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Abstract

Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is
thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational
efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic
features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal
statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We
show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in
brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at
velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by
nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and
spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image
parameters define the temporal constraints imposed on signal processing performed by the insect visual system under
behavioral conditions in natural environments.

Citation: Schwegmann A, Lindemann JP, Egelhaaf M (2014) Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight
Characteristics. PLoS ONE 9(10): e110386. doi:10.1371/journal.pone.0110386

Editor: Eric James Warrant, Lund University, Sweden

Received July 4, 2014; Accepted September 9, 2014; Published October 23, 2014

Copyright: � 2014 Schwegmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data can be accessed at the
following: http://pub.uni-bielefeld.de/data/2689483; doi: 10.4119/unibi/2689483. Matlab Scripts for processing the data can be accessed at the following: http://
pub.uni-bielefeld.de/data/2693180; doi:10.4119/unibi/2693180.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (DFG). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: neurobiologie@uni-bielefeld.de

Introduction

While moving through a cluttered environment, animals need

to gather information about their own movements as well as the

spatial structure of their surroundings. The visual system is one

important source of environmental information, but the eye

reduces the spatial information to a two-dimensional representa-

tion of light intensities projected onto the lattice of photoreceptors.

The visual system has to recalculate spatial information either by

comparing images from the right and the left eye viewing the

environment from different perspectives (stereopsis), or by

evaluating motion parallax cues in the temporal image flow when

moving through the scenery [1]. Fast-flying insects, such as flies

and bees, rely on retinal image flow as a source of spatial

information, because they need to respond to objects, such as

obstacles or landing sites, at much larger distances than those that

might be accessible by a potential stereoscopic mechanism, given

the close distance of the two eyes, their low spatial resolution and

the small overlap of their visual fields [2].

It is important to know the typical input received during

behavior in natural environments, i.e. the image statistics of

natural sceneries and the dynamics of changes caused by

behavioral actions, to understand the mechanisms underlying

vision. Visual systems of animals are thought to be adapted during

the course of evolution to the specific spatiotemporal stimulus

conditions encountered under the respective natural operating

conditions. In particular, the mechanisms for extracting spatial

information from the retinal image flow were concluded to have

evolved in insects to optimally handle the information available in

the natural input. This information is generated by an active flight

and gaze strategy that is characterized by sequences of alternating

saccadic turns and straight flight segments [2]–[13]. Retinal image

motion conveys information about the depth-structure of the

environment only if it results from translational self-motion, while

rotational movements only cause depth-independent image

changes [14]. Therefore, the saccadic flight and gaze strategy is

thought to already separate the translational and rotational

components of retinal image motion to a large extent at the

behavioral level. This simplifies the extraction of spatial informa-

tion from the retinal image flow.

Advances in technology have opened the possibility to record and

analyze natural scenes, as has already been done in several previous

studies [15]–[20]. Moreover, some earlier studies addressed not only

the global statistics of static natural scenes (e.g. [16], [21]–[22]), but

focused on the spatiotemporal image statistics during eye fixation

movements in front of static scenes (e.g. [23]–[26]), the input of

single photoreceptors to stimulus sequences recorded by a camera

moving on an experimenter-defined trajectory [27], or to the
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reconstructed ego-perspective retinal image flow in specific natural

or artificial behavioral situations ([17], [28]–[32]). However, none

of these studies considered systematically the consequences of the

distinguishing dynamics of the active flight and gaze strategy of

insects.

Therefore, we analyze in the present study the temporal

changes of image statistics evoked by movements mimicking the

two most important prototypical movements of free-flying insects,

with their characteristic dynamic features, forward-translations

and rapid, i.e. saccadic, turns [2]–[13]. We recorded sequences of

high-dynamic range panorama images on a trajectory reflecting

the saccadic flight and gaze strategy of insects in an idealized form

in a variety of cluttered natural environments. Image parameters,

such as brightness, contrast and spatial frequency content, were

analyzed across the different natural environments. The analysis

was carried out for differently sized image patches and different

viewing directions, because visual sceneries may vary tremendous-

ly, for instance, along their elevation (e.g. bright sky vs. structured

ground with bushes and stones, etc.), and sensory analyzers may

have differently sized receptive fields. We aimed at focusing on

scenes to which an insect’s visual system has most likely been

adapting during evolution. Therefore, we analyzed environments

devoid of any man-made structures, such as buildings or cars. In

contrast to most previous studies, we characterized the temporal

changes in image parameters elicited by translational and

rotational self-motion mimicking the characteristic dynamics of

the flight of insects, such as flies and bees, and, in this way,

examined for the first time which changes the visual system of

these animals were likely to encounter in natural environments.

On this basis, it is possible to infer behaviorally relevant time scales

of visual information processing.

Methods

Camera and spectral filter
We used a high dynamic range camera (PhotonFocus MV1-

D1312-40-GB-12) which was mounted on a motor-driven linear

feed and equipped with a panoramic hyperboloidal mirror

(Accowle Vision HMN-X15) (Fig. 1A) to obtain image sequences.

The camera had approximately 1 Megapixel (effective usable

size with our mirror: 9286928 pixels) and 12-bit A/D resolution.

The sensor implemented an adjustable characteristic that was

switching between two different gain values within one recording

frame. This feature allows an encoding of a wide brightness range

by approximating a logarithmic sensitivity characteristic via two

linear segments of different slope (‘‘LinLog-mode’’) (Fig. 1B).

Therefore, we could obtain a high dynamic range image with a

single exposure instead of calculating an HDR image from

multiple images with different apertures or exposure times.

We took great care to calibrate the CMOS chip of the camera

properly. We recorded pairs of images from static sceneries

comprising a large range of intensities to determine a calibration

curve for the reconstruction of the true brightness from the image

values. One such pair was taken with activated LinLog, the other

with deactivated LinLog linearly encoding brightness. Pixels which

saturated in the non-LinLog record were discarded. We were able

to extrapolate the characteristic for high light intensities because

the transition point between the low-brightness and high-

brightness section of the characteristic was in the region

measurable. Therefore, the slope of the linear high-intensity part

could be determined from the measurements given and used for

extrapolation. The resulting image values had a dynamic range of

1:23,900 covering 3,955 intensity steps that resulted from 4,095

intensity steps of the 12-bit resolution, minus an offset of 140 DN

(digital number; in image processing the output value of each pixel

in a dataset) in the original LinLog image. The offset is caused by

the camera calibration where no pixel should return 0 DN in

darkness. Thus, we parameterized the CMOS chip in such a way

that the pixels would return a value of about 140 DN in complete

darkness.

We used a dichroic filter between the camera lens and the

mirror to limit the camera’s spectral sensitivity to wavelengths in

the range of 480–560 nm. This filtering mimics the spectral

sensitivity of photoreceptors R1-R6 that provide the input of the

insect motion vision system (Fig. 1B,C) [32], [33]. As a

consequence, however, we could not employ a unit like candela

for characterizing brightness, but had to use the linearized digital

return values of the pixels, which are, though being arbitrary units,

proportional to light intensity in the green spectral range. In this

paper, we refer to this unit as GLI (green light intensity).

Panoramic mirror
We combined our camera with a hyperboloidal mirror, e.g.

[35], to replicate the wide-field view of insects. The camera

pointed upwards in the direction of the hyperboloidal mirror to

cover the complete 360u panoramic view within a single image.

Only the top view was blocked by the mirror itself, and the view

straight to the bottom was blocked by the camera. A black needle

was located in the center of the mirror to prevent double

reflections caused by the glass cylinder. The final image covered

the full 360u azimuth and an elevation between 258u below and

47u above the horizon.

The combination of HDR Camera and mirror has the

advantage of capturing large parts of the panoramic visual field

of an insect with one exposure. Thus, we were able to extract

image patches for every viewing direction from only one image.

Though image resolution drops for patches looking downwards,

resolution is everywhere in the image above a spatial resolution of

1.25u (corresponding to 0.8 pixel/degree) and, thus, better than

the resolution of the eyes of blowflies or bees (Fig. 1D; [35]–[38]).

Alternative techniques such as generating a panorama by

‘‘stitching’’ images or computing HDR information from an

image sequence generated by exposure bracketing require multiple

cameras and/or exposures.

We used a slightly modified version of the omnicam-calibration

toolbox by Davide Scaramuzza for Mathworks MATLAB 2010b

[39]–[41] to calibrate the mirror geometry for the inverse

projection of the image. It determines the geometry of the mirror

from several images of a checkerboard pattern with known

geometry. This procedure leads to (i) the geometric center of the

images and (ii) the parameters to calculate the spherical

coordinates of the viewing direction for any pixel in the image.

As an extension of the toolbox, we created a method for finding an

inverse function (polyval) to calculate the Cartesian source pixel

coordinates for a given viewing direction needed for unwrapping

via inverse projection of the circular image as provided by the

hyperboloidal mirror system.

Mechanical setup
The camera was mounted on a custom-made linear feed

equipped with a stepper motor and placed at about half a meter

above the ground. Camera height was chosen for pragmatic

reasons, but was considered biologically plausible. Although no

systematical research of outdoor flight height of blowflies is

available, flies can easily be observed in this height range, but vary

their flight height depending on the specific behavioral context.

Camera height is likely to affect image statistics in a quantitative

way, but we assume that the gradients analyzed along elevation
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will not change qualitatively. The results for lower regions of the

visual field were expected to become more similar to those

obtained at equatorial viewing directions the higher the camera

was placed above the ground. The camera and the drive were

remotely controlled. We recorded in sequences of 1-cm position

steps on a linear path. On this basis, we computed a variety of

rotational and translational image sequences. For technical

reasons, subsequent images were taken at time intervals of 2

seconds, i.e. at a much lower frequency compared to a real motion

of, for instance, 1 m/s. Thus, the translational image sequences

obtained in this way correspond to those that would have been

obtained during real motion only if the visual scenery had not

changed (e.g. no brightness changes due to clouds occluding the

sun or movements of leaves, etc.). We will argue in the Discussion

section that this limitation does not affect the basic conclusions

drawn in the paper. We selected recording sites in a wide range of

different types of natural environments. The latter comprised

diverse natural surroundings, such as cluttered forests, open fields

or shrub land. We recorded 37 sequences with 100 images each.

The GPS coordinates of the locations where the image sequences

were taken will be provided together with the published image

data.

Projection and patches
Biological mechanisms of visual information processing collect

the visual input within receptive fields of a wide range of diameters

and at different locations in the visual field. Therefore, we

scrutinized the statistics of the natural image sequences within

image patches of variable size and location in the visual field.

Patch diameters amounted to 2u, resembling the acceptance angle

of an insect’s ommatidium, as well as to 15u, 30u and 60u (Fig. 2A–

C). The centers of these patches were located at elevations of

230u, 0u and 30u relative to the equator of the visual sphere. We

placed the patches in 30u steps from 290u azimuth (looking to the

left) to 90u (looking to the right). Additionally, we placed patches at

245u and 45u azimuth. The patches with a 60u aperture could

only be placed at the equator because they would have overlapped

with the regions which were out of sight of the camera at

elevations of 230u and 30u. In total, we employed 90 patches for

each panoramic image.

Figure 1. Panorama high-dynamic-range (HDR) imaging sys-
tem. (A) Schematic side view of the panoramic mirror with optical path.
The light rays (orange arrows) are reflected by the hyperboloidal
panoramic mirror and passed through a spectral filter (see also inset)
and a lens to form an image of the environment on the CMOS chip. The
optical system is enclosed by a glass cylinder. A black vertical needle is
fixed to the mirror to eliminate reflections caused by the glass cylinder.
(B) Brightness transfer function showing the output grey level in DN
(digital number) of the CMOS chip depending on the illumination
intensity measured in the green spectrum at a wavelength of 480–
560 nm (see Fig C, blue line) visualizing the LinLog feature and the
intensity range of the camera. (C) Blue curve: Spectral bandwidth of the
camera responsivity derived by the multiplication of the dichroic filter
transmission characteristic and the raw CMOS chip responsivity. Green
curve: normalized rhodopsin absorption rate of fly photoreceptors R1-
R6 (data from [27]). (D) Image resolution (in pixels per degree) of the
combined panoramic hyperboloidal mirror system and CMOS chip. The
image resolution changes with elevation in the visual field as a
consequence of the projection of the image by the mirror system onto
the chip. The elevation range between the dashed vertical lines
indicates the vertical extent of the field of view of the imaging system.
The image resolution within this range is larger than 0.8 pixels per
degree (corresponding to a spatial resolution of 1.25u, indicated by the
red horizontal line) and, thus, better than the spatial resolution of the
blowfly or honeybee eye.
doi:10.1371/journal.pone.0110386.g001
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The patches were determined with the Lambert azimuthal

equal-area projection. This projection provides equal areas with

the least central distortions and has the following advantages:

Firstly, an equal area does not affect the size of objects at different

elevations. Thus, objects in the upper or lower regions of the

image do not have a different impact on image statistics. Secondly,

the central longitude and central latitude of the projection can be

freely selected. Thirdly, the Lambert azimuthal projection, though

Figure 2. Analysis of image sequences. (A) Original ring image with overlaid grid. (B) Extracted image patch in the Lambert-azimuthal equal-area
projection with the four different patch sizes of 2u (light thin box), 15u, 30u, and 60u (dark thick box). The color code is consistently used in the
following figures. (C) Sequence of image patches with time as third dimension. (D) Tapered image patch. Before any image analyses were performed,
tapering by a sinusoidal window had been applied to avoid boundary effects. (E) Two-dimensional fast Fourier transformation of a single frame; the
color code gives the magnitude of the Fourier components with brighter colors indicating larger magnitudes. Spatial frequency is increasing with
distance from the figure center. (F) Color-coded power spectra obtained from (E) showing the power for the different orientations and frequencies in
the image. (G) Total power per orientation obtained by taking the mean for the rows in (F). (H) Total power per frequency obtained by taking the
mean across columns in (F). Linear fit visualizes the 1/fa characteristic common for natural scenes. (I) Histograms of the goodness of the linear fit to
the frequency-dependent power spectra as plotted in (H) for all image patches of our dataset showing the quality of the 1/fa frequency dependence
in our dataset of natural images.
doi:10.1371/journal.pone.0110386.g002
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not being isogonic and causing heavy distortions at the outer

projection regions, provides minimal distortions for image parts

taken at the projection center. Shape is only minimally distorted

(less than 2% within 15u from the focal point) and, therefore, the

image patches used in this study can also be considered as nearly

angle-preserving. Though the type of projection may influence

image statistics, e.g. [42], this projection was considered as the one

best suited for our purposes and least influencing image statistics

for small image patches. However, in more eccentric regions,

angular distortions would become more significant for this

projection: small shapes are compressed radially from the center

and elongated perpendicularly. We ignored these distortions

because we only analyzed image patches in the undistorted range.

We used ordered grid super-sampling antialiasing [43] with a

969 grid to minimize aliasing artifacts resulting from discretization

to integer image coordinates. This procedure neither blurs nor

Figure 3. Sample time courses of image parameters during naturalistic rotational and translational movements in two
environments. Movement consists of a 45u rightward rotation at 1000u/s followed by a 20 cm translation at 1 m/s, while looking 90u to the
right, followed by another 45u rightward rotation. (A, B) Single full-panoramic sceneries of one frame of the two image sequences. (C, D) The
differently sized image patches for a single frame. (E, F) Time course of mean brightness for all four patch sizes. (G, H) The root mean square contrast
versus time. (I, J) Time course of the a-exponent of regression line fitted to power spectra (no time course is plotted for the 2u patch because a
reliable Fourier transform estimation was not possible with such a small patch size). Dotted lines mark the beginning and the end of the translational
phase. Color codes for patch size (cf. Fig 2B).
doi:10.1371/journal.pone.0110386.g003
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sharpens the image. Instead it prevents the accruement of jaggies,

an aliasing artifact caused by sampling one raster image onto

another grid with different geometry.

Statistical analysis
We analyzed the time course of first order statistics of the mean

brightness and of the root mean square contrast in differently sized

image patches during rotational and translational movements (see

Appendix S1 for details). Moreover, we examined the spatial

frequency statistics within the image patches and, thus, calculated

two-dimensional power spectra (Fig. 2D–F), after having tapered

the image patches with a sinusoidal window to eliminate boundary

effects. Power spectra were calculated by taking the squared

magnitudes of fast Fourier transformations (FFTs). Taking the

mean over all frequencies for each viewing direction, we obtained

the orientation-dependent power spectra (Fig. 2G) providing some

information about the orientations of contours that were most

prominent in the image. By taking the mean over all orientations

for each frequency, we calculated the frequency-dependent power

spectra (Fig. 2H). More details are given in Appendix S1.

The spectral power of natural images was found in previous

studies to approximate, on average, the function 1/fa, with f

corresponding to the spatial frequency and a being an exponent

[44]. This decrease of power with increasing spatial frequency was

described to comply with a varying widely around 2 [16], [45]–

[46].

We calculated the different image parameters for each image

patch separately. However, no reliable power spectra and, thus, no

a could be determined for the 2u patch due to its small size. The

overall quality of the linear fits decreases with decreasing patch

size, although the peak of the corresponding R2 distributions is still

above 0.95 for path sizes as small as 15u (Fig.2I).

Results

Image parameters such as brightness, contrast and the spatial

frequency spectrum may vary within a given patch of the visual

field over time during flight in natural environments. Due to the

fact that the saccadic flight style of insects separates translational

from rotational movements, the parameter variations can be

expected to differ substantially for these two movement prototypes.

In order to understand how apparent such differences are in

natural environments and how much they may vary between

different types of environments (e.g. forest vs. open terrain), we

analyzed the amplitude and speed of fluctuations in the different

image parameters during translational and rotational movements

Figure 4. Probability distributions of image parameters for the differently sized image patches. Analysis of the entire dataset (A) and of
the two sample sceneries (B) ‘‘open field’’ and (C) ‘‘forest’’ shown in Fig. 3. Upper diagrams: Probability distribution of brightness; middle diagrams:
rms contrast; bottom diagrams: a-exponent. In the plots we show the running average of the very spiky original histograms calculated with a
Gaussian average window using a window size of 1/25 of the bins (500 bins).
doi:10.1371/journal.pone.0110386.g004
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with a dynamics mimicking that of the free-flight of insects, such as

blowflies and bees. We placed particular emphasis on the

fluctuations caused by translational movements because the

corresponding optic flow contains depth information. Although

the fluctuations during translations appear to be more informative

for the animal, the visual consequences of saccade-like rotations

may also be relevant, because the image parameter in a given

patch of the visual field may differ a lot between the start and end

of a turn, depending on the type of environment. The sensitivity

range of the visual system and the information-processing

mechanisms of an animal need to be adjusted to consider these

characteristic changes in image parameters.

Rotational movements as fast as saccades of insects can be

expected to cause at least, on average, faster image displacements

than intersaccadic translational movements. Nonetheless, fast

image displacements may also be found during translation when

passing, for instance, a nearby object, while rotations in an open

field may only lead to small changes. A first impression of the time

courses of image parameters, while moving through two different

sample environments, an open field scenario and a forest scenario,

is provided by Figure 3. The fluctuations of stimulus parameters

result from an initial 45u rightward saccade-like rotation on the

spot followed by a 20 cm translation, while looking 90u to the right

at 0u elevation, and then another 45u rightward rotation on the

spot.

The mean values of image parameters (especially brightness and

the contribution of high spatial frequency as expressed by the a-

exponent) differ considerably between the different types of

environment. The fluctuations of the image parameters analyzed

around these mean values are considerably stronger and faster

during saccade-like rotations than during translations (Fig 3E–J).

This is particularly prominent in the open-field scenario. During

translations, fluctuations are only prominent for the forest scenario

containing objects, e.g. trees close to the camera. Fluctuations

appear to become larger, the smaller the aperture of the patch

analyzed. These examples already indicate that it is not easily

possible to predict the environment in which the motion was

performed from the fluctuations of the image parameters.

However, large and fast fluctuations strongly hint at rotational

movements (see below). Since the two sample scenes analyzed in

Fig. 3 are only the two ends of a kind of continuum (open field vs.

dense forest), we did not try to classify sceneries.

Distribution of image parameters in natural sceneries
The brightness in natural environments is, on average,

approximately log-normally distributed (Fig. 4A, upper traces)

or, more precisely, sub-Gaussian [6]. Changing the patch size does

not change the overall brightness distributions significantly (Mann-

Whitney-U Test, 60u versus 30u: p = 0.0884; 30u versus 15u:
p = 0.3498; 15u versus 2u: p = 0.2660). However, we found

substantial differences between brightness distributions when

comparing different surroundings. It is significantly brighter in

the open field environment (Fig. 4B, upper plot), for example, than

in a forest (Fig 4C, upper plot) (p,0.0001).

The contrast distributions depend on the patch size, which is in

line with previous work [24], [26]. With an increasing patch size, a

wider range of brightness levels is more likely to be covered by the

patch; therefore, the rms contrast tends to increase with the patch

size (p,0.0001) (Fig. 4A, central plot). The mean contrast

distributions are not significantly different from a lognormal

distribution (p.0.05; one-sample Kolmogorov-Smirnoff test;

detailed parameters shown in Table 1). The contrast distributions

also depend on the environment. We found much higher contrasts

in the forest than in open fields, most likely due to objects (trees,
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etc.) in front of a bright sky (Fig. 4B, middle plot; Fig. 4C, middle

plot).

The spatial frequency spectrum also depends on the patch size.

The exponent a, characterizing the slope of the decline in spectral

power with increasing spatial frequency, was found, on average, to

be a= 1.5760.39 for our dataset. However, there are systematic

differences between different types of scenes, as has already been

observed in other studies (e.g. [47]–[48]). We found a= 1.8 for

open field environments and a= 1.4 for forest-like environments.

Hence, high spatial frequencies are more prominent in cluttered

environments than in open areas with an unimpeded view of the

sky. Changing the patch size does not change the mean a, which is

in line with scale invariance, i.e. local quantities in natural scenes,

such as frequency composition, do not change by scaling [46].

However, bigger patches reduce the standard deviation of a
(Fig. 4A, bottom plot). Therefore, a values are more variable and

larger with smaller fields of view, though the mean over all scenes

stays the same.

Orientation bias of environmental structures
The orientations of contours in natural environments are not

uniformly distributed. In accordance with previous research [16],

[49]–[50], most power is found for vertical and horizontal

orientations when pooling our whole dataset for a patch size of

30u (Fig. 5A). We analyzed image patches of the two sample scenes

separately for different elevations (230u, 0u and 30u) (Fig 5B and

5C) to assess whether the orientation of spectral power depends,

on the one hand, on the environment or, on the other hand, on the

elevation in the visual field, as has already been carried out in

several previous studies [48], [51]–[52]. The power per orientation

differs substantially between the different elevations and for the

two sceneries. The horizon, for example, contributes by far the

most prominently oriented power in the open field (Fig. 5B,

middle plot). However, in the forest scenery, the horizon

contributes approximately the same power as vertical contours,

but all other orientations are also much more dominant than in

the open field (Fig. 5C, middle plot).

No orientation predominates in the power spectrum averaged

across all natural environments analyzed in the ventral visual field.

Horizontal orientations are apparent in the dorsal visual field –

though not as many as when looking at the horizon. The power of

every orientation in the upper part of the forest scene is

significantly stronger than in the open field. This is probably

caused by the treetops adding a lot of edges in every direction.

Therefore, the absolute power across orientations is higher

compared to the sky of open fields, which correlates with the

higher contrast in this part of the visual field of the forest scene

(Fig. 6B, middle plot and 6C, middle plot).

Though it has previously been shown that projections may

influence the image statistics over the hemisphere, and may cause

anisotropies [42], we avoided such anisotropies by choosing the

Lambert azimuthal equal-area projection. We ensured that the

Figure 5. Mean power versus orientation obtained for 306 patches. (A) Mean power (thick line) and standard deviation (marked area) across
all images in the dataset. Note the predominance of horizontal and vertical orientations in natural images. (B) The power per orientation for the open
field example (cf. Fig. 3A) at different elevations as indicated in the subfigures. (C) Power per orientation for the forest example (cf. Fig. 3B) at different
elevations. Note the considerable differences between elevations and between different natural environments.
doi:10.1371/journal.pone.0110386.g005
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image patch always covered the same area with less than 2%

distortion by continuously calculating a new projection for each

patch centered on the respective viewing direction and by

analyzing the image parameters in the least distorted region, i.e.

in the center of the projection.

Elevation dependence of image parameters
Since natural scenes often appear to be characterized by

inherent asymmetries along their elevation (e.g. sky in the upper

part of the visual and ground structures in the lower part), we

investigated whether the different image parameters, i.e. bright-

ness, contrast and a-exponent, depended on the elevation in the

visual field (Fig. 6). This analysis was carried out for 30u patches

using a Mann-Whitney U Test with Bonferroni correction for

statistical analysis.

By taking the entire database into account (Fig. 6A), larger

brightness values predominate in upper image regions. Accord-

ingly, the ground is, on average, darker than more elevated regions

(p,0.0001 for all comparisons). A similar gradient is visible for the

contrast. At an elevation of 230u (lower image parts), images show

significantly lower contrasts than at the other elevations analyzed

(p = 0.1966 for 30u versus 0u; p,0.0001 for 230u versus 0u; p,

0.0001 for 30u versus 230u).
Alpha-exponents in the upper part of the visual field are

significantly smaller than in the equatorial parts, while they do not

differ significantly in lower image regions (p,0.0001 for 30u versus

0u; p = 0.0586 for 230u versus 0u; p,0.0001 for 30u versus 230u).
Since the distributions of a-exponents in the different eye regions

overlap tremendously, we have not considered this difference to be

functionally relevant.

Whereas the ground contrast is significantly lower for all

environments than the contrast in other image regions, individual

sceneries may differ greatly from the average in this regard.

Gradients can even be reversed in some environments (compare

Fig. 6B and 6C). In the spectral range analyzed (mainly ‘‘green’’)

that mimics that of the insect motion vision pathway, for instance,

the sky in open field sceneries may be darker than the other parts

of the image (Fig. 6B, upper plot). Moreover, individual scenes

differ significantly, although, on average, we found no elevation-

dependent gradient for the a-exponent. In the open field example

(Fig. 6B, bottom plot), for instance, a-exponents in the equatorial

and lower regions of the image are higher than in the sky region,

indicating more power in the high frequency range in the sky than

on the ground. This finding is counterintuitive at first glance,

however, the many thin white cirrus clouds in the respective

scenery (Fig. 3C) have contributed considerably to the elevated

power in the high spatial frequency range (Fig. 6B bottom plot).

The elevation dependence of a in the forest environment example

is reversed (Fig. 6C bottom plot).

Fluctuations of image parameters during simulated
movements

This study focuses on how rotational and translational self-

motion in natural environments with a time course reminiscent of

that of flies and bees shape the time course of brightness, contrast

and spatial frequency content in different parts of the visual field

and differently sized image patches. Since we were mainly

interested in the statistics of image sequences resulting from

motion in the environment, the spectral range of the images was

adjusted to that of the insect’s motion vision system. The

amplitude of the time-dependent fluctuations was quantified for

all parameters by determining the standard deviation across time,

while either the camera translated by 1 meter or the panoramic

Figure 6. Box-and-whisker plots of the distribution of image parameters at different elevations in the visual field. (A) For the entire
dataset, (B) for the ‘‘open field’’ example and (C) for the ‘‘forest’’ example. (Upper diagrams) brightness, (middle diagrams) rms contrast, (bottom
diagrams) a-exponent. Boxes indicate the 25th (left boundary), 50th (median, center line of the box) and 75th (right boundary) percentiles. Whiskers
show the minimum and maximum disregarding the outliers. Outliers are not shown in the plots.
doi:10.1371/journal.pone.0110386.g006
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image was rotated by 360u. We computed the mean of the

absolute value of the first time derivative of the parameter values

to determine the speed of fluctuations of the parameters.

On average (Fig. 7), but also for individual sceneries (see Fig.3),

the amplitude and speed of all image parameters fluctuate much

more during rotational saccade-like movements than during

translational ones. The fluctuation amplitudes differ by about

one order of magnitude (Fig. 7A). The difference in fluctuation

speed is even larger (Fig. 7B). The amplitude and speed of

fluctuations decrease with increasing patch sizes. The only

exception is the amplitude of contrast fluctuations which tend to

increase with increasing patch sizes during saccade-like rotations,

but tend to change only little during translations (Fig. 7A, middle

plot). Mean brightness and the a-exponent larger patches,

meaning a larger integration area, tend to reduce the amplitude

of fluctuations. For contrast fluctuations, however, large patches

are likely to increase fluctuation amplitudes, because they are

more likely to slide over differently illuminated image regions

during rotations than small ones. Contrast fluctuations are

smoother during translations than during saccade-like rotations.

While small image patches are accompanied by rapid, but small

contrast fluctuations, these fluctuations become smoother and

Figure 7. Amplitude and speed of time-dependent fluctuations of image parameters. Data are shown for rotational or translational
movement and for different image patch sizes. (A) Fluctuation amplitudes during 360u rotations at 1000u/s and translations for 1 m at 1 m/s (as
indicated below diagrams) Fluctuation amplitudes are given as standard deviation across time. (B) Speed of fluctuations for the same flight dynamics
as in (A) measured by taking the mean absolute first derivative of the time courses of image parameters. Upper diagrams: brightness, middle
diagrams: rms contrast, bottom diagrams: a-exponent. Each pair of boxplots shows fluctuations caused by rotation in comparison to translation (see
insets below). Patch sizes are shown in different colors and line thickness as before.
doi:10.1371/journal.pone.0110386.g007
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larger with increasing patch sizes. The smoothing effect of large

patch sizes is most prominent for the a-exponent (Fig. 7B, bottom

plot).

Overall changes of image parameters during simulated
movements

Insect flight behavior causes changes in brightness, contrast and

spatial frequencies on the retina. These changes differ between

saccades and intersaccadic translations. We determined the

absolute difference between the initial values of brightness,

contrast and a-exponent at the onset of either the rotation or

translation and the corresponding values at subsequent times

during the respective movement to quantify the overall changes in

the image parameters resulting from a simulated saccadic rotation

of a given size or a simulated translational displacement over a

given distance. We tested translations of 1 m in comparison to

leftward as well as rightward rotations of 180u. The consequences

of rotations were analyzed for the first, the middle and the last

image of the 1-m image sequence. We did not rotate each image of

a sequence, because the panoramic images at neighboring

locations are very similar. We then determined the mean as well

as the distribution of overall motion-induced changes of the

different image parameters as a function of translation distance

(Fig. 8A) and rotation amplitude (Fig. 8B).

Rotations in an amplitude range typical for saccadic turns of

insects usually cause larger overall changes of image parameters

than translations in the range plausible for intersaccadic move-

ments do. Larger patch sizes tend to reduce the overall changes in

brightness and the a-exponent. Overall contrast changes during

translations appear to be unaffected by the patch size (Fig 8A,

middle plot), while they even increase during rotations with

increasing patch sizes (Fig 8B, middle plot).

We calculated the total parameter changes caused for two

extremes of translation distances (2 cm and 100 cm) and a range

of rotations (15u, 30u, 45u, and 60u) at 0u elevation and a patch size

of 30u to further assess the relative difference between overall

changes in image parameters caused by rotational and transla-

tional movements, respectively. We determined the ratio between

the absolute changes caused by the rotation specified (DR) and by

the translation associated (DT) for all eight possible combinations

(Fig. 9A). Apart from the most extreme case of comparing a 100-

cm translation to the smallest rotation of 15u, the median ratio is

larger than 1, indicating a bigger change induced by the rotation

than by the translation.

In a second analysis, we fixed the rotation amplitude to 45u and

altered the patch size (2u, 15u, 30u, and 60u: Fig. 9B). The patch

size does not have any obvious influence on the DR/DT ratio,

Figure 8. Mean absolute overall changes of the three image parameters for different patch sizes. Data are shown as a function of (A)
translation distance and (B) of overall amplitude of rotation. Upper diagrams: brightness, middle diagrams: rms contrast, and bottom diagrams: a-
exponent. Parameter value of the first image always set to zero; plots share a common scale for better comparison. Distributions of overall parameter
changes across the different image sequences shown in the boxplots after (A) a 1-m translation and (B) a 180u rotation. Patch sizes are encoded by
color and line thickness as before.
doi:10.1371/journal.pone.0110386.g008
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Figure 9. Comparison of ratio between the changes of the image parameters analyzed. Changes in brightness (upper row), rms contrast
(middle row) and a-exponent (bottom row) are shown as caused by rotations (DR) and by translations (DT) over either 2 cm or 100 cm (indicated by
blue arrows underneath diagrams). Rotations and translations start at the same image of a sequence. Horizontal lines in all diagrams illustrate the
ratio of 1 where the changes induced by rotation and translation are the same. (A) Rotation amplitude was varied in 15u steps (see inset below
diagrams). Patch size (30u), elevation (0u) and azimuth (+90u) of patch center were constant. (B) Patch size was varied (2u, 15u, 30u, and 60u, as
indicated below diagrams). Rotation amplitude (45u), elevation (0u) and azimuth (+90u) of patch center were constant. (C) Elevation of patch was
varied as indicated below diagrams (+30u, 0u, 230u). Patch size (30u), rotation amplitude (45u) and azimuth (+90u) of patch center were constant.
doi:10.1371/journal.pone.0110386.g009
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which is in line with the results from the fluctuation analysis shown

in Figure 7.

In a third approach, we fixed the rotation amplitude to 45u and

the patch size to 30u, and altered the elevation of the patch

analyzed in the visual field in steps of 30u from 230u to 30u. The

DR/DT ratios are smaller for the large translations than for small

ones for all image parameters and all elevations analyzed. Whereas

DR/DT values are fairly independent of elevation for the spatial

frequency content and contrast, they appear to be slightly smaller

for the overall brightness changes at the lowest elevation.

In summary, changes in image parameters induced by saccade-

like rotations are, in most cases, larger than those induced by

translations. Only when the consequences of small rotations are

compared to large translations, may the parameter changes be

similar.

Discussion

Visual systems have to cope with the peculiarities of the image

statistics encountered in behavioral situations, i.e. the brightness,

contrast and textural features of the retinal input, as well as their

characteristic temporal changes during behavior in natural

environments. Therefore, they are thought to be adapted to these

natural operating conditions by evolution. Although natural image

statistics have been widely analyzed (e.g. [15]–[16], [18], [21],

[53]), only a few studies took into account that under behavioral

conditions, retinal image statistics are dynamic and that the

dynamic changes are shaped, to a large extent, as a consequence of

the action-perception cycle by the animal’s behavioral actions

[17], [23]–[32]. Therefore, we addressed this issue for the first

time systematically with respect to the specific dynamics of the

retinal image flow as is characteristic of the saccadic flight and

gaze strategy of insects, such as flies, wasps and bees [3]–[12].

Since we were mainly interested in the statistics of moving image

sequences that form the basis of spatial vision in flying insects by

providing motion parallax cues [2], the visual input was

characterized in the spectral range of the motion vision system

of insects ([33]–[34], [54]–[56], see also [57]). Consequently,

brightness and contrast gradients may differ a lot from what

humans experience with their photopic system: for instance, a blue

sky on a sunny day that appears very bright to humans was found

to be darker than a green meadow when analyzed in the spectral

range of the insect motion vision system.

Most importantly, we could show that saccade-like rotational

movements usually elicited much larger changes in brightness,

contrast and spatial frequencies than translational movements.

Distinct changes in image parameters are suggested to be elicited

during translations, mainly by nearby objects. In the following, we

will (i) compare the characteristics of image parameters in our

dataset with previously published results, (ii) identify characteristic

changes in image parameters resulting from naturalistic self-

motion, and (iii) address the consequences of the characteristic

image dynamics during saccades and intersaccadic intervals of

insect flight for the processing of retinal image flow and for

neuronal adaptation.

Characteristics of natural sceneries
The brightness, contrast and spatial frequency composition

differ greatly between different natural environments, but also vary

within a given scenery. The distribution of image parameters also

depends on the patch size within which the sceneries are analyzed.

Different patch sizes may correspond to differently sized receptive

fields of neurons involved in visual information processing. On

average, we did not find any dependence of the brightness

distribution on patch size. Contrast reveals, on average, a

lognormal distribution across all patch sizes, with larger patches

resulting in larger contrast values. This is also true for the

distribution of the parameter describing the decline in spectral

power with increasing spatial frequencies (a-exponent): it depends

on the patch size, with smaller patches resulting in more variations

across the images.

We found a contrast gradient for most sceneries along the

elevation of the visual field, with higher contrasts in its upper parts

(Fig. 6), for our database of natural image sequences. However,

Betsch et al. [17] found the contrast decreased with increasing

elevation. This difference between studies can be explained by the

spectral bandwidth of our camera system that we chose to mimic

the spectral sensitivity of the flies’ motion vision system, while

Betsch et al. [17] analyzed video signals as seen by cats and used

color images that were subsequently transformed into grey level

images by differentially weighing the color channels (0.3 red, 0.6

green, 0.1 blue). The blue sky appears relatively dark for the

motion vision system of insects, because – depending on the time

of the day – the range of wavelengths where the motion vision

system is most sensitive does not predominate in sky light (Fig. 6B).

Since clouds scatter light in the whole visible bandwidth – they

appear white – they may lead to high contrast borders in the sky

region of open field sceneries and, thus, stimulate the fly’s motion

vision system. The fly’s motion vision system is also sensitive to

ultraviolet light [33]–[34]. However, the blue sky does not contain

large amounts of ultraviolet light in the sensitivity range of fly

photoreceptors because of the intense scattering and absorption of

the UV light by the earth atmosphere [58]. UV-A light from direct

sunlight scattered by the atmosphere may be detected by

photoreceptors viewing the sky. The resulting UV-to-green

contrast defining the horizon in natural environments was

proposed to be useful in the context of visual navigation [59].

However, the relative proportions of green and UV components in

the ambient light require UV and green sensors to have very

different states of adaptation, because UV intensity in the sky is

only a fraction of the green reflected by the ground. Therefore, we

assume that photoreceptors feeding the fly motion vision system

will not respond strongly to the UV scattered by the sky if adapted

to the much higher intensities in the green wavelength range (see

also [60]). Since green leaves and green grass appear as bright to

the fly’s motion vision system and even brighter than the blue sky,

the brightness gradient in open field scenarios (Fig. 6B) may be

inverted relatively to, for example, a forest scenery (Fig. 6C),

where the ground is not covered with grass and, therefore, appears

much darker than the equatorial and upper regions of the scene

containing bright leaves and the sky.

The orientation bias of contours in natural sceneries, though

found to a different extent in different environments and different

parts of the visual field, has its correspondence in a similar bias for

horizontal or vertical edges in the sensitivity of visual interneurons

of a variety of animals, e.g. [61]–[64]. This feature can be

regarded as an evolutionary adaptation of orientation sensitivity of

visual systems to the predominant orientations of contours in

natural environments.

The distribution of spatial frequencies in our database matches

earlier findings. Van der Schaaf and van Hateren [16] found an

average a-exponent of 1.8860.43; Tolhurst et al. [53] found a

mean value of a equivalent to 1.260.13 for their databases. In our

database, the mean a-exponent of 1.5760.39 is between these

ranges. Although we did not find any elevation dependence of a
on average, strong elevation-dependent differences and variations

are observed in some environmental settings.
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Dynamical changes in image parameters resulting from
naturalistic rotational and translational movements

The characteristics of static images only reflect to some extent

the visual input of a behaving animal under natural environmental

conditions. Therefore, we analyzed sequences of natural pano-

rama images mimicking what a free-flying insect might perceive

during translational and rotational self-movements as is charac-

teristic of their saccadic flight and gaze strategy [3]–[13], [65]. It

should be noted that the movements underlying our analysis of

dynamical changes in image parameters represent approximations

to real movements in natural environments. Our simulated

rotational movements are the result of rotations of our panoramic

images. These software rotations represent ‘‘real’’ rotations

sufficiently well, especially with respect to their saccade-like

dynamics [4]–[5]. This may be different for our simulated

translational movements for technical reasons. Our camera

systems could not be moved smoothly at 1 m/s (our simulated

velocity) under outdoor conditions, but only stepwise. Images were

taken at 1-cm distances and at time steps of 2 s along straight

trajectories. Thus, the translational image sequences obtained in

this way would correspond to the corresponding real motion

sequence only if the visual scenery did not change, while taking

subsequent images (e.g. no brightness changes due to clouds

occluding the sun or movements of leaves, etc.). This, however, is

an unlikely assumption. The ‘‘environmental noise’’ may intro-

duce high frequency components to the fluctuations of image

parameters that are evoked by translational movement. Our

simulated rotational movements were based on single snapshots

and, therefore, did not contain any environmental noise. However,

since environmental noise does not decrease the fluctuations

during simulated translations, our main conclusion that fluctua-

tions of stimulus parameters during translations in cluttered

environments with natural depth structure are smaller than those

induced by saccade-like rotations is not affected by the way we

constructed our motion stimuli.

In general, translational movements are usually found to cause

much smaller changes in image parameters than rotations with

saccade-like dynamics. Both amplitude and speed of fluctuations in

image parameters differ by about one order of magnitude. Since

only changes induced by translational movements contain

information about the spatial structure of surroundings [14], the

saccadic flight and gaze strategy of insects has been concluded on

the basis of electrophysiological experiments and model simula-

tions to facilitate spatial vision [2], [66]–[71]. If rotational and

translational movements were superimposed, those changes in

image parameters containing spatial information would be

confounded by much larger fluctuations caused by rotations [69].

Distinct changes in image parameters are elicited during

translations only by objects nearby (e.g. Fig. 3). Therefore, such

changes could be the basis for the detection of behaviorally

relevant objects without any need for further image segmentation

[71]. By contrast, changes in image parameters evoked by saccade-

like rotations have much higher amplitudes and frequencies than

those evoked by translations, in particular, because they are not

only caused by objects nearby, but also by distant ones. The

temporal structure and extent of these saccadic and intersaccadic

changes in image parameters define the temporal constraints

under which the visual system has to operate under behavioral

conditions in natural environments.

Consequences of image parameter fluctuations for
information processing and visual adaptation

The limited coding ranges of photoreceptors and neurons as

well as the noisiness of all neural computations constrain how

reliably information about the environment can be represented by

the nervous system [72]–[75]. Visual systems are thought to adjust

such ranges to the current input conditions (e.g. [76]) to make

optimal use of their limited operating range. However, the

properties of the neural hardware do not only limit the range of

stimulus amplitudes that can be processed and represented. The

timescale on which time-varying stimuli can be encoded is also

constrained by the time constants of neural mechanisms at all

processing stages. Photoreceptors, for instance, require several

milliseconds to transform light stimuli into electrical signals (e.g.

[73], [77]), and motion detection mechanisms rely on time

constants to match their output to the velocities that are to be

represented [78]–[79]. A close match has been proposed in

various studies between the time constants of the different stages of

the insect motion vision pathway and the different retinal velocity

ranges that might result from the partly different flight style of

different insect species [80]–[83]. Moreover, motion detection

systems of insects have been shown to adjust their operating range

by adaptive mechanism on a wide range of timescales to the

prevailing dynamical conditions (reviews [84]–[85]).

Most previous studies addressing the constraints imposed on the

operating ranges of visual neurons, their dynamical properties and

adaptation processes are based on systems analyses with stimuli

designed by the experimenter. They did not usually take visual

stimuli into account that approximated those encountered by the

animal under behavioral conditions. Hence, the current functional

interpretations of operating ranges and adaptation processes in

visual neurons can only be tentative. An exception are photore-

ceptors and first-order visual neurons of flies, which were

investigated with natural stimulus sequences that approximated

what the animal might have seen outdoors [27], [86]–[88].

However, even in these studies, the brightness fluctuations resulted

from smooth camera movements rather than from the saccadic

flight style of insects. Thus, they differed from the high-frequency

brightness fluctuations evoked by saccades and the smaller and

slower fluctuations characteristic of intersaccadic intervals (see

Fig. 3C, D and Fig. 7).

The parameters characterizing neural computations are often

assumed to be tailored to the statistics of natural visual input in an

information-theoretically optimal manner. This idea implies that

changes in input statistics, as they might occur during flight, should

be reflected by adaptive adjustments of computation parameters to

ensure optimal information transmission at any time [89]. Natural

input signals are characterized by a high degree of redundancy,

whereas neural computation is inherently noisy. Thus, the optimal

encoding strategy requires a balance between removing and

retaining redundancy depending on the signal-to-noise ratio of the

signals that need to be processed. The optimal balance is captured

by the principle of maximizing the mutual information between

the relevant stimulus features that are encoded and the

corresponding responses at the different levels of the visual system

[45], [89]–[91]. In this context, however, it is a frequent

conceptual problem to decide what the relevant stimulus features

are and what computational task is being solved by a particular

neural circuit.

Therefore, it can only be assessed how well the visual

computations and their adaptive properties are matched to the

natural image statistics and, in particular, the image parameter

fluctuations during behavioral sequences in case not only the visual

input is known, but also the stimulus features that need to be
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encoded at the different levels of the visual system. Information

about what needs to be encoded is – to some extent – obvious for

the peripheral visual system (photoreceptors and first-order

neurons). Accordingly, models successfully describing the adaptive

processing of naturalistic input sequences with a high dynamic

brightness range are available [87], [92]. However, it is still an

open question what information is encoded further downstream in

the visual system. In particular, although we know a lot about the

response properties of directionally selective wide-field neurons at

the output level of the visual motion pathway to optic flow

encountered during free-flight, their functional role in behavioral

control is still controversial [2], [84], [93]–[95]. This is especially

true with respect to the significance of the pattern-dependent

response modulations that have been found in these neurons

despite their large receptive fields [71], [96]–[101]. If these wide-

field motion-sensitive cells are thought to represent detectors of the

animal’s self-motion and to play a role in compensating for

deviations from flight course, the fluctuations in image parameters

evoked during locomotion will just reflect ‘‘noise’’ that should

somehow be attenuated by information processing further

downstream. However, if these neurons are conceived as providing

information about the environment during translational inter-

saccadic movements, these pattern- and distance-dependent

fluctuations are likely to be of functional significance and should

be made explicit by downstream information processing (see [2]).

In either case, adaptation mechanisms should be tailored in

different ways depending on the task the neurons are thought to

solve. This issue and, in particular, the question of how visual

information processing at the different stages of the visual system is

adapted to the spatiotemporal statistics in natural image sequences

cannot yet be resolved and requires further studies.

Supporting Information

Appendix S1 Time course of first order statistics of the
mean brightness and of the root mean square contrast
in differently sized image patches during rotational and
translational movements (see Appendix S1 for details).
Moreover, we examined the spatial frequency statistics within the

image patches and, thus, calculated two-dimensional power

spectra (Fig. 2D–F), after having tapered the image patches with

a sinusoidal window to eliminate boundary effects. Power spectra

were calculated by taking the squared magnitudes of fast Fourier

transformations (FFTs). Taking the mean over all frequencies for

each viewing direction, we obtained the orientation-dependent

power spectra (Fig. 2G) providing some information about the

orientations of contours that were most prominent in the image.

By taking the mean over all orientations for each frequency, we

calculated the frequency-dependent power spectra (Fig. 2H). More

details are given in Appendix S1.
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