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Abstract

In the field of robot audition the topic of Computational Auditory Scene Analysis (CASA)
has been studied since many years. However, the focus of most CASA research is on the pro-
cessing of several concurrent speakers, i.e. separating sound sources in a mixed recording
and performing a speech-to-text conversion on the separated signals. While this is an im-
portant step, the issue of how to group different utterances from different speakers in natural
environments is often neglected. The Computational AudioVisual Scene Analysis (CAVSA)
proposed in this work intentionally ignores the issue of sound source separation by assuming
that all speakers talk in sequence (or sound source separation has been implemented) and
that background noise is stationary, and focuses on the analysis of a dialogue scenario with
an unknown number of speakers who have not been seen or heard before. In addition to the
grouping issue, it is also estimated how many interaction partners are in the scenario and
where they are. Moreover, CASA is extended to CAVSA by combining visual and auditory
modalities for achieving a more accurate and reliable perception. CAVSA can be used as a
complementary analysis step for applications such as speech recognition.

CAVSA is a challenging task due to the complexity of dialogue scenarios. First, speakers are
unknown in advance, thus a database for training high-level features beforehand to recognize
faces or voices is not available. Second, people can dynamically come into and leave the
scene, may move all the time and even change their locations outside the camera field of
view. Third, the robot can not see all the people at the same time due to limited camera field
of view and head movements. Moreover, a sound could be related to a person who stands
outside the camera field of view and has never been seen.

The main contribution of this thesis lies in the system architecture. Three important concepts
are applied together in the system: proto-object, Short Term Memory (STM) and audiovi-
sual association. In this work, proto-objects are considered as a compressed form of various
features. They can basically combine an arbitrary number of features and can be easily ex-
tended with new features to improve performance without changing the architecture of the
system. STM can represent environment changes such as changes in number and position
of speakers, and acquire knowledge of new speakers continually in an unsupervised manner.
Finally, the current auditory signal is linked to the matched visual signal to answer the ques-
tion “Who is speaking?”. The second contribution is combining many simple auditory and
visual features to represent speakers, since training high-level features beforehand to recog-
nize faces or voices is impossible. Although each individual feature is normally not good
enough to differentiate between speakers, their combination can fulfill this task.
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This work applies CAVSA in two applications. First, in online adaptation of audio-motor
maps, CAVSA is applied for finding the matched visual source to the current audio source in
multi-person environments, thus vision can be used to provide precise position information.
Only a small set of simple features is used in the original version of CAVSA, since it is not
necessary to identify persons in this application. It is shown that the approach with CAVSA
is more robust in multi-person scenarios than the state of the art in terms of learning progress.
Then CAVSA involving more complicated issues is used in human-robot dialogue scenarios.
In this application, the system needs to integrate more features to recognize speakers. It is
shown that the CAVSA system can assign words to corresponding speakers when multiple
people dynamically enter and leave the room. In comparison to the state of the art, a person
can be recognized again even when disappearing for a while and then reappearing. Moreover,
typical environmental sounds in offices and households can be filtered out based on simple
auditory features.

The system used only a humanoid robot head with a pair of cameras and a pair of micro-
phones. The head is mounted on a pan-tilt unit.
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1. Introduction

Robots have been available since a long time to perform repetitive and dangerous tasks in
industrial settings. With the rapid development of robot research, service robots for personal
and domestic use are playing a more and more important role. According to the Interna-
tional Federation of Robotics, about 2.5 million service robots for personal and domestic use
were sold worldwide in 2011 [IFR, 2012]. It is further projected that the sales of all types
of personal service robotics could reach about 15.6 million units in the period 2012-2015.
These include robots for floor cleaning, lawn-mowing, entertainment, education, assistance
for handicapped people, etc. Will robots become part of our day-to-day lives in the future?
Bill Gates gave his prediction related to this question [Gates, 2007]. He linked the current
status of robotic technology to the computer industry during the mid-1970s, around the time
that he and his fellow entrepreneur Paul Allen launched Microsoft. He also predicted that the
next hot field will be robotics and wrote: “I can envision a future in which robotic devices
will become a nearly ubiquitous part of our day-to-day lives.” [Gates, 2007]

Although it is difficult to say how soon this day will come, there is a clear tendency for
robots to be more of a companion to people and no longer just a tool. In the future, they will
probably help people with all the household chores, provide physical assistance and even
companionship for the elderly. All the aspects require friendly Human Robot Interactions
(HRI). One goal in HRI is natural interaction which means that people communicate with
robots in a way similar to human-human interaction. This makes robots more natural and
acceptable for humans. Humans communicate with other people using verbal signals and
nonverbal signals (e.g. body gesture, gaze and facial expression). In order to emulate human
communication capabilities, robots must be able to process and produce such signals. There
has been a tremendous interest in these issues. Among them, the capability of spoken lan-
guage processing is a very important issue in the natural HRI, since robots should at least
allow humans to tell them what to do.

There are a lot of factors influencing the performance of spoken language communication.
Background noise is one factor investigated by many researchers. Even the best speech
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1. Introduction

recognition system requires that the speech is produced in a fairly quiet background. This is
because the system can not distinguish between the sounds and would consider the mixture
of the signal with its background as a single sound. To overcome this issue, there are two
very different fields with opposing viewpoints related to sound source separation. One is
the field of multichannel statistical methods such as Blind Source Separation (BSS), which
usually use more than two microphones, see for instance [Cichocki and Amari, 2002]. The
other is the field of psychoacoustic-based scene analysis. Humans can easily deal with the
"cocktail party problem", following a single speaker’s words while a number of people are
talking simultaneously in a room with loud background music. Bregman [Bregman, 1990]
argues that the sound reaching our ears is processed by Auditory Scene Analysis (ASA).
ASA is a psychoacoustic concept and aims to separate auditory streams from their mixture,
such that each stream represents a single sound source in the acoustic environment. In the
field of robot audition the topic of building an ASA has been studied since many years.
Recent books on Computational Auditory Scene Analysis (CASA) describe intensive work
in this field [Rosenthal and Okuno, 1998, Divenyi, 2004, Wang and Brown, 2006]. CASA is
the field of computational study that aims to achieve human performance in ASA by using
only one or two microphone recordings of the acoustic scene.

Another main factor influencing the performance of language communication is the group-
ing of the individual sounds according to their respective sources (esp. grouping different
utterances from different speakers). Even if all people speak in sequence and speech recog-
nition performs perfectly, it is desirable to assign words to matched speakers. Otherwise,
the robot could misinterpret the dialogue. However, most current work of CASA focuses
on sound source separation and this issue is often neglected. Therefore, the work proposed
in this thesis focuses on the issue of grouping. Moreover, CASA is extended to Computa-
tional AudioVisual Scene Analysis (CAVSA) by combining visual and auditory modalities
for achieving a more accurate and reliable perception. CAVSA is a very challenging task and
analyzes a dialogue scenario with an unknown number of speakers who have not been seen
or heard before. In addition to the grouping issue, it is also estimated how many interaction
partners are in the scenario and where they are.

1.1. Challenges of CAVSA

CAVSA is a challenging task. Let us look at a scenario to illustrate this. Assume a robot is
working behind a bar and dealing with more than one guest. A typical bar scene is shown in
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Figure 1.1.: A typical bar scene with more than one guest. Image originated from: http://pintspub.com/.

Fig. 1.1. These guests have never been seen and heard before. They dynamically come to
the bar for the orders and leave after getting their drinks.

In order to fulfill the tasks as a bartender, the robot should at least understand the scene and
be able to answer the following questions:

• How many people are in the surroundings? Sometimes it is not easy to estimate the
number. First, guests dynamically come to the bar and leave, so that the number of
guests is changing over time. Second, the robot can not see all the people at the same
time due to limited camera field of view (FOV) and head movements.

• What is the location of the guests? Localization of people is important in order to put
the drinks in front of a guest. The guests may move all the time and even change their
locations outside the camera FOV, the robot should be able to track the guests.

• Who is speaking? The robot should assign words to the corresponding speakers. Oth-
erwise, it could give a drink to the wrong guest. Additionally, when a guest has ordered
a drink, leaves the bar for a while and returns to pick his drink, the robot should rec-
ognize him again. Moreover, a sound could be related to a person that stands outside
the camera FOV and has not been seen before.

In the following, the contributions of this thesis and strategies to overcome the above chal-
lenges are outlined.

3



1. Introduction

1.2. Contribution of this Thesis

The research goal of this thesis is to develop a system for CAVSA with a focus on human-
robot dialogues in multi-person environments. The main contribution lies in the system
architecture as illustrated in Fig. 2.1. Three important concepts are applied together in the
system: proto-object, Short Term Memory (STM) and audiovisual association.

• Proto-Objects: Most previous approaches in robotics such as [Okuno et al., 2004]
rely on low-level position estimations, i.e. the position of a face in the current im-
age or the computed sound position in a certain time frame. These measurements are
often very noisy and dealing with missing information (e.g. no new sound localiza-
tion when the speaker is silent) is difficult. Therefore, the concept of proto-objects,
a mid-level scene representation between pixel (or voxel) and semantic object level,
has been proposed [Bolder et al., 2007, Rodemann et al., 2009a]. Proto-objects can
be described as “something” coherent at a certain position (e.g. in the robot’s camera
image) or at a certain point in time (e.g. for the auditory signal). Thus, proto-objects
can be tracked, pointed or referred to without identification and enable a flexible inter-
face to behavior-control in robotics [Bolder et al., 2007]. In this thesis, proto-objects
are used as a compressed collection of a variety of features. They can basically com-
bine an arbitrary number of features and can be easily extended with new features to
improve performance without changing the architecture of the system. In the past,
visual [Bolder et al., 2007] and audio [Rodemann et al., 2009a] proto-objects were
used separately. The CAVSA system combines the two approaches into one consistent
framework.

• Short Term Memory (STM): As the robot usually can not see all the interaction part-
ners at the same time due to limited camera FOV and head movements, STM can be
used for the representation of the whole scene (see e.g. [Bolder et al., 2008, Schmüd-
derich, 2010]). Furthermore, STM is necessary for cognitive tasks. For example,
when a person leaves the scene for a while and returns, the robot should recognize
him again. Additionally, STM can be used to keep track of environmental dynamics
such as changes in the number and position of speakers, and acquire knowledge of new
speakers continuously in an unsupervised manner.

• Audiovisual association: This work combines visual and auditory modalities to achieve
better performance. The integration of auditory and visual information derived from
the same event can enhance the accuracy of the resulting perception [Bulkin and Groh,
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2006]. Moreover, auditory and visual modality are somehow complementary for scene
representation [Bulkin and Groh, 2006]. On the one hand, the vision channel transmits
more accurate position information than the auditory channel in typical situations. On
the other hand, while visual cameras usually have a limited FOV, auditory perception
is possible in 360◦.

The CAVSA system links the current auditory signal to the matched visual signal to
answer the question “Who is speaking?”. The audiovisual association is based on ei-
ther temporal coincidence (synchrony) or temporal and spatial coincidence depending
on the number of visual sources in the scene. The uncertainty of the audiovisual as-
sociation is also measured. Additionally, the situation is considered where a sound is
related to a person who has not yet been seen.

Moreover, since the speakers have not been seen or heard before, it is impossible to train
high-level auditory and visual features beforehand to recognize voice and face. Hence the
strategy is to combine many simple auditory and visual features to represent speakers.
Experiments from neuroscience could show that the recognition of sensory inputs involves
the interaction of different brain circuits, each of which is activated by a certain type of
feature [Wang and Brown, 2006]. Humans normally recognize an object with more than
one visual feature such as color, shape and size. The brain binds different features together
to represent the input signal. From a computational perspective, it is also advantageous to
combine multiple features of the same source, because multiple features may improve the
accuracy using redundant information. A system using only a single feature lacks robust-
ness, it easily fails when the feature is missing or observations are ambiguous. The CAVSA
system combines many simple auditory and visual features to differentiate between speakers,
although each individual feature is normally not good enough to fulfill this task.

1.3. Applications

CAVSA has many potential applications. This thesis assumes that all meaningful sounds
originate from human speakers and applies CAVSA in two applications.

The first application is online adaptation of audio-motor maps. Audio-motor maps describe
the relationship between binaural audio cues and sound position in motor coordinates (az-
imuth and elevation). These audio cues such as interaural time difference (ITD) and in-
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teraural intensity difference (IID), result from the interaction of the head and ears with the
incoming auditory stimulus [Wang and Brown, 2006]. Using audio-motor maps, a binaural
auditory system can obtain sound source positions from measured audio cues. More details
on audio-motor maps can be found in Appendix B. Since vision plays an important role in
calibration of audio-motor maps in humans and animals [Zwiers et al., 2001, Knudsen, 2002;
1998], it is used as the feedback signal for precise position information. It is then necessary
to match a visual signal to the current sound, which is challenging when more than one vi-
sual source exists. If an unrelated visual signal is selected for the adaptation, the quality of
audio-motor maps can deteriorate. Therefore, a fundamental problem in online adaptation of
audio-motor maps is audiovisual association in scenarios where the current acoustic signal is
to be related to one out of many visual signals (e.g. hearing an utterance and seeing multiple
faces at the same time). State of the art approaches [Nakashima and Mukai, 2005, Hörnstein
et al., 2006] employ heuristics for linking visual and auditory information and can only work
in constrained environments where only one face or one colored marker appears. It will be
shown that CAVSA is able to find the correct visual correspondence of the current sound
source and enable online adaptation to run in more complex environments. Furthermore, the
quality of audio-motor maps depends on the performance of CAVSA, given precise mea-
surements of visual position and audio cues. This is the reason why CAVSA is tested in
online adaptation of audio-motor maps. In this application, a small set of simple features is
sufficient, since it is not necessary to estimate person IDs.

CAVSA is also tested in human-robot dialogue scenarios. In a dialogue scenario, it may
not be so important to figure out exactly who a person is, but to notice when the camera
sees the same person again after the robot head has moved. The robot should also be able
to recognize people even when they changed position while out of the camera FOV. This
task requires a bigger set of visual features compared to the online adaptation of audio-
motor maps. Assuming that people have not been seen and heard before, a database for
training high-level features beforehand to recognize faces is not available. Hence the system
combines a set of simple visual features such as height, color and texture of different upper
body parts. It will be shown that a system integrating these simple visual features, is able to
deal with complicated situations. For example, speakers can be recognized again when they
leave and enter the scene.

Furthermore, a set of simple auditory features is tested to recognize voices and environ-
mental sounds. It will be shown that auditory features have good performance to recognize
environmental sounds and thus are used for filtering these sounds.

6
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1.4. Structure

The remainder of this work is structured as follows: In the following chapter the system
architecture of CAVSA, especially the three important concepts: proto-object, STM and au-
diovisual association, are introduced. Chapter 3 details the application of CAVSA in online
adaptation of audio-motor maps and presents the results. In chapter 4, more visual and audi-
tory features are introduced and tested for the application in human-robot dialogue scenarios.
Chapter 5 finally summarizes the work and provides suggestions for future work.

7
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2. System Architecture and

Components

As mentioned in the previous chapter the main contribution of this work lies in the system
architecture. This chapter first introduces the system architecture of CAVSA in section 2.1
and then three main components of the system in section 2.2-2.4. Section 2.2 introduces
visual and audio proto-objects. Section 2.3 explains the procedure of inserting an incoming
proto-object into the Short Term Memory (STM). Section 2.4 reviews the literature in au-
diovisual association, describes how to associate audio and visual proto-objects in case of
multiple visual proto-objects, and how to calculate the uncertainty of the audiovisual asso-
ciation. Finally, two applications of CAVSA are shown in section 2.5. Important aspects of
the system architecture proposed in this chapter were already published in [Yan et al., 2011a;
2013a].

2.1. Architecture

The CAVSA approach proposed in this work focuses on the analysis of a dialogue scenario
with an unknown number of speakers who have not been seen or heard before. Its main
goals are the estimation of number and position of speakers as well as the identification of
the current speaker. This work intentionally ignores the issue of sound source separation,
because there exists already a large body of research on the topic [Brown and Wang, 2005,
Pedersen et al., 2008]. In the following it is assumed that all speakers talk in sequence or
sound source separation has already been performed and that background noise is stationary.
The stationary background noise can be largely removed using standard methods such as
spectral subtraction [Rodemann et al., 2006a].

The system first combines several auditory and visual features into proto-objects. Proto-

9



2. System Architecture and Components

Figure 2.1.: System architecture of Computational AudioVisual Scene Analysis (CAVSA). APO: audio proto-
object, VPO: visual proto-object. In CAVSA the scene is represented with audio and visual proto-objects.
Audio and visual Proto-objects for the same speaker are then grouped together in their STMs respectively.
Finally, audio and visual proto-objects are matched based mainly on temporal and spatial coincidence.

objects are designed for operation in realistic environments, since they can be tracked, pointed
or referred to without identification and offer a flexible interface for behavior-control in
robotics. In the past, both visual and audio proto-objects were used separately [Bolder et al.,
2007, Rodemann et al., 2009a]. In this work the two approaches are combined into one con-
sistent framework. In this manner, dense visual images and sparse sound sources are trans-
formed into a common representation, which eases audiovisual integration. Proto-objects for
the same speaker are then grouped together in auditory STM and visual STM, respectively.
One advantage of using STM is that it allows the system to memorize persons who disappear
for a while. Finally, visual and audio proto-objects of the same speaker are associated. The
current sound is linked to the corresponding speaker in multi-person environments, and the
uncertainty of the audiovisual association is measured. Fig. 2.1 schematically illustrates the
system architecture.

The three main components of the CAVSA system: proto-objects, STM and audiovisual
association, are described in the following sections.

10
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2. System Architecture and Components

2.2. Proto-Objects

Low level sensory representations are often not well suited to guide behavior in real-world
environments, due to rapid changes of the signals, measurement noise and a high complexity
of scenes. Therefore, this thesis uses proto-objects as an intermediate level feature represen-
tation to build a more stable and robust representation of the environment.

The term “proto-object” is inspired by earlier work on the representation of sensory informa-
tion in the brain [Burr and Alais, 2006, Hershey and Movellan, 1999, Shinn-Cunningham,
2008]. Proto-objects, originally a psychophysical concept, are segmented perceptual units
and describe “objects” before they are recognized. Therefore, proto-objects are a mid-level
scene representation between the pixel (or voxel) level and a semantic object level [Schmüd-
derich, 2010, Bolder et al., 2007, Rodemann et al., 2009a].

Visual proto-objects have been widely used in cognitive robotics, for example to represent
behaviorally relevant objects, object parts or groups of objects in the environment [Pylyshyn,
2001, Schmüdderich, 2010, Bolder et al., 2008]. In [Rodemann et al., 2009a], proto-objects
are transferred to the auditory domain as a mid-level representation of sounds. While the
concept of visual proto-objects as it is used in most of the current work refers to little more
than a localized feature and includes some but not all of the properties of objects [Pylyshyn,
2001], Rodemann et.al [Rodemann et al., 2009a] use audio proto-objects as a compressed
representation container which can combine an arbitrary number of features. In this manner,
new features can be added easily without changing the system architecture. In this thesis,
both audio and visual proto-objects in the same structure as in [Rodemann et al., 2009a] are
used to technically ease audiovisual integration.

In the visual domain, regions (x/y in the camera image) are segmented based on homogene-
ity, edges or object detection. A typical visual proto-object would contain a position (for
example the center of gravity) and a compact representation of one or more visual features
such as the average color in the segment. Consecutive frames would generate proto-objects
of very similar characteristics (e.g. position and color). Therefore it is easy to track these
proto-objects over time [Bolder et al., 2007]. In the audio domain, a simple threshold-based
segmentation process similar to Voice Activity Detection (VAD) [Ramírez et al., 2007] is
used to separate sound pieces from the background. A segment is a perception unit, which
can be one or more words, or a whole sentence. There are often periods of silence between
two proto-objects, so that continuous tracking of the sound source is impossible. Audio
proto-objects can contain information about the timing of the sound segment (such as the
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start time), the segment length and averaged audio features (such as the mean estimated po-
sition over the complete length of the sound, histograms of localization features like IID and
ITD, and the mean energy of the sound). Which features are collected in proto-objects is
application dependent.

As can be seen from the above, there are many benefits of using proto-objects: First, proto-
objects can be easily extended with new features to improve performance without changing
the architecture of the system. Second, since proto-objects are sparse so that there are only
a few visual proto-objects per image frame and one audio proto-object every few seconds,
maintaining this representation comes at a low computational cost. Third, proto-objects can
be tracked, pointed or referred to without identification and enable a flexible interface to
behavior-control in robotics [Bolder et al., 2007].

2.3. Short Term Memory

In biology, a short term memory contains the most recently perceived items which can be lost
with passage of time [Miller, 1956, Atkinson and Shiffrin, 1971]. Auditory and visual STM
work separately and similarly [Visscher et al., 2007]. Visual STM can maintain continuity
across visual interruptions caused by eye movements, eye blinks, and other visual interrup-
tions. Especially, saccadic eye movements occur 3 times per second and interrupt the visual
processing briefly [Hollingworth and Henderson, 2002]. Visual STM retains and combines
visual representations over one or more saccadic eye movements. Furthermore, since seen
regions may be different over time due to eye’s or head’s movements, visual STM can con-
struct a larger-scale representation of the whole scene by combining previous representations
[Hollingworth and Henderson, 2002]. In comparison, auditory STM maintains the represen-
tations of recently heard sounds for further cognitive tasks such as speech recognition and
voice recognition [Yost et al., 2008]. To summarize, auditory and visual STM are essential
for scene representation in biology. Inspired by this, they have been built in robotics [Bolder
et al., 2008, Schmüdderich, 2010, Markov, 2009, Bennewitz et al., 2005].

Within the CAVSA system, STM is used for the scene representation similar to [Schmüd-
derich, 2010]. As shown in Fig. 2.2, the procedure of inserting an incoming proto-object
into STM can be described as follows:

• “compare” step: It is decided whether the incoming proto-object belongs to one of
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2. System Architecture and Components

Figure 2.2.: The procedure of inserting an incoming proto-object into STM.

the known speakers or a new speaker. The distance or similarity of selected grouping
features is computed between the incoming proto-object and all proto-objects in the
STM. The calculation of distance and similarity is explained in the following chapters.
After distance calculation, the distance between the incoming proto-object and the
closest proto-object in the STM is compared with a threshold ΘS. If the distance is
smaller than ΘS, they are assumed to belong to the same known speaker. Otherwise,
the incoming proto-object is assumed to belong to a new person.

• “insert” step: If the incoming proto-object is assumed to belong to a new person, the
proto-object is inserted into the STM. In order to cope with the spurious detection of
proto-objects, status flags are used [Schmüdderich, 2010]. The flag of a new inserted
proto-object is set to “volatile”.

• “merge” step: If the incoming proto-object is assumed to belong to a known speaker,
it will be merged with the closest proto-object in STM. Furthermore, if a “volatile”
proto-object is re-detected in a given period Tin, the flag is changed to “found” and the
proto-object becomes valid. Since a spurious detection due to noisy input occurs only
for a short time, Tin is set to two update intervals, i.e. at least two immediate detections
are necessary for a valid proto-object [Schmüdderich, 2010].

The merge operation is done by a low pass filter:

y(t) = y(t−1) ·w+ xin(t) · (1−w), (2.1)

Here, y is one of the grouping features in the closest proto-object in the STM, xin is the
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corresponding feature in the incoming proto-object and t is the current time step. In
this manner, all features in these two proto-objects are correspondingly merged. The
weight w is defined as an activity function:

w = e−
tk
τ , (2.2)

where τ is a decay factor and tk stands for the time in seconds since the closest proto-
object has been updated the last time. If the proto-object is currently updated, tk is set
to 0. w indicates the reliability of features in the closest proto-object that was updated
in the recent time step. The longer a proto-object has not been seen, the less reliable
its features become. The value of τ is set in accordance with the applications.

• “remove” step: “Volatile” proto-objects, which are not updated for more than Tin are
removed from the STM. In this manner, falsely detected proto-objects are quickly
deleted. “Found” proto-objects, which are not updated for more than a certain period
T are also removed. With the memorization mechanism, missing detections of proto-
objects due to noisy input or occlusion are tolerated. If T is too small, the STM can not
remember a person who leaves or is occluded for a while. Conversely, if T is too large,
STM may contain too many proto-objects and is not able to dynamically represent
the current scene, e.g. after a person has already left the scene, his corresponding
proto-object is stored in the STM for a long time. T is set to 100 s in the experiments.

Theoretically, the number of proto-objects in the STM can become very large, but due to the
sparsity of proto-objects (only few are generated in every image frame, and there is only one
audio proto-object at a time) and the time-out T , the effective number is typically very low.

In case of visual STM, it is noticed that when more than one person appears in the camera
image and more than one proto-object is stored in visual STM, two or more incoming proto-
objects may select the same “most similar” proto-object in STM. To avoid the selection
confusion, a simple greedy mapping method is used. Let Xm (m ∈ [1,M]) denote the m-th
current incoming proto-object, Yn (n∈ [1,NV ]) denote the n-th proto-object in STM, where M

represents the number of current incoming proto-objects and NV the number of proto-objects
in STM. If dmn stands for the distance between Xm and Yn, all distances dmn build a matrix
D′ with M rows and NV columns. For the greedy algorithm as described in Algorithm 1, the
pair of proto-objects with the minimum distance is first selected. If the distance is smaller
than ΘS, the two proto-objects are merged. Then their distance related row and column
are eliminated from distance matrix D′. In the next step, the next nearest pair of proto-
objects is selected. The process is repeated until all incoming proto-objects are assigned or
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the minimum distance is larger than ΘS. In the latter case, the remaining incoming proto-
objects, which are not yet assigned, are stored in STM as new entries. This algorithm is
similar to the one used in [Hung and Friedl, 2008].

Algorithm 1 Greedy algorithm for the visual STM
1: build a M×NV - matrix D′ with all dmn (m ∈ [1,M], n ∈ [1,NV ])
2: search for dm′n′ = mindmn
3: initialize the number of eliminated rows: ME = 0
4: while dm′n′ < ΘS ∧ME < M do
5: merge corresponding features in proto-object Xm′ and Yn′ as in Eq. 2.1
6: eliminate the m′-th row and the n′-th column in matrix D′

7: ME ←ME +1
8: search for dm′n′ = mindmn
9: end while

10: if ME < M then
11: insert the unassigned incoming proto-objects into STM
12: end if

2.4. Audiovisual Association

The research field of multimodal HRI, especially based on auditory and visual modalities,
is quickly developing. Multimodal HRI makes human-robot interfaces appear more natural
compared to those using only a single modality. For instance, lip movements extracted from
camera images are used to improve speech recognition performance of the robot [Iwano
et al., 2007]; pointing gesture sensed through cameras helps the robot better understand
spoken languages [Bui, 2006]. In this work, visual and auditory modalities are integrated to
enhance the scene representation.

As shown in Fig. 2.3, the first step of audiovisual integration is to associate an auditory and a
visual signal that are caused by the same event. The current audio proto-object is linked to a
visual proto-object based on either temporal or temporal and spatial coincidence, depending
on the number of visual proto-objects. Temporal coincidence (synchrony) has been identi-
fied as one of the most important factors determining whether or not multisensory integration
takes place [Noesselt et al., 2007]. If only one auditory and one visual stimulus are tempo-
rally coincident, they are perceptually coherent, even when they are spatially disparate, such
as in the ventriloquism effect [Alais and Burr, 2004]. If more than one source exists, other
information such as position information is needed to avoid ambiguity. The closer a visual
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Figure 2.3.: The procedure of audiovisual integration. The first step is to associate an auditory and a visual
signal that are caused by the same event. The audiovisual association is based on either temporal or temporal
and spatial coincidence. The second step is to integrate auditory and visual cues, that are auditory and visual
position in this context, caused by the same source.

stimulus is to an auditory stimulus, the more probable they are perceived as having a com-
mon cause [Wallace et al., 2004]. Actually, it is known that prior spatial correlation between
auditory and visual stimuli is not required for audiovisual integration in baby cats and young
barn owls [Knudsen and Knudsen, 1985, Wallace and Stein, 2006]. When the animals are
raised in artificial environments where auditory and visual stimuli are temporally coupled
but spatially incoherent, multisensory neurons in the superior colliculus (SC) will still learn
to integrate these stimuli. Spatial coincidence appears to be learned early in life. The learn-
ing itself is an online process to optimally adapt to the environment. Inspired by this, our
audiovisual integration is purely based on temporal coincidence when there is only one au-
ditory and one visual stimulus (one utterance and one person in the scene). Otherwise, when
more than one face appears in the scene, audiovisual integration is based on both temporal
and spatial coincidence. The second step of audiovisual integration is to integrate multisen-
sory cues, that are auditory and visual position in this context, caused by the same source.
This work focuses on the first step and simplifies the second step by considering the visual
position as the position of the speaker, since visual position is normally more accurate than
auditory. Readers interested in cue integration find e.g. integration of auditory and visual
position information in [Weisswange et al., 2011].

In the following, an overview of related work in audiovisual association is first presented.
Then it is explained how to associate audio and visual proto-objects based on probabilities
in case of multiple visual proto-objects, as well as how to calculate the uncertainty of the
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audiovisual association.

2.4.1. Related Work in Audiovisual Association

Audiovisual association is an important issue for CAVSA. A large volume of work has been
done relating to how auditory and visual signals are linked in multi-person environments for
different applications. The first group focuses on temporal coincidence between speech and
visual activity (lip motion or body motion) [Hershey and Movellan, 1999, Hung and Friedl,
2008, Noulas and Krose, 2007, Casanovas et al., 2007, Friedland et al., 2009, Fisher and
Darrell, 2004]. These methods need only one camera and one microphone, and they do not
make a prior measurement of auditory and visual position. Their main application is speaker
indexing in multimedia data for speaker diarization (annotation of “who spoke when”) or
as preprocessing for multimodal person identification. Most of them can only work in con-
strained environments to avoid artifacts, e.g. non-talking persons are not allowed to move
significantly. Therefore, these methods usually require careful tuning of quantities such as
camera image resolution and temporal resolution. The second group integrates auditory and
visual signals based on both temporal and spatial coincidence [Kim et al., 2007, Checka et al.,
2003, Khalidov et al., 2008, Nakadai et al., 2001]. These methods do not need high temporal
resolution in contrast to the first group, but focus on position information. They are usually
proposed for multi-person tracking. For this purpose, they use binaural microphones or mi-
crophone arrays to localize sound, and estimate 3D visual positions using stereo cameras.
While the robot head is moving, a speaker may leave the field of view (FOV) for a while and
reappear again, as most robots have a limited FOV. In this case, most of these methods such
as [Kim et al., 2007, Checka et al., 2003, Khalidov et al., 2008] do not memorize the speaker
and would consider him as a new person. In contrast, [Nakadai et al., 2001] can recognize
persons using face recognition, but the training of faces is required beforehand. In contrast
to these methods, the audiovisual association in this work is based on either temporal or
temporal and spatial coincidence, depending on the number of visual sources as mentioned.
The uncertainty of audiovisual association is also computed. Compared to [Nakadai et al.,
2001], the database for training high level features such as features for face recognition is not
available, as the CAVSA system deals with scenarios with an unknown number of speakers
who have not been seen or heard before. Instead, STM is used to memorize a person who
disappears briefly.
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2.4.2. Probability Based Audiovisual Association

In the following it is explained how audio and visual proto-objects are associated in case of
multiple visual proto-objects. First, the probability that an audio proto-object and a visual
proto-object have a common cause is calculated based on their position information. The
closer a visual proto-object is to an audio proto-object, the more probable they are caused by
the same person.

Let Ai (i ∈ [1,NA]) and Vj ( j ∈ [1,NV ]) denote an audio proto-object in auditory STM and a
visual proto-object in visual STM, respectively. NA stands for the number of proto-objects in
auditory STM, and NV the number of proto-objects in visual STM. The relative probability
that audio proto-object Ai and visual proto-object Vj have a common cause is denoted as
Pcommon(Ai,Vj). The calculation of Pcommon(Ai,Vj) will be described later in Eq. 3.1 and Eq.
4.11 for concrete applications.

Then we search for the visual proto-object Vl with the maximum probability Pcommon:

l = argmax
j∈[1,NV ]

Pcommon(Ai,Vj) (2.3)

If there is only one visual proto-object (NV = 1), it is treated as the current sound source. That
is, only temporal coincidence of proto-objects is employed for audiovisual association.

2.4.3. Uncertainty of Audiovisual Association

Dependent on applications, it may be necessary to check how reliable the association of the
current audio proto-object and the visual proto-object with the maximum probability is. This
work calculates the uncertainty of the audiovisual association using the Shannon informa-
tional entropy [Shannon, 1948] of the set of normalized probabilities. Shannon informational
entropy is well-known and has been widely used to measure the uncertainty of probability
distributions, for example in speech recognition [Heckmann et al., 2002].

If one visual proto-object shows a very high probability and all other visual proto-objects
have low probabilities, this expresses a low entropy indicating a reliable association. Con-
versely, when all visual proto-objects have quasi equal probability, the entropy is high and
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the association is unreliable. The normalized probability is computed as

P̂common(Ai,Vj) =
Pcommon(Ai,Vj)

NV

∑
i=1

Pcommon(Ai,Vj)

, (2.4)

and the entropy for Ai is given as

Hi =


0 if NV = 1,

−
NV
∑

j=1
P̂common(Ai,V j)·log2 P̂common(Ai,V j)

log2 NV
if NV > 1.

(2.5)

Here, the division by log2 NV ensures that the maximal Hi is 1 to easily set a threshold ΘH

which is dependent on the applications. The smaller Hi, the more reliable is the association
of the audio proto-object Ai and the visual proto-object with the maximum probability. Note
that, in case of only one visual proto-object (NV = 1), which is treated as the current sound
source due to temporal coincidence, the audiovisual association is reliable (Hi = 0). The
uncertainty of the whole audiovisual association can be captured by averaging over all Hi:

H =

NA
∑

i=1
Hi

NA
. (2.6)

2.5. Overview of Applications

In the following chapters, CAVSA is first applied in online adaptation of audio-motor maps
(chapter 3) to overcome the issue of audiovisual association in scenarios where the current
acoustic signal is to be related to one out of many visual signals, for instance we hear an
utterance and see many faces. Only a small set of simple features is used in the original
version of CAVSA, since it is not necessary to identify persons in this application. Then
CAVSA involving more complicated functions is used in human-robot dialogue scenarios
(chapter 4). It aims to learn the number and position of speakers, as well as who is currently
speaking. In this application, speakers should be recognized again e.g. when they leave and
enter the scene. Thus the system needs to integrate more visual and auditory features to deal
with such complicated situations. All features are stored in the same format, a biologically-
inspired population coding [Pouget et al., 2000] that combines a flexible format with dense
information related to probabilities. Thanks to the common structure of different features,
proto-objects can have a variable number of these features, so that new features can be added
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easily. Moreover, since audio and visual cues have the same structure, an audiovisual inte-
gration of arbitrary cues is technically feasible.
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Audio-Motor Maps

In the previous chapter, the system architecture of CAVSA was proposed. This chapter deals
with the first application: online adaptation of audio-motor maps.

While the visual system projects directly a point in the outer world onto the camera image,
the auditory system relies on the processing of implicit cues to derive the sound source po-
sition. Given audio cues, a binaural auditory system estimates sound source positions using
audio-motor maps, which represent the relationship between audio cues and the position
of the sound source. More information on audio-motor maps is explained in Appendix B.
Audio-motor maps can be calibrated offline by measuring audio cues for several known posi-
tions [Finger et al., 2010]. However, audio-motor maps can change and need to be relearned
whenever any relevant part of the robot or the environment is modified, for example, micro-
phone type, microphone position, robot head and room. Additionally, since it is difficult to
estimate the quality of the current maps, making the decision whether to relearn the current
maps is hard. Hence a continuous online adaptation is essential for a mobile robot.

Since vision plays an important role in calibration of audio-motor maps in humans and ani-
mals [Zwiers et al., 2001, Knudsen, 2002; 1998], it is used as the feedback signal for precise
position information in online adaptation. It is then necessary to match a visual signal to the
current sound, which is challenging when more than one visual source exists. If an unrelated
visual signal is selected for the adaptation, the quality of audio-motor maps can deteriorate.
Therefore, a fundamental problem in online adaptation of audio-motor maps is audiovisual
association in scenarios where the current acoustic signal is to be related to one out of many
visual signals (e.g. hearing an utterance and seeing multiple faces at the same time). CAVSA
can be applied to solve this problem. It searches for the correct visual correspondence of the
current sound source and enables online adaptation to run in free interaction with a number
of a-priori unknown speakers.
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It is interesting to see if the system is able to learn the audio-motor maps from a random ini-
tialization in different scenarios, if it is robust in dynamically changing scenarios with mul-
tiple people, and how it responds to changes of the mapping during operation, when acoustic
conditions such as the shape of the robot head or microphones are modified. To measure
the map quality, the system computes the difference between online-adapted and offline-
calibrated audio-motor maps and also compares sound localization results with ground truth
data (if available).

The outline of this chapter is as follows: Section 3.1 shows drawbacks of the related work
in learning of audio-motor maps, that is the motivation of using CAVSA. Then the setting
of CAVSA for online adaptation is introduced in section 3.2, and section 3.3 explains how
to adapt audio-motor maps. The results of testing the bootstrapping ability, robustness and
adaptation ability are shown in section 3.4. Finally, a discussion is given in section 3.5.

Important aspects of this application and the corresponding results were already published
in [Yan et al., 2011a;b; 2013a].

3.1. Related Work in Learning of Audio-Motor Maps

Audio-motor maps are normally learned during offline calibration in controlled environ-
ments. In a typical calibration scenario, a number of sounds are played from a set of defined
positions. For each position, localization cues are computed, averaged and stored in an
audio-motor map. Willert et. al. [Willert et al., 2006] use a neural network trained in a
similar fashion instead of using an audio-motor map. The drawback of an offline calibration
is that it is a costly process that needs to be run in a controlled environment, so that the robot
has to be put out of operation and recalibrated by an expert in the field using a special set-up.
Furthermore, audio-motor maps are highly variable and often change due to different room
environments and hardware modifications such as changes of microphone type, modification
of robot head and microphone position. Therefore, from an application point of view it is
highly beneficial to develop an unsupervised, online adaptation of the audio-motor maps so
that the system always works at maximum efficiency. It has been proven that the brain of
humans and animals also has to learn such an audio-motor map in interaction with the en-
vironment and that this process is active even after infancy [Knudsen and Knudsen, 1989,
King et al., 1988, Hyde and Knudsen, 2002, Paul M. Hofman, 1998, Gold and Knudsen,
2000, Kacelnik et al., 2006, DeBello and Knudsen, 2004]. For humans, the audio-motor
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map is changing during the full growth process of the head and external ears, therefore a
continuous update must be possible.

[Rodemann et al., 2007] has shown that a robot head which can execute pan motions is able
to learn the audio-motor map using only audio input in a simple environment. Unfortunately,
this approach is rather slow, requires permanent head motions, is only applicable to estimate
the azimuth angle, and works under the assumption that only one sound source exists in the
environment. It might however serve as a starting point for bootstrapping the initial audio-
motor map.

Inspired by the important role of vision for the calibration of audio-motor maps in animals
and humans [Zwiers et al., 2001, Knudsen, 2002; 1998], several recent papers [Hörnstein
et al., 2006, Nakashima and Mukai, 2005] suggest to use visual feedback to provide the sound
source position. These approaches are very appealing but are demonstrated only in simple
scenarios. [Nakashima and Mukai, 2005] attached a red color marker on the loudspeaker to
indicate the source, while [Hörnstein et al., 2006] used a face tracker. Both approaches are
shown to be very successful in their scenarios but would fail under less constrained condi-
tions. In the case of Nakashima, any additional sound source or any other red object would
make a correct link of visual and auditory information unreliable. For Hörnstein’s system,
more than one person or the wrong speaker in the camera image would lead to confusion and
potentially wrong updates of the mapping. The underlying problem in these approaches is
that they use a very simple scene representation consisting of only one visual object and its
position. Hence, a correct match can not be made for scenarios with several visual objects.
Besides, both methods need extra head motions to search for the visual correspondence of
the sound source, so that the robot may have to interrupt its normal operation for a certain
period of time.

These approaches [Rodemann et al., 2007, Nakashima and Mukai, 2005, Hörnstein et al.,
2006] rely on very simplified sensory environments that are often unrealistic and are not able
to explain how animals or humans manage to initially learn and continuously adapt these
maps in interaction with the real-world environment. Animals and humans do not have a
reliable calibration phase and their head is growing continuously during development. How
can an autonomous agent acting in a real-world environment adapt its audio-motor map like
animals and humans? Since the measurement of audio cues is not a problem, the limiting
factor is to get a reliable position estimation for the sound source, when the performance
of the main mechanism via the audio-motor map is questionable. This system also uses
vision as the supporting sensory modality for the online adaptation of audio-motor maps.
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Figure 3.1.: System architecture of CAVSA in online adaptation of audio-motor maps. CAVSA applies the
current audio-motor maps for sound localization and in turn supports online adaptation of audio-motor maps
by searching for the matched visual proto-object of the current sound. APO: audio proto-object, VPO: visual
proto-object.

In contrast, the system explicitly tackles the issue of the proper alignment of audio and
visual sources through CAVSA. Additionally, the system does not require specific motions
of the robot, so that audio-motor maps can be continuously adapted online during the normal
operation of the robot.

3.2. Setting of CAVSA for Online Adaptation

As shown in Fig. 3.1, CAVSA applies the current audio-motor maps for sound localization
and in turn supports online adaptation of audio-motor maps by searching for the correspond-
ing visual part of the current sound in multi-person scenarios.

This work concentrates on audio-motor maps for azimuth to ease the description of the algo-
rithm, but the approach can be expanded to elevation as well. Azimuth angles between−90◦

and 90◦ are taken into account because of the mechanical constraint of the robot head. Ad-
ditionally, since the mapping between audio cues and sound source location is smooth for a
typical robot design, it suffices to know the mapping for a couple of positions and interpolate
intermediate locations. It is found that a grid with a spacing of 10◦ in azimuth angle is well
suited for practical applications.
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In this work, the audio-motor map is represented as a simple look-up table Mi
θ
( f ,n) (i = 1

for IID, i = 2 for ITD) that contains the typical response of position selective filters at cue
node n in frequency channel f generated by a source at true position θ . An example of an
IID map M1

−90( f ,n) at −90◦ is shown in Fig. C.2 (in Appendix C). Given audio-motor map
Mi

θ
( f ,n) and measured cues C′i( f ,n), localization amounts to finding the position θ with

the highest overlap with measured cues. For more information about Mi
θ
( f ,n) and C′i( f ,n)

see Appendix C. The main benefit of using such a simple look-up-table, in contrast to e.g.
a neural network, is that training and updating the mapping is very easy. Given the true
position of the sound source and the measured distribution of cues, audio-motor maps can
be updated for this position.

CAVSA is used to search for the corresponding visual part of the current sound in online
adaptation of audio-motor maps. A small set of simple features are sufficient for this appli-
cation. In the current context, positions of people (faces) and the time of the current frame
are stored in visual proto-objects, while audio proto-objects contain start time and length of
sound segments, mean energy, estimated position and binaural cues (IID and ITD). More-
over, auditory STM is not used, since only information about the current sound is required in
online adaptation of audio-motor maps. Additionally, the current sound is sometimes related
to a person who has not yet been seen. This situation is considered as well. As shown in
Fig. 3.1, the current audio proto-object is used together with the visual STM in the CAVSA
to search for the matched visual proto-object. The extraction of auditory and visual features,
as well as the configuration of visual STM and audiovisual association are introduced in the
following.

3.2.1. Audio Processing

The system employs a biologically-inspired audio processing system using two microphones
on a humanoid robot head. As shown in Fig. 3.2, the first stage in audio-processing is
a Gammatone Filterbank (GFB), which is considered to be a good model of the human
cochlea [Slaney, 1993]. The GFB transforms the signal from the temporal into the spectro-
temporal domain, using a number (100) of bandpass filters with logarithmically increasing
center frequencies. In a further preprocessing step the signal envelope is extracted for every
frequency band. In order to deal with stationary background noise, the system employs a
spectral-subtraction technique that estimates the level of noise in each frequency channel and
then reduces this noise [Rodemann et al., 2006a]. This method is very effective against noise
sources like air-conditioning or computer fan noise. Thereafter, signal energy is calculated as
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Figure 3.2.: Audio processing. For online adaptation of audio-motor maps, an audio proto-object contains start
time, segment length, the mean energy over all samples of the segment, position evidence vector and audio cues
(IID and ITD).

the sum over envelope signals in all frequency channels. Based on the energy, audio streams
are segmented. An audio segment begins when the signal energy exceeds a threshold and
ends when the energy falls below this threshold. Next, start time, length and the mean energy
over all samples of the segment are derived and saved in an audio proto-object.

The most important audio feature to be computed is the position of a sound source. A typical
problem in sound localization is the negative impact of echoes. The system uses a biolog-
ically inspired strategy, the precedence effect, to reduce the impact of echoes [Heckmann
et al., 2006]. The basic principle is the detection of signal onsets, which are quick and strong
changes in the frequency channel’s envelope. The system only measures audio cues IID and
ITD for sound localization during the signal onsets (before echoes arrive). [Rodemann et al.,
2006a, Heckmann et al., 2006, Rodemann et al., 2008] have shown that such a sound local-
ization system is able to efficiently operate even in noisy and echoic environments. In this
thesis, population-coded audio cues are used for sound localization, for more information
see Appendix C.

Given audio-motor map Mi
θ
( f ,n) and population-coded cues C′i( f ,n), C′i( f ,n) is compared
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3. CAVSA in Online Adaptation of Audio-Motor Maps

Figure 3.3.: Visual processing

with Mi
θ
( f ,n) for all positions θ by computing scalar products to acquire the position evi-

dence vector W i
θ

. The peak in the position vector Wθ (Wθ =∑
2
i=1W i

θ
) is taken as the estimated

sound source position. Population-coded cues C′i( f ,n) and the position evidence vector Wθ

are saved in an audio proto-object besides start time, length and the mean energy. A filtering
of audio proto-objects based on segment length and energy is also performed, since typical
background sounds are rather short and have less energy than robot directed calls. Filtering
of background sounds is explained in [Rodemann et al., 2009b].

3.2.2. Visual Processing

The robot head is equipped with a set of stereo color cameras. As shown in Fig 3.3, a
“demosaicing” stage follows after image acquisition to reconstruct a full-color image. Then
gamma correction and rectification are performed to compensate for properties of human
vision and correct image distortion, respectively. After that, visual features of a person are
extracted to form a visual proto-object. In the camera field of view (FOV), the presence of
persons is detected by searching for their faces. It is assumed that persons talking to the robot
look at its face most of the time. Face detection is a low-level mechanism. It was found that
human newborns have already inborn face detection mechanisms [Stein et al., 2011, Farroni
et al., 2005]. A frontal face detection algorithm developed by Viola and Jones [Viola and
Jones, 2001] is chosen for its high speed and high detection rates. For each of these proto-
objects, the center and size of each face in the camera image is computed. Since the system
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does not rely on visual distance estimation, only a single camera is used. The distance
between the robot head and the speakers is about 1 m. Using the distance information and
saccade maps (see [Rodemann et al., 2006b]), the system converts camera positions into 3D
world coordinates, and stores them as well as the time of the current image in the visual
proto-object. Instead of this fixed setting, a lot of algorithms for depth estimation using
stereo cameras could be applied to obtain 3D positions.

3.2.3. Visual STM

Since the robot has a limited FOV, a speaker may leave the FOV e.g. due to movements
of the robot head. In this case, visual STM can still memorize his related proto-object.
The procedure of entering an incoming proto-object into the STM is introduced in section
2.3. Initially the STM is empty. When a new visual proto-object appears, it is copied into
the STM. Unless it is updated, it will disappear after a certain time-out T , which is set to
100 s in the experiments. The system determines if an incoming proto-object is new or
corresponds to a proto-object in the STM, based on the Euclidean distance of their positions
in 3D world coordinates. The assumption is that people do not change their position much
in a dialogue scenario, so that the position difference of the same person is small between
two consecutive views. When an incoming proto-object Xm (m ∈ [1,M]) appears, it will
be compared with each proto-object Yn (n ∈ [1,NV ]) already in the STM. M and NV denote
the number of incoming proto-objects and the number of proto-objects in the visual STM,
respectively. The Euclidean distance of their 3D positions, represented as dmn, is calculated.
Then Algorithm 1 is used to merge each incoming proto-object with a stored proto-object
or insert it into the STM. Threshold ΘS of position difference is set to 0.3 m, so that slight
movements of speakers such as head shaking are tolerated. Additionally, the parameter τ for
the merge operation, in Eq. 2.2, is set to 5 s based on empirical tests.

3.2.4. Audiovisual Association

Audio and visual proto-objects are linked using their position information as mentioned in
section 2.4. The closer a visual proto-object is to an audio proto-object, the more probable
they are caused by the same person.

1) Basic approach
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3. CAVSA in Online Adaptation of Audio-Motor Maps

First, auditory position evidence vectors and visual positions in world coordinates have to be
converted to the same metric, we choose motor coordinates (azimuth and elevation). This
work concentrates only on azimuth as mentioned. The azimuth angle of an audio proto-
object is taken as the peak position in its position evidence vector, while the azimuth angle
of a visual proto-object is inferred from 3D world position.

Let θa and θv j denote the azimuth angle of the current audio proto-object A and visual proto-
object Vj ( j ∈ [1,NV ]), respectively. NV stands for the number of visual proto-objects in
visual STM. The relative probability that audio proto-object A and visual proto-object Vj

have a common cause can then be approximated as:

Pcommon(A,Vj) = exp

(
−|θa−θv j |2

2 ·δ 2

)
, (3.1)

where the standard deviation δ is computed as the mean absolute difference in estimated
azimuth between an audio and a visual proto-object which belong to the same speaker. δ is
updated only if just one visual proto-object exists and positions near the current proto-object
have been recently visually attended. The update rule is described as below:

δs =

{
|θa−θv| ·w+δs−1 · (1−w) if NV = 1,
δs−1 otherwise.

(3.2)

Here, s and w stand for update step and update factor respectively. We set w = 0.1 ·β de-
pendent on the fixed adaptation rate of audio-motor maps β , which controls the degree of
adaptation for a single step (see also Eq. 3.11). If only one visual proto-object is in the STM,
δs is updated. δ0 is initialized as 40◦ to tolerate large position differences between audio and

Algorithm 2 Audiovisual association: Basic approach
1: for j = 1 to NV do
2: Calculate Pcommon(A,Vj) based on Eq. 3.1
3: end for
4: Search for Vl that has the maximum Pcommon as in Eq. 2.3
5: for j = 1 to NV do
6: Calculate P̂common(A,Vj) based on Eq. 2.4
7: end for
8: Calculate entropy H as in Eq. 2.5
9: if H 6 ΘH then

10: Associate A with Vl
11: end if
12: Update standard deviation δ as in Eq. 3.2
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Figure 3.4.: Examples of two situations: left: all visual sources have been seen; right: the current sound source
has not yet been seen. The head symbol with color means that the corresponding person has been seen. A is
the current audio proto-object, V1 and V2 are visual proto-objects. The horizontal FOV is 90◦.

visual proto-object when sound localization is very inaccurate at the beginning.

Then the visual proto-object Vl with the maximum probability Pcommon is searched for as in
equation 2.3, and the uncertainty of the association of A and Vl is calculated as in equation
2.5. ΘH is empirically set to 0.8. If entropy H is larger than ΘH , A and Vl are not associated.
The approach is described in Algorithm 2.

2) Consideration of unseen visual proto-objects

It is found that Algorithm 2 works well when all visual sources have been seen, but fails
when the current sound source has never been seen. For ease of understanding, examples of
the two situations are shown in Fig. 3.4. Therefore the system also considers the situation
that the audio proto-object A is sometimes related to a visual proto-object that has not yet
been seen [Yan et al., 2011b]. This is realized by using a view memory that memorizes how
long a certain position has not been looked at. The view memory is denoted as U(θ), where
θ is the azimuth angle in robot-centered coordinates. Each element in U(θ) is between 0 and
1. The larger the value U(θ) is, the longer the time since position θ has been last attended.
U(θ) is described as

U(θ) = 1− e−
tθ
Tu , (3.3)

where tθ indicates the time in seconds since position θ has been viewed the last time. The
initial value of tθ is set to ∞, so that U(θ) = 1 if position θ has never been attended. If tθ = 0,
then U(θ) = 0 which means that position θ is currently in the FOV. Tu is a time constant to
decay the activity and it is set to 100 s to match the parameter T for STM.

For convenience, the unseen proto-object is denoted as VN+1. Then the probability that audio
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3. CAVSA in Online Adaptation of Audio-Motor Maps

proto-object A is associated with VN+1 is described by:

Pcommon(A,VN+1) =

∑
θ

U(θ) ·Pcommon(A,VN+1(θ))

∑
θ

Pcommon(A,VN+1(θ))
, (3.4)

where VN+1(θ) denotes the unseen visual proto object that is assumed to be at position
θ . If positions near the sound source have not been viewed or are not viewed for a long
time, the related sound source has very probably not yet been seen. This leads to a large
Pcommon(A,VN+1). If Pcommon(A,VN+1) is larger than the maximal Pcommon(A,Vj) ( j∈ [1,NV ]),
the matched visual signal is considered as not been seen so far. Otherwise, the association
uncertainty is calculated as above using the entropy of normalized probabilities. The nor-
malized probability and entropy become:

P̂common(A,Vj) =
Pcommon(A,Vj)

NV+1
∑
j=1

Pcommon(A,Vj)

, (3.5)

and

H =

−
NV+1

∑
j=1

P̂common(A,Vj) · log2 P̂common(A,Vj)

log2(NV +1)
. (3.6)

We can see that if N = 1 and Pcommon(A,VN+1)→ 0, then entropy H → 0. This means that
if only one visual signal appears, and positions near the current sound have been recently
attended, the auditory and visual signals are assumed to have a common cause. Only in this
case, standard deviation δ in Eq. 3.1 is updated. The update rule is described as below:

δs =

{
|θa−θv| ·w+δs−1 · (1−w) if NV = 1 ∧ Pu < ΘPu,

δs−1 otherwise.
(3.7)

In comparison to Eq. 3.2, an additional condition Pu < ΘPu is added to NV = 1. Here,
Pu = P̂common(A,VN+1) is the normalized probability that A and VN+1 have a common cause,
as described in Eq. 3.4. ΘPu is the threshold of Pu and is set to 0.1.

The method is summarized in Algorithm 3. The performance of Algorithm 2 and Algorithm
3 will be compared in section 3.4.3.
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Algorithm 3 Audiovisual association: Consideration of unseen VPOs
1: for j = 1 to NV do
2: Calculate Pcommon(A,Vj) based on Eq. 3.1
3: end for
4: Calculate Pcommon(A,VN+1) as in Eq. 3.4
5: Search for Vl that satisfies

l = argmax
j∈[1,NV+1]

Pcommon(A,Vj) ∧ Vl 6=VN+1

6: if ∃ Vl then
7: for j = 1 to NV +1 do
8: Calculate P̂common(A,Vj) based on Eq. 2.4
9: end for

10: Calculate entropy H as in Eq. 2.5
11: if H 6 ΘH then
12: Associate A with Vl
13: end if
14: Update standard deviation δ as in Eq. 3.7
15: end if

3.3. Online Adaptation of Audio-Motor Maps

This section explains how to adapt audio-motor maps in consideration of the uncertainty of
audiovisual association.

For online adaptation of audio-motor maps, the system needs to measure the IID/ITD of
the current sound and estimate the corresponding visual position of the sound source. The
matched visual proto-object is searched for by audiovisual association. The probability
Pcommon (Eq. 3.1) for audiovisual association is based on the position difference. Hence,
the system tends to choose a wrong visual proto-object when persons stand near the cur-
rent speaker or the performance of sound localization is poor. In both cases, Pcommon for the
correct and the wrong visual proto-object tend to be similar, so that a high entropy H (Eq.
2.5) may refuse the audiovisual association. However, it was found in the experiments that
wrong visual proto-objects in such cases can also enhance the quality of maps [Yan et al.,
2011a], although they may have negative impacts in other applications. This is because of
the smoothness of the mapping in audio-motor maps. Therefore, a new variable H ′ is defined
to allow the use of these incorrect but useful visual proto-objects. The variable H ′ considers
both entropy H and the position difference between the visual proto-objects with maximum
and second maximum probability P̂common:

H ′ = H · |θv1−θv2 |, (3.8)
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3. CAVSA in Online Adaptation of Audio-Motor Maps

where θv1 and θv2 stand for the azimuth angles of visual proto-objects with maximal and
second maximal probability, respectively. If the entropy H exceeds the threshold ΘH , but the
position difference between the visual proto-objects with maximum and second maximum
probability P̂common is small, audio-motor maps can be updated nonetheless. In this manner
the adaptation process is accelerated. Note that, when only one person is in the scenario,
θv1 = θv2 and H = 0.

The confidence c of an adaptation step is given by:

c =

{
1 if H 6 ΘH ∨ H ′ 6 ΘH ′,

0 otherwise.
(3.9)

In multi-person scenarios, the larger the threshold ΘH (ΘH ∈ [0,1]) and ΘH ′ are, the more
matched visual proto-objects but also the more wrong visual proto-objects might be used for
online adaptation. Hence the tradeoff between quality and speed of the online adaptation
is faced. Thresholds are chosen dependent on situations. In case of a service robot that
interacts often with people in the daily life, the system has enough time and samples for
online adaptation. For accuracy, audio-motor maps could be adapted when only one person
is in the scenario. That is, both ΘH and ΘH ′ could be set to 0, so that online adaptation
is stopped in multi-person scenarios. In contrast, in experiments with only several hours
as in this work, we do not have enough samples and thus make a compromise to use also
some wrong visual proto-objects that can enhance the quality of audio-motor maps. This
is obviously better than just waiting for an one-person scenario, although the performance
increase using the wrong visual proto-object is slower than using the correct one. In this
work, ΘH is empirically set to 0.8, and ΘH ′ adapts to the standard deviation δs (ΘH ′ = 2 ·δs,
δs is defined in Eq. 3.7) so that the system has a high tolerance for the visual position
difference when the quality of audio-motor maps is poor.

Given population-coded binaural cues C′i( f ,n) in the current audio proto-object and position
θv′ in the matched visual proto-object, the audio-motor map Mi

θ
( f ,n, t) is updated by:

Mi
θ ( f ,n, t) = Mi

θ ( f ,n, t−1)−F(θ) ·

(Mi
θ ( f ,n, t−1)−C′i( f ,n)), (3.10)

where θ , i, f ,n and t stand for position, cue index, frequency channel, node and update step,
respectively. The learning rate F(θ) is given by:

F(θ) = c ·β ·δθ ,θv′
, (3.11)
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where c and β represent the confidence of the matching process and the fixed adaptation
rate respectively. While a high learning rate causes a more unstable learning process, con-
vergence slows down substantially for too small learning rates. In this work, β is set to
0.2 based on empirical tests, so that a good compromise is achieved. The position evidence
vector δθ ,θv′

is defined by a delta function:

δθ ,θv′
=

{
1 if θ = θv′,

0 if θ 6= θv′.
(3.12)

The online adaptation algorithm is described in Algorithm 4.

Algorithm 4 Online adaptation of audio-motor maps
1: Given population-coded cues C′i( f ,n) in the current audio proto-object and position θv′

in the matched visual proto-object
2: if H < ΘH OR H ′ < ΘH ′ then
3: c← 1 . Calculate the confidence of an adaptation step
4: else
5: c← 0
6: end if
7: for θ =−90◦ to 90◦ step 10◦ do . Loop over azimuth angles
8: if θ = θv′ then
9: δθ ,θv′

← 1 . Calculate the position evidence vector
10: else
11: δθ ,θv′

← 0
12: end if
13: Calculate learning parameter F(θ) based on Eq. 3.11
14: end for
15: for θ =−90◦ to 90◦ step 10◦ do . Loop over azimuth angles
16: for i = 1 to 2 step 1 do . Loop over cues (1 for IID, 2 for ITD)
17: for f = 1 to 100 step 1 do . Loop over frequency channels
18: for n =−0.9 to 0.9 step 0.1 do . Loop over node centers
19: Update Mi

θ
( f ,n, t) based on Eq. 3.10

20: end for
21: end for
22: end for
23: end for
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3.4. Results

In this section, the performance of online adaptation of audio-motor maps using CAVSA
is evaluated. In the investigated scenarios there is a varying and a-priori unknown number
of persons, who speak in sequence. The system initially faces the additional problem of
an unreliable sound source localization due to the bad quality of the initial audio-motor
maps. The system has to bootstrap itself to reach a point where sound localization can
provide useful information for the audiovisual linking. Since the vision system can not cover
the full environment, an utterance might be generated by a visual source outside the FOV.
Additionally, hardware modifications can lead to a change in the audio-motor maps. In order
to test the adaptation of the system to modifications, the robot head was slightly modified
and the exchange of left and right microphones was simulated. The performance of online-
adapted maps is evaluated by computing the difference between online-adapted and offline-
calibrated maps and also comparing sound localization results with ground truth data. For
simplifying the description, the basic approach in Algorithm 2 is denoted as “BASIC” and the
enhanced version in Algorithm 3 as “IMPROVED”. These approaches were compared with a
heuristic method denoted as “HEU” which considers the last seen face as the matched visual
position to the current sound source. If more than one face appears in the camera image, the
heuristic method randomly chooses one. HEU behaves similarly to methods in [Hörnstein
et al., 2006, Nakashima and Mukai, 2005] for linking auditory and visual signals.

3.4.1. Experimental Equipment

The system uses a humanoid robot head with a pair of cameras (Matrix Vision BlueFOX
224C) and a pair of microphones (DPA Miniature Microphones 4060-BM). The head is
mounted on a pan-tilt unit. The cameras have a horizontal FOV of 90◦. The microphones
are located roughly at the position of human ears and surrounded by pinnae-like structures
[Rodemann et al., 2008].

All experiments are conducted in a normal office room of size 4× 3× 2.8 m with typical
echo and background noise conditions such as noise from computers and air conditioner. As
sound sources, pre-recorded utterances played from a loudspeaker or real human speakers
are used. The loudspeaker is placed in front of the robot and at the same height as the
robot head. Since this work does not rely on visual distance estimation, only the left camera
is used. The distance between robot head and sound sources is about 1 m. This distance
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Figure 3.5.: Sketch of the experimental setting: offline calibration.

information and the saccade maps described in [Rodemann et al., 2006b] are used to convert
camera coordinates to world coordinates.

3.4.2. Performance Evaluation

The quality of an audio-motor map can be evaluated in several ways. A simple approach is
to compare the map with an offline-calibrated one. The offline calibration is performed in
a controlled environment where all sounds originate from a loudspeaker at a fixed position
(0◦), as shown in Fig. 3.5. The robot head is rotated every 10◦ from −90◦ to 90◦. 47 sound
files of average length 4.2 s are played at each grid position and the audio-motor maps are
learned offline in a procedure outlined in [Yan et al., 2011b]. The whole process, which
includes sound recording, audio cue computation, map learning, takes more than two hours
and requires substantial effort for the system’s engineer.

Given offline-calibrated audio-motor maps, the performance of online-adapted audio-motor
maps can be estimated by their normalized Euclidean distance:

d(M,M′) =

√
∑θ ,i, f ,n

(
Mi

θ
( f ,n)−M′i

θ
( f ,n)

)2

K
, (3.13)

where Mi
θ
( f ,n) and M′i

θ
( f ,n) represent online-adapted and offline-calibrated maps respec-

tively. K is the total number of elements in an audio-motor map and satisfies K = kθ · ki ·k f ·
kn, where kθ = 19, ki = 2, k f = 100 and kk = 19 is the number of positions, cues, frequency
channels and nodes, respectively.

As we will see later, offline-calibrated audio-motor maps are not perfect, since the mapping
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Figure 3.6.: Experiment 1: Sketch of the experimental setting in temporal phases I-VI. In phase IV, the range
of the robot’s head motion is [−25◦,25◦] and the current speaker has not yet been seen. In other phases, the
head angle is in the range [−90◦,90◦] and the current speaker is the loudspeaker that has been seen. A is the
current audio proto-object, V1 and V2 are visual proto-objects of the simulated participant and the additional
person respectively.

is not likely to be very stable. IID and ITD values vary with minor changes on the robot’s
hardware (e.g. microphones or head shape) so that the quality of audio-motor maps degrades.
This is one of the main motivations for an online adaptation. In this case, offline-calibrated
maps are not reliable to be used as reference, and the system also applies online-adapted
maps to localize sounds from a known position and measure the mean localization error.
This operation can be performed in an offline test procedure or in an online process where
the current sound localization result is compared with ground truth data (if available).

The mean absolute position error E is described by:

E =
∑

N
t=1 |θt−θtrue|

N
, (3.14)

where N is the number of all measured positions. θt represents the t-th measured position
and θtrue the ground truth position.

3.4.3. Experiment 1: Consideration of Unseen Visual

Proto-Objects

In the first experiment, the basic approach BASIC was compared with the heuristic method
HEU and the approach IMPROVED that considers the situation where the matched visual
proto-object is not in the STM.

The audio-motor map was initially filled with random numbers in the range [−0.5,0.5] using
a uniform distribution. Fig. 3.6 sketches the experimental setting in temporal phases I-VI.
Instead of a real person in the experiments, a loudspeaker was used on which a picture of
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Figure 3.7.: Experiment 1: Comparison of three methods using Euclidean distance from offline-calibrated
maps.

a face was attached, as the experiments were very time-consuming. The loudspeaker was
placed in front of the robot (0◦). During online adaptation, the robot head oriented itself to a
random horizontal angle in the range [−90◦,90◦] after finishing each adaptation step, except
that the head angle was in the range [−25◦,25◦] in phase IV. The random head motion was
used to simulate the head motion during the normal operation of the robot. The acquisition
of auditory and visual signals was interrupted during head movement, so that audio-motor
maps were only adapted in still status. An additional person dynamically entered and left the
room. He talked to the robot only in phase IV, when the loudspeaker was turned off. Since
the head angle was in the range [−25◦,25◦] during this time, the person as the sound source
is not visible. In other phases, the person did not speak so that the only sound source was the
loudspeaker at 0◦.

Fig. 3.7 shows a comparison of the three methods based on Euclidean distance from offline-
calibrated maps in six phases. Fig. 3.8 illustrates the percentage of correctly learned (R),
not learned (N) and wrongly learned (W) steps of different methods in each phase. Online
adaptation with HEU was as good as that with BASIC and IMPROVED when only one visual
proto-object was in the STM as in phase II and V, or when the quality of maps was still
poor as in phase I. If more than one visual proto-object existed in the STM, BASIC and
IMPROVED performed better than HEU, particularly when the maps were refined as in phase
III and VI. If the matched visual proto-object was not in the STM as in phase IV, HEU and
BASIC selected the wrong visual proto-object for audiovisual association, so that the quality
of maps became poor. In comparison, IMPROVED refused audiovisual association and the
performance of online adaptation did not decrease. The quality of online-adapted maps were
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3. CAVSA in Online Adaptation of Audio-Motor Maps

Figure 3.8.: Experiment 1: Percentage of update steps where a wrong visual proto-object (W), no visual proto-
object (N) or the right visual proto-object (R) is chosen for audiovisual association in each phase.

also verified by using the maps to localize sounds from the calibration database. The average
position error of 300 measurements using online-adapted maps with IMPROVED after 1000
update steps and offline-calibrated maps were 3.27◦ and 3.96◦ respectively. It is thus evident
that online-adapted audio-motor maps performed as well as offline-calibrated maps, and
that the results were valid for different performance metrics. In the following experiments,
IMPROVED is applied .

3.4.4. Experiment 2: Bootstrapping of Online Adaptation

In the first experiment, it was noticed that the system is capable of bootstrapping in case
of two persons. The ability of bootstrapping is further analyzed in a set of scenarios in the
second experiment. The experimental setting is shown in Fig. 3.9. A loudspeaker was used
on which a picture of a face was attached as in the first experiment. Up to 3 additional
pictures of a face (V2, V3 and V4) were attached on objects that were also placed at a
distance of 1 m and at the same height as the robot head. Although the faces are frontal to
the robot, the robot can not see all the faces at the same time due to limited camera FOV
and head movements. Since the only sound source was the loudspeaker, the ground truth
position was 0◦. Furthermore, the random azimuth angle of the robot head motion was in
the range [−90◦,90◦] after finishing each adaptation step. As in the first experiment, the map
was initialized with random numbers in the range [−0.5,0.5] using a uniform distribution.
Therefore, it was not able to reliably map audio cues to source positions. Since there were

39



3. CAVSA in Online Adaptation of Audio-Motor Maps

Figure 3.9.: Experiment 2: Sketch of the experimental setting for bootstrapping of online adaptation. V1 is the
face picture attached on the loudspeaker which is the only sound source placed at 0◦, while V2, V3 and V4 are
additional face pictures. Scenario I contains only V1; Scenario II contains V1 and V2; Scenario III: V1, V2
and V3; Scenario IV: V1, V2, V3 and V4

also no other cues that could guide the system to which visual proto-object corresponds to the
sound source, improving the audio motor map was difficult. This experiment was conducted
to analyze this situation and to test the bootstrapping capability of the system. For these
scenarios, the approach IMPROVED was compared with the heuristic method HEU which
is similar to methods in [Hörnstein et al., 2006, Nakashima and Mukai, 2005] for linking
auditory and visual signals. Also the method using known sound source position (0◦) is
shown as reference and denoted as “IDEAL”.

Fig. 3.10 compares the bootstrapping in four different scenarios with 1-4 faces using Eu-
clidean distance to offline-calibrated maps. It took about 72 minutes for every 1000 adapta-
tion steps. The percentage of update steps where a wrong “person” was chosen as the current
speaker is shown in Fig. 3.11. We can see that IMPROVED was able to bootstrap itself in dif-
ferent scenarios and nearly reached the performance of IDEAL. IMPROVED outperformed
HEU particularly when more than one face was in the scenario, because HEU tended to
select a wrong visual proto-object as shown in Fig. 3.11. In comparison, IMPROVED had
only a small error rate mainly due to inaccurate sound localization. The small error rate
of IMPROVED in the scenario with one face was because of falsely detected faces. There
should be no selection error in the one-person scenario, because only temporal coincidence
of proto-objects is employed for audiovisual association in this case and the person is treated
as the current sound source. As shown in Fig. 3.10, the system almost reaches its final
performance level (measured by Euclidean distance) after 400 steps, which took about 30
minutes, while offline calibration requires more than 2 hours.

The quality of online-adapted maps was also verified by using them to localize sounds from
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Figure 3.10.: Experiment 2: Comparison of bootstrapping in different scenarios with 1-4 faces using Euclidean
distance to offline-calibrated maps
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Figure 3.11.: Experiment 2: Percentage of update steps where a wrong “person” is chosen as the current
speaker

1 Face 2 Faces 3 Faces 4 Faces Offline
E 3.4◦ 3.9◦ 4.7◦ 4.0◦ 0.9◦

Table 3.1.: Experiment 2: Average absolute position error (E) with offline-calibrated maps and with online-
adapted maps after 1000 steps in different scenarios with 1- 4 faces. Audio-motor maps were used to localize
sounds in other 24 sound files that were recorded offline on each relative azimuth angle, every 10◦ from −90◦

to 90◦.

a known position. The average absolute position errors after 1000 steps in different scenarios
are shown in Table 3.1. The performance of offline maps is also given as reference. We can
see that the results were consistent using different performance metrics.

Moreover, the learning of the audio-motor maps was tested from a random initialization us-
ing only human speakers for 50 minutes. Four participants entered the room and spoke freely
without any script. They faced the robot most of the time, spoke sometimes concurrently and
were free to move. This scenario is very challenging for the system, because sound source
separation is missing. When people talk at the same time, the sound position is measured
as some average of all active speakers and the uncertainty of audiovisual association can be
very high. In such confusing situations, entropy H can exceed its threshold ΘH and audiovi-
sual association is refused. Fig. 3.12 shows the Euclidean distance between online-adapted
and offline-calibrated maps over time. It was found that the system was capable of boot-
strapping even in this scenario and the adaptation progress was steady. The average absolute
position errors were measured in the same manner as that in Table 3.1. The errors after
10 and 1000 update steps are 61◦ and 22◦ , respectively. Fig. 3.13 shows for example the
online-adapted IID maps of −20◦ after 10 and 1000 steps, as well as the offline-calibrated
IID map of −20◦. The structure of the online-adapted IID map after 1000 steps is similar
to the offline-calibrated map. In comparison to scenarios as shown in Fig. 3.9, the learning
progress was slow due to many complex and confusing situations. Therefore the maps need
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Figure 3.12.: Experiment 2: Euclidean distance between online-adapted and offline-calibrated maps in a natu-
ral dialogue scenario where four persons spoke freely without any script.

Figure 3.13.: Experiment 2: Online-adapted IID maps of −20◦ after 10 and 1000 steps in the natural dialogue
scenario with four speakers. Offline-calibrated maps are used as reference.
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to be adapted longer than in relatively simple scenarios.

3.4.5. Experiment 3: Adaptation Ability

In the third experiment, it was analyzed how the system responded to deviations in the robot’s
hardware that induce a change in the audio-motor map. Smaller modifications are quite com-
mon, especially in larger projects where the audio engineer is not the only person to work
with the robot. The audio-motor maps were adapted online in the standard hardware config-
uration as in scenario I with only one face or in scenario II with two faces (Fig. 3.9). In the
400th step, we applied or simulated hardware modifications that induced a small but measur-
able change in the audio-motor map. Then the audio-motor maps were adapted continuously
in the same scenario. Since sounds were generated from a defined speaker position (0◦),
we were able to measure sound localization performance using the current online-adapted
and the offline-calibrated audio-motor maps. For each update step, the mean position error
in degrees was estimated using Eq. 3.14 for the last 100 steps. The position errors are av-
eraged because the localization performances of an audio-motor map are very different for
each position and are normally better for center positions and a single measurement can not
represent the performance of the current audio-motor map.

Modification of the Robot Head

The robot head was slightly modified by putting a paper hat over the outer ears to alter the
mapping between audio cues and sound position. Fig. 3.14 shows the mean position error
with offline-calibrated and online-adapted maps in scenario I with only one face. It is noticed
that the error increase for both maps was not sudden but rather slow after the 400th step due
to the averaging of position errors over time. Then performance of online-adapted maps
recovered over time, while the mean position error of offline-calibrated maps was always
around 10◦. Fig. 3.15 shows the comparison of sound localization performance between
offline-calibrated and online-adapted maps in scenario II with two faces. In comparison to
Fig. 3.14, we can see that the performance difference of online-adapted maps between two
scenarios is not significant. In the multi-person scenario, the percentage of update steps using
a wrong visual proto-object was only 7%.
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Figure 3.14.: Experiment 3: Mean position error with offline-calibrated and online-adapted maps in scenario
I, when the robot head is modified in the 400th step.

Figure 3.15.: Experiment 3: Mean position error with offline-calibrated and online-adapted maps in scenario
II, when the robot head is modified in the 400th step .
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Exchange of two Microphones

The exchange of left and right microphone was simulated in the 400th update step to ob-
serve if the mapping is able to adapt to the new situation. With this extreme modification,
the sound localization system detects a sound from the right side as coming from the left
side. Fig. 3.16 (resp. Fig. 3.17) illustrates the sound localization performance of offline-
calibrated and online-adapted maps in scenario I with a single face (resp. in scenario II with
two faces). Both online-adapted and offline-calibrated maps deteriorated after exchanging
microphones. Then online-adapted maps recovered quickly while the sound localization re-
sults using offline-calibrated maps were completely wrong. In scenario I, the mean position
error of online-adapted maps after 1000 steps was 5.8◦. That is, the performance reverted
already to its old localization performance. In comparison, the mean position error of on-
line maps in the multi-person scenario was 13.5◦ after 1000 steps and 10.4◦ after 1200 steps
because of many wrongly selected visual proto-objects. In this scenario, the percentage of
update steps where a wrong visual proto-object was chosen was 38%. This was not sur-
prising as the modification was extreme, and the maps need to be adapted continuously to
achieve its old performance.

In the above experiments, we observed that the localization performance of the online-
adapted maps closely approached the localization performance of the offline-calibrated one
before hardware modifications. After modifications the performance for both maps de-
creased. However, the performance of online-adapted audio-motor maps increased over time.
Without online adaptation we would have to repeat the whole process of offline calibration
that is very time-consuming. For example in the experiment where a paper hat was put on
top of the robot, the recovery period of online maps was about 15 minutes (from the 400th
to the 600th step as shown in Fig. 3.14 and Fig. 3.15), while 2 hours have to be spent for
repeating offline calibration. The temporal length of adaptation steps depends mainly on the
length of the sound segments and how often the robot hears a sound, because the run time of
an adaptation step is less than 1s and is normally less than a sound segment so that the system
has to wait for the next audio proto-object after the computation is finished. For example, it
took 72 minutes for 1000 adaptation steps using the recorded sound files of average length
4.2s (Fig. 3.10), while only 50 minutes were spent for 1100 steps in a natural dialogue sce-
nario (Fig. 3.12), because the participants talked all the time in the experiment and generated
audio proto-objects faster. To summarize, it is beneficial to online adapt audio-motor maps
instead of using offline calibration.
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Figure 3.16.: Experiment 3: Mean position error with offline-calibrated and online-adapted maps in scenario
I, when the exchange of two microphones is simulated in the 400th step.

Figure 3.17.: Experiment 3: Mean position error with offline-calibrated and online-adapted maps in scenario
II, when the exchange of two microphones is simulated in the 400th step.
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3.5. Discussion

CAVSA was applied to search for the matched visual source to the current sound in multi-
person environments. Comparing the proposed system with the state of the art in terms of
learning progress, it has been shown that the approach with CAVSA was more robust in
multi-person scenarios. It has also been shown that the performance of the system with
IMPROVED does not degrade when the related visual source has not yet been spotted. Fur-
thermore, the proposed system was able to bootstrap with a randomized audio-motor map in
multi-person environments. The number of persons (2-4) has little influence on the learn-
ing performance. The percentages of update steps where a wrong person is chosen as the
current speaker were about 6% in scenarios with 2-4 persons. Moreover, the approach with
CAVSA was capable of bootstrapping itself in a natural dialogue scenario with 4 human
speakers. The learning progress was slow but steady in this complex scenario. In case
of hardware modifications, the adaptation process was capable of quickly restoring the old
localization performance in the single-person scenario. In the multi-person scenario, the
adaptation process nearly reached the same performance, when the mapping was slightly
modified by putting a hat on the robot head. When the mapping was changed so drastically
that left and right were confused as in the experiment with the simulated exchange of the
two microphones, the system tended to choose a wrong visual proto-object due to inaccurate
sound localization especially shortly after the hardware modification. The recovery period
was longer than for minor modifications of the mapping. But this modification is rather ex-
treme. Thanks to the adaptation ability in case of the modifications of acoustic conditions,
we do not need to spend 2 hours for repeating the whole process of offline calibration. This
is one main motivation to online adapt audio-motor maps.

The system does not need control over the robot motion and thus can work during other
tasks. Nevertheless, motion has an important influence on the online adaptation of audio-
motor maps. First, motion of the robot head or persons is necessary for the online adaptation
of audio-motor maps. Audio-motor maps should be updated for all azimuth angles (sound
positions relative to the robot head). It is assumed that most relative azimuth angles are
generated through the robot’s head motion and movements of the interacting partners during
various tasks. In the experiments, the random head motion was used to simulate the robot’s
head motion during the normal operation of the robot. However, given the extreme situation
where a robot and a person do not move, but just look at each other and talk all the time,
the robot could update maps only for some center azimuth angles. Of course, we can not
expect the robot to localize a sound from an azimuth angle, from where it has never heard
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a sound and learned the audio-motor map before. Moreover, certain motions support updat-
ing the scene representation and thus indirectly enhance the performance of online-adapted
maps [Karaoguz et al., 2013]. For example the proposed system is capable of detecting the
situation that the current sound is related to a person who has not yet been seen. For this
case, audiovisual association is refused. If the robot is required to turn to a sound in certain
tasks, the visual proto-object of the unseen speaker will be stored in the STM and the scene
representation is updated.

The current version of CAVSA works well under the assumption that people do not change
their position much in a dialogue scenario. If a visual target disappears for a while and
then reappears from a different place or moves quickly, it will be considered as a new one.
This is because only position information is used to group visual proto-objects in the STM.
Although this does not affect the performance of online adapted audio-motor maps, the scene
representation is erroneous. Therefore, more grouping features such as color and texture are
employed in dialogue scenarios in the next chapter.
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Scenarios

In many real-world situations, a robot is interacting with multiple people. In this case, un-
derstanding of dialogues is essential. However, dialogue scene analysis is missing in most
existing systems of human-robot interaction. In such systems, only one speaker can talk
with the robot or each speaker has to wear an attached microphone or a headset. Therefore,
CAVSA is applied to make dialogues between humans and robots more natural and flexible.
It aims at learning the number and position of interacting partners, as well as who is currently
speaking. CAVSA is a challenging task as described in section 1.1.

In the previous chapter, the original version of CAVSA was tested in online adaptation of
audio-motor maps. Only a small set of simple features was sufficient since there was no
need to estimate person IDs. In dialogue scenarios, although it may not be important to
figure out exactly who a person is, the system has to notice when the camera sees the same
person again after he left the scenario for a while. In the example given in section 1.1 a
robot is working behind a bar. When a guest has ordered a drink, leaves the bar shortly
and returns, the robot should recognize him again. Otherwise, the robot could give a drink
to the wrong guest. However, the original version of CAVSA fails in this situation since
only position information is used to group visual proto-objects in the STM. Therefore, more
visual features are employed to recognize person identities for improving the capabilities of
CAVSA. Similarly to visual features, a set of simple auditory features is tested to recognize
voices. Furthermore, auditory features are applied to enhance the system robustness in terms
of filtering out typical environmental sounds such as sounds of phone bells, door creaking
(when opening or closing the door) and placing a cup on the table.

The outline of this chapter is as follows: section 4.1 gives an overview of related work in
audiovisual human-robot interaction with multiple persons. Then the extraction of visual
features on different upper body parts, feature selection and feature fusion are introduced in
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section 4.2. Section 4.3 explains the extraction and selection of auditory features. After that,
CAVSA is set adapted to dialogue scenarios in section 4.4, and section 4.5 shows results in
several dialogue scenarios. Finally, section 4.6 will cap this chapter with a discussion.

Important aspects of combining more visual features and the corresponding results were
already published in [Yan et al., 2012].

4.1. Related Work in Audiovisual Human-Robot

Interaction with Multiple Persons

Much research has been carried out around the area of audiovisual human-robot interac-
tion with multiple persons, such as audiovisual association based speaker detection [Haider
and Moubayed, 2012, Sanchez-Riera et al., 2012], tracking of speakers [Kim et al., 2007,
Checka et al., 2003, Khalidov et al., 2008, Nakadai et al., 2001, Fritsch et al., 2003] and
audiovisual attention control [Bennewitz et al., 2005, Yan et al., 2013b]. These methods can
also enable a robot to determine the number and position of persons as well as who is the
current speaker, but work in constrained scenarios. [Haider and Moubayed, 2012] can detect
the current speaker based on synchrony between speech and lip movements. However, this
method works only when speakers are in the camera field of view (FOV). Since most robots
have a limited camera FOV, a speaker may stand out of view for a while due to speaker’s
or robot’s movement. Even when a speaker is in the camera FOV, he could be occluded
for a moment. In those cases, most of these methods such as [Sanchez-Riera et al., 2012,
Kim et al., 2007, Checka et al., 2003, Khalidov et al., 2008] do not memorize the speaker
and would consider him as a new person. Although [Nakadai et al., 2001] can recognize
persons using face recognition, the training of faces is required beforehand. Please notice
that the STM described in [Nakadai et al., 2001], unlike the STM used in this work, is just a
cache that stores all recently received signals. [Bennewitz et al., 2005] proposed an approach
introducing a probabilistic belief about people in the surroundings of the robot. While the
robot head is moving, a person may leave the FOV briefly, but his face is still stored in the
belief and the robot can find him again later. However, since the observation assignment to
stored faces is purely based on their positions, the method fails if a person greatly alters his
position outside the FOV. [Fritsch et al., 2003] used multi-model anchoring to assign obser-
vations to symbolic objects. New anchoring processes are established if observations cannot
be assigned to the existing symbolic objects. Contrary, anchoring processes are removed if
no observations are assigned for a certain period of time. The memorization mechanism is
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similar to the STM used in this work. In addition, [Fritsch et al., 2003] can identify faces
with pre-training as [Nakadai et al., 2001]. However, when people are unknown in advance,
the system assigns observations to objects (speakers) based on only position information.
Hence, it has the same drawback as [Bennewitz et al., 2005] in this case. [Yan et al., 2013b]
applied a visual STM and used also only position information to group persons in the STM.
Moreover, [Yan et al., 2013b] is proposed for meeting scenarios which are simpler than typ-
ical dialogue scenarios. Please note that Yan from [Yan et al., 2013b] is different from the
author of this thesis. In their meeting scenarios, the number of participants is constant, peo-
ple have fixed seats and therefore do not change their position much. The robot only has to
initially turn around once to store the positions of all persons in the meeting room into the
STM. In comparison to the STM described in this work, the “insert” and “remove” step are
not required. To summarize, the approaches [Bennewitz et al., 2005, Fritsch et al., 2003, Yan
et al., 2013b], in general, are more similar to the original version of CAVSA, given people
unknown to the system beforehand.

4.2. Visual Features

Additional visual features are required to differentiate multiple people in dialogue scenarios.
Since the system deals with an unknown number of persons who have not been seen and
heard before, a database for offline training of high-level features to recognize faces is not
available. Furthermore, high-level features for face recognition exhibit an inherent compu-
tational complexity which makes real-time processing difficult. Hence the system combines
a set of simple visual features such as height, color and texture of different upper body parts.
Multiple features of the same person can better represent the person and increase the recog-
nition accuracy because of redundant information. When an individual feature is ambiguous
to differentiate multiple people, the robustness is enhanced by their combination.

The presence of persons is detected by searching for their faces. Based on face position
and size, areas of hair, collar and clothes are estimated (section 4.2.1). In these areas color
and texture features are extracted in form of histogram vectors (section 4.2.2). To keep the
same metric for all visual features, visual camera positions are converted to position evidence
vectors in spherical coordinates (section 4.2.3). In this manner, all features with the same
structure can easily be processed. Furthermore, the position evidence vector of the elevation
angle is used as the height feature. Finally, a feature subset is selected to achieve the best
recognition performance, and a fusion operator is chosen (section 4.2.4).
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Figure 4.1.: Description of the parameters used for the estimation of upper body parts (e.g. clothes ROI),
where visual features will be extracted.

4.2.1. Face-based Detection of Different Upper Body Parts

People usually do not change clothes or hairstyle during a dialogue scenario. Hence people
can be distinguished using color and texture features of different upper body parts (hair, face,
collar and clothes). The border region between the face and hair region is more useful for
differentiating between people than the bulk texture and color of a person’s hair on its own
[Corcoran et al., 2005]. Hence the selected hair area should contain most of the border region
and only little background. Similarly, a collar region is extracted as the border between
neck and clothes which contains much information about the clothing style. For instance, a
shirt, coat and blouse can be distinguished only by the collar. The area below the collar is
considered as clothes area.

In the camera FOV, the presence of persons is detected by searching for their faces as de-
scribed in section 3.2.2. For each face, the center and size in the camera image is computed.
The upper body parts are extracted according to the position and size of the detected faces.
The width and height of each region of interest (ROI) are proportional to the one of the cor-
responding face ROI, and the distance to the face ROI is proportional to face height. In this
manner, the scale of different upper body parts on the camera image changes coherently as
the distance or viewing angle is changing.

54



C
h

a
p

te
r

4

4. CAVSA in Human-Robot Dialogue Scenarios

Figure 4.2.: Examples: face-based detection of clothes ROI

Fig. 4.1 shows an example of parameters for determining the clothes ROI. Three ratio param-
eters rW = W2

W1
, rH = H2

H1
and rD = D

H1
are applied, where W1, H1, W2, H2 and D are the width

and height of the face ROI, width and height of the clothes ROI, and the distance between the
face and clothes ROI, respectively. Using the criterion that most of the desired content and
only little background appear in the ROI, these three parameters are chosen by training on
several images of ten subjects (see Fig. 4.2). rW , rH and rD for each ROI are shown in Table
4.1 (see also [Yan et al., 2012]). Fig. 4.2, Fig. 4.3 and Fig. 4.4 illustrate examples of hair,
collar and clothes ROIs respectively which are estimated using these parameters. Similar
methods of face-based clothes detection can be found in [Jaffre et al., 2004, Fritsch et al.,
2004].

Hair Collar Clothes
rW 1.2 1.2 1.2
rH 0.3 0.8 1.67
rD 0.5 1 2.1

Table 4.1.: Parameters for estimation of hair, collar and clothes ROI
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Figure 4.3.: Examples: face-based detection of collar ROI

Figure 4.4.: Examples: face-based detection of hair ROI
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4.2.2. Histogram Feature Vector of Color and Texture

Histograms are among the most common features used in various tasks such as pattern recog-
nition, tracking and segmentation. From a probabilistic point of view, a normalized his-
togram is similar to a probability density function (PDF), which is one of the most popular
pattern representations [Cha, 2007]. A histogram shows basic information about a data set,
such as the kind of distribution (the histogram shape), statistical properties of the distribu-
tion (e.g. width of spread) and outliers in the data set. Moreover, histograms are normalized
by the number of pixels in the ROI, so that histograms represent the ROI without regard to
its scale. The system calculates color histograms in RGB color space as well as Local Bi-
nary Pattern (LBP) histograms for the above mentioned upper body parts. To simplify the
description, these histogram features are denoted as Hair RGB, Hair LBP, Face RGB, Face
LBP, Collar RGB, Collar LBP, Clothes RGB and Clothes LBP respectively in the following
text.

Color Histogram

Color histograms have been proven to be a robust and efficient cue for object representations
[Swain and Ballard, 1991]. They are stable in the presence of occlusion and over change of
viewing angles. The original form of color histograms are obtained by discretizing the image
colors and counting the number of pixels that have colors in each of a fixed list of color ranges
[Swain and Ballard, 1991]. The drawback of using such a color histogram is that a change
in lighting conditions may lead to a corresponding shift in the histogram and thus histogram
similarities are completely misjudged [Schettini et al., 2001]. As a perfect individual feature
is not the key point of this work and the lighting condition of the experiment room is stable,
the original form of color histograms is used for simplicity. Cumulative histograms could
be used to make the representation robust to lighting changes [Stricker and Orengo, 1995].
The color histogram is calculated in RGB color space. Although RGB color space is neither
perceptually uniform nor intuitive, it provides a simple and fast computation [Park et al.,
1999]. Color histograms calculated in other color spaces can be found e.g. in [Park et al.,
1999]. In this work, each color channel is discretized into six bins and there are a total of
216 (63) bins. The 3D histogram is concatenated into a single vector with 216 elements,
because the computation of the distance/similarity between multi-dimensional histograms is
very expensive.
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Figure 4.5.: Calculation of the LBP [Marcel et al., 2006]

Local Binary Pattern Histogram

The Local Binary Pattern (LBP) proposed by Ojala et al. is a powerful feature for texture
classification [Ojala et al., 1996]. The CAVSA system uses LBP to represent local structure
for its simplicity and robustness to luminance variation. As shown in Fig. 4.5, LBP is
defined as an ordered set of binary comparisons of pixel intensities between a pixel and its
eight surrounding pixels. Given ic as the grey value of the center pixel and in (n ∈ [0,7]) as
the grey values of eight surrounding pixels, the decimal form of the LBP code is given by
[Marcel et al., 2006]:

LBP =
n=7

∑
n=0

s(in− ic) ·2n, (4.1)

where function s(in− ic) converts the differences of grey values in− ic to binary numbers:

s(in− ic) =

{
1 if in− ic ≥ 0,
0 if in− ic < 0.

(4.2)

The system uses a subset of LBP called uniform patterns which represent most texture in-
formation such as corner, line and edge [Topi et al., 2000]. There are only 58 LBP patterns
in the subset while the whole LBP set has 256 (28) elements. The subset contains at most
two bitwise 0 to 1 or 1 to 0 transitions [Topi et al., 2000]. For example, uniform patterns
00000000, 00011111 and 00110000 have 0, 1 and 2 transition(s), respectively. The number
of histogram bins is set to 58 (the number of elements in the subset).

4.2.3. Position Evidence Vector in Spherical Coordinates

Visual camera positions need to be converted to position evidence vectors in spherical coor-
dinates, so that the same metric is kept for all visual features. The same format of features
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simplifies the system structure and eases processing. First, camera positions are converted
into 3D world coordinates and spherical coordinates (azimuth and elevation) as described
in section 3.2.2. The estimated azimuth angle θv is then converted to a position evidence
vector pv(θ) for each angle θ (-90, -85, ..., 0, ..., 85, 90). As the visual position has higher
precision than the auditory one, visual angles are more densely sampled. pv(θ) is defined by
a Gaussian function:

pv(θ) = exp
(
−(θ −θv)

2

2 ·σ2
θ

)
, (4.3)

where σθ is measured empirically to tolerate position measurement errors of the face de-
tector and conversion errors from camera coordinates to world coordinates. Furthermore,
since position is one among many features to group visual proto-objects in STM, slight head
movements should also be tolerated. In consideration of all above aspects, σθ is set to 5 in
the experiments.

Similarly, elevation angles are also converted to position evidence vectors for each elevation
angle θ ′ (−30,−25, ...,0, ...,25,30) and used as height feature. The deviation σθ ′ is set to 3
under consideration that the vertical head movements are normally smaller than horizontal
ones.

4.2.4. Feature Subset Selection

The extraction of visual features (height, color and texture of different upper body parts) was
introduced in the previous sections. When all these features are applied, the computational
cost is high and recognition performance is not necessarily better than for only a subset of
them. Therefore a feature subset is selected to achieve the best performance. The selection
is carried out based on the database: 30 frames for each of ten subjects (see Fig. 4.2), 10 for
training of the template and 20 as samples for testing.

Let D be the original set of features, Xk = x1,x2, ...,xk the feature subset which contains k

features and J(Xk) the feature selection criterion function. If a higher value of J indicates a
better feature subset, the problem of feature subset selection is to find Xk ⊆D such that J(Xk)

is maximum.
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Algorithm 5 SFFS algorithm
1: initialize k = 0
2: Search for feature xk+1 that satisfies xk+1 = argmax

xi∈D\Xk

(J(Xk∪ xi))

3: Xk+1 := Xk∪ xk+1
4: if k<2 then
5: k← k+1
6: go to 2
7: else
8: Search for feature x j that satisfies x j = argmax

xi∈Xk+1

(J(Xk+1\xi))

9: if x j = xk+1 then
10: k← k+1
11: go to 2
12: else
13: X ′k := Xk+1\x j
14: if J(X ′k)> J(Xk) then
15: Xk← X ′k
16: Search for feature xr that satisfies xr = argmax

xi∈Xk+1

(J(Xk\xi))

17: X ′k−1 := Xk\xr
18: if J(X ′k−1)> J(Xk−1) then
19: Xk−1← X ′k−1
20: k← k−1
21: if k = 2 then
22: go to 2
23: else
24: go to 16
25:
26: end if
27: end if
28: else
29: go to 2
30: end if
31: end if
32: end if
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Related Work in Feature Subset Selection

There are a large number of algorithms proposed for performing feature subset selection, for
a survey see [Jain and Zongker, 1997]. An exhaustive approach can guarantee the optimal
subset, but would require examining all possible subsets (2n). The exponential search is
impractical even for a moderate sized D. Alternatively, the Branch And Bound algorithm
can be used to find the optimal feature subset much more quickly [Jain and Zongker, 1997].
For this, it requires the function J to be monotonic. This means that for any two subsets
XA, XB and XA ⊆ XB, J(XA)≤ J(XB) has to hold. However, in our case it might actually not
always be true that the addition of new features increases the value of J. Additionally, the
most commonly used methods are sequential feature selection algorithms because of their
low cost. The sequential forward/backward selection algorithm starts with the empty/full set
and adds/removes one feature in each step to make J bigger. These methods have comparable
performance but do not guarantee an optimal result [Jain and Zongker, 1997]. This is because
for example once a sequential forward selection (SFS) operator selects a feature, it will never
be able to remove it again. Depending on the order of features it might therefore easily miss
the optimal subset. In contrast, the sequential forward floating selection (SFFS) algorithm
adds features based on sequential forward selection and allows to remove the worst features
in the newly updated set [Pudil et al., 1994]. According to [Jain and Zongker, 1997], the
performance of the floating method is comparable to the Branch And Bound algorithm and
its speed is faster in most cases. Therefore, the SFFS algorithm is applied to select features,
as described in Algorithm 5.

Feature Selection Criterion Function

The SFFS algorithm is used to select features. First of all, the feature selection criterion
function J needs to be defined. For this purpose, we calculate the TPR (true positive rate),
FPR (false positive rate) and analyse the ROC (receiver operating characteristic) for each
examined subset. ROC is a metric for comparing predicted and actual target values in a
binary classification model. If plotted, each point represents a pair of the TPR (on the y
axis) and FPR (on the x axis) for a particular discrimination threshold. The TPR defines
the number of correct positive results in proportion to all positive samples available during
the classification test. The FPR, on the other hand, defines the number of incorrect positive
results in proportion to all negative samples available during the test. There are many criteria
to evaluate ROC points. Here, the point which has the minimum distance to the perfect
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classification (TPR= 1 and FPR= 0) is selected and the minimum distance is denoted as dm.
The feature selection criterion function is defined as J = 1− dm, since we are maximizing
this function. Additionally, the discrimination threshold Θs is set from 0 to 1 in steps of
0.001. Calculation of TPR and FPR for the large set of thresholds is time consuming, but
visual feature selection is done only once in an offline manner. Hence the speed of the feature
selection is much less important than the classification performance of the selected feature
subset.

Feature Similarity and Fusion Operator

In the ROC-analysis, all features of one subject, namely Hair RGB, Hair LBP, Face RGB,
Face LBP, Collar RGB, Collar LBP, Clothes RGB, Clothes LBP and height feature, build a
visual proto-object. Whether a sample belongs to a template is decided by comparing the
similarity of their proto-objects with a threshold Θs. Different metrics can be utilized to
calculate vector similarity, for a survey see [Cha, 2007]. Given F as the number of features
in a proto-object, the normalized inner product (NIP) is used to compute feature similarity
si (i ∈ [1,F ]) :

si =
xi · yi

||xi|| ||yi||
, (4.4)

where xi and yi stand for the i-th feature vector in a sample and in a template, respectively.
The classification performance of each individual feature (set F = 1) is evaluated by dm in
Table 4.2. Features are arranged according to dm in the table and the corresponding TPR,
FPR are shown.

Feature dm TPR FPR
Hair LBP 0.1892 0.8693 0.1368
Height 0.1995 0.8693 0.1508
Clothes LBP 0.2204 0.8643 0.1736
Clothes RGB 0.2218 0.8844 0.1893
Collar LBP 0.2265 0.8894 0.1977
Collar RGB 0.2878 0.8241 0.2278
Face LBP 0.2955 0.7789 0.1960
Face RGB 0.3971 0.6382 0.1636
Hair RGB 0.4617 0.6080 0.2440

Table 4.2.: The minimum distance dm to the perfect classification on the ROC-curve and the corresponding
TPR, FPR for each individual feature

When more than one feature is used (F > 1), the measurement of proto-object similarity S
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Step Added Feature dm TPR NPR Threshold
1 Hair LBP 0.1892 0.8693 0.1368 0.8020
2 Height 0.0814 0.9447 0.0597 0.8710
3 Clothes LBP 0.0463 0.9698 0.0352 0.8560
4 Face LBP 0.0329 0.9749 0.0212 0.8550
5 Collar LBP 0.0358 0.9799 0.0296 0.8410
6 Face RGB 0.0451 0.9749 0.0374 0.8200
7 Hair RGB 0.0623 0.9397 0.0156 0.8320
8 Clothes RGB 0.1358 0.8643 0.0045 0.8220
9 Collar RGB 0.1709 0.8291 0.0039 0.8220

Table 4.3.: SFFS algorithm for feature subset selection

between a sample and a template is involving the fusion of feature similarity si. The non-
trainable fusion operator could be for example the mean operator:

S =
1
F
·

F

∑
i=1

si, (4.5)

or the product operator:

S =
F

∏
i=1

si. (4.6)

First, the mean operator and the SFFS algorithm are used to select the feature subset. The
feature selected in each step is shown in Table 4.3. We can see that the best feature subset
contains Hair LBP, Face LBP, Clothes LBP and height feature. No features are excluded in
the feature selection process, so that the result of SFFS is not different from SFS. We can see
that Clothes RGB is not in the best subset, although it has better performance than Face LBP
when using individual features. A possible reason is that Clothes RGB provides redundant
information for the subsets with Hair LBP, Clothes LBP and height feature, based on our
database. Actually, all features should be uncorrelated except for Clothes RGB and Collar
RGB. Fig. 4.6 illustrates the ROC-curves for Hair LBP, Face LBP, Clothes LBP, height and
their combination. According to [Zweig and Campbell, 1993], the closer the ROC curve is
to the upper left corner, the higher the overall accuracy of the classification test. As can be
seen, the curve of the combined features is much better than that of any individual features.

We also run the SFFS algorithm using the product operator. The best feature subset is the
combination of Hair LBP, Clothes LBP and height. The minimum distance dm to the best
classification is 0.0447, which is larger than dm = 0.0329 for the best subset using the mean
operator. Therefore, the mean operator is chosen for feature fusion, and the best feature
subset (Hair LBP, Face LBP, Clothes LBP, height) is used for visual proto-objects.
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Figure 4.6.: ROC-curves for Hair LBP, Face LBP, Clothes LBP, height and their combination. The mean
operator is used for the feature fusion. The point (0.0212,0.9749) on the curve of combined features has the
minimum distance dm to the perfect classification, dm = 0.0329.

4.3. Auditory Features

The purpose of using auditory features is to improve the system robustness in terms of voice
recognition and filtering out environmental sounds. When a speaker leaves the scene and
continuously talks to the robot from outside its FOV, the system should notice that he has
been heard before. Therefore, several simple auditory features are tested to identify voices,
similar to what was done for the visual features. Unlike visual signals, speech signals carry
most information in their temporal dynamics. This makes auditory scene analysis more
difficult. In addition, auditory features are used to identify typical environmental sounds in
offices and households, and thus filter out these sounds.

Sound energy, spectral energy vector and Gammatone Frequency Cepstral Coefficients (GFCC)
are used mainly because these features are easy to compute, as the system aims to build an
efficient scene representation. Furthermore, spectral energy vector and GFCCs are short-
term spectral features, which are believed to be the simplest, yet most discriminative fea-
tures for speaker recognition [Kinnunen and Li, 2009]. In most speaker recognition systems,
speaker models need to be trained beforehand by using feature vectors extracted from the
same speakers’ training utterances [Kinnunen and Li, 2009]. However, no prior knowledge
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about the speakers is available for the CAVSA system in this work. Therefore, the task of
voice recognition becomes more challenging and a performance deterioration can be antici-
pated.

In the following, the extraction of these auditory features is introduced. Then these fea-
tures are tested for discriminating voices and environmental sounds, and the best features are
selected.

4.3.1. Spectral energy vector and sound energy

The extraction of spectral energy vector and sound energy is based on the Gammatone Fil-
terbank which has been introduced in section 3.2.1.

In the audio processing (see Fig. 3.2), after a Gammatone Filterbank is applied, the signal
envelope for every frequency band is extracted and then a spectral subtraction technique is
used to remove the stationary background noise. The resulting signal is denoted as G(s, f )

where s and f stand for sample and frequency channel respectively. This Time-Frequency
(T-F) representation is called the cochleagram. After an energy-based segmentation, the
number of samples L in the segment is computed. Since the sound in one audio segment
is produced by the same speaker in our context, G(s, f ) is averaged over all samples of the
segment:

G( f ) =
∑s G(s, f )

L
. (4.7)

G( f ) is called spectral energy vector [Rodemann et al., 2009b] and indicates the distribution
of energy over all frequency channels. This feature has been used to differentiate robot
directed calls from background noise [Rodemann et al., 2009b].

Sound energy denoted as A is calculated as the sum of G( f ) over all frequency channels:

A = ∑
f

G( f ). (4.8)

In the same acoustic environment, the louder a sound, the more energy it has. To keep the
same form as for the spectral energy vector, A is converted to a population code vector using
100 nodes. The node centers are selected empirically as follows: Each of 10 participants
stands in front of the robot and utters 20 natural sentences. It was found that 95% of the
audio proto-objects have a sound energy in the range [500, 120000]. Therefore, the node
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Figure 4.7.: Steps involved in MFCCs (GFCCs) extraction. In case of GFCCs extraction: Gammatone filter-
bank instead of FFT.

centers are generated as 100 equally spaced points between 500 and 120000. Thus, the
population code vector of energy A is defined by a Gaussian function:

pA(n) = exp
(
−(n−A)2

2 ·δ 2
n

)
, (4.9)

where n stands for node center and the standard deviation δn is empirically set to 9500.

4.3.2. Gammatone Frequency Cepstral Coefficients

Gammatone Frequency Cepstral Coefficients (GFCC) are extracted based on Mel Frequency
Cepstral Coefficients (MFCC), which are perhaps the most popular features and widely used
in speaker recognition tasks [Hasan et al., 2004]. As shown in Fig. 4.7, the following steps
are commonly performed to derive MFCC features [Ganchev et al., 2005]: First, FFT power
spectrum information is derived from a short time windowed segment of speech. Then the
Mel-spaced filterbank, a set of triangle filters, are applied to the power spectrum. After
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that, the logarithm of all filterbank energies and the DCT of the log filterbank energies are
calculated. For standard MFCCs, the DCT coefficients 2− 13 are kept. Usually, the frame
energy and delta coefficients are also appended to each feature vector.

The GFCC features described in this work differ from MFCC features only in the power
spectrum representation. While MFCC features are based on the FFT power spectrum, the
T-F representation in the extraction of GFCC features, the cochleagram G(s, f ), is derived
from Gammatone filterbank filtering. The cochleagram is analogous to the spectrogram, but
provides a higher frequency resolution at low frequencies than at high frequencies [Shao
and Wang, 2007]. Since speech signals concentrate more energy at low frequencies and
background signals have more energy at higher frequencies [Rodemann et al., 2009b], the
performance of GFCC features should be better in speaker recognition than MFCC features.
This was verified in [Zhao et al., 2012]. However, it is to mention that the GFCC features,
described in [Shao and Wang, 2007] and [Zhao et al., 2012], are not identical to those used
in this work. Their GFCC features are not cepstral coefficients, but are derived by applying
DCT directly on the feature vector G(s, f ) at sample s. Another important reason of using
GFCC features is to conveniently extract all auditory features based on the Gammatone fil-
terbank. To obtain a GFCC feature vector for an audio proto-object, the cochleagram G(s, f )

is averaged over all samples s in the audio segment, as in Eq. 4.7. In this work, GFCC
feature vectors with 13 coefficients (including only the energy term), 16 coefficients, and 26
coefficients (with energy term and their first derivatives) are tested.

4.3.3. Feature Subset Selection

Auditory features (sound energy, spectral energy vector, GFCC features with 13, 16 and 26
coefficients) were introduced in the previous sections. In this section, the performance of
these features in discriminating voices and environmental sounds is tested, and the best fea-
tures are selected. First, auditory features are used for differentiating between 10 sounds
produced by 3 women, 5 men, 1 phone bell and 1 toy duck. The subjects spoke natural sen-
tences. 30 audio segments were taken for each sound source, 10 for training of the template
and 20 as samples for testing. For each feature, every sample is compared with templates
by computing their similarity. The calculation of feature similarity is based on Eq. 4.4. The
similarities between samples and templates for each feature form a 10×200- matrix. These
matrices are shown in Fig. 4.8, where only the maximum value for each sample is illus-
trated. In this manner, it is easier to observe if a sample is assigned correctly to its template.

67



4. CAVSA in Human-Robot Dialogue Scenarios

Figure 4.8.: Feature similarity matrices between 10 templates and their samples, where only the maximum
value for each sample is shown. The index 1− 10 on the y-axis indicates 10 templates: the template of 3
women, 5 men, a phone bell and a toy duck, respectively. The index 1−200 on the x-axis indicates 20 samples
for each.
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Feature Sound
Energy

Spectral
Energy

GFCC
13

GFCC
16

GFCC
26

ER 84.5% 43.8% 51% 48% 51%

Table 4.4.: Error Rate (ER) for each auditory feature in the test

Figure 4.9.: ROC-curves for spectral energy, GFCC with 16 coefficients, GFCC with 26 coefficients and their
combination. The point (0.2104,0.6482) on the curve of combined features has the minimum distance dm to
the perfect classification, dm = 0.4099.

Furthermore, the Error Rate (ER) is computed for each feature:

ER =
total number of falsely assigned samples

total number of samples
.

The measured ERs for all feature vectors are shown in Table 4.4. Although ERs of all the
auditory features are lower than 90% (ER in case of an assignment by chance), these features
are not good enough to reliably distinguish speakers on their own. Therefore, multiple fea-
tures are combined and the SFFS algorithm (see section 4.2.4) is applied to select a feature
subset. The resulting best feature subset contains spectral energy, GFCC with 16 coefficients
and GFCC with 26 coefficients. Fig. 4.9 shows the corresponding ROC curves. It can be
seen that the performance of the combination is not much better than that of the spectral
energy. The minimum distance to the best classification is 0.4099, whereas the minimum
distance of the best visual feature subset is only 0.0329 as shown in Fig. 4.6. It is more
difficult to identify speakers with auditory features than with visual features especially in
the unconstrained settings, because speech signals strongly vary over time. No wonder the
performance of most speaker recognition systems is better where complex speaker models
are trained beforehand.
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As can be seen in Fig. 4.8, although spectral energy and GFCC features perform worse
than visual features to differentiate voices, they show a good performance in recognizing the
phone bell and toy duck sounds. To verify the performance of auditory features in recog-
nizing environmental sounds, more environmental sounds were tested. Actually, the system
does not aim to recognize individual environmental sounds, but does this to filter out these
sounds and thus enhance the system robustness. First, sounds of toy ducks, phone bells,
door creaking and placing different cups on a table were recorded. Dog barking and cat me-
owing sounds were downloaded from the internet. 30 audio segments were taken for each
kind of sound, 10 for training of the template and 20 as samples for testing. The similarity
matrices for auditory features are illustrated in Fig. 4.10. The ERs for each feature vector
are measured and shown in Table 4.5. It can be seen that all features, except sound energy,

Feature Sound
Energy

Spectral
Energy

GFCC
13

GFCC
16

GFCC
26

ER 69.17% 12.5% 27.5% 24.17% 25%

Table 4.5.: Error Rate (ER) for each auditory feature in the test of environmental sounds

perform much better than in differentiating persons. Therefore, auditory features are applied
to identify environmental sounds then filter them.

Features are selected and combined to fulfill the task. While a database for training features
to recognize speakers is not available, templates for individual environmental sounds can
be trained beforehand. We select different feature subsets for different classes of sounds,
because the classification accuracy is often higher than selecting a common feature subset
for all classes. Feature subsets are selected using the SFFS algorithm as described in sec-
tion 4.3.3. The ROCs for selected features are analyzed to set decision thresholds Θs for
each class. The selected features, Θs and the corresponding TPR, FPR for each class of
environmental sounds are shown in Table 4.6. A scenario (Scenario IV in section 4.5) will
be designed to test the performance of auditory features for recognizing and filtering out
environmental sounds.

To summarize, it is hard to recognize voices with auditory features, especially in an uncon-
strained setting. Therefore, auditory features are not used to group audio proto-objects. They
could work in some specific situations though, for example, if there are only two speakers in
the scenario and one speaks always louder than the other. In this scenario, even sound energy
alone, evaluated as the worst feature (see Table 4.4), is sufficient for differentiating voices.
Auditory features were not tested in such specific scenarios though. In most situations, it is
risky to use these auditory features to group audio proto-objects in a STM, because once an
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Figure 4.10.: Feature similarity matrices between 6 templates and their samples, where only the maximum
value for each sample is shown. The index 1−6 on the y-axis indicates 6 templates: the feature template of toy
ducks, phone bells, door creaking, placing a cup on the table, dog barking and cat meowing. The index 1−120
on the x-axis indicates their 20 samples for each. There are generally more errors in recognizing the sounds of
dog barking and cat meowing, because the sounds of 10 different cats and 12 different dogs are used. These
animals differ in ages and emotions. However, it is uncommon that there are so many pets in one household. If
sounds of the same animal are used for template and samples, the performance could be better.
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Sounds Θs TPR FPR Feature Subset
Toy Duck 0.956 1 0.02 GFCC 26
Phone 0.696 0.95 0.01 spectral energy
Door 0.951 0.95 0.01 spectral energy
Cup 0.98 0.95 0.04 GFCC 26
Dog 0.834 0.85 0.11 spectral energy, GFCC 16
Cat 0.703 0.95 0.07 spectral energy, GFCC 26

Table 4.6.: Decision threshold Θs, TPR,FPR and selected features for classes of each individual environmental
sound: sounds of toy ducks, phone bells, door creaking, placing different cups on the table, dog barking and
cat meowing.

audio proto-object is falsely assigned in the STM, the system is not able to correct the error
by itself. Hence an auditory STM is not applied in this work. On the other hand, auditory
features show a good performance in identifying typical environmental sounds. In order to
filter out these sounds, the spectral energy vector and GFCC features with 16 and with 26
coefficients are selected and stored in audio proto-objects.

4.4. Setting of CAVSA for Dialogue Scenarios

CAVSA is used to assign words to corresponding speakers in natural dialogue scenarios as
shown in Fig. 4.11. CAVSA is set up in the following.

4.4.1. Proto-Objects

According to the analysis of visual features in the previous section, the system collects Hair
LBP, Clothes LBP, Face LBP, height as well as the position evidence vector pv(θ) (as in
equation 4.3) in one visual proto-object. An audio proto-object contains start time, segment
length, the mean energy and the position evidence vector pa(θ). The extraction of these
auditory features was introduced in section 3.2.1. In order to filter out environmental sounds,
the spectral energy vector, and GFCC features with 16 and 26 coefficients are additionally
stored in the audio proto-object, as explained in section 4.3.3.
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Figure 4.11.: System architecture of CAVSA for dialogue scenarios. CAVSA aims at learning the number and
positions of interacting partners, as well as who is currently speaking. Additional visual features (Clothes LBP,
Hair LBP, Face LBP and Height) are applied to recognize persons while additional auditory features (spectral
energy vector, GFCC features with 16 and 26 coefficients) are used to filter out environmental sounds. APO:
audio proto-object, VPO: visual proto-object.

73



4. CAVSA in Human-Robot Dialogue Scenarios

4.4.2. Visual STM

The visual STM is used to group visual proto-objects from the same speaker and memo-
rize proto-objects, even if the corresponding persons are out of sight for a while due to the
person’s or robot’s movement or the failure of the face detection. The procedure of insert-
ing an incoming proto-object into the STM is described in section 2.3. In this section, the
“compare” step is configured.

Let Xm =(x1,x2, ...xF) (m∈ [1,M]) denote the m-th incoming proto-object and Yn =(y1,y2, ...yF)

(n ∈ [1,N]) denote the n-th proto-object in STM , where xi ∈ Xm (resp. yi ∈Yn) stands for the
i-th (i ∈ [1,F ]) feature in Xm (resp. Yn), F is the number of features in a proto-object, M the
number of current incoming proto-objects and N the number of proto-objects in STM. First,
the similarity si between feature vectors xi and yi is computed based on equation 4.4. Next,
the similarity Smn between proto-objects Xm and Yn is measured using the mean operator:

Smn =
∑

F
i=1 si ·wi

∑
F
i=1 wi

, (4.10)

where wi, the weight of the i-th feature, is a time decay function as defined in equation 2.2.
Since the position feature has a stronger variation than other features when people move, a
smaller time constant τ = 5 s is set for the position feature. For other features, τ is set equal
to 100 s.

4.4.3. Audiovisual Association

The current audio proto-object A is linked to a visual proto-object Vj ( j ∈ [1,N]) from the
STM based on the similarity of their position evidence vectors pa and pv j , to find the current
speaker. First, the auditory position evidence vector pa is extended using linear interpolation
to have the same length as the visual position vector pv j . The interpolated auditory vector is
denoted as p′a. Then the probability that A and Vj are caused by the same person is computed
as the similarity of pv j and p′a, as follows:

Pcommon(A,Vj) =
p′a · pv j

||p′a|| ||pv j ||
. (4.11)

The CAVSA system also considers the situation where the current sound is related to a per-
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son who has not yet been seen, as in Algorithm 3 (“Audiovisual association: Consideration
of unseen VPOs”). Chapter 3 already proved that Algorithm 3 has better performance than
Algorithm 2 with the basic approach. When the related visual source has not yet been spot-
ted, Algorithm 3 was able to detect the situation and refused audiovisual integration, while
the basic approach in Algorithm 2 selected a wrong visual proto-object for audiovisual asso-
ciation.

Let VN+1 denote the proto-object of the unseen person. The probability that the current audio
proto-object A is associated with VN+1 is described by:

Pcommon(A,VN+1) =
∑θ U(θ) · p′a(θ)

∑θ p′a(θ)
, (4.12)

where U(θ) is a view memory defined in equation 3.3. The system then searches for the
visual proto-object Vl which has maximum probability Pcommon(A,Vj) ( j ∈ [1,N]) as in equa-
tion 2.3. If Pcommon(A,VN+1) is larger than Pcommon(A,Vl), the matched visual proto-object is
considered to have not yet been seen. Otherwise, the audio proto-object is associated with
visual proto-object VjMax.

In this application, the system must answer the question “who is currently speaking ?” using
audiovisual association independent of whether the association is reliable or not. Therefore,
the uncertainty of the audiovisual association based on equation 3.6 is not calculated. How-
ever, the uncertainty information could be used according to requirements and applications.
For example the uncertainty information could be sent to the dialogue manager in a dia-
logue system. If an audiovisual association is unreliable, a dialogue manager may ask for
confirmation.

4.5. Results

To evaluate the performance of CAVSA, experiments were carried out in a small room (for
details see chapter 3). Three dialogue scenarios were designed as shown in Fig. 4.12 to
test if the CAVSA system using additional visual features is able to correctly determine
the number and position of speakers, as well as the current speaker. Person 1, 2 and 3
are represented with red, blue and black icons. Red, blue and black dashed lines stand
for motion trajectories of person 1, 2 and 3, respectively. Each scenario was repeated five
times with different participants to verify results. To ease the description, the repetitions of
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Figure 4.12.: Sketch of three scenarios. Scenario I: two participants talk to the robot at the beginning. Then
speaker 2 leaves the FOV, passes behind the robot and returns; Scenario II: two speakers change their positions;
Scenario III: person 1 and person 2 talk to the robot, while person 3 is outside the FOV and remains silent.
Then person 1 and person 3 exchange their positions. In all scenarios, the people in the FOV talk alternatingly.

Figure 4.13.: Scenario I.1- I.5: participants in the camera FOV before and after the movement.

Scenario I are called Scenario I.1, Scenario I.2, ..., Scenario I.5, the repetitions of Scenario
II Scenario II.1, Scenario II.2, ..., Scenario II.5, and the repetitions of Scenario III Scenario
III.1, Scenario III.2, ..., Scenario III.5. Five groups of participants for three scenarios are
shown in Fig. 4.13, Fig. 4.14 and Fig. 4.15 before and after the corresponding scenario
motion. Threshold Θs for the similarity Smn (in equation 4.10) is set to 0.7 based on data
from Scenarios I.1, II.1 and III.1.

For each scenario, the CAVSA system using position and visual features (Hair LBP, Height,
Clothes LBP and Face LBP) is compared with the previous version described in chapter 3
which used only position to group visual proto-objects in STM. In the following the system
using only position is denoted as “CAVSA-Pos“ and the version using multiple visual features
as “CAVSA-Multi”. CAVSA-Pos behaves similarly to methods in [Bennewitz et al., 2005,
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Figure 4.14.: Scenario II.1- II.5: participants in the camera field of view before and after the movement.

Figure 4.15.: Scenario III.1- III.5: participants in the camera FOV before and after the movement.

Fritsch et al., 2003, Yan et al., 2013b], given people unknown to the system beforehand.

Furthermore, an additional scenario (Scenario IV) was designed to test the performance of
auditory features for filtering out environmental sounds. In this scenario, a person talked to
the robot, then several background sounds were produced such as sounds of placing the cup
on the table, phone bells and door creaking.

The results of these four scenarios are described below.

4.5.1. Results for Scenario I

In Scenario I.1, the starting configuration had person 1 at around 0◦ azimuth angle and person
2 at−25◦. They talked to the robot alternatingly. At time step 205, person 2 moved out of the
FOV and passed behind the robot. During this time only person 1 spoke. At time step 356,
person 2 reappeared at around 25◦ and both talked to the robot alternatingly again. Fig. 4.16
(1) and (2) show the result of scene representation over time using CAVSA-Pos and CAVSA-
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Figure 4.16.: Scenario I: (1) visual scene representation with CAVSA-Pos; (2) visual scene representation with
CAVSA-Multi; (3) result of the audiovisual association. In (1) and (2), person identity is visualized using
different colors. Red, blue and black are used for person 1, person 2 and person 3, respectively. In (3),
“Audio” represents sound position, “Current Speaker” the visual position of the detected current speaker and
“GT-Current Speaker” the visual position of the true current speaker. Ground truth data was added manually.
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Multi, respectively. Person identity is visualized using different colors. Red, blue and black
are used for person 1, person 2 and person 3, respectively. A solid line means that the related
person is currently in the FOV, while dashed lines indicate disappeared persons. The cameras
record images at 10 frame/s, that is one time step is 0.1 s. Fig. 4.17 (for Scenario II.1) and
Fig. 4.18 (for Scenario III.1) visualize results in the same manner. As can be seen in Fig.
4.16 (1) and (2), when person 2 left the FOV, both CAVSA-Pos and CAVSA-Multi stored the
corresponding visual proto-objects in the STM. However, CAVSA-Pos considered person 2 as
a new person (“person 3”), when he disappeared briefly and returned from a different azimuth
angle, because similarity between the new and saved position was too small. In comparison,
CAVSA-Multi was able to correctly represent the visual scene, since it integrated also visual
features. Similarly, CAVSA-Multi represented the visual scene correctly with Θs = 0.7 in
Scenario I.2 -I.5, while CAVSA-Pos considered person 2 as a new person.

Fig. 4.16 (3) visualizes the result of audiovisual association based on position information.
CAVSA-Multi was used here for grouping visual proto-objects in STM. “Audio” stands for
sound position, while “Current Speaker” represents the visual position of the detected current
speaker and “GT-Current Speaker” the visual position of the true current speaker. Ground
truth data was annotated by hand. We can see that audiovisual association worked most of
the time. But the current speaker was considered to have not been seen at time step 185 and
was falsely detected at time step 198. Both errors were due to inaccurate sound localization.

4.5.2. Results for Scenario II

In Scenario II.1, person 1 stood initially at around −10◦ azimuth angle and person 2 at 20◦.
They talked to the robot alternatingly. At time step 280, speaker 1 moved from −10◦ to
20◦ and speaker 2 from 20◦ to −20◦. Then they continued to talk in the same manner. Fig.
4.17 shows the result of the scene representation using CAVSA-Pos and CAVSA-Multi, as
well as the result of the audiovisual association. CAVSA-Pos interpretation of the situation
was that speaker 2 did not move, speaker 1 exited and a new speaker (“person 3”) came into
the scenario, while CAVSA-Multi correctly represented the scene over time. Fig. 4.17 (3)
shows that only one error of audiovisual association occurred at time step 157 also due to
an erroneous sound localization. The changes in the scene can be correctly detected in the
remaining repetitions of Scenario II except for Scenario II.4, where the male participant is
recognized as a new person after changing his position. Since he did not stand completely in
the FOV, the similarity of his Clothes LBP feature before and after changing position is very
low and similarity Smn is lower than Θs = 0.7.
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Figure 4.17.: Scenario II: (1) visual scene representation with CAVSA-Pos; (2) visual scene representation
with CAVSA-Multi; (3) result of the audiovisual association. In (1) and (2), person identity is visualized using
different colors. Red, blue and black are used for person 1, person 2 and person 3, respectively. In (3),
“Audio” represents sound position, “Current Speaker” the visual position of the detected current speaker and
“GT-Current Speaker” the visual position of the true current speaker. Ground truth data was added manually.
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Figure 4.18.: Scenario III: (1) visual scene representation with CAVSA-Pos; (2) visual scene representation
with CAVSA-Multi; (3) result of the audiovisual association. In (1) and (2), person identity is visualized using
different colors. Red, blue and black are used for person 1, person 2 and person 3, respectively. In (3),
“Audio” represents sound position, “Current Speaker” the visual position of the detected current speaker and
“GT-Current Speaker” the visual position of the true current speaker. Ground truth data was added manually.
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4.5.3. Results for Scenario III

In Scenario III.1, person 1 stood initially at around 17◦ azimuth angle, person 2 at −15◦ and
person 3 was outside of the FOV. Person 1 and person 2 talked to the robot alternatingly.
At time step 173, person 1 exited at 30◦ (the border of the FOV). Person 3 appeared at 30◦

at time step 187 and moved to 15◦ at time step 195. Then person 2 and person 3 talked to
the robot alternatingly. As can be seen from Fig. 4.18 (1), CAVSA-Pos detected speaker 1
as a new person “person 3” at time step 171 because of his fast movement. Then person 1
exited from the border of the FOV and speaker 3 appeared from the same side, so that they
were considered as the same person (“person 3”). At time step 190, person 3 moved to the
old position of person 1, and was detected as person 1, while “person 3” was detected to
be out of the FOV. As shown in Fig. 4.18 (2), CAVSA-Multi represented the dynamic scene
correctly. In Scenario III.2 and III.3, person 1 and 3 were recognized as the same person
by CAVSA-Multi with Θs = 0.7, since they have similar visual features (Hair LBP, Height,
Clothes LBP and Face LBP). It was found that once a visual proto-object is falsely assigned,
the system is not able to correct the error by itself. Fig. 4.18 (3) illustrates that all the
audiovisual associations were successful.

Since the same type of errors of audiovisual association was found in multiple scenarios, the
error rate (falsely assigned APOs/ all APOs) is calculated based on all 15 scenarios. The total
error rate is 7%, i.e. words are most of the time correctly assigned to the matched speakers.

4.5.4. Results for Scenario IV

In Scenario IV, a person talked to the robot, then placed a cup on the table. After that, his
mobile phone rang and he opened the door to go outside to answer the call and closed the
door behind him. In this process, 14 audio proto-objects were generated by the system, 6 for
utterances of the person, 1 for placing the cup on the table, 5 for phone bells and 2 for door
creaking. The templates of the environmental sounds are trained beforehand as explained in
section 4.3. Auditory features that are used to train each template and decision thresholds
are shown in Table 4.6. The results of filtering environmental sounds are illustrated in Fig.
4.19. The ground truth data of audio proto-objects was annotated by hand. We can see that
different environmental sounds are correctly recognized and thus filtered out.
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Figure 4.19.: Scenario IV: result of filtering environmental sounds that are the sounds of placing the cup on the
table, phone bells and door creaking. GT: Ground truth data that was added manually.

4.6. Discussion

In this chapter, CAVSA is applied in human-robot dialogue scenarios. It has been shown
that the CAVSA system was able to correctly determine the number and position of speakers
as well as who is currently speaking in most real-world scenarios. The previous version in
chapter 3 and state-of-the-art methods can not recognize a person again when he leaves the
scene for a while. This is because they use only position information to group visual proto-
objects in the STM. In contrast, the system integrating more visual features, was shown to be
able to recognize reappearing persons most of the time in more complicated scenarios where
speakers left and entered the scene, or switched positions. Audiovisual association some-
times failed if sound location was falsely estimated. But the current speaker was correctly
detected in a large majority of cases.

Furthermore, auditory features are applied to improve the robustness of the system. It has
been shown that they had good performance to recognize typical environmental sounds and
thus filter out these sounds.

83





C
h

a
p

te
r

5

5. Summary

This work has presented a system of computational audiovisual scene analysis (CAVSA).
Assuming that all meaningful sounds originate from human speakers, the CAVSA system
is able to learn how many speakers are in the scenario, where the speakers are and who is
currently speaking in most dialogue scenarios. Speakers are unknown in advance.

For CAVSA, auditory and visual features are first collected in form of proto-objects, which
are understood here as a compressed form of various features. Audio and visual proto-object
are used together in one framework at the first time. In this manner, dense visual images
and sparse sound sources are transformed into a common representation, which eases the
audiovisual integration. Proto-objects are designed for operation in realistic environments,
since they can be tracked, pointed or referred to without identification and enable a flexible
interface to behavior-control in robotics. In CAVSA, proto-objects for the same speaker
are grouped together in auditory and visual STMs using position information. STMs help
to memorize persons, even if they disappear from the field of view for a while. Finally,
visual and audio proto-objects of the same speaker are integrated. The system links the
current sound to the corresponding speaker in multi-person environments, and measures the
uncertainty of the audiovisual integration. Additionally, I consider the situation where the
current sound is related to a person who has not yet been seen.

CAVSA has many potential applications. In this thesis, it is applied in two applications. First,
CAVSA is tested in online adaptation of audio-motor maps. It enables the system to find the
matched visual source to the current audio source in multi-person environments, thus vi-
sion can be used to provide precise position information in online adaptation of audio-motor
maps. In comparison to state-of-the-art methods, the proposed system does not need control
over the robot motion and thus can work during other tasks. In terms of learning progress,
it was shown that the approach with CAVSA was more robust in multi-person scenarios. It
was also shown that the performance of online adaptation does not degrade when the current
speaker has not yet been seen. Furthermore, the system was able to bootstrap with a ran-
domized audio-motor map in multi-person environments. In case of hardware modifications,
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the adaptation process was capable of quickly restoring the old localization performance in
the single-person scenario. In multi-person scenarios, the recovery period depended on how
large the modification was made.

In online adaptation of audio-motor maps, only a small set of simple features is sufficient,
since it is not necessary to identify persons. However, the original version of CAVSA some-
times fails in dialogue scenarios, for example when a person greatly alters his position out-
side the field of view. This is because only position information is used to group visual
proto-objects in the STM. Therefore I employed more visual features to recognize persons
for improving the capability of CAVSA and tested the performance in real-world dialogue
scenarios. It was shown that the CAVSA system was able to assign words to corresponding
speakers in a large majority of cases. A speaker was recognized again when he left and en-
tered the scene, or changed his position even with a newly appearing person. Furthermore, a
set of simple auditory features was tested. They had good performance to recognize typical
environmental sounds in offices and households. Therefore, auditory features were used to
filter out these sounds.

Outlook

Possibilities for improving the performance of CAVSA are proposed in the following.

The current system can recognize persons most of the time using a set of simple visual
features. The fixed set of features is selected and a fixed similarity threshold is set, based on
a given database. However, the recognition sometimes fails, because other visual features
might be better than the selected features in some scenarios. To solve this problem, an
adaptive feature selection method that depends on specific scenarios should be used in the
future.

Furthermore, although the current speaker is detected correctly in most scenarios, audiovi-
sual association sometimes fails if sound localization is falsely estimated. Moreover, when a
person changes his position outside the camera field of view and talks to the robot, his visual
proto-object stored in the STM, especially the position feature, can not be updated. In this
case, his audio proto-object can not be linked to his visual proto-object using position infor-
mation. A possible solution for above problems is using more auditory features to recognize
voices. Once an audio and a visual proto-object are associated, the association can be main-
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tained for a certain time. Imagine a simple dialogue scenario with a robot and 2 speakers
wearing different colored clothes. The person in red clothes always speaks louder than the
other in blue clothes. The system links “red” to “louder”. Then, when the louder voice is
heard, the robot recognizes that the person in the red clothes is talking, even if the person
is invisible. However, it was shown in section 4.3.3 that the performance of the current au-
ditory features is not good enough for differentiating voices. Therefore, it could be better
to find a set of more powerful auditory features. Alternatively, an adaptive feature selection
method could select features among the current auditory features dependent on scenarios.
For example, only sound energy is sufficient for differentiating voices in the above given
scenario.

There is a number of issues I do not tackle in this work and which need to be addressed
in future work. First, I assume that all sounds originate from human speakers who orient
their faces to the robot. Environmental sounds such as sounds generated by cars could not
be handled properly because the system can not visually extract cars and it does not know
which type of visual proto-object corresponds to which sounds. The latter problem could be
solved when the system learns the typical sound features for different types of visual objects
(i.e. learning the correlation between audio and visual features in the proto-objects). As a
short-cut, the current system employed filters for audio proto-objects based on simple cues
that remove most environmental sounds. Second, the system should be able to detect if a
speaker talks to the robot or to other persons. Head orientation and/or the view direction
of the eyes could be detected to overcome this issue by assuming that the people talking to
the robot looks at its face [Kaminski et al., 2006, Wallhoff et al., 2006]. Third, since gaze
control plays an important role in scene representation, robot gaze could be controlled to
direct fixation towards ROIs which are defined depending on tasks. This involves in the
topic of active vision [Backer et al., 2001, Yann et al., 2008]. For example, the current robot
system can detect the situation that the current sound is related to a persons who has not
yet been seen. Then the robot could turn its head to the possibly unknown person to update
the scene representation. In certain tasks, the robot could be asked to track a certain person
among multiple people to keep him always in the camera FOV.
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A. Abbreviations

APO Audio Proto-Object

ASA Auditory Scene Analysis

BSS Blind Source Separation

CASA Computational Auditory Scene Analysis

CAVSA Computational AudioVisual Scene Analysis

ER Error Rate

FFT Fast Fourier Transform

FOV Field of View

FPR False Positive Rate

GFB Gammatone FilterBank

GFCC Gammatone Frequency Cepstral Coefficients

HRI Human Robot Interaction

HRTF Head Related Transfer Function

IID Interaural Intensity Difference

ITD Interaural Time Difference

LBP Local Binary Pattern
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NIP Normalized Inner Product

PDF Probability Density Function

PO Proto-Object

ROC Receiver Operating Characteristic

ROI Region of Interest

SC Superior Colliculus

SFFS Sequential Forward Floating Selection

SFS Sequential Forward Selection

STM Short-Term Memory

T-F Time-Frequency

TPR True Positive Rate

VAD Voice Activity Detection

VPO Visual Proto-Object
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B. Audio-Motor Map

Humans determine where a sound is coming from by using only two ears. Inspired by the
human sound localization, our humanoid robot head is equipped with two microphones em-
bedded at the positions of the ears [Rodemann et al., 2008]. From the difference in the
recorded signal between the left and right ear, the position of the sound source can be in-
ferred. The two most widely used cues are the Interaural Intensity Difference (IID) and the
Interaural Time Difference (ITD) [Blauert, 2001] as shown in Fig. B.1. IID is the differ-
ence in the sound amplitude between the left and right ear (microphone). It makes use of the
head-shadow effect, that the head absorbs some of the sound energy and attenuates the sound
signal arriving at the far ear especially at higher frequencies. Hence IID is influenced by the
size, form, material and density of the robot head [Rodemann et al., 2007]. Furthermore, IID
depends on azimuth and to some extent on elevation and distance of the sound source relative
to the head as well as the frequency spectrum of the sound. ITD, the delay in arrival time of
a sound signal between two ears (microphones), has similar characteristics as IID but in its
form reflects more the dimension and shape of the head than its material [Rodemann et al.,
2007]. ITD calculated from interaural phase difference is ambiguous at high frequencies, i.e.
many different source positions would generate the same ITD value. In contrast, IID is only
significant at high frequencies, since low frequency signals are not attenuated very much by
the head. Therefore, we need both IID and ITD cues to perform sound localization in the
full range of frequencies. In addition to IID and ITD there are other possible cues for sound
source localization, such as spectral cues [Davis et al., 2003, Gill et al., 2000, Wanrooij and
Opstal, 2004, Rodemann, 2011], which are not used in this work.

Since both cues show a strong dependency on the sound source position, it is possible to de-
rive this position from a measurement of IID and ITD. For this purpose, the system needs to
know the relation between sound source position in motor coordinates (azimuth and elevation
angle) and typical values of IID and ITD. This relation is called audio-motor map, which is
closely related to the concept of Head Related Transfer Functions (HRTFs) [Viste and Evan-
gelista, 2004]. For a set of audio cues it provides the motor command such as head motion in
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Figure B.1.: IID and ITD are two most widely used cues for localizing a sound source. The sound arriving
at the ear that is furthest from the sound source is delayed (time difference) and lower in amplitude (intensity
difference). Image originated from: http://www.cns.nyu.edu

the form of an azimuth and an elevation angle to focus on the estimated position of the sound
source. We concentrate on audio-motor maps for azimuth angle to ease the description, be-
cause it is sufficient for many practical applications to compute only the azimuth angle and
to ignore the sound’s elevation and distance. Especially in this work, we deal with human
speakers who tend to have approximately the same height (e.g. few deviations in elevation)
and roughly the same distance. Note that our system is principally capable of estimating also
elevation and distance using only two ears as [Rodemann et al., 2008, Rodemann, 2010], but
this ability is not used in the described system. This is basically for simplicity, as it would
require a substantially larger audio-motor map and more processing in the audio and visual
domain.

How to obtain the relation between binaural cues and azimuth angles? For a perfectly spher-
ical robot head of diameter d with two microphones at exactly opposite positions there is an
analytical approximation to ITD for azimuth angle (θ ) [Blauert, 2001]:

IT D(θ) =
d
2v
· (θ + sin(θ))≈ d

v
· sin(θ) , (B.1)

with v as the speed of sound in air. This equation is only approximately valid because it
shows no frequency dependency. To overcome this disadvantage, Viste et al. [Viste and
Evangelista, 2004] added a scaling factor α f to Eq. B.1, that is measured for the individual
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head and each frequency f . They also approximated IID using such a scaling factor β f as
follows:

IID(θ , f ) = β f ·
sin(θ)

v
. (B.2)

However, it was reported that, the models of ITD and IID are less accurate than HRFTs,
especially in high frequencies. One of the possible reasons is that these models are based
on the assumption of a perfectly spherical head. Therefore, audio-motor maps have to be
learned for more general robot architectures.
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C. Sound Localization with

Population-Coded Cues

In this thesis, population-coded audio cues as proposed in [Rodemann et al., 2009a] are used
in sound localization. In a population coding, feature values are indirectly represented by the
activity of a number of nodes (neurons) [Pouget et al., 2000]. The measurement of audio cues
is explained in [Heckmann et al., 2006]. Since audio cues, IID and ITD, depend on the fre-
quency spectrum, they are measured for each frequency channel f . Frequency channel index
f is in the range from (1− 100), corresponding to Gammatone center frequencies between
100 Hz and 11000 Hz. IID values are represented as a ratio in the range from (−1,1), while
the ITD values are in the range [−0.9,0.9] ms. Audio cues ci( f ) (i = 1 for IID, i = 2 for ITD)
in each frequency channel f are then re-encoded into a population code. For the encoding of
audio cues, we use a set of 19 nodes with response centers at (−0.9,−0.8, ...,0, ...,0.8,0.9)
that respond to cue values. Every IID or ITD value leads to an activation in the nearest
nodes. The population code vector of ci( f ) for frequency channel f is defined by a Gaussian
function:

Ci( f ,n) = exp
(
−(ci( f )−n)2

2 ·δ 2

)
, (C.1)

Figure C.1.: An example of sound source at −90◦ in azimuth angle.
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Figure C.2.: An example of the IID map at −90◦, corresponding to the population code vectors of measured
IID we would expect if a sound source were at position θ = −90◦. The vector in each frequency channel is
normalized to mean 0 and norm 1.

where n stands for node center and the standard deviation δ is set to 0.1. For example when
a sound source is at −90◦ as illustrated in Fig. C.1, the expected population code vectors
of measured IID C1( f ,n) is shown in Fig. C.2. All measurements are added over time for
an audio proto-object and the sum is denoted as C′i( f ,n). In this manner, more than one
stimulus can be encoded in a population coding and uncertainties can be nicely represented.
For example if there are different values of IID due to noise or echoes, the probabilities for all
candidate values can be stored. The combined cue measurements over the complete segment
of an audio proto-object enable a better localization performance [Rodemann et al., 2009a].

In order to map audio cues to azimuth position candidates, an audio-motor map is used. The
audio-motor map in this thesis is represented as a simple look-up table Mi

θ
( f ,n) (i = 1 for

IID, i = 2 for ITD) that contains the typical response of position selective filters at cue node
n in frequency channel f generated by a source at true position θ . Only azimuth positions
θ between −90◦ and 90◦ are taken into account because of the mechanical constraint of the
robot head.

Fig. C.2 illustrates an example of an IID map M1
−90( f ,n) at −90◦. Representing a distri-

bution of cue values is necessary since audio cue measurements are inherently noisy due to
residual background noise and echoes.

Given audio-motor map Mi
θ
( f ,n) and measured cues C′i( f ,n), we compare the population

response C′i( f ,n) with Mi
θ
( f ,n) for all positions θ by computing scalar products to acquire

the position evidence vector W i
θ

. The peak in the position vector Wθ (Wθ = ∑
2
i=1W i

θ
) is taken

as the estimated sound source position. Fig. C.3 shows an example of a position evidence
vector with the peak at 40◦.
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Figure C.3.: An example of a position evidence vector. The vector is normalized to sum 1. Here the estimated
azimuth is 40◦.
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