1
2 +κ) such type that lays on a discontinuity of

the price function and let q1, q2, . . . be the following discontinuities. It follows that

for all n ∈ N we get

qn =q0 + (qn − q0) = q0 +

n∑
i=1

(qi − qi−1) ≤ q0 +

n∑
i=1

(2κ)i−1 (q1 − q0)︸ ︷︷ ︸
≤2κ

≤q0 +
n∑
i=1

(2κ)i ≤ q0 +
2κ

1− 2κ
.

Remember that qn must be equal to 1 for some n. Letting κ go to zero forces q0 to

go to 1 uniformly for all equilibria.

Since all types below qmin ≥ q0 − 2κ are not able to sell their product, overall sales

necessarily converge to zero uniformly over all equilibria when κ goes to zero and q0

approaches one.

3.6 The Proof of Theorem 3.5.1

This section presents lemmas and their proofs necessary for establishing the result in

Theorem 3.5.1. They show how to use the properties of an expectation system and
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the optimality of the �rm's behavior to determine the structure of an equilibrium

price function.

As is shown below, the de�nition of an expectation system carries some properties

similar to Bayesian updating, thus allowing for a similar analysis without assuming

- but not excluding - perfect rationality on the consumer side.

The proofs of this section are presented directly after their corresponding state-

ments. We use the shape of the pro�t function for a given equilibrium price, as

depicted in Figure 3.3, very often. It is important to be familiar with the di�erent

areas of its slope to perfectly understand the proofs.

One of the main points we need to know about expectation systems in equilibria

is formulated in the following lemma which generalizes a property from Bayesian

updating.

Lemma 3.6.1. In any equilibrium (π,E, α) and for each equilibrium price pq, at

least one of the points q and q and at least one of the points q and q are limit points

of Qπpq .

The connection to the Bayesian case becomes clear if we remember the interval

example. The points q and q are then the endpoints of the interval. The lemma

shows this property in a weaker sense, only using the equilibrium system de�nition.

Note that even in the case of regular Bayesian updating, it can happen that not q but

q is a limit point of Qπpq , e.g. if we have two intervals [a, b] < [c, d] with c − a < 2κ

and Exp(q|q ∈ [a, b]) = pq. Then the point14 c = q is a limit point of Qπpq but

q = c− 2κ < a is not.

Proof. We only show that q or q is a limit point of Qπpq . If any of these two points are

in Qπpq , we are done. Assume now that this is not the case. We construct a sequence

of types in Qπpq , converging to either q or q.

Start with any ε0 > 0 and observe that by de�nition of s the values E(pq, s − ε0)

and E(pq, s+ ε0) are not equal.15

Consider the corresponding sets Qπpq ,s−ε0 and Q
π
pq ,s+ε0

. If one of them is not empty,

they can not be equal due to De�nition 3.4.1 (iii). This leaves two cases to consider.

First case: Qπp,s−ε0 = Qπp,s+ε0 = ∅
14To see that we have c = q, note that for a signal s slightly below c− κ, we have Qπpq,s = [a, b] so

that the consumer is indi�erent. For signals above c − κ, we must have E(pq, s) > pq. This is
dictated by property (iv) of an expectation system. Hence c− κ = s and thus c = q.

15Since pq is an equilibrium price, s can not be on the limit of S = [−κ, 1 + κ]. With ε0 small
enough, the expressions are well-de�ned.
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This situation is depicted in Figure 3.6. Because both sets are empty, we have

Qπpq ,s ⊂ Qπpq ,s−ε0 ∪ Qπpq ,s+ε0 = ∅ and this is true for all smaller choices of ε0 > 0.

From 3.4.1 (iii), we know that E(pq, s) is strictly increasing in the signal within

some interval around s. Hence it follows that we have s = s and thus q = q. Since

pq is an equilibrium price, there must be some pro�table type q with π(q) = pq.

The only way to make positive pro�t is if this type is above s − κ and thus above

q + ε0. Hence the type q sells with probability one and we have φπ(q) = pq. By

the monotonicity of φπ and since every type in the interval (q, q) can attain this

pro�t, we know that φπ(q′) = pq for all q′ ∈ (q, q). Any two types q′, q′′ in this

interval, not setting the price pq, must have a selling probability in (0, 1) and the

same pro�t φπ(q′) = φπ(q′′) = pq. But φ(q′, π(q′)) = φ(q′′, π(q′′)) = pq is not possible

if π(q′) = π(q′′) 6= pq > 0 (see Figure 3.3, the same pro�t for the same price implies

that this pro�t is either zero or matches the price). It follows that each type in the

interval (q, q+ε0) sets a di�erent price. Since there are only �nitely many equilibrium

prices, this is a contradiction. Hence only the following, second case can occur.

s s+ εs− ε q

κ

φ(·, p) = pno elements of Qpq

q = q

Figure 3.6: The situation of the �rst case

Second case: Qπpq ,s−ε0 6= Qπpq ,s+ε0

Choose q0 in the (non-empty) symmetric di�erence of these two sets and note that

we have

q0 ∈ [s− κ− ε0, s− κ+ ε0] ∪ [s+ κ− ε0, s+ κ+ ε0]

= [q − ε0, q + ε0] ∪ [q − ε0, q + ε0]

By construction we have q0 ∈ Qπpq . Choose ε1 = 1
2 min(|q0 − q|, |q0 − q|) ∈ (0, ε02 ).

Repeating these arguments16, using the values ε1, ε2, . . ., we obtain a sequence (qn)

in Qπpq whose elements satisfy

|qn − q| < εn or |qn − q| < εn

16Since the �rst case leads to a contradiction, we always end up with the second case.
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for all n ∈ N. At least one of these two conditions is true for an in�nite number

of indices and hence there exists a subsequence of (qn) such that either the left or

right inequality is true for all of its elements. Since (εn) converges to zero, this

subsequence converges to either q or q. This limit is thus a limit point of Qπpq .

The proof for q or q being a limit point uses the same arguments, starting with s

instead of s. We omit this part of the proof.

Acknowledging this lemma, we say that a type is a pq-limit point if it is a limit

point of Qπpq .

While this intermediate result may seem innocuous, it is very important for the

analysis of the structure of equilibrium price systems. Knowing that these points are

limit points, the continuity of the pro�t function φπ implies that the corresponding

pro�t of these types must attain its maximum in the price pq. No other price can

yield strictly higher pro�ts to a �rm with these quality levels. Hence we have17

φπ(q) = φ(q, pq) or φπ(q) = φ(q, pq)

and

φπ(q) = φ(q, pq) or φπ(q) = φ(q, pq),

depending on which of these types has the limit point property described above.

The next result is the �rst direct step to determining the equilibrium price function.

It excludes two possible combinations of ordering pq- and pr-limit points when the

order of these two prices is known. Its proof is a direct application of the previous

lemma.

Lemma 3.6.2. In an equilibrium, let pr < pq be two equilibrium prices and assume

r ≥ q. Then we have r < q.

Proof. Assume r ≥ q and r ≥ q as shown in Figure 3.7. This implies

γ(r, pq)
(3.2)
=

 1
2κ

(
α(2κ− (q − q)) + r − q

)
r ∈ [q, q]

1
2κ

(
α(2κ− (r − q)) + r − q

)
r ∈ (q, q)

17Note, however, that for example the inequality π(q) = pq does not follow from φπ(q) = φ(q, pq).
The type pq may set a di�erent price. However, there are arbitrarily close types which set the
price pq.
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q q

rr
pr

pq
q q

rr
pr

pq

Figure 3.7: The two situations excluded by lemma 3.6.2

=

 1
2κ

(
α(2κ− (r − r)) + α(r − r − (q − q)) + r − q

)
r ∈ [q, q]

1
2κ

(
α(2κ− (r − r)) + α(r − r − (r − q)) + r − q

)
r ∈ (q, q)

=

 1
2κ

(
α(2κ− (r − r)) + α(r − q) + (1− α)(r − q)

)
r ∈ [q, q]

1
2κ

(
α(2κ− (r − r)) + α(r − r) + (1− α)(r − q)

)
r ∈ (q, q)

≥ 1
2κ α(2κ− (r − r))

(3.2)
= γ(r, pr)

in the case where r < q. If r ≥ q, this inequality is simple to show.

γ(r, pq) ≥ γ(q, pq) = 1 ≥ γ(r, pr)

The type r thus has a weakly higher change of selling for the high price pq than for

the price pr. Note that only in the case where γ(r, pq) = γ(r, pr) = 0 this does not

lead to a strictly higher pro�t when setting the high price. This case, however, would

imply18 that q = r = q = r. Setting pr would thus be dominated by setting pq in

the sense that φ(q, pq) > φ(q, pr) whenever φ(q, pr) > 0 for any type q. No pro�table

type could optimally set pr; it would not be an equilibrium price.

Having φ(r, pq) > φ(q, pr) shows that r is not a limit point of Qπpr . It follows from

r ≥ q that r ≥ q and thus γ(r, pr) = γ(r, pq) = 1. Since pq is the higher price,

we have φ(r, pr) < φ(r, pq) so that r is also not a pr-limit point. This contradicts

Lemma 3.6.1.

This lemma excludes the most extreme cases of negative price-quality relation. The

pairs (q, r) and (q, r) can not both be ordered opposite to the corresponding prices.

Thinking about the interval example, this implies that there can not be two intervals

Qπpq < Qπpr so that the higher price is only set by lower types.

18It is easy to see that a zero selling probability of r implies r = r. The equality φ(r, pq) = 0 implies
the �rst inequality of r ≤ q ≤ q ≤ r.
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3.6 The Proof of Theorem 3.5.1

We continue to use this lemma to show two further equilibrium properties which help

us to determine the form of equilibrium price functions.

Lemma 3.6.3. In every equilibrium, for every equilibrium price pq and corresponding

values q, q, q, q, we have:

(1) The set

Qπpq ∩
(

(q, q) ∪ (q, q)
)

is a null set.

(2) If q − q < 2κ and thus q 6= q, the points q and q are not both pq-limit points.

(3) If there exists ε > 0 such that Qπpq ∩ [q− ε, q+ ε] = ∅, the interval [q, q] has full

length.

The last point may be a little surprising in that you may expect the set [q−ε, q+ε]

to always contain a type of Qπpq . To see that this needs not always to be the case,

imagine pq = .5, κ = .1 and Qπpq = [.2, .3] ∪ [.7, .8]. We then have E(pq, .4) = .3 <

pq < .7 = E(pq, .6). In what follows, it is possible to have s = s = .5 so that

[q, q] = [.4, .6] which has full length. A narrow environment of this interval contains

no element of Qπpq .

Proof. Proof of (1)

Note that this is trivial if q = q and thus also q = q. If q < q, we also have s < s

and thus Qπpq ,s and Q
π
pq ,s′ are non-empty19 and we have E(pq, s) = E(pq, s

′) for every

pair s, s′ ∈ (s, s). By property (iv) of an expectation system, this implies that

Qπpq ∩
(

(q, q) ∪ (q, q)
)
⊂

⋃
s,s′∈(s,s)∩Q

Qπp,s4Qπp,s′

is a null set.

Proof of (2)

From q − q < 2κ we know that q 6= q = q + 2κ. Assume that q and q are pq-limit

points. Pick any type r ∈ (q, q) with corresponding prize pr = π(r) 6= pq. This is

possible due to the �rst point of this lemma. Note that because q and q are limit

points for pq, we must have φ(q, pr) ≤ φ(q, pq) and φ(q, pr) ≤ φ(q, pq) while in r, the

19Formally, there can not be two such empty sets over all possible values of s and s′ (see by
De�nition 3.4.1 (iii)). It is trivial that, if at most one of these sets is empty, none of them are.
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

opposite is true: φ(r, pr) ≥ φ(r, pq). Since the slope of φ(·, pq) has the constant value
1−α
2κ pq in the whole interval (q, q), it follows that the slope of φ(·, pr) must be weakly
above this value in some point between q and r while it is weakly smaller than this

value in (r, q).

If the slope of φ(·, pr) also had the constant value 1−α
2κ pq in the whole interval (q, q)

there are two options, either having αpr = (1 − α)pq or pr = (1 − α)pq. Refer to

Figure 3.3 to see this.

In the �rst case, we had r ≤ q < q ≤ r which implies via (1) that the set of types

setting pr in the interval (q, q) is a null set and there is a di�erent price that we could

have chosen in the beginning. We assume without loss of generality that this is the

case.20

The second possibility pr = (1 − α)pq implies pr < pq and r ≥ q which is excluded

by Lemma 3.6.2.

The slope of φ(·, pr) is hence weakly decreasing and not constant over the whole

interval (q, q). Again referring to Figure 3.3, we deduce that r ∈ (q, q). To see this,

note that r and r are the only points at which the pro�t φ(·, pr) from setting the

price pr strictly decreases. One of these values thus has to be in the interval (q, q).

If this is not true for r, we had q < r < q ≤ r which also implies q ≤ r. Moreover,

comparing the slopes in the interval (r, q) it yields 1−α
2κ pr <

1−α
2κ pq and hence pr < pq.

This constitutes a situation which is, again, excluded by Lemma 3.6.2.

q qr r

φ(·, pr)

φ(·, pq)

Figure 3.8: The situation of the proof, and the development of the di�erent pro�t
functions

We now know that r < q and hence pr = φ(q, pr) ≤ φ(q, pq) = pq. Since the prices

are not equal, even the strict inequality is true. This shows that q < r, otherwise

the slope of φ(·, pr) would never be below the one of φ(·, pq) in the interval (q, q).

20The new price pr′ can not have the same property since then we would have αpr = (1− α)pq =
αpr′ . This contradicts pr 6= pr′ .
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3.6 The Proof of Theorem 3.5.1

From the continuity and monotonicity of the pro�t functions, we know that there

must be an interval (close to q) contained in (r, q) in which the pro�t from setting

pq is strictly higher than from setting pr. Figure 3.8 shows the situation. Again by

the �rst part of this lemma, we can �nd a type t in this interval that does not set

the price pq (and does not set qr, as well, since it does not yield the highest pro�t).

Using the same arguments as before, we end up with another equilibrium price pt

which is strictly below pq (for the same arguments) but must be strictly above pr

since type t > r sets this price and thus

pr = φ(t, pr) < φ(t, pt) ≤ pt.

The relation of the functions φ(·, pt) and φ(·, pq) follow as before, using the same

reasoning.

By further repeating these arguments, we end up with an in�nite and strictly in-

creasing sequence of equilibrium prices which are all below pq. This contradicts the

assumption that there can only be �nitely many prices in an equilibrium.

Proof of (3)

Assume that [q, q] does not have full length, i.e. s < s. The situation is given in

Figure 3.9.

If there are s < s′ in (s, s) with Qπpq ,s = ∅ = Qπpq ,s′ , we have E(pq, s) < E(pq, s
′) by

property (iii) of an expectation system.

If there are no two such signals, de�ne ε′ = min{ε, s−s4 } (which is strictly greater

than zero by the assumptions) and pick two points s ∈ (s, s+ ε′) and s′ ∈ (s− ε′, s).
Figure 3.9 shows the situation. By construction we now have s < s < s′ < s. Note

that Qπpq ,s contains no element above q − ε while Qπpq ,s′ contains no element below

q + ε. By the assumption of this paragraph, we can choose s and s′ so that these

sets are not empty. Then we have

supQπp,s < q < q < inf Qπp,s′

which, by property (i), also implies E(pq, s) < E(pq, s
′).

s sq q

ε εs s′

Figure 3.9: The situation in (3).
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

In both cases, the resulting inequality E(pq, s) < E(pq, s
′), is a contradiction to

s, s′ ∈ (s, s).

Having the monotonicity result of Lemma 3.6.2, one might think that this relation

is even more extreme and that the ordering q ≤ r could never occur with pr < pq.

The following lemma indeed shows that, although the case itself is not excluded, the

implication for the order of pro�table types setting the two prices is preserved.

Lemma 3.6.4. In an equilibrium, let pr < pq be two equilibrium prices. If r ≥ q

and r > q (the case of Lemma 3.6.2), we have

Q∗pr < Q∗pq .

If additionally r > q, the interval [q, q] has full length.

q q

rr
pr

pq

Figure 3.10: The situation of Lemma 3.6.4.

Proof. A picture of the situation at hand is given in Figure 3.10. First, consider the

strict case r > q. For all q ≥ q we have φ(q, pq) > φ(q, pr) since

γ(q, pq) = 1
2κ

(
α(2κ− (q − q)) + q − q

)
≥ 1

2κ (α(2κ− (q − r)) + q − r)
= γ(q, pr) > 0

so that we have φ(q, pq) = pq · γ(q, pq) > pr · γ(q, pr) = φ(q, pr). With higher types

than q, the left hand side of this inequality grows faster than the right hand side

until the value q from where we have φ(q, pq) = pq > pr ≥ φ(q, pr). This shows that

r (which is above q) is not a pr-limit point. We thus know that r is a pr-limit point

and hence φ(r, pr) ≥ φ(r, pq).

It follows that

φ(q, pr) =φ(r, pr)−
∫ r

q
φ′(t, pr)dt
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3.6 The Proof of Theorem 3.5.1

=φ(r, pr)−
∫ r

q

αpr
2κ

dt

>φ(r, pq)−
∫ r

q

pq
2κ
dt

=φ(r, pq)−
∫ r

q
φ′(t, pq)dt

=φ(q, pq),

using that both of these functions are di�erentiable in the non-empty interval (q, r).

Finally, since r < q, we have r < q, thus φ(q, pq) = 0 < φ(q, pr). These inequalities

imply that neither q nor q is a limit point of Qπpq . Using Lemma 3.6.3 (2), we see

that [q, q] has full length.

Observe now that the function φ(·, pq) always has a strictly higher slope than φ(·, pr)
in the interval (q, q). Together with the inequalities

φ(q, pq) = 0 < φ(q, pr) and φ(q, pq) = pq > φ(q, pr)

this proves the existence of a �critical type� qc with φ(q, pq) < φ(q, pr) whenever

q < q < qc and φ(q, pq) > φ(q, pr) if q > qc. Note that also no pro�table type below

q sets the price pq since then the pro�t would be zero. This proves Q∗pr ≤ qc ≤ Q∗pq
and thus Q∗pr < Q∗pq since the sets are disjoint.

The special case r = q needs a di�erent treatment. As before, having r < q implies

that q is a limit point of Qπpq . If q also was such a limit point, the proof above works

and we are done. Hence, we consider the case in which q is a limit point and thus

φ(q, pq) ≥ φ(q, pr). If this inequality was strict, r = q could not be a limit point

of Qπpr . The same obviously holds for r = q which gives a contradiction to Lemma

3.6.1.

Having φ(q, pq) = φ(q, pr), it follows that φ(t, pq) > φ(t, pr) for all t > q = r and

φ(t, pq) < φ(t, pr) for t ∈ (r, q). This again can be seen by comparing the slopes of

the pro�t functions. Hence Q∗pr < Q∗pq .

The previous lemmas deal with the counter-intuitive cases in which, although the

price pr is lower than pq, the order q ≤ r holds and thus there could be a negative
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

quality-price relation. In what follows, we show what happens if this relation has

the �natural� order r < q.

Lemma 3.6.5. Let pr < pq be two equilibrium prices with r < q. Then we have

r ≤ q and Q∗pr ≤ q ≤ Q∗pq a.s.21.

q q

rr
pr

pq

Figure 3.11: The situation excluded by Lemma 3.6.5
.

To prove this statement, we use the following intermediary result.

Lemma 3.6.6. Let pr < pq be two equilibrium prices with r < q and q < r. Then

there exists another equilibrium price pt such that either

pq < pt, t < r and t > r

or

pt < pr, t < q and t > q

holds.

q q

rr
pr

pq

t t
pt

q q

rr
pr

pq

pt
tt

Figure 3.12: The two situations with the new equilibrium price pt

Proof. We have

γ(r, pq) = 1
2κα(2κ− (q − r))

21The �almost surely� notation is only necessary in a very special case, as one can see in the proof.
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3.6 The Proof of Theorem 3.5.1

≥ 1
2κα(2κ− (r − r))

=γ(r, pr).

Note that we always have γ(r, pq) > 0 since q < r and thus q < r ≤ r. Hence the

inequality above implies

φ(r, pq) = pq · γ(r, pq) > pr · γ(r, pr) = φ(r, pr)

so that r is not a pr-limit point.

The condition q < r implies φ(r, pq) > φ(r, pr) = 0. This also proves that r and

r must be limit points for pr. Using Lemma 3.6.3 (2), this shows that the interval

[r, r] has full length, hence r = r.

Assume now that φ(q, pq) ≤ φ(q, pr). From this it follows that φ(q, pq) < φ(q, pr)

for all q ∈ [q, q), implying that not q but q is a limit point of Qπpq . But since

q − q < r − r ≤ 2κ, Lemma 3.6.3 (2) then implies that q is not such a limit point.

This proves the existence of ε > 0 such that [q− ε, q+ ε]∩Qεpq is empty22, implying

by Lemma 3.6.3 (3) that [q, q] has full length. This case is excluded in the situation

at hand.

rq

φ(·, pq)

φ(·, pr)

T

Figure 3.13: The type t is chosen from the open interval T .

We now know that φ(q, pq) > φ(q, pr). By continuity, the same is true for an interval

T of types above q (See Figure 3.13). Take any type t in this interval with π(t) 6= pq.

It exists by Lemma 3.6.3 (1) and since q < q. We know that the corresponding price

pt := π(t) is also not equal to pr since it is not optimal for t to set pr. We can assume

from Lemma 3.6.3 (1) that t has been chosen with t /∈ (t, t) ∪ (t, t)23. There are two

22This is true even if we had, φ(q, pq) = φ(q, pr). The non-existence of such an ε would make q a
pq-limit point, thus causing a contradiction.

23Otherwise, take a di�erent t from the interval T . Since there are only �nitely many prices and

thus �nitely many sets of the form (t, t)∪ (t, t)) which are all null sets, there exists a t ∈ T which
is not in any of these sets.
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

cases left to consider.

First case: t ∈ [t, t]

Then we also have t ≥ t > q.

First, assume pt < pq. We know from Lemma 3.6.2 that t < q which is the situation

of the lemma. Hence with the same reasoning, we can show that [t, t] has full length.

Moreover, we have pt < pr. Otherwise, Lemma 3.6.2 shows r < q and hence the

inequality φ(t, pt) > φ(t, pr) implies φ(r, pt) > φ(r, pr) which is a contradiction to r

being a pr-limit point. We thus have pt < pr and (via Lemma 3.6.2) t < r < q and

t > q. This is the second case stated in the lemma.

Second, assume pt > pq and thus also pt > pr. Because of the higher slope of φ(·, pt)
compared to φ(·, pr) in the interval (t, t), we have t < r = r. Otherwise r could not

be a pr-limit point. Lemma 3.6.2 now implies t > r. This satis�es the �rst of the

two cases stated in the lemma.

Second case: t ≥ t
From t ≤ t < r we know

pt = φ(r, pt)
r is pr-limit point

≤ φ(r, pr) ≤ pr

so that pt < pr < pq. Note that we must have t > q. This can be seen by observing

that otherwise the slope of φ(·, pq) is always higher than the slope of φ(·, pt) in the

interval (q, t). Since φ(t, pt) ≥ φ(t, pq), the strict inequality would hold within this

interval, making it impossible for any type in [q − ε, q + ε] (for some ε > 0) to

optimally set the price pq which, again by Lemma 3.6.3 (3), gives a contradiction.

Knowing t > q and pq > pt, Lemma 3.6.2 dictates t < q.

We thus have t > q, t < q and pt < pq. This is the second of the two possibilities

stated in the lemma.

With this result we continue to prove the original statement.

Proof of Lemma 3.6.5. Assume that we had q < r. Denote pmin = pr, pmax = pq.

Applying Lemma 3.6.6, the resulting price pt is either higher or lower than both,

pmin and pmax. Rede�ne these values so that pmin and pmax are the most extreme of

these three prices, note that the new values of pmin and pmax satisfy the assumptions

of Lemma 3.6.6. We can thus repeat these arguments over and over, ending up with

an in�nite number of equilibrium prices. This contradicts the assumption of �nitely

many equilibrium prices and proves q ≥ r.
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It is left to show that the two sets Q∗pr and Q
∗
pq can be strictly separated as stated

in the lemma. This again has to be done considering multiple cases.

First Case: r < q

It then follows that q is a limit point of Qπpq (since r < q, q can not be a pq-limit

point). From Lemma 3.6.3 we know that q is not a limit point but q is. We thus have

φ(q, pq) ≥ φ(q, pr). In the whole interval [q, q], the slope of φ(·, pq) is greater than

the one of φ(·, pr). Hence φ(q, pq) > φ(q, pr) for all q > q. In the other direction,

note that r < q implies r < q so that 0 = φ(q, pq) < φ(q, pr). The slope of φ(·, pq)
is constant while the slope of φ(·, pr) is non-decreasing in [q, q]. This proves the

existence of some t ∈ (q, q) with φ(q, pq) > φ(q, pr) if q > t and φ(q, pq) < φ(q, pr) if

q ≤ q < t. Thus Q∗pr ≤ t ≤ Q∗pq .

Second Case: r = q, r > q

We show that this situation is not possible and leads to a contradiction. We have,

since r < q,

φ(r, pr) =
αpr
2κ

(r − r) < αpq
2κ

(r − r) =
αpq
2κ

(r − q) = φ(r, pq).

From this, it follows that r is a limit point of Qπpr . Note that, since q = r, the slope

of φ(·, pq) is higher than the one of φ(·, pr) in the whole interval [q, r]. For φ(r, pr) ≥
φ(r, pq) to be possible, we thus have φ(q, pq) < φ(q, pr) and φ(q, pq) < φ(q, pr). By

continuity, this shows that

Qπpq ∩ [q − ε, q + ε] = ∅

for some ε > 0. Lemma 3.6.3 (3) then implies that [q, q] has full length. But the

assumptions of the second case imply

q − q < q − r < q − q = 2κ.

Third case: r = q, r = q

It follows that the interval [r, r] has full length. If pr > αpq, the claim Q∗pr < Q∗pq
automatically follows from observing that the slope of φ(·, pr) is strictly higher than

φ(·, pq) before the point q and strictly lower afterwards. A similar argument holds if
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3 A Model of Quality Uncertainty with a Continuum of Quality Levels

pr < αpq, the slope always being lower and thus contradicting pr being an equilibrium

price. No type can make positive pro�t when setting this price. Both of these cases

are shown in Figure 3.14.

r = r = q q

Figure 3.14: The situation of the third case when the price is high (dashed) or low
(dotted).

A special case appears when pr = αpq. All types in the interval [q, q] are then

indi�erent between setting pq or pr. While we know that only a null set of types

in this interval can actually set pq, this would still be enough for the inequality

Q∗pr < Q∗pq not to be true. However, it is enough to observe that this inequality

holds almost surely.

Lemma 3.6.7. Let pr < pq be two equilibrium prices with r ≤ q. Then we have

Q∗pr < Q∗pqa.s..

This lemma covers the intuitive case in which the intervals [r, r] and [q, q] are ordered

according to their prices. The proof is rather easy, compared to the previous lemmas.

Proof. As before, r < q implies that q is a pq-limit point.

If [q, q] has full length, the slope of φ(·, pq) is higher than the one of φ(·, pr) in the

whole interval [q, q]. For values q > q = q we then have φ(q, pq) = pq > φ(q, pr).

This proves the existence of t ∈ (q, q) so that

φ(q, pq) > φ(q, pr) if q > t, φ(q, pq) < φ(q, pr) if q < t,

proving the inequality Q∗pr < Q∗pq .

If [q, q] does not have full length, Lemma 3.6.3 (2) shows that q is not a pq-limit

points, so q is one. We thus have φ(q, pq) ≥ φ(q, pr) and φ(q, pq) > φ(q, pr) for all

types q > q (using the usual argument of φ(·, pq) growing faster than φ(·, pr)). Hence
Qπpr ≤ q. Lemma 3.6.3 (1) tells us that only a null set of pro�table types below q can

set the price pq so that we have Q∗pr ≤ q ≤ Q∗pqa.s. which concludes the proof.
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Finally, having these lemmas as preparation, we are able to proof our main theorem.

Proof of Theorem 3.5.1. First assume the existence of an equilibrium. Let p1 < . . . <

pn be the equilibrium prices. The previous lemmas show that for each two indices

i < j, the order of corresponding types setting the prices pi < pj almost surely satisfy

Q∗pi < Q∗pj .Using this, we have Q∗p1
< . . . < Q∗pna.s.. Every type t in the non-empty

set Q∗p1
is pro�table by de�nition. Since the pro�t function is monotone in the type,

all higher types also make positive pro�t and must hence set an equilibrium price.

This shows that
⋃n
i=1Q

∗
pi ⊃ (inf Q∗p1

, 1] so that all types above qmin := inf Q∗p1
set

one of the prices p1, . . . , pn. Thus π is almost surely a non-decreasing step function

when being restricted to types above qmin.

The existence of an equilibrium is easy to show, noting that every constant price

function π(q) = p constitutes an equilibrium, independent of the indi�erence strategy

α. This can easily be seen by noting that E(p, s) is uniquely determined by regular

Bayesian updating and that for every other price, E(·, s) can be set low enough

like in the existence proof of Lemma 3.4.2 to not allow bene�cial deviations. The

construction of an expectation system in the proof of Lemma 3.4.2 is done in this

way. By this construction, the price p always maximizes the �rm's pro�t and we

have an equilibrium. Note that the parameter α can be chosen arbitrarily.

3.7 Conclusion and Discussion

We studied a model of quality uncertainty, modi�ed in such a way to admit a con-

tinuum of possible quality types and a costless extra quality signal for the consumer.

The analysis shows that the price of the good depends on the quality in a positively

correlated way in that a �rm with a certain quality level never sets a higher price

than if it would with any higher quality product. Hence in every equilibrium, the

price behavior is a step function.

An interesting aspect of the model is the result of having a clear equilibrium pricing

structure which is not unique but always takes the form of a step function, at least

in those regions where actual trade takes place. A result obtained in a context which

does not require - but allows - full rationality and high computational capabilities on

the consumer side. Instead, our concept of an expectation system, skipping the step

of Bayesian updating in most settings and thus generalizing the concept of Bayesian

equilibria, gives an answer to the criticism on the �homo economicus� assumption
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present in the vast majority of economic literature. At the same time, the class of

consumers for which this result holds contains the completely rational behavior.

Of course, once the monotonicity of price behavior is established, the form of the

price function follows from our assumption of having only �nitely many equilibrium

prices. As explained in the text, this assumption is not unrealistic in many settings.

There are, for example, only �nitely many prices that you can encounter in a super-

market (assuming there is an upper bound for how much an item can cost). But it

is worth mentioning that even without this assumption, pricing behavior must leave

some ambiguity. If the pricing function π was one-to-one, prices would perfectly

signal the quality and thus the extra signal does (at least in equilibrium) not convey

any information. If the signal had a marginal cost, the consumer would not choose

to acquire it, thus only rely on price information and give lower quality levels an in-

centive to deviate. Similar arguments to the ones in Section 3.3 would apply to this

situation. Moreover, in classical signaling games, the result of imperfect signaling

even in the case where there are �enough� signals for perfect signaling, is common in

the presence of a sender and a receiver with di�erent objectives. The �rst to show

this were Crawford and Sobel (1982). It is thus not at all clear whether the step

function price behavior disappears if we relax our assumptions.

One of the most remarkable features of this model is certainly the fact that in the

limit of perfect information, the maximum trade amount over all possible equilibria

uniformly converges to zero, thus admitting an entirely di�erent limit behavior than

in the limit case of perfect information where the only equilibrium admits perfect

trade for all quality types. Moreover, the proof of this phenomenon shows that it is

indeed the continuum of types which causes this result.

While having more than two and even a whole interval of possible types is certainly

more realistic than in many of other discussed models, our model is farther from the

true situation in di�erent aspects. We do not even claim that the case discussed here

is closer to reality than certain other models with two quality levels (as for example

given in the �rst chapter). However, this work should serve as a warning that in

lemon markets, some simpli�cation assumptions may not at all be innocuous.

3.A Appendix

Proof of Proposition 3.3.2. For two equilibrium prices p > p′, we must have γ(p) <

γ(p′), otherwise the price p′ would never be set by any type which makes positive
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pro�t, since the higher price p has a higher chance of selling and thus dominates set-

ting p′. Hence the consumer strategy γ must be strictly decreasing in the equilibrium

prices.

Take any �rm type q and let p be the price set by that type. For any other

equilibrium price p′, we thus have

γ(p)(p− c(q)) ≥ γ(p′)(p′ − c(q)).

Take such a price p′ with p′ < p and let q′ be a higher quality level than q with a

strictly higher production cost. We have γ(p) < γ(p′) and thus

γ(p)(p− c(q′)) =γ(p)(p− c(q)) + γ(p)(c(q)− c(q′))
>γ(p′)(p′ − c(q)) + γ(p′)(c(q)− c(q′))
=γ(p′)(p′ − c(q′))

so that higher quality level than q never sets a lower price than p. Hence we have

monotonicity in the price function.

Proof of Lemma 3.4.2. We perform the proof by construction of a function E, given

any price function π. It is enough to de�ne the function value for a �xed price p

since all of the properties only involve one price. If Qπp = ∅, we can just choose

E(p, s) = p s+κ
2(1+2κ) ∈ [0, p2 ]. This obviously satis�es the de�nition and ensures that

the consumer always strictly prefers to abstain from buying which later becomes

important for the out-of-equilibrium consumer reaction in equilibria. In the case of

p = 0, choose any increasing function. If Qπp 6= ∅, the property (v) of the de�nition

determines the value of E(p, s) for every signal in the set

SI :=
{
s ∈ S|Qπp,s is a non-empty interval (including singletons)

}
.

It is clear, since Qπp,s is �increasing� (in an obvious sense) in s and the Bayesian

posterior depends only on the set Qπp,s (not on p and s itself), that these values do

not violate the other properties of the de�nition.

In what follows, we extend the function E(p, ·) to the whole space S. De�ne the

non-empty set

S6=∅ :=
{
s ∈ S|Qπp,s 6= ∅

}
.

101
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On S6=∅, de�ne the non-decreasing functions

E(s) := supQπp,s

E(s) := inf Qπp,s.

We can easily extend this function to the set S∅ := S \ s6=∅ in a way that ensures

E(s) < E(s) for all s /∈ SI .24
Take any s ∈ S6=∅ \ SI . De�ne

σ := sup
{
s′ ∈ SI , s′ < s

}
, σ := inf

{
s′ ∈ SI , s′ > s′ ≥ s

}
and e := sup

{
E(p, s′)|s′ ∈ SI , s′ < s

}
, e := inf

{
E(p, s′)|s′ ∈ SI , s′ > s

}
,

the endpoints of the maximum interval of types around s for which E is not yet

de�ned and the maximal and minimal value until these points. If one or both of

these sets are empty, set (σ, e) = (−κ, 0) or (σ, e) = (1 + κ, 1), respectively. Figure

3.15 shows the situation.

E(s)

E(s)

SI SI

E(p, s)

S6=∅ \ SI

e

e

σ σ

Figure 3.15: The situation of the proof after de�ning E(p, s) on the set SI . The
situation at σ shows the special case in which E(p, σ) = E(σ) = E(σ).

To �nd values for the expectation system in the interval (σ, σ)25, it su�ces to show

that we have E(s) > e and E(s) < e for all signals s in this interval. We can then

choose values for E(p, s) in the never-empty corridor
(
max {e, E(s)} ,min

{
e, E(s)

})
24If s ∈ S6=∅, we know that Qπp,s contains at least two elements. For the extension to s ∈ S∅, note

that

supQπp,s′ < s− κ < s+ κ inf Qπp,s′′ ∀ s′, s′′ ∈ S 6=∅, s′ < s < s′′.

Any two strictly increasing extensions with values in [s− κ, s+ κ] ∩ [0, 1] does the job.
25This interval could be empty in special cases. For single points like σ and σ one can just choose

an appropriate value in [e, e], keeping in mind the monotonicity assumptions of De�nition 3.4.1.
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(for s ∈ (σ, σ)) in accordance to the expectation system de�nition (Letting it be con-

stant when the sets Qπp,s do not change and strictly increasing when they are empty).

We only show the left inequality, the other direction using the same argument.

Note that we have e ≤ E(σ) ≤ E(s) for all signals in the interval. The �rst

inequality is not strict if and only if E(σ) = E(σ)26. But in this case, σ is in SI , while
signals s′ slightly above σ are not. This implies e = E(σ) = E(σ) ≤ E(s′) < E(s′),

the strict inequality using the property from our extension of E,E to S∅.

Proof of Lemma 3.4.3. The existence and uniqueness follows just from item (ii) of

an expectation system. Note that we can have s = s ∈ {−κ, 1 + κ} in the case where

the expectation is never or always higher than the price.

Let now π be a price function to which E is an expectation system. Assume that

s−s > 2κ. Then there exist s < s < s′ < s with s′−s > 2κ and E(p, s) = E(p, s′) =

p. De�nition 3.4.1 (iii) implies that one of the sets Qπp,s and Q
π
p,s′ is not empty. If

none of them is empty, we have

E(p, s) ≤ supQπp,s < inf Qπp,s′ ≤ E(p, s′)

which is a contradiction.

If Qπp,s is empty, choose some s′′ with s < s′′ < s′−2κ < s′. Then either Qπp,s′′ is not

empty (hence the argument above applies) or it is empty and we have by De�nition

3.4.1 (iii) and (ii)

E(p, s) < E(p, s′′) ≤ E(p, s′),

again contradicting the equality of the left and the right expression.

The case of Qπp,s′ = ∅ uses the same arguments.

Proof of Lemma 3.4.4. Let q < q′ be two types. It then follows that

φπ(q′) ≥ φ(q′, π(q))

= π(q)
1

2κ

∫ q′+κ

q′−κ
α1E(π(q),s)=π(q)(s) + 1E(π(q),s)>π(q)(s)︸ ︷︷ ︸

=:β(s)

ds


26To see this, note that the density f has a positive minimum value so that there is β ∈ (0, 1) with

E(p, s) < βE(s) + (1− β)E(s). A picture of such a special case (for σ) is given in Figure 3.15.
The statement is trivially true in the �border� cases when σ = −κ or σ = 1 + κ.
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= φπ(q) +
π(q)

2κ

(∫ q′+κ

q+κ
β(s)ds−

∫ q′−κ

q−κ
β(s)ds

)
≥ φπ(q)

where the �rst inequality comes from optimality. To see the last inequality, let s < s′

be two signals. We then have the implications

E(π(q), s) > π(q)⇒E(π(q), s′) > π(q)

E(π(q), s) = π(q)⇒E(π(q), s′) ≥ π(q)

by using the monotonicity of E. In what follows, since α ≤ 1, β(s) ≤ β(s′). The left

of the two integrals is thus larger since the integration area contains higher signals.

We now prove the continuity of φπ. Although this looks like a standard envelope

theorem application, the function φ(q, p) is not continuous in the price component.

Let q ∈ (0, 1] be some type and let (qn) be a sequence of types below q, converging

to q. We have

φπ(q)
Monot.
≥ φπ(qn)

Optimality
≥ φ(qn, π(q)) ∀ n.

Since the right hand side converges to φ(q, π(q)) = φπ(q) (φ(q, p) is continuous in q),

φπ is left-continuous.

For q ∈ [0, 1), let (qn) now be a sequence converging to q ∈ [0, 1) from below. For

all n ∈ N we have

φπ(qn)
Monot.
≥ φπ(q)

Optimality
≥ φ(q, π(qn)) ≥ φπ(qn)− C · (qn − q)

where C is an upper bound for the slope of φ(·, p), p ∈ [0, 1].27 Taking the limit

shows limn→∞ φπ(qn) = φπ(q) and thus right-continuity.

Proof of Lemma 3.5.2 (The Existence Part). Fix a price p̂ ∈ (1 − κ, 1). We claim

that the constant price function

π(q) = p̂ ∀ q ∈ [0, 1]

27This upper bound can be chosen to be 1
2κ
, see Figure 3.3.
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can be part of a locally continuous equilibrium. For this, we have to construct

an expectation system. Note that without the local continuity assumption, out-of-

equilibrium beliefs can just be taken low enough so that the buyer would never buy

for any price other than p̂. Now, we have to de�ne the values for E(p, s) for all signals

s in an environment of p̂ in a continuous way. In what follows, the construction of out-

of-equilibrium beliefs is taken not only in a locally but even in a globally continuous

way, without the need to restrict ourselfs to an environment of p̂.

Because Qp̂,s is always an interval, E(p̂, s) is given by Bayesian updating and is

thus strictly increasing in s. So there exists a pivotal signal ŝ ∈ (1− 2κ, 1 + κ) with

E(p̂, s) < p̂ ∀s < ŝ E(p̂, s) > p̂ ∀s > ŝ.

The existence and range of the signal comes from noting that signals close to 1 + κ

prove a quality above p̂ and that signals below 1 − 2κ induce an expectation below

1− κ which is below the price p̂.

For lower prices than p̂, we set

E(p, s) = E(p̂, s) · p
p̂
, s ∈ S, p < p̂.

This construction preserves the strict monotonicity (demanded by de�nition 3.4.1

(iii)) to the lower prices and ensures E(p, s) > p⇔ E(p̂, s) > p̂ so that for all prices

p no signal can give a higher sale probability than the price p̂. Hence, deviation to

a lower price is not pro�table.

The case of higher prices is a bit trickier. Not only do we have to ensure that sale

probabilities do not increase when setting a higher price, they have to fall fast enough

to nullify the positive price e�ect.

Claim: There exists C > 0 such that E(p̂, s) ≤ E(p̂, ŝ)+C ·(s−ŝ) for all s ∈ (ŝ, 1+κ).

To proof this statement, note that we have

E(p̂, s) = Exp(q|q ≥ s− κ) =
∫ 1
s−κ qf(q)dq∫ 1
s−κ f(q)dq

by Baye's law, using De�nition 3.4.1 (v). Di�erentiating this expression with respect

to s, we get

∂

∂s
E(p̂, s) = 1

(
∫ 1
s−κ f(q)dq)

2 ·
(
−(s− κ)f(s− κ)

∫ 1

s−κ
f(q)dq + f(s− κ)

∫ 1

s−κ
qf(q)dq

)
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= f(s−κ)

(
∫ 1
s−κ f(q)dq)

2 ·
∫ 1

s−κ
(q − (s− κ))f(q)dq

= f(s−κ)∫ 1
s−κ f(q)dq

· Exp(q − (s− κ)|q ≥ s− κ)

≤ fmax

fmin·(1−(s−κ)) · (1− (s− κ)) = fmax

fmin
=: C.

The values fmax and fmin refer to the maximum and minimum values of f . They

exist and are positive due to our assumptions. We now have

E(p̂, s) = E(p̂, ŝ) +

∫ s

ŝ

∂

∂t
E(p̂, t)dt ≤ E(p̂, ŝ) + C · (s− ŝ)

which proves the claim.

Having this parameter C, we de�ne the expectation for higher prices than p̂ as

follows.

E(p, s) = E(p̂, s)
p

p̂+ C
(

1+κ−ŝ
p̂ (p− p̂)

)
This is a continuous expression in p and preserves the strict monotonicity in s for

every price. Now, we have

E(p, ŝ+
1 + κ− ŝ

p̂
(p− p̂)) = E

(
p̂, ŝ+

1 + κ− ŝ
p̂

(p− p̂)
)

p

p̂+ C
(

1+κ−ŝ
p̂ (p− p̂)

)
≤
(
E(p̂, ŝ) + C

1 + κ− ŝ
p̂

(p− p̂)
)

p

p̂+ C
(

1+κ−ŝ
p̂ (p− p̂)

)
=

(
p̂+ C

1 + κ− ŝ
p̂

(p− p̂)
)

p

p̂+ C
(

1+κ−ŝ
p̂ (p− p̂)

)
= p

which, because of the strict monotonicity, implies that a �rm can only sell for a price

p if the signal is above ŝ+ 1+κ−ŝ
p̂ (p− p̂). Hence, for every quality type q

φ(q, p) = p · γ(q, p) ≤ p
(
q + κ−

(
ŝ+

1 + κ− ŝ
p̂

(p− p̂)
))

≤ p
(
q + κ−

(
ŝ+

1 + κ− ŝ
p

(p− p̂)
))

= p(q − 1) + p̂(1 + κ− ŝ) ≤ p̂(q − 1) + p̂(1 + κ− ŝ)
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= p̂(q + κ− ŝ) = p̂ · γ(q, p̂) = φ(q, p̂)

in the case where γ(q, p) > 0. Otherwise we trivially have γ(q, p) = 0 ≤ φ(q, p̂).

This shows that a deviation to a higher price is not pro�table and we have an

equilibrium.

The rest of the proof of Lemma 3.5.2. We �rst apply Theorem 3.5.1. Knowing that

prices are set due to a step function, the set Q∗pq is an interval for all equilibrium

prices pq. Lemma 3.6.3 (1) shows that in this case the interval [q, q] has full length

or we have Q∗pq ⊂ [q, q].

In the latter case, Lemma 3.6.1 implies that Q∗pq must be an interval with endpoints

q and q.

We thus only have to show that the former case can not occur. Note that, if pq is not

the lowest equilibrium price, the case of [q, q] having full length implies that, q = q

is a pq-limit point but q = q is not. Otherwise φπ(q) = φ(q, pq) = 0 so that there

can be no lower pro�table type. From this it follows that there must be a type q > q

which sets the price pq. Otherwise let

t := inf Q∗pq > q.

All signals in (q − κ, t + κ) 6= ∅ yield the same expectation due to property (iii) of

an expectation system. This expectation must be equal to the price. If it was lower,

pro�ts would be zero. If it was higher, the local continuity condition implies that

type q could set a marginally higher price and still sell with full probability, making

it pro�table to deviate. Having E(pq, s) = pq for all signals s ∈ (q − κ, t+ κ) 6= ∅ is
a contradiction to [q, q] having full length.

The existence of the type q > q setting the price pq implies that E(q, s) > pq for all

signals s ∈ [q − κ, q + κ] so that for the same reason as before a higher price could

be demanded by type q under the local continuity condition.
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4 Reputation Concerns with Repeated

Purchase

4.1 Introduction

While trying to emulate the main features of markets with quality uncertainty, mod-

els of lemon markets necessarily make strong assumptions on the market structure

and leave out many aspects which may be crucial to mirror the real world markets

and consumer reaction to quality uncertainty. The mathematical treatments of the

previous two chapters tackle at least two of these aspects. Consumers in real life

can acquire pre-purchase information and the quality of a product can usually have

more than two possible values.

Not only do these chapters show interesting results within their respective model,

their di�erence phenomena of the standard literature also emphasizes that results

in lemon market models highly depend on the assumptions and shortcomings of the

model. The reason for these drawbacks of mathematical treatments is clear. With

each aspect which becomes more realistic, the model is harder to solve and very soon

nothing can be said about its implications. While this of course is a problem which

is present everywhere in theoretical economics, the literature on quality uncertainty

especially seems to yield di�erent results with di�erent assumptions. There is a

reason why the implication of adverse selection and even the existence of pure lemon

markets was and is highly debated by economists1. To make things worse, the

predicted e�ects are di�cult to check with empirical methods.

Certainly, nobody would argue that any mathematical model in economics wants

to perfectly re�ect the real world. Their purpose, especially in microeconomics, is

to show e�ects which can be present in particular settings and their potential cause.

The adverse selection e�ect in lemon markets is a very good example. Nevertheless,

1Gans and Shepherd (1984) write that, although the rejection of Akerlof's paper by the Journal
of Political Economy stated triviality as the main reason, a referee report suggested that if the
paper was true, no market would exist in the presence of quality di�erences.
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it always remains the question to which extend the results of the stylized world

translate to actual market phenomena.

One of these phenomena was shown by a study by Schnabel and Storchmann (2010).

They show that in markets for wine, the relationship between price and quality is

quite weak when considering retail prices. On the other hand, the same analysis for

wholesale prices shows a signi�cant positive price-quality relationship. A remarkable

feature of their empirical data is that in a certain quality region, retail prices are even

going down when the quality is rising. Such a behavior is not covered by the classical

lemon market models, although supermarket wine is one of the prime examples for

experience goods and thus quality uncertainty. We have already seen that pooling

equilibria are common in lemon market models but this is the most extreme case

admitted by the standard method of Bayesian equilibria.

This chapter serves two main purposes. For one, we present an expandable tool to

numerically compute long-run behavior in a lemon market with repeated purchase,

non-rational heterogeneous2 consumers, quite rational �rms and multiple quality

levels. Although a lot of bene�ts from the mathematical equilibrium treatments

are lost using such a numerical method, this tool can be used to understand lemon

markets from a descriptive point of view, implementing empirically credible non-

rational consumer behavior and letting the �rm be an almost rational revolving

planner which looks multiple stages ahead. The second purpose is to use said tool

to show that reputation considerations with repeated purchase can be the cause for

the pricing behavior observed by Schnabel and Storchmann (2010).

One widely used approach to overcome problems of too rational market participants

is the simulation of markets with agent-based numerical computations, allowing for

a high degree of heterogeneity of agents and using heuristics to determine the agents'

behavior. On the one hand, this idea permits more realistic settings and can hence

claim to be closer to reality than most mathematical models. On the other hand,

while certain e�ects may be observed in the results, their cause is usually hidden

in the complexity of the setup. An agent-based approach does in general not tell

you as much about implications of parameter changes than mathematical models.

Certainly, outcomes can be compared under di�erent parameters values, but this

does not yield precise predictions for other settings or the conclusion whether the

2Goeree and Holt (2001) investigate empirical behavior in games. They �nd that, also in signaling
games, the unique equilibrium behavior derived under rationality assumptions is not always
observed.
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new con�guration implies a di�erent equilibrium regime.3 This completely heuristic

simulation approach has been tried on lemon markets in the papers of Kim and Lee

(2005) and Murata and Nisuo (2012). They use their models to show under which

condition adverse selection can occur in an agent-based setting and the possibilities

of quality-related signals.

This chapter follows a similar idea, trying to deal with shortcomings of the math-

ematical models like the limited number of quality levels (of the �rst chapter) and

the homogeneity of buyers. As written before, buyers in general are numerous and

their perception of quality or reputation may di�er. An agent-based approach can

cover this very well. The main issue to tackle here, however, is the absence of rep-

etition in most lemon market models. While equilibrium analysis in markets is a

static approach, one can easily argue that, in reality, most buyers will purchase a

good not only once but multiple times in their live. Even if the quality of this good

is not known beforehand, past experiences play a role if they are correlated to fu-

ture quality levels.4 Finally, our approach gets rid of the predominant assumption

that the distribution of quality levels is known by the consumers. In course of this,

perfectly rational updating is not possible which justi�es the use of heuristics rather

than Bayesian theory.

Bagwell and Riordan (1991) created an important work, introducing a time com-

ponent into a lemon market. In their setting, a �rm sells a product over multiple

time periods. They show that under certain conditions the producer of a high qual-

ity product starts with a high price which declines over time. The reason for this

lies in the nature of separating lemon market equilibria in which high quality has a

high price but sells with a low probability. With time passing, more consumers get

informed about the good's quality so the �rm does not have to use a very high price

to signal its quality in a separating equilibrium.

Bagwell and Riordan consider quality to be chosen once by nature and then staying

constant over time, resulting in consumers who know the quality once and for all

if they ever bought the product. With many kinds of products, however, this as-

sumption is problematic since the quality of a producer's good may change between

periods. A wine producer can be struck by a bad harvest and a person providing a

service can have a bad day. Most technological products are constantly improved and

their technology may completely change. There are now cars with non-traditional

3Markose, Arifovic and Sunder (2007) call this �wind tunnel tests� which is a pretty good analogy.
4Even if quality realizations are i.i.d. (and thus uncorrelated) but their distribution is unknown,
past quality levels contain valuable information for a consumer.
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fuel, TVs changed from CRT technology to LCD or plasma �atscreens, accompanied

by further technological advancements like LED lighting and 3D support. A com-

pany that used to produce good TVs is not guaranteed to produce the same quality

with a new technology. Our analysis encompasses this feature of changing quality

levels.

Another approach of repeated purchase in markets with quality uncertainty was

done by Riordan (1986). Also in that paper, quality stays constant over time but is

determined by a strategic choice of the �rms which in turn are rivals in a monopolistic

competition setting.

This analysis is also di�erent from the growing literature of Reputation Dynamics,

as for example in Mailath and Samuelson (2001) and Liu (2011). In these models,

�rms costly in�uence the quality of their good, creating a moral hazard problem

which di�ers over time with the amount of reputation. In contrast, we concentrate

on Lemon markets with their indispensable assumption that the quality is not a

strategic choice.5 As mentioned in previous comments about this assumption, it can

be seen as the stochastic part of a strategic choice like R & D expenditures.

Models of reputation are best known from the string of literature following Selten's

chain store example from his 1978 paper. Although there are modi�cations with

changing types (see for example Wiseman (2008)), non-perfectly-rational behavior

(Liu and Skrzypacz (2014)) and imperfect information (Kreps and Wilson (1982)),

the structure of the game, in which each competitor plays exactly once against the

incumbent, does not apply to our market setting.

Part of the technical side of this chapter is quite similar to the ones of some of the

examples given in the book by Stokey, Lucas and Prescott (1996). In their work, they

introduce applications and technical aspects of Bellmann's principle of optimality in

deterministic and stochastic models. Our construction of a Markov chain in discrete

time and with a �nite state space is similar to their approach. Their applications,

however, do not cover quality uncertainty and consumer learning.

The chapter is divided as follows. We present the model, the consumers' belief

adaptation process and the �rm's objective with di�erent levels of rationality. In

what follows, the �rm's behavior is determined and we describe how the market's

Markov chain behavior can be numerically computed. Furthermore, we present a

5Shapiro (1982) argues that �models with exogenous quality supply are of limited usefulness in
product markets [. . . ] the market will be overrun by minimal quality items. The same result
occurs in a dynamic model if consumers do not learn about the quality of individual �rms over
time.� While the �rst two chapters certainly clarify the �rst point and put it into perspective,
the following analysis - in a sense - picks up the last remark.
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method to determine the convergence speed of the market distribution and estimates

of expectations. We then implement these theoretical results and show that not only

a negative price-quality relation is present in the market, its existence is caused by

reputation concerns and is very robust to changes in the market parameters. We

also use these robustness checks to determine key market aspects for this result of

negative price-quality relation.

4.2 The Market

We model a lemon market situation with one �rm, a �nite number of customers

and repeated purchase with discrete time. The �rm produces a single product, the

quality of which changes between periods in an independent way6. At each point in

time, the quality is drawn from a �nite set Q ⊂ [0, 1], following some distribution η

on this set. Draws of di�erent periods are independent. This quality distribution as

well as the realized quality at each point in time is known by the �rm only.

Consumers behave adaptive in the sense that they do not have access to the current

or past quality realizations but they are endowed with a certain belief about the

quality of the �rm which is only changed when they buy a product and observe its

quality.

We emphasize that in contrast to most of the literature on markets with quality

uncertainty, consumers do not know the quality distribution η7 and adjust their

beliefs using heuristics rather than Bayesian updating.8

For numerical analysis purposes, the consumer state can not be too complex. Oth-

erwise we would not be able to compute transitional matrices of Markov chains in

which the state is the market situation, i.e. the combination of consumer beliefs.

In accordance to the previous work, consumers would each hold a certain expected

quality value µ ∈ [0, 1]. Even if this belief would not depend on the observed price,

6This assumption, although mostly made for technical reasons, seems natural for wine producers
who depend on the whether. It may be less true for electronic products. However, our example
of the changing technologies in TVs suggests an imperfect correlation.

7The assumption of a public quality distribution is not crucial in settings without repeated pur-
chase. The �rm only needs to consider the current quality, the realization of which it knows.
The quality distribution is only used as a prior of the consumer and as an important parameter
in the equilibrium. However, it is not important that this prior coincides with the actual distri-
bution. With repeated purchase, the �rm needs to take into account further quality realizations
and thus the correct distribution.

8There is a vast literature on behavior and updating without a prior distribution. Ellsberg (1961)
showed in contrast to Savage (1954) that observed preferences are often not compatible with
expected utility with one prior. Gilboa and Marinacci (2013) provide a survey of this literature.
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4 Reputation Concerns with Repeated Purchase

the possible states of the market would be the set [0, 1]N . A �nite Markov chain can

thus not be constructed. To overcome this problem we work with a �nite number

of categories of posterior beliefs9. Let C ≥ 2 be the number of categories. Then

each posterior category c ∈ {1, . . . , C} is an interval [ac, bc] ⊂ [0, 1]. Right before the

purchase decision of an individual with category c the actual expectation relevant

for the decision manifests via a uniform distribution over this interval. This re�ects

non-observable elements of and in�uences on the purchase decision like the mood of

the consumer while in the store. Using this procedure simpli�es the state space of

the dynamics while preserving a consumer individuality similar to the case with an

in�nite expectation space. We assume that {[ac, bc)}c=1...C is a partition of [0, 1) and

that the intervals are ordered according to their index c, i.e.

0 = a1 < b1 = a2 < b2 . . . < bC .

A consumer state s then describes the number of adaptive consumers for each

posterior category. Formally, it is a vector (s1, . . . , sC) ∈ NC with
∑
sc = N . This

state is observed by the �rm in any point of time. Whenever necessary, to avoid

confusion, the time index τ is given as a superscript of the state in the form sτ . We

reserve the letters s and t for states and τ for time periods.

After each period, there is a certain probability δ for each consumer to die and new

adaptive consumers are reborn. For simplicity, we assume that the overall number N

of adaptive consumers is constant over time and the probability of consumers dying

is independent of their age.10 The initial category for each consumer is uniformly

distributed over all categories. Moreover, all these random birth and death proba-

bilities are independent between individuals and time periods.

The �rm is a risk-neutral utility maximizer. We do not restrict ourselves to heuris-

tics for the �rm behavior but instead model it to be pro�t maximizing over a certain

period of time, executing a revolving planning strategy with a rather high foresight

level and thus behaving in a manner close to complete rationality. The mathemati-

cal details of this behavior are given below in the �rm's analysis. We belief that the

9Many papers on decision making exist which use a form of categorization. One example, among
many, is Martignon, Katsikopoulos and Woike (2008). See Gigerenzer and Gaissmaier (2011)
for a discussion about various decision making processes.

10One can also look at this process as �forgetting the past experience� in which case the constant
number of consumers is very well justi�ed.
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assumption of having a quite rational �rm and heuristic-based consumers is natural

to make and in accordance to the literature on boundedly rational behavior.11

Overall, the timeline of the market is as follows. In each period τ , the state sτ is

known to the �rm. The construction of the new state follows from the timing given

in Figure 4.1.

State sτ
Quality q
realizes

Firm sets
price p de-
pending on
q

Consumers
update their
beliefs if they
bought the
product

Some con-
sumers die,
others are
born

New State sτ+1

Consumers
decide
about
buying

Figure 4.1: The timing of the market in one period.

4.3 Markov Chain Analysis

We show that the setting described in the model section describes a time-homo-

geneous Markov chain with a �nite state space. It is well known that the distribution

of such a Markov chain can be described by its initial distribution in the �rst period

and the Matrix of transition probabilities between each two states. In what follows,

we lay the mathematical foundation for computing this matrix. From the timeline

in Figure 4.1 we can see that the transitional probabilities can be split into two main

processes. The �rst contains the pricing of the �rm, the buying decisions of the

consumers and the adjustment of quality beliefs. The second one is the birth/death

process which we consider �rst. Because of their timing, we can compute stochastic

transition matrices for each of those two cases. Their product gives us the transition

matrix for the overall process.

4.3.1 The Birth-Death Process

Denote (Xτ )τ∈N our Markov chain over the state space S. We need to compute the

stochastic matrix B with B(s, t) = Prob(Xτ+1 = t|Xτ = s) for all states s and t. If

we have sc > tc for some category c, at least sc − tc people in the population have

11Hoyer (1984) �nds that consumers apply very simple heuristics on repeated purchase decisions
when the decision is not too important (laundry detergent, supermarket wine). They empirically
analyze the choice between di�erent options only at one point in time but �nd that the buyers'
main motivation was the price and their experience with the good.
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4 Reputation Concerns with Repeated Purchase

to die to reach state t. Thus de�ne mc := (sc − tc)+ this minimal value and observe

that the death vectors for which reaching t is possible are in

∆(s, t) := "Cc=1{mc, . . . , sc}.

For each time index τ ∈ N, let Dτ and Bτ be the random variables for the vector

of dying and reborn buyers, respectively. We have Xτ+1 = Xτ + Bτ − Dτ . The

probability of going from s to t can then be split up by summing over the death

vectors.

B(s, t) =
∑

d∈∆(s,t)

Prob(Dτ = d|Xτ = s) · Prob(Xτ+1 = t|Dτ = d,Xτ = s)

=
∑

d∈∆(s,t)

Prob(Dτ = d|Xτ = s) · Prob(Bτ = t− (s− d)|Dτ = d)

For each of these vectors d, the left factor is given by

Prob(Dτ = d|Xτ = s) =
C∏
c=1

(
sc
dc

)
δdc(1− δ)sc−dc

since the probability of dying is independent between individuals. Hence for each

posterior category c, the number of dying consumers is binomially distributed with

the parameters δ and sc.

For each such a death vector d, the state t is reached if and only if the birth vector

b is b = t − (s − d) since s − d is the remaining population. For any real vector

v, denote |v| its sum. Using that each new born individual is independently drawn

from a uniform distribution over the posterior categories, the probability of obtaining

some non-negative birth vector b is

Prob(Bτ = b|Dτ = d) =


|b|!

b1!·...·bC !
1
C|b|

=
( |b|
b1,...,bC

)
1
C|b|

|b| = |d|
0 |b| 6= |d|

which is the value of a multinomial distribution. Note that the condition Dτ = d

only ensures |b| = |d| and does not have any other role in the formula.
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4.3 Markov Chain Analysis

Putting things together, the stochastic birth/death matrix has the following form.

B(s, t) =
∑

d∈∆(s,t)

( |t− s+ d|
(t− s+ d)1, . . . , (t− s+ d)C

)
1

C |(t−s+d)|

C∏
c=1

(
sc
dc

)
δdc(1− δ)sc−dc

(4.1)

4.3.2 The Consumer

As described above, each consumer n holds a posterior category c which roughly

determines her belief about the product's quality. Between observing the price p and

deciding about whether to buy the good or not, her quality expectation µ is drawn

with a uniform distribution from the interval [ac, bc]. She then buys the product if

and only if this expectation is higher than p. The buying amount is thus given by

γ(µ, p) = 1µ≥p

where µ is uniformly distributed over [ac, bc]. In what follows, a consumer will always

buy if the price is lower than ac. Thus, for every price p ∈ (0, 1], de�ne c(p) the

category with p ∈ (ac, bc]
12. Then we set

σ(s, p) =
C∑

c=c(p)+1

sc ∀ s ∈ S, p ∈ (0, 1]

the number of sure buyers, i.e. the consumers who buy with probability 1.

Only if a buyer purchases the good, her category can change for the next period.

For now, we model the consumer to have inertia, i.e. the category never changes

more than one step. Let q be the actual quality for the good which is observed after

the purchase. The category change is then given by the function

cnew(q, c) =


c− 1 q < ac (disappointment)

c q ∈ [ac, bc] (correct expectations)

c+ 1 q > bc (positive surprise).

Below, this assumption is checked for robustness. The combination of adaptive

consumers and the birth-death process is similar to Schmalensee (1978). There, in

12The assignment of the boundaries to either of the adjacent categories has no in�uence on the
results.
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a setting with multiple sellers, dissatis�ed consumers have a certain probability of

buying from di�erent sellers in the next period.

For a given price p and any two states s, t, de�ne Fp(s, t) the probability for going

from state s to state t when the price p is set under the above process. The ma-

trix Mp := Fp · B then describes the transition probabilities for this process and a

subsequent birth-death procedure. A �rm, setting price p, can thus determine the

distribution of states which it faces in the next period over this matrix.

4.3.3 The Firm

While the consumer reaction follows the simple, rational rule to buy if and only if

the price is below the expected value, the price setting behavior of the �rm is more

complicated. A rational �rm maximizes its expected discounted revenue, knowing

the consumer reaction and the distribution of future quality levels. We denote the

inter-period discount rate by r. This optimization process is not easy to compute,

especially the in�nite horizon case. However, instead of resorting to simple heuristics,

we approximate the optimal behavior, applying a dynamic, inductive optimization

process described below.

The Myopic Firm

We call a �rm myopic if it optimizes the revenue of only the current point of time, i.e.

after observing the realized quality it maximizes the expectation of the expression

N∑
n=1

p · γ(µn, p) (4.2)

over the realized posterior beliefs µn. It is obvious that this optimization problem

does not in any way depend on the actual quality but only on the current state of

the world, i.e. the posterior categories of the consumers. Knowing the consumers'

buying behavior, we have

Prob
(
γ(µn, p) = 1

)
= Prob

(
µn > p) =


1 p < acn
bcn−p
bcn−acn

p ∈ [acn , bcn ]

0 p > bcn

.
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For a �xed p, denote c̄ := c(p) the posterior category which contains p. This implies

that expression (4.2) has the same distribution as

p ·
(

C∑
c′=c̄+1

sc′ +

sc̄∑
i=1

Bi

)
(4.3)

where Bi are iid random variables with Bernoulli distribution

P (Bi = 1) =
bc̄ − p
bc̄ − ac̄

= 1− P (Bi = 0).

Expression (4.3) hence becomes

p · (σ(s, p) + Z)

where Z is binomially distributed with parameters sc̄ and
bc̄−p
bc̄−ac̄ . It is now easy to

determine the expectation of this expression:

φ(s, p) := p ·
(
σ(s, p) + sc̄ ·

bc̄ − p
bc̄ − ac̄

)
. (4.4)

Note that the value of c̄ itself depends on p but that it is constant in every posterior

interval. It is thus su�cient to maximize expression (4.4) with respect to p within

every interval [ac, bc], c = 1 . . . C and compare the maximal values.

max
p∈[0,1]

φ(s, p) = max
c=1...C

max
p∈[ac,bc]

φ(s, p)

Fix such an interval [a, b] and observe that φ as given in (4.4) is a quadratic function

in p with negative coe�cient of the quadratic term13. The �rst order condition gives

d

dp
p ·
(
σ(s, p) + sc̄ ·

b− p
b− a

)
= σ(s, p) + sc̄

b− 2p

b− a
!

= 0

13The case sc = 0 is trivial and not explicitly treated. The value σ(s, p) depends on c(p) and is
thus constant for p ∈ [a, b].
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4 Reputation Concerns with Repeated Purchase

which resolves to p = 1
2

(
b−a
sc̄
σ(s, p) + b

)
. The optimal price in the interval [a, b] thus

is unique and given by

p∗ = argmax
p∈[a,b]

φ(s, p) =


a 1

2

(
b−a
sc̄
σ(s, p) + b

)
< a

b 1
2

(
b−a
sc̄
σ(s, p) + b

)
> b

1
2

(
b−a
sc̄
σ(s, p) + b

)
else.

In terms of computational complexity, this could hardly be easier. Computing the

optimal price for every posterior category and comparing the optimal levels yields

the optimal behavior of the myopic �rm. Of course, this simplicity is not surprising if

neither the realized quality, nor the pro�ts of future periods are taken into account14.

In what follows, we make the �rm more rational.

The T-foresight Firm

Let T be a natural number. We call a �rm a T-foresight �rm if in every period its

prizing behavior

pτ : S ×Q→ [0, 1] τ = 0, . . . , T

optimizes the expected discounted pro�t

∑
s1,...,sT∈S
q1,...,qT∈Q

Prob(s1, . . . sT , q1, . . . qT |(pτ ), q0, s
0)

T∑
τ=0

(1− r)τ · pτ · γ(sτ , pτ )

where q0 is the realization of the current quality, q1, . . . , qT are the random future

quality levels and the same holds for the state variables. Note that we left out

the arguments for pτ = pτ (qτ , s
τ ). The exact expression for the probability of the

various state and quality realizations, given the current state and quality and the

pricing strategy, is determined in the proof of the next result. This de�nition is

consistent with the previous analysis, in the sense that a myopic �rm is a 0-foresight

�rm.

14The use of this �foresight� rationality is a substantial di�erence to the analysis of Bagwell and
Riordan (1991). They consider equilibria in which the �rm does not take into account future
periods. Only the market parameters, i.e. the share of informed consumers, change and lead to
di�erent equilibrium outcomes.
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The next lemma provides the basis for an inductive maximization argument of a

T -foresight �rm. It is similar to the examples in the book by Stokey, Lucas and

Prescott (1996) .

Lemma 4.3.1. For T ≥ 1 let ΠT−1 be the optimal pro�t for a T − 1-foresight �rm

and let p̃τ be one of its optimal pricing strategy. Then an optimal pricing strategy

for the T -foresight �rm is

pτ = p̃τ−1, τ ≥ 1

and for each q0, s
0 the price p0(q0, s

0) maximizes

p0 · γ (s0, p0) + (1− r)
∑

s1∈S,q1∈Q

η(q1) ·ΠT−1(q1, s
1) ·Mp0(s0, s1).

Moreover, this maximum is equal to ΠT (q0, s
0).

The proof of this lemma can be found in the appendix. We see that if the optimal

strategy of a T − 1-foresight �rm is known (and thus the optimal pro�t, depending

on the realized quality), the pro�t of a T -foresight �rm can be computed without

taking into account the whole time horizon. We use this to inductively increase and

compare the rationality of a �rm, using the myopic �rm as a basis. Since the �rm

uses a revolving planning strategy and thus �resets� its behavior in every period, the

interesting part of the strategy is the pricing p0 of the zero-period. Although the

optimal pricing strategy is not necessarily unique, the optimal pro�t ΠT is. Since p0

only depends on ΠT−1 and not on p1, . . . , pt−1, this non-uniqueness problem is not

ampli�ed with higher foresight levels.

The equation of the lemma resembles a Bellman equation in discrete time which is

used in control problems. Indeed, ΠT can be seen as a value function of the current

state and quality realization, while pτ is the control strategy.

The maximizing pricing strategy of a T -foresight �rm can now be computed as

follows. Assume for T ≥ 1 that the expected pro�t φs′ := E(ΠT−1(q, s′)) of a T − 1-

foresight �rm is given for every state s′. Given the current state s and the realized

quality q, we �x a category c and denote [a, b] = [ac, bc] the posterior interval of that

category. Let snew(i) be the new state which occurs in the next time period after

exactly i ∈ {0 . . . sc} buyers from category c (and all buyers with higher categories)
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obtain the good and update their beliefs (given the quality q). For any price p ∈ [a, b],

the expected pro�t is then given by

p · γ(s, p) + (1− r)
∑
s′∈S

∑
q∈Q

ΠT−1(q, s′) · η(q)︸ ︷︷ ︸
=E(ΠT−1(q,s′))=φs′

·Mp(s, s
′)

(4.4)
= p(σ(s, p) + sc · b−pb−a) + (1− r)

∑
s′
φs′ ·Mp(s, s

′)

= p(σ(s, p) + sc · b−pb−a) + (1− r)
∑
s′
φs′ · (Fp ·B)(s, s′)

= p(σ(s, p) + sc · b−pb−a) + (1− r)
∑
s′
φs′ ·

∑
s′′

Fp(s, s
′′)︸ ︷︷ ︸

6=0 only if s′′=snew(i) for some i

·B(s′′, s′)

= p(σ(s, p) + sc · b−pb−a) + (1− r)
∑
s′
φs′ ·

sc∑
i=0

(
sc
i

)(
b−p
b−a

)i (
p−a
b−a

)sc−i
︸ ︷︷ ︸
Chance of i buyers from cat. c

·B(snew(i), s′)

= p(σ(s, p) + sc · b−pb−a) + (1− r)
sc∑
i=0

(
sc
i

)(
b−p
b−a

)i (
p−a
b−a

)sc−i∑
s′
φs′ ·B(snew(i), s′)

= p(σ(s, p) + sc · b−pb−a) + (1− r)
sc∑
i=0

(
sc
i

)(
b−p
b−a

)i (
p−a
b−a

)sc−i 〈φ,B(snew(i), ·)〉.

The notation 〈. . .〉 denotes the Euclidean scalar product. Note that the �rst order

condition of this expression does not have a closed solution for p but the maximal

value can be computed numerically. Again, we have to consider each posterior cat-

egory c and �nd the optimal price within the interval [ac, bc]. We then compare the

pro�t levels for these optimal prices to obtain the best price, given the state s and

the realized quality q.
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4.3.4 The Markov Chain

Having the matrix B, the matrices Fp and an optimal15 �rst-period pricing behavior

p0 of the T -foresight �rm, the stochastic process can be described with the following

transition probabilities from one state sτ to another state sτ+1.

Prob(Xτ+1 = sτ+1|Xτ = sτ ) =
∑
q∈Q

η(q)Mp0(sτ ,q)(s
τ , sτ+1)

=
∑
q∈Q

η(q)
∑
s′∈S

Fp0(sτ ,q)(s
τ , s′)B(s′, sτ+1)

=
∑
s′∈S

∑
q∈Q

η(q)Fp0(sτ ,q)(s
τ , s′)︸ ︷︷ ︸

=:F (sτ ,s′)

B(s′, sτ+1)

=(F ·B)(sτ , sτ+1) =: M(sτ , sτ+1)

The states s′ are the ones which can be reached in the stage after the buying proce-

dure and before the birth/death process. This lets us compute the stochastic transi-

tion matrixM of our Markov process which incorporates the optimal behavior, belief

adaptations and substitution of the market participants.

4.3.5 Convergence to the Limit Distribution

The established results show that the market yields a �nite Markov chain with state

space S and transitional probability matrix M = F ·B where F is the state adjust-

ment from the realization of quality, the price setting of the �rm and the consumer

reaction when buying a product while B is the transitional matrix from the birth-

death process. Since B has only strictly positive entries, the same follows for M so

that the Markov chain in particular is ergodic. It hence possesses a unique invariant

distribution γ ∈ ∆(S)16 with17

lim
n→∞

dTV (ζ ·Mn, γ) := lim
n→∞

sup
A⊂S
|(ζ ·Mn)(A)− γ(A)| = 0.

15We know that this p0 does not have to be unique and hence our de�nition of the transition matrix
M depends on this p0. However, the non-uniqueness only occurs if the expression in Lemma
4.3.1 has a non-unique solution. This appears for rather special parameters and is not a concern,
here. In the implementation, we take the one price behavior given by the numerical optimization
function. The rather smooth resulting graphs below suggest that this is very robust.

16We call γ ∈ ∆(S) an invariant distribution of M if γ ·M = γ.
17Notation: For a vector x ∈ RS and a set A ⊂ S we write x(A) :=

∑
a∈A x(a).
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This metric dTV is the distance in total variation. To control this distance, we use

the positivity of M to apply a standard result18 and obtain the inequality

dTV (ζ ·Mn, γ) ≤ (1− |S|min
k,l

Mk,l︸ ︷︷ ︸
=:q∈(0,1]

)n ∀ n ∈ N

Although this does not yet give us direct control over convergence to the expecta-

tions of random variables, we can apply it to obtain a convergence of an expected

value estimator.

Lemma 4.3.2. Let M be an everywhere-positive stochastic matrix over a �nite set

S and γ its invariant distribution. Moreover, let Y : S 7→ R and let B be an upper

bound for |Y (s)|, s ∈ S. Then for every probability distribution ζ on S, we have

|
∑
s∈S

(ζ ·Mn)(s) · Y (s)− Expγ(Y )| ≤ |S| ·B · dTV (ζ ·Mn, γ)

where Expγ(Y ) is the expectation of the random variable Y under the limit distribu-

tion γ on S.

Together with the estimate of the total variation, this lets us now control the conver-

gence of expectations, e.g. of expected market prices under the limit distribution.

4.4 Implementation

In the following, we use the theoretical thoughts to numerically compute the tran-

sition matrix of the Markov chain, using the optimal behavior of the �rm and the

consumer. In the end, to show an example and an interesting result, we compute

the average price of high and low quality under the invariant distribution.

The structure of the model, using only categories of quality beliefs, not single val-

ues for each consumer, reduces the number of possible states. However, the state

space S = {s ∈ NC |∑C
c=1 sc = N} has

(
N+C−1
C−1

)
elements19, a number which grows

18This result is implicitly given in Häggström (2008). For completeness, an explicit proof is given
in the appendix.

19To see this, note that each vector s can be uniquely described by choosing C − 1 �bounds� on a
linear grid of length N + C − 1.

N = 4, C = 3 : ◦ ◦ | ◦ |◦ ↔ (2, 1, 1) | ◦ ◦ ◦ |◦ ↔ (0, 3, 1)

The number of states is then the same as the number of possible bound combinations, which
amounts to selecting C − 1 elements from a set of N + C − 1 elements.
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very fast with the number of consumers or categories. This is a challenge for the

computations. For the numerical results presented in this section, we use N = 20

and C = 4 which gives a number of 1771 possible states.

Let K = |S|.20 When computing the convergence speed to the limit distribution, we

use the formulas from section 4.3.5 and the identity

a2n =
(
(a2)···

)2︸ ︷︷ ︸
n times

in which a can be a real number or a square matrix. We thus only have to square

the elements n times to get an exponent of 2n.

The formula poses a di�erent problem to numerical programs. The small number

q := |S|mink,mMk,m is easily captured by the numerical representation which stores

the �rst non-zero digits and the exponent in the way q ∼ a · 10b. While this is

very precise, the number 1− q is not �small� and becomes equal to one in computer

calculations. We thus use the equivalency

K · (1− q)2n ≤ ε | log1−q(. . .)

1−q<1⇔ ln(K)

ln(1− q) + 2n ≥ ln(ε)

ln(1− q)

⇔ 2n ≥ ln(ε)− ln(K)

ln(1− q) | log2(. . .)

⇔ n ≥ ln

(
ln(ε)− ln(K)

ln(1− q)

)
/ ln(2)

for all ε ∈ (0,K) to establish a lower bound of the number of squares we have to

perform to reach a certain precision. As said before, the value 1− q will evaluate to
1 in the numerical program so that the expression above is not well de�ned. We use

the well-known inequality ln(x) ≤ x − 1 and the monotonicity of the logarithm to

get the approximation

n ≥ ln

(
ln(ε)− ln(K)

ln(1− q)

)
/ ln(2) ≥ ln

(
ln(K)− ln(ε)

q

)
/ ln(2)

which can be computed.

20In the estimation of Lemma 4.3.2 we set B = 1 because we want to compute the expectation of
prices. They can not be higher than 1.
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By squaring the matrix M n times, we then know by section 4.3.5 that every line

of the resulting matrix is su�ciently close to the invariant distribution.21 Additional

numerical problems can occur here from the multiple matrix multiplications. In

particular, we experience that the sum of the entries of the multiplied matrix can

go down over time so that the matrix is not anymore stochastic. To minimize these

issues, we take the best approximation ϑ of the invariant distribution, for which the

expression ‖ϑ ·M − ϑ‖∞ is the lowest. The value of this di�erence was never larger

than 10−15 in our tests, suggesting a very high precision.

4.5 Main Result

We apply the Markov chain analysis to di�erent sets of parameters. As mentioned

above, we use 20 buyers and four posterior categories which amounts to 1771 di�erent

states. We �x the death rate δ to �ve percent and, for now, choose two possible

quality levels, q ∈ {0, 1} with a sixty percent chance of high quality in each period.

First, we use a discount rate of zero and check the impact of di�erent foresight levels

T of the T -foresight �rm. Figure 4.2 shows, as predicted, that there is no di�erence in

pricing high and low quality products if the �rm is myopic. Improving the foresight

level, the �rm tends to price high quality products lower than low quality products.

This may come as a surprise but can easily be explained, having in mind that in

each state the myopic pro�ts are not depending on the quality but the future sales

depend on how many people buy the product. This e�ect is adverse to the actual

quality. If quality is high, there is an incentive to let more people buy the product

to increase future sales. With a low quality product, the price is set higher so that

fewer sales are made and thus less potential buyers reduce their posterior category.

The observed price di�erence is quite large. Some of it might come from the lack of

discounting future sales. This naturally ampli�es reputation concerns. To check the

impact of this factor, we investigate the market behavior under di�erent discount

rates. The results are shown in Figure 4.3. Although the price di�erence for high

foresight values is indeed lower with higher discount, it stays on a quite high level

even for a high discount of ten percent. This suggests that the reputation e�ect is

21As Häggström points out, it is not common to actually compute the required exponent but
instead choose a number and argue why it is su�cient. Indeed, the resulting number of these
formal derivations is usually very large and not very practical. Many steps of this procedure use
estimations so that the actual convergence is faster, anyway. In our case, however, the resulting
number is not too high so it stays part of the analysis.
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Figure 4.2: The average prices for high and low quality for di�erent foresight levels,
no discount
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Figure 4.3: The average prices for high and low quality for 2% and 10% discount.
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very strong in this market with repeated purchase. For the rest of this chapter we

�x the discount rate at �ve percent.

These two graphics show a dent in the price of high quality products for lower

foresight levels (4 or 5), prices �rst going up and then converging to a lower level.

This is no computation error and also appears in other computations in even more

extreme form when we change the model below. It suggests that short-term pricing

e�ects are quite complex and the exact foresight value is important for the market

behavior except in the range when we have quite large foresight and the �rm is very

rational. This is the case we are interested in.
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Figure 4.4: Left: The density (kernel estimation) of average expected quality under
the invariant distribution. Right: A sample run of the Markov chain.
The running average of prices for high and low quality goods.

To further increase intuition about the background of these result and the complex-

ity of the market behavior, Figure 4.4 shows the long-run distribution of posterior

beliefs for di�erent foresight values and one example run of the Markov chain. We

see that the distribution of perceived quality shifts to higher values with more fore-

sight because of the reputation e�ect. The average prices for high and low quality

levels are very close to the computed average value right from the beginning. This is

representative and appears in all our trial runs. While actual convergence might be

slower and is hampered by random clusters of sequential high or low quality values,

the main e�ect is present from the beginning.
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4.6 Introducing Experts

The previous result is quite strong in the sense that if the �rm is only a bit rational

and cares about the next period, high quality products are priced lower than those

with low quality and this price di�erence becomes rather big with more foresight.

Since there is no way for the consumers to know the current quality, the realization

only enters the �rm's optimization problem in terms of future sales, not in the revenue

of the current period. One can easily argue that in many markets this assumption is

too extreme. There are people knowing the quality of a product either because they

acquired this information or because they are experts and can judge the product's

quality before the purchase. For example, a technically a�ne person might know from

the data sheet whether a TV will suit her needs while someone else only notices at

home if the screen resolution is su�cient or the technology produces a good picture.

To acknowledge this, we introduce the presence of experts in the market.22 In

addition to the adaptive consumers, there is a �xed number e of experts, always

knowing the realized quality and only buying if the price is not higher than the

quality q. For simplicity we assume that experts are not part of the birth/death

process, i.e. their number is constant and the state space still only contains the

adaptive buyers. This way we are also able to compare the results.

Most of the analysis above can easily be adapted to the new situation. The non-

expert consumers' behavior stays the same, the �rm's objective changes in an obvious

way. The pricing decision must include the expert's choice, giving additional incen-

tive to highly price the good products. A myopic �rm now maximizes the expectation

of the expression

p · 1p≤qe+
N∑
n=1

p · γ(µn, p) = p · (1p≤qe+ σ(s, p) + Z) ,

using the notation from the previous analysis. One can see directly that a myopic

�rm optimally charges a higher price than before if the quality is very high (and thus

1p≤q = 1 for a certain range of prices). In the old model, this price did not depend

on the quality.

The myopic-�rm analysis of the case with experts is very similar to the previous

one and is omitted.

22The introduction of experts is common in the literature and used, for example, by Linnemer
(2002) in the context of lemon markets.
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4 Reputation Concerns with Repeated Purchase

A T -Foresight �rm uses a similar optimization problem, inductively knowing the

next-period pro�t for each state and taking into account the experts' purchases in

the current period. Formally, the objective becomes to maximize the expression

p(σ(s, p) + sc · b−pb−a + e · 1q0≥p) + δ

sc∑
i=0

(
sc
i

)(
b−p
b−a

)i (
p−a
b−a

)sc−i 〈φ,B(snew(i), ·)〉

which, again, only di�ers in one term from the previous formula. Note, however,

that the value of φ also di�ers in the computations and that, if q ∈ (ac, bc) for some

category, optimization is separately needed in the intervals [ac, q] and [q, bc] instead

of the interval [ac, bc].

Having this, we can do the same Markov chain analysis to see whether the negative

price-quality relationship holds in the presence of experts. Figure 4.5 shows graphs

for the prices of high/low quality with various numbers of experts. We see that even

when more than half of the consumers are experts, a very rational �rm still sets a

low price for good quality.

We also see that there is a limit number of experts after which even a foresight of 25

periods (and probably any other value) is not enough to create a su�cient e�ect for

a negative price-quality relationship. But it is remarkable that even with 30 experts

(and only 20 adaptive consumers) the e�ects is strong enough to be observed with a

quite rational �rm.

4.7 Further Robustness Checks

There are other aspects of the model which we have not yet discussed. So far,

we are using a consumer behavior which is quite moderate. If a buyer acquires a

product and its quality does not �t the category, she switches to the next category

closer to the experienced quality. This was cautiously chosen so that the consumer

reaction is slow and reputation is both, hard to obtain and hard to lose, thus even

dampening reputation e�ects. Intuitively, having more extreme consumers will lead

to an even more severe reputation e�ect, letting the gap in quality pricing be even

higher. To check this intuition, we consider extreme consumers which directly jump

to the posterior category to which the experienced quality belongs. Additionally to

this, we check unforgiving consumers who behave like extreme consumers when the

quality is lower than expected but behave like in our original computations when

quality is higher. In other words, reputation is very hard to obtain but very easy
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Figure 4.5: The pricing of low quality and high quality goods with di�erent foresight
levels and number of experts. From top left to bottom right, there are 5,
15, 30 and 50 experts present in the market.
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to loose with unforgiving buyers. Finally, we test the opposite behavior, called

enthusiastic consumers, who jump to high quality very quickly but go down only

single steps.
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Figure 4.6: The case of enthusiastic consumers (left) and unforgiving consumers
(right) in the presence of 30 Experts and a discount rate of 0.05.

Figure 4.6 shows that changing the nature of the consumer reaction does not change

the qualitative aspects of the model outcomes, the reputation e�ects still being high

enough to outweigh the presence of the experts. Interestingly, the reputation e�ect

(in terms of the price di�erence) is higher with unforgiving consumers, as predicted,

once the critical foresight level is reached. However, this critical foresight level is

much higher than in the case of unforgiving consumers or consumers with inertia.

The �rm tends to ignore buyers who are not easy to satisfy.

Basically the same e�ect is observable with extreme consumers who directly jump

to the experience category and thus have no inertia in any direction. With 30 ex-

perts (Figure 4.7), the level of foresight needed to observe a negative price-quality

relationship is about the same as for the enthusiastic consumers but the price level

is much lower than before. Since lost reputation can be re-obtained quite fast, in-

centives for high pricing of low quality are not as high, resulting in an overall lower

price di�erence.
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Figure 4.7: The case of extreme consumers with 30 experts.

4.7.1 More Quality Levels

The previous parts of the chapter uses only two quality levels to not make the

graphics too confusing. Having the previous chapter in mind, it is worth checking

whether this restriction obfuscates important phenomena. It would be possible that

the pricing behavior opposed to the quality is only valid for the lowest or the highest

price while all other prices are ordered according to their quality. To check this, we

let the computations run with four di�erent quality levels23, each in the middle of

an interval of the equal-sized, four-part partition of [0, 1]. We let all of these quality

levels be equally likely.

We set the number of experts back to zero and the consumers to the regular adaption

behavior with inertia. As we see in Figure 4.8, this leads to an interesting observation.

With low but non-zero foresight, the market indeed shows the described behavior.

Only the very low quality is priced highly to prevent consumers from buying while

the prices of all other quality levels preserve their order. With increasing foresight,

however, the market converges quickly to a perfect inverse price-quality relation. It

has to be noted, though, that the price di�erence of high quality goods is signi�cantly

lower than the one for the low quality goods.

23Note that, because of the structure of the model, quality levels in the same category are equivalent
in the absence of experts. Hence, with four categories, the case with four quality levels yields
the maximum quality diversity.
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Figure 4.8: The average price development for the four di�erent quality levels.

4.8 Conclusion and Discussion

The chapter presents a method to compute market behaviour under quality uncer-

tainty and repeated purchase in a numerical way but with mathematical justi�cation

and correct estimation of the convergence to behavior under the invariant distribu-

tion of the market's Markov chain. It applies this method to investigate the relation

between price and quality in such a market, suggesting that there is a strong repu-

tation e�ect which causes high quality products to be sold for a relatively low price

while at the same time pricing low quality products very high to prevent consumers

from bad experiences and thus losing reputation.

The robustness check shows that this e�ect even occurs in the presence of rel-

atively many informed consumers (experts) if the seller maximizes over a longer

horizon. Moreover, even when consumers are very forgiving (so that reputation is

easily built but not easy to lose), this e�ect occurs. Overall, the results suggest that

a negative price-quality relationship can be caused by reputation considerations, a

non-negligible share of uninformed consumers and farsighted �rms.

The observed e�ect is surely not present in most markets. Many aspects are very

speci�c and do not occur in this extreme manner. With most products, people get

informed before the purchase, at least after the �rst time they have bad experiences.

The more expensive a product, the more the consumer will try to inform herself before

the purchase, thus probably creating a level of expertise which is strong enough
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4.A Appendix

to outweigh the reputation e�ects. As the expert section shows, this is possible.

Moreover, we ignored advertising and attention e�ects. In some markets, however,

the assumptions do not seem too far away. Especially with wine, the high share of

�non-experts� who buy by the trial-and-error principle is quite high and empirical

�ndings show in the direction of our results. The paper thus shows possible reasons

for those experimental �ndings.

The tool presented here is explicitly designed to be easily extensible and is hence

able to incorporate other aspects which one might investigate. For example, network

opinion e�ects in the style of DeGroot (1974) or population-dependent reproduction

(e.g. a Moran process with mutations, see Ewens (2004), p.104-109) can be intro-

duced by just changing the birth-death matrix, leaving everything else constant in

the analysis and the code.24 The �rm will automatically adapt its optimal behavior

to the di�erent situation. In the same way, the data provided can be used to analyze

more aspects of the market outcome. It will be interesting to see this tool applied

with focus on other phenomena and incorporating di�erent behavioral assumptions.

4.A Appendix

Proof of Lemma 4.3.1. As stated in the text, the expected pro�ts to maximize is

∑
s1,...,sT∈S
q1,...,qT∈Q

Prob(s1, . . . sT , q1, . . . qT |(pt), q0, s
0)

T∑
τ=0

(1− r)τ · pτ · γ(sτ , pτ ).

Using the Markov chain structure and the fact that quality realizations are indepen-

dent (from each other and from the states), this expression is equivalent to

∑
s1,...,sT
q1,...,qT

(
T∏
τ=1

η(qτ )

)(
T−1∏
τ=0

Mpτ (sτ , sτ+1)

)
T∑
τ=0

(1− r)τ · pτ · γ(sτ , pτ )

=(1− r)0 · p0 · γ(s0, p0)

+ (1− r)
∑

s1,...,sT
q1,...,qT

(
T∏
τ=1

η(qτ )

)(
T−1∏
τ=0

Mpτ (sτ , sτ+1)

)
T∑
τ=1

(1− r)τ−1 · pτ · γ(sτ , pτ )

=p0 · γ(s0, p0) + (1− r)
∑
s1,q1

η(q1)Mp0(s0, s1)

24The important part here is to choose a process which either keeps the matrix B positive in all
entries or to �nd a di�erent argument why the Markov chain is ergodic under the new process.
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·
∑

s2,...,sT
q2,...,qT

(
T∏
τ=2

η(qτ )

)(
T−1∏
τ=1

Mpτ (sτ , sτ+1)

)
T∑
τ=1

(1− r)τ−1 · pτ · γ(sτ , pτ ).

Maximizing this with respect to pτ (qτ , s
τ ) for all values of τ, qτ and sτ , we can use

that the �rst terms do not depend on p1, . . . , pT to obtain

max
p0

p0 · γ(s0, p0) + (1− r)
∑
s1,q1

η(q1) ·Mp0(s0, s1)

· max
p1,...,pT


∑

s2,...sT∈S
q2,...,qT∈Q

T∏
τ=2

η(qτ )

T−1∏
τ=1

Mpτ (sτ , sτ+1)

T∑
τ=1

(1− r)τ−1 · pτ · γ(sτ , pτ )

︸ ︷︷ ︸
Optimization problem for a T − 1-foresight �rm at time 1, for �xed q1 and s1.


= max

p0

p0 · γ(s0, p0) + (1− r) ·
∑
s1,q1

η(q1) ·Mp0(s0, s1) ·ΠT−1(q1, s
1)

 .

Proof of the convergence result of section 4.3.5. Letm := mink,lMk,l. We then have

dTV (ζM, γ) =
1

2
‖ζM − γ‖1 =

1

2
‖ζM − γM‖1 =

1

2
‖(ζ − γ)M‖1

=
1

2

∑
i

|
∑
j

(ζj − γj)M(j, i)−m
∑
j

(ζj − γj)︸ ︷︷ ︸
added term,=0

|

=
1

2

∑
i

|
∑
j

(ζj − γj)(M(j, i)−m︸ ︷︷ ︸
≥0

)|

≤1

2

∑
j

|(ζj − γj)|
∑
i

(M(j, i)−m)︸ ︷︷ ︸
=1−m·|S|

=
1

2
‖ζ − γ‖1(1− |S| ·m)
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where the �rst equality ist well known for �nite state spaces. It hence follows induc-

tively that we have

dTV (ζMn, γ) ≤ 1

2
‖(ζMn−1 − γ)‖1(1− |S| ·m) ≤ . . .

≤ 1

2
‖ζ − γ‖1︸ ︷︷ ︸

≤‖ζ‖1+‖γ‖1=2

(1− |S| ·m)n ≤ (1− |S| ·m)n

Proof of Lemma 4.3.2.

|
∑
s∈S

(ζMn)(s) · Y (s)− Expγ(Y )| =|
∑
s∈S

(ζMn)(s) · Y (s)−
∑
s∈S

γ(s) · Y (s)|

=|
∑
s∈S

[
(ζMn)(s) · Y (s)− γ(s) · Y (s)

]
|

≤
∑
s∈S
|Y (s)| · |(ζMn)(s)− γ(s)|

≤
∑
s∈S

B · dTV (ζMn, γ)

=|S| ·B · dTV (ζMn, γ)

The last inequality stems directly from the de�nition of dTV .

4.B The Code

The following �le contains the parameter de�nition and the main function which is

used to compute the invariant market distribution. It implements other important

code which is given further below.

main.r

1 ## Create the list of parameters. Change this for different settings

2 params = list();

3 params$num_people <- 20; # The number of non-experts

4 params$num_categories <- 4; # Number of posterior categories

5 params$dying_prob <- .05; # For the birth/death process

6 params$discount <- .05; # Firm’s discount of future income

7 params$num_experts <- 0; # Number of experts

8 params$qualities <- c(0,1); # The possible quality levels

9 params$qual_dist<- c(.4,.6); # The distribution of quality levels

10

11 ## uncomment this for the four-quality case
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12 #params$qualities <- c(.125,.375,.625,.875);

13 #params$qual_dist<- c(.25,.25,.25,.25);

14

15 ## derived parameters:

16 num_states = choose(params$num_people + params$num_categories - 1,

params$num_categories - 1);

17 num_qualities = length(params$qualities);

18

19 source(paste(getwd(), "/utils.r", sep="")); # Also creates the matrix of

possible_states

20 source(paste(getwd(), "/birth_death_matrix.r", sep="")); # creates or loads the

matrix

21 source(paste(getwd(), "/firm_behavior.r", sep="")); # optimal firm behavior

22 source(paste(getwd(), "/consumer_behavior.r", sep="")); # optimal consumer

behavior

23

24 ## The following is used for minimizing numerical errors.

25 # All computations of the paper are done with the following configuration

26 normalize_matrix = FALSE; # disabled. Seems to increase numerical errors

27 normalize_inv_dist = TRUE;

28 optimize_with_original = TRUE;

29

30 num_stages = 25; # = Foresight

31

32 ## For different consumer behavior: uncomment one of the next lines

33 #consumer_transition_when_buying = consumer_transition_when_buying_extreme;

34 #consumer_transition_when_buying = consumer_transition_when_buying_unforgiving;

35 #consumer_transition_when_buying = consumer_transition_when_buying_enthusiastic;

36

37 create_data <- function() {

38 load_data(); # See if we already have data

39

40 if(!is.list(data)) {

41 # prepare the data structure

42 data = list();

43 data$stages = list();

44 # Save the matrix and the params for later reference

45 data$B = B;

46 data$params = params;

47 }

48

49 # The following is useful when picking up earlier computations

50 start_stage = length(data$stages) + 1;

51 if(start_stage <= num_stages) {

52 # At this point there is actually something to be computed!

53

54 for(stage in start_stage:num_stages) {

55 # Keep track of time

56 print(paste("Starting stage ", stage));

57 time.start = as.numeric(Sys.time());

58
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59 next_stage_profit = c();

60 if(stage > 1) {

61 next_stage_profit = data$stages[[stage - 1]]$F$profit;

62 }

63

64 ## Get the F-matrix from the firm’s behavior

65 F = get_price_setting_behavior(next_stage_profit);

66

67 data$stages[[stage]] = list();

68 data$stages[[stage]]$F = F;

69

70 ## Create the transitional matrix

71 M = data$stages[[stage]]$F$matrix %*% data$B;

72 M_original = M; # Store for later use

73

74 ## Compute the number of square operations

75 b <- 1 # Upper bound for price values

76 precision_const = nrow(M) * b; # By the lemma. The factor before the q^n

77 eps <- .001 # the precision to reach

78 num_squares = log( (log(precision_const) - log(eps)) / ( nrow(M) * min(M) )

) / log(2);

79 num_squares = ceiling(num_squares); # to get an integer number

80

81 ## Now square the matrix according to the computed number

82 inv_dist = rep(1/num_states, num_states); # start_value

83 min_diff = 1; # start_value

84 for(i in 1:num_squares) {

85 M = M%*%M;

86 if(normalize_matrix) {

87 M = apply(M, 1, utils.normalize); # normalize

88 }

89 inv_dist_tmp = apply(M,2,mean);

90

91 if(normalize_inv_dist) {

92 inv_dist_tmp = utils.normalize(inv_dist_tmp);

93 }

94

95 diff = max(abs(inv_dist_tmp - inv_dist_tmp %*% M_original))

96 if(diff <= min_diff) {

97 # new optimum. Store the values.

98 inv_dist = inv_dist_tmp;

99 min_diff = diff;

100 }

101

102 if(abs(sum(M) - ncol(possible_states)) > 1 ) {

103 # At this point, numerical errors from matrix multiplication got out of

hand. No point of continuing.

104 break;

105 }

106

107 }
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108

109 ## To minimize numerical errors: multiply the computed distribution with the

orininal matrix

110 if(optimize_with_original) {

111 for(i in 1:1000) {

112 inv_dist_tmp = as.vector(inv_dist_tmp %*% M_original);

113 if(normalize_inv_dist) {

114 inv_dist_tmp = utils.normalize(inv_dist_tmp);

115 }

116 diff = max(abs(inv_dist_tmp - inv_dist_tmp %*% M_original));

117 if(diff < min_diff) {

118 inv_dist = inv_dist_tmp;

119 min_diff = diff;

120 print(paste("new inv distr from optim. Diff:", diff));

121 }

122 }

123 }

124

125 # Store the distribution in the result list

126 data$stages[[stage]]$inv_dist = inv_dist;

127

128 # Create the average price statistics

129 prices = matrix(0,nrow = length(params$qualities), ncol = ncol(M));

130 avg_prices = rep(0, length(params$qualities));

131 for(col in 1:ncol(M)) {

132 state = possible_states[,col];

133 for(qual_index in 1:length(params$qualities)) {

134 qual = params$qualities[qual_index];

135 price = choice(state, qual, next_stage_profit)$p;

136 prices[qual_index,col] = price;

137 avg_prices[qual_index] = avg_prices[qual_index] + inv_dist[col] * price;

138 }

139 }

140 data$stages[[stage]]$prices = prices;

141 data$stages[[stage]]$avg_prices = avg_prices;

142

143 # Create average posterior category

144 data$stages[[stage]]$avg_posterior = (posteriors[1,] %*% possible_states /

params$num_people) %*% inv_dist;

145

146 # Create the number of sales for each

147 num_people_buying = matrix(0, nrow = length(params$qualities), ncol =

num_states)

148 for(i in 1:num_states) {

149 state = possible_states[,i];

150 prices = data$stages[[stage]]$price[,i];

151 for(q in 1:length(params$qualities)) {

152 p = prices[q];

153 sure_buying_categories = posteriors[2,] >= p

154 num_people_buying[q,i] = sum(state[sure_buying_categories])

155
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156 crit = params$num_categories - sum(sure_buying_categories) # the

critical category

157 if(crit > 0) {

158 a = posteriors[2,crit];

159 b = posteriors[3,crit];

160 num_people_buying[q,i] = num_people_buying[q,i] + state[crit] * (b-p)

/(b-a)

161 }

162 }

163 }

164 data$stages[[stage]]$num_people_buying = num_people_buying; # by state

165 data$stages[[stage]]$avg_num_people_buying = num_people_buying %*% inv_dist;

166

167 # Save the data for future reference

168 filename = get_filename(); # see utils

169 print(paste("saving file to ", filename));

170 save("data", file= filename);

171

172 # Print the time for orientation

173 time.end = as.numeric(Sys.time());

174 print(paste("Finishing stage ", stage, " Seconds: ", time.end - time.start))

;

175 }

176 } # end if start_stage < num_stages

177

178 return(data);

179 }

180

181 ## compute once

182 data = create_data();

183

184 ## This is an example of how to use the create_data() function with different

parameters

185 create_data_with_discount <- function(discount) {

186 # store the old value

187 old_discount = params$discount;

188 params$discount <<- discount;

189

190 create_data();

191

192 # restore the old value

193 params$discount <<- old_discount;

194 }

195

196 ## compute for different discount parameters

197 d = c(.02, .05, .1, .25);

198 library(parallel)

199 result = mclapply(d, create_data_with_discount, mc.silent=FALSE, mc.cores = 4) #

only for linux

200 #result = mclapply(d, create_data_with_discount, mc.silent=FALSE) # for windows.
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The birth-death matrix is computed in the following �le right when it is imple-

mented.

birth_death_matrix.r

1 ## Returns the distributions over states by just computing dying and rebirth. The

result will be one line of the birth/death matrix

2 probabilities_one_line <- function(state) {

3 probs = rep(0, ncol(possible_states));

4 num_people = sum(state);

5

6 for(col in 1:ncol(possible_states)) {

7 new_state = possible_states[,col];

8

9 # Create the minimal dying state

10 min_dying = state - new_state;

11 min_dying = min_dying * (min_dying > 0);

12 l = list();

13 for(i in 1:params$num_categories) {

14 l[[i]] = (min_dying[i]) : (state[i]);

15 }

16 dying_combinations = data.matrix(expand.grid(l));

17 # The death vectors are now the row entries of the matrix

18

19 prob = 0;

20 # go over all death vectors

21 for(row in 1:nrow(dying_combinations)) {

22 d = dying_combinations[row,];

23

24 # The value of THIS dying probability

25 p1 = dbinom(d, state, params$dying_prob);

26 p1 = prod(p1);

27

28 # and now the part of the birth process

29 b = new_state - (state - d);

30 p2 = factorial(sum(b)) / (prod(factorial(b)) * params$num_categories^(sum(b)

));

31

32 prob = prob + (p1 * p2);

33 }

34

35 # save the value

36 probs[col] = prob;

37 }

38

39 return(probs);

40 }

41

42 ## Return the whole matrix

43 get_dying_prob_matrix <- function() {

44 n <- ncol(possible_states);
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45 B = matrix(0, nrow = n, ncol = n); # prepare

46 # compute the transition probabilities for each line and enter them into the

matrix

47 for(row in 1:n) {

48 state = possible_states[,row];

49 B[row,] = probabilities_one_line(state);

50 }

51

52 return(B);

53 }

54

55 # The following code is executed with the include() command in main.r

56

57 # Create the filename where the matrix will be stored / loaded from

58 filename=sprintf("B_N=%s,C=%s,death=%s.rdata", params$num_people,

params$num_categories, params$dying_prob);

59 # Check if the matrix file exists

60 if(file.exists(filename)) {

61 load(filename); # just load from the file

62 } else {

63 print("Creating the birth/death matrix. This can take a while.")

64

65 B = get_dying_prob_matrix(); # Create

66 save("B", file = filename); # store for next time

67

68 print("Done creating the birth/death matrix.")

69 }

The following code takes care of the optimal consumer behavior as described in

section 4.3.2. It allows for the di�erent consumer reactions which are used for the

robustness checks.

consumer_behavior.r

1 ## contains functions for the consumer behavior. Different functions are provided

for different behavior types

2 consumer_transition_when_buying_inertia <- function(c,q) {

3 # Go one up or down:

4 if(q < posteriors[2,c])

5 return(c-1);

6

7 if(q > posteriors[3,c])

8 return(c+1);

9

10 # If we are here, q is in category c. Nothing changes.

11 return(c);

12 }

13

14 consumer_transition_when_buying_extreme <- function(c,q) {

15 # this gives the category in which q lies:

16 cat = sum(posteriors[2,] <= q);
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17

18 return(cat);

19 }

20

21 consumer_transition_when_buying_unforgiving <- function(c,q) {

22 # For positive experience: go one up

23 if(q > posteriors[3,c])

24 return(c+1);

25

26 # Otherwise the same as the "extreme" case

27 cat = sum(posteriors[2,] <= q);

28 return(cat)

29 }

30

31 consumer_transition_when_buying_enthusiastic <- function(c,q) {

32 # For negative experiences: go one down

33 if(q < posteriors[2,c])

34 return(c-1);

35

36 # Otherwise the same as the "extreme" case

37 cat = sum(posteriors[2,] <= q);

38 return(cat)

39 }

40

41 consumer_transition_when_buying <- consumer_transition_when_buying_inertia # This

is the default. Uncomment the corresponding line in main.r to change the

behavior.

42

43 consumer_transition <- function(state, p, q) {

44 # Find the posterior interval in which the price is

45 critical_posterior = which.max(posteriors[3,] >= p);

46

47 # sure_move will contain the category adaptation of those consumers

48 # who buy independently of their posterior realization

49 sure_move = rep(0,params$num_categories);

50 if(critical_posterior < params$num_categories) {

51 # There are "sure buyers"

52 # move all the positions of the high posteriors that buy for sure

53 for(post in (critical_posterior + 1):params$num_categories) {

54 sure_move[post] = sure_move[post] - state[post];

55 new_posterior = consumer_transition_when_buying(post, q);

56 sure_move[new_posterior] = sure_move[new_posterior] + state[post]; # move

down

57 }

58 }

59

60 a = posteriors[2,critical_posterior]; # left boundary

61 b = posteriors[3,critical_posterior]; # right boundary

62

63 new_post = consumer_transition_when_buying(critical_posterior, q);

64 if(new_post == critical_posterior) {
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65 # nothing changes. q is in the correct interval...

66 max_num_moving = 0;

67 }

68 else {

69 max_num_moving = state[critical_posterior];

70 }

71

72 # The individual chance of buying the good:

73 chance_buying = (b-p) / (b-a);

74

75 chances = rep(0, ncol(possible_states)); # prepare

76

77 # For the critical category, we have to check each case of the number of buyers

78 # who have a realized posterior above p.

79 for(k in 0:max_num_moving) {

80 # k is the number of people buying

81 new_state = state + sure_move;

82 new_state[critical_posterior] = new_state[critical_posterior] - k

83 new_state[new_post] = new_state[new_post] + k

84

85 # Binomial distribution. See the results of the chapter.

86 chance = dbinom(k, max_num_moving, chance_buying);

87 chances[index_of_state(new_state)] = chance;

88 }

89

90 return(chances);

91 }

92

93 ## given the state, price and true quality, this function returns all states

94 ## with a positive probability of occuring after buying.

95 consumer_transition_possible_states <- function(state, p, q) {

96 result = consumer_transition(state, p, q);

97

98 return(which(result > 0))

99 }

The �rm behavior is given by the following lines in accordance to the theoretical

part.

�rm_behavior.r

1 ## Returns the choice of a myopic firm, given the current state and the quality

level q

2 choice_myopic <- function(state, q) {

3 maxprofit = 0;

4 popt = 0;

5 # Check all the posterior categories:

6 for(i in 1:params$num_categories) {

7 a = posteriors[2,i]; # left interval bound

8 b = posteriors[3,i]; # right interval bound

9 n = state[i]; # number of people having this posterior

10 s = 0
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11 e = params$num_experts;

12 if(i< params$num_categories) {

13 s = sum(state[(i+1):params$num_categories]); # number of sure buying people

14 }

15 if(e > 0 && q == 1) {

16 s = s + e; # The experts buy as well

17 # NOTE: This only works for q = 0 or q=1. Not for q in (a,b) if experts are

present. This case is not yet implemented but also not needed for the

examples in the paper. An implementation would require a further

interval to be considerd, splitting [a,b] and separately maximizing over

[a,q] and [q,b].

18 }

19

20 # first order solution for p:

21 if(n == 0) {

22 p = b;

23 }

24 else {

25 p = ((b-a)*s/n + b) / 2;

26 }

27

28 # Check the boundary cases:

29 if(p <= a) {

30 p = a;

31 profit = p * (s + n); # We sell to all people in [a,b] and the experts

32 }

33 else if(p >= b) {

34 p=b;

35 profit = p * s;

36 }

37 else {

38 # interior solution

39 profit = p * (s + n * (b-p)/(b-a));

40 }

41

42 # If we have a higher profit, we store the value

43 if(profit > maxprofit) {

44 maxprofit = profit;

45 popt = p;

46 }

47 }

48

49 return(list(p = popt, profit = maxprofit));

50 }

51

52 ## Returns the choice of a foresight firm, given the state, realized quality and

the next_stage_profit. Due to the recursive structure, this function is

independent of the actual foresight level.

53 choice_foresight <- function(state, q, next_stage_profit = c()) {

54 if(length(next_stage_profit) == 0) {

55 # No foresight. return myopic
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56 return(choice_myopic(state, q));

57 }

58

59 maxprofit = 0;

60 popt = 0;

61 for(i in 1:params$num_categories) {

62 a = posteriors[2,i]; # left

63 b = posteriors[3,i]; # right

64 n = state[i]; # number of people having this posterior

65 s = 0;

66 if(i < params$num_categories)

67 s = sum(state[(i+1):params$num_categories]); # number of sure buying people

68

69 # Compute the best behavior

70 res = max_foresight_profit(state, q, a, b, s, n, next_stage_profit);

71 if(res$profit > maxprofit) {

72 maxprofit = res$profit;

73 popt = res$price;

74 }

75 }

76

77 return(list(p = popt, profit = maxprofit));

78 }

79

80 ## Computes the expected profit when setting the price p, given the next-stage-

profits

81 foresight_profit <- function(p, state, q, a, b, s, n, next_stage_profits) {

82 next_states = const.next_states;

83 num_states = length(next_states);

84

85 e = params$num_experts;

86 if(e > 0 && q >= p) {

87 s = s + e; # The experts buy

88 }

89 # NOTE: This only works for q = 0 or q=1. See comment in choice_myopic.

90

91 # cover the boundary cases for efficiency and higher precision

92 if(p == b) {

93 # None of the n buyers in [a,b] buys

94 return(p * s + (1-params$discount) * next_stage_profits[next_states[1]]);

95 }

96 if(p == a) {

97 # All n buyers in [a,b] buy

98 return(p * (s + n) + (1-params$discount) * next_stage_profits[next_states[

num_states]]);

99 }

100

101 # If we are here, we have p in (a,b)

102

103 # probability of buying:

104 prob = (b-p)/(b-a);
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105

106 # The profit from sales in this period

107 profit = p * (s + n * prob);

108

109 # Compute the expected profit, using the profits vector

110 if(num_states == 1) {

111 # Easy case

112 next_distribution = B[next_states[1],];

113 next_profit = next_stage_profits %*% next_distribution;

114 return(profit + (1-params$discount) * next_profit);

115 }

116

117 # Here, each state has the probability dbinom(k,n,prob) since the number of

buying customers is binomially distributed.

118 for(k in 0:n) {

119 # Get the distribution for this state after the birth-death process is

120 next_distribution = B[next_states[k+1],];

121 # And the profit associated to this

122 next_profit = next_stage_profits %*% next_distribution;

123

124 profit = profit + (1-params$discount) * dbinom(k,n,prob) * next_profit;

125 }

126 return(profit);

127 }

128

129 ## Comutes the maximal achievable profit when setting a price in the interval [a,b

], given the state and the next-period profits.

130 max_foresight_profit <- function (state,q,a,b,s,n, profits) {

131

132 # Save everything in constants

133 max_foresight_profit_state <<- state;

134 max_foresight_profit_q <<- q;

135 max_foresight_profit_a <<- a;

136 max_foresight_profit_b <<- b;

137 max_foresight_profit_s <<- s;

138 max_foresight_profit_n <<- n;

139 max_foresight_profit_profits <<- profits;

140 # next_states. This is constant for all prices in [a,b].

141 const.next_states <<- consumer_transition_possible_states(state, .5 * a + .5 *
b, q);

142

143 result = optimize(f = foresight_profit, interval=c(a,b), state, q, a, b, s, n,

profits, maximum = TRUE, tol=.0000001);

144 # rename

145 result = list(profit = result$objective, price = result$maximum);

146 # now check the boundaries. This reduces numerical issues with the "optimize"

function

147 profit_b = foresight_profit(b, state, q, a, b, s, n, profits);

148 if(profit_b >= result$profit) {

149 result = list(profit = profit_b, price = b);

150 }
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151 profit_a = foresight_profit(a, state, q, a, b, s, n, profits);

152 if(profit_a >= result$profit) {

153 result = list(profit = profit_a, price = a);

154 }

155

156 return(result);

157 }

158

159 ## For the current state "state", given the next_stage_profit, returns the optimal

behavior of the firm.

160 get_price_transition_probs <- function(state, next_stage_profit) {

161 profit = 0;

162 prices = rep(0,num_qualities);

163 transition = rep(0,num_states);

164

165 # For each quality: compute optimal behavior

166 for(i in 1 : num_qualities) {

167 # The behavior:

168 current_choice = choice(state, params$qualities[i], next_stage_profit);

169 prices[i] = current_choice$p;

170 # update the expectation values:

171 profit = profit + params$qual_dist[i] * current_choice$profit;

172 transition = transition + params$qual_dist[i] * consumer_transition(state,

current_choice$p, params$qualities[i]);

173 }

174

175 return(list(profit = profit, transition = transition, prices = prices));

176 }

177

178 choice = choice_foresight;

179

180 ## Returns a list, containing a matrix "matrix" and a profit vector "profit"

181 get_price_setting_behavior <- function(next_stage_profit = c()) {

182 num_states = ncol(possible_states)

183 m <- matrix(0,ncol = num_states, nrow = num_states);

184 profit = rep(0,num_states);

185 prices = matrix(0, nrow = num_qualities, ncol = num_states);

186 for(s in 1:num_states) {

187 probs = get_price_transition_probs(possible_states[,s], next_stage_profit);

188 m[s,] = probs$transition;

189 profit[s] = probs$profit;

190 prices[,s] = probs$prices;

191 }

192

193 return(list(matrix = m, profit = profit, prices = prices));

194 }

195

196 ## Returns the optimal expected profit of the firm.

197 create_next_stage_profit <- function(next_stage_profit = c()) {

198 num_states = ncol(possible_states);

199 for(s in 1:num_states) {
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200 # Get the possible states which can occur

201 possible_states = c();

202 for(c in 1:params$num_categories) {

203 possible_states = c(possible_states, consumer_transition_possible_states(s,

posteriors[1,c], q));

204 }

205 # delete duplicates

206 possible_states = unique(possible_states);

207

208 # For each of these states, compute the expected revenue

209 for(ps in possible_states) {

210 probs = probabilities(possible_states[,ps])

211 expectations = probs * next_stage_profit;

212 }

213 }

214 }

Finally, the following code contains utility functions used for managing the state

space and saving/loading data.

utils.r

1 ## This function returns a matrix where each column is a state vector.

2 get_possible_states <- function(num_people, num_categories) {

3 possible_state_indices <<- array(0,dim = rep(num_people + 1, num_categories-1));

4

5 # Distribute the "gaps"

6 comb = combn(num_people + num_categories - 1, num_categories - 1);

7 states = matrix(0,nrow = num_categories, ncol = ncol(comb));

8

9 nrows = nrow(comb);

10

11 # Now the data is in the form oo|o|ooo|o||o where the number of o’s determines

the number of owners of a posterior.

12 for(col in 1:ncol(comb)) {

13 gaps = comb[,col];

14 states[,col] = diff(c(0,gaps, (num_people+num_categories))) - 1;

15 possible_state_indices[matrix(states[1:(num_categories-1),col] + 1, nrow = 1)]

<<- col;

16 }

17

18 return(states);

19 }

20

21 ## Create the possible-states matrix

22 # executed when this file is loaded from main.r

23 possible_states <-get_possible_states(params$num_people, params$num_categories);

24

25 ## Create a matrix with the posterior category. Each column contains the middle of

the interval, as well as the left and the right bound.

26 # with four categories:

27 # avg | .125 .375 .625 .875
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28 # a | 0 .25 .50 .75

29 # b | .25 .50 .75 1

30 posteriors <- matrix(0,nrow = 3, ncol = params$num_categories);

31 for(i in 1:params$num_categories) {

32 left = (i-1) / params$num_categories;

33 right = i / params$num_categories;

34 middle = (left + right) / 2;

35 posteriors[,i] = c(middle, left, right);

36 }

37

38 ## returns the column number of a state vector in the possible_states matrix

39 index_of_state <- function(state) {

40 return( possible_state_indices[matrix(state[1:(params$num_categories-1)] + 1,

nrow = 1)] );

41 }

42

43 ## returns the filename used to store the data-list

44 get_filename <- function() {

45 consumer = "";

46 if(identical(consumer_transition_when_buying,

consumer_transition_when_buying_inertia))

47 consumer = "inertia";

48 if(identical(consumer_transition_when_buying,

consumer_transition_when_buying_extreme))

49 consumer = "extreme";

50 if(identical(consumer_transition_when_buying,

consumer_transition_when_buying_enthusiastic))

51 consumer = "enthusiastic";

52 if(identical(consumer_transition_when_buying,

consumer_transition_when_buying_unforgiving))

53 consumer = "unforgiving";

54

55 name = sprintf("data_fs_N=%i,p=%i,death=%s,discount=%s,experts=%s,c=%s",

56 params$num_people, params$num_categories, params$dying_prob,

57 params$discount, params$num_experts, consumer);

58

59 if(length(params$qualities) > 2) {

60 name = paste(name, "q", length(params$qualities), sep="");

61 }

62

63 filename = paste(name, ".rdata", sep="");

64

65 return(filename);

66 }

67

68 ## loads the data from a file, given the current params. Returns TRUE iff the data

can be loaded from a file and the stored params are identical to the global

ones.

69 load_data <- function(directory = "") {

70 # Cleanup. Just to be sure.

71 suppressWarnings(rm("data", pos = ".GlobalEnv"));
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72 suppressWarnings(rm("data"));

73

74 filename = get_filename();

75

76 if(length(directory) > 0) {

77 directory = paste(directory, "/", sep="");

78 }

79

80 if(file.exists(filename)) {

81 load(filename, .GlobalEnv);

82 if(identical(params, data$params)) {

83 return(TRUE);

84 }

85 warning("The data params of the loaded data are not identical to the global

params");

86 return (FALSE);

87 }

88

89 return(FALSE);

90 }

91

92 ## normalization function

93 utils.normalize <- function(v) {

94 s = sum(v);

95 return(v / s);

96 }
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