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Zusammenfassung

Die immer häufiger werdende routinemäßige Anwendung analytischer Technologien
in der Biologie und Biochemie zur quantitativen und qualitative Bestimmung kleiner
Moleküle in biologischen Organismen hat in den letzten Jahren zu einem immer
größer werdenden Bedarf an hochautomatisierten Verfahren zur Prozessierung und
Analyse, sowie zum Vergleich großer Probenanzahlen geführt. Die bekanntesten
Technologien in diesem Bereich sind die Chromatographie, die zur Trennung kom-
plexer chemischer Gemische nach Molekülgröße oder -ladung, oder anderer Eigen-
schaften eingesetzt wird, sowie die häufig daran gekoppelte Massenspektrometrie,
die das Masse-zu-Ladungsverhältnis von Ionen und Ionenfragmenten der zuvor
chromatographisch getrennten Moleküle, sowie deren Intensität bestimmt.

Eine große Herausforderung bei diesen Hochdurchsatzmethoden ist die automa-
tische Extraktion von charakteristischen Eigenschaften und die Quantifizierung der
chemischen Verbindungen in den gemessenen Proben und deren zuverlässige Zuord-
nung zwischen mehreren Messungen für quantitative Vergleiche und statistische
Analysen.

Das Hauptziel dieser Arbeit ist die Entwicklung und Evaluation von skalier-
baren und robusten Methoden zur hochautomatisierten Prozessierung sehr vieler
Messungen. Von besonderer Bedeutung ist hierbei der Vergleich verschiedener Mes-
sungen, um Gemeinsamkeiten und Unterschiede zwischen diesen im Kontext der
Metabolomik zu finden; der Disziplin, die sich mit der Untersuchung und Charak-
terisierung kleiner Moleküle in biologischen Organismen beschäftigt.

In dieser Arbeit werden neue Algorithmen zum automatischen Abgleich von Peak-
und Profilbasierten Daten aus ein- und zweidimensionalen Gaschromatographie-
Massenspektrometrieexperimenten unter Zuhilfenahme der Retentionszeit beschrieben.
Diese werden umfassend anhand öffentlich zugänglicher Datensätze von biologischer
Relevanz gegen bereits etablierte Algorithmen verglichen.

Die zur Entwicklung der Algorithmen verwendete Programmbibliothek Maltcms,
sowie die grafische Benutzeroberfläche Maui werden im weiteren Verlauf der Arbeit
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vorgestellt. Die Anwendung beider wird mit Hilfe anschaulicher Beispiele exemplar-
isch dargestellt.

ii



Abstract

The advent of analytical technologies being broadly and routinely applied in biol-
ogy and biochemistry for the analysis and characterization of small molecules in
biological organisms has brought with it the need to process, analyze, compare, and
evaluate large amounts of experimental data in a highly automated fashion. The
most prominent methods used in these fields are chromatographic methods capable
of separating complex mixtures of chemical compounds by properties like size or
charge, coupled to mass spectrometry detectors that measure the mass and intensity
of a compound’s ion or its fragments eluting from the chromatographic separation
system.

One major problem in these high-throughput applications is the automatic ex-
traction of features quantifying the compounds contained in the measured results
and their reliable association among multiple measurements for quantification and
statistical analysis.

The main goal of this thesis is the creation of scalable and robust methods for
highly automated processing of large numbers of samples. Of special importance is
the comparison of different samples in order to find similarities and differences in
the context of metabolomics, the study of small chemical compounds in biological
organisms.

We herein describe novel algorithms for retention time alignment of peak and
chromatogram data from one- and two-dimensional gas chromatography-mass spec-
trometry experiments in the application area of metabolomics. We also perform a
comprehensive evaluation of each method against other state-of-the-art methods on
publicly available datasets with genuine biological backgrounds.

In addition to these methods, we also describe the underlying software framework
Maltcms and the accompanying graphical user interface Maui, and demonstrate
their use on instructive application examples.
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and 4. The derived application pipelines for Maltcms are mentioned in Appendix
A. The peak and raw data alignment algorithms B iPACE and CeMAPP-DTW
were first described in Hoffmann et al. (2012) for GC-MS data. The algorithms are
described in Chapter 3. The description of B iPACE has been substantially extended
in this work. B iPACE 2D, for the alignment of peaks from GC×GC-MS data, based
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presented for completeness in Appendices B and C.
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1
Introduction

Metabolomics, the systematic study of the biochemistry of small molecules in biolog-
ical organisms, has seen a rapid development of new technologies, methodologies,
and data analysis procedures during the past decade. The development of fast
gas- and liquid-chromatography devices coupled to sensitive mass-spectrometers,
supplemented by the unprecedented precision of nuclear magnetic resonance for
structure elucidation of small molecules, together with the public availability of
database resources associated to metabolites and metabolic pathways, has enabled
researchers to study the full collection of metabolites in different organisms, their
metabolome, in a high-throughput fashion. Other omics technologies have a longer
history in high-throughput applications, such as next generation sequencing for
genomics, RNA microarrays for transcriptomics, and mass spectrometry methods for
proteomics. All of these together give researchers a unique opportunity to study and
combine multi-omics aspects, forming the discipline of systems biology in order to
study organisms simultaneously at multiple scales and from different perspectives.

Like all other omics technologies, metabolomics data acquisition is becoming more
reliable and less costly, while at the same time throughput is increased. Modern
time-of-flight mass spectrometers are capable of acquiring full scan mass spectra at a
rate of 500Hz from 50 to 750 m/z and with a mass accuracy <5 ppm with external
calibration. At the opposite extreme of machinery, Fourier-transform ion-cyclotron-
resonance (FTICR) mass spectrometers coupled to liquid chromatography for sample
separation reach an unprecedented mass accuracy of <1 ppm m/z and very high
mass resolution (Miura et al. 2010). These features are key requirements for successful
and unique identification and characterization of unknown metabolites. Coupled to
chromatographic separation devices, these machines create datasets ranging in size
from a few hundred megabytes to several gigabytes per run. While this is not a severe
limitation for small scale experiments, it may pose a significant burden on projects
that aim at studying the metabolome or specific metabolites of many specimens
and replicates, for example in medical research studies or in routine diagnostics
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Chapter 1. Introduction

applications tailored to the metabolome of a specific species, such as the human
(Wishart et al. 2009).

Thus, there is a need for sophisticated methods that can treat these datasets
efficiently in terms of computational resources and which are able to extract, process,
and compare the relevant information from these datasets and provide consistent
and reliable results.

In this thesis, we describe such methods, addressing specifically the problems of
peak and chromatogram alignment in one- and two-dimensional gas chromatography-
mass spectrometry. The methods, among others for preprocessing, comparison, and
annotation, are embedded into the software framework Maltcms that we present
in the later chapters of this work. Maltcms is supplemented by the graphical user
interface application Maui for interactive exploration, processing and analysis of
data from metabolomics experiments.

The remainder of this thesis is structured as follows: Chapter 2 introduces the
reader to the discipline of metabolomics and gives an overview of the currently
available and routinely applied analytical platforms. We further discuss the necessary
and desirable features of a software framework for metabolomics data preprocessing
based on GC-MS and comprehensive two-dimensional gas chromatography-mass
spectrometry (GC×GC-MS) coupled to single-dimension detectors (flame/photo
ionization, FID/PID) or multi-dimension detectors (mass spectrometry, MS). We
therefore define a typical workflow for automatic data processing of metabolomics
experiments and discuss available methods within each of the workflow’s steps.

In Chapter 3, we compare the features of publicly available Open Source frame-
works for GC-MS and present two methods for the peak and chromatogram align-
ment problems for GC-MS data, B iPACE and CeMAPP-DTW. The methods are
evaluated against another state-of-the-art method on two representative datasets.
Supplementary material for the evaluation is provided in Appendix B.

We then compare available Open Source frameworks for GC×GC-MS in chapter
4. We also describe a novel peak finding method based on the continuous wavelet
transform. The problem of peak alignment in GC×GC-MS is addressed by our method
B iPACE 2D, that is introduced and thoroughly evaluated against three other state-of-
the-art methods and their variants on four different datasets. We provide additional
supplementary material for the evaluation in Appendix C.

The methods are available in the Open Source software framework Maltcms, that
was developed during the author’s work on this thesis. We describe Maltcms in
Chapter 5. It is tailored for use by domain experts and bioinformaticians who want to
automate their metabolomics workflow with repeatable and auditable configurations.
As a supplement to Maltcms and for easier accessibility for novice, as well as
expert users, we developed the modular graphical user interface application Maui.
The architecture and main functionality of Maui is described in Chapter 6.

We summarize and discuss the results of this thesis in Chapter 7, before we finally
give an outlook on the application and further development of Maltcms and Maui

for high-throughput metabolomics.

2



In Appendix A, we additionally describe two pipelines for metabolomics analyses
based on Maltcms: ChromA, which is applicable to GC-MS, and ChromA4D,
which is applicable to data from GC×GC-MS experiments. We show how to set up,
configure and execute each pipeline using instructional datasets. These two work-
flows include the typical steps of raw-data preprocessing in metabolomics, including
peak-finding and integration, peak-matching among multiple replicate groups and
tentative identification using mass-spectral databases, as well as visualizations of
raw and processed data. In the same appendix, we also give practical application
examples of Maltcms and Maui in the area of optimization of plant biomass
production as a source of renewable energy and in the study of torpor, a state of
metabolic suppression used for energy conservation in mice.
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2
Background

We begin this chapter with a short introduction and review of metabolomics and
its relation to the other major omics techniques: genomics, transcriptomics, and pro-
teomics. We then describe the analytical methods used to study the metabolome
in different organisms. The chromatographic methods used for the separation of
complex mixtures of metabolites are introduced in Section 2.2, before we discuss
mass spectrometry and briefly other detection methods that allow quantification of
the metabolites separated by chromatography in Section 2.3.

Section 2.4 describes the different combinations of chromatography and mass
spectrometry used in current analytical chemistry and metabolomics experiments.
These hyphenated methods enable the separation and analysis of complex biological
samples, a key requirement in metabolomics. In Section 2.5, we give a brief intro-
duction into the terminology used in analytical chemistry and metabolomics with
respect to these hyphenated methods.

We finally define a prototypical workflow for experimental metabolomics and
explain the required steps in Section 2.6 and discuss available Open Source software
implementations for the individual steps. The definition of this workflow will serve
as a basis for the more specific workflows that are discussed in Chapters 3 and 4.

2.1. Metabolomics

The metabolome of a living organism comprises the entirety of molecules that act as
substrates, intermediates, or products of biochemical reaction pathways (Nielsen and
Jewett 2007). These molecules are called metabolites. Metabolomics as a term describing
the associated scientific discipline involved with the study of metabolites was first
coined by Oliver et al. (1998) in the context of functional genomics analysis of yeast.
The scope of metabolomics is the elucidation of the functional phenotype of cells
(Fiehn 2002) and the role that metabolites play in it. This observable phenotype is
a result of the interplay of the genome, the transcriptome, the proteome, and, through
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Chapter 2. Background

Figure 2.1.: A simplified model of the flow of information within the different omics
levels. Adapted from Goodacre (2005).

various feedback interactions, the metabolome (see Figure 2.1). Many of the early
advances in metabolomics originate in the field of biochemistry that studies the
chemical reactions of metabolites which are mediated and catalyzed by enzymes
(proteins), and that build parts of the complete metabolic network of an organism’s
cells.

The Calvin cycle in photosynthetic plants (Bassham, Benson, and Calvin 1950)
and the Krebs cycle in aerobic organisms (Baldwin and Krebs 1981; Meléndez-
Hevia, Waddell, and Cascante 1996) are prime examples of the early work required
to elucidate metabolic reaction paths and of their important role in present-day
metabolomics. However, back then the connection of these reactions to the genome was
largely unknown. In order to reveal these connections, and their dynamic interaction,
the data from different omics technologies need to be combined. First and foremost,
genomic sequencing experiments (genomics) are employed to elucidate the genetic
repertoire of an organism or cell (Fleischmann et al. 1995). This static knowledge
is then supplemented by the dynamic information captured by gene expression
experiments (transcriptomics) that help to determine the expression levels of genes
that are influenced by external or internal perturbations, such as varying experimental
conditions, at a given time (Lockhart et al. 1996). Proteomics adds the next layer of
information (Shevchenko et al. 1996), identifying proteins as products of transcription
and translation and their abundance and thus providing data on the cell machinery
that is available for processing of substrate metabolites. Finally, metabolomics helps to
determine the amounts of substrates, intermediates, and products in the cell under
these conditions and is thus vital in assessing its dynamic activity. This integration
of multiple omics techniques, with the aim to better understand the dynamic state
of a cell, lead to the concept of systems biology (Mesarović 1968; Fiehn 2002; Sumner,
Mendes, and Dixon 2003).
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2.1. Metabolomics

2.1.1. Challenges

Metabolites are very diverse in size and chemical functionality, ranging from amino
acids, nucleotides, fatty acids, and ketones, to large polymer sugars and hormones.
It is therefore impossible to analyze all metabolites present in a sample with a
single analytical technology (Sumner, Mendes, and Dixon 2003). Therefore, different
methods are applied for the separation of the metabolites contained within a sample,
namely gas chromatography (GC) and liquid chromatography (LC) (see Section 2.2).
These separation methods are often combined with different sensitive detectors, like
mass spectrometers (see Section 2.3). This combination is termed hyphenation and
the application of hyphenated methods is state-of-the-art in modern metabolomics
(Dunn and Ellis 2005).

The concentrations of metabolites in biological samples can vary over up to nine
orders of magnitude, and significant biological variation is also present between
samples (Sumner, Mendes, and Dixon 2003). Thus, very sensitive detectors with
a linear response over the range of possible concentrations (dynamic range) are
required for quantitative applications, in addition to sophisticated statistical methods
to handle the biological variation. Furthermore, specialized sample preparation
protocols are often required to extract and reliably quantify metabolites that only
occur in very small concentrations (Harrigan and Goodacre 2003, Chapter 1).

A further pressing issue in metabolomics is the identification of unknown metabo-
lites, but the advent of mass spectrometers with very high mass resolution has
opened new opportunities for computational methods that aid in the determination
of metabolite sum formula and structure candidates (Neumann and Böcker 2010).
In combination with nuclear magnetic resonance (NMR) (see Section 2.4) and other
new spectroscopic technologies, these methods may pave the way for semi-automatic
structure elucidation of unknown metabolites in the future.

2.1.2. Variants

Metabolomics as a field unifies different approaches to analyze and quantify metabo-
lites in biological samples. The most complete approach is comprehensive metabolomics
where as many metabolites as possible are identified and quantified with different
analytical methods in order to gain a broad overview of the metabolism of the subject
of study. However, this is also the most laborious and expensive variant employed in
metabolomics. Thus, other variants focus on a more concise subset of metabolites
and analytical methods.

In the context of biomarker detection, the term metabolic fingerprinting is often used
to indicate that the presence or absence of a specific metabolite, or a small selection
thereof, is used for disease indication and monitoring (Harrigan and Goodacre 2003,
Chapter 1). If the fingerprinting is conducted using biofluids of human origin, it is
often called metabonomics.

The last variant that is frequently applied is metabolic profiling. Here, a large selection
of metabolites, usually those associated with particular biochemical pathways, are
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qualitatively and quantitatively analyzed. Profiling is usually a targeted approach,
where the metabolites under consideration are known beforehand.

All of these methods can in principle be performed without knowledge of the
identities of the metabolites under study. Such non-targeted methods mainly use
statistical methods to infer correlations of metabolite abundances across sample
conditions (Aura et al. 2008; Koal and Deigner 2010), which may lead to the discovery
of unknown metabolic intermediates or products.

Some examples where metabolomics methods are applied today are given in the
following section.
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Figure 2.2.: Caffeine and Adenosine.a

a. Public Domain. Source: Wikimedia Commons, http://en.wikipedia.org/wiki/File:Caffeine_and_
adenosine.svg

2.1.3. Applications

Xenobiotics, Toxicity, and Individualized Medicine Caffeine is a secondary metabolite
of the cultivated plants Coffea arabica and Coffea canephora. Secondary metabolites
are usually not essential to an organism’s survival, but help it in many different
ways, such as deterring herbivores and carnivores (e.g. alkaloids and terpenoids), or
by confining the uncontrolled growth of bacteria (fungal antibiotics) in its environ-
ment. In contrast, primary metabolites are crucial for cell growth, reproduction, and
development. Caffeine is a stimulating, psycho-active alkaloid drug that is frequently
consumed by many humans. Since it is not synthesized by humans, it is termed a
xenobiotic metabolite, when ingested. Caffeine is an antagonist of adenosine, blocking
the adenosine receptors of nerve cells in the human brain due to its related structure
(see Figure 2.2). Caffeine is generally attributed to increase alertness and attention,
as well as to decrease fatigue. The xenobiotic metabolism in man, mediated by Cy-
tochrome P450 1A2, rapidly demethylates caffeine (Arnaud et al. 1980) into four
products (Tang-Liu, Williams, and Riegelman 1983) which are further metabolized
and finally excreted in urine, so that toxic or even lethal doses can hardly build
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2.1. Metabolomics

up through the normal consumption of coffee. Other organisms, with a different
xenobiotic metabolism may already be fatally intoxicated by small doses of caffeine.

The study of xenobiotics and their metabolized products is of vital interest for
the assessment of toxicities of commercially produced chemicals and drugs in man
and environment (Lahl and Hawxwell 2006). However, for many chemicals it is
not known where they are metabolized and what their intermediate products are.
Weckwerth (2011) shows the importance of interlinking genomics (high-throughput
sequencing data), proteomics, and transcriptomics data with metabolomics data
in order to locate and close gaps in biochemical pathways. This is a requirement
for the prediction of the toxic potential of chemicals in man and other organisms.
Furthermore, deeper knowledge in this area also allows to assess the suitability of
native metabolites as disease biomarkers and of novel chemicals as potential drugs for
specific and individual disease treatment (Weston and Hood 2004; Greef, Hankemeier,
and McBurney 2006; Baraldi et al. 2009). Potential targets for the discovery of novel
drugs are plants, with an estimated number of 200.000 metabolites (Fiehn 2002), most
of which have yet to be identified.
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Figure 2.3.: H2 Production Pathway of the fresh water algae Chlamydomonas reinhardtii
from the BioCyc Database (Caspi et al. 2012). Under anaerobic conditions, induced by
sulfur depletion, the green algae C. reinhardtii produces H2 in the chloroplast during
photosynthetic activity. Enzymes are represented by their Enzyme Commission (EC)
number and common name. h̄ν indicates the exposition to photons from sunlight or
artificial illumination. Background: Single C. reinhardtii cella.

a. with permission for non-commercial use from http://www.pflanzenforschung.de
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Xanthan Production The γ-proteobacterium Xanthomonas campestris pv. campestris
(XCC) B100 produces the polysaccharide xanthan that is industrially used in food
and cosmetics products as a viscosifier (Schatschneider et al. 2013). Therefore, an op-
timized production yield of xanthan with the same environmental parameters would
lead to a more cost-effective product. In order to optimize the cultivation environ-
ment or the organism, or both, a sound knowledge of biochemical pathways of XCC
is required. This includes genes, transcripts, proteins and metabolites, as well as their
interactions, in order to find targets for yield optimization. Genetic variants of XCC
and different environmental conditions can then be tested in their metabolic response
and production of xanthan against the wildtype with metabolomics techniques.

Hydrogen Biofuel Production The fresh water algae Chlamydomonas reinhardtii (C.
reinhardtii) produces hydrogen (H2) under anaerobic conditions induced by sulfur
depletion (Melis et al. 2000; Hemschemeier et al. 2008; Matthew et al. 2009; Doebbe
et al. 2010). H2 is an important starting point for biofuel production from renewable
sources. One of the advantages of C. reinhardtii over crop plants for biofuel production
are the smaller amount of space needed to grow them on with a comparable energy
balance. Their cultivation tanks have no requirement for arable farmland that would
otherwise be used for food production. Additional advantages of the algae are
the feasibility of its cultivation in sea and waste water, and the high, year-round
harvesting frequency (Schenk et al. 2008). The optimization of H2 production in C.
reinhardtii can again be assessed using metabolomics techniques, by monitoring and
comparing the amounts of metabolites that are directly or indirectly involved in
the H2 production pathway (see Figure 2.3) between different genetic variants and
environmental conditions (Doebbe et al. 2010). A dataset from such an experiment
was used for the evaluation of the algorithm described in Section 4.3.

2.2. Chromatography

Chromatography (from the Greek words for color and to write) is generally defined
as the separation of complex mixtures of analytes, e.g. metabolites, into their compo-
nents. A chromatographic separation requires a mobile phase (gas or liquid), termed
the eluent or solvent, and a stationary phase. The analytes suspended within the eluent
exhibit adhesive interactions (adsorption) with the stationary phase, mediated by the
solvent, while being moved along the stationary phase by a directed gradient.

In column chromatography, the stationary phase is usually located inside a column,
either as a thin coating on the column wall, or as larger particles that are packed
inside the column. In paper chromatography, the stationary phase is usually a porous
filtration paper.

Adsorption chromatography builds the foundation of modern gas and liquid column
chromatography. Its invention and description is attributed to Michail Zwet (also
known as Tswett) and was used by him for the separation and characterization of plant
pigments, like chlorophyll and carotenoids, in the early 1900s (Zwet 1906). Zwet used
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manually packed columns with calcium carbonate as adsorbent material, flowing
the plant pigments in liquid solution through the column to separate them. He also
introduced the terms chromatogram and chromatographic method for the detected result
of the separation and the process as a whole.

Another important foundation for modern column chromatography with liquid
mobile phases was the invention of partition chromatography by Archer Martin and
Richard Synge, who were awarded the Nobel prize in chemistry in 1952 for their
contribution to the field. They added a liquid phase to the adsorbing material
coating their columns to improve column selectivity and peak resolution originally
for gas chromatography, but ultimately providing the foundation for modern high-
performance liquid chromatography (HPLC) (Lovelock 2004). Additionally, they laid
the foundation for models of peak capacity and separation performance for column
chromatographic systems by introducing the theoretical plate model.

In the following sections, we will give an overview of the chromatographic meth-
ods that are routinely used in metabolomics. A more comprehensive overview of
different methods for metabolite extraction, separation, especially of polar analytes,
quantification and identification in metabolomics can be found in the books of
Weckwerth (2007) and Harrigan and Goodacre (2003).

2.2.1. Gas Chromatography

GC is a variant of column chromatography, with an inert gas (e.g. Helium or Nitrogen)
as the mobile phase. The columns are typically either capillary columns with a coating
of polysiloxanes or packed columns with a solid or liquid stationary phase, allowing
for a large range of selectivity for the separation of analytes with polar, hydrophilic,
or other physicochemical properties. For complex mixtures of analytes, a common
use-case in metabolomics, capillary columns offer better peak capacity and therefore
better resolution of peaks over packed columns. Figure 2.4 shows a schematic of a gas
chromatograph coupled to a mass spectrometer as the detector. The column is placed
inside a temperature programmed oven. During a chromatographic separation, the
oven’s temperature profile can be changed to reduce the adhesion of analytes to the
stationary phase. When the sample is injected, it is moved through the column by
the gas flow, where the analytes interact with the stationary column. If an analyte
interacts scarcely with the stationary phase, it will elute from the column before
analytes that exhibit a higher interaction due to adsorption. Analytes exiting the
chromatograph are transferred to a detector. In metabolomics, common detectors are
flame ionization detectors (FIDs) and mass spectrometers (Tian et al. 2008; Koek et al.
2006; Dettmer, Aronov, and Hammock 2007).

FIDs are used for the detection and quantification of organic analytes (McWilliam
and Dewar 1958). The analytes are combusted using hydrogen gas and an oxidant
(e.g. oxygen). The difference in electric current between the positively charged outlet
electrode and the negatively charged collector electrode attracts reduced ions exiting
the flame. The ion signals are amplified and integrated to produce a time resolved
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Figure 2.4.: Schematic of a GC-MS device. The sample is injected into the system and
moved over the column by the inert carrier gas flow through a heated oven. After
exiting the column, the eluting compounds are ionized and transferred to the detector.
The response of the detector is recorded over time, here as a sequence of mass spectra.

response value that is related to the concentration of reduced carbon atoms pyrolized
at the time of measurement.

We will discuss the different mass spectrometry methods available for GC in
Section 2.3.

2.2.2. Liquid Chromatography

Liquid chromatography (LC) is also a variant of column chromatography, but with a
liquid mobile phase. Today, most LCs are operated at very high pressures (HPLC),
in order to achieve a better separation of the analytes within 30 to 60 minutes
of an experiment run. The columns used in LC are generally much shorter and
more compact than those used in GC. They are filled with porous materials that are
coated with solid or liquid material, exhibiting different adsorption characteristics. LC
columns are generally operated at lower temperatures than those used in gas-chroma-
tography. Here, the adsorption is often regulated via a varying solvent gradient that
allows to vary the selectivity from polar to non-polar analytes, in order to achieve
a better separation. One challenge in LC is the transfer of eluting analytes to the
detector. Usually, the solvent material has to be removed before or during ionization
of the analytes. Ionization methods like electrospray ionization (ESI) and atmospheric
pressure chemical ionization (APCI) provide a convenient coupling of LC and mass
spectrometry (MS) (see Section 2.3.1 for more details). LC also covers a much higher
range of analyte masses, enabling the separation and analysis of small metabolites,
as well as larger peptides and even proteins.
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2.2.3. Two-dimensional Chromatography

Chromatography with one separation column often encounters problems for the
complex samples measured in metabolomics experiments. Here, the peak separation
is often not optimal, especially for chemically closely related analytes. These co-
eluting analytes can often be separated by introducing a second column with different
characteristics, such as polarity. In practice, the two columns are coupled by a
modulator or switching pump with a defined volume that is filled with eluate from
the first column and released onto the second column within a fixed time interval
(Mondello et al. 2008).
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Figure 2.5.: Schematic of a GC×GC-MS device. The sample is injected into the system
and moved over the first column by the inert carrier gas flow through the primary
oven. The eluting compounds are captured in a modulator for some time before
being released onto the second separation column (modulation period) within the
secondary oven (often contained within the first one). When the separated compounds
exit the second column, they are ionized and transferred to the detector. The detector’s
response is recorded over time, in this case as mass spectra with two retention times.
The first column retention time axis represents the time at the start of a modulation
period on the first column, while the second column retention time is calculated from
the local scan acquisition time since the start of a modulation.

A schematic of a comprehensive two-dimensional gas chromatography (GC×GC)
device with a mass spectrometer as its detector is shown in Figure 2.5. The coupled
column setup imposes a limit on the possible length and flow rate of the second
column, since the mobile phase volume captured in the modulator has to traverse the
second column within the fixed time interval. After exiting the second column, the
analytes are transferred to a mass spectrometer for detection. Koek et al. (2011) show
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that the improved peak capacity and lower detection limit in GC×GC-MS increase
the number of biomarkers found when compared to GC-MS, which is especially
helpful in the context of metabolomics.

2.3. Mass Spectrometry

The objective of mass spectrometry is to measure the mass and charge of ions as
accurately and fast as possible. J.J. Thomson is generally attributed as the inventor
of mass spectrometry, even though his initial work was focused on determining the
nature of positively charged cathode rays. These rays were only later understood
to be ions, and Thomson’s work incidentally lead to the construction of the first
mass spectrometer to study their nature in 1897 (Griffiths 2008). He was also the
first to indirectly measure the mass of the electron via the charge-to-mass ratio
and the charge that his refined apparatus could detect at the same time, earning
him a Nobel Prize in Physics in 1906. At that time, the ions were being detected
on a photographic plate, while today, detectors amplify and record the change in
electric charge induced by the ion colliding with the detector surface. But it took
another 80 years until ionization was sophisticated enough to also measure larger
biomolecules, like complex sugars and proteins. The introduction of ESI by John
Fenn, and of the principles of soft laser desorption ionization by Koichi Tanaka in
the late 1980s opened the door for the routine application of MS in biology and
biochemistry (Griffiths 2008).

Figure 2.6.: Nominal mass electron ionization mass spectrum of Ribitol (5TMS). Anno-
tation was performed against the Golm Metabolome Database (Hummel et al. 2007).

Mass Spectrum A mass spectrum consists of pairs of ion mass-to-charge ratio and
non-negative intensity (sometimes called count) for the ions detected by the mass
spectrometer. The mass-to-charge ratio m/z is a dimensionless fraction of multiples
of the unified atomic mass (mu, with unit Da), which is defined as 1

12 ’th of the mass
of the 12C isotope of carbon, and of the charge number z, which is the number of
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positive or negative charges of an ion. Thus, an M+ cation (M for Molecule) has a
charge number of z = +1 and an elementary charge of 1 e, where e is the absolute
electric charge carried by a proton or electron. The masses that are measured by the
mass spectrometer as m are those of the analyte’s radical cation M+• (the parent ion),
that is generated within the ion source of the mass spectrometer from the analyte
molecule in positive ionization mode by removing one electron, when electron
ionization (EI) is used (see Section 2.3.1 for details). It is not unusual, especially
if high-energy ionizations are used, that the parent ion is hardly detectable or not
present at all. This happens if the ionization energy transferred to an analyte is large
enough to break covalent bonds within it, leading to fragmentation and often also
to rearrangement reactions (McLafferty 1959). However, these fragments carry a lot
of information about the original analyte in them, and if the masses are measured
with sufficient resolution and accuracy (see Section 2.3), they can be used to infer the
original elemental composition of the parent ion as a sum formula, or even to predict
multiple candidate structures for the (predicted) parent ion (Hufsky et al. 2012).

Figure 2.6 is an example of a nominal mass spectrum acquired using EI in positive
mode of the internal standard Ribitol that is commonly used in metabolomics for
peak area normalization (Barsch, Patschkowski, and Niehaus 2004). Ribitol, as all
polar organic analytes, requires a prior derivatization with trimethylsilyl (TMS)
reagents to make it volatile. TMS is used primarily on analytes containing hydroxy-
or carboxy-groups, such as alcohols and carboxylic acids, substituting a hydrogen and
binding with the oxygen. It is often complemented by the addition of methoxylamine
hydrochloride in pyridine solution to open the cyclic isomers of sugars. TMS can
then substitute the hydroxy groups of the sugar. The mass of derivatized Ribitol, in
this case with five TMS groups, is expected at m/z 513. But due to the use of EI, the
parent ion is not measurable (and consequently not shown in Figure 2.6). Thus, the
mass spectrum only includes smaller fragments of Ribitol, including derivatization
artifacts and column bleed contaminations, such as polysiloxanes at m/z 73 and 147.

Components A mass spectrometer consists of three basic parts (see Gross 2011,
Chapter 2): the ion source, the mass analyzer, and the detector. One of the challenges
in the coupling of chromatography and mass spectrometry is the transfer from
the pressurized chromatography column to the high vacuum conditions that are
prevalent in the mass spectrometer. Therefore, ion sources are usually preceded by
an interface that mediates the transition from one system into the other and that
transfers the analytes to the gas phase. The mass spectrometer is also connected to a
digital computer to record the output of the detector for later processing and analysis,
often involving the possibility to control the mass spectrometer’s selectivity for
certain ions and to repeatedly fragment them to obtain more structural information
about the parent ions for MS2 and MSN applications (see Gross 2011, Chapter 9).

Resolution and Accuracy The performance of a mass spectrometer can be char-
acterized by different numbers. First and foremost, the mass resolution of a mass
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spectrometer is the smallest difference m2−m1
m2

in m/z between two ions with masses
m1 and m2, with m1 < m2, that still can be distinguished as two unique signals. Its
inverse, the resolving power, is also often used to characterize the performance of a
mass spectrometer. Some mass spectrometers have unit mass resolution, meaning
that they can only distinguish equally charged ion signals that are at least one Da
apart. The second performance measure is mass accuracy, the expected variation of
a repeatedly measured m/z of an ion against its true m/z, measured in parts-per-
million (ppm). For some mass analyzers, accuracy can decrease with increasing m/z.
Optimally, a high mass resolution should always be complemented with a high mass
accuracy, where the expected accuracy should be smaller than the smallest detectable
m/z difference. Higher resolution mass spectrometers often acquire the mass spectra
in continuous mode, which is later converted internally to centroided, corrected data.

Finally, the scan rate determines the maximum number of full scan mass spectra that
a mass spectrometer can acquire within a second of operation. Modern instruments
achieve a scan rate of more than 500 Hz, e.g. the LECO Pegasus 4D GC×GC-TOF-MS
instrument (LECO Corp, St. Joseph, MI, USA) at unit mass accuracy, or the LECO
Pegasus GC-HRT, which has a scan rate of 200 Hz at less than 1 ppm mass accuracy.

2.3.1. Ion Sources

The most commonly used ionization method used with GC instruments is electron
ionization (EI). Analytes passing the EI source are ionized by an electron beam that
is usually set to an energy of 70 eV. EI is a hard ionization method, as it leads to a
fragmentation of the parent ion immediately after ionization. EI can also be used
in combination with LC, however, this requires an intermediate step to remove the
solvent material (Gross 2011, Chapter 5).

Chemical ionization (CI) is softer than EI in the sense that the ionization is not
directly performed by an electron beam. Instead, analytes are ionized when they
collide with molecules of a reagent gas (methane, isobutane, ammonia). In contrast to
EI, the resulting protonated parent ion (usually [M+H]+) is mostly stable. However,
the analyte ion may also form adducts with the reagent gas used for ionization,
which requires further care when interpreting mass spectra obtained after CI. CI can
also be used for negative ionization (Gross 2011, Chapter 7).

The most commonly used ionization method for LC instruments is ESI. It operates
at atmospheric pressure, and enables the transfer of small analyte molecules, as well
as large molecules like proteins, from the liquid mobile phase to the gas phase. In
ESI, the analytes and solvent are transferred through a charged capillary nozzle to
form a spray, transferring the analytes in solution to the gas phase. After exiting
the nozzle, the solvent is removed from the spray, before the analyte ions are then
transferred to the mass analyzer (Gross 2011, Chapter 12).
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2.3.2. Mass Analyzers

The mass analyzer separates ions based on their m/z ratio to allow specific detection
of the individual ions and their abundance by the detector.

Quadrupole A quadrupole mass analyzer consists of four parallel metal rods with
cylindrical or hyperbolic shape. The rods are pairwise oppositely charged with a
mixture of alternating current (AC) and direct current (DC). By varying the AC
frequency and voltages of both currents, it is possible to select ions with a defined
mass and to move them along the elongation of the rods towards the detector.
Ions that have a higher mass collide with the rods, while ions with lower mass are
accelerated and ejected at the side of the rods. Quadrupole detectors can be used to
measure ions up to 2000m/z, but only with 0.1 Da to 1 Da resolution.

Quadrupoles can also be modified to operate as ion traps, capturing ions of a
defined mass within the rods, confined by electrical potentials at the entry and exit
ends of the rods. These are often combined as triple quadrupoles, that allow to select
ions in the first quadrupole stage, collide and fragment the ions with CI in the second
quadrupole, and select fragment ions in the third stage, before transferring them to
the detector. Thus, a triple quadrupole can be used for tandem mass spectrometry
(MS/MS) applications (Gross 2011, Chapter 4) such as multiple reaction monitoring
(MRM) (Kondrat, McClusky, and Cooks 1978) for the precise quantification of selected
peptides and metabolites (Kitteringham et al. 2009).

Fourier Transform Ion Cyclotron Resonance Fourier transform ion cyclotron reso-
nance (FT-ICR) combines very high mass resolution (1.0× 10−5 Da to 1.0× 10−6 Da)
and accuracy of < 1 ppm. Since its invention in 1974 (Comisarow and Marshall 1974),
it has been continuously refined and improved, by using stronger and larger super-
conducting magnets, as well as improved electric field generation. FT-ICR requires
strong magnets to create a static magnetic field that is used to hold ions on a circular
path within a miniature particle accelerator. The ions are accelerated by an oscillating
electric field, with an orientation perpendicular to the magnetic field, until they reach
their cyclotron frequency. All ions of the same m/z then move in phase and pass the
electrodes used for detection with their cyclotron frequency as a swarm. Thus, for
multiple ions, the detector readout is a linear combination of sine functions with
different phase, frequency, and power. The individual ion masses and abundances can
then be reconstructed from this interferogram by applying the Fourier transform (see
Section 4.2.2 for a short overview and references) to them. Due to its dependence on
strong, superconducting magnets, FT-ICR is rather expensive and requires dedicated
laboratory rooms for secure operation.

Orbitrap The Orbitrap (Hu et al. 2005) shares the concept of moving ions on a
circular path, based on their m/z and requires the Fourier transform to deconvolve
the signals of different ions. However, it does not use a superconducting magnet and
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is thus much cheaper to construct and maintain. It has mass resolution comparable
to the FT-ICR, but with lower accuracy of 2 ppm to 5 ppm, and a mass range of
up to 6000 Da. It operates by forcing ions into spiraling orbits around a central,
spindle-shaped electron that is encased by an outer electrode that consists of two
electrically insulated parts. The frequency of an ion orbiting the central electrode
is a direct function of its mass and charge, thus, the m/z is reconstructed from the
differentially measured current between the two parts of the outer electrode, when
ion swarms move backwards and forwards along the central electrode with their
characteristic frequencies. The resulting interferogram is again deconvolved similarly
to FT-ICR to determine the ions’ masses and abundances.

Time-Of-Flight Instruments

In time-of-flight (TOF) instruments, the ions are exposed to an electromagnetic field
with fixed energy, accelerating them on their way to the field free flight tube. The
field transfers the same amount of kinetic energy to every ion at the same charge,
thus lighter ions with the same charge move at higher velocities, while heavier ions
with the same charge travel at lower velocities, before they arrive at the electron
detector. Modern TOFs are often equipped with a reflectron (reTOF) that acts as a
focusing ion mirror in order to increase the flight tube length and to reduce the
effect of flight time dispersion for ions with similar mass, with the result of an
increased mass resolution. TOF detectors are relatively cheap to build, while they
can cover an (almost) unlimited range of m/z values and can be tuned for accurate
mass measurements (Vestal 2009; Gross 2011) (well below 10 ppm), and high spectra
acquisition rate. They are also used for MS/MS applications (TOF/TOF).

2.3.3. Detectors

The ion analyzers transform physical properties of an ion (typically charge) into an
electric signal. The strength of the signal correlates with the measured amount of
ions detected in a short time span, but it is usually too weak to be processed directly.
Therefore, detectors like the Faraday cup, discrete dynode electron multipliers, channel
electron multipliers, microchannel plates and other methods have been developed to
amplify the ion signals to currents, that are reliably measurable and convertable to
ion intensities by an analog-to-digital converter (Gross 2011, Chapter 4). The different
methods serve different purposes, such as to allow for linear signal response in a
wide mass range, or to restrict the detector to a small size for better portability of the
whole mass spectrometer.

2.4. Hyphenated Methods

The coupling of a chromatograph to a detector is termed hyphenation. Methods such
as gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass
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spectrometry (LC-MS), or comprehensive two-dimensional gas chromatography-mass
spectrometry (GC×GC-MS) combine the separational capabilities of their chromato-
graphic system with a mass spectrometer as a sensitive detector. The coupling is
however non-trivial, since mass spectrometers operate at high vacuum conditions. In
GC-MS, the coupling is comparatively easy, since only the gaseous mobile phase has
to be removed before the volatile analytes are ionized and transferred to the mass
analyzer. In LC-MS, the analytes are solvatized in the liquid mobile phase, which
has to be carefully removed before or during ionization (see Section 2.3.1).

The first GC-MS devices to operate on another planet were onboard NASA’s Viking
I and II landers, that touched down on Mars in 19761. Before then, laboratory GC-MS
devices occupied the space of a room, while the Viking devices were confined to the
size of a hat box with a maximum weight of 15 kg. Today, affordable and powerful
benchtop devices are commonplace in laboratories around the world for routine
analysis in diverse areas, including, but not limited to banned substance control
(Moeller, Fey, and Wennig 1993), chemical warfare agents (Black et al. 1994), pesticide
screening in environmental control (Benfenati et al. 1990), as well as metabolomics
(Weckwerth 2011).

GC and GC×GC coupled to FID and MS detectors were used to determine the
amount and composition of crude oil in water samples taken at different sites and
in alternating depths from the gulf of Mexico after the Deepwater Horizon oil spill
in 2010 (Reddy et al. 2011). Some of the more exotic usages of GC×GC-MS include
the profiling of volatile organic compounds from decaying pig carcasses for forensic
studies (Brasseur et al. 2012), while it is also applied for drug analysis and doping
control (Kueh et al. 2003), as well as for metabolomics (Koek et al. 2011; Shellie et al.
2005; Pierce et al. 2006).

Other separation techniques like capillary electrophoresis (CE) for the separation
of very polar analytes, and ion mobility spectrometry (IMS) have not been covered
in this overview, although they are also used to cover parts of the metabolome that
are otherwise inaccessible by means of other separation methods. Additionally, there
exists a vast diversity of detectors available for coupling to a chromatographic system
that were not covered here. Most prominently, NMR is a valuable tool for structure
elucidation of unknown metabolites. However, it requires large amounts of analyte
to operate, which can be problematic for substances that can not be easily isolated
and purified in the necessary amounts from their biological source. A comparison of
the most important hyphenated techniques and their application in metabolomics
are described by Weckwerth (2011).
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Figure 2.7.: Schematic structure of data in GC-MS and liquid chromatography-mass
spectrometry (LC-MS). Peak heights are exaggerated for visualization purposes. Peaks
at retention times t1 and t2 show overlapping behavior in the total ion current (TIC)
(blue panel), but can be well separated as extracted ion currents (EICs) (green panel).
The peak at retention time t3 illustrates that the TIC apex of a peak (dashed line) is
not always sampled exactly by one mass spectrum (red panel).

2.5. Terminology for Data acquired with Hyphenated Methods

When a mass spectrometer is coupled to a chromatographic system, mass spectra are
usually acquired at a fixed scan rate2. Thus, the data obtained from GC-MS or LC-MS
experiments are sequences of mass spectra (see red panel in Figure 2.7), each with an
associated time stamp, the scan acquisition time. Analytes exiting the chromatographic
system show a time dependent abundance profile, starting with a low abundance,
apexing at a maximum abundance, and ending with a low abundance. Such a profile
is termed a peak. The scan acquisition time at the peak’s apex is termed the retention
time of the corresponding analyte. The full profile of an ion count or current at a
specific m/z from the beginning of the MS acquisition until its end is termed an
extracted ion current (EIC) (see green panel in Figure 2.7). If we sum, for each scan
acquisition time along the m/z axis, all EICs at that specific time, we obtain the total
ion current (TIC) (blue panel in Figure 2.7). Thus, the TIC often contains the sum of
many weak ion currents, leading to a higher noise level than the individual EICs.

The bell shaped profile of a TIC or EIC peak is a result of the interplay of adsorption
and resorption effects between the analyte, the stationary, and the mobile phase

1. http://appel.nasa.gov/2010/09/20/aa_3-9_f_history-html
2. Exceptions are data-dependent MS/MS fragmentations that may require more time than the

inter-scan time between two consecutive regular mass spectral scans.
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within the chromatographic system. In general, narrow peaks with a symmetric
shape would be optimal, however in practice, the peak shape can vary for many
reasons like non-optimal analyte concentration with respect to the column, or the
temperature of the column. Peaks often exhibit a tailing behavior, meaning that the
front has a steeper ascent than the descent of the profile following the apex. Thus,
there is generally no simple analytical function that could model a typical peak
shape.

Figure 2.7 shows that the peaks with retention times t1 and t2 overlap in the TIC,
while they would be distinguishable in individual EICs. The peak with retention
time t3 shows another aspect of the acquisition of mass spectra with a fixed scan rate.
There is no guarantee that the true apex of a peak is sampled by a mass spectrum.
Thus, it is necessary to have a high scan acquisition rate for quantification purposes,
minimizing the risk of sampling a peak at only a few positions. Following the
Nyquist-Shannon sampling theorem (Shannon 1949), the sampling frequency, here
the scan acquisition rate, must be smaller or equal to one half of the frequency of the
narrowest peak (with the highest frequency) in the chromatogram to avoid sampling
aliasing artifacts. These artifacts would appear as artificial peaks in the sampled
chromatogram (TIC or EIC) but would not be distinguishable from real peaks. Thus,
for a scan acquisition rate of 100 Hz, one can sample peaks with a maximum width
of 0.02 s in order to avoid sampling artifacts. These high scan acquisition rates are
necessary in GC×GC-MS to ensure good resolution of chromatographic peaks due to
the short second separation column (see Chapter 4 for more details).

For reasons of simplicity, the peak shape is often idealized as a Gaussian probability
density function. A full chromatographic profile is thus the superposition of multiple
Gaussians with different parametrizations (scale/standard deviation and mean).
Alternative parametric peak models like the inverse Gaussian are used for improved
modeling of tailing peak shapes (Hauschild et al. 2013). For quantification purposes,
a peak’s area is the area-under-curve that is obtained by integrating the peak from
its beginning to its end. The area is usually corrected by subtracting the area of
the estimated baseline function that models chemical and detector noise within the
peak bounds. Analytically, the bounds of an ideal peak can be determined from its
profile by finding local minima closest to the left and right of the peak’s apex by
inspecting the first and second order derivatives. In practice the peak profile often
needs to be preprocessed to be smooth enough so that local noise in the profile does
not influence the finding of peak apices and their start and end. Peak detection and
integration are still active areas of research due to the complexity and differences
involved with the various chromatographic and mass spectrometric technologies
applied in metabolomics and proteomics research (Windig, Phalp, and Payne 1996;
X. Zhang et al. 2005; Jonsson et al. 2005; Smith et al. 2006; Tautenhahn, Böttcher, and
Neumann 2008; Fredriksson et al. 2009; Vivó-Truyols 2012).

In the remainder of this thesis, we will use peak as a synonym for a mass spectrum
with additional one- or two-dimensional retention time information. Such a mass
spectrum can either be the result of simply selecting the mass spectrum acquired
closest to the actual peak’s apex, or it can be the result of a deconvolution step that
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separates overlapping ion signals from other peaks to receive a clean mass spectrum
for the respective peak (Biller and Biemann 1974; Colby 1992; Stein 1999; Likić 2009).

2.6. A Typical Workflow for a Metabolomics Experiment

We have introduced hyphenated methods for the separation and detection of analytes
in the previous sections for the analysis of samples from metabolomics experiments.
There are however some challenges associated with these analytical methods that
we will further elaborate within the steps of a typical workflow for a metabolomics
experiment, based on one- and two-dimensional chromatography-mass spectrometry.

We will give a short overview on published methods for each step of the workflow
that are available under an Open Source license, thus allowing researchers to examine
their actual implementation details. This distinguishes these methods from applica-
tions that are only provided on explicit request, under limited terms of use, or that
are not published together with their source code (Lommen 2009; Stein 1999), which
is still often the case in metabolomics and may hamper comparability and reuse of
existing solutions. Additionally, all software frameworks introduced in Chapters 3
and 4, that may model parts or the whole of such a processing pipeline, are available
for all major operating systems such as Microsoft Windows, Linux, and Apple Mac
OSx as standalone applications or libraries.

Web-based methods are not compared within this work as they most often require a
complex infrastructure to be set up and maintained and are generally not available to
external users for high data volumes. However, we will give a short overview of recent
publications on this topic and provide short links to the parts of the metabolomics
pipeline that we discuss here. A survey of web-based methods is provided by Tohge
and Fernie (2009). More recent web-based applications for metabolomics include
the retention time alignment methods Warp2D (Ahmad et al. 2011) and ChromA
(Hoffmann and Stoye 2009), which are applicable to GC-MS or LC-MS data, and
Chromaligner (S. Wang et al. 2010), which aligns GC and LC data with single-
dimension detectors like FID.

Tools for statistical analysis of multiple sample groups and with different phe-
notypes have been reported by Kastenmüller et al. (2011). However, other tools
aim to integrate a more complete metabolomics workflow including preprocessing,
peakfinding, alignment and statistical analysis combined with pathway mapping
information like MetaboAnalyst (Xia, Sinelnikov, and Wishart 2011), MetabolomeEx-
press (Carroll, Badger, and Millar 2010), or MeltDB (Kessler et al. 2013; Neuweger
et al. 2008). These larger web-based frameworks integrate other functionality for
time-course analysis (Xia, Sinelnikov, and Wishart 2011), pathway mapping (Xia
and Wishart 2010; Neuweger et al. 2009) and metabolite set enrichment analysis
(Kankainen et al. 2011; Xia and Wishart 2010).

We already defined metabolomics as the study of the metabolic state of an organism
in response to direct or indirect perturbation. In order to find differences between
two or more states, for example before treatment with a drug and after, and among
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Statistical Evaluation

AlignmentData Acquisition and Conversion

Preprocessing

Interpretation

Peak Detection

Sample Preparation

Sample Collection

Figure 2.8.: A typical workflow for a metabolomics experiment. Steps shown in orange
(solid border) are usually handled within the bioinformatics domain, while the steps
shown in green (dashed border) often involve co-work with scientists from other
disciplines.

one or multiple specimens, the actual hypothesis for the experiment needs to be
defined. Based on this hypothesis, a design for the structure of the experiments
and their subsequent analysis can be derived. This involves, among many necessary
biological or medical considerations, the choice of sample extraction procedures
and preparation methods, as well as the choice of the analytical methods used for
downstream sample analysis.

Preprocessing of the data from those experiments begins after the samples have
been acquired using the chosen analytical method, such as GC-MS or LC-MS. Ow-
ing to the increasing amount of data produced by high-throughput metabolomics
experiments, with large sample numbers and high-accuracy/high-speed analytical
devices, it is a key requirement that the resulting data is processed with a very high
level of automation. It is then that the following typical workflow is applied in some
variation, as illustrated in Figure 2.8.

2.6.1. Data Acquisition and Conversion

The most common formats exported from GC-MS and LC-MS machines today are
NetCDF (Rew and Davis 1990), based on the specifications in the American Society
for Testing and Materials (ASTM) standard ANDI-MS (Matthews and Miller 2000),
mzXML (Pedrioli et al. 2004), mzData (Orchard et al. 2005), and more recently as
the successor to the latter two, mzML (Martens et al. 2011; E. Deutsch 2008). All of
these formats include well-defined data structures for meta-information necessary to
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interpret data in the right context, such as detector type, chromatographic protocol,
detector potential and other details about the separation and acquisition of the data.
Furthermore, they explicitly model chromatograms and mass spectra, with varying
degrees of detail.

NetCDF is the oldest and probably most widely used format today. It is routinely
exported even by older machinery, which offers backwards compatibility to those.
It is a general-purpose binary format, with a header that describes the structure of
the data contained in the file, grouped into variables and indexed by dimensions.
In recent years, efforts were made to establish open formats for data exchange
based on a defined grammar in extensible markup language (XML)3 with extendable
controlled vocabularies, to allow new technologies to be easily incorporated into the
file format without breaking backwards compatibility. Additionally, XML formats
are human readable which narrows the technology gap. mzXML (Pedrioli et al. 2004)
was the first approach to establish such a format. It was an alternative to the mzData
format, (Orchard et al. 2004), with different approaches to modeling proteomics data
in XML. More recently, mzML (Martens et al. 2011) was designed as a super-set of
both, incorporating extensibility through the use of an indexed controlled vocabulary.
This allows mzML to be adapted to technologies like GC×GC-MS without having to
change its definition, although its origins are in the proteomics domain. Furthermore,
mzML addresses the need for storing chromatographic data, for example the TIC,
but also EICs. One drawback of XML-based formats is often claimed to be their
considerably larger space requirements when compared to the supposedly more
compact binary data representations. Recent advances in mzML approach this issue
by compressing spectral data using gzip compression. An approach to overcome
the encoding overhead was recently published as the mz5 format implementation
(Wilhelm et al. 2011), which is based on the highly space efficient binary hierarchical
data format (HDF54), but maintains semantic compatibility to mzML, by using the
same vocabulary and data model.

The data is continuously stored in a vendor-dependent native format during
sample processing on a GC-MS or LC-MS machine. Along with the mass spectral
information, like ion mass (or equivalents) and abundance, the acquisition time of
each mass spectrum is recorded. Usually, the vendor software includes methods for
data conversion into one of the aforementioned formats. However, especially when a
high degreee of automation is desired, it may be beneficial to directly access the data
in their native format. This avoids the need to run the vendor’s proprietary software
manually for every data conversion task. Both the ProteoWizard framework (Kessner
et al. 2008) and the Trans Proteomic Pipeline (Deutsch et al. 2010) include multiple
vendor-specific libraries for that use case.

3. http://www.w3.org/TR/REC-xml
4. http://www.hdfgroup.org
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2.6.2. Preprocessing

Raw mass specrometry data is usually represented in sparse formats, only recording
those masses whose intensities exceed a user-defined threshold. This thresholding is
usually applied within the vendor’s proprietary software and may lead to artificial
gaps within the data. Thus, the first step in preprocessing involves the binning of
mass spectra over time into bins of defined size in the m/z dimension, followed by
interpolation of missing values. After binning, the data is stored as a rectangular
array of values, with the first dimension representing time, the second dimension
representing the approximate bin mass values, and the third dimension representing
the intensity corresponding to each measured ion. This process is also often described
as resampling (Lange et al. 2007).

Depending on various instrumental parameters, the raw exported data may require
additional processing. The most commonly reported methods for smoothing are the
Savitzky-Golay filter (Savitzky and Golay 1964), LOcal regrESSion (LOESS) (Smith
et al. 2006) and variants of local averaging, for example by a windowed moving
average filter. These methods can also be applied to interpolate values where gaps
are present in the original data. The top-hat filter (Lange et al. 2007; Sturm et al.
2008) is used to remove a varying baseline from the signal. More refined methods
use signal decomposition and reconstruction methods, such as Fourier transform
and continuous wavelet transform (CWT) (Fredriksson et al. 2009; Tautenhahn,
Böttcher, and Neumann 2008; Du et al. 2006) in order to remove noise and baseline
contributions from the signal and simultaneously find peaks.

2.6.3. Peak Detection

Often the process of peak detection is decoupled from the actual preprocessing of the
data. XCMS (Smith et al. 2006), for example, uses a Gaussian second derivative peak
model with a fixed kernel width and signal-to-noise threshold to find peaks along the
chromatographic domain of each ion bin. Other methods extend this approach to use
a multi-scale continuous wavelet transform using such a kernel over various widths,
tracking the response of the transformed signal in order to locate peak apex positions
in scale-space before estimating the true peak widths based on the kernel scale with
maximum response (Fredriksson et al. 2009; Tautenhahn, Böttcher, and Neumann
2008). However, these methods usually allow only a small number of co-eluting peaks
in different mass-bins, since they were initially designed to work with LC-MS data
mainly, where only one parent ion and a limited number of accompanying adduct
ions are expected. In GC-MS, electron ionization creates rich fragmentation mass
spectra that pose additional challenges to deconvolution of co-eluting ions, and to the
subsequent association to peak groups. Even though its source code is not publicly
available, the method used by AMDIS (Stein 1999) has seen wide practical application
and is well accepted as a reference by the metabolomics and analytical chemistry
communities. Two-dimensional chromatography provides additional challenges for
peak detection, which are discussed for GC×GC-MS in Section 4.2.
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2.6.4. Alignment

The alignment problem in metabolomics and proteomics stems from the analyti-
cal methods used. These produce sampled sensor readings acquired over time in
fixed or programmed intervals, usually called chromatograms. The sensor readings
can be one- or multidimensional. In the first case, detectors like ultra violet and
visible light absorbance detectors (UV/VIS) or FIDs measure the signal response
as one-dimensional features, e.g. as the absorbance spectrum or electrical potential,
respectively. Multi-dimensional detectors like mass spectrometers record a large
number of features simultaneously, e.g. mass and ion count. The task is then to find
corresponding and non-corresponding features between different sample acquisi-
tions. This correspondence problem is a term used by Åberg, Alm, and Torgrip (2009)
which describes the actual purpose of alignment, namely to find true correspondences
between related analytical signals over a number of sample acquisitions. For GC-MS
and LC-MS-based data, a number of different methods have been developed, some
of which are described in more detail by Castillo et al. (2011) and Åberg, Alm, and
Torgrip (2009). Here, we will concentrate on those methods that have been reported
to be applicable to GC-MS.

In principle, alignment algorithms can be classified into two main categories: peak-
and signal-based methods. Methods of the first type start with a defined set of peaks,
which are present in most or all samples that are to be aligned before determining
the best correspondences of the peaks between samples in order to then derive a
time correction function. Krebs et al. (2006) locate landmark peaks in the TIC and
then select pairs of those peaks with a high correlation between their mass spectra in
order to fit an interpolating spline between a reference chromatogram and the to-be-
aligned one. The method of Robinson et al. (2007) is inspired by multiple sequence
alignment algorithms and uses dynamic programming to progressively align peak
lists without requiring an explicit reference chromatogram. Other methods, like that
of Chae, Reis, and Thaden (2008) perform piecewise, block-oriented matching of
peaks, either on the TIC, on selected masses, or on the complete mass spectra. Time
correction is applied after the peak assignments between the reference chromatogram
and the others have been calculated. Signal-based methods include recent variants of
correlation optimized warping (COW) (Christin et al. 2008), parametric time warping
(PTW) (Christin et al. 2010) and dynamic time warping (DTW) (Christin et al. 2010;
Clifford et al. 2009; Hoffmann and Stoye 2009; Prince and Marcotte 2006) and usually
consider the complete chromatogram for comparison. However, attempts are made
to reduce the computational burden associated with a complete pairwise comparison
of mass spectra by partitioning the chromatograms into similar regions (Hoffmann
and Stoye 2009), or by selecting a representative subset of mass traces (Christin et al.
2010). Another distinction in alignment algorithms is the requirement of an explicit
reference for alignment. Some methods apply clustering techniques to select one
chromatogram that is most similar to all others (Christin et al. 2008; Hoffmann and
Stoye 2009), while other methods choose such a reference based on the number of
features contained in a chromatogram (Lange et al. 2007) or by manual user choice
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(Clifford et al. 2009; Chae, Reis, and Thaden 2008). For high-throughput applications,
alignments should be fast to calculate and reference selection should be automatic.
Thus, a sampling method for time correction has recently been reported by Pluskal et
al. (2010) for LC-MS. A comparison of these methods is given in the same publication.

The variability of retention times in both GC×GC and GC×GC-MS also requires
sophisticated algorithms for automatic alignment of corresponding analyte signals
between different samples. Additionally, the size and number of acquired sample
data poses a significant challenge to automated methods and effectively prevents
large scale manual intervention by human experts (Hoffmann and Stoye 2012). Due
to the modulation of the signal, introduced by the second chromatographic column,
peaks in GC×GC-MS are distributed over two retention time dimensions, with an
additional non-linear shifting effect between signals of peaks that span multiple
modulation periods.

The peak alignment problem for GC-MS data is addressed in Section 3.2. We also
show that our method is applicable to the peak alignment problem for GC×GC-MS
in Section 4.3, if a similarity function specific two the two-dimensional retention
times is used.

2.6.5. Statistical Evaluation

After peaks have been located and integrated for all samples, and their correspon-
dence has been established, peak report tables can be generated, containing peak
information for each sample and peak, with associated corrected retention times and
peak areas. Additionally, peaks may have been putatively identified by searching
against a database, such as the Golm Metabolome Database (GMD) (Hummel et al.
2007) or the National Institute of Standards and Technology of the United States
of America (NIST) mass-spectral database (Babushok et al. 2007). If mass spectral
information is available, exact masses can be used to generate putative sum formulas
(the elemental composition of an ion) and candidate structure formulas for ion peaks
that are not contained in any public database (Neumann and Böcker 2010).

These peak tables can then be analyzed with further methods, in order to detect
systematic differences between different sample groups. Prior to such an analysis,
the peak areas need to be normalized. This is usually done by using a spiked-in
compound as a reference that does not occur naturally in the studied organism. The
normalization compound is supposed to have the same concentration in all samples.
The compound’s peak area can then be used to normalize all peak areas of a sample
with respect to it (Doebbe et al. 2010) in relative units.

In order to associate these internally normalized peak areas to the original biologi-
cal quantities, they can be normalized externally to their sample quantity of origin,
e.g. the cell count, concentration, or dry weight of the sample. The peak areas are
then represented in more biologically meaningful units.

Different experimental designs allow to analyze correlations of metabolite levels for
the same subjects under different conditions (paired), or within and between groups
of subjects. For simple paired settings, multiple t-tests with corrections for multiple
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testing can be applied (Berk, Ebbels, and Montana 2011), while for comparisons
between groups of subjects, Fisher’s F-Statistic (Pierce et al. 2006) and various analysis
of variance (ANOVA), principal components analysis (PCA) (Ventura et al. 2011)
and partial least squares analysis (PLS) (Johnson et al. 2004) methods are applied
(Kastenmüller et al. 2011; Xia, Sinelnikov, and Wishart 2011; Wiklund et al. 2008).

A more complete overview of current data processing methods and programs for
GC×GC and GC×GC-MS data may be found in Matos, Duarte, and Duarte (2012)
and Reichenbach et al. (2012), and Kallio et al. (2009).

2.6.6. Evaluation of Hypothesis

Finally, after peak areas have been normalized and differences have been found
between sample groups, the actual results need to be put into their biological context.
Many web-based analysis tools allow to interpret the results, by providing name-
or id-based mapping of the experimentally determined metabolite concentrations
onto biochemical pathways like MetaboAnalyst (Xia, Sinelnikov, and Wishart 2011),
MetabolomeExpress (Carroll, Badger, and Millar 2010), or MeltDB (Neuweger et al.
2008; Kessler et al. 2013). The latter allows association of the metabolomics data
with other results for the same subjects under study or with results from other omics
experiments on the same target subjects that enables a more global, holistic approach
called systems biology (Mesarović 1968), but this is beyond the scope of the frameworks
and methods presented in this work.
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In this chapter, we give an overview and feature comparison of existing Open Source
frameworks for the handling and processing of data from GC-MS experiments. This
overview covers the parts of the typical processing pipeline for metabolomics data
that we introduced in Chapter 2.

We then explain the retention time alignment problem for multiple peak and profile
data sets from GC-MS experiments in Section 3.2, explaining the novel methods
BIdirectional best hits Peak Assignment and Cluster Extension (B iPACE) (Section
3.3) and CeMAPP-DTW (Section 3.4) that we developed. Then we combine these
two methods to create a new hybrid method that benefits from the speed and accuracy
in peak matching of the peak-based alignment algorithm, while still providing a
profile multiple alignment of all GC-MS datasets in reasonable time and space. We
finally evaluate the algorithms against another state-of-the-art method in Section 3.5
and discuss the results in Section 3.6. B iPACE and CeMAPP-DTW were originally
published in Hoffmann et al. (2012).

The algorithms presented in this chapter are available within our OpenSource
framework Modular Application Toolkit for Chromatography-Mass Spectrometry
(Maltcms)1. We describe Maltcms in more detail in Chapter 5.

3.1. Frameworks for GC-MS Analysis

A number of Open Source frameworks have been developed for LC-MS based pro-
teomics frameworks like OpenMS (Sturm et al. 2008), ProteoWizard (Kessner
et al. 2008), and most notably the TransProteomicPipeline (Deutsch et al. 2010).
Even though many of the steps required for proteomics analysis apply similarly
to metabolomics applications, there are still some essential differences due to the
different analytical setups and technologies (e.g. matrix assisted laser desorption
ionization mass spectrometry, MALDI-MS) used in the two fields. XCMS (Smith

1. http://maltcms.sourceforge.net
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Table 3.1.: Overview of available Open Source software frameworks for GC-MS based
metabolomics, their latest version, analytical methods covered, source-code and distri-
bution license, as well as the main programming languages used in the framework. a:
Part of Bioconductor 2.14, b: Eclipse Public License version 1.0.

Name Version Methods License Language

XCMS 1.39.4a LC-MS/GC-MS GPL v2 R >2.14, C++ 2003
PyMS r375 GC-MS GPL v2 Python 2.5
Maltcms 1.3 GC-MS/GC-FID L-GPL v3, Java 7

EPL v1b

OpenChrom 0.8.0 GC-MS/GC-FID EPL v1b Java 7

et al. 2006) was among the first frameworks to offer support for data preprocessing
in LC-MS based metabolomics. Later, MZmine2 (Pluskal et al. 2010) offered an
alternative with a user-friendly interface and easy extensibility. Lately, Scheltema
et al. (2011) published their PeakML format and mzMatch framework also for
LC-MS applications. For an in-depths review of current LC-MS based metabolomics
data preprocessing consider Castillo et al. (2011).

As of now, there are only a few frameworks available for GC-MS based meta-
bolomics that offer similar methods, namely PyMS (Callaghan et al. 2010, 2012),
Maltcms/ChromA (Hoffmann and Stoye 2009), and OpenChrom (Wenig and
Odermatt 2010). These three, together with XCMS, will be presented in more detail
in this section. A compact overview of the Open Source frameworks discussed herein
is given in Table 3.1. A detailed feature comparison can be found in Table 3.2.

This overview excludes proprietary vendor software like Waters’ MassLynx (Waters
Corp., Milford, MA, USA), Agilent’s ChemStation (Agilent Technologies, Inc., Santa
Clara, CA, USA), Thermo’s Xcalibur (Thermo Fisher Scientific Inc., Waltham, MA,
USA), or LECO’s ChromaTOF (LECO Corp., St. Joseph, MI, USA) for a number of
reasons.

The first reason are the limited capabilities of proprietary software concerning
data interoperability. Usually, only netCDF following either the ANDI-MS or ANDI-
CHROM (Matthews and Miller 2000) standards is supported. Sometimes, support
for an additional open format, such as mzXML (Pedrioli et al. 2004), mzData2, or
lately, mzML (E. Deutsch 2008) is offered. However, the exported files do not always
follow standard conventions or add custom, non-standardized information, which
makes it hard to read these files by other, downstream software. The interoperability
aspect has improved lately by the strict validation requirements introduced by the
mzML data standard, and today most major companies working in the field offer at
least one method to access the raw data. The gaps that the vendor softwares leave
open are addressed by growing companies like GeneData (Basel, Switzerland), with

2. http://psidev.info/mzdata
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their Expressionist software, that provide direct access to many proprietary vendor
data formats.

The second reason against proprietary software is the non-availability of the
implementation of the algorithms used for data processing, peak finding and in-
tegration, and multiple alignment. Usually, only a very shallow description of the
algorithm is given in the user manual of proprietary software, with often insufficient
explanations about the influence of individual parameters.

The third reason is the platform dependence of the proprietary software. Current
vendor software operates mainly under Microsoft Windows operating systems, while
the Open Source frameworks described in the following section are all platform
independent and can be run on a large variety of different hardware and operating
systems, giving researchers more flexibility, also in terms of using computer grid
resources for large scale data processing tasks without the requirement for a graphical
user interface.

3.1.1. XCMS

XCMS (Smith et al. 2006) is a very mature framework and has seen constant de-
velopment during the last five years. It is mainly designed for LC-MS applications,
however its binning, peak finding and alignment are also applicable to GC-MS data.
XCMS is implemented in the R3 programming language, the de-facto standard for
Open Source statistics. Since R is an interpreted scripting language, it is easy to write
custom scripts that realize additional functionality of the typical GC-MS workflow
described above. XCMS is part of the Bioconductor4 package collection, which offers
many computational methods for various “omics” technologies. Further statistical
methods are available from R and auxiliary packages.

XCMS supports input in NetCDF, mzXML, mzData and, more recently, mzML
format. This allows XCMS to be used with virtually any chromatography-mass
spectrometry data, since vendor software supports conversion to at least one of those
formats. XCMS uses the xcmsRaw object as its primary tabular data structure for
each binned data file. The xcmsSet object is then used to represent peaks and peak
groups and is used by its peak alignment and diffreport features.

The peak finding methods in XCMS are quite different from each other. For
data with normal or low mass resolution and accuracy, the matched filter peak
finder (Smith et al. 2006) is usually sensitive enough. It uses a Gaussian peak
template function with user defined width and signal-to-noise criteria to locate
peaks on individual binned EIC traces over the complete time range of the binned
chromatogram. The other method, CentWave (Tautenhahn, Böttcher, and Neumann
2008) is based on a continuous wavelet transform on areas of interest within the raw
data matrix. Both peak finding methods report peak boundaries and integrated areas
for raw data and for the data reconstructed from the peak finder’s signal response
values.

3. http://www.r-project.org
4. http://www.bioconductor.org
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Initially designed for LC-MS, XCMS does not have a method to group co-eluting
peaks into peak groups, as is a requirement in GC-MS methods using electron
ionization. However, CAMERA (Tautenhahn, Böttcher, and Neumann 2007) and
XCMS Online (Tautenhahn et al. 2012) show how XCMS can be used as a basis
in order to create a derived application for ion annotation between samples and
untargeted metabolomics, respectively.

Peak alignment in XCMS is performed using LOESS regression between peak
groups with very similar m/z and retention time (RT) behavior and good support
within each sample group. This allows a simultaneous alignment and retention time
correction of all peaks. The other available method is based on the Obi -Warp DTW
algorithm (Prince and Marcotte 2006) and is capable of correcting large non-linear
RT distortions. It uses the peak set with the highest number of features as alignment
reference, which is comparable to the approach used by Lange et al. (2007). However,
it is much more computationally demanding then the LOESS-based alignment.

XCMS’s diffreport generates a summary report of significant analyte differences
between two sample sets. It uses Welch’s two-sample t-statistic to calculate probability
values (p-values) for each analyte group. ANOVA may be used for more than two
sample sets.

A number of different visualizations are also available, for both raw and processed
data. These include TIC plots, EIC plots, analyte group plots for grouped features,
and chromatogram (RT, m/z, intensity) surface plots.

XCMS can use GNU R’s Rmpi infrastructure to execute arbitrary function calls,
such as profile generation and peak finding, in parallel on a local cluster of computers.

3.1.2. PyMS

PyMS (Callaghan et al. 2010, 2012) is a programming framework for GC-MS meta-
bolomics based on the Python programming language5. It can therefor use many
scientific libraries which are accessible via the SciPy and NumPy packages6. Since
Python is a scripting language, it allows to do rapid prototyping, comparable to
GNU R. However, Python’s syntax may be more familiar for programmers with a
background in object-oriented programming languages.

The downloadable version of PyMS currently only supports NetCDF among the
more recent open data exchange formats. Nonetheless, it is the only framework in
this comparison with support for the JCAMP GC-MS file format.

PyMS provides dedicated data structures for chromatograms, allowing efficient
access to EICs, mass spectra, and peak data.

In order to find peaks, PyMS also builds a rectangular profile matrix with the
dimensions time, m/z and intensity. Through the use of slightly shifted binning
boundaries, they reduce the chance of false assignments of ion signals to neighboring
bins, when binning is performed with unit precision (bin width of 1 m/z). PyMS

5. http://www.python.org
6. http://www.scipy.org
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offers the moving average and the Savitzky-Golay filters (Savitzky and Golay 1964)
for signal smoothing of EICs within the profile matrix. Baseline correction can be
performed by the top-hat filter (Lange et al. 2007). The actual peak finding is based
on the method described by Biller and Biemann (1974) and involves the matching of
local peak maxima co-eluting within a defined window. Peaks are integrated for all
co-eluting masses, starting from a peak apex to both sides and ending if the increase
in area falls below a given threshold.

Peak alignment in PyMS is realized by the method introduced by Robinson et al.
(2007). It is related to progressive multiple sequence alignment methods and is based
on a generic dynamic programming algorithm for peak lists. It proceeds by first
aligning peak lists within sample groups, before aligning the aligned peak lists of
different groups, until all groups have been aligned.

Visualizations of chromatogram TICs, EICs, peaks and mass spectra are available
and are displayed to the user in an interactive plot panel.

For high-throughput applications, PyMS can be used together with MPI to paral-
lelize tasks within a local cluster of computers.

3.1.3. OpenChrom

OpenChrom (Wenig and Odermatt 2010) offers a convenient graphical user inter-
face for GC-MS and gas chromatography-flame ionization detector (GC-FID) data
within the area of analytical chemistry. It is implemented in the JAVA programming
language, based on the Eclipse Rich Client Platform module infrastructure7.

OpenChrom provides direct support for most proprietary vendor formats, peak
finding and both automatic and manual peak integration, as well as custom mass
spectral database creation and analyte identification. It uses a custom binary format
to store its own chromatogram data .

Filtering of chromatograms (TIC, EIC) prior to peak finding can be performed with
the Savitzky-Golay filter (Savitzky and Golay 1964) and the component detection
algorithm (CODA) (Windig, Phalp, and Payne 1996). OpenChrom’s peak finder and
integrator work comparably to the method used in Agilent’s ChemStation (Agilent,
Santa Clara CA, USA), using first and second derivatives to determine peak maxima,
minima, and inflection points, generating a parameterized function for each peak.

Retention time correction can be performed individually for each peak. As of
version 0.8.0, there is no support for an automatic retention time correction. However,
if peaks have been identified, they can be used to create a compound-abundance
matrix for all measured samples and annotated peaks.

OpenChrom provides many interactive views to browse and visualize chromato-
graphic and peak data, also allowing for manual peak integration and annotation. It
also allows to define configurations for linear batch processing of chromatograms
using the same methods that are available within the user interface.

7. http://eclipse.org
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3.1.4. Maltcms

The framework Maltcms
8 allows to set up and configure individual processing

components for various types of computational analyses of metabolomics data.
The framework is implemented using the JAVA programming language9 and is
modular using the service provider pattern for maximal decoupling of interface and
implementation, so that it can be extended in functionality at runtime.

Maltcms can read data from files in NetCDF, mzXML, mzData or mzML format.
It uses a pipeline paradigm to model the typical preprocessing workflow in meta-
bolomics, where each processing step can define dependencies on previous steps.
This allows automatic pipeline validation and ensures that a user can not define an
invalid pipeline. The workflow itself is serialized to XML format, keeping track of all
resources created during pipeline execution. Using a custom post-processor, users
can define which results of the pipeline should be archived.

Maltcms uses a generalization of the ANDI-MS data schema internally and a
data provider interface with corresponding implementations to perform the mapping
from any proprietary data format to an internal data object model. This allows
efficient access to individual mass spectra and other data available in the raw-data
files. Additionally, developers need no special knowledge of any supported file
format, since all data can be accessed generically. Results from previous processing
steps are referenced in the data model to allow both shadowing of data, e.g. creating
a processing result variable with the same name as an already existing variable,
and aggregation of processing results. Thus, all previous processing results are
transparently accessible for downstream elements of a processing pipeline, unless
they have been shadowed.

Primary storage of processing results is performed on a per-chromatogram basis in
the binary NetCDF file format. Since metabolomics experiments create large amounts
of data, a focus is put on efficient data structures, data access, and scalability of the
framework.

Embedding Maltcms in existing workflows or interfacing with other software
is also possible, as alignments, peak-lists and other feature data can be exported as
comma separated value files or in specific XML-based formats, which are well-defined
by custom schemas.

To exploit the potential of modern multi-core CPUs and distributed computing
networks, Maltcms supports multi-threaded execution on a local machine or
within a grid of connected computers using an OpenGrid infrastructure (e.g. Oracle
Grid Engine or Globus Toolkit (Foster 2005)) or a manually connected network
of machines via remote method invocation (RMI10). More details on the parallel
execution framework can be found in Chapter 5.

8. http://maltcms.sf.net
9. http://www.oracle.com/technetwork/java/javase/overview

10. http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
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The framework is accompanied by many libraries for different purposes, such as
the JFreeChart11 library for 2D-plotting or, for BLAS compatible linear algebra, math
and statistics implementations, the Colt12 and commons-math13 libraries. Building
upon the base library Cross

14, which defines the commonly available interfaces and
default implementations, Maltcms provides the domain dependent data structures
and specializations for processing of chromatographic data.

ChromA

Chromatogram Alignment (ChromA) is a configuration of Maltcms that includes
preprocessing, in the form of mass binning, time-scale alignment and annotation of
signal peaks found within the data, as well as visualizations of unaligned and aligned
data from GC-MS and LC-MS experiments. The user may supply mandatory align-
ment anchors as comma separated value (CSV) files to the pipeline and a database
location for tentative metabolite identification. Further downstream processing can be
performed either on the retention time-corrected chromatograms in NetCDF format,
or on the corresponding peak tables in either CSV format or XML format.

Peaks can be imported from other tools by providing them in CSV format to
ChromA, requiring at least the scan index of each peak in a file per row. Alterna-
tively, ChromA has a fast peak finder that locates peaks based on derivatives of
the smoothed and baseline-corrected TIC, using user-definable signal-filters and a
LOESS-based baseline estimation, with a customizable minimum peak-to-peak-apex
window. Peak alignment is based on a star-wise or tree-based application of an
enhanced variant of pairwise DTW (Hoffmann and Stoye 2009). To reduce both
runtime and space requirements, conserved signals throughout the data are identi-
fied, constraining the search space of DTW to a precomputed closed polygon. The
alignment anchors can be augmented or overwritten by user-defined anchors, such
as previously identified compounds, characteristic mass or MS/MS identifications.
Then, the candidates are paired by means of a bidirectional best-hit (BBH) crite-
rion, which can compare different aspects of the candidates for similarity. Paired
anchors are extended to k-cliques with configurable k, which help to determine the
conservation or absence of signals across measurements, especially with respect to
replicate groups. Tentative identification of peaks against a database using their mass
spectra is possible using the MetaboliteDB module. This module provides access to
mass-spectral databases in MSP-compatible format, for example the Golm Metabolite
Database or the NIST EI-MS database.

ChromA visualizes alignment results including paired anchors in birds-eye view
or as a simultaneous overlay plot of the TIC. Additionally, absolute and relative
differential charts are provided, which allow easy spotting of quantitative differences.

11. http://www.jfree.org/jfreechart
12. http://acs.lbl.gov/software/colt
13. http://commons.apache.org/proper/commons-math
14. http://sf.net/p/maltcmscross
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Peak tables are exported in CSV format, including peak apex positions, area under
curve, peak intensity and possibly tentative database identifications. Additionally,
information about the matched and aligned peak groups is saved in CSV format.

3.2. Multiple Alignment of GC-MS Chromatograms

Metabolomics, the study of an organism’s biochemistry, has become increasingly
relevant along with other omics technologies during the last ten years. Some of the
techniques of choice to distinguish the metabolites present in a biological sample
of an organism are separation techniques coupled to sensitive detectors, such as
GC-MS and LC-MS. In contrast to FIDs, UV absorbance detector (UVD), and other
one-dimensional detectors, these hyphenated methods provide high-dimensional
data of analyte molecular ions or analyte molecular ion fragments collected over the
runtime of the separation. In the context of metabolomics, this usually involves the
observation of potentially hundreds of ion signals of different masses simultaneously
in every recorded scan. These numbers may be even higher for proteomics, owing to
the larger masses of peptides and peptide fragments. Comparing such data manually
to find corresponding signals is very labor intensive, as each experiment usually
consists of thousands of individual scans. Thus, the goal must be to obtain a high
level of automation during data acquisition and data processing, allowing scientists
to focus on the informative parts of their data, while still alerting them to potential
errors or problems.

(a) TIC view of unaligned chromatograms.

(b) TIC view of chromatograms aligned with B iPACE and CeMAPP-DTW .

Figure 3.1.: TIC view sections of unaligned and aligned chromatograms with high-
lighted alignment anchors, as determined by B iPACE.

Often it is the goal of a metabolomics experiment to detect differences between a
treated and a control group of measurements. Therefore, an accurate alignment and
matching of corresponding features in all measurements is an extremely important
part of data preprocessing. Data matrices representing the detected and aligned
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features across all measurements may be generated in order to be used for further
statistical analysis. It is essential that an alignment algorithm captures fluctuations
in the chromatographic system that lead to non-linear distortions of the retention
time of individual features (Podwojski et al. 2009; Strehmel et al. 2008). Further, it
needs to group those features that are most similar to each other and to discover
whether features are present or absent. An example of three chromatograms showing
retention time variation within the first few minutes of the chromatography before
and after alignment is shown in Figure 3.1.

In the end, a matrix of grouped peak features of single or related coeluting analyte
ions should be generated to establish relationships in abundance between different
experimental conditions. Then, based on other characteristics such as parent ion mass,
ion fragments or isotope pattern, an identification of those features for integration
with downstream analysis is required. Here we focus on the first few steps of such
an analysis pipeline, including the generation of a matrix of grouped features for
retention time normalization.

The currently available algorithms for retention time alignment can be distin-
guished into two general categories: peak-based and raw data-based alignment. The
peak-based algorithms require prior peak or feature-finding and often also peak
deconvolution to reduce the effect of overlapping signals, before a score function is
applied to establish correspondence between peaks (Chae, Reis, and Thaden 2008;
Styczynski et al. 2007; Lange et al. 2007; Krebs et al. 2006; Smith et al. 2006). Raw
data-based algorithms on the other hand require little or no preprocessing, but are
computationally very expensive (Prince and Marcotte 2006; Prakash et al. 2006).

3.2.1. Peak-based algorithms

Peak-based algorithms are very sensitive to the correctness of the a priori peak
detection. A peak may be defined as the time-resolved signal intensity trace of an
analyte ion’s corresponding mass matching predefined criteria, such as the goodness-
of-fit to a predefined peak model shape, together with a signal-to-noise ratio threshold
(Smith et al. 2006). If a peak is tagged to be absent during preprocessing, it cannot
be aligned by a peak-based algorithm. In order to handle missing peaks in data
matrices for statistical analysis, Smith et al. then fill the gaps by using estimates
based on prior grouping of the data. Such a grouping usually consists of at least
two groups, e.g. control and treated group. Then, for a peak missing within a group,
where most other peaks are present, the missing value can be estimated from the
present members of the group. However, such peak imputation may be erroneous
if it is only based on the final peak tables and does not access the original data to
ensure that a peak is really present.

To be able to assign peaks that may not have been aligned, Krebs et al. (2006)
proposed an approach based on prior peak detection and grouping, followed by poly-
nomial interpolation to infer warping in between grouped peaks. Prince and Marcotte
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(2006) introduced a similar interpolation scheme for raw data-based alignment with
dynamic time warping.

A further division of peak-based algorithms may also be applied concerning the
use of mass spectra for peak similarity calculation. Warping based on peaks detected
in the TIC is usually supplemented by using MS, to increase the number of true
positive peak assignments (Styczynski et al. 2007; Robinson et al. 2007; Krebs et al.
2006). Some algorithms work on a more complete set of extracted features, e.g. points
of retention time, m/z and intensity (Lange et al. 2008; Jaitly et al. 2006), but often
resort to linear regression in order to compute a retention time correction, due to the
large amount of points that need to be processed. A more exhaustive overview of
existing feature-based alignment algorithms to align point sets is given by Lange et al.
(2008), especially for the application to LC-MS data in proteomics and metabolomics.
Åberg, Alm, and Torgrip (2009) described the peak correspondence problem for NMR,
showing that there is a significant amount of overlap considering the algorithms for
these, at first sight different, application domains.

3.2.2. Raw data-based algorithms

Raw data-based algorithms operate on the complete collection of (binned) MS data,
also termed the uniform matrix, such as ObiWarp (Prince and Marcotte 2006), which
is based on DTW between binned mass spectra using pairwise spectra similarities,
or the signal maps approach by Prakash et al. (2006). Therefore, these algorithms
should find more and possibly better correspondences compared to the peak-based
algorithms, which only have access to a limited number of reported peak features.
Other approaches use COW (Bylund et al. 2002) for TIC alignment, or generalizations
thereof (Christin et al. 2010; Ramaker et al. 2003), selecting specific mass traces
to improve over simple TIC-based alignment. However, using many mass traces
increases the computational demand, as well as the amount of data in need of
processing, and may also increase the tendency of aligning noise (Windig, Phalp,
and Payne 1996; Christin et al. 2010). Possibly owing to that computational demand,
most raw data-based algorithms do not consider alignment or matching of individual
points of retention time, m/z and intensity, but instead only try to correct the retention
time deviation for each mass spectrum as a whole. The advantage of raw data-based
methods is that they assign a definite position to each mass spectrum together with
its corrected retention time after alignment. They use a pairwise similarity function
between either TIC or sequences of mass spectra, finding an optimal global similarity
with respect to their objective function (Clifford et al. 2009; Pierce, Wright, and
Synovec 2007; Eilers 2004). The local correspondences between two raw data sets
then allow to select the mass spectra with the highest pairwise similarities after the
alignment to pinpoint peaks of interest for further investigation (Prince and Marcotte
2006).
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3.2.3. Structure

In the next sections we introduce two novel methods for retention time alignment
of multiple GC-MS and LC-MS experiments, which may be used individually and
in combination as a hybrid method. The first method, B iPACE, is related to the
clique-finding method described by Styczynski et al. (2007), but without relying on
deconvoluted peaks and choosing a different criterion for peak correspondence and
clique coherence, which drastically decreases computation times. It is a peak-based
alignment method that automatically finds conserved groups of peaks among an
arbitrary collection of chromatograms, based on the bidirectional best hit criterion as
introduced by Tatusov, Koonin, and Lipman (1997) and later by Overbeek et al. (1999)
for the matching of orthologous genes. Peaks are compared using user-definable
similarities based on their mass spectra, for example with the similarity introduced
by Robinson et al. (2007), or by derived similarity functions, that we will introduce
in this work, and are successively grouped into clusters of best pairwise correspon-
dence. This method allows to find clusters of arbitrary size, up to the number of
chromatograms under consideration. It may be applied to different experimental pro-
tocols with more than just two groups of treatment and control, since the algorithm
requires no prior knowledge of an existing grouping.

The second method, CeMAPP-DTW, applies DTW as in (Prince and Marcotte
2006), but to all pairs of chromatograms. DTW was first introduced and used in
speech recognition for the alignment of time dependent feature traces of speech
samples (Itakura 1975; Sakoe and Chiba 1978; Kruskal and Liberman 1983). One
of the first applications of alignment methods to low-resolution GC-MS data was
performed by Reiner et al. (1979), based on the local squared distance of the TIC.
More recent applications have been reported by Christin et al. (2010), Clifford et al.
(2009), Prince and Marcotte (2006), and Ramaker et al. (2003). Prince and Marcotte
showed that different local score or cost functions can be used in order to align
data from LC-MS experiments with good performance. Other methods for the
alignment of raw chromatographic data exist, such as aligning the time series data
to a latent trace, which is constructed from training series, with an underlying
stochastic model (Listgarten et al. 2005) or by different means of regression (Fischer,
Roth, and Buhmann 2007). We use the grouped peaks from B iPACE as anchors
to constrain the pairwise DTW alignments, as outlined in a previous publication
(Hoffmann and Stoye 2009). This results in faster computation and at the same
time considerably less memory usage than in the unconstrained cases through the
use of an optimized data structure, while providing comparable alignment results.
Building on the pairwise alignments, we choose the chromatogram with the highest
sum of pairwise similarities as the reference for the final alignment of all remaining
chromatograms to the reference. We use DTW to compute the pairwise alignment,
due to its applicability to data with non-linear time scale distortions, its relatedness to
classical sequence alignment algorithms (Itakura 1975; Sakoe and Chiba 1978; Kruskal
and Liberman 1983) and its proven power to perform retention time correction and
signal alignment (Christin et al. 2010; Prince and Marcotte 2006; Ramaker et al. 2003).
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3.3. B I PAC E

Given a chromatogram C = {p1, p2, ..., p`} as an ordered set of ` peaks, we define
a peak p = (m, i, t) as a triple of a mass vector m, an intensity vector i, both of
length N, and a retention time t. Peaks can be matched between chromatograms by
exhaustive search, if a feasible criterion for their similarity exists. Based on GC-MS EI
fragmentation mass spectra alone, such a criterion is hard or even impossible to find
especially due to the ambiguity of the mass spectra of isomers. Additionally, we have
to deal with inherent noise, introduced by contaminations of the sample from external
sources (sample preparation) or internal sources (sample injection, chromatographic
system, MS acquisition). Thus, we use a similarity function s(p, q) between peaks p
and q, represented as (nominal) mass intensity vectors, like the cosine similarity (see
Definition 3.3) weighted by an exponentially penalized difference in RT (acquisition
time) of the spectra (Robinson et al. 2007). For two peaks p = (mp, ip, tp) and
q = (mq, iq, tq) and a retention time tolerance of D, we define this similarity function
as follows:

Definition 1 (B I PAC E RT Similarity Function).

f (p, q) := exp
(
−
(tp − tq)2

2D2

)
· s(p, q) . (3.1)

The effect of the Gaussian RT difference function is that of a weighting function.
Thus, for perfect RT correspondence between two peaks, the weight will be 1, giving
full weight to the value of the mass spectral similarity. If the RTs of the two peaks
differ, the weight will quickly decrease towards 0, depending on D. The decrease
will be slower for high values of D (large retention time deviation), while it will be
fast for low values of D (small retention time deviation). The similarity function s
would typically be the cosine value (Equation 3.3) of the angle between the two peaks’
mass spectral intensity vectors: s(p, q) = cos∠(ip, iq). However, s can also be realized
by any other similarity function defined between two vectors, such as the negative
Euclidean distance, the dot product, Pearson’s linear correlation or Spearman’s rank
correlation. We will now define these pairwise mass spectral similarities based on
our notation.

Definition 2 (Dot Product).

s(p, q) := ip · iq =
N

∑
j=1

ip,jiq,j . (3.2)

In terms of our definition above, the dot product between two mass spectral
intensity vectors is defined as the sum over all component-wise products of the
vectors. The dot product takes on values between 0, indicating orthogonality, and
+∞. It is maximal for identical vectors, but in principle unbound.
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Definition 3 (Cosine Similarity.).

s(p, q) := cos∠(ip, iq) =
ip · iq∥∥ip
∥∥ ∥∥iq

∥∥ =
∑N

j=1 ip,jiq,j√
∑N

j=1 i2
p,j

√
∑N

j=1 i2
q,j

. (3.3)

The cosine value of the angle between two mass spectral intensity vectors is based
on the dot product, divided by the product of the Euclidean norms of each vector
individually. The value of the cosine score lies in the closed interval [−1, 1], but
can be restricted to lie within [0, 1] for non-negative intensity vectors. Co–linear
vectors have a cosine similarity of 1, regardless of scaling, while the similarity is 0
for orthogonal vectors. The cosine and the dot product similarity are related via the
following identity: ip · iq =

∥∥ip
∥∥ ∥∥iq

∥∥ cos∠(ip, iq).

Definition 4 (Pearson’s Linear Correlation).

s(p, q) :=
∑N

j=1
(
ip,j − īp

)(
iq,j − īq

)√
∑N

j=1
(
ip,j − īp

)2
√

∑N
j=1
(
iq,j − īq

)2
. (3.4)

The value of the linear correlation coefficient is in the closed interval [−1, 1], where
−1 indicates perfect anti-correlation, meaning that if p is high then q is low, and vice
versa. A value of 0 is attained if p and q are not linearly correlated. However, this
still allows higher order correlations of p and q that are not immediately measurable
with Pearson’s method. A value of 1 indicates perfect correlation, meaning that p
and q differ at most by a constant linear factor in all dimensions. The similarity is
invariant to linear scaling so that no prior length normalization of the intensities is
necessary. The same applies to the cosine similarity (Eqn. 3.3).

Definition 5 (Spearman’s Rank Correlation).

s(p, q) :=
∑N

j=1
(
rk(ip,j)− rki p

)(
rk(iq,j)− rkiq

)√
∑N

j=1
(
rk(ip,j)− rki p

)2
√

∑N
j=1
(
rk(iq,j)− rkiq

)2
, (3.5)

where rk(ip,j) is the rank of intensity value j within p, and rki p is the average rank of
all intensities in ip. This holds likewise for iq. The rank correlation ρ is a more robust
variant of the linear correlation, especially if outliers can be expected in the data. In
case of the linear correlation, these would severely degrade the correlation value,
even though their omission would lead to an almost perfect correlation value. By
focusing on the ranks of the data, rather than the absolute values, the rank correlation
is less sensitive to such outliers, as they will at most influence a small number of
ranks. For mass spectral comparison, the rank correlation seems to be most adequate
for faint and weak signals, that also exhibit a large variation between measurements.
In most other cases, the linear correlation and cosine similarity will outperform it
(see Section 3.5 for more details).
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Definition 6 (Negative Euclidean Distance).

s(p, q) := −

√√√√ N

∑
j=1

(
ip,j − iq,j

)2 . (3.6)

The Euclidean distance sums the squared differences in values for each feature
dimension, in this case the intensities of corresponding mass bins between peaks
p and q. It is very susceptible to noise in the data and as such is hard to optimize
for a large range of different datasets. It may work better if the log intensities are
used instead of the raw ones, but this has not been tested in this work. However, it is
the only similarity that has metric properties: it is non-negative, s(p, q) = 0 if and
only if p = q, it is symmetric: s(p, q) = s(q, p), and it fulfills the triangle inequality:
s(p, q) ≤ s(p, r) + s(r, q) for any third peak r.

Definition 7 (Weighted Cosine Similarity).

s(p, q) :=
∑N

j=1
(
(mp,jmq,j)

u(ip,jiq,j)
v)2(

∑N
j=1 m2u

p,ji
2v
p,j

) (
∑N

j=1 m2u
q,ji

2v
q,j

) . (3.7)

The weighted cosine similarity was first introduced by Stein and Scott (1994).
For each peak compared, it requires prior normalization of the intensities to the
maximum of the peak’s intensities. The parameters u and v control the individual
influence of mass and intensity terms on the overall score. Typically, u is set to 1,
while v is set to 0.5, effectively giving higher masses a higher weight (Castillo et al.
2011).

Essentially, all similarity functions that were defined above on the domain [−1, 1]
will only attain values in the interval [0, 1] on the positive intensity values that are
typically present in mass spectra.

The similarity function f in combination with any of the similarity functions just
presented leads to a good pre-filtering of candidate peaks for matching throughout
our input chromatograms. The effect of combining the cosine similarity with the
retention time penalty on the score distribution is shown in Figure 3.2 for two related
and typical GC-MS datasets using an EI detector. Without retention time penalization,
the score distribution is heavily biased towards a median value slightly above 0.9,
meaning that more than 50% of the pairwise similarities have a value > 0.9. However,
together with the retention time penalty function, this is reduced, so that the 50%-tile
of the similarities is below a value of 0.05. The number of peaks that have similarities
> 0.9 is now greatly decreased and illustrates the filtering effect that the Gaussian
retention time penalty has.

Pairwise Similarity Calculation In order to assign peaks to their best corresponding
counterparts, we calculate all pairwise similarities using the similarity function
f between all peaks from distinct chromatograms. The similarity calculation is
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Plot of cosine score density

pairwise cosine score on binned mass spectra (nominal mass)
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(a) Cosine score distribution for a typical GC-MS
/ EI dataset.

Plot of RT penalized cosine score density

pairwise RT penalized cosine on binned mass spectra (nominal mass)
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(b) Time penalized cosine score distribution for a
typical GC-MS / EI dataset.

Figure 3.2.: Score distribution plots for the plain (Equation 3.3) and time penalized
cosine (Equation 3.1 using Equation 3.3 as pairwise mass spectral similarity function)
between all binned mass spectra from two related chromatograms. The retention time
penalty of D = 50 s reduces the number of candidate mass spectra from a few hundred
thousand to a few hundred.

illustrated in Figure 3.3, overlayed with the Gaussian retention time penalty function
and a maximum retention time difference cutoff (triangles).

The time required to calculate all pairwise similarities between peak candidates
within the different chromatograms can be reduced by using a cutoff for the maxi-
mum allowed time deviation. This is achieved by first calculating the time deviation
penalty, whose value ranges between 0, indicating a large RT difference, and 1 for
perfect RT correspondence, and then deciding, based on that value, whether the prox-
imity indicates a good candidate to go on and calculate the cosine score. However,
the overall complexity for this first step remains quadratic in the number of peaks to
be compared.

Apparently, the simplification should only be applied if the RT deviation between
two chromatograms is expected to be within a fixed time tolerance and as long as
the order of elution of compounds is roughly preserved locally. Otherwise, potential
candidates are pruned too early from the search space. Other similarity functions
than f may also be applicable for some datasets. However, our experiments show
that f gives the best overall performance on undeconvoluted spectra with low mass
resolution.

We additionally employ a maximum global RT difference which should be larger
than the maximum expected RT deviation. For peaks with a larger retention time
difference, f will then not be evaluated at all. As stated before, this should be chosen
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(a) B iPACE with a Gaussian retention time penalty function for peaks A through
D from chromatogram 1 to chromatogram 2.
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(b) B iPACE with a Gaussian retention time penalty function for peaks A through
D from chromatogram 2 to chromatogram 1 (reverse direction).

Figure 3.3.: Schematic of the forward and reverse similarity calculation phase of B i -
PACE. The hard retention time difference limit is depicted by shaded cones with
dashed outline. Individual Gaussian retention time penalty functions are mean cen-
tered on each peak’s apex retention time (rt).
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with care and generally, the global maximum retention time difference should be
several times larger than D, since D is the standard deviation parameter of the
Gaussian density function.

3.3.1. Assignment of Peak Pairs

We calculate the pairwise similarities using f as defined above for all possible pairs
of peaks (vertices) from K different chromatograms C1, C2, ..., CK (partitions). Two
arbitrary vertices p and q from different partitions are always distinct and never
identical, but can otherwise have equal attributes, like equal masses, intensities, and
retention times. Thus, the intersection of two non-identical partitions contains no
common vertices. This allows us to define a K-partite edge-weighted similarity graph
S = (V, E, w) as follows:

Definition 8 (Best Hit Similarity Graph). Let S be a K-partite, weighted, directed graph with
vertex set

V =
K⋃

r=1

Cr, Cr ∩ Cs = ∅, r 6= s , (3.8)

and edge set

E ⊆ {(p, q) | (p ∈ Cr, q ∈ Cs) ∧ r 6= s} , (3.9)

and the edge weight function

w(e) = f (p, q) , (3.10)

for every pair of vertices (p, q) from distinct partitions. f (p, q) is the pairwise similarity
function that was introduced in Equation 3.1. The maximum vertex degree d(v) ≤ 2(K− 1)
for any vertex v ∈ V such that for each pair of vertices, E contains at most one directed edge
e(p, q) connecting p to q, and at most one directed edge e(q, p) connecting q to p.

Definition 9 (Bidirectional Best Hit). Let p ∈ Cr and q ∈ Cs be an arbitrary pair of vertices
from distinct chromatograms Cr and Cs. Then, let q′ be the vertex with highest similarity to
p in Cs and let p′ be the vertex with highest similarity to q in Cr.

If p = p′ and q = q′, then p and q are bidirectional best-hit (BBH) of each other.

An example of S is illustrated for two chromatograms in Figure 3.4(a), showing
directed best hit matches (weights omitted) between vertices, of which some are part
of potential BBHs, namely A–A and C–C in chromatograms 1 and 2. In order to find
and report all vertex groups of maximal size, spanning as many partitions as possible,
we want to enumerate all maximal cliques of S. On a graph with an arbitrary vertex
degree, this problem is related to the classic NP-complete problem CLIQUE (Karp
1972). There is currently no known algorithm that can solve CLIQUE in polynomial
time for the size of the input, here the number of peaks, unless P = NP. We will show
in Section 3.3.2 how this problem can be solved in polynomial time on a restricted
graph that is derived from S.
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(a) Initial hits after pairwise similarity calculation.
Peaks A and C are BBHs of each other, the best
hit of peak B in chromatogram 1 is peak B in
chromatogram 2, but that peak has a different best
hit in chromatogram 1, namely peak D.
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(b) Reduced set of peak vertices and BBH edges
used in the construction of graph S′. Peaks A and
C are BBHs of each other and thus remain in the
vertex set of S′. The edge set of S′ only contains
unweighted and undirected edges corresponding
to the BBHs.

Figure 3.4.: Examples of graphs S and S′ for two chromatograms: (a) after initial
pairwise similarity calculation and (b) after reduction to the peak vertices that are part
of a BBH.
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Figure 3.5.: Peak order inversion can be handled by B iPACE locally, within the
defined retention time difference window.
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Pruning and Performance Considerations Since only the similarities between peaks
of different chromatograms are considered by our algorithm, we do not calculate
the self-similarity of peaks from the same chromatogram, which differentiates our
method from the method of Styczynski et al. (2007) and allows us to neglect all
edges within partitions. Additionally, we exclude edges from S if they are outside the
maximum retention time difference window as defined by D, which further reduces
the candidate space for peak matching, but may exclude valid peak assignments.
Figures 3.3(a) and 3.3(b) illustrate this for two peak lists. Nonetheless, within that
window, B iPACE can handle local inversions of the elution order of peaks, as shown
in Figure 3.5. This is simple to see, if only the mass spectral similarity is considered,
yet it is still possible if the Gaussian retention time penalty is used as well. Here, the
mass spectra of peaks B and C in chromatograms 1 and 2 occur in inverted order,
but can still be assigned correctly by the algorithm based on the BBH criterion. If
B iPACE used a nearest-neighbor search, it would not be possible to correctly assign
peaks in such a way.

The B iPACE algorithm’s pairwise similarity calculation and BBH finding phases
can be implemented independently from the clique finding phase of B iPACE and
can thus easily be executed individually for each pair of chromatograms, making
them available for large scale parallelization.

3.3.2. BBHs Merging

In order to identify all bidirectional best hits, that are all cliques of size 2 of S, we
look up for each pair of vertices p ∈ Cr and q ∈ Cs from distinct partitions Cr and Cs,
whether they are BBHs of each other, following Definition 9. We repeat this process
until all vertex pairs have been evaluated.

We then define V ′ as the subset of all vertices that are part of at least one BBH,
and E′ as the edge subset containing all BBHs, and define S′ accordingly:

Definition 10 (BBH Graph). Let S′ be a k-partite, unweighted, undirected graph with vertex
set

V ′ =
K⋃

r=1

C′r, C′r ⊆ Cr ∈ V(S) , (3.11)

such that C′ is a subset of C of S with all non-BBH vertices removed, with maximum vertex
degree d(v) ≤ K− 1 for every v ∈ C′, and edge set

E′ ⊆
{
(p, q) | (p ∈ C′r, q ∈ C′s) ∧ r 6= s

}
. (3.12)

By construction, S′ contains only vertices of degree d(v) ≥ 1, since only vertices
that are part of a BBH are included in the graph and each BBH is represented by one
undirected edge in S′.

An example for S′ for two chromatograms and two BBHs is given in Figure 3.4(b).
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Definition 11 (Clique). A clique in a graph G = (V, E) is a fully connected subgraph
G′ = (V ′, E′), such that its vertex set V ′ is a subset of V and all vertices in V ′ are pairwise
connected by an edge e ∈ E′ ⊆ E. G′ is then a complete (sub)graph. A clique is maximal if
it is not contained in a larger clique.

Definition 12 (k-clique). We define a k-clique in a K-partite BBH graph S′ as a clique that
contains vertices from k distinct partitions (k ≤ K) and at most one vertex from each of the
K partitions in S′. Thus, a k-clique in S′ has maximum size if k = K.

We now want to enumerate all maximal cliques of S′, a problem that is known to
be solvable in polynomial time on graphs with a polynomial bound on the number
of maximal cliques contained in the graph (Rosgen and Stewart 2007). We therefore
need to determine the maximum number of maximal k-cliques in S′.

Proposition 1 (Maximum number of maximal k-cliques). The maximum number of maximal
k-cliques in S′ is (K

2)`.

Proof. We want to show that the maximum number of maximal k-cliques has an
upper bound for S′. Recall that each edge in S′ represents one BBH. It follows that if
there are only vertices of one partition contained in S′ and no edges there are also no
BBHs contained in S′. Thus the maximum number of maximal k-cliques equals zero
for k = 1.

If S′ contains two partitions, the size of a maximal k-clique is 2, since any clique
in S′ corresponds to exactly one of the edges connecting vertices between the two
partitions. The maximum number of maximal k-cliques is then equal to `, which is
the number of edges in S′.

For any further partition whose vertices and edges we add to the graph, the number
of 2-cliques (BBH) can be at most the number of edges in the graph: (K

2)`. Each 3-
clique (triangle) that we find in the graph reduces this number by two, replacing
three maximal 2-cliques by one maximal 3-clique. Equivalently, for higher order
cliques, the total number of maximal cliques can never grow larger than the initial
number of edges in the graph.

Proposition 2 (Maximal Clique Enumeration Problem). If the number of maximal cliques
in a graph is limited by a polynomial p(n), where n = |V|, then the maximal cliques can be
enumerated in O(nmp(n)) time, with m = |E| (Rosgen and Stewart 2007).

Proof. For S′, p(n) = (K
2)`, m = (K

2)`, and n = K`. Thus, the maximal cliques of S′

can be enumerated in time proportional to

O(nmp(n)) = O(K2` K2` K`) = O(K5`3) . (3.13)

This is an upper bound for general unweighted and undirected graphs with a
limited maximum vertex degree, allowing arbitrary edges between vertices, so we
are able to improve it for the K-partite BBH graph defined in Definition 10. Observe

49



Chapter 3. Methods for GC-MS Data Analysis

that a clique in S′ is quite restricted. The vertex set of each clique C must consist
of vertices from disjoint partitions, meaning that for any pair of vertices (v, w) ∈ C,
with v ∈ Ci and w ∈ Cj, i 6= j, there exist exactly one edge in the edge set E′ of S′.

Thus, the maximum search depth that we need to explore for any vertex v in S′

is 1, since we only need to consider direct neighbors of v, excluding v itself (open
neighborhood). There are at most K− 1 neighbors to explore for each vertex in S′,
and a vertex can be a member of at most K− 1 independent cliques, which are then
of minimal size.

If we use the Bron-Kerbosch algorithm (Bron and Kerbosch 1973), essentially
performing a depth-first search of cliques, starting from a given vertex, to enumerate
all maximal cliques, it will run in time proportional to the number of maximal cliques
contained in S′. The maximal number of maximal cliques in S′ must always be
smaller or equal to the number of BBHs (2-cliques) in the graph. Since for each vertex
we can have at most K− 1 BBHs, and we have |V ′| = K` as the number of vertices,
the number of BBHs equals (K

2)` and thus is smaller than K2`. Thus, for a candidate
clique C of size K− 1 and a candidate vertex to be added to that clique, we can check
in K− 1 time, if it is compatible with all vertices already in the clique. Additionally,
there must not be another peak already in the clique from the same partition, which
allows us to terminate the compatibility testing early, by checking whether the target
partition contains a vertex from the same partition as the candidate vertex. If not, we
can continue to extend the clique.

All vertices that have not been assigned to a BBH in this phase are optionally
reported as unmatched by the algorithm for downstream inspection.

We proceed greedily by trying to merge each pair of BBHs into a clique containing
at least 2 and at most K vertices, where K ≥ 2 is the minimal clique size (MCS)
parameter. Merging is only performed if the new group of vertices remains a complete
subgraph, which is equivalent to all vertices within the cluster being BBHs of each
other. Otherwise, we select the largest common fully connected subgraph and omit all
vertices that are not fully connected. The omitted vertices are reported as unassigned if
they have to be removed from an otherwise complete clique and are thus singletons,
and as incompatible if the vertices are still part of a larger clique. We continue merging
until all BBHs have been processed. Finally, we report cliques with at least k vertices,
ordered by the median retention time of their corresponding peaks in a multiple
alignment table. Peaks whose vertices are not included in any of the final cliques
are optionally reported in the AMDIS-compatible MSP format (Stein 1999) with
their mass spectrum, retention time, originating file, and a unique ID for manual
inspection. The clique finding is illustrated for three chromatograms and a limited
number of peaks in Figure 3.6(a) for a maximal bidirectional-best hit clique and for a
non-maximal clique with one not completely connected peak in Figure 3.6(b).

One requirement of the multiple alignment output is that each peak be covered at
most once. Thus, if a peak is part of multiple cliques, we select the largest clique to
be reported. However, this clique partitioning can be a hint that the BBH criterion is
sometimes too strict and can lead to false negatives. This could be circumvented by
taking not only the best hit for each peak into account, but by considering a larger
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Figure 3.6.: Cliques after BBHs have been evaluated with B iPACE. (a) shows a com-
plete clique of BBHs of peak C in all three chromatograms. (b) shows an incomplete
case, where peak C in chromatograms 1 and 2, and in chromatograms 2 and 3 has a
BBH. However, peak B in chromatogram 3 is only a BBH of peak C in chromatogram
1, destroying the possible complete clique of BBHs between peak C in all three chro-
matograms.

best hit list for each peak. Unfortunately, this would result in dramatically increased
runtime and memory requirements and would render the method useless for realistic
problem sizes of a few hundred chromatograms with a few thousand peaks each.
An alternative is to modify the clique merging phase of the algorithm, to allow for a
configurable percentage of missing BBHs. With a reasonably low value of < 5%, this
leads to more complete cliques, but at the same time increases the risk of finding
false positives in otherwise correct cliques (data not shown).

3.3.3. Time and Space Complexity of B I PAC E

We need (K
2)`

2 comparisons to calculate all pairwise peak similarities between K
chromatograms with ` peaks each, using a symmetric similarity function f (p, q) =
f (q, p). Thus, the calculation of similarities requires O(K2`2) time and space, if we
need to keep all pairwise similarities, e.g. for plotting purposes. However, we can
save space by recording for every peak p from chromatogram Ci only its best hit set
of size K − 1, containing the best matching peaks q1, q2, ..., qK, excluding qi, where
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each qj is from a different chromatogram Cj, j 6= i. Then, the total size of all best
hit sets is proportional to the number of peaks, K`, multiplied by the number of
partitions a peak can have best hits for, K − 1 (equivalent to the maximum vertex
degree of S′), giving a total space requirement of O(K2`) for S′.

Finding the bidirectional best hit for each peak p of the K` peaks in S′ requires that
we retrieve p’s best hit q and q’s best hit p′, and test whether p = p′. This amounts
to O(K`) comparisons for all peaks.

In order to identify all maximal cliques, we employ a greedy, bottom-up approach
based on the BBHs of each peak. Storing all BBHs clearly requires O(K`) space.
Then, for each pair of peaks (p, q) from different partitions, we try to merge their
corresponding cliques. This requires checking whether all peaks in the candidate
cliques P and Q are fully connected, which takes 2|P||Q| comparisons per pair. Since
|P|+ |Q| ≤ |K|, this amounts to O(K2`2) time.

In total, B iPACE thus requires O(K2`2) time and O(K2`) space.

3.3.4. Multiple Alignment Projection

Up to now, only the grouped peaks have been aligned, so we have a peak-based mul-
tiple alignment. For a full multiple alignment of the complete datasets, all unassigned
signals should also be aligned. In this situation, one could choose to implement an
approach like the one proposed by Krebs and co-workers (Krebs et al. 2006), selecting
a representative chromatogram as alignment reference and calculating a cubic spline
or other higher order polynomial, to interpolate between the aligned peaks. However,
such a method can only work well if the number of aligned peaks is high and there
are no large areas of unknown peak assignments in the chromatograms. To circum-
vent these problems, we will show in the next section how to use DTW to calculate
signal assignments in between paired peaks, using the same similarity function as
in B iPACE . Additionally, we show how the aligned pairwise peak groups from
B iPACE, or any other peak alignment method, can be used as alignment anchors
for DTW, before using the pairwise DTW scores to automatically select a reasonable
alignment reference using the center-star heuristic.

3.4. C E M A P P - D T W

In this section, we introduce an improved version of DTW for series of time-resolved
feature vectors, as they occur in GC-MS and LC-MS data processing. In (Hoffmann
and Stoye 2009), we described how to speed up DTW using predefined anchors of
features which could be matched a priori with high confidence, while still allowing
the alignment flexibility by defining a neighborhood radius r around the positions
of the anchors. Here, we extend this approach and show how anchors can also be
combined with other constraints, such as the Sakoe-Chiba Band constraint (Sakoe
and Chiba 1978) to save both execution time and space, using an optimized data
structure for alignment matrix storage.
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Pairwise DTW is a global alignment of two series A = (a1, a2, ..., aM) and B =
(b1, b2, ..., bN) of lengths M and N, respectively, where ai,bj ∈ RL are the individual
feature vectors of equal dimension L. In the context of GC-MS and LC-MS, a fea-
ture vector corresponds to a binned mass spectrum of intensities, a base peak ion
intensity or a TIC value. We assume that mass resolution and range are equal for the
experiments to align, thus only the intensity distribution over a fixed range of mass
channels is used as feature vector.

The common definition of DTW involves a local distance function and a global
distance or objective function that should be minimized (Clifford et al. 2009). To
be consistent with our previous notation, we use an equivalent formulation using
similarities, which then requires maximization of the objective function. Since A and
B are series sampled at discrete intervals, we seek an optimal matching of elements
(i, j) connecting every element in A to at least one element in B and vice versa,
termed a path or simply alignment. In order to find an optimal alignment of A and B,
an (M + 1)× (N + 1) alignment matrix Q is set up, in which the optimal similarity
value for aligning the prefixes (a1, ..., ai) and (b1, ..., bj) is stored at position Q(i, j). A
path P = (p1, ..., pK) thus consists of elements pk = (i, j), where the path length K is
bounded by 1 ≤ K < 2 ·max(M, N) for non-empty A and B.

Pairwise DTW usually performs a global alignment of two series of features,
requiring that the start and end of both series have to be aligned: p1 = (1, 1) and
pK = (M, N). However, this constraint can be relaxed for subsequence matches to
gain the equivalent of a free-end gaps alignment (Prince and Marcotte 2006). Note that
DTW allows mapping of an element to multiple counterparts, which differentiates
it from classical sequence alignment, where an element can only map to at most
one counterpart (Kruskal and Liberman 1983). Additionally, a continuity constraint
requires that P must move only to directly adjacent cells of the alignment matrix
vertically, horizontally or on the diagonal, such that if pk = (i, j), and pk+1 = (i′, j′),
then i′ − i ≤ 1 and j′ − j ≤ 1 must hold. A third constraint requires monotonicity of
the path, such that i′ − i ≥ 0 and j′ − j ≥ 0 hold, and (i′ − i) + (j′ − j) > 0.

An optimal alignment path satisfying the above constraints maximizes the sum of
pairwise similarities. This allows us to define the optimal DTW alignment between
non-empty A and B through the following expression:

DTW(A, B) := max
P∈P(A,B)

(
∑

pi∈P
Q(pi)

)
, (3.14)

where P is the set of all possible global alignment paths of A and B.
Maximization alone would favor the highest number of steps to align A to B, given

the above constraints, resulting in alternating combinations of vertical (expansion)
and horizontal (compression) steps. Hence, Kruskal and Liberman (1983) introduce
additional weighting factors to treat diagonal (match), vertical and horizontal steps
equivalently. Expansion and compression are similar to insertion or deletion in classical
sequence alignment. We thus define three weight parameters, wmatch, wcomp and wexp,
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which allow to vary the degree of flexibility of the alignment between over-adaptation
and the shortest possible alignment.

Finding an optimal warping path to actually recover the mapping between A and
B can be achieved by applying the dynamic programming principle and tabulating
intermediate optimal results. We thus calculate the value of each Q(i, j) by applying
Equation 3.15, with f corresponding to the same similarity function as used in Section
3.3. Initialization of row 0 and column 0 with −∞ is required to only allow a global
alignment, effectively forcing the alignment of (a1, b1):

Q(i, j) :=



0 if i = j = 0,
−∞ if i = 0 and 0 < j ≤ N,
−∞ if j = 0 and 0 < i ≤ M,

max


Q(i− 1, j− 1) + wmatch f (ai, bj)

Q(i, j− 1) + wcomp f (ai, bj)

Q(i− 1, j) + wexp f (ai, bj)

 for 1 ≤ i ≤ N, 1 ≤ j ≤ M.

(3.15)
The optimal score can then be found in the bottom-right entry of the alignment

matrixQ, such that DTW(A, B) = Q(M, N). This also forces aM and bN to be aligned.
Since we introduced the weights to artificially balance the number of expansions and
compressions with respect to the number of diagonal steps, we correct the calculated
score by subtracting the weights for each step of the alignment path and normalize
it by the length of the path to a value between 0 (no similarity) and 1 (maximum
similarity). This allows to compare series of different lengths if the same similarity
function and path weights have been used (Prince and Marcotte 2006).

3.4.1. Postprocessing - Obtaining Bijective Maps

As described by Prince and Marcotte (2006), the obtained map from DTW may not
be bijective, depending on the similarity function used. They present a method to
select bijective anchors as control points for a polynomial fit, in order to interpolate
in between the anchors. In CeMAPP-DTW, however, we choose to define path
weights that either boost diagonal moves by user-definable factors, resulting in a less
or more adaptive alignment path. For symmetric DTW, these factors can be used to
efficiently reduce the problem of over-adaptation of the path, when maximizing a
similarity function and avoiding the need to predetermine additional gap penalties.
CeMAPP-DTW reports a list of the maxima of the similarity function found along
the alignment trace, which coincide with aligned, highly similar mass spectra.

3.4.2. An Efficient Datastructure for Pairwise DTW Alignment with Anchors

The unconstrained pairwise DTW algorithm requires O(N2) time and space, where
N is the number of feature vectors to be compared. Additionally, due to the pairwise
similarity used, the method requires another factor of L for each pairwise similarity
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calculation. For long feature vectors, L may be larger than N. However, most regions
of the calculated pairwise similarities are never needed in practice, as chromatograms
tend to be distorted most around the diagonal of such a pairwise similarity matrix. In
practice, the Sakoe-Chiba band (Sakoe and Chiba 1978) or the Itakura parallelogram
(Itakura 1975) constraints are often used to prune regions that are too far away from
the diagonal.

These constraints still do not capture the chromatographic reality, where retention
time distortion is mostly caused by large peaks eluting from the column, shifting all
subsequent peaks by a nonlinear factor (Podwojski et al. 2009). We therefore intro-
duced easily identifiable peaks as anchors to DTW (Hoffmann and Stoye 2009). These
anchors define regions within which the alignment is calculated exactly, whereas
outside of these regions no calculations are performed at all. In order to implement
this idea, here we introduce a partitioned array data structure to store only those
elements that are contained in the anchor-constrained regions. This requires the
previous association of anchors, e.g. by B iPACE or other methods.

Efficient Storage of Partitioned Array. We use the row compressed storage (RCS)
technique to store all elements of an alignment matrix in a linear array d, where each
element is accessed via an offset index array idx for each row in the virtual matrix.
An element of the virtual matrix at row i and column j can be accessed using the
index k = idx(i) + j in array d. Iteration for virtual row i can be performed from
idx(i) to idx(i) + j, j < idx(i + 1)− idx(i). Query of elements outside of the defined
regions returns a configurable default value, such as positive or negative infinity.
Setting of such elements has no effect, since the layout is static and determined before
initialization of the matrices.

Layout Calculation. The layout of the partitioned array is determined by explicit
constraints, regarding the elements that require evaluation during the alignment.
These constraints are defined by geometric primitives within the 2-dimensional plane,
e.g. rectangular regions defined by the alignment anchors, as well as trapezoid or
arbitrary other regions. However, the layout needs to satisfy the monotonicity and
continuity constraints of DTW. Thus, directly neighboring adjacent anchors and
anchors with inverted order are detected and removed.

The final shape of the partitioned array is determined by the intersection of the
set of constraints L, where L consists of all pairs (i, j) for which the alignment is
calculated. This may lead to a less optimal alignment concerning the optimization
function, but allows for further speedup and smaller memory footprint. One option
here is to include either a global or a local Sakoe-Chiba band constraint between
successive anchors. The width w for such bands can be defined by the user either for
the whole alignment matrix (global) or for every partition (local).
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Figure 3.7.: Schematic of a pairwise alignment matrix of partitioned dynamic time
warping for two arbitrary chromatograms A and B. The light shaded region represents
the unconstrained alignment matrix, whereas the dark shaded areas represent the
constrained partitions. For every pair of predefined anchors, in this case depicted as
mass spectra, a small region around the anchor is kept to allow the alignment a higher
degree of flexibility. Each partition is additionally constrained by a local Sakoe-Chiba
band constraint. The intersection of all constraint sets L defines the final layout of the
pairwise alignment matrix and thus the number of elements that are compared and
stored.

We then define Q̂ as the DTW recursion to calculate Q using L as the constraint
set :

Q̂(i, j) :=

{
−∞ if (i, j) /∈ L
Q(i, j) otherwise.

(3.16)

A schematic of the corresponding partitioned array with a constraint set L using
anchors and a local Sakoe-Chiba band constraint is shown in Figure 3.7.

3.4.3. Multiple Alignment of Chromatograms

In order to capture machine dependent fluctuations in retention times and signal
intensities, multiple chromatograms are usually measured from the same original
sample as technical replicates. These often exhibit rather small, but notable, deviations
in retention times and intensities, when compared pairwise.
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Moreover, biological replicates show larger deviations due to the heterogeneity of
the sampled population and corresponding differences in the metabolic state of cells
at the time of harvesting (Christin et al. 2010).

When comparing the metabolic response of an organism under different conditions,
deviations are even larger, as some metabolites may not occur at all, and others occur
in different quantities, depending on the affected pathways of the organism. Thus, a
multiple alignment algorithm needs to handle all of these aspects as good as possible.

Reference Selection

A general method for multiple alignment of chromatograms does not necessarily
require a reference to align to. However, most published algorithms either use a
manually selected reference (Chae, Reis, and Thaden 2008), or construct a reference
by adding otherwise unassigned peaks (Lange et al. 2007) or by averaging over
total ion chromatograms (Clifford et al. 2009). Automatic selection of a reference
among the available chromatograms is seldomly reported (Christin et al. 2008) but is
beneficial to methods using a manually defined reference (Robinson et al. 2007) that
can introduce a bias in the process of alignment early on.

In metabolomics and proteomics applications, the number of measurements typ-
ically ranges from dozens to hundreds, such that a multiple alignment algorithm
should scale well and be as memory efficient as possible, since file sizes may approach
several hundred MBytes or even GBytes per raw data file. To avoid a direct multiple
alignment, we calculate pairwise DTW scores between all pairs of chromatograms
first. These scores can be obtained from the pairwise DTW scores, but faster methods
can also be used to estimate the true scores, e.g. based on peak-matching and scoring
as performed by B iPACE, although these may not be as accurate. Then, we select
the chromatogram that has the highest sum of scores to all other chromatograms
as the alignment reference. All remaining chromatograms are then aligned to this
center chromatogram independently of each other (Hoffmann and Stoye 2009). Other
authors report to use comparable clustering methods (Christin et al. 2010; Lange
et al. 2007).

Multiple Alignment Construction. The construction of the multiple alignment dif-
fers slightly from the approach taken in sum-of-pairs multiple sequence alignment,
since we use DTW, which is potentially a non-metric similarity function (Clote and
Straubhaar 2006). Additionally, every pairwise alignment is a global alignment with-
out gaps, so in principle we can not worsen the multiple alignment by introducing
gaps. However, since DTW uses compressions and expansions, chromatograms hav-
ing peaks which are absent in the selected reference may artificially decrease the
quality and score of the alignment. Hence, we can not guarantee that the multiple
alignment will be within a specific error bound of the optimal multiple alignment.
Nonetheless, our method performs well in practice, which will be discussed in detail
in the Section 3.5.
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We finally obtain a dense matrix of aligned feature vector indices, e.g. of the binned
mass spectra, or derived figures, such as the retention time of each mass spectrum for
all chromatograms. In case of CeMAPP-DTW, and in contrast to B iPACE, there
are no missing features within the table, as all features are aligned. These matrices
will be used for evaluation of the alignment performance.

3.4.4. Time and Space Complexity of C E M A P P - D T W

Following the notation for time and space complexity of B iPACE, we need O(K2`2)
comparisons to calculate all pairwise alignments between K chromatograms with
` mass spectra each. Using the pairwise DTW alignment similarities, we select the
center chromatogram in O(K) time and align all remaining K− 1 chromatograms
to it in O(K`) time. If we store the pairwise alignments, they can be reused at this
point, otherwise, they need to be recalculated in O(K`2) time. Thus, the calculation
of all unconstrained pairwise DTW alignments takes O(K2`2) in time and space.

For partitioned DTW, the runtime and space requirements for each pairwise
alignment are a function of the partition length s and of `. We then need O(`s) time
and space to calculate each pairwise alignment. Using an additional local Sakoe-
Chiba band constraint with width w, the space and time requirements for partitioned
DTW are O(`w). In total CeMAPP-DTW then requires O(K2`w) time and space.

3.5. Results

In this section, we first give a short review of existing strategies for the evaluation of
peak and profile-based multiple alignment algorithms in the context of metabolomics.
We then describe our approach and define useful metrics to compare alignment
quality before we evaluate B iPACE and CeMAPP-DTW on two metabolomics
datasets. In order to evaluate our methods we need to define what a good alignment
is. To achieve this, we can use a ground truth of highly conserved and putatively
grouped peaks, which are confirmed by MS/MS. For LC-MS in the domain of meta-
bolomics and proteomics, such data sets were prepared and used for the evaluation
of alignment algorithms (Lange et al. 2008). However, the ground truth defined by
these datasets is only well defined for feature-based alignments and also requires a
grouping of individual mass-to-charge ratio (m/z), RT and intensity features, which
are currently not provided by either B iPACE or CeMAPP-DTW . For GC-MS
metabolomics data, Robinson et al. (2007) compare their method against a ground
truth defined by a human specialist.

Each alignment evaluation requires ground truth files, containing grouped features,
such as triples of m/z, RT and intensity in the case of Lange et al. (2008), and simply
RT in the case of Robinson et al. (2007). In the first case one scan may have multiple
features, while in the second case a scan is a feature that is only identified by its RT.
In order to perform the evaluation, we focused on the correctly assigned RTs and the
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corresponding scan indices, since those will usually have the largest deviation across
samples.

The ground truth peak group defines whether a peak is present in a sample or
absent. The results of an alignment algorithm are then tested in turn against each
ground truth group. If the alignment algorithm reports an aligned peak group, we
count all the group’s peaks that are present in the corresponding ground truth group
as true positives (TP). Peaks that are absent in the ground truth group and in the
reported peak group are counted as true negatives (TN). A peak that is reported
as absent in the ground truth group, but as present in the alignment algorithm’s
reported group, is recorded as a false positive (FP). If a peak is reported as present in
the ground truth peak group, but as absent in the reported peak group, it is reported
as a false negative (FN). For each multiple alignment result obtained from a method,
all unmatched peaks of the reference alignment, excluding absent ones, are added to
the number of false negatives (FN) to normalize Recall and F1 score with respect to
the size of the reference alignment.

We then use the following commonly applied measures to assess the quality of a
multiple alignment:

Precision =
TP

TP + FP
, (3.17)

Recall =
TP

TP + FN
, (3.18)

F1 = 2· Precision · Recall
Precision + Recall

. (3.19)

We evaluate the performance of B iPACE and Robinson’s method using precision
and recall, as well as the total TP and FP numbers. For CeMAPP-DTW, however,
the TN and FN values are not available, since CeMAPP-DTW reports an alignment
for all peaks, so we will compare CeMAPP-DTW only using absolute TP and FP
numbers.

The three major configurations that we will evaluate are schematically shown
in Figure 3.8. We evaluate each of B iPACE and CeMAPP-DTW individually,
before we evaluate CeMAPP-DTW using the standard B iPACE alignment with
the highest F1 score as a constraint set. The actual alignment is preceded by a
preprocessing phase, in which the peak features are imported and converted for use
in our pipeline. Then, B iPACE is applied with its processing steps to calculate a
multiple alignment, before CeMAPP-DTW is used first without anchors and then
with the anchors as defined by the best multiple alignment of B iPACE . Throughout
all evaluations, we used five different local similarities to compare the binned mass
spectra, namely the cosine (cosine), the dot product (dot), the negative Euclidean
distance (euclidean), Pearson’s linear correlation (linCorr), and Spearman’s rank
correlation (rankCorr), each with and without a retention time penalty, as defined in
Equation 3.1.
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(a) Sequence of preprocessing commands for
evaluation of B iPACE.

BIPACE

Preprocessing

Binning of Mass Spectra

Import of Peak Features

ChromA

Pairwise Anchored DTW Calculation

Center Star Reference Selection

Alignment to Reference

Output of Multiple Alignment

A

B

(b) Sequence of preprocessing commands for
evaluation of CeMAPP-DTW. (A): with an-
chors; (B): without anchors.

Figure 3.8.: Workflows for the evaluation of B iPACE and CeMAPP-DTW.

3.5.1. Evaluation of B I PAC E and C E M A P P - D T W on a Reference
Dataset

We evaluated the B iPACE method on the Leishmania parasite raw data and peak
lists published in Robinson et al. (2007), using as ground truth the manual multiple
alignment reference from the same paper.

Data Preparation and Parameter Settings

Preprocessing was performed by removing intensities linked to the derivatization
agent at masses 73 and 147. Due to lack of access to the manually edited peaks lists,
we used the ChemStation (Agilent Technologies) peak data provided as supplemen-
tary material directly and imported them as peak annotations into our processing
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pipeline. The peak data files contained between 169 and 174 peaks and were stored
in tab delimited format. A line in such a file reports the apex scan index of the
corresponding peak for retrieval of the raw mass spectra from the 8 different ANDI-
MS/netCDF chromatogram files. Each of these files contains approximately 2780
centroided mass spectra. The spectra were binned with nominal mass accuracy in a
range from 50 Da to 550 Da for further processing.

The reference manual alignment containing 173 aligned peak groups was then used
in order to calculate the classification performance numbers, as defined in Equation
3.17. This was performed for each multiple alignment reported by either B iPACE or
CeMAPP-DTW individually, or in conjunction, where CeMAPP-DTW used the
multiple alignment of B iPACE as anchors, following Figure 3.8.

We varied the minimum clique size (MCS) parameter from 2 to 8 chromatograms
in order to control the size of the smallest clique that should be reported by B iPACE.
Other varying parameters for the time penalized instances included the width pa-
rameter D of the retention time penalty function, as defined in Equation 3.1. We also
used a threshold parameter T on the value of this function so that the costly pairwise
similarity function was only evaluated if the retention time penalty function’s value
was greater or equal to T. This pruning leads to lower runtimes of B iPACE and
CeMAPP-DTW, as visualized in Figure 3.9.
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Figure 3.9.: Boxplots of the runtimes of (a) B iPACE and (b) CeMAPP-DTW for the
Leishmania dataset.

For CeMAPP-DTW, we assessed two different approaches, one without any
anchors from B iPACE, and one using the anchors as reported by the best B iPACE
instance, as determined by the F1 measure. Each CeMAPP-DTW configuration was
further parameterized on the weight W used for diagonal matches and on the Sakoe-
Chiba band constraint BC, given as the percentage of scans from a chromatogram.
For those CeMAPP-DTW instances which used the best B iPACE anchors, we
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additionally varied the use of the Sakoe-Chiba band to be applied globally or locally
and the size of the radius around anchors. In total, we evaluated 3106 different
parametrization.

Additional figures for all parametrization together with memory usage details
and a table of the best results are available in Appendix B. The raw results of this
evaluation are available as supplementary file A in Hoffmann et al. (2012).

D: 0.1 D: 0.25 D: 0.5 D: 1 D: 2 D: 2.5 D: 3 D: NA

0

500

1000

0

500

1000

0

500

1000

0

500

1000

0

500

1000

0

500

1000

0

500

1000

T
: 0

T
: 0.25

T
: 0.5

T
: 0.75

T
: 0.9

T
: 0.95

T
: N

A

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

FP

T
P

Similarity ● Cosine of Angle Dot Product neg. Euclidean Dist. Pearson's Corr. Spearman's Rank Corr.

Figure 3.10.: Scatter plots for B iPACE for the Leishmania dataset with alignment
false positives and true positives conditioned on retention time tolerance D (columns)
and retention time threshold T (rows). Instances without retention time penalized
similarity function are shown in the NA row/column for reference. It is visible that the
unpenalized instances perform consistently worse on true positives and false positives.
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Results for B I PAC E

Our results for B iPACE show good performance for the time-penalized dot product,
which was also used for Robinson’s method (Robinson et al. 2007), but also for the
time-penalized variants of Pearson’s linear correlation (linCorr) and Spearman’s rank
correlation (rankCorr). All instances using a time-penalized variant of the similarity
function are indicated in the similarityFunction column of Table 1 in supplementary
data A of Hoffmann et al. (2012) and are shown in Figure 3.10 for varying T and
D parameters. The impact of the different similarity functions on the runtime of
B iPACE can be seen in Figure 3.9(a), showing that for B iPACE the runtime median
was close to 38 seconds, while it was reduced for B iPACE with retention time
penalty D and threshold T to less than 10 seconds. Our best result is achieved for
B iPACE with Pearson’s linear correlation as pairwise similarity using the time
penalized variant with a minimum clique size of MCS = 2, T of 0.25 or 0.0 and D
of 2.5 seconds. The results of the cosine similarity function are equal. For these best
cases, we achieve 1206 true positives, 26 false positives, 28 false negatives and 84 true
negatives. This results in a precision of 0.98, a recall value of 0.977, and a F1 value of
0.978. Figure 3.11 indicates that, for the best performing similarities, the choice of the
MCS parameter is not critical, unless a false positive number of 0 is wanted.

Figure 3.12 shows that Robinson’s result performs better than any of our parame-
terized instances and achieves 1264 true positives and at the same time only 3 false
positives. Additionally, 3 false negatives and 114 true negatives improve the precision
to 0.9976 and the recall to 0.9976, giving an F1 value of 0.9976. An explanation for
this result can be found in our best performing alignments. There we see a larger
number of false positives, meaning that our method reports more potential matches,
which are scored as false positives against the given reference, but would otherwise
be true positive matches. Thus, we suspect that Robinson’s manually defined ground
truth that we evaluate against is probably not error-free. Additionally, our best
parametrizations report a number of potential aligned peak groups with significant
sizes, which are not contained in the reference at all and are thus not assignable for
the evaluation. If only the number of false positives is important, for example to
retrieve only highly conserved peak groups with as few errors as possible, a number
of parametrizations achieve that goal with 488 true positives and only 1 false positive
assignment with maximum clique size of 8, a retention time threshold T of 0.9 and
retention time penalty D of 0.1 s.

Results for C E M A P P - D T W

The best scoring CeMAPP-DTW result using the dot product as a pairwise similar-
ity with diagonal match weight W of 2.25, a local Sakoe-Chiba band of BC = 0.1 and
D = 3 s, using the anchors as defined by the best-scoring B iPACE instance with
an anchor radius of 0 achieves 1149 true positives and 219 false positives. However,
the number of false positives is potentially exaggerated since the manual reference
alignment contains absent peaks, which are of course reported by CeMAPP-DTW
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and are thus counted as false positives. The best CeMAPP-DTW result used the
dot product without using anchors and a match weight of 2.25, a global Sakoe-Chiba
band of BC = 0.1 and D = 2.5 and achieved 739 true positives and 549 false positives.
The results for CeMAPP-DTW are visualized in Figure 3.13(a) for varying match
weight W and anchor radius R and in Figure 3.13(b) for varying global or local
(BCScope) Sakoe-Chiba band constraint BC.

3.5.2. Evaluation of B I PAC E and C E M A P P - D T W on a Real World
Dataset

In order to assess the quality of B iPACE and CeMAPP-DTW with and without
B iPACE anchors on a GC-MS dataset of a more realistic size, we used samples from
a plant metabolomics experiment (Högy et al. 2010). Spring wheat (Triticum aestivum
L.) was grown under atmospheric and increased CO2 concentration conditions (Högy
et al. 2009) in a free-air carbon dioxide (CO2) enrichment (FACE) field experiment.
The wheat was grown, harvested, sampled at maturity in two successive years (2005,
2006), and prepared for analysis with GC-MS according to the protocol published
in Högy et al. (2010) in order to determine whether the plants showed a metabolic
response in their grains evident through CO2 enrichment.

Our evaluation was based on a total of 40 chromatograms and 10 interspersed
blank chromatograms. Each year was represented by 20 chromatograms, divided into
two groups of 5 chromatograms each, with one technical replicate per chromatogram,
summing to 10 chromatograms per condition and year. Blank runs were excluded
from this evaluation. The chromatograms contained between 4615 to 4685 centroided
mass spectra. The maximal scan difference that we found was around 50 scans which
amounts to a maximum retention time deviation of 32 seconds between the groups
of 2005 and 2006.

Data Preparation and Parameter Settings

The acquired raw data was exported using the ANDI-MS/netCDF export function of
the Xcalibur software (Thermo Fisher Scientific Inc.). For all further preprocessing
steps, we used our framework Maltcms. The data was first binned along the mass
axis with nominal mass accuracy by arithmetic rounding to create a dense signal
matrix. Then, for each signal matrix individually, the intensities were normalized to
length one for each column (binned mass spectrum) to remove linear scaling effects
in intensities.

In order to assess the grouping performance, we performed a peak detection with
XCMS (Smith et al. 2006), using the matched filter method with a signal-to-noise
ratio of 5 and full-width at half height of 5 in order to find well represented peaks.
The peak finding step reported between 410 and 465 peaks per chromatogram. The
apex scan indices for each chromatogram’s peaks were stored in one tab separated
value file for each chromatogram.
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We then chose signals within a RT window of ±30 s. To be counted as a complete
group, the scans corresponding to the tags were required to have a pairwise cosine
similarity between their binned mass spectra of >0.99 throughout all chromatograms
and a maximum mass deviation of 0.01 Da. The selection process lead to 184 peak
groups containing peaks appearing in all chromatograms, which defined our ground
truth for the evaluation of the multiple alignments produced by our methods. This
reference selection and grouping was performed by a profiling method, which was
recently added to MeltDB (Neuweger et al. 2008).

The evaluation was then performed following the flowchart in Figure 3.8. B iPACE
was run using the raw ANDI-MS/netCDF files as input together with the tab sepa-
rated value peak lists. Subsequently, the CeMAPP-DTW instances without anchors
from B iPACE were run, before finally the CeMAPP-DTW instances using the
B iPACE anchors from the best scoring multiple peak alignment were executed.

The reference data was then compared to the alignment results generated by
the three separate evaluation workflows for B iPACE, CeMAPP-DTW, and B i -
PACE+CeMAPP-DTW using five different mass spectral similarity functions (dot
product, cosine, linear correlation, rank correlation, negative Euclidean distance), all
of them plain and in combination with a retention time penalty, as described by
Robinson et al. (2007), who only report use of the time penalized dot product. We
combined each similarity function with the time penalty function as in Equation 3.1.

In order to assess the precision of B iPACE, we started with a minimum clique
size (MCS) parameter value of 40 chromatograms, meaning that only those groups
that contained exactly one peak from each file were reported. For the time penalized
instances we varied the width parameter D of the retention time penalty function.
We also used the threshold parameter T on the value of this function so that the
costly pairwise similarity function was only evaluated if the retention time penalty
function’s value was greater than or equal to T. The positive effect of this pruning
on the runtime of B iPACE and CeMAPP-DTW is visible in Figure 3.18.

For CeMAPP-DTW, we assessed two different approaches, one without any
anchors from B iPACE, and one using the anchors as reported by the best B iPACE
instance, as determined by the F1 measure. Each CeMAPP-DTW configuration
was further parameterized on the weight W used for diagonal matches and the
Sakoe-Chiba band constraint width BC, given as the percentage of scans from a
chromatogram. For those CeMAPP-DTW instances which used the best B iPACE
anchors, we additionally varied the use of the Sakoe-Chiba band to be applied
globally or locally and the size of the radius around anchors.

The exact configuration and evaluation results for all 1641 parametrizations in-
cluding memory usage are available in supplementary material B of Hoffmann et
al. (2012). Additional Figures and tables showing the best results are provided in
Appendix B.
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Figure 3.14.: Scatter plots for B iPACE for the Wheat dataset with alignment false
positives and true positives conditioned on RT tolerance D (columns) and RT thresh-
old T (rows). Instances without RT penalized similarity function are shown in the
NA row/column for reference. It is visible that the unpenalized instances perform
consistently worse on true positives, while they perform better with regard to the
number of false positives.
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Results of B I PAC E

The results for B iPACE on the wheat dataset show very good performance in
absolute and relative numbers. Figure 3.14 shows the absolute numbers of true
positive versus false positive assignments for varying T (rows) and D (columns)
parameters. The overall best result is achieved using the dot product (dot) for instances
using the time penalty function, and the cosine (cosine) for instances not using the
time penalty function. The instances using no additional retention time penalty are
visible at the bottom left of Figure 3.14. These do not achieve as many true positives
as the time penalized variants, however, they tend to produce fewer false positives as
well. The negative Euclidean distance (euclidean) in combination with a time penalty,
produces the fewest number of false positives, regardless of the value of D.

Figure 3.15 shows the dependency of true and false positives with regard to the
MCS parameter. This parameter shows the relation of a small MCS value to a high
number of true positives, but also to more false positives, since a larger number of
small cliques with lower individual support are reported. Larger cliques have a high
support for each contained peak and are thus more influential for the total number
of true positives, but they occur less often, as is visible for MCS = 40, where each
peak group must contain peaks from all 40 chromatograms. Again, as in Figure 3.14,
dot product and cosine give the best results in absolute numbers of true and false
positive assignments.

The precision and recall plot in Figure 3.16 does not clearly visualize a superior
parametrization, but by inspecting the result data (supplementary material B pub-
lished with Hoffmann et al. (2012)) we see, that the dot product is the best similarity
function for retention time penalized instances with MCS = 10, 6891 true positives,
36 false positives, and 433 false negatives. The best parametrization without retention
time penalty also used the cosine with MCS = 2, resulting in 5357 true positives,
39 false positives and 1924 false negatives. However, the retention time penalized
variants tend to have a lower runtime, depending on the T parameter used.

There are no true negatives reported for the wheat evaluation, as there were no
missing peak annotations in the ground truth. This explains the high number of
false negatives for B iPACE, due to not completely connected peak groups, which
prohibits B iPACE to form larger cliques. The peaks which could not be assigned to
any cliques are consequently missing from the reported multiple alignments.

Results of C E M A P P - D T W

For CeMAPP-DTW, the results are comparable to those obtained for the Leishmania
dataset. Without the anchors defined by B iPACE, CeMAPP-DTW has fewer true
positive results and more false positive results. Here, the time penalized variant of the
dot product with D = 30 s, B iPACE anchors, a local Sakoe-Chiba band constraint of
BC = 0.1, and a matchWeight = 2.25 achieves the best result with 6459 true positives,
387 false positives and 514 false negatives.
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Chapter 3. Methods for GC-MS Data Analysis

The best result using no anchors from B iPACE uses the dot product with D = 1
s retention time penalty, a global Sakoe-Chiba band constraint of 0.1, match weight
W = 2.25, achieving 5017 true positives, 2194 false positives and 149 false negatives.
These results are illustrated in Figure 3.17, showing the dependencies of true and false
positives on the different parameters. Figure 3.17(a) shows that when anchors are
used to constrain CeMAPP-DTW, a small anchor radius with R = 0 in combination
with a match weight of W = 2.25 provides the best results. In Figure 3.17(b) the
positive effect of using a local over a global Sakoe-Chiba band width constraint
with value BC = 0.1 is visualized and supports the claim that the local window
has a positive influence on the number of true positives achieved with the anchor-
constrained variant of CeMAPP-DTW.

3.6. Discussion

The results of B iPACE and CeMAPP-DTW presented in the previous sections
show the advantage of using a retention time penalty as an additional criterion
together with the mass spectral similarity function. The runtime boxplots in Figures
3.9(a) and 3.18(a) illustrate the advantage of using the T parameter as a threshold
on the retention time penalty function. If the value of the retention time penalty
function is larger than T, then the costly similarity functions are applied, otherwise,
the calculation is stopped immediately for that peak pair.
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Figure 3.18.: Boxplots of the runtimes of (a) B iPACE and (b) CeMAPP-DTW for
the Wheat dataset.

Therefore, tuning of the T parameter is one possible option to speed up the calcu-
lation of both B iPACE and CeMAPP-DTW . Since the time penalized similarity
variants consistently perform better than the non-penalized ones, it is also advisable
to check on the T parameter. Our results show that this parameter should initially be
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3.7. Conclusions

set to a rather small number, since it does not directly correspond to the expected
retention time deviation. Finally, the minimum clique size MCS is an important
parameter for B iPACE and influences the number of cliques that are reported in the
multiple alignment. Using a high value for MCS returns only those cliques whose
peaks are all bidirectional best hits of each other and thus support each other as
members of the clique. Lower values for MCS return more cliques, but at the expense
of returning a higher number of smaller cliques with potentially more misaligned
peaks.

CeMAPP-DTW on the other hand has a few other parameters to tune. Our
results show that the most important ones are the use of anchors and an anchor
radius of 0, meaning that the DTW alignment must pass through the anchor positions
for example defined by B iPACE . Additionally, the use of a local Sakoe-Chiba band
constraint and a match weight W = 2.25 are beneficial for the number of true positives
CeMAPP-DTW is able to achieve.

Concerning the best similarity function to use, there is no decisive answer possible
from our results. In accordance with Prince and Marcotte (2006), Pearson’s linear
correlation and Spearman’s rank correlation give good results in terms of low false
positive numbers, but time penalized dot product and cosine tend to give significantly
higher true positive numbers. Using the time penalty function as a pre-filter for
the actual similarity function seems to reduce the differences of the individual
similarity functions. However, the instances using a correlation-based similarity have
a significantly longer runtime (Figures 3.9 and 3.18) than the ones using the dot
product or cosine similarity.

3.7. Conclusions

We have introduced a fast and accurate method for multiple peak alignment of GC-MS
data, B iPACE, that is capable of finding groups of peaks between chromatograms
that have a high similarity, achieving a high number of true positive and a very low
number of false positive assignments. Our method achieves results comparable to that
of Robinson et al. (2007), while being easily tunable to a very low false positive rate
via the minimum clique size parameter. With the use of the peak groups aligned by
B iPACE as anchors within partitioned DTW, we address one major issue of similar
profile-alignment algorithms, namely their quadratic time and space complexity
by partitioning the pairwise alignment matrix into adjacent regions. Thus, strong
peak candidates, such as reference compounds with unique mass traces (GC-MS) or
characteristic fragmentation patterns (GC-MS) are definitely aligned, while weaker
peaks that were not discovered during peak finding are also aligned, but with more
flexibility.

We have shown that the partitioned DTW algorithm used in CeMAPP-DTW
on its own is able to calculate a profile-based multiple alignment in less time and
with fewer space requirements when compared to unconstrained DTW . Combining
CeMAPP-DTW with the aligned peak groups from B iPACE as alignment anchors
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Chapter 3. Methods for GC-MS Data Analysis

allowed us to improve both on the runtime, as well as on the number of true positives
recovered by the alignment. This combination of the two algorithms is feasible if a
definite alignment is not the main requirement, but instead the output of CeMAPP-
DTW is used for a subsequent retention time correction of the profile data. For a
definite multiple peak alignment B iPACE is the better alternative.
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4
Methods for GC×GC-MS Data Analysis

In this chapter, we give an overview and feature comparison of existing Open Source
frameworks for the handling and processing of data from comprehensive two-dimen-
sional gas chromatography-mass spectrometry (GC×GC-MS) experiments. As in the
previous chapter, this overview covers the parts of the typical processing pipeline for
metabolomics data that we introduced in Chapter 2, but this time for GC×GC-MS
data.

We then describe the peak finding problem for GC×GC-MS data and present a
novel method to detect and filter peak seeds that can serve as input for our multiple
peak alignment algorithm B iPACE 2D. We describe B iPACE 2D in Section 4.3 and
evaluate it against a collection of other state-of-the-art algorithms, before discussing
the results in Section 4.4. B iPACE 2D was originally published in Hoffmann et al.
(2014).

The algorithms presented in this chapter are also available within our OpenSource
framework Maltcms1.

4.1. Frameworks for GC×GC-MS Analysis

The automatic and routine analysis of comprehensive GC×GC-MS data is yet to be
established. GC×GC-MS couples a second chromatographic column to the first one,
thereby achieving a much higher peak capacity and thus a better separation of closely
co-eluting analytes (Castillo et al. 2011). Usually, for a one-hour run, the raw data
file size exceeds a few Gigabytes. Quite a number of algorithms have been published
on alignment of peaks in such four-dimensional (first column retention time, second
column retention time, mass, and intensity values) data (Kim, Fang, et al. 2011; S.
Wang et al. 2010; Vial et al. 2009; Oh et al. 2008; Pierce et al. 2005), however only
a few methods are available for a more complete typical preprocessing workflow.
We herein focus on frameworks that are Open Source software and that also do not

1. http://maltcms.sourceforge.net
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Chapter 4. Methods for GC×GC-MS Data Analysis

require a proprietary software for execution, such as MATLAB (The Mathworks,
Natick, MA, USA). A compact overview of the available frameworks, their licenses
and programming languages is given in Table 4.1. A more detailed feature matrix
of these frameworks is given in Table 4.2. The remainder of this section gives a
concise overview of the frameworks Guineu (Castillo et al. 2011) and Chromatogram
Alignment for 4D GC×GC-MS data (ChromA4D)2.

4.1.1. Guineu

Guineu is a graphical user interface and application for the comparative analysis
of GC×GC-MS data. It currently reads LECO ChromaTOF (LECO Corp., St. Joseph,
MI, USA) software’s peak list output after smoothing, baseline correction, peak
finding, deconvolution, database search and retention index (RI) calculation have
been performed within ChromaTOF.

The peak lists are aligned pairwise using the Score Alignment algorithm,
which requires user-defined retention time windows for both separation dimensions.
Additionally, the one-dimensional RI of each peak is used within the score calculation.
Finally, a threshold for mass spectral similarity is needed in order to create putative
peak groups. Additional peak lists are added incrementally to an already aligned
path, based on the individual peaks’ score against those peaks that are already
contained within the path.

Guineu provides different filters to remove peaks by name, group occurrence
count, or other features from the ChromaTOF peak table. In order to identify com-
pound classes, the GMD substructure search is used (Hummel et al. 2010). Peak areas
can be extracted from ChromaTOF using the TIC, or using extracted, informative or
unique masses. Peak area normalization is available relative to multiple user-defined
standard compounds.

After peak list processing, Guineu produces an output table containing informa-
tion for all aligned peaks, containing information on the original analyte annotation
as given by ChromaTOF, peak areas, average retention times in both dimensions
together with the average RI and further chemical information on the functional
group and substructure prediction as given by the GMD. It is also possible to link
the peak data to KEGG (Kanehisa et al. 2013) and PubChem (Y. Wang et al. 2009) via
the chemical abstracts services (CAS) annotation, if it is available for the reported
analyte.

For statistical analysis of the peak data, Guineu provides fold change and t-tests,
PCA, ANOVA and other methods. Guineu’s statistical analysis methods provide
different plots of the data sets, e.g. for showing the principal components of variation
within the data sets after analysis with PCA.

2. ChromA4D is a pipeline within the Maltcms framework, please see chapter 5 and Section A.2
for details.
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Table 4.1.: Open Source software frameworks for GC×GC-MS based metabolomics. a: Eclipse Public License version 1.0.

Name Version Methods License Programming language

Guineu 0.8.2 GC×GC-MS (LC-MS) GPL v2 Java 6
Maltcms/ChromA4D 1.3 GC×GC-MS (LC×LC-MS) L-GPL v3, EPL v1a Java 7

Table 4.2.: Feature comparison of Open Source software frameworks for preprocessing of GC×GC-MS based metabolomics data.
Key to abbreviations: Data formats A: NetCDF, G: ChromaTOF peak lists, H: CSV peak lists. Signal preprocessing MA: moving
average, MM: moving median, TH: top-hat filter, CV: coefficient of variation threshold. Peak detection MAX/CWT-SRG: TIC local
maxima or continuous wavelet transform, followed by seeded region growing based on ms similarity. Multiple peak alignment
SCORE: parallel iterative score-based, CLIQUE: progressive clique-based.Visualization (of unaligned and aligned data) TIC:
plots of total ion chromatogram/peaks, EIC: plots of extracted ion chromatograms/peaks, SURF: surface plots of profile matrix
(rt x m/z x I), STATS: visualization of statistical values. DB search GMD: Golm metabolite database webservice, PUBCHEM:
pubchem database webservice, KEGG: kegg metabolite database, MSP: msp-format, compatible with AMDIS and GMD format.
Normalization RP: reference peak area, EV: external value, e.g. dry weight. Statistical evaluation CV: coefficient of variation, FLT:
fold-test, TT: groupwise t-test, PCA: principal components analysis, CDA: curvilinear distance analysis, SP: Sammon’s projection,
ANOVA: analysis of variance, FT: F-test, between group vs. within group variance.

Feature (GC×GC-MS pipeline) Guineu ChromA4D

Data formats G A,H
Signal preprocessing no MA, MM, TH, CV
Peak detection no MAX/CWT-SRG
Multiple peak alignment SCORE CLIQUE
Visualization STATS STATS, TIC, EIC, TIC2D
DB search GMD, PUBCHEM, KEGG MSP (GMD)
Normalization RP RP, EV
Statistical evaluation CV, FLT, TT, PCA, CDA, SP, ANOVA FT77
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4.1.2. ChromA4D

For the comparison of GC×GC-MS data, ChromA4D accepts NetCDF files as input.
Additionally, the user needs to provide the total runtime on the second orthogonal
column (modulation time) to calculate the second retention dimension information
from the raw data files. For tentative metabolite identification, the location of a
database can be given by the user. ChromA4D reports the located peaks, their
respective integrated TIC areas, their best matching corresponding peaks in other
chromatograms, as well as a tentative identification for each peak. Furthermore, all
peaks are exported together with their mass spectra to MSP format, which allows for
downstream processing and re-analysis with AMDIS and other tools. The exported
MSP files may be used to define a custom database of reference spectra for subsequent
analyses.

Peak areas are found by a modified seeded region growing algorithm. All local
maxima of the TIC representation that exceed a threshold are selected as initial seeds.
Then, the peak area is determined by using the distance of the seed mass spectrum to
all neighbor mass spectra as a measure of the peak’s coherence. The area is extended
until the distance exceeds a given threshold. No information about the expected
peak shape is needed. The peak integration is based on the sum of TICs of the peak
area. An identification of the area’s average or apex mass spectrum or the seed mass
spectrum is again possible using the MetaboliteDB module maltcms-db.

To represent the similarities and differences between different chromatograms,
again bidirectional best hits are used to find co-occurring peaks. These are located
by using a distance that exponentially penalizes differences in the first and second
retention times of the peaks to be compared. To avoid a full computation of all pairs
of peaks, only those peaks within a defined window of retention times based on the
standard deviation of the exponential time penalty function are evaluated.

ChromA4D’s visualizations represent aligned chromatograms as color overlay
images, similar to those used in differential proteomics. This allows a direct visual
comparison of signals present in one sample, but not present in another sample.

ChromA4D creates peak report tables in CSV format, which include peak apex
positions in both chromatographic dimensions, area under curve, peak intensity
and possibly tentative database identifications. Additionally, information about the
matched and aligned peak groups is saved in CSV format.

4.2. Peak Finding

We already identified different steps of a typical metabolomics processing pipeline
in Section 2.6 and have discussed the implementations available in Open Source
software for those steps in the previous section. One important step in such a pipeline
is the location and integration of significant areas in the chromatographic domain
that relate to analytes of interest, either within the TIC, or within individual EICs.
This step is usually subsumed as peak finding and peak integration.
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Figure 4.1.: The two-dimensional chromatographic plane in GC×GC-MS. Each point
on the plane corresponds to an individual mass spectrum with first and second column
retention time.

In GC×GC-MS, the chromatographic domain is a two-dimensional plane spanned
by the retention times of the first and second chromatographic column, as shown
in Figure 4.1. Each point on the plane corresponds to an individual mass spectrum.
In principle, there are two possible approaches to peak finding: top-down and
bottom-up. While the first approach starts from the (two-dimensional) TIC, identifies
regions of interest and then inspects individual extracted ion traces, the bottom-up
method starts at the extracted ion traces and tries to identify peaks directly within
that domain. However, for high scan acquisition rates in the range of >100 Hz, this
quickly leads to the inspection of many regions of the chromatogram that contain
redundant information (like the peaks within the modulation peak areas). Thus, we
chose the top-down approach, identifying peak candidates in the TIC and then using
the individual mass spectra to determine the extents of those candidate peaks using
a suitable similarity.

Preprocessing Many algorithms for peak finding and integration have been pub-
lished, usually requiring some sort of previous filtering of the signal to ensure good
analytical properties of the signal (Biller and Biemann 1974). Usually, the signal is
smoothed using a higher-order polynomial interpolation scheme, such as the method
described by Savitzky and Golay (1964) and Peters et al. (2007), LOESS-Interpolation
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(Smith et al. 2006), or a signal reconstruction based on a prior decomposition into fre-
quency components (Fourier/Inverse Fourier Transform), where high frequency and
low frequency components are omitted to remove noise (high frequency) and baseline
(low frequency) trends in the signal. An alternative to frequency decomposition is
the scale/translation decomposition used in the continuous, maximum-overlap, or
discrete wavelet transforms (Z. Zhang et al. 2012). The CWT has some desirable
properties that we will address in the following sections.

Peak Location The peak location is usually determined in one of three ways: by
an extremal value analysis of the signal, usually involving first, second, and third
order derivatives, in order to identify local maxima, minima, and saddle points. This
requires that the signal is differentiable and also explains the requirement for prior
smoothing. The located maxima, minima and saddle points can then be used to
fit a theoretical peak function (usually following Gaussian or Poisson distribution
density functions) at the suspected location. This method is used by the peak finder
in OpenChrom (Wenig and Odermatt 2010). The second method is to use a template
peak (second order derivative of the Gaussian) with a specified width, convoluting
it with the signal and recording the positions of maximum response, omitting all
signals below a user-defined minimum threshold. This method is termed matched
filtration and is used by XCMS (Smith et al. 2006) and related methods (Fredriksson
et al. 2009). The third method uses the CWT, which does not require pre-processing
of the signal. It convolutes the signal with a scaled and translated template peak
function at different scales, representing suspected peak widths, and throughout
the length of the signal. This method has been introduced by Du et al. (2006) for
peak detection in non-centroided SELDI-TOF mass spectra. For further information,
Matos, Duarte, and Duarte (2012) give a comprehensive overview of peak detection
methods currently used in GC×GC.

4.2.1. Notation

In the following sections, we will define and explain the CWT, its background
in signal processing, and its application to GC×GC-MS data. We define the two-
dimensional chromatogram C2d = {c1, c2, ..., c`} as an ordered set of features vectors
c = (m, i, t1, t2), where the mass vector m and the intensity vector i both have the
same dimensions, and t1 and t2 are the retention times of the feature vector on the
first and second chromatographic column. The feature vectors are sorted in ascending
order, first by t1, then by t2. The total ion current (TIC) of C2d is the ordered set of
the sum over each feature vector’s intensity vector:

TIC =
{

x | x =
`

∑
j=1

cj(i), cj ∈ C2d
}

, (4.1)

where c(i) is shorthand notation for the intensity vector of feature vector c and ` is
the length of TIC. Note that the original order of the feature vectors is still preserved.
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4.2. Peak Finding

In order to bring our notation into accordance to the standard notation used in
wavelet theory (Percival and Walden 2000), we define x(t) as the TIC value of the
t’th feature vector in TIC: x(t) = TIC(t) = ∑`

t=1 ct(i).

4.2.2. Continuous Wavelet Transform-based Peak Finding

Our goal is to locate prospective chromatographic peaks in x(t), while at the same
time we want to exclude areas of the signal that result from slowly changing baseline
and short term spiking noise. A short one-dimensional section of a GC×GC-MS
chromatogram showing peaks with varying baseline is shown in Figure 4.2. We
omit the information on the second retention time dimension in the data for now,
since the process of modulation (see Section 2.2.3) may introduce shifting artifacts
in the second dimension of the two-dimensional TIC. We will consider the second
column elution time again when we seek to filter potential peaks based on their
two-dimensional neighborhoods in Section 4.2.3 and when we merge neighboring
peaks in Section 5.2.3. The result of the peak finding method are peaks following our
definition from Section 2.5.

We already introduced the principle of matched filtration in Section 4.2 and
mentioned the continuous wavelet transform that can be seen as a generalization of
repeated matched filtration for arbitrary sizes of the matching filter.

Figure 4.2.: One-dimensional section of a two-dimensional GC×GC-MS TIC.

81



Chapter 4. Methods for GC×GC-MS Data Analysis

The principle of the CWT is the projection of a given signal x(t) to a space spanned
by constrained normalized basis functions, the wavelets. The CWT requires the choice
of a such a basis function in form of the mother wavelet ψ(t). The CWT is a multiscale
transform of the original signal into scale and translation dependent components.
Thus, for each scale, a scaled (s, s > 0), translated (τ, τ ∈ R), and normalized variant
of the mother wavelet, namely the daughter wavelet ψτ,s(t), is derived:

ψτ,s(t) =
1√

s
ψ

(
t− τ

s

)
, (4.2)

and folded with the signal:

CWTψ
x (τ, s) =

1√
s

+∞∫
−∞

x(t)︸︷︷︸
signal

ψ∗τ,s

(
t− τ

s

)
︸ ︷︷ ︸
daughter wavelet

dt . (4.3)

The CWT calculates the inner product of the signal and the complex conjugated
daughter wavelet ψ∗τ,s(·) as a basis function. The result (response) of signal and
daughter wavelet at a given scale and translation is maximal if both are identical or 0
if they are orthogonal.

The mother wavelet function ψ(·) needs to satisfy additional properties to be
amenable as a basis function suitable for the wavelet transform. It must therefore
have a vanishing integral, when integrated from (−∞, ∞):∫ ∞

−∞
ψ(t)dt = 0 , (4.4)

and its square must integrate to 1:∫ ∞

−∞
ψ(t)2dt = 1 . (4.5)

Furthermore, a wavelet is confined to a closed interval [−T, T], its finite support.
Within the support region its response value is maximal, but still has to cancel out
(see Equation 4.4). Outside of the support region its response value is negligible, so
that the majority of the wavelet’s area is localized within [−T, T] and an arbitrarily
small ε may be localized outside of that interval.

This property sets it in contrast to the complex exponential functions: eix =
cos(x) + i sin(x), that are used as basis functions in the Fourier family of change
of basis transforms. These are defined within the open interval (−∞, ∞) and are
thus not localizable in their response. The complex exponential parameterized by
the frequency of their basis functions and the response of folding the signal with
a succession of basis functions with different frequencies produces the (complex)
frequency spectrum. However, in contrast to the (continuous) wavelet transform, the
Fourier transform does not allow for localization of the maximum response in the
original signal from the frequency spectrum (Percival and Walden 2000).
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Signal Reconstruction Both the Fourier and the wavelet transform allow a recon-
struction of the original signal from the respective results of the transform in theory,
however, in practice, the inverse Fourier transform requires more information (fre-
quencies) to reconstruct transient signals to a given accuracy (Walker 1997). For
the inverse CWT to allow perfect reconstruction of the original signal, the mother
wavelet ψ(·) has to additionally adhere to the admissibility condition, given its Fourier
transform at frequency f :

FT( f ) =
∫ ∞

−∞
ψ(t)e−i2π f tdt, (4.6)

so that

Cψ =
∫ ∞

0

|FT( f )|2
f

d f , 0 < Cψ < ∞ . (4.7)

Thus, the Fourier transformed wavelet at frequency f needs to have a non-vanishing,
limited energy spectral density FT( f ).
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Figure 4.3.: Normalized Mexican Hat Wavelet, σ = 1.

The Mexican Hat Wavelet We have now established the necessary background for
the CWT, however, we still need to choose a mother wavelet function that is applicable
to short term transient data, like our TIC.
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Du, Kibbe, and Lin (2006) describe a real valued mother wavelet that they use to
detect peaks in single, but complex SELDI-TOF mass spectra of peptides. They use
the second derivative of the Gaussian normal probability density function which is
more commonly known as the Mexican Hat Wavelet (MHW):

ψ(t) =
2

√
3σπ

1
4

(
1− t2

σ2

)
e
−t2

2σ2 . (4.8)

The shape of this mother wavelet is similar to the optimal analytical peak shape
(see Figure 4.3), with the additional ability to automatically remove slowly changing
background within its support region. In real data, peaks usually show tailing
behavior and are thus not symmetric, but the MHW will still show a large response
value even when folded with such non-perfectly symmetric peaks. By tracking the
response over multiple scales, such peaks can then also be resolved.

Figure 4.4.: Continuous wavelet transform scaleogram (top) and original signal section
(bottom) from a GC×GC-MS chromatogram using the Mexican Hat Mother Wavelet at
increasing scales, from bottom to top. Blue values correspond to low response values
of wavelet and signal, while orange, yellow and white values represent high response
values (good agreement of signal shape and daughter wavelet).

We apply the CWT to the signal x(·) and store the resulting responses for every
discrete scale s and discrete translation τ within a two-dimensional matrix with
S rows and ` columns, equaling the number of scales from minimum scale 1 to
maximum scale S and the length of x(·). This matrix is known as the scaleogram of
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x(·) with respect to CWTψ
x . A scaleogram covering 50 scales and approximately 50

seconds of a real GC×GC-MS dataset (see Section 4.4.3 for more details) is shown
in Figure 4.4. The color table ranges from blue, for zero response, via red, orange
and yellow to white, for the maximal response. It is clearly visible that larger peaks
have their maximum response at higher scales. Asymmetric peak shapes prevent the
response from attaining higher values.

Computational Complexity of the CWT

The CWT for one (integer) scale can be implemented to run in O(`) time and space
(Muñoz, Ertlé, and Unser 2002), where ` is the length of the input signal. Thus, for S
integer scales, S� `, the CWT requires O(S`) time and space. If the maximum scale
is equal to the length of the signal `, the CWT requires at most O(`2) time and space.

Peak Seed Finding in Scale Space

We follow the idea of Du, Kibbe, and Lin (2006) and locate peaks by following the
ridge maxima in the scaleogram, starting at the local response maxima at scale 1, up
to a user-defined maximal scale. The method follows the maximum local gradient,
allowing a ridge starting from (τ, s) to be extended only into directly adjacent fields
at the next higher scale, (τ± 1, s + 1), (τ, s + 1), if the response value in any of these
candidate fields is larger than the current one. This is only possible because the
CWT is highly redundant with respect to the transformation of the original signal
into scale space. Since we use a scale progression with unit integer differences, the
maximum difference in ridge positions is limited to at most one. Figure 4.5 shows
the ridges recovered by the algorithm for a section covering one modulation period
(the complete second column retention time period) of a GC×GC-MS TIC. The 20
scales depicted in the figure increase from bottom, just above the colored TIC section,
to top. The ridges end at their highest response value. It is visible that the ridges of
closely co-eluting peaks recombine at lower scales and that faint peaks tend to have
ridges with a larger curvature, when compared to strong peaks. One ridge exceeds
the visualized range of scales and thus depicts a peak with wide peak shape (not
immediately visible in figure due to coloring).

Dyadic decomposition schemes (sampling the signal at decreasing powers of 2
for faster computation of the transform), such as that used in the discrete wavelet
transform (DWT) (Sweldens 1998), do not have a close relationship of the scale
space representation of the signal at neighboring scales. Thus, ridges are not easily
traceable from low to high scales, as the difference between adjacent ridge elements
can be as large as half the sampling period. Additionally, ridges also combine with
their neighbors at higher scales, due to the decreasing sampling resolution. As a
consequence, it is not immediately possible to determine the optimal response scale
of a peak in the signal when the DWT is used.

The maximum response on a ridge corresponds to the optimal scale of the daughter
wavelet for the peak originating at the ridge’s root at scale 1. A user-definable
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Figure 4.5.: Ridges in scaleogram of GC×GC-MS TIC modulation section covering
20 scales. Ridge seeds are superimposed in black on the original TIC at the bottom.
Ridges end at the scale with highest response value.

minimum scale allows to prune peaks below the given scale, thereby removing peaks
originating from a noisy background signal (see blue and green checkerboard noise
in right hand side areas of Figure 4.6, (a) and (b)). Higher scales can be excluded as
they will mostly represent slow baseline changes, thus the maximum scale should
be set larger than the expected width of the widest peak in the chromatogram. The
minimum scale should be set to the expected width of the narrowest peak in the
chromatogram. Figure 4.6 (a) shows the result of the peak seed finding visualized
on the original two dimensional TIC. The intensities are color encoded from blue
(low intensity), via green (medium intensity) to yellow and red (high intensity). The
modulation peak area, an artifact introduced by the cryo-modulator of the LECO
Pegasus IV GC×GC-MS (LECO Corp., St. Joseph, MI, USA) is visible in the lower left
corner of the chromatogram. Many peaks have been found within that area, indicated
by black squares. However, it is also visible that many peaks have been detected
within the rest of the chromatogram as well. In Section 4.2.3, we will introduce a
method to classify and filter non-informative peaks within the modulation peak
areas.

Computational Complexity of the Peak Seed Finding The initial peak seeds can be
detected in O(`) time using a simple three-point maxima peak location criterion,
such that each peak is a local maximum in the scale space representation of the CWT
at scale 1. The number of seeds is limited by the number of elements of x, namely
`, and each ridge can be extended over at most S− 1 scales. For each extension, we
need to check whether any of the neighbors (τ ± 1, s + 1), (τ, s + 1) is larger than
the response value at the current position (τ, s). This can be done in constant time
for each comparison. In total, for ` ridges, we thus have S extensions and therefore a
worst-case runtime of O(S`).
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4.2.3. Classifying and Removing Uninformative Peaks

We showed how to locate prospective peak seeds in the previous section. Now, we
are interested in classifying them based on the density of their two-dimensional
neighborhood. The general idea of the approach is that peaks that are closely clustered
and thus have a high number of neighboring peaks contained within a fixed radius
around them are less informative and more likely to be the result of artifacts in the
chromatogram. Such peaks are visualized in Figures 4.6 (a) and (b), superimposed
over the modulation ridge that appears as a large red double band extending from
the left to the bottom right of the images. Similar patterns appear throughout the
two-dimensional chromatogram, but are only faintly visible. In order to support a
neighborhood-based classification, we therefore need a data structure that efficiently
supports queries of the neighborhood of each peak seed in a given radius.

(a) Before application of the neighborhood filter.
Black spots mark the apex positions of peaks in the
chromatogram.

(b) Peaks within the lower left modulation ridge
have been automatically discarded by the neighbor-
hood filter with r = 10 and ρ = 15.

Figure 4.6.: Detailed view of peak positions marked as black dots in a GC×GC-MS
TIC.

A quadtree is a recursive, spatial indexing data structure for two-dimensional
data (Berg 2000; Finkel and Bentley 1974). It decomposes a rectangular region into
four regions of equal size (NW, SW, NE, SE) and with constant aspect ratio. The
decomposition can be repeated for each new region until no further decomposition
is possible (e.g. for discrete images, until each quadrant corresponds to a pixel in the
image), or the maximum allowed depth of the tree is reached. For our application,
the quadtree’s elements will be points in R2, corresponding to the first and second
column retention times of each peak. A point on the two-dimensional plane is
added to the quadtree by locating the quadrant that contains its coordinates. A
quadrant is split into four new quadrants upon insertion of a new point if its capacity
threshold is exceeded. This threshold (called bucketing by Samet (2006)) allows for a
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trade-off between search speed and memory efficiency in unbalanced quadtrees and
limits the maximum depth of the quadtree. If a point is removed from the quadtree,
thereby reducing the fill level of its containing region (bucket) below the threshold,
the containing quadrants are merged consecutively into larger quadrants, until the
threshold is met again.

For our approach, we are interested not only in constructing a region quadtree
by successive insertion of peak seed points, but we are also interested in finding all
neighbors within a given radius r around a query peak q. Samet (2006) characterizes
such a quadtree as a bucket PR (point region) quadtree.

Quadtree Construction The initial quadtree is empty and we assume that we know
all points that will be inserted into the tree and their convex hull and smallest
enclosing rectangle beforehand, e.g. from the CWT peak finder introduced in Section
4.2. The enclosing rectangle is required for the PR quadtree in order to calculate the
extents of a quadrant in advance. Since the partitioning is fixed and independent
from individual data points, the final shape of the tree does not depend on the
insertion order, as is the case for point quadtrees.

When we add a point to the root of the quadtree, we need to determine, which of
the four quadrants (NW, SW, NE, SE) contains the point. This involves checking for
each quadrant’s region R = ([x0, x1), [y0, y1)), whether the point (x, y) is contained
in it, such that x0 ≤ x < x1 and y0 ≤ y < y1. If it is contained, the point can be added
to the corresponding quadrant. Points that lie on the boundaries of a quadrant region
(x = x1 ∨ y = y1) are added to the neighboring quadrant (S, E, or SE) that contains
them. If the quadrant exceeds its threshold capacity after insertion of a new point, it
is split into four new quadrants that are now one level below their parent. All points
that were contained in the parent quadrant are then inserted into the four new child
quadrants.

Unbalanced region quadtrees do not have a general upper bound on their depth as
a function of the number of points in the tree. Samet (2006) shows that the maximum
depth of such a tree depends on the minimum Euclidean distance between points in
it and is bounded by the following term:

dlog2((s/d)
√

2)e , (4.9)

where s is the side length of a (square) quadrant, and d is the minimum Euclidean
distance between neighboring points.

The minimum distance for GC×GC-MS data is determined by the scan rate used
for the acquisition of mass spectra, determining the minimum time difference in
the second separation dimension retention time, and the modulation time period,
determining the time difference in the first separation dimension time. Since the
minimum distance is achieved by points that are neighbors in one modulation
(identical x values), only the difference in the second dimension retention time
remains and the Euclidean distance simplifies to the difference between the y values
of the neighbors. This difference is the inverse of the scan rate and is usually in
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the range between 0.002 (500 Hz) and 0.2 (50 Hz) seconds. Thus, for a GC×GC-MS
chromatogram with 5 seconds modulation time and a total runtime of 3600 seconds,
the maximum depth is between 12 (5 seconds) and 22 (3600 seconds) levels. A
graphical representation of a bucket point region quadtree based on peak seeds
found with the CWT is shown in Figure 4.7.

For the case of bucket quadtrees (also called compressed), the maximum depth of
the tree can be shown to be O(`) in the worst case, yielding construction in O(` log `)
time (Aluru and Sevilgen 1999) with insertion and range query running in O(log `)
time.

Figure 4.7.: Bucket Point Region Quadtree of the peaks found by the CWT. Quadrants
that are not completely subdivided contain fewer peaks than required for the split
threshold. The implementation tries to balance the number of quadrants and the
number of peaks contained in them for memory efficiency and query speed.

Our implementation follows the ideas of Aluru and Sevilgen (1999) and, thus,
Equation 4.9 is an upper bound on the depth of our quadtree implementation.

Eppstein, Goodrich, and Sun (2005) show how a quadtree can be implemented
similar to skip lists to achieve a worst case logarithmic depth, which could be an
alternative to our implementation for larger datasets where extensive clustering of
points in small regions occurs.

Neighbor Search The actual benefit of using the quadtree comes from the efficient
search for neighbors within a radius r around a given query point q(x, y). We first
need to locate the quadrant region R of q. Starting from the root of the quadtree, we
check for each quadrant, whether q is contained in it. If so, we continue to descend
into the subtree below until we either find the smallest quadrant containing q or we
terminate and return a result indicating that q is not contained in the tree. If we have
located q, we need to determine, whether the disc centered at q(x, y) with radius r is
fully enclosed within its containing quadrant. This can be done by checking, whether
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the enclosing rectangle of the disc is fully contained in the quadrant region R, such
that x0 ≤ x − r, x + r < x1, y0 ≤ y− r and y + r < y1. If this is the case, one can
evaluate the ellipsoid equation describing the disc centered at q and with identical
minor and major radius r for every candidate peak in the quadrant:

z =
(x1 − x)2

r2 +
(y1 − y)2

r2 . (4.10)

If z ≤ 1, the candidate point (x1, y1) is contained in the query disc and added to the
query result list. If the disc overlaps with neighboring quadrants, we add all points
from those quadrants that are also contained within the disc’s bounds to the query
result list. Equation 4.10 is closely related to the elliptical decision criterion used in
Equation 4.12 on page 97, which is more general for distinct horizontal and vertical
radii.

4.2.4. Neighborhood Density-based Filtering

We apply the range search for every point in the tree for a given radius r and receive
the list of neighbors within that radius for each point. The size of the returned list
of neighbors for a point indicates whether the point is solitary (few neighbors) or
clustered (many neighbors). Figure 4.8 shows the neighborhood density histogram for
a radius of 10 s. It is visible, that the neighborhood density distribution is essentially
bipartite (if we omit the maximum around 65 neighbors), with the first maximum
between 10 and 15 and the second maximum between 40 and 45 neighbors.

Points and their corresponding ridges with a neighborhood density above a user
defined threshold are removed from further consideration, in order to avoid the
downstream processing of peaks carrying highly redundant analytical information.
The automatic selection of the neighborhood density threshold is non-trivial. As
of now, it needs to be determined manually by the user. An automation would be
possible by analyzing the bipartite neighborhood density distribution for a larger
number of different GC×GC-MS datasets and ensuring that this property is generally
found in GC×GC-MS data. If this is the case, one could fit a Gaussian mixture
model for two Gaussian probability density functions, centered at the maxima of the
empirical neighborhood density distribution, and select the neighborhood density
value with the fewest points as the decision boundary between the distributions.
However, experiments with the neighborhood density threshold have shown that
choosing this value leads to a high number of false positive peaks. For a low number
of false positives, the boundary needs to be moved towards the first maximum of
the neighborhood density distribution, at the risk of losing true positive peaks that
happen to have a higher than average neighborhood density.

In the next section, we will show how peaks found by either the algorithm described
in the previous sections or by third party software can be compared automatically
between different chromatograms. We will briefly explain the peak area integration
and fusion method available in Maltcms in Chapter 5.
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Figure 4.8.: Ridge Neighborhood Histogram for r = 10 s. The distribution of the
histogram is bipartite. The first maximum lies between 10 and 15 neighbors, while the
second maximum (especially modulation area peaks) lies between 40 and 45 neighbors.
For Figure 4.6 b), all ridges with more than 15 neighbors were removed.

4.3. Peak Alignment for GC×GC-MS

Preprocessing of GC×GC-MS data involves the filtering and noise reduction of the
raw signal, the localization, deconvolution, integration, and normalization of analyte
signals of interest (peaks) (Amador-Muñoz and Marriott 2008), as well as downstream
matching of peaks to create a multiple alignment of related signals from different
samples. We already described the peak alignment problem in Section 2.6.4 and
discussed its necessity in the context of GC-MS, LC-MS, and GC×GC-MS. In the
following sections, a novel automated method for the multiple alignment of GC×GC-
MS peaks is introduced: Bi-directional best-hit peak assignment and clique extension
for two dimensional chromatograms (B iPACE 2D), which is based on comparing
peak mass spectra and retention times in two dimensions between a large number of
samples.
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4.3.1. Background

For GC×GC-MS peak alignment, the mass spectrum behind each time point on the
two-dimensional chromatographic plane can be used as an additional criterion for
peak similarity or identity. The use of EI in GC×GC-MS produces rich fragmentation
spectra that are comparable to fingerprints of each analyte. However, EI is known
to lead to identical or very similar spectra (due to detector noise) for certain classes
of analytes, especially structural isomers. Thus, an additional criterion for their
distinction is required, such as the retention time (RT) information of the mass
spectrum in the first and second dimensions of separation. A peak in GC×GC-MS
may encompass many mass spectra, so that a reduction to a representative mass
spectrum is advisable for improved signal-to-noise ratio and better spectral database
search results (Oh et al. 2008). If those results are reliable and return few false
positive identifications, one can subsequently use the assigned names to associate
peaks across samples. However, the results of database searches may consistently
associate a spectrum erroneously with an analyte that happens to be just above the
identification threshold used by the database, while the true analyte is missing from
the database.

Typically, peaks should be aligned between samples that were measured under
identical (homogeneous) separation conditions. However, the algorithms of Jeong et
al. (2012), Kim, Fang, et al. (2011), and S. Wang et al. (2010) also support alignment of
peaks that were measured under different (heterogeneous) conditions (e.g. different
temperature gradient) that lead to non-linear shifts especially in the first retention
time of the GC×GC chromatogram.

M S O R T The MSort algorithm (Oh et al. 2008) sorts and associates peaks based
on their absolute retention time difference for each separation dimension and mass
spectral similarity using Pearson’s correlation coefficient. It successively builds a
sorted peak table created from unassigned peak tables and matches peaks from a
reference table, a search table with the highest number of merged peaks, against
the remaining peaks using a sorting criterion until all searchable peaks have been
processed.

D I S C O The algorithm DISCO (Wei et al. 2013; S. Wang et al. 2010) uses landmark
peaks in each sample that are mapped to landmark peaks in a reference sample using
Euclidean distance to calculate retention time similarity and Pearson’s correlation
coefficient to determine the similarity of mass spectra. Based on the landmark peaks,
the method determines a local linear interpolation that is applied to non-landmark
peaks, thereby correcting for non-linear retention time distortion.

M S PA and S W PA Kim, Koo, et al. (2011) and Kim, Fang, et al. (2011) have intro-
duced two different algorithms to approach the peak alignment problem in GC×GC-
MS. The SWPA approach uses variants of dynamic programming to find a peak
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matching with maximal score for pairwise alignments. Their mSPA method includes
the optimization of a likelihood function based on a parametrized mixture similarity,
that involves the dot product as mass spectral similarity and retention time deviation
calculation with different distance metrics. Both of their approaches extend the pair-
wise alignments transitively to a multiple peak alignment, based on a prior chosen
reference peak list.

G U I N E U We previously described the Score Alignment algorithm used by
Guineu (Castillo et al. 2011) in Section 4.1.1, but repeat it here in greater detail for
completeness. Score Alignment is based on a combined score, using pre-defined
windows for first and second dimension retention time deviations and RI deviation.
The method scores neighboring peaks against potential target peak groups, building
candidate paths of related peaks. The weighted cosine product is used to avoid
alignment of mass spectra with low pairwise scores, with a user-defined minimum
threshold. Path-generation and evaluation is performed in parallel and followed by
a subsequent post-processing phase, where peaks that were assigned to multiple
groups are reassigned to the peak group with highest score until all such conflicts
are resolved. We will refer to the Score Alignment method as Guineu in the
remainder of this chapter.

M B PA Jeong et al. (2012) use a statistical model to align the peaks, based on
pairwise peak scores calculated from mass spectral similarity (cosine score) and
retention time deviation score functions. Their approach uses landmark peaks with
a high posterior probability according to their model to calculate a retention time
correction for the remaining peaks which fall below a specific posterior probability
threshold. They additionally calculate a corrected retention time for aligned peaks.

C C M Reichenbach et al. (2013) use the consistent cliques method (CCM), an ap-
proach that is in principle similar to the B iPACE method already described in
Hoffmann et al. (2012), but for GC×GC-MS data where pairwise matches between
multiple peak lists have already been determined. However, their algorithm can only
merge conflict-free cliques above a user-defined threshold and thus may report fewer
cliques than B iPACE. CCM is part of the commercial software GC Image (Lincoln,
NE, USA).

B I PAC E and B I PAC E RT The B iPACE and B iPACE RT algorithms have been
described in Section 3.2, showing their applicability for peak alignment of GC-MS
data. B iPACE 2D is a novel extension of B iPACE that uses the two-dimensional
retention time information in addition to mass spectral similarity to align peaks across
multiple chromatograms without requiring a user-defined reference chromatogram.
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4.3.2. B I PAC E 2 D Pairwise Peak Similarity Function

We extend our notation from Section 3.3 for the two-dimensional retention time
domain in GC×GC-MS. Given a chromatogram C = {p1, p2, ..., p`} as an ordered
set of peaks, we define a two-dimensional peak p = (m, i, t1, t2) as a quadruple
of a mass vector m, an intensity vector i, both with the same dimensions, a first
column retention time t1, and a second column retention time t2. For two peaks p
and q, represented by their binned mass spectral intensity vectors with first column
retention times t1,p, t1,q, second column retention times t2,p, t2,q, and retention time
tolerances of D1 and D2, for the first and second column, respectively, we define a
similarity function following Robinson et al. (2007) as:

f2d(p, q) := exp
(
−
(t1,p − t1,q)

2

2D2
1

)
· exp

(
−
(t2,p − t2,q)2

2D2
2

)
· s(p, q) , (4.11)

where s(p, q) is an arbitrary similarity function between the mass spectral intensity
vectors, such as the cosine, the weighted cosine (Stein and Scott 1994), the dot product,
Pearson’s linear correlation coefficient, or Spearman’s rank correlation coefficient.
f2d(·, ·) can be interpreted as a likelihood function that independently scores the
proximity and mass spectral similarity of its arguments. It is maximized by peaks
that have very low deviation in retention times and a very high mass spectral score.
The impact of deviations in either retention time dimension can be individually
adjusted via the retention time tolerance parameters D1 and D2 of the Gaussian RT
penalty terms, where a higher value allows for larger retention time deviations.

Figure 4.9.: Product of Gaussian retention time penalty functions with D1 = 50,
D2 = 0.5. Left: without thresholds; Right: with thresholds T1 = 0.5, T2 = 0.9.

To prune the search space early during the pairwise all-against-all peak similarity
calculation phase of our algorithm, each RT penalty term has an additional threshold
parameter (T1 and T2, respectively) that allows to effectively stop any further evalua-
tion of f2d(·, ·) if the value of the threshold for that term is not attained or exceeded.
Thus, the mass spectral score function may not need to be evaluated at all, resulting
in a large speedup at the expense of reduced sensitivity towards peaks with larger
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retention time deviations. Figure 4.9 shows the three-dimensional surface as defined
by Equation 4.11 for typical retention time tolerances, without and with threshold
application. The value of s(p, q) was fixed to 1 for these plots.

The B iPACE 2D algorithm is essentially identical to B iPACE after the pairwise
similarity calculation has been performed. The essential background of the clique
finding and merging phases together with runtime and space complexity results is
presented greater detail in Section 3.3.

Following our results in Section 3.3.3, the time and space complexity of B iPACE
2D and B iPACE are equivalent to O(K2`2) in time and O(K2`) in space, where K
is the number of chromatograms and ` is the upper bound of the number of peaks
in each chromatogram.
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Figure 4.10.: Peak set partitions for mSPA dataset I, showing peaks common two
GMA and MGMA in the leftmost tableau, peaks exclusive to GMA (mSPA) in the
middle, and peaks that were unassigned by either method in the rightmost tableau.
The peak set created by MGMA is a perfect subset of the GMA peak set. Thus, there
are no peaks that are exclusive to MGMA.
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Table 4.3.: Parameters used for alignment reference generation for the different datasets.
a is the major and b the minor radius of the elliptical decision boundary function z
(Equation 4.12).

# of peaks in reference

Dataset a b GMA MGMA manual

mSPA I 50.0 0.5 752 592 –
mSPA II 55.0 0.5 1682 1081 –
SWPA I 800.0 0.5 1201 1090 –

chlamy I 250.0 0.5 2723 1629 436

4.3.3. Reference Dataset Generation

In order to evaluate their two-dimensional retention time alignment algorithm mSPA,
Kim, Fang, et al. (2011) use the raw peak lists as created by the ChromaTOF software
(LECO Corp, St. Joseph, MI, USA) and create reference multiple alignments based
on the assigned peak names. Since each peak list can contain multiple peaks with
the same name, the authors employ a method to resolve such potential conflicts by
selecting the peak with the largest recorded area as the representative for a group of
otherwise identically named peaks. This approach is referenced in the remainder of
this chapter as grouping by maximum area (GMA). As we have investigated, GMA
may lead to arbitrary and spurious assignments of peaks to the same alignment row
(with identical names across peak reports), hampering the clear definition of what
true and false positives as well as negatives are. Examples of potentially problematic
assignments for mSPA Dataset I (see Section 4.4.1 for details) are the compounds
(Naphthalene), (Naphthalene, 2-methyl-), (Anthracene), (Benzo[ghi]perylene), (Indeno[1,2,3-
cd]pyrene), (Phenol, pentachloro-), and (Phenol, 2,3,5,6-tetrachloro-), all of which appear to
have been assigned the wrong name in a number of cases, as is shown in Figure 4.10.
Corresponding plots for the other datasets are available in Section C. The complete
data comparing the GMA reference creation approach to our proposed approach
for all datasets used in this work are available online3.

The M G M A approach

In order to address the issues with the approach used by Kim, Fang, et al. (2011),
the reference generation method was modified to remove spurious assignments
that relate back to potentially false assignments of peak names by the ChromaTOF
software. As mentioned before, additional problems may arise from the selection
process that relies solely on picking the peak with the largest area as the representative
for a group of identically named peaks within each report.

3. http://maltcms.sf.net/pub/bipace2d
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Figure 4.11.: Box plots of the first column retention time for a subset of peaks from
mSPA dataset I. Peak groups that exceed the standard deviation thresholds are marked
as suspicious, indicated as TRUE, i.e. Acenaphtylene in sample Standard_7 (range of
1200 s), while peak groups within the decision boundary (see Eqn. 4.12), are indicated
as FALSE. The distinction by originating sample name shows that there are groups that
appear to have correct peak name assignments in some of their samples, as indicated
by the low deviation in retention time, but that have largely varying retention time
deviation in other samples.

The new method modified grouping by maximum area (MGMA) calculates, for all
equally named peaks (peak groups) in all peak reports, the standard deviation of the
retention times in the first and second dimension of separation.

For an arbitrary group of peaks P with the same name, x := σ
(
t1(P)

)
and y :=

σ
(
t2(P)

)
are defined as the standard deviations of the peak group retention times in

the first (t1) and second (t2) dimension of separation. An elliptical function centered at
x0 = 0 and y0 = 0 and with a major radius a (maximum allowed standard deviation
for t1) and minor radius b (maximum allowed standard deviation for t2) is then used
to calculate the decision criterion z:

z =
(x− x0)2

a2 +
(y− y0)2

b2 . (4.12)

If z ≤ 1, the group is retained. Otherwise, if z > 1, the group at (x, y) is outside of
the bounds of the ellipse defined by x0, y0, a, b and is marked as a potential outlier
group. The parameters used for a and b for the different datasets examined in Section
4.4 are given in Table 4.3.

Figures 4.11 and 4.12 show the retention time deviation behavior of a selection of
peak groups within mSPA Dataset I for the first and second column retention times,
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Figure 4.12.: Box plots of the second column retention time for a subset of peaks
from mSPA dataset I. Peak groups that exceed the standard deviation thresholds are
marked as suspicious, indicated as TRUE, i.e. Acenaphtylene in sample Standard_7
(range of 2 s), while peak groups within the decision boundary (see Eqn. 4.12), are
indicated as FALSE. As in Figure 4.11, the distinction by originating sample name
shows that there are groups that appear to have correct peak name assignments in
some of their samples, while the retention time deviation is large within the other
samples.

together with their suspected outlier behavior according to the decision boundary
(TRUE for suspected outlier, FALSE otherwise). The visualizations show, for each
peak group with identical putative name, the retention time behavior separated by the
source file of the peaks. This clarifies that ChromaTOF does indeed export multiple
peaks per file with the same putative name, some of them seemingly false identifica-
tions, thereby severely distorting the peak groups runtime deviation. However, there
is no apparent trend among the input files to produce more or fewer outliers than the
other files, so the observed effect may be attributed to random misannotations and
not to a systematic error. It is notable that the retention time deviation on the second
separation dimension exceeds one second, which is rather atypical for the usually
only slightly varying second dimension retention time over multiple modulations
(Vial et al. 2009) and between samples (under the same analytical conditions).

The decision boundaries (shaded dark grey) along with the standard deviations
of the group-wise retention times for a selection of peaks from mSPA Dataset I are
shown in Figure 4.13. Additionally, the figure visualizes the result of the decision
criterion. Potential outlier groups are indicated by a red color, groups that are within
the defined bounds are indicated by a blue color. Most outlier groups have a very
large deviation in the first retention time dimensions, which supports the claim that
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Figure 4.13.: Within-group standard deviations of peak retention times on the first and
second separation column for a subset of peaks from mSPA dataset I. Peak groups
that exceed the standard deviation thresholds (see Eqn. 4.12) are marked as suspicious,
before being removed from the reference alignment. The size of the glyph represents
the number of peaks contained in a compound group, while colour and shape encode
whether the group is suspicious (red triangles) or not (blue circles).

member peaks of those groups have been erroneously assigned the same putative
name.

Peaks belonging to outlier groups are removed by MGMA without further con-
sideration, since a large deviation in one or both retention time dimensions may
be a strong hint towards wrongly assigned peak names. An approach to further
discriminate the members of such groups may lead to additional sources of false
peak assignments and has thus not been considered at this stage.

Additionally, all peaks that occur only once throughout all peak reports are re-
moved, since they can not provide any reliable grouping information and may again
have resulted from spurious identifications by the vendor software due to different
sample quality and/or non-optimal parameter settings used during peak detection
and putative peak identification.

The final reference multiple alignment is then created using GMA on the remain-
ing peaks. MGMA thus reports a completely contained subset of the original peaks
as reported by GMA. An example for this is given in Section 4.4.3.

4.3.4. Peak Alignment Performance Evaluation

A reference alignment peak group defines whether a peak, represented by its index in
the original peak list, is present in a sample or absent. Each column in the reference
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alignment corresponds to one sample’s peak list, while each row represents an aligned
peak group, spanning multiple samples. The results of each alignment algorithm are
tested against each reference alignment group until either a match is found or the
group is reported to be nonassignable to a counterpart in the reference alignment.

In order to evaluate every parameterization of each alignment algorithm, we use the
same measures that we already described in Section 3.5, namely precision, recall and
F1 score, based on true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). For each multiple alignment result obtained from an algorithm
parameterization, all unmatched peaks of the reference alignment, excluding absent
ones, are added to the number of false negatives to normalize Recall and F1 score
with respect to the size of the reference alignment.

We additionally evaluate the alignment performance of each algorithm based on a
comparison of the average performance F1p over all pairwise alignments, following
the evaluation method reported by (Kim, Fang, et al. 2011; Kim, Koo, et al. 2011).

We discuss the advantages and disadvantages of our row-wise multiple alignment
evaluation over the pairwise alignment evaluation as used by (Kim, Fang, et al. 2011;
Kim, Koo, et al. 2011), in Appendix C.7. Differences in the resulting numbers for F1p
to the numbers published in Kim, Koo, et al. (2011) are due to the evaluation scheme
that we use. We compare all possible unique pairwise combinations of alignment
column pairs against the corresponding reference alignment columns. Thus our
absolute TP, FP, TN, and FN numbers are higher and the F1p tends to be generally
lower.

4.4. Results and Discussion

The GNU R scripts available with Kim, Koo, et al. (2011) and Kim, Fang, et al. (2011)
were carefully adapted, in order to be able to run them within an automated evalua-
tion pipeline. The mSPA and SWPA data set peak lists were used unaltered as input
to all evaluated programs, keeping peaks that were split across multiple modulations,
while removing peak artifacts with an identical area. In order to make the gap-less
multiple alignment output of mSPA and SWPA comparable to the gapped multiple
alignment of B iPACE 2D, we modified the corresponding R-code to not remove
incomplete peak groups. Guineu was modified to parse the ChromaTOF peak file
format with separate fields for first and second column retention times and was
further adapted to run without a graphical user interface and to record the original
row index of each peak in the original peak list for later evaluation.

The algorithms B iPACE, B iPACE RT, and B iPACE 2D were evaluated against
Guineu’s score alignment (Castillo et al. 2011), mSPA (Kim, Koo, et al. 2011) and
its variants PAD, PAS, DW-PAS, SW-PAD, and PAM, as well as against SWPA (Kim,
Fang, et al. 2011) and its variants SWRM, SWRE, SWRME, and SWRME2. The
mSPA, SWPA, and Guineu methods used the ChromaTOF peak lists as input
directly. For the B iPACE methods, we converted the ChromaTOF peak lists to a back-
wards compatible, extended netCDF format (Rew and Davis 1990), supporting first
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and second column elution time. B iPACE also supports mzML input files (Martens
et al. 2011) containing the standardized spectrum attributes first_column_elution_time
and second_column_elution_time. The paramterizations reported as optimal by both the
OP-PAM and the likelihood-based parameter optimization for the SWPA methods
were explicitly included in the evaluation for each of the respective methods. The
results for the mSPA SW-PAD variant using Pearson’s correlation between spectra
and Euclidean distance for retention time matching correspond to the results of the
DISCO algorithm (Kim, Koo, et al. 2011). A detailed overview of the best results for
each dataset and variant is available in tabular form in Appendix C.

Each algorithm was run and evaluated for a range of different parameter val-
ues. The user-configurable parameters (penalty terms, mass spectral score function,
retention time distance function) for mSPA and SWPA were taken from the cor-
responding publications (Kim, Koo, et al. 2011; Kim, Fang, et al. 2011). We tested
all viable combinations of score function (dot product, linear correlation) and re-
tention time distance functions (Manhattan, Euclidean, Canberra, Maximum). Kim
and Zhang (2013) provide a recent comparison of mSPA using an additional set
of similarity functions that were not evaluated here. For B iPACE and its variants,
the varied parameters included the mass spectral score function, retention time
penalty terms (B iPACE RT and B iPACE 2D), and retention time penalty threshold
(B iPACE RT and B iPACE 2D). The parameter values for all methods are available
for each dataset individually within Supplementary File 24. Plots of the runtime
and memory usage of each parametrized method are available in Appendix C. They
reflect only the peak alignment phase, not the data import and filtering phases of the
algorithms.

4.4.1. M S PA Datasets

The authors of the mSPA publication (Kim, Koo, et al. 2011) evaluated their algo-
rithms on two different datasets. The first one, here termed mSPA dataset I, consists
of ten samples of 106 standard compound mixtures, measured throughout with the
same temperature gradient. It contains 1672 peaks in total, of which 752 in 81 rows
were used in the GMA reference alignment. These were further reduced to 592 peaks
in 64 rows by MGMA.

The second dataset, mSPA dataset II, contains five samples of rat plasma with
spiked-in 6–compound standards, also measured under identical temperature gradi-
ent conditions. The original peak reports contained 3575 peaks. These were reduced
to 1682 peaks in 493 rows by GMA’s reference alignment generation, and further
reduced by MGMA to 1081 peaks in 320 rows.

Table 4.3 holds the parameters used to generate the MGMA reference alignments,
for mSPA dataset I and mSPA dataset II, respectively.
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Figure 4.14.: F1 score for all parameterizations of the evaluated algorithms for mSPA
dataset I. B iPACE 2D using the weighted cosine as similarity function between mass
spectra outperforms all other methods.

Results for M S PA Dataset I

Figure 4.14 shows the F1 scores obtained for each of the methods under consideration,
against both GMA and MGMA reference alignments. For both references, B iPACE
2D achieves the highest F1 scores (0.9296 for GMA and 0.9472 for MGMA reference),
followed by B iPACE RT (0.9181 and 0.9322). The Guineu (0.9082 and 0.9165) and
mSPA-PAM (0.905 and 0.9169) variants follow closely behind. B iPACE 2D also
has a consistently better Precision value (0.9551 and 0.9607) than any of the other
methods. On both references, the best B iPACE 2D instance uses retention time
penalty parameters of D1 = 10 s, D2 = 0.5 s, MCS = 2, the dot product as mass
spectral similarity, and retention time penalty thresholds of T1 = 0, and T2 = 0.99,
effectively allowing only very small differences in the second dimension retention
time. B iPACE 2D also achieves the best average pairwise F1p scores, 0.9203± 0.022
with D1 = 10 s, D2 = 0.25 s, MCS = 2, T1 = 0, T2 = 0.25, and 0.9374± 0.021 with
D1 = 10 s, D2 = 0.5 s, MCS = 2, T1 = 0, T2 = 0.99, each time using the dot product
as mass spectral similarity. More details may be found in Appendix C.2.

4. Available at http://maltcms.sf.net/pub/bipace2d
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Figure 4.15.: F1 score for all parameterizations of the evaluated algorithms for mSPA
dataset II. B iPACE 2D and B iPACE RT perform better than any other method using
the weighted cosine and Pearson’s linear correlation as similarity functions between
mass spectra.

Results for M S PA Dataset II

Comparing the F1 scores for mSPA dataset II, B iPACE 2D (0.6654 on GMA
reference) and B iPACE RT (0.751 on MGMA with D = 25 s, T = 0.25) perform
better than any Guineu, mSPA, or SWPA variant (see Figure 4.15). The best
instances use the weighted cosine or cosine mass spectral score function, or Pearson’s
linear correlation, and not the dot product, in comparison to the results in mSPA
dataset I, where the dot product was more competitive. The best B iPACE 2D
instance on the GMA reference also achieves the highest F1p value (0.6857± 0.0264)
with parameters D1 = 25 s, D2 = 0.5 s, MCS = 2, and retention time penalty
thresholds of T1 = 0.75, and T2 = 0, effectively allowing only very small differences
in the first dimension retention time, while allowing larger differences in the second
dimension retention time. B iPACE RT scores the highest F1p value of 0.8231± 0.0201
on the MGMA reference with D = 30 s, T = 0.9 and MCS = 2. The F1 and F1p
values for Guineu, mSPA and the SWPA variants do not fall far behind in this
case on either reference alignment in comparison to the other datasets (see Appendix
C.3 for more details).
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4.4.2. S W PA Dataset

The SWPA publication (Kim, Fang, et al. 2011) used two different datasets for
evaluation purposes. However, SWPA dataset II (spiked-in) was excluded from
this evaluation because it was identical to mSPA dataset II. SWPA dataset I is a
combination of 16 samples, measured using three different temperature gradients. It
should therefor be a significant challenge for retention time-based algorithms. The
dataset originally contained 2499 peaks, which were reduced to 1201 peaks in 83
alignment rows by GMA, and to 1090 peaks in 75 rows by MGMA. The parameters
for the MGMA reference alignment are given in Table 4.3 on page 96.

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●● ●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.8366

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●● ●●●● ●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.8517

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

G
M

A
M

G
M

A

B
iP

A
C

E

B
iP

A
C

E
 w

/ 2
D

 R
T

B
iP

A
C

E
 w

/ R
T

G
ui

ne
u

m
S

PA
 D

W
PA

S

m
S

PA
 P

A
D

m
S

PA
 P

A
M

m
S

PA
 P

A
S

m
S

PA
 S

W
PA

D

S
W

PA
 S

W
R

E

S
W

PA
 S

W
R

M

S
W

PA
 S

W
R

M
e

S
W

PA
 S

W
R

M
e2

F
1

Similarity Cosine of Angle Dot Product Pearson's Corr. Weighted Cos.

Figure 4.16.: F1 score for all parameterizations of the evaluated algorithms for SWPA
dataset I. mSPA-PAM, mSPA-PAS, and mSPA-SW-PAD perform better than the
B iPACE, SWPA, and Guineu variants.

Results for S W PA Dataset I

For this dataset, the mSPA-PAM variant using dot product as pairwise spectral
similarity and maximum distance for retention time difference performs best when
considering F1 score, with values of 0.8366 (GMA reference) and 0.8517 (MGMA
reference). The best Guineu instance achieves values of 0.7061 and 0.7148, while the
best B iPACE instance achieves F1 values of 0.6966 and 0.7136, respectively. More
details are shown in Figure 4.16. Considering the F1p score, the order is unchanged,
with mSPA-PAM achieving 0.7942± 0.0914 and 0.8101± 0.0882, Guineu scoring
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0.5142 ± 0.314 and 0.529 ± 0.309, and B iPACE trailing with 0.4772 ± 0.248 and
0.4995± 0.2479, on GMA and MGMA references.

The comparatively low F1 score for all B iPACE variants can be explained by many
peaks that are reported as being absent, while they are present in either reference
alignment. Those absent peaks are counted as FNs and thus lead to a low Recall
value (see Appendix C.4). However, the B iPACE variants perform better when
considering TN and FP values. They report fewer peaks per peak group, resulting
in a more conservative alignment when compared to either the mSPA or SWPA
variants, at the expense of more TPs.

B iPACE achieves high Precision values for either reference (0.9049 and 0.9146),
but lacks in Recall (0.5174 and 0.5397), leading to the comparatively low F1 and F1p
scores, while B iPACE 2D has slightly lower Precision values (0.8588 and 0.8631) but
higher Recall (0.5841 and 0.607). Detailed numbers for the best instances are given in
Table C.3 on page 226. A more detailed table including individual parametrizations
of the best instances is available online5.

4.4.3. Chlamydomonas reinhardtii Dataset

The Chlamydomonas reinhardtii dataset (chlamy dataset I) was originally analyzed in
Doebbe et al. (2010). The experiment explored the difference in H2 production yield
between the C. reinhardtii wild type strain cc406 (WT) and the high H2-producing
strain Stm6Glc4 (MUT) at two different time points, namely before (T1) and during
(T2) the H2 production phase, with three replicates for each of the factor combinations
WT-T1, WT-T2, MUT-T1, MUT-T2, yielding a total of 12 samples. The stored original
samples of that experiment were prepared according to the protocol in Doebbe
et al. (2010) and then reanalyzed using a LECO Pegasus 4D time-of-flight mass
spectrometer (LECO, St. Joseph, MI, USA). The Pegasus 4D system was equipped
with an Agilent 6890 gas chromatograph (Agilent, Santa Clara, CA, USA).

Sample Acquisition

Splitless injection of 1 µl sample volume was conducted at 275°C injector temperature.
The gas chromatograph was equipped with a 30 m x 0.25 mm x 0.25 µm film thickness,
Rtx-5ms (Restek Corp., Bellefonte, PA, USA) capillary column used as the primary
column and a BPX-50 (SGE Incorporated, Austin, TX, USA) 2 m x 0.1 mm x 0.1
µm capillary column used as the secondary column. The temperature program of
the primary oven was set to the following conditions: 70 °C for 2 min, 4 °C/min
to 180 °C, 2 °C/min to 230 °C, 4 °C/min to 325 °C hold 3 min. The temperature
program of the secondary oven was set with an offset of 15 °C to the primary oven
temperature. The thermal modulator was set 30 °C relative to the primary oven and
used a modulation time of 5 s with a hot pulse time of 0.4 s. The mass spectrometer
ion source temperature was set to 200 °C and the ionization was performed at -70

5. http://maltcms.sf.net/pub/bipace2d
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eV. The detector voltage was set to 1600 V and mass spectra were recorded at 200
scans/second using a scanning range of 50-750 m/z.

Sample Processing

The samples were processed automatically by the LECO ChromaTOF software v.4.22
at a signal to noise (S/N) ratio of 100. The baseline offset was 0.8 and the two
peak widths were set to 0.2 s (as measured from baseline to baseline) and 15 s (first
dimension). By using the classification feature of the software, background peaks
originating from column bleed or solvent tailing were removed.

Analytes were putatively identified by database searches using the GMD, version
20100614 (Hummel et al. 2007). The minimum required similarity threshold for
assignment of a compound name was set to 600 on a scale from 0 for no similarity to
1000 for identity. The original ChromaTOF peak lists contained a total of 31695 peaks
for the 12 samples. All peaks with best matching library spectrum similarity below
600, flagged as ’Unknown’, were removed from further consideration. The original
peak lists were exported from ChromaTOF using one field (’R.T. (s)’) for the first and
second column elution time. We therefor introduced two separate columns for first
and second column elution time (’1st Dimension Time (s)’ and ’2nd Dimension Time
(s)’) to make them suitable as input to both mSPA and SWPA.

The resulting peak lists for each sample were further rectified by removing all peaks
with unclear GMD identifications containing an ’NA’. These steps were required
in order to make the peak lists compatible to mSPA’s and SWPA’s peak merging
preprocessing step, which was needed for the generation of the evaluation reference
alignments with GMA and MGMA. These unknowns would otherwise have lead to
false peak group assignments based on the peaks’ non-unique names. The removal
of ’Unknown’ peaks and rectification of ’NA’s reduced the number of peaks to a
total of 4860. The final GMA reference alignment contained 2723 peaks in 369 rows,
while the MGMA reference, using the parameters given in Table 4.3, contained 1629
peaks in 224 rows.

Manual Reference

To define the manual reference alignment, the reduced peak lists without ’Unknown’s
and ’NA’s were inspected and only peaks were kept that could be positively con-
firmed by assigned name and retention times within two of the three samples within
each factor combination of the experiment. For a number of unclear cases, we ad-
ditionally compared the mass spectra of the questionable peaks manually to check
for common characteristic mass fragments. The final manual reference alignment
contained 436 peaks grouped into 68 distinct rows.

The overlap of the three reference multiple alignments is visualized in Figure 4.17.
As expected, the MGMA reference is a perfect subset of the GMA reference. More
interestingly, there is a large overlap of the manual reference with the automated
methods’ reference alignments, supporting the claim that these automated methods

106



4.4. Results and Discussion

28 79 1015329 1300

MANUAL GMA

MGMA

Figure 4.17.: Euler diagram of the peak set overlap for chlamy dataset I for GMA,
MGMA, and manual multiple alignment reference generation.

for reference generation based on the assigned compound names capture most of the
peak alignments contained in the manual reference alignment. A small proportion
of 28 peaks (6.4% of peaks in the manual reference) occur exclusively within the
manual alignment and not within any of the automated methods. Of these, 24 peaks
were differently assigned in the automated methods versus the manual reference,
whereas 4 peaks were not reported at all by those methods. 149 peaks were found
missing from the manual reference in comparison to the GMA reference generation
method, due to the stricter selection criteria that were employed in order to exclude
potential false positive peak assignments.

The manual reference alignment, the peak reports for each sample as exported
from ChromaTOF, and the raw data files in netCDF format, are available as dataset
MTBLS376 from the MetaboLights database (Haug et al. 2013).

Results for C H L A M Y Dataset I

All three B iPACE variants using either the cosine or Pearson’s linear correlation
as similarity functions between mass spectra perform better than any Guineu,
mSPA, or SWPA variant (see Figure 4.18). B iPACE 2D achieves F1 scores of 0.6692
(GMA reference), 0.7662 (MGMA reference), and 0.7429 (MANUAL reference),
with D1 = 100 s, D2 = 0.5 s, thresholds T1 = 0.99 and T2 = 0.99, together with

6. http://www.ebi.ac.uk/metabolights/MTBLS37
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an MCS value of 2. The F1 values are visualized in Figure 4.18. B iPACE 2D also
achieves the highest Recall values of 0.5752 (GMA), 0.7079 (MGMA), and 0.7596
(MANUAL) while still maintaining reasonable values for Precision between 0.72
and 0.835 (see Appendix C.5).

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

● ● ●

●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●

●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.6692

●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●
●●●●●●

●●
●●●●●

●●●
●●●
●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.7430

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●

●●●●

●●

●●●●●●●●●●●●●● ●●●●●●

0.7662

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

G
M

A
M

A
N

U
A

L
M

G
M

A

B
iP

A
C

E

B
iP

A
C

E
 w

/ 2
D

 R
T

B
iP

A
C

E
 w

/ R
T

G
ui

ne
u

m
S

PA
 D

W
PA

S

m
S

PA
 P

A
D

m
S

PA
 P

A
M

m
S

PA
 P

A
S

m
S

PA
 S

W
PA

D

S
W

PA
 S

W
R

E

S
W

PA
 S

W
R

M

S
W

PA
 S

W
R

M
e

S
W

PA
 S

W
R

M
e2

F
1

Similarity Cosine of Angle Dot Product Pearson's Corr. Weighted Cos.

Figure 4.18.: F1 score for all parameterizations of the evaluated algorithms for
chlamy dataset I. B iPACE 2D performs clearly better than any of the other methods
using the dot product as pairwise similarity between mass spectra.

The considerably low values for Recall achieved by the different methods may be
due to the complexity of the biological samples and the large number of very closely
related peaks and associated peak areas. The best average pairwise F1p scores are also
achieved by B iPACE 2D (GMA: 0.7198± 0.0335, MGMA: 0.8293± 0.0247, MAN-
UAL: 0.864± 0.0606), with Guineu (GMA: 0.6434± 0.0419, MGMA: 0.7766±
0.0338, MANUAL: 0.8481± 0.0528) placing second and different mSPA variants
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placing third (GMA, mSPA-PAM: 0.5976 ± 0.1283, MGMA, mSPA-DWPAS:
0.6907± 0.1296, MANUAL, mSPA-SW-PAD: 0.7475± 0.1741).

Table C.4 on page 233 holds more detailed results for chlamy dataset I. Individual
parametrizations of the best instances are again available online7.

4.5. Conclusions

We have shown that B iPACE 2D is a competitive algorithm that is able to achieve
better precision and recall, as well as F1 and average pairwise F1p score values in
comparison to mSPA, SWPA, and Guineu on three out of the four evaluated
datasets. These three datasets were all acquired under homogeneous conditions,
while the dataset where B iPACE 2D did not outperform mSPA and Guineu

was acquired under heterogeneous conditions. Thus, B iPACE 2D should ideally
be applied to data acquired under the same conditions, but due to its low false
positive rate, it may still be a valid alternative for data acquired under heterogeneous
conditions as well.Concerning the parameters for B iPACE 2D, the weighted cosine
appears to be the most sensitive mass spectral similarity and should therefor be
used as the default. The MCS parameter was set to the minimum size of 2 in all
evaluated parameterizations, thus leading to all cliques being reported by B iPACE
and its variants. The D1 and D2 parameters should be set according to the expected
retention time standard deviation of the samples under comparison, in separation
dimensions one and two, respectively. Finally, the threshold parameters T1 and
T2 allow for fine-tuning of the sensitivity of the algorithm, where higher values
exclude potential matches earlier during the pairwise similarity calculation phase
of B iPACE. It is further notable that B iPACE 2D was on average 3 to 10 times
faster than any of the mSPA or SWPA variants for the larger and more complex
datasets (SWPA dataset I and chlamy dataset I, see Appendix C for details), while
consuming less memory. Guineu achieved comparable speed, but required more
memory. We have demonstrated the applicability of B iPACE 2D to small datasets
with a few compounds, as well as to larger datasets with hundreds to suspected
thousands of different compounds. B iPACE’s pairwise similarity calculation can
be run in parallel using multiple CPU cores to speed up its runtime. It has been
successfully tested on 250 files containing 100,000 peaks on commodity hardware
within 9 GBytes of random access memory. This qualifies B iPACE 2D as a good
candidate for automated medium to high-throughput applications in the field of
metabolomics and analytical chemistry.

We have further introduced a fast yet sensitive method for peak location and
filtering that can be used to generate input peak lists for B iPACE 2D. However,
this method still lacks a thorough evaluation on diverse GC×GC-MS datasets and
a comparison to the results achieved with other peak finding methods, such as the
method available in the propriertary vendor software ChromaTOF (LECO Corp., St.
Joseph, MI, USA).

7. http://maltcms.sf.net/pub/bipace2d
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5
Maltcms

We have already introduced methods for one- and two-dimensional chromatography-
mass spectrometry data in the previous chapters and have compared features between
specialized pipelines of the Modular Application Toolkit for Chromatography-Mass
Spectrometry (Maltcms) and other Open Source software. In this chapter, we
describe the architecture and additional features of Maltcms that have not been
mentioned yet.

We begin with a short summary of the requirements for Maltcms and its un-
derlying framework, the Common Runtime Object Support System (Cross) in
Section 5.1. We then describe Cross and the parallelization framework Maltcms
Parallel Execution System (Mpaxs) in detail and explain some of Cross’ central
data structures.

We close this chapter with an overview of the domain-specific implementation
Maltcms, that is based on Cross, in Section 5.2. We describe the main data
structures implemented in Maltcms and explain the different parts of functionality
that it provides.

5.1. Cross

Cross
1 was originally designed and implemented during work on ChromA (Hoff-

mann and Stoye 2009) as the basis for a server-side program for alignment and
visualization of GC-MS data with dynamic time warping (DTW). It is designed for
the definition, creation and execution of sequential workflows of fragment commands
that realize partial functionalities in a typical data processing workflow, such as the
one defined at the end of Chapter 2.

During the design and implementation of Cross, we identified the following
requirements:

• Platform independence;

1. http://sf.net/p/maltcmscross
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• Possibility for headless operation on servers without a graphical frontend;

• Simple and accessible application programming interface (API);

• No domain-dependent implementations (realized by Maltcms);

• Modularity through custom implementation of API interfaces and abstract
classes;

• No explicit requirement for a database environment;

• Dynamic implementation discovery through JAVA’s ServiceLoader facilities;

• Explicitly linear workflows for easier validation and accessibility;

• Self-describing workflow output for documentation and archivability.

These requirements allow Cross to be embedded in either server-side or client-
side programs as a library, allowing for easy customization and extension.

Cross has been implemented in the JAVA (Gosling 2013) programming language,
version 7. JAVA is an object-oriented programming language that is compiled into
intermediate bytecode. The bytecode is then executed by a virtual machine that is
operating system specific. The virtual machine interprets the JAVA bytecode and
accelerates heavily used parts of it by compiling the respective bytecode just-in-
time (JIT compilation) into platform-specific native code. Through optimization of
the bytecode, JAVA is nowadays often on par in terms of execution speed when
compared to C (Kernighan and Ritchie 1988) or C++ (Stroustrup 2013). However,
its object-based type system introduces additional overhead that generally leads to
higher memory requirements than C++.

JAVA was designed to combine portability, networking features, security and
concurrency with a simpler and more robust programming interface than C or C++.
It therefore does not allow direct access and manipulation of the program’s memory
via pointers, as C and C++ do, decreasing the risk for unintentional security flaws by
memory access violations.

Furthermore, JAVA already includes a very diverse standard library of objects and
methods for networking, input-output operations, parallelization, remote method in-
vocation (RMI), modularization (ServiceLoader), and concurrent and non-concurrent
data structures to exploit modern computers with multiple central processing units
(CPUs) and multiple CPU-core architectures.

5.1.1. Core Data Structures

The most important data structures in Cross are the FileFragment and its relative,
the VariableFragment. Both represent parts of data files that are either accessed from
disk or a network resource (read-only mode) or that are cached in memory or on
disk during creation (read-write mode).

A file fragment is an aggregation of variable fragment objects, identified by a
uniform resource identifier (URI)2, pointing to either a local or remote storage location,

2. http://tools.ietf.org/html/rfc3986
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Figure 5.1.: Cross File Fragment and Pipeline. a) Schematic of the file fragment data
structure. b) Schematic of a Cross-based workflow backed by a linear processing
pipeline.
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such as a public web server. File fragment objects may reference an arbitrary number
of source files, thereby allowing virtual aggregation of processing result variables of
previous fragment commands. Shadowing allows file fragments to hide the existence
of an upstream variable of the same name from downstream file fragments (see
Figure 5.1(a)). Data source implementations allow different URI extensions to be
handled, so that file fragment objects can exist as simple files on disk or within a
distributed database system.

Cross provides a thin layer on top of the netCDF (Rew and Davis 1990) JAVA
library3 in order to define, populate, and modify a file in memory with intermediate
caching, before it is written to file in one piece. Additionally, access to variable data
is handled agnostic to the actual file format backing the physical file by the data
source implementations that map the respective variable names to the ones suitable
for their supported data format. The loading of data from file is performed lazily,
with the option of caching the array data for faster repeated access. Variables also
support the chunked retrieval of their data to enable access to arrays in size that
exceed available main memory. This is primarily used for the access to GC×GC-MS
raw data files that can easily exceed four GB in size.

5.1.2. Mathematical Utilities and Statistics

The mathematical and statistical methods available in Cross and Maltcms are
provided by the Apache Commons Math library4. This library provides the t-test
(one- and two-sided, paired and unpaired) for comparisons between two groups, and
one-way ANOVA for the comparison of multiple groups. Additionally, it provides
access to common distributions, and descriptive statistics like quantiles, mean and
median of empirical distributions. The LOESS method used in Section 5.2.3 for
baseline estimation is also provided, among other interpolation methods, by the
same library.

Efficient methods for linear algebra and appropriate dense and sparse data struc-
tures are provided by the Colt library5.

5.1.3. Workflow Model

The CommandPipeline class is the main implementation that holds the AFragment-
Command instances for execution. It is invoked, processed, and monitored by the
DefaultWorkflow implementation. Cross provides an abstraction of a linear workflow,
limited to the transformation or rearrangement of input data into output data (see
Figure 5.1(b)). The relationship of input to output data in Cross can be determined
individually by each fragment command. A typical command would use a one-to-
one relationship between in and output file fragments, for example introducing a
new variable, thereby augmenting the corresponding input fragment. The number

3. http://www.unidata.ucar.edu/software/thredds/current/netcdf-java
4. http://commons.apache.org/proper/commons-math
5. http://acs.lbl.gov/software/colt

114

http://www.unidata.ucar.edu/software/thredds/current/netcdf-java
http://commons.apache.org/proper/commons-math
http://acs.lbl.gov/software/colt


5.1. Cross

of in and output file fragments processed by a fragment command can differ, thus
allowing map-reduce-like processing schemes or generally schemes with different
or equal parities, for example producing one result file from multiple input files.
Individual workflows can be connected by running a different configuration on the
output of a previously executed workflow. This also allows to create very large,
implicit processing networks, for more advanced use-cases.

A workflow in Cross is made up of a sequence of fragment command objects
that use file fragments as their in- and output type (see Figure 5.1(b)). Each fragment
command can itself represent a command sequence of other fragment commands, es-
sentially executing a sub-workflow within its output directory. Fragment commands
can run parallel or sequential computations by implementing java.util.Callable<T>, a
typed unit of computation that returns objects of type T upon completion. The paral-
lel execution can be delegated to the Mpaxs framework for distributed computation
in a grid system (see Section 5.1.8).

The end of execution of a fragment command serves as a checkpoint to the work-
flow monitoring the executing pipeline. Before a fragment command returns control
to the workflow, all pending jobs or sub-pipelines started by it must have terminated.
The workflow log is continuously updated during execution of a fragment command,
noting created resources and monitoring overall progress. Failure of individual
commands leads to an early and safe termination of the workflow.

The basic configuration of all workflow elements is performed using a Spring appli-
cation context created from an XML configuration (see Section 5.1.7), supplemented
by runtime properties.

Validation

Each fragment command can state its required variables explicitly using the class-
level annotations RequiresVariables, RequiresOptionalVariables, and it can state the
variables it provides to downstream commands using the annotation
ProvidesVariables. When a workflow instance is created from its configuration, the
workflow can optionally be checked for all required variables to be either provided
by input data fragments, or by at least one of the fragment commands. The checking
is performed in the order of declaration of the fragment commands. Thus, a fragment
command requesting a specific variable must be preceded either by other fragment
commands providing the required variables, or by input data that contains those
variables directly or transitively via its ancestor files, as defined in each fragment
file’s source_files variable.

Monitoring and Transformation

A workflow monitors the fragment commands it executes and notifies registered lis-
teners of various workflow-related events. These include the creation of primary and
secondary processing results, as well as general progress information. A workflow
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logs all completed tasks and their results in a distinct and unique (depending on con-
figuration) self-contained (except for initial input data) output directory. This output
directory contains all information necessary to re-run the workflow with the exact
same parameters and conditions. Workflows in Cross are therefore self-descriptive
and repeatable.

5.1.4. Caching

Cross provides a number of different caches for array data and higher-level data
structures for objects that are often required or expensive to create. Currently,
Ehcache6 is used to provide volatile in-memory and non-volatile, disk-based caches.
Additionally, Cross has a volatile in-memory cache based on SoftReferences for
access to array data. SoftReferences are released automatically by the JAVA virtual
machine when available heap memory runs low and thus allow the implementation
of a cache that exploits available memory as much as possible.

5.1.5. Modularity

Cross locates available implementations for API classes using JAVA’s ServiceLoader7.
This facility allows discovery of implementations of interfaces at runtime and is used
by Cross for the discovery of fragment command implementations, data source
implementations, and controlled vocabulary providers.

Cross additionally exposes OSGi-compliant information for deployment in mod-
ular systems based on OSGi8, such as the integrated development environment
Eclipse9 or JAVA application servers like GlassFish10. OSGi support was added to
Cross, Maltcms, and some of their dependencies with the help of Tobias Placht.

For direct deployment in NetBeans Rich Client Platform applications11 like Maui

(see Chapter 6), the Cross and Maltcms modules are also bundled in NetBeans
module format (nbm).

5.1.6. Controlled Vocabulary

Cross variables have simple string-based names. However, in different contexts,
the same variable name can have a different meaning. Thus, Cross supports name-
spaced, controlled vocabularies (CVs) for specific domains that translate a variable
placeholder name with a namespace (here: andims), such as andims.var.total_intensity
to the actual, CV-resolved name: total_intensity. The resolution mechanism can be
used for dimension names (andims.dimension.), attribute names (andims.attr.), unit
names (andims.units.), and variable names (andims.var.). The default namespace used

6. http://www.ehcache.org
7. http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
8. http://www.osgi.org
9. http://www.eclipse.org

10. https://glassfish.java.net
11. https://netbeans.org/features/platform/

116

http://www.ehcache.org
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
http://www.osgi.org
http://www.eclipse.org
https://glassfish.java.net
https://netbeans.org/features/platform/


5.1. Cross

by Cross and Maltcms is empty, e.g. var.source_files is resolved to source_files.
CV providers can hook into Cross via the ServiceLoader functionality and reserve
their own namespace for resolution. The CV support in Cross also allows depreca-
tion of variable names that have been replaced by a more concise term to alert users
and developers of possible incompatibilities.

5.1.7. Inversion of Control Container

Cross uses the Spring12 framework as a configurable factory for the assembly of
object graphs. Spring uses the inversion of control (IoC) paradigm to create, connect,
and configure other objects without their explicit knowledge of the factory. Instead,
each object can rely on its requirements to be fulfilled at runtime by the factory, thus
control is inverted, away from the object, and managed by the application context
factory. This simplifies the use of such a container, as most objects can be rather simply
structured plain old JAVA objects (POJOs). The assembly of the actual application is
performed by the IoC framework, using the dependency description within either a
textual XML file or as defined by annotations on the objects. The framework may
even be able to automatically assemble the object graph of an application if required
dependencies can be uniquely fulfilled by another object. This process is called
auto-wiring.

In case of Cross, Spring is mainly used for the construction of the processing
workflow and pipeline objects along with supporting objects and the fragment
commands. The latter ones perform the actual data processing, while the workflow
and pipeline objects provide the required infrastructure for validation, execution,
and auditing of intermediate results.

5.1.8. Parallelization

Cross uses the Mpaxs framework13 for transparent parallelization of Runnable and
Callable tasks either within the local virtual machine or on other remote machines that
are coordinated through remote method invocation (RMI), a JAVA-specific variant
of remote procedure calling (RPC). Mpaxs was originally developed during the
Bachelor’s thesis of Kai Bernd Stadermann for grid-based parallel processing. A
computing grid is a heterogenuous network of computers that are controlled by a
scheduling system. Users that want to execute programs on a grid computer submit
their job to the batch submission system. The scheduling system then assigns the
job to run on an available grid computer, depending on its workload and other
parameters. In case of Mpaxs, such a grid system should be compatible to the
standards defined by the Open Grid Forum14 and provide an implementation of the
distributed resource management application api (DRMAA) for JAVA.

12. http://projects.spring.io/spring-framework
13. http://sf.net/p/mpaxs
14. http://www.ogf.org
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Figure 5.2.: Schematic of parallel processing with Mpaxs.

Architecture

The basic components of Mpaxs are the master server, that runs within the same
process as the user’s software, and an arbitrary number of compute hosts that run
either locally as a separate process on the same computer or remotely on physically
different hosts within a local network (see Figure 5.2). The master server and the
compute hosts form a dynamic ad-hoc network, if an infrastructure for launching of
compute hosts is available, such as a DRMAA-compatible grid engine implementation
like Open Grid Engine15, Torque16 or others. Otherwise, the compute hosts have
to be started manually by the user or local administrators. Communication and
transfer of data between the master server and the compute hosts is handled via RMI
and serialization. Serialization is the process of transforming an object to a binary
representation, while deserialization is the opposite process to obtain an object from
its binary representation. All classes that should be amenable for parallelization have
to be either serializable, using JAVA’s default serialization protocol, or be externalizable,
implementing their own custom serialization protocol.

In the current implementation, the communication between server and compute
hosts is not encrypted since Mpaxs is primarily operated within a local grid. The
compute host however uses a unique session token for identification with the clients.

15. http://gridscheduler.sourceforge.net
16. http://www.adaptivecomputing.com/products/open-source/torque
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This token is required for every remote action performed, either from server or client
side, to avoid accidental hijacking of compute hosts by other master server instances
in the same grid environment.

Compute hosts are created on demand by the master server, up to a pre-configured
maximum number. The hosts are configured with an initial slot capacity, correspond-
ing to the maximum number of concurrent jobs that should be runnable on each host.
Then, jobs that are submitted for execution to the master server are distributed to
each available compute host using a fair round robin scheduling algorithm. After a
job has terminated, either normally or abnormally, the compute host reports the job’s
status back to the master server and also registers the job’s slot as available. Compute
hosts terminate and shut down after a user-defined time out period has passed if
they do not receive jobs. The compute hosts query the master server in defined time
intervals to see, whether he is still alive. They terminate after a given timeout if they
do not receive a reply from the master server to avoid orphan compute hosts in the
system.

The code that the compute hosts should execute does not have to be immediately
available, but rather should be made available below a given URL that needs to be
passed to the compute hosts on start up (the code base location). This URL can point
to a local or remote directory, e.g. on a public web server, that contains the required
libraries as jar files (zipped JAVA bytecode).

Mpaxs abstracts computational units as jobs. The master server scheduler submits
jobs to the next compute host registered with a positive workload capacity. Jobs
have a default priority that can be increased to allow scheduling of the job prior
to jobs with the next lower priority. They are initially submitted to an unbounded,
concurrent priority queue by the user and inserted according to their priority. Jobs
that should run repeatedly in defined intervals can be submitted as scheduled jobs.

Integration with JAVA’s Concurrency Utilities

In JAVA, a concurrent action can be implemented in one of two ways. Traditionally,
Runnable was the base interface for concurrent implementations with a single method
run. Due to the lack of a return type of run it complicated the implementation of side-
effect free concurrent programs. Thus, in JAVA version 5, the Callable, with a generic
return type of its call method was introduced for custom concurrent implementations.

Each job in Mpaxs needs at least a Runnable or Callable implementation, and
optionally, a configuration file, if the job is supplied as a jar archive. The Mpaxs-spi
module provides implementations of JAVA’s parallel ExecutorService for simplified
integration. Additionally, the CompletionService and ResubmissionCompletionService
offer the additional functionality of monitoring each submitted job’s status and
possible exceptions and failures during execution within the grid environment.
They both wrap JAVA’s ExecutorCompletionService but appear as standard Callable
implementations that allows to submit them to local, non-distributed ExecutorService
implementations. The ResubmissionCompletionService additionally allows to set a
maximum resubmission limit for jobs that fail due to random errors or timeouts
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within the grid system. Both implementations allow for a blocking operation that
waits for all jobs to complete or terminate abnormally, before returning their results
and a list of the failed jobs for further inspection.

Alternatively, upon submission to the master server, each job immediately returns
a custom and RMI-aware Future object that represents the result of the future compu-
tation to be executed by Mpaxs. This allows users of the API maximum flexibility
when designing parallel algorithms that should monitor each job’s status individually
and react to results as soon as they become available.

5.2. Maltcms

Maltcms
17 is a domain-specific implementation for chromatography-mass spec-

trometry and related fields, based on Cross.
Figure 5.3 shows the layers and subsystems upon which Maltcms is based. The

third party layer provides common and basic functionality, e.g. for charting, mathe-
matics, caching and distributed computing. Cross, as already introduced, provides
a number of modules for caching, pipeline and workflow functionality, file fragment
and basic data structure implementations, as well as the data source (IO provider)
framework. Maltcms provides high-level data structures for chromatograms, mass
spectra, metabolites, alignment anchors, peaks and peak groups. It furthermore pro-
vides different commands and individual modules for chromatogram and mass
spectra preprocessing, peak detection and integration, peak and chromatogram align-
ment, visualizations, statistical tests, and putative peak identification. We have already
described and compared the features of Maltcms that specifically apply for GC-MS
in Section 3.1 and GC×GC-MS and Section 4.1. We therefore focus our description
here on the features that have only been mentioned briefly before.

5.2.1. Data Structures

The main domain-specific data structures provided by Maltcms are provided in
the maltcms-datastructures module. Data structures for chromatograms abstract the
low-level structure of the file fragment-based data model as defined by Cross and
allow easier access to scan objects that model mass spectra with additional retention
time information. Scans are implementations of the more general concept of feature
vectors introduced in Maltcms to provide both specific and efficient direct access
to resources provided by the feature vectors, as well as to provide generic access
to resources based on defined names, similar to the variable names used in file
fragments. The feature vectors are serializable and thus amenable to parallelization
and disk-based caching. One- and two-dimensional chromatograms are created from
the corresponding file fragment and provide iterators for efficient, cached access
to mass spectra and other information, abstracted as one- or two-dimensional scan
objects, respectively. Random access to scans is also possible and eventually cached.

17. http://maltcms.sf.net
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Figure 5.3.: Software layers and subsystems of Cross and Maltcms. Cross pro-
vides interfaces and some default implementations for the domain-specific functionality
realized by Maltcms.

Especially for the large GC×GC-MS and comprehensive two-dimensional liquid
chromatography-mass spectrometry (LC×LC-MS) data sets, scan data is loaded
in larger chunks that are aligned to the modulation period to allow for efficient
anticipatory access to neighboring scans. Chromatograms also provide methods to
iterate over only a selected time range and to retrieve a subset of scans for a specific
MS fragmentation level.

Peaks are modeled as specialized feature vectors, storing information about their
area and baseline, as well as their retention time, signal-to-noise factor, area normal-
ization methods used to calculate their normalized area, and their type. The peak
type indicates whether a peak was integrated from the raw or filtered TIC or EIC
signals. A peak group can also contain other peaks. Since the peaks in the peak group
can also store a portion of the integrated signal, either TIC or EIC, peak groups can be
used to obtain a reconstructed group mass spectrum and other properties of the peak
group, like its mean retention time. Thus, they can hold the result of deconvolution
for individual ion channels over the full integration range of the peak group.

Other data structures available in Maltcms provide support for alignment maps,
sparse and dense arrays that are used for the CeMAPP-DTW calculations, as well
as data structures for metadata handling, like experiments and sample groups.

5.2.2. Filtering and Normalization

The data processing tasks in Maltcms often involve the processing of array data.
Especially for peak finding, a number of filters are available, providing for example
the CWT peak finder (see Section 4.2.1). Other available filters include the Savitzky-
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Golay filter, moving average and median filters, as well as morphological filters like
the top-hat filter (Lange et al. 2007). These filters are available independently of the
other data structures used in Maltcms.

5.2.3. Peak Detection and Integration

Maltcms contains a method for location and integration of peaks in one-dimen-
sional TIC data. The same method can repeatedly be applied to locate and integrate
peaks from multiple EICs as well. However, proprietary vendor software usually has
more context data available from the machine that was used for sample acquisition,
as well as having been optimized for a long time, which is why we rely mainly
on vendor provided peak lists in Maltcms. The TIC-based peak finding that we
describe here, was primarily used on GC-FID data (see Section A.3 for more details).

The peak finder employs a configurable sequence of initial filtering of the signal. By
default, it uses a Savitzky-Golay filter (Savitzky and Golay 1964) for signal smoothing.
It then locates minima within the signal in order to fit a non-linear baseline using the
LOESS method. This baseline is then used to estimate the local signal-to-noise ratio
for each point of the signal. Peaks are then detected by searching for local maxima
that exceed the user-defined signal-to-noise threshold and that are separated by a
user-defined minimum number of scans. Peak integration is performed either on the
baseline-corrected or on the raw signal. Peak bounds are determined by inspecting
first, second and third-order derivatives of the filtered signal. Peaks and areas are
reported in ANDI-CHROM peak format, in Maltcms feature XML format, and in
a simple CSV format. Figure 5.4 shows the result of peak finding applied to GC-FID
data, as visualized by Maui (see Chapter 6).

Peak Integration for GC×GC-MS Data

Based on the peak seeds that the CWT-based peak finder reports (see Section 4.2),
or based on peak locations provided by other methods, the ChromA4D pipeline
available in Maltcms uses a variant of seeded region growing (SRG) (Adams
and Bischof 1994) to locate two-dimensional peak bounds. This method addresses
some of the problems in GC×GC that are encountered with the related watershed
segmentation algorithm (Vivó-Truyols and Janssen 2010; Latha, Reichenbach, and
Tao 2011) by including mass spectral information during extension of the peak
bounds from the initial seeds. We are interested in finding the area of the reported
peaks for downstream quantitative comparison of samples within and between
experimental conditions. Since we also have the rich mass spectral information
available, we use that information in order to find the bounds of each peak by
comparing the mass spectra of neighboring feature vectors to the peak apex mass
spectrum, based on a suitable similarity. Mass spectrum similarities that are suitable
for this task have already been introduced in Section 3.3. Very similar neighboring
peaks may in fact originate from one chromatographic peak, but have been detected
as separate peaks in different modulation periods. The enhanced SRG method fuses
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Figure 5.4.: Result of TIC Peak Finder on GC-FID data using a Savitzky-Golay filter
with window width of 25 (2×12 + 1) points, LOESS baseline estimation using local
sliding window samples over 1000 points and a bandwidth of 0.3 with two robustness
iterations. Local SNR calculation used a threshold of 3, and a minimum apex-to-apex
peak separation window of 20 scans was used. Peak integration was performed over
the raw, uncorrected TIC (visualization shows only the estimated baseline).

the corresponding peak areas in both retention time dimensions if the similarity
between the representative mass spectra of each peak area is above a user-defined
minimum similarity threshold. Figure A.4(a) on page 181 shows the result of the
SRG and region merging on a GC×GC-MS dataset. The peak integration can be
performed after the bounds have been determined and neighboring peak areas above
the threshold have been fused. It is possible to integrate either the full intensities of
each mass spectrum within the peak area, or to integrate only the intensities of a
representative or significant subset of the masses occurring within the peak bounds,
possibly excluding masses related to TMS derivatization. We explicitly exclude
baseline and noise estimation in this context, since they can easily be realized as
preprocessing steps that lead to a baseline and noise-corrected GC×GC-MS dataset.
The seeded region growing and merging methods were implemented by Mathias
Wilhelm.

5.2.4. Alignment

We already described most of the alignment algorithms available in Maltcms,
like B iPACE, CeMAPP-DTW, and BiPACE 2D in Sections 3.3, 3.4, and 4.3. An
additional method based on DTW for two-dimensional TIC images from GC×GC-MS
data was developed and implemented by Mathias Wilhelm during the work on
his Bachelor thesis. Figure A.4(b) shows the result of aligning the 2D TICs of two
GC×GC-MS chromatograms using this variant of DTW as a pseudo-color differential
plot.
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5.2.5. Visualization

In order to visualize the various data structures and algorithm results, Maltcms

provides convenient methods to create false color images of similarity matrices with
custom color palettes and of 2D-TIC surfaces from GC×GC-MS data (see Figure
A.3(a) on page 180). Additionally, based on the JFreeChart library18, overlay and
co-plot visualizations of unaligned and aligned chromatogram TICs and EICs are
available (Hoffmann and Stoye 2009). These plots are complemented by statistical
box-and-whisker charts that are used for the visualization of retention time deviations
of aligned peak groups in B iPACE. Charts can be saved to common bitmap formats
like JPEG or PNG. Since Maltcms was designed to run without user-interaction,
all plots and charts are rendered in headless, offscreen mode.

5.2.6. IO Provider Implementations

The Cross IO provider framework requires that a file format can be represented
as a collection of named variables with additional content. Furthermore, variables
may define dimensions, which can be shared among variables to indicate similar
ranges or coordinate systems, following the recommendations of Unidata for a
defined, common data model (CDM) in netCDF files19. For Maltcms, the minimum
required variables are defined by the ASTM ANDI-MS and ANDI-CHROM standards
(Erickson 2000). Table 5.1 gives an overview of these variables and their data types.

netCDF

All variables contained in a netCDF file can be directly accessed by Maltcms. For
the datasets following the ANDI-MS conventions, however, each vendor exports the
data in slightly different ways, sometimes with uninitialized variables that contain de-
fault values. Thus, Maltcms requires only a minimal subset of the variables defined
in the ANDI-MS standard for operation. For GC×GC-MS, no standard was available
when support for it was added to Maltcms (see Table 5.2). Recently, however,
the standardization of mzML and its controlled vocabulary has been amended for
metabolomics and analytical technologies that play an important role for it (see Table
5.3). We have therefore adapted the terms used in Maltcms to those used in mzML.
A complete list of supported variables based on the ANDI-MS and ANDI-CHROM
standards is located in the cfg/cv directory within the Maltcms distribution20.

18. http://www.jfree.org/jfreechart
19. http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM
20. available at sf.net/p/maltcms/files/maltcms
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Table 5.1.: Overview of the ANDI-MS variable subset used by Maltcms. Optional variables are marked with (*). Variables with
data type float can be stored in either single or double precision. a, b: var.scan_index contains scan offsets for RCS storage into
var.mass_values and var.intensity_values. c: ms_level is originally part of the mzML CV, but has been included in the Maltcms

data model for preliminary access to MS/MS data.

Maltcms CV Name Type Data Type Dimension

var.total_intensity detector count integer scan_number
var.scan_acquisition_time time float scan_number
var.scan_index scan offsets into a,b integer scan_number
var.mass_valuesa mass float point_number
var.intensity_values b detector count integer point_number
var.mass_range_min* minimum mass of ms float scan_number
var.mass_range_max* maximum mass of ms float scan_number
var.ms_level*,c ms fragmentation level integer scan_number

Table 5.2.: Overview of the variable subset used by Maltcms for two-dimensional chromatography. Variables with data type
float can be stored in either single or double precision.

Maltcms CV Name Type Data Type Dimension

var.modulation_time modulation time float modulation_time
var.scan_rate ms acquisition rate (Hz) float scan_rate
var.first_column_elution_time 1st column time float scan_number
var.second_column_elution_time 2nd column time float scan_number
var.total_intensity_2d 2D TIC float modulation_time * scan_rate125
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mzXML

The mzXML format (Pedrioli et al. 2004) is supported as a read-only data source
via the JRAP library21 that is part of the Sashimi project under the stewardship
of the Seattle Proteome Center (SPC). Support for this file format is considered
deprecated and we currently advise users to use the msconvert program from the
Proteowizard project (Kessner et al. 2008) to convert mzXML files to mzML
format.

mzData

The mzData format (Orchard et al. 2005) is supported by a custom binding using
the JAVA architecture for XML binding (JAXB)22. It currently provides read-only
access to mzData files. Support for this file format is also considered deprecated and
we currently advise users to use the msconvert program from the Proteowizard

project (Kessner et al. 2008) to convert mzXML files to mzML format.

mzML

Maltcms supports reading and writing files in the mzML format via the jmzML
library (Côté, Reisinger, and Martens 2010). Together with the netCDF-based native
file format, mzML is the main supported format for data supplied to and written
by Maltcms. In order to standardize the controlled vocabulary (CV) of mzML for
metabolomics applications, a number of analytical techniques and terms were recently
added to the ontology (see Table 5.3). These include terms for multidimensional
chromatography-mass spectrometry and also a term for Maltcms to identify it as
the creator of mzML files (available as of Maltcms version 1.3.1). Since writing
to mzML involves some non-trivial changes between the data structures used in
Maltcms and jmzML, the required functionality is implemented in a custom
fragment command (MZMLExporter) and not within the data source implementation
itself.

OpenMS Feature XML

The OpenMS (Sturm et al. 2008) framework stores features, e.g. picked mass spectral
peaks, in an XML format. Maltcms provides a binding to the feature format using
JAXB generated classes that allows reading and writing of the format.

Comma and Tab-Separated Data

Comma or tab-separated value (CSV, TSV) data can be accessed and written by the
classes CSVReader and CSVWriter. CSV and TSV data can not be mapped directly
to the Maltcms data model.

21. http://sashimi.sourceforge.net/jrapdoc
22. https://jaxb.java.net
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Chapter 5. Maltcms

ChromaTOF Reports

The data provider for LECO ChromaTOF reports does not directly map to the
Maltcms data model. Instead, the data provider can be used to read ChromaTOF
reports individually and process them, before results are stored in the Maltcms

data model.

XLS and XLSX Formats

Maltcms has an IO provider supporting XLS (old Microsoft Excel format) and XLSX
(new, XML-based Microsoft Excel format). However, the data source implementation
for a particular format has to be provided by a service provider implementation to
be discoverable by the ServiceLoader mechanism at runtime. Currently, there is only
one implementation available for Agilent ChemStation (Agilent, Santa Clara, CA,
USA) peak reports in XLSX format.

Data Conversion

Maltcms is capable of transcoding from netCDF, mzXML, and mzData to netCDF
and mzML formats. However, only the minimal subset (see Table 5.1) is supported
for these data sources in the current implementation. The libraries used for accessing
mzML, mzData or mzML can always be used directly if access to features that are
not covered by the Maltcms data model is required.

5.2.7. Putative Peak Identification

Maltcms provides a parser for mass spectral database information in the tex-
tual MSP format, that is exportable from the NIST’s AMDIS software (Halket et al.
1999). The GMD (Hummel et al. 2007) also provides data in that format for non-
commercial, academic use. The databases are imported into files managed by the
object database system db4o23 and are represented there as metabolite objects with
mass spectrum, potential retention index and various metadata fields. The databases
can be queried by the Maltcms fragment command EIMSDBMetaboliteAssignment.
Imported databases can be inspected and searched with the MetaboliteBrowser ap-
plication, realized with the help of Rolf Hilker. Peaks in samples can be putatively
identified by using retention index information and any of the available mass spectral
similarities, such as the plain or weighted cosine. Additionally, metabolite candidates
from the database can be further evaluated to match additional criteria based on
a generic query pattern language that supports numerical ranges and fuzzy string
matching.

23. http://www.db4o.com
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6
Maui

In the previous chapter, we described Maltcms as a software framework for
the processing of data from chromatography-mass spectrometry experiments. We
now describe a graphical user interface (GUI) Maltcms User Interface (Maui) that
provides a user-friendly access to Maltcms and that provides additional features
for interactive data and result exploration, as well as meta-data organization and
statistical evaluation of processed results.

In Section 6.1 we describe the background of Maui’s development and define
its requirements. We then give an overview of the project model used by Maui in
order to model experiments, samples, peak data, alignments and statistical results in
Section 6.2.

We describe the available methods for data import and export for the interaction
with other tools in Section 6.3.

In order to provide a good user-experience, Maui provides a number of com-
prehensive interactive visualizations for raw and processed data. We describe these
visualizations in Section 6.4.

Maui extends the database support of Maltcms for putative identification of
peak mass spectra by providing views and actions for the custom creation and
curation of user databases that can readily be used either by Maltcms or Maui.
We describe this support in Section 6.7.

We conclude this chapter with the statistical methods that Maui currently provides
for the comparison of metabolite abundances between different samples in Section
6.6.

6.1. Background

During the development of Maltcms, there often existed the need to visualize and
inspect processing results to evaluate the performance of the different algorithms.
Therefore, an early prototype of the Maui was developed as a very simple application
based on the JAVA Swing graphics framework for the purpose of visualization.
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Chapter 6. Maui

However, this soon proved to be far from optimal, especially when new visualizations
had to be added. Thus, we evaluated different module systems available for the JAVA
platform in order to achieve a better structuring of the user interface components. The
two most renowned competing module systems currently on the market are the OSGI
module system1, as used by the Eclipse rich client platform (RCP) and integrated
development environment (IDE)2, and a custom module system that is used and
promoted by the NetBeans RCP and IDE3. Both systems allow to restrict the visibility
of classes inside a module to other modules, thereby promoting strong decoupling
of the components of an application. Decoupling and strong encapsulation are
generally regarded as good implementation patterns for larger software, where
the communication between modules should be based on contracts, as defined by
publicly available interfaces. The actual implementations of the interfaces remain
private and thus unreachable for other modules. This strong restriction can be relaxed
by introducing friend dependencies, that allow specifically defined modules to access
otherwise hidden classes within a friend module.

Another aspect of both OSGI and the NetBeans module system are the explicit
requirements for versioning of the modules. Versioning allows to explicitly check
modules for their compatibility, since each module states the minimum required
versions of other modules required by it to properly function. This also allows to
safely update modules without breaking backwards compatibility, while still allowing
to introduce new functionality that can be used by an updated dependent module.

We decided to use the NetBeans RCP due to its superior support for module
creation and maintenance and the user-friendly management of module updates.
The OSGI module system may be more powerful in some aspects, but nowadays
NetBeans includes an OSGI-compatible runtime container to execute OSGI or Eclipse
modules within NetBeans RCP applications. Additionally, NetBeans modules can
expose OSGI information, so that components developed on either platform and
module system can be deployed within the other system with ease. An example of
an application in the domain of chromatography-mass spectrometry that is mainly
used in the area of analytical chemistry and which is based on the OSGI-compatible
EclipseRCP is OpenChrom (Wenig and Odermatt 2010) (see Section 3.1).

For Maui, the following requirements were defined, based on the aforementioned
considerations:

• Modularity for easy extensibility and separation of concerns, realized by using
the module system provided by the NetBeans RCP;

• Comprehensive visualization with context sensitive actions and cross-linking
of data throughout the application;

• High interactivity, especially for large datasets and large samples;

• Simple integration of external tools;

1. http://www.osgi.org
2. http://eclipse.org
3. http://www.netbeans.org
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6.1. Background

• Integration of Maltcms and of Maltcms pipelines;

• Statistical analysis and visualizations.
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Figure 6.1.: Software layers and subsystems of Maui.

A conceptual overview of Maui’s software layers and modules is depicted in
Figure 6.1. The lowest level in this hierarchy is based on the Cross, Maltcms,
Mpaxs, and other associated third-party modules in NetBeans NBM format. These
are further complemented by the infrastructure modules provided by the NetBeans
RCP. They provide basic graphical user interface (GUI)-related modules for global
action and selection management, coordinated start-up and shut down of the appli-
cation, as well as the actual module system (the runtime container), and modules for
persistent settings and views.

The next level consists of the omics-base cluster that contains modules that provide
the common functionality between Maui, and the gel-based proteomics applica-
tion Proteus (unpublished, developed by Konstantin Otte). This layer provides a
common project API, a generic database access API and a corresponding reference
implementation for the object database db4o4. Additional functionality is provided
for the domain object-specific association of user interface components (views), gen-
eral interactive charting, backed by the data model, an interface to the statistical
software R5 via Rserve6 and the JAVA-based 3D viewer for PCA results, realized by
Leonhard Stutz originally for MeltDB (Kessler et al. 2013; Neuweger et al. 2008). We
describe the top level layer of Maui in the following sections.

4. http://www.db4o.com
5. http://www.r-project.org
6. http://rforge.net/Rserve

131

http://www.db4o.com
http://www.r-project.org
http://rforge.net/Rserve


Chapter 6. Maui

6.2. Project Model

Maui’s project model consists of two modules, one providing the API to the project
domain model, the other providing the implementation of the project backed by a
local db4o database.

The project API is modeled as a hierarchical tree structure, similar to a file system,
where the project node represents the root of the tree. Below the tree, different
container types hold data descriptors relevant to the project, such as sample and treat-
ment group containers, peak and peak group containers, and statistics containers. These
containers can contain other containers or individual descriptors, e.g. representing
chromatograms, peaks, peak groups, or statistical results. The implementation is not
specific to db4o and the data can easily be transferred to a hierarchical XML format
for backup or migration purposes.

This structure also allows other modules to add containers and descriptors to
the project database that are not already defined within the project implementation,
and to provide appropriate actions and views for them. Thus, a loose coupling of
modules with different responsibilities is achieved.

The project is also structured on the file system, containing folders for processing
results, imported or created user databases with metabolite information, and a folder
for custom scripts that extend Maui’s functionality (see Section 6.5.2).

6.2.1. Project Creation

The process of project creation in Maui is realized by a guided dialog, a wizard.
The current wizard is specialized for metabolomics experiments where different
treatment groups (factor combinations) and sample groups (technical replicates) can
be specified. A treatment group can contain multiple sample groups, one for each
biological specimen. Each sample group represents a biological replicate within its
treatment group, while the members of a specific sample group represent technical
replicates (repeated measurements of the same sample).

6.3. Data Import and Export

The integration of and interaction with other software tools is of crucial importance
for a diverse field such as metabolomics. Maui therefore supports a number of
different methods for data import and result export.

6.3.1. Peak Import

To access peak data, Maui provides support for peak reports exported by the LECO
ChromaTOF software. It is possible to import both one- and two-dimensional peak
data, either mapping the data onto existing chromatograms, or to directly create a
project from them. Furthermore, Maui can import one- and two-dimensional peak
reports created by Maltcms. Each imported peak report receives a unique identifier,
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6.3. Data Import and Export

(a) Peak search dialog in Maui. Peaks can
be searched across open projects based on
their name, their retention index and reten-
tion time ranges.

(b) Result view after peak search. The result after a peak
search is presented in tabular format, stating the chro-
matogram descriptor parent of each peak and its con-
taining project.

Figure 6.2.: Peak search dialog and result view in Maui.

so that each chromatogram can have an arbitrary number of attached peak lists, e.g.
to compare peak finding efficiency between different algorithms or parametrizations.

Peaks may be searched via the peak search dialog (see Figure 6.2(a)) across open
projects and by different criteria. After the search criteria, like name, retention index
range, and retention time range have been entered, the result is presented in tabular
form stating for each peak in which project it is contained and to which sample
it is associated (see Figure 6.2(b)). Peaks can be selected and the corresponding
information is available to all other components via the selection system provided by
the NetBeans platform.

6.3.2. Peak Group Import

In order to map peaks from different samples into peak groups, an external alignment
file in the form of a CSV file, following the format of the multiple-alignment.csv file
created by B iPACE and CeMAPP-DTW can be imported. Each row within that
file format represents a distinct peak group, while a column represents the associated
sample file name (without file extension). Each peak within a row is identified by its
associated mass spectrum index (scan_index) within the raw file. Due to the modular
structure, the mapping process can be customized to use other identifiers as well.

6.3.3. MeltDB

The web-based MeltDB LIMS and analysis system for metabolomics data (Kessler
et al. 2013; Neuweger et al. 2008) can be accessed from within Maui to allow limited
bidirectional exchange of peak data. However, this requires that the raw data has
been submitted to MeltDB and that a corresponding project exists. This is currently
not possible for GC×GC-MS experiments due to size constraints in the upload form
of MeltDB.
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Chapter 6. Maui

6.3.4. CSV Export

Maui provides export of annotated peak groups to a custom CSV format that can
be opened easily in common spreadsheet programs like Microsoft Excel for further
downstream processing or combination with other tool results. The peak areas in
these reports are normalized according to user settings for internal and external
sample normalization. Furthermore, the annotated ANOVA peak groups can be
exported together with the calculated p-values, F-values and degrees of freedom.
The method used for multiple testing correction is reported as well. The report also
includes putative peak identifications, corresponding majority group names, average
retention times, and further information.

6.4. Visualization

Maui provides different visualizations depending on the type of the domain object
in the current selection. Chromatograms with one separation dimension can be
visualized as TIC chromatograms with interactive selection and highlighting of
peak annotations and raw data. The mass spectra of selected scans are dynamically
updated within the mass spectra view. Figure 6.3 provides an impression of the
complete application, in this case for a project containing raw GC×GC-MS datasets
and peak descriptors imported from ChromaTOF for chlamy Dataset I (see Section
4.4.3).

Panel (a) of Figure 6.3 contains the project explorer that shows the project’s hi-
erarchical structure with four treatment groups at the top. The sample node for
mut_t1_a.cdf is expanded and shows the imported peak list container associated
to the sample, labeled by the name of the tool that imported the peak list. Panel (b)
is the welcome center component that provides a categorized, interactive guide to
getting started with Maui. Links within the component directly invoke the appro-
priate system action so that novice users do not need to known the complete menu
hierarchy to get started. Panel (c) shows the heatmap view for two-dimensional
chromatography data. The color scheme used for rendering can be selected and
customized via the ’Paint Scale’ button. The ’Range’ slider allows to restrict the
displayed range of values and thus can be used to improve the visualization. In Panel
(d), a mass spectrum selected within the chromatogram heatmap view is shown. The
selection is reflected in the context-aware navigator (e), that manages the currently
active selection for the view component that currently holds the focus within the
application.

Panel (f) in the middle of the application window shows the same chromatogram
as panel (c), but as a one-dimensional chromatogram, also with superimposed peak
markers. Upon selection of a scan in the panel, the next peak descriptor is automati-
cally added to the selection along with the raw data mass spectrum and the positions
of both mass spectrum and peak descriptor are highlighted. The selection is reflected
in the navigator if (f) is selected by clicking on it. The selections of panels (c) and (f)
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Chapter 6. Maui

have been successively added to the mass spectrum panel (h) at the bottom of the
application window. The mass spectrum panel supports different modes to react on
selection events occurring in other panels.

Panel (i) in the lower left of the application window shows the pipeline runner
component that is used to run Maltcms processing pipelines. Pipeline configura-
tions can be imported for a project and are editable from within the application (see
Figure 6.4(b)).

Finally, (j) is the main menu bar of the application that contains menu entries
for the update system and for common tasks and views. The toolbar (k) contains
shortcuts to create new files and projects, and to open existing projects.

6.4.1. Project Explorer

Figure 6.4(a) shows an expanded view of the project explorer. In panel (1), the
treatment group containers are visible, for the four distinct factor combinations of
wild type (wt), mutant (mut), time point 1 (t1) and time point 2 (t2). Is is possible to
assign a distinct color to each group, which is also used by the chromatogram and
peak group visualizations to better distinguish between them. Panel (2) just below
shows custom database containers that allow the grouping of different databases that
can be used for putative peak identification or for the calculation of retention indices.
Databases can be created directly from existing peak annotations. The next panel (3)
shows different statistics containers, in this case for the different reference multiple
alignments that were used in the evaluation of B iPACE 2D (see Section 4.4.3). For
each reference, the view shows statistical descriptors for ANOVA and for PCA, which
were each calculated using the Rserve backend in Maui. Panel (4) finally shows
an aligned peak group, in this case derived from the reference multiple alignment
generated by the mSPA method. Each group descriptor immediately shows how
many of the peaks within it were annotated with the majority name of the group
and how many samples the peak group covers (coverage). In this example, groups 5,
7, and 10 cover all samples and all peaks within the groups have identical putative
identifications.

The project explorer view also provides an alternative view of the actual files and
folders contained below the project location (see Figure 6.4(b)). The ’pipelines’ folder
contains imported configurations of Maltcms pipelines (1). The corresponding
files can be opened and edited in Maui. The actual elements of the linear pipeline
(2) can be customized individually. The general configuration of the pipeline (3) can
also be customized directly from within the editor. It is also possible to open and
edit the pipeline configuration and the corresponding XML file within a standard
text editor.

6.4.2. Chromatogram Views

We already showed two different chromatogram views in Figure 6.3. However, Maui

does not impose a principal limit on the number of open chromatogram views.
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6.4. Visualization

Figure 6.5 shows two separate one-dimensional chromatogram views (panel (a) and
the view below it). These views can show an arbitrary number of chromatograms
simultaneously. In this case, each view shows the chromatograms of one sample
group. The views can be synchronized (’Sync Viewport’), so that if the viewport of
one view is changed by the user, e.g. by zooming or panning the view, the other
view is updated to show the same viewport. Selection of mass spectra and peaks is
performed individually for each chromatogram within the views and the selected
peak descriptors and raw mass spectra are visible in the navigator view component
(b). The visibility of the selection, as well as of the peak descriptors, can be changed
from within the navigator.

Finally, the selection management allows to compare selected peak descriptors,
mass spectra, or complete peak groups within the mass spectrum view component (c).
This view is multi-modal. In its default mode of operation, only the objects contained
in the currently active selection are shown in it. If the ’Add’ button is toggled, the
user can add the next selected object to the mass spectrum view. By changing the
’Top’ button, the new mass spectrum can be added below the top one, for better
visual comparability. Additionally, the view allows to toggle between absolute and
relative intensity scaling of the mass spectra via the ’Abs/Rel’ button. If only two
mass spectra are shown, the ’Diff’ button toggles a difference view that immediately
shows which m/z values differ between them.
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Figure 6.6.: Synchronized EIC view for samples from three
different sample groups.

Figure 6.7.: Maui 2D chromatogram view with overlayed
peak markers imported from a ChromaTOF peak report.
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The one-dimensional chromatogram views also support a different mode of op-
eration that is shown in Figure 6.6. Again, it is possible to synchronize the view
ports of multiple instances of the chromatogram viewer (a), in this case each for a
separate treatment group (glucose, mannitol, succinat). Via the ’Settings’ button, the
views can be changed individually to display a subset of user-defined EICs, either
as separate series for each EIC (b), or in summation mode to display a summed ion
current. This mode is especially useful to compare the elution profiles of known or
suspected ion m/z values. Again, each series can be selected individually and the
corresponding full mass spectrum is selected and visualized in the mass spectrum
viewer (not shown).

The two-dimensional chromatogram views shown in Figure 6.7 illustrate that
their viewports can also be synchronized (a). Peak selection is reflected only in the
currently focused view component (b) and the selection is again managed in the
navigator (not shown) and mass spectrum views. For fast browsing of mass spectra,
one can switch the selection mode from ON_CLICK to ON_HOVER, so that the
selection is updated while moving the mouse over the chromatogram. The hover-
selection runs fluently even on GC×GC-MS raw files exceeding sizes of 6 GB. The
visualization can be customized with a user-selectable color gradient, background
color and displayed color range.

6.4.3. Peak Group Views

Figure 6.8.: Peak area boxplot for a peak group with significant fold changes between
factor combinations MUT-T2 and WT-T2 from chlamy Dataset I (see Section 4.4.3).
Normalization is based on the peak area of the Ribitol peak found in all samples.

Peak groups in Maui can be visualized based on the (normalized) area of each
peak in an area boxplot that is partitioned and colored according to the treatment
group of each peak’s originating sample. Figure 6.8 shows such a box plot for a peak
group that showed significant differences in average peak area between different
factor combinations. The plot immediately shows the coverage of the peak group
and the putative identification. Plots like this one can be exported as scalable vector
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graphics (SVG) for subsequent editing and conversion to the portable document
format (PDF), e.g. for publication purposes.

Alternatively, the peak retention times can be visualized as a boxplot, much like the
area box plot that we just described. This view is especially useful to check whether
the assigned peak groups are plausible. High deviations in retention times may be a
hint towards misalignment of the peaks that are part of the visualized peak group.

6.5. Data Processing

Maui provides different possibilities for the processing of data from metabolomics
experiments following the steps of the general pipeline defined in Section 2.6. Gen-
erally, modules can provide their own custom functionality based on the project
API objects, integrating directly with Maui and other modules. A second approach,
taken by the Maltcms integration is to control external tools from within Maui

and to provide facilities to import their processing results. The third approach is
provided by the scripting integration via Groovy, which can combine aspects of the
previous two, by having access to the Maui API objects directly, but at the same
time allowing easy integration of external tools via a simple scripting interface.

6.5.1. Maltcms Integration

Maui’s support for Maltcms allows to download the most recent development or
stable versions from the project website. The currently active version of Maltcms

can be set from within the options dialog for all open projects. Within the projects,
pipelines from the active version can be imported and are directly visible in the
project’s context menu for execution. After execution of a pipeline on the project
data, Maui provides different actions to selectively import Maltcms processing
results, like peak lists and multiple peak alignments.

6.5.2. Scripting

Maui supports scripting actions in the Groovy programming language7. Groovy is
fully compatible with JAVA and easy to integrate. Maui provides template groovy
scripts for the easy creation of actions on the project, chromatograms, and peak
group objects. The scripts have full access to Maui’s project API and can therefore
implement any desired functionality. It is hence easily possible to extend Maui with
custom code that should not be contained in a large-scale module or that is used
for rapid prototyping purposes. We have integrated the matched filter peak finding
method provided by XCMS (Smith et al. 2006) as a sample script within Maui to
demonstrate the integration of external tools.

7. http://groovy.codehaus.org
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6.6. Statistical Evaluation

Figure 6.9.: Maui 3D PCA view. PCA results calculated from aligned peak groups can
be interactively visualized, with projected loadings for inidividual peak groups (white
spheres) and individual samples (colored spheres). The group color corresponds to the
group color assigned in the project. Selection of the peak group within the 3D view
(a) is exposed to the selection lookup of the application, so that other components
can react to the selection. Here, the mass spectrum view is updated according to the
selection. Components of the plot can be hidden or shown individually (b).

The statistical backend of Maui is based on GNU R and the TCP/IP-based Rserve
server. Currently, ANOVA with multiple testing correction, and PCA are available as
statistical methods.

Figure 6.9 shows the visualization of a PCA descriptor that was calculated for
the manually annotated reference multiple alignment from the chlamy Dataset I
mentioned in Section 4.4.3 using the Rserve backend. The view is freely rotatable and
zoomable. Colored spheres correspond to individual samples, while white spheres
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correspond to the peak groups. The 3D view (a) highlights the currently selected
peak group. The selection is mirrored within the mass spectrum view, showing
the associated mass spectra of all members of the peak group simultaneously. The
visibility of each sample and of the peak groups can be toggled individually as in
(b). The current view can be saved as a PNG graphics file or to the system clipboard
for editing with other software tools.

6.7. Peak Identification

External databases in MSP format can be imported into a project using Maui. The
user interface allows to classify the database as a user or retention index database
and also provides a convenient view of all metabolites, their meta-data and mass
spectra. The view also allows in-place editing of the metabolite entries, as well as
inspection of their mass spectra and the comparison to mass spectra from imported
peak lists or selected raw spectra from chromatogram views. Custom user databases
can also be directly created within the project to manually create a reference database
from selected peaks.

Maui further provides a customizable search dialog to annotate all or a selected
peak list within a project against an arbitrary number of selected databases. If
available, a database classified as a RI database can be used to calculate RIs following
the method of Den Dool and Kratz (1963). Using RIs can drastically improve the true
positive rate of mass spectral identification against a database and also accelerates
the database search, as only candidate metabolites within a small range around the
calculated RI value need to be compared against the query. Maui allows to define
an RI window for the database search, if a suitable RI database is selected.

The mass spectral similarities available for database search are the weighted and
plain cosine scores already mentioned in Section 3.3, but other similarities can easily
be added through the module system.
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7
Summary and Outlook

Metabolomics is still a field in its infancy when compared to established fields like
genomics and also proteomics. It is therefore also rapidly growing, both in absolute
numbers concerning the number of papers published within a metabolomics context,
and technologically, where virtually every year manufacturers present new analytical
machinery with improved mass resolution and accuracy, higher scanning speed and
improved chromatographic separation. With new machinery available however, the
amount of data acquired and in need of processing grows at an enormous pace. With
large-scale projects like population cohort studies (Moayyeri et al. 2013) becoming
more frequent, the need arises for customized and scalable software and at the same
time both well-documented and publicly available algorithms.

In this thesis, we presented an overview of Open Source software that is avail-
able for the processing and analysis of GC-MS and GC×GC-MS data in different
steps of a typical metabolomics workflow. We specifically described the require-
ments for automatic peak matching and alignment among multiple samples and
presented algorithms that address the peak and chromatogram alignment problems
for GC-MS and GC×GC-MS chromatograms. We have described B iPACE in Chap-
ter 3, a novel algorithm based on a suitable pairwise peak similarity and a graph
theoretic approach to identify conserved and reliable cliques of peaks throughout
different chromatograms without requiring a reference chromatogram. B iPACE
was evaluated on its own and in conjunction with the DTW-based chromatogram
alignment algorithm CeMAPP-DTW against a manual reference multiple align-
ment and against a larger reference multiple alignment that was generated using
MeltDB (Kessler et al. 2013; Neuweger et al. 2008). The results were good and showed
that especially B iPACE reported conservative alignments with few false positives.
CeMAPP-DTW was demonstrated to work well in combination with B iPACE,
avoiding most of the overfitting that is often associated with DTW (Hoffmann et al.
2012). Nonetheless, even though it uses considerably less memory and computational
time than plain DTW, CeMAPP-DTW is still expensive to compute. An alterna-
tive is to apply B iPACE to all mass spectra of the chromatograms, while using a
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maximum retention time difference window to avoid the comparison of remote peak
mass spectra.

For the peak alignment problem for GC×GC-MS chromatograms, we developed
the B iPACE with two-dimensional retention time (B iPACE 2D) algorithm as an
extension of B iPACE, with a specialized peak similarity function handling two-
dimensional retention times. We evaluated B iPACE 2D and its relatives on four
diverse datasets and compared them against other publicly available algorithms with
superior results on three of the four datasets. B iPACE 2D performed well due to
its low false positive rate and generally high true positive rate in comparison to
the other methods. The dataset where B iPACE 2D did not perform better than
the other algorithms was acquired under varying temperature gradient conditions.
It is therefore not representative of typical metabolomics experiments, where the
temperature gradient is usually determined in advance to optimize the chromato-
graphic separation, and all subsequent samples are then acquired under identical
conditions. The parameterization of B iPACE 2D requires some domain knowledge
in advance, e.g. the expected standard deviations in the first and second retention
time dimensions, and some fine-tuning of the threshold levels for the retention time
deviations. The only other important parameter is the minimum clique size. We
showed, that the highest number of true positives is achieved with a minimum clique
size of 2, requiring that a clique covers at least two chromatograms. This also includes
all cliques with a better support over a larger number of chromatograms, thus, this
parameter only influences the reporting of cliques, not the clique-finding itself.

B iPACE 2D was faster and required less memory than any of the other methods,
but this does not hold true for much larger sample sizes and peak numbers. There,
the quadratic runtime complexity, both in the number of samples and in the number
of peaks, slows B iPACE 2D down in comparison to the other methods. This can
be alleviated by the parallelization of the pairwise similarity calculation and BBH
determination phases of the algorithm. One future improvement of B iPACE and
B iPACE 2D would thus be the parallelization of the clique finding and merging
phase by exploiting the k-partite properties of the graph, applying the ideas laid out by
Schmidt et al. (2009) to the restricted k-partite graph that B iPACE uses. Additionally,
the merging phase is partially order-dependent, if cliques share common peaks,
which may pose additional problems during parallelization. This can be relieved by
the BBH percentage criterion that also allows non-fully connected subgraphs to be
counted as cliques. Usually, only few cliques have such merge conflicts, so that a
different merging strategy than the current greedy approach could improve on the
already good results of the algorithm. It is also worth to consider whether parts of the
adjacency lists used to represent the connectivity of the graph could better be stored
outside of main memory in order to allow even larger data sets to be processed.
This could be realized by using a graph database like Neo4j1, which also allows for
parallel access and processing.

1. http://www.neo4j.org
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We further addressed the peak finding and integration problems for GC×GC-MS
data by the CWT peak finder and the SRG peak integration methods, described in
Chapters 4 and 5. These methods seem promising in both their execution speed
and in their preliminary results. However, they still lack a thorough evaluation
against other methods, most of which are proprietary methods only available in
commercial software like ChromaTOF and GCImage. Their benefit is that they are
trivially parallelizable and thus can be scaled almost linearly with the number of
chromatograms on a suitable computing grid infrastructure.

The methods that we presented in this thesis have been implemented in the
Open Source framework Maltcms and are available to the public without cost.
Maltcms and its underlying frameworks Cross and Mpaxs, together with a
host of accompanying Open Source libraries, enable other researchers to quickly cus-
tomize their own processing workflows. Even the integration of additional analytical
methods is possible since the primary data abstraction used by Cross is generic
and extensible enough to support additional formats and methods. Thus, Maltcms

can also be seen as a generic technology integration platform and not only as a
specialized framework for the processing of GC-MS, GC-FID (see Appendix A.3),
and GC×GC-MS data. Lately, the Maltcms framework was extended to support
LC×LC-MS as an analytical platform, also providing support to access MS data at
different fragmentation levels from MSN acquisitions. One advantage of Maltcms

over similar frameworks like MzM ine 2 or Guineu is that developers can easily
choose which modules they want to use and that it is independent of a GUI.

We described Maui, the GUI for Maltcms in Chapter 6. It provides a convenient
and extensible project model, supplemented with metadata for experiment grouping,
conditions and additional information, that can be used as a basis for the creation,
configuration, and execution of Maltcms workflows. Maui is easy to customize
and can be augmented easily with additional functionality through user modules. It is
based on an industry standard module system and adheres to the conventions of the
platform it was developed on. It is therefore possible to install all modules of Maui

into the regular NetBeans IDE and use Maui modules and functionality alongside
regular software projects. We think that especially this feature makes it a good
candidate for projects that want to implement and provide customized and extended
functionality, and this also makes it amenable especially to bioinformaticians and
domain specialists (see Appendix A.4 for an example). However, in their present
state, both Maltcms and Maui cover only some parts of the typical metabolomics
pipeline and need additional functionality that is provided by other software, e.g.
Rserve, XCMS, and ChromaTOF. Further improvements include the development and
integration of methods for quality control of large sample batches in both Maltcms

and in Maui to enable higher levels of automation in large scale studies.
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7.1. Future Directions

The present state of Open Source frameworks for metabolomics is very diverse. A
number of tools have seen steady development and improvement over the last years,
such as XCMS, MzM ine 2, and PyMS, while others are still being developed, such
as MzMatch, Guineu, and Maltcms. There is currently no framework available
that covers every aspect of metabolomics data preprocessing. Most of the frameworks
concentrate on one or a few analytical technologies with the largest distinction being
between GC-MS, LC-MS, and NMR. GC×GC-MS raw data processing is currently
only handled by Maltcms’ ChromA4D pipeline and by Maui, while Guineu

processes peak lists exported from LECO’s ChromaTOF software and offers statistical
methods for sample comparison together with a user-friendly graphical interface.

Since metabolomics is an evolving field of research, no framework captures all
possible use-cases, but it will be interesting to see which frameworks will be flexible
and extendable enough to be adapted to new requirements in the near future and
whether there will be a convergence of functionality between them. The Eclipse
Science Industry Working Group (IWG)2 may be a possible third-party organization
that allows different frameworks to retain their identity towards the community, but
at the same time provides the necessary infrastructure that allows to share common
functionality which is used and required by virtually all scientific projects. The
IWG currently contains a wide variety of projects from physics, chemistry, biology,
bioinformatics, and medicine. Maltcms and OpenChrom are part of the IWG
and have already profited from mutual exchange of ideas and best practices.

In order to combine experiments from multiple omics experiments, another level of
abstraction on top of local or web-service based tools for data processing, fusion, and
integration of metabolomics experiments is a necessary future requirement. Generic
workflow systems like Knime (Berthold et al. 2009), Taverna (Hull et al. 2006) or
Conveyor (Linke, Giegerich, and Goesmann 2011) offer integration of such resources,
augmented with graphical editors for point-and-click user interaction. However, due
to their generic nature these systems are far away from being as user-friendly as
applications designed for a specific data analysis task and require some expert
knowledge when assembling task-specific processing graphs.

One point that requires further attention is the definition and controlled evolution
of peak data formats for metabolomics, along with other formats for easier exchange
of secondary data between applications and frameworks. A first step in this direction
has been taken by Scheltema et al. (2011) by defining the PeakML format. However, it
is important that such formats are curated and evolved, possibly by a larger non-profit
organization like the Human Proteome Organization (HUPO) within its proteomics
standards initiative (PSI). Primary data is already acessible in a variety of different,
defined formats, the most recent addition being mzML (Martens et al. 2011) which is
curated by the PSI. Lately, mzML has been extended to handle terms from analytical
technologies that are mainly used in metabolomics research. The mzQuantML and

2. http://wiki.eclipse.org/Science_IWG
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mzTab initiatives try to establish comparable standards for secondary qualitative and
quantitative peak data (E. W. Deutsch 2012). To improve interoperability with other
open software, the realization of mzTab support for Maltcms and Maui, both as
input and output formats, should be addressed in the near future, once the standard
for mzTab in metabolomics has been finalized.

We think that the main contributions of this thesis, Maltcms and Maui, provide
a good starting point for customized metabolomics workflows and applications and
we hope that they will continue to prove themselves as valuable, developer-oriented
tools in computational metabolomics.
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“MPEA—metabolite pathway enrichment analysis.” Bioinformatics 27, no. 13
(July): 1878–1879.

158



Bibliography

Karp, Richard M. 1972. “Reducibility Among Combinatorial Problems.” In Complexity
of Computer Computations, edited by R. E. Miller and J. W. Thatcher, 85–103. New
York, London: Plenum Press.

Kastenmüller, Gabi, Werner Römisch-Margl, Brigitte Wägele, Elisabeth Altmaier, and
Karsten Suhre. 2011. “metaP-Server: A Web-Based Metabolomics Data Analysis
Tool.” Journal of Biomedicine and Biotechnology 2011:1–8.

Kernighan, Brian W., and Dennis M. Ritchie. 1988. The C programming language / ANSI
C Version. Englewood Cliffs, N.J.: Prentice Hall.

Kessler, Nikolas, Heiko Neuweger, Anja Bonte, Georg Langenkämper, Karsten Niehaus,
Tim W. Nattkemper, and Alexander Goesmann. 2013. “MeltDB 2.0–advances of
the metabolomics software system.” Bioinformatics 29, no. 19 (October): 2452–
2459.

Kessner, Darren, Matt Chambers, Robert Burke, David Agus, and Parag Mallick. 2008.
“ProteoWizard: open source software for rapid proteomics tools development.”
Bioinformatics 24, no. 21 (November): 2534–2536.

Kim, Seongho, Aiqin Fang, Bing Wang, Jaesik Jeong, and Xiang Zhang. 2011. “An
optimal peak alignment for comprehensive two-dimensional gas chromatogra-
phy mass spectrometry using mixture similarity measure.” Bioinformatics 27, no.
12 (June): 1660–1666.

Kim, Seongho, Imhoi Koo, Aiqin Fang, and Xiang Zhang. 2011. “Smith-Waterman
peak alignment for comprehensive two-dimensional gas chromatography-mass
spectrometry.” BMC Bioinformatics 12 (June): 235.

Kim, Seongho, and Xiang Zhang. 2013. “Comparative Analysis of Mass Spectral Sim-
ilarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas
Chromatography Mass Spectrometry.” Computational and Mathematical Methods
in Medicine 2013 (September).

Kitteringham, Neil R., Rosalind E. Jenkins, Catherine S. Lane, Victoria L. Elliott, and
B. Kevin Park. 2009. “Multiple reaction monitoring for quantitative biomarker
analysis in proteomics and metabolomics.” Journal of Chromatography B 877 (13):
1229–1239.

Koal, T., and H.-P. Deigner. 2010. “Challenges in Mass Spectrometry Based Targeted
Metabolomics.” Current Molecular Medicine 10, no. 2 (March): 216–226.

Koek, Maud M., Frans M. van der Kloet, Robert Kleemann, Teake Kooistra, Elwin R.
Verheij, and Thomas Hankemeier. 2011. “Semi-automated non-target processing
in GC × GC–MS metabolomics analysis: applicability for biomedical studies.”
Metabolomics 7, no. 1 (March): 1–14.

159



Bibliography

Koek, Maud M., Bas Muilwijk, Mariët J. van der Werf, and Thomas Hankemeier.
2006. “Microbial Metabolomics with Gas Chromatography/Mass Spectrometry.”
Analytical Chemistry 78, no. 4 (February): 1272–1281.

Kondrat, Richard W., Gary A. McClusky, and R. Graham Cooks. 1978. “Multiple
reaction monitoring in mass spectrometry/mass spectrometry for direct analysis
of complex mixtures.” Analytical Chemistry 50 (14): 2017–2021.

Krebs, Melissa D., Robert D. Tingley, Julie E. Zeskind, Maria E. Holmboe, Joung-Mo
Kang, and Cristina E. Davis. 2006. “Alignment of gas chromatography-mass
spectrometry data by landmark selection from complex chemical mixtures.”
Chemometrics and Intelligent Laboratory Systems 81 (1): 74–81.

Kruskal, Joseph B., and Mark Liberman. 1983. The symmetric time-warping problem: from
continuous to discrete. Edited by D. Sankoff and J. Kruskal. Time Warps, String
Edits, and Macromolecules: The Theory and Practice of Sequence Comparison.
Stanford: CSLI Publications.

Kueh, A.J., Philip J. Marriott, Paul M. Wynne, and John H. Vine. 2003. “Application
of comprehensive two-dimensional gas chromatography to drugs analysis in
doping control.” Journal of Chromatography A 1000, no. 1–2 (June): 109–124.

Lahl, Uwe, and Katrin Anne Hawxwell. 2006. “REACH—The New European Chemi-
cals Law.” Environmental Science & Technology 40 (23): 7115–7121.

Lange, Eva, Clemens Gröpl, Ole Schulz-Trieglaff, Andreas Leinenbach, Christian
Huber, and Knut Reinert. 2007. “A geometric approach for the alignment of
liquid chromatography—mass spectrometry data.” Bioinformatics 23, no. 13 (July):
i273–i281.

Lange, Eva, Ralf Tautenhahn, Steffen Neumann, and Clemens Gröpl. 2008. “Critical
assessment of alignment procedures for LC-MS proteomics and metabolomics
measurements.” BMC Bioinformatics 9, no. 1 (September): 375.

Latha, Indu, Stephen E. Reichenbach, and Qingping Tao. 2011. “Comparative analysis
of peak-detection techniques for comprehensive two-dimensional chromatogra-
phy.” Journal of Chromatography A 1218, no. 38 (September): 6792–6798.
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“MZmine 2: Modular framework for processing, visualizing, and analyzing mass
spectrometry-based molecular profile data.” BMC Bioinformatics 11, no. 1 (July):
395.

Podwojski, Katharina, Arno Fritsch, Daniel C. Chamrad, Wolfgang Paul, Barbara
Sitek, Kai Stühler, Petra Mutzel, Christian Stephan, Helmut E. Meyer, Wolfgang
Urfer, Katja Ickstadt, and Jörg Rahnenführer. 2009. “Retention time alignment
algorithms for LC/MS data must consider non-linear shifts.” Bioinformatics 25,
no. 6 (March): 758–764.

Prakash, Amol, Parag Mallick, Jeffrey Whiteaker, Heidi Zhang, Amanda Paulovich,
Mark Flory, Hookeun Lee, Ruedi Aebersold, and Benno Schwikowski. 2006.
“Signal Maps for Mass Spectrometry-based Comparative Proteomics.” Molecular
& Cellular Proteomics 5, no. 3 (March): 423–432.

Prince, John T., and Edward M. Marcotte. 2006. “Chromatographic Alignment of
ESI-LC-MS Proteomics Data Sets by Ordered Bijective Interpolated Warping.”
Analytical Chemistry 78, no. 17 (September): 6140–6152.

Ramaker, Henk-Jan, Eric N.M. van Sprang, Johan A. Westerhuis, and Age K. Smilde.
2003. “Dynamic time warping of spectroscopic BATCH data.” Analytica Chimica
Acta 498, no. 1–2 (November): 133–153.

Reddy, Christopher M., J. Samuel Arey, Jeffrey S. Seewald, Sean P. Sylva, Karin L.
Lemkau, Robert K. Nelson, Catherine A. Carmichael, Cameron P. McIntyre,
Judith Fenwick, G. Todd Ventura, Benjamin A. S. Van Mooy, and Richard Camilli.
2011. “Composition and fate of gas and oil released to the water column during
the Deepwater Horizon oil spill.” Proceedings of the National Academy of Sciences
(July).

164



Bibliography

Reichenbach, Stephen E., Xue Tian, Akwasi A. Boateng, Charles A. Mullen, Chiara
Cordero, and Qingping Tao. 2013. “Reliable Peak Selection for Multisample
Analysis with Comprehensive Two-Dimensional Chromatography.” Analytical
Chemistry 85 (10): 4974–4981.

Reichenbach, Stephen E., Xue Tian, Chiara Cordero, and Qingping Tao. 2012. “Fea-
tures for non-targeted cross-sample analysis with comprehensive two-dimensional
chromatography.” Journal of Chromatography A 1226 (February): 140–148.

Reiner, E., L. E. Abbey, T. F. Moran, P. Papamichalis, and R. W. Schafer. 1979. “Char-
acterization of normal human cells by pyrolysis gas chromatography mass
spectrometry.” Biological Mass Spectrometry 6 (11): 491–498.

Rew, Russ K., and Glenn P. Davis. 1990. “NetCDF: An Interface for Scientific Data
Access.” IEEE Comput. Graph. Appl. Mag. 10, no. 4 (July): 76–82.

Robinson, Mark, David De Souza, Woon Keen, Eleanor Saunders, Malcolm Mc-
Conville, Terence Speed, and Vladimir Likić. 2007. “A dynamic programming
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A
Application Examples

The following examples for GC-MS and GC×GC-MS are based on the Maltcms

framework, using the ChromA and ChromA4D configurations described in the
previous sections. In order to run them, the latest version of Maltcms, currently
1.3.1, needs to be downloaded and unzipped to a local folder on a computer. Addi-
tionally, Maltcms requires a JAVA1 runtime environment version 7 or newer to be
installed. If these requirements are met, one needs to start a command prompt and
change to the folder containing the unzipped Maltcms.

A.1. GC-MS

The experiment used to illustrate an example workflow for one-dimensional GC-MS
consists of two samples of standard compounds, which contain mainly sugars, amino
acids, other organic acids and nucleosides, measured after manual (MD) and after
automatic derivatization (AD) with the derivatization protocol and substances given
below. Group AD consists of a sample of n-alkanes standard and two replicates of
mix1, namely mix1-1 and mix1-2. We will show how ChromA can be used to find
and integrate peaks, as well as compare and align the peaks between the samples,
and finally how the alignment results can be used for quality control.

A.1.1. Sample Preparation

20 µL of each sample were incubated with 60 µL methoxylamine hydrochloride
(Sigma Aldrich) in pyridine (20 mg/ml) for 90 min at 60◦C before 100 µL of N-
Methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) (Macherey & Nagel) were
added for 60 min at 37◦C.

1. www.java.com/
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Appendix A. Application Examples

(a) Overlay of unaligned data sets, extracted from middle section within a time range of 1100 to 1700
seconds.

(b) Overlay with highlighted peak areas (without n-alkanes) after peak finding and integration. Zoomed
in to provide more detail.

Figure A.1.: TIC overlay plots of the raw GC-MS data sets.
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A.1. GC-MS

A.1.2. Acquisition and Data Processing

The samples were acquired on an Agilent GC 7890N with MSD 5975C triple axis
detector (Agilent, Santa Clara CA, USA). An Agilent HP5ms column with a length
of 30 m, a diameter of 0.25 mm, and a film thickness of 0.25 µm was used for the
gas-chromatographic separation, followed by a deactivated restriction capillary with
50 cm length and a diameter of 0.18 mm. Per sample, 1 µL was injected onto the
column in pulsed split-less mode (30 psi for 2 min). The flow rate was set to 1.5
mL/min of Helium. The linear temperature ramp started at 50 ◦C for 2 min until it
reached its maximum of 325 ◦C at a rate of 10 ◦C/min. The raw data were exported
to NetCDF format using the Agilent ChemStation software v.B.04.01 with default
parameters and without additional preprocessing applied.

A sample containing n-alkanes was measured as an external standard for manual
(MD) and automatic derivatization (AD) in order to be able to later determine reten-
tion indices for the other samples. The acquired data were exported to ANDI-MS
(NetCDF) format before ChromA was applied. The default ChromA pipeline
chroma.properties was run from the unzipped Maltcms directory with the follow-
ing command (issued on a single line of input):

> java -Xmx1G -jar maltcms.jar -i ../data/ -o ../output/ -f *.CDF \
-c cfg/pipelines/chroma.mpl

-i points to the directory containing the input data, -o points to the directory where
output should be placed, -f can be a comma separated list of filenames or, as in
this case, a wildcard expression, matching all files in the input directory having a
file name ending with .CDF. The final argument indicated by -c is the path to the
configuration file used for definition of the pipeline and its commands. An overlay
of the raw TICs of the samples is depicted in Figure A.1(a). The default ChromA
pipeline configuration creates a profile matrix with nominal mass bin width. Then,
the TIC peaks are located separately within each sample data file and are integrated
(Figure A.1(b)). The peak apex mass spectra are then used in the next step in order
to build a multiple peak alignment between all peaks of all samples by finding large
cliques, or clusters of peaks exhibiting similar retention time behaviour and having
highly similar mass spectra. This coarse alignment could already be used to calculate
a polynomial fit, correcting retention time shift for all peaks. However, the ChromA
pipeline uses the peak clusters in order to constrain a DTW alignment in the next step,
which is calculated between all pairs of samples. The resulting distances are used to
determine the reference sample with the lowest sum of distances to all remaining
samples. Those are then aligned to the reference using the warp map obtained from
the pairwise DTW calculations.

The pairwise DTW distances can easily be used for a hierarchical cluster analysis.
Similar samples should be grouped into the same cluster, while dissimilar samples
should be grouped into different clusters. Figure A.2 shows the results of applying
a complete linkage clustering algorithm provided by the Open Source statistical
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Figure A.2.: Clustering of GC-MS samples based on pairwise DTW similarities trans-
formed to distances. The samples are clearly separated into two clusters, one containing
the n-alkane standard samples, the other one containing the mix1 samples.

software R2 to the pairwise distance matrix. It is clearly visible that the samples are
grouped correctly, without incorporation of any external group assignment. Thus,
this method can be used for quality control of multiple sample acquisitions, when
the clustering results are compared against a pre-defined number of sample groups.

A.2. GCxGC-MS

The instructional samples presented in this section were preprocessed according to
the protocol given by Doebbe et al. (2010). The description of the protocol has been
adapted from that reference where necessary.

A.2.1. Sample preparation

The samples were incubated with 100 µl methoxylamine hydrochloride (Sigma
Aldrich) in pyridine (20 mg/ml) for 90 min at 37◦C while stirring. N- Methyl-N-

2. http://www.r-project.org

178

http://www.r-project.org


A.2. GCxGC-MS

(trimethylsilyl)-trifluoroacetamide (MSTFA) (Macherey & Nagel) was then added
and incubated for another 30 min at 37◦C with constant stirring.

A.2.2. Acquisition and Data Processing

The sample acquisition was performed on a LECO Pegasus 4D TOF-MS (LECO, St.
Joseph, MI, USA). The Pegasus 4D system was equipped with an Agilent 6890 gas
chromatograph (Agilent, Santa Clara, CA, USA). The inlet temperature was set to
275◦C. An Rtx-5ms (Restek, Bellefonte, PA, USA) capillary column was used with a
length of 30 m, 0.25 mm diameter and 0.25 µm film thickness as the primary column.
The secondary column was a BPX-50 (SGE, Ringwood, Victoria, Australia) capillary
column with a length of 2 m, a diameter of 0.1 mm and 0.1 µm film thickness. The
temperature program of the primary oven was set to the following conditions: 70◦C
for 2 min, 4◦C/min to 180◦C, 2◦C/min to 230◦C, 4◦C/min to 325◦C hold 3 min. This
program resulted in a total runtime of about 70 min for each sample. The secondary
oven was programmed with an offset of 15◦C to the primary oven temperature. The
thermal modulator was set 30◦C relative to the primary oven and to a modulation
time of 5 seconds with a hot pulse time of 0.4 seconds. The mass spectrometer ion
source temperature was set to 200◦C and the ionization was performed at -70eV. The
detector voltage was set to 1600V and the stored mass range was 50-750 mz−1 with
an acquisition rate of 200 spectra/second.

The raw acquired samples in LECO’s proprietary ELU format were exported to
NetCDF format using the LECO ChromaTOFr software v.4.22 (LECO, St. Joseph,
MI, USA). Initial attempts to export the full, raw data failed with a crash beyond
a NetCDF file size of 4GBytes. Thus, we resampled the data with ChromaTOF to
100 Hz (resampling factor 2) and exported with automatic signal smoothing and
baseline offset correction value of 1 which resulted in file sizes around 3GBytes per
sample. The samples presented in this section are named "Standard-Mix1-1" and
"Standard-Mix1-2" and were measured on different days (Nov. 29th, 2008 and Dec.
12th, 2008).

The default ChromA4D pipeline for peak finding was called from within the
unzipped Maltcms directory (issued on a single line of input):

> java -Xmx2G -jar maltcms.jar -i ../data/ -o ../output/ \
-f *.cdf -c cfg/pipelines/chroma4D.mpl

The pipeline first preprocesses the data by applying a median filter followed by
a top hat filter in order to remove high- and low-frequency noise contributions
(Figures A.3(a) and A.3(b)). ChromA4D then uses a variant of seeded region growing
in order to extend peak seeds, which are found as local maxima of the 2D-TIC. These
initial seeds are then extended until the mass spectral similarity of the seed and the
next evaluated candidate drops below a user-defined threshold, or until the peak area
reaches its maximum, pre-defined size (Figure A.4(a)). After peak area integration,
the pipeline clusters peaks between samples based on their mass spectral similarity
and retention time behaviour in both dimensions to form peak cliques (not shown)

179



Appendix A. Application Examples

(a
)

2D
-T

IC
p

lo
t

be
fo

re
fi

lt
er

s
w

er
e

ap
p

lie
d

.
L

on
g

ta
ili

ng
p

ea
ks

ar
e

vi
si

bl
e

w
it

hi
n

th
e

ve
rt

ic
al

d
im

en
si

on
.

A
d

d
it

io
na

lly
,h

ig
h

fr
eq

u
en

cy
no

is
e

is
p

re
se

nt
in

th
e

ra
w

ex
p

or
te

d
d

at
a,

w
hi

ch
is

ba
re

ly
vi

si
bl

e
at

th
is

re
so

lu
ti

on
.

(b
)

2D
-T

IC
p

lo
t

af
te

r
ap

p
lic

at
io

n
of

a
m

ov
in

g
m

ed
ia

n
fi

lt
er

w
it

h
w

in
do

w
si

ze
3

fo
r

sm
oo

th
in

g
of

hi
gh

-f
re

qu
en

cy
no

is
e

an
d

su
cc

es
si

ve
ap

pl
ic

at
io

n
of

a
to

p
ha

t
fil

te
r

w
it

h
a

w
in

d
ow

si
ze

of
30

1
fo

r
ba

se
lin

e
re

m
ov

al
in

or
de

r
to

re
du

ce
fa

ls
e

po
si

ti
ve

pe
ak

fin
di

ng
re

su
lt

s.

Fi
gu

re
A

.3
.:

V
is

ua
liz

at
io

ns
of

St
an

da
rd

-M
ix

1-
1

be
fo

re
an

d
af

te
r

si
gn

al
fil

te
ri

ng
w

it
h

th
e

C
h

r
o

m
A

4D
pr

oc
es

si
ng

pi
pe

lin
e.

180



A.2. GCxGC-MS

(a
)

2D
-T

IC
p

lo
t

of
St

an
d

ar
d

-M
ix

1-
1

af
te

r
p

ea
k

fi
nd

in
g

an
d

in
te

gr
a-

ti
on

w
it

h
se

ed
ed

re
gi

on
gr

ow
in

g
ba

se
d

on
th

e
co

si
ne

m
as

s
sp

ec
tr

al
si

m
ila

ri
ty

w
it

h
a

fu
si

on
th

re
sh

ol
d

of
0.

99
.P

ea
k

ar
ea

s
w

er
e

lim
it

ed
to

co
nt

ai
n

at
m

os
t

10
0

po
in

ts
.

(b
)

D
if

fe
re

nt
ia

l
p

lo
t

of
th

e
tw

o
St

an
d

ar
d

-M
ix

1
sa

m
p

le
s

af
te

r
D

T
W

al
ig

nm
en

t
ba

se
d

on
ve

rt
ic

al
TI

C
sl

ic
es

.Y
el

lo
w

co
lo

r
in

di
ca

te
s

si
m

ila
r

am
ou

nt
s

of
to

ta
li

on
in

te
ns

ity
in

bo
th

sa
m

pl
es

.G
re

en
sh

ow
s

a
su

rp
lu

s
in

St
an

da
rd

-M
ix

1-
1,

w
hi

le
re

d
sh

ow
s

a
su

rp
lu

s
in

St
an

da
rd

-M
ix

1-
2.

Fi
gu

re
A

.4
.:

V
is

ua
liz

at
io

ns
of

St
an

da
rd

-M
ix

1-
1

af
te

r
pe

ak
fin

di
ng

an
d

of
St

an
da

rd
-M

ix
1-

1
an

d
St

an
da

rd
-M

ix
1-

2
af

te
r

al
ig

nm
en

t
w

it
h

D
TW

.

181



Appendix A. Application Examples

as multiple peak alignments, which are then exported into csv-format for further
downstream processing. Another possible application shown in Figure A.4(b) is the
visualization of pairwise GCxGC-MS alignments using DTW on the vertical 2D-TIC
slices, which can be useful for qualitative comparisons.

A.3. Analytical Pyrolysis using GC-FID

Maltcms for Analytical Pyrolysis (Maltcms AP) is a specialized Maltcms

pipeline with a custom user interface written in Groovy. It performs TIC-based
peakfinding and integration, following the method outlined in Section 5.2.3, peak
area normalization to the global TIC of each chromatogram, and performs a multiple
peak alignment using B iPACE RT. In contrast to the application of B iPACE RT
to data acquired using a mass spectrometer as a detector, here, the detector is a
pyrolysis detector, measuring a single value at each time point (see Section 2.2.1 for a
short explanation). Maltcms AP can read input data following the ANDI-CHROM
conventions or from Agilent .D directory peak reports. It allows to execute each
individual step of preprocessing, peakfinding, and peak-alignment in parallel.

Maltcms AP is built and assembled by the maltcms-ap-distribution module of
Maltcms. On Unix compatible operating systems providing the Bourne-Again-
Shell (Bash), it can be started by calling

> bin/maltcms-ap.sh

from the installation base directory. On Microsoft Windows systems, it can be started
by invoking

> bin/maltcms-ap.bat

from the command prompt.
Maltcms AP opens a window with a number of tabs on the left hand side of

the user interface (see Figure A.5). The right hand side contains the log area used for
printing the output of Maltcms when it is running.

The import tab allows the user to select input files, either CDF files following the
ANDI-CHROM convention, or CSV peak reports generated using the Agilent Mass
Hunter software (Agilent, Santa Clara CA, USA), located below the chromatogram
specific .D directories.

Depending on the choice, the user interface will selectively enable or disable certain
tabs that are not applicable for the input file selection. Retention time subsetting,
peakfinding and -integration are only performed if the selected files are CDF files,
otherwise, only the peak-based multiple alignment using B iPACE RT is applied.
The preprocessing tab allows to set a specific retention time range to be processed,
or the complete chromatogram (−∞, ∞).

Maltcms AP is a good example how Maltcms and the components that it pro-
vides can be combined into an application that is tailored to a specific expert domain.
It has been applied to compare the different amounts of lignin and carbohydrates
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A.3. Analytical Pyrolysis using GC-FID

Figure A.5.: The Maltcms AP user interface showing the tab for peak finder param-
eter settings.

between different transgenic variants of the genus Populus (poplar). The samples
were acquired using a Py-2020iD micro-furnace pyrolyzer (Frontier Laboratories Ltd.,
Koriyama, Fukushima, Japan) mounted on an Agilent 6890 GC system. Two detec-
tors were coupled to the GC: a flame ionization detector and an Agilent 5973 mass
selective detector, using electron ionization. The experiments were conducted within
the group of Dr. Dietrich Meier, Thünen Institute of Wood Chemistry, Hamburg.

The goal of this work was to find genetic traits and regulatory mechanisms that
can be exploited to reduce lignin production, leading to a higher cellulose yield
which is an important precursor for downstream biofuel production.

Figure A.6 shows how Maltcms AP was used for the alignment of peaks de-
tected using the Agilent ChemStation software and separately for the peak detection,
integration, and alignment of the FID data. This preprocessing was required for
the following multivariate analysis with the software Unscrambler using PCA,
which showed promising results for the data-driven separation by sample origin.
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Appendix A. Application Examples

Figure A.6.: Usage workflow of Maltcms AP as applied in poplar biofuel yield
optimization. Adapted with permission from Dr. D. Meier, Hamburg.

A.4. Extension of Maui for Custom GC-MS Analysis

Based on Maltcms and Maui, Henning Kuich, member of the quantitative pro-
teomics and metabolomics platform group at the Max-Delbrück-Centrum for molec-
ular medicine in Berlin, developed customized modules and functionality to study
the daily torpor in mice. Torpor is a physiological hypometabolic state that allows
small animals with a high surface to volume ratio to conserve energy by lowering
their core body temperature. In contrast to winter hibernation that is used also by
larger mammals to conserve energy in times of fasting, the state of torpor is entered
and exited much faster, allowing small animals to conserve energy throughout day
and night.

Torpor is associated with fast changes in multiple vital paramaters, such as
metabolic rate, heart rate, core body temperature, breathing rate, and blood pressure
(Geiser 2004; Morhardt 1970; Swoap 2008).

In the torpor study the primary energy organs of the subject mice were analyzed by
global metabolic profiling at six stages during the torpor process. The samples were
acquired on a LECO Pegasus GC-MS TOF. Due to the number of states monitored
and the variety of tissue and body liquids that were analyzed, an automated and
flexible method for processing of the data was required. The required functionality
was implemented based on Maltcms and Maui and is provided in the form of
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A.4. Extension of Maui for Custom GC-MS Analysis

Figure A.7.: The extended Maui user interface used during the torpor study, showing
additional project level actions. Reproduced with permission from H. Kuich, Berlin.

modules that add additional actions and processing methods to the user interface
(see Figure A.7).
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Additionally to the quantities defined in Section 3.3 (F1, Precision, Recall), we defined
the following quantities to assess the coverage of a tool’s reported alignment groups
and associated peaks versus those contained in the reference alignment. Let |R| be
the number of peaks in the reference alignment and let |T| be the number of peaks
in a tool’s reported alignment. We define

CoverageR =
TP + FP + FN + TN

|R| (B.1)

as the fraction of peaks recovered from the alignment algorithm’s reported alignment
in relation to the number of peaks contained in the reference alignment. Thus,
|R| − (TP + FP + FN + TN) =no. of unmatched peaks in the reference alignment.

Equivalently, we define

CoverageT =
TP + FP + FN + TN

|T| (B.2)

as the fraction of recovered peaks from the alignment algorithm’s reported alignment
in relation to the total number of peaks contained in it. Thus, |T| − (TP + FP + FN +
TN) =no. of unmatched peaks in the reported alignment. The unmatched peaks were
not included in the FN values.

Ideally, CoverageR and CoverageT should have a value of 1, meaning that all peaks
could be assigned. A low CoverageR value may be a hint that an alignment algorithm
reports too few peaks that are contained in the reference alignment, while a low
CoverageT value is a hint that an alignment algorithm is reporting many more peaks
than those that are contained in the reference alignment.

Detailed tabular and graphical evaluation results for each dataset are presented
in the next sections. These include figures for precision and recall values, true and
false positive values (TP, FP), and true and false negative values (TN, FN). Additional
figures show the algorithms’ results concerning runtime and memory consumption,
and the reference (CoverageR) and tool (CoverageT) coverage.
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B.1. Result Tables

Table B.1.: Evaluation results for the Leishmania dataset.

Reference Method F1 Precision Recall TP FP TN FN Unm. in Ref. Runtime (s) Memory (MB)

Robinson BiPACE 0.9321 0.9783 0.8901 1126 25 94 107 32 0.24 302.60
Robinson BiPACE RT 0.9655 0.9933 0.9391 1188 8 111 69 8 0.24 302.55
Robinson CeMAPP-DTW 0.9072 0.8399 0.9863 1149 219 0 0 16 1.30 1495.98
Robinson CeMAPP-DTW w/ RT 0.9007 0.8289 0.9861 1134 234 0 0 16 1.28 1482.27
Robinson Robinson w/ RT 0.9976 0.9976 0.9976 1264 3 114 3 0 — —

Table B.2.: Evaluation results for the Wheat dataset. (*) MeltDB reference was generated from peaks detected by XCMS and the
MeltDB profiling method.

Reference Method F1 Precision Recall TP FP TN FN Unm. in Ref. Runtime (s) Memory (MB)

MeltDB* BiPACE 0.8425 0.9928 0.7317 5357 39 0 1924 40 3.06 3791.16
MeltDB* BiPACE RT 0.9671 0.9948 0.9409 6891 36 0 433 0 1.70 4472.38
MeltDB* CeMAPP-DTW 0.9344 0.9246 0.9444 6454 526 0 380 0 52.30 5233.44
MeltDB* CeMAPP-DTW w/ RT 0.9348 0.9435 0.9263 6459 387 0 514 0 54.15 6213.91
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Figure B.1.: CoverageR plot for the Leishmania dataset. Especially the CeMAPP-DTW
achieve very high coverage of the reference alignment groups, only Robinson’s method
performs better. B iPACE RT also has some variants that achieve coverages close to 1.
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Figure B.2.: CoverageT plot for the Leishmania dataset. The CeMAPP-DTW variants
reported many more alignment groups that were not contained in the reference
alignment. Therefore, they only achieve a tool group coverage below 0.1.
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BiPACE BiPACE RT Robinson w/ RT
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Figure B.3.: Precision and Recall plot for B iPACE for Leishmania dataset. Both B i -
PACE and B iPACE RT achieve very high precision and slightly lower recall values.
However, Robinson’s method is able to reach almost maximum values for either
performance measure.
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Figure B.4.: False Positives vs. True Positives for B iPACE and Robinson’s method for
the Leishmania dataset conditioned on minimum clique size (MCS). It is visible that
the TP performance of the B iPACE variants is maximized for low MCS values. The
minimum number of FPs is achieved for MCS = 8, requiring that reported cliques
cover all samples.
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Figure B.8.: False Positives vs. True Positives for CeMAPP-DTW for the Leishmania
dataset conditioned on partitioning and retention time tolerance (D). Partitioned
instances with a large retention time deviation parameter perform consistently better.
The partitioned instances that use no retention time deviation parameter perform even
better, hinting at the possibility that CeMAPP-DTW does not depend on retention
time information as much as B iPACE RT does.
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B.2. Leishmania Dataset Evaluation Results
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B.3. Wheat Dataset Evaluation Results
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Figure B.13.: CoverageR plot for the Wheat dataset. The cosine and Pearson’s correla-
tion achieve very high reference alignment coverage, when B iPACE RT is used. The
CeMAPP-DTW variants, as in the Leishmania dataset, achieve very high coverage of
the reference multiple alignment.
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Figure B.14.: CoverageT plot for the Wheat dataset. The B iPACE variants can assign
around 50% or more of their reported alignment groups to the reference alignment,
with some instances achieving coverage values close to 100%. The CeMAPP-DTW
variants can only assign well below 10% of their reported groups.
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Figure B.15.: Precision and Recall plot for B iPACE for the Wheat dataset. B iPACE
RT with the dot product as pairwise similarity clearly outperforms any other variant.
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Figure B.16.: False Positives vs. True Positives for B iPACE for the Wheat dataset
conditioned on minimum clique size (MCS). Here, the smallest clique size MCS = 2
does not differ much in the absolute number of TPs reported against the variants with
MCS = 5 and MCS = 10, indicating ,that the dataset contained very similar peak
groups with clear mass spectra and low retention time variance.
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B.3. Wheat Dataset Evaluation Results
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Figure B.20.: False Positives vs. True Positives of CeMAPP-DTW for the Wheat
dataset conditioned on partitioning and retention time tolerance (D). The partitioned
variants of DTW perform consistently better than the unpartitioned ones. The influence
on the number of TPs and FPs decreases for increasing values of the retention time
deviation parameter (D). The best results are actually obtained for the CeMAPP-
DTW variants that do not use the retention time deviation and threshold parameters.
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B.3. Wheat Dataset Evaluation Results
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Figure B.21.: False Positives vs. True Positives of CeMAPP-DTW for the Wheat
dataset conditioned on relative band constraint width (BC) and scope (BCScope). The
locally constrained instances achieve the best results in terms of many TPs and few
FPs.
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Figure B.22.: False Positives vs. True Positives of CeMAPP-DTW for the Wheat
dataset conditioned on anchor radius (R) and path weight (W). Constraining the DTW
path to the anchors (R = 0) in combination with a relaxed path weight (W = 2.25)
results in the highest TP and lowest FP numbers.
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C
Supplementary Material for B I PAC E 2 D

The following supplementary material compares the different reference alignment
generation methods GMA and MGMA used in the main manuscript and contains
further figures that show the evaluation results for all four datasets in greater detail.

We performed the following sequence of preprocessing steps to generate the
automated reference multiple peak alignments:

• Elimination of duplicate peaks (same as Kim, Koo, et al. 2011; Kim, Fang, et al.
2011)

• Calculation of peak group statistics based on compound names

• Classification of peak groups using ellipses as defined by σ
(
t1(P)

)
and σ

(
t2(P)

)
parameters (see main manuscript Section 2 for details)

• Exclusion of singleton peaks and peak groups outside of ellipses

• Generation of reference multiple alignments from peak groups sorted by me-
dian retention time

We determined the parameters used for the MGMA method by examining the
detailed standard deviation plots of the first

(
σ(t1

)
) and second column

(
σ(t2)

)
retention times for each peak group. We additionally considered the average, median
and standard deviation of all σ(t1) and σ(t2) values. This comparison showed a minor
variation of σ(t2) for all datasets, so that the corresponding parameter b for MGMA
was generally set to 0.5. We observed a much larger variation for σ(t1) especially
for the more complex datasets, mostly due to potentially false assignments of peak
names to signals eluting far away from the majority of peaks from the corresponding
peak group. Thus, we chose values for parameter a that were below the median value
of σ(t1) measured over all peak groups.

The corresponding material for each dataset is available in Supplementary File 2
of Hoffmann et al. (2014). This includes details on every peak group for each dataset
including boxplots of the individual variation in first and second dimension retention
times, grouped by peak name and chromatogram file. Additionally, the same file
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contains plots of the standard deviations of every peak group for the different datasets
along with the decision boundary and a graphical indication, whether a group is
considered an outlier group, or not, for easier comprehension of the tabular data that
is also supplied within the same file.

We then compared and visualized the peak sets and their assigned names (encoded
as plot symbol and color) for each of the four references (Figures C.1–C.4).

Additionally to the quantities defined in the main manuscript (F1, Precision, Recall),
we used the CoverageR and CoverageT quantities as defined in Appendix B to assess
the coverage of a tool’s reported alignment groups and associated peaks versus those
contained in the reference alignment.

A discussion comparing the advantages and disadvantages of pairwise alignment
performance evaluation, as used by Kim et al. (Kim, Koo, et al. 2011; Kim, Fang,
et al. 2011), and our row-wise multiple alignment evaluation is given in Section
C.7. Results of the pairwise evaluation are given in the respective sections for each
dataset.

C.0.1. Structure

The remainder of the supplementary material is structured as follows: In Section
C.1, we show figures comparing the peak sets of the GMA and MGMA reference
alignments, illustrating the need for improved filtering of peak groups, as performed
by MGMA, due to mis-assignments when relying solely on the maximum peak area
as a peak group assignment criterion. Additionally, these figures show the differences
between the reference multiple alignments side by side for easier visual perception
than the tabular data provided in Supplementary File 2 of Hoffmann et al. (2014).

Detailed evaluation results for each dataset are presented in Sections C.2–C.5.
These include summary tables of the best parametrizations, categorized by algorithm
and reference alignment, as well as figures for the average pairwise F1 score F1p,
as introduced by Kim et al., Precision and Recall values, true and false positive
values (TP, FP), and true and false negative values (TN, FN). Additional figures
show the algorithms’ results concerning runtime and memory consumption, and the
reference (CoverageR) and tool (CoverageT) coverage. All original tables and figures
are contained in Supplementary File 2 of Hoffmann et al. (2014).

In Section C.6, we give an overview of the parameters used in B iPACE 2D and
how to set up and configure the version of B iPACE 2D supplied with the framework
Maltcms for GC×GC-MS data.

Section C.7 contains a short discussion about the advantages and disadvantages of
the pairwise evaluation in contrast to our evaluation method.
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C.1. Comparison of G M A and M G M A Reference Alignments

C.1. Comparison of G M A and M G M A Reference Alignments
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Figure C.1.: Depiction of the peak sets of mSPA dataset I used for automatic multiple
alignment reference generation. Peaks with the assumed same identity across peak
reports share the same color and shape. The individual facets show, from left to right,
the common peaks (equivalent to the MGMA reference), peaks unique to the original
approach used in the mSPA publication (termed GMA in the main manuscript), and
the peaks that were not selected as references (unassigned). A total of 17 out of 83
peak groups were removed from further consideration if they had standard deviations
of σ(t1) > 50 and σ(t2) > 0.5 for the first and second column retention times. Details
are available in Supplementary File 2 below mSPA dataset I within the tabular file
compoundGroupStatsAll.txt.
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Figure C.2.: Depiction of the peak sets of mSPA dataset II used for automatic multiple
alignment reference generation. Peaks with the assumed same identity across peak
reports share the same color and shape. The individual facets show, from left to right,
the common peaks (equivalent to the MGMA reference), peaks unique to the original
approach used in the mSPA publication (termed GMA in the main manuscript), and
the peaks that were not selected as references (unassigned). Peak names had to be
omitted for this figure’s legend, but are available in Supplementary File 2 below mSPA
dataset II within the tabular file compoundGroupStatsAll.txt. A total of 182 out of 1039
peak groups were removed from further consideration if they had standard deviations
of σ(t1) > 55 and σ(t2) > 0.5 for the first and second column retention times.
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Figure C.3.: Depiction of the peak sets of SWPA dataset I used for automatic multiple
alignment reference generation. Peaks with the assumed same identity across peak
reports share the same color and shape. The individual facets show, from left to right,
the common peaks (equivalent to the MGMA reference), peaks unique to the original
approach used in the mSPA publication (termed GMA in the main manuscript),
and the peaks that were not selected as references (unassigned). Peak names had to
be omitted for this figure’s legend, but are available in Supplementary File 2 below
SWPA dataset I within the tabular file compoundGroupStatsAll.txt. A total of 8 out of 84
peak groups were removed from further consideration if they had standard deviations
of σ(t1) > 800 and σ(t2) > 0.5 for the first and second column retention times.
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Figure C.4.: Depiction of the peak sets of chlamy dataset I used for automatic
multiple alignment reference generation. Peaks with the assumed same identity across
peak reports share the same color and shape. The individual facets show, from left
to right, the common peaks (equivalent to the MGMA reference), peaks unique to
the original approach used in the mSPA publication (termed GMA in the main
manuscript), and the peaks that were not selected as references (unassigned). A total
of 146 out of 449 peak groups were removed from further consideration if they had
standard deviations of σ(t1) > 250 and σ(t2) > 0.5 for the first and second column
retention times. Further details are available in Supplementary File 2 below chlamy

dataset I within the tabular file compoundGroupStatsAll.txt
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Figure C.5.: Best pairwise average F1 instances for mSPA dataset I. B iPACE 2D
with the cosine score achieves the highest average pairwise values and has the lowest
standard deviation.
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Table C.1.: Best evaluation results for mSPA Dataset I for each algorithm variant concerning achieved F1 score on the GMA and
MGMA references. The best value within each column is highlighted in bold face. B iPACE 2D achieves the highest F1 and
Precision scores for either reference and also has the lowest memory usage. Guineu achieves the highest Recall value and lowest
runtime.

Reference Method F1 Precision Recall TP FP TN FN Unm. in Ref. Runtime (s) Memory (MB)

GMA BiPACE 0.9018 0.9477 0.8602 634 35 38 73 30 2.98 76.92
GMA BiPACE w/ 2D RT 0.9296 0.9551 0.9053 660 31 50 49 20 3.19 60.66
GMA BiPACE w/ RT 0.9191 0.9519 0.8884 653 33 42 62 20 3.41 74.02
GMA Guineu 0.9082 0.8701 0.9498 643 96 37 24 10 2.74 103.72
GMA mSPA DWPAS 0.8858 0.9199 0.8541 609 53 44 104 0 26.30 86.30
GMA mSPA PAD 0.8824 0.9075 0.8588 608 62 40 90 10 24.54 86.30
GMA mSPA PAM 0.9049 0.9378 0.8743 633 42 44 81 10 27.14 86.30
GMA mSPA PAS 0.8488 0.9000 0.8031 567 63 41 129 10 21.11 86.30
GMA mSPA SWPAD 0.9004 0.9429 0.8615 628 38 43 91 10 42.25 86.30
GMA SWPA SWRE 0.7248 0.8865 0.6130 453 58 13 176 110 11.48 86.40
GMA SWPA SWRM 0.6972 0.8436 0.5941 426 79 14 171 120 12.43 86.40
GMA SWPA SWRMe 0.6957 0.8360 0.5958 423 83 17 187 100 12.21 86.40
GMA SWPA SWRMe2 0.6957 0.8360 0.5958 423 83 17 187 100 12.50 86.40

MGMA BiPACE 0.9117 0.9481 0.8780 511 28 30 51 20 2.98 76.92
MGMA BiPACE w/ 2D RT 0.9472 0.9607 0.9340 538 22 42 28 10 3.19 60.66
MGMA BiPACE w/ RT 0.9322 0.9549 0.9105 529 25 34 42 10 3.41 74.02
MGMA Guineu 0.9165 0.8731 0.9645 516 75 30 19 0 2.74 103.72
MGMA mSPA DWPAS 0.8952 0.9212 0.8706 491 42 34 73 0 26.30 86.30
MGMA mSPA PAD 0.8925 0.9193 0.8673 490 43 32 65 10 24.54 86.30
MGMA mSPA PAM 0.9169 0.9361 0.8984 513 35 34 48 10 24.49 86.30
MGMA mSPA PAS 0.8606 0.9182 0.8099 460 41 31 98 10 21.11 86.30
MGMA mSPA SWPAD 0.9102 0.9441 0.8787 507 30 33 60 10 42.25 86.30
MGMA SWPA SWRE 0.7405 0.8771 0.6408 371 52 9 128 80 11.48 86.40
MGMA SWPA SWRM 0.7043 0.9270 0.5679 343 27 9 191 70 11.60 86.40
MGMA SWPA SWRMe 0.7065 0.8448 0.6071 343 63 12 142 80 12.21 86.40
MGMA SWPA SWRMe2 0.7065 0.8448 0.6071 343 63 12 142 80 12.50 86.40
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Figure C.9.: Runtime plot for mSPA dataset I. The B iPACE variants all vary between
3 and 7 seconds in runtime, while the mSPA variants vary between 20 and over 30
seconds. The SWPA variants have competetive runtimes around 10 seconds. Guineu

has the fastest runtimes below 3 seconds.
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Figure C.10.: Memory plot for mSPA dataset I. The B iPACE variants consume
between 60-85 MBytes of memory. The mSPA and SWPA variants consume around
80 MBytes of memory. Guineu consumes most at around 100-110 MBytes.
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Figure C.11.: CoverageR plot for mSPA dataset I. The majority of variants achieve
coverage values of > 90% of the reference peaks, meaning that they reported only a
small fraction of peaks that were not assignable to the reference alignment. The SWPA
variants fall behind with > 85% coverage.
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Figure C.12.: CoverageT plot for mSPA dataset I. Most instances can assign between
25 and 30% of their own reported peak groups to the reference alignment, except for
Guineu, which has a much higher median value and assigns over 80%.
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C.3. M S PA Dataset II Evaluation Results
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Figure C.13.: Best pairwise average F1 instances for mSPA dataset II. B iPACE 2D
with the weighted cosine score achieves the highest average pairwise values and has
the lowest standard deviation.
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Table C.2.: Best evaluation results for mSPA Dataset II for each algorithm variant concerning achieved F1 score on the GMA and
MGMA references. The best value within each column is highlighted in bold face. B iPACE 2D achieves the highest F1 scores.
B iPACE has the highest Precision scores for either reference and also has the lowest runtime. Guineu achieves the highest
Recall value.

Reference Method F1 Precision Recall TP FP TN FN Unm. in Ref. Runtime (s) Memory (MB)

GMA BiPACE 0.6476 0.7435 0.5737 1032 356 310 217 550 3.36 116.02
GMA BiPACE w/ 2D RT 0.6654 0.7235 0.6160 1073 410 313 209 460 3.62 114.73
GMA BiPACE w/ RT 0.6646 0.7218 0.6157 1064 410 327 234 430 3.60 95.93
GMA Guineu 0.6576 0.6492 0.6663 1090 589 240 116 430 3.51 199.51
GMA mSPA DWPAS 0.6477 0.6770 0.6209 1048 500 277 240 400 138.48 180.80
GMA mSPA PAD 0.5971 0.6273 0.5697 936 556 266 302 405 165.45 180.40
GMA mSPA PAM 0.6638 0.6918 0.6379 1073 478 305 229 380 159.42 174.00
GMA mSPA PAS 0.6384 0.6891 0.5945 1022 461 285 237 460 149.73 176.30
GMA mSPA SWPAD 0.6375 0.6578 0.6183 1019 530 287 234 395 217.93 188.00
GMA SWPA SWRE 0.6257 0.7323 0.5462 952 348 374 256 535 98.05 211.60
GMA SWPA SWRM 0.6252 0.7362 0.5432 949 340 378 263 535 98.03 211.60
GMA SWPA SWRMe 0.6244 0.7330 0.5438 950 346 372 257 540 100.15 211.60
GMA SWPA SWRMe2 0.6244 0.7330 0.5438 950 346 372 257 540 101.26 211.60

MGMA BiPACE 0.7362 0.7922 0.6877 808 212 213 102 265 3.36 116.02
MGMA BiPACE w/ 2D RT 0.7510 0.7833 0.7213 828 229 223 95 225 3.64 98.17
MGMA BiPACE w/ RT 0.7510 0.7805 0.7237 825 232 228 100 215 3.99 98.85
MGMA Guineu 0.7390 0.7218 0.7570 838 323 170 39 230 3.58 196.18
MGMA mSPA DWPAS 0.7350 0.7321 0.7380 817 299 194 105 185 162.23 188.00
MGMA mSPA PAD 0.6785 0.6800 0.6769 729 343 180 138 210 169.35 174.00
MGMA mSPA PAM 0.7389 0.7412 0.7366 822 287 197 94 200 159.42 174.00
MGMA mSPA PAS 0.7108 0.7353 0.6879 778 280 189 108 245 149.73 176.30
MGMA mSPA SWPAD 0.7198 0.7175 0.7221 795 313 186 91 215 187.00 187.70
MGMA SWPA SWRE 0.7072 0.8087 0.6283 727 172 271 130 300 98.05 211.60
MGMA SWPA SWRM 0.7050 0.8105 0.6238 723 169 272 131 305 98.03 211.60
MGMA SWPA SWRMe 0.7053 0.8101 0.6245 725 170 269 131 305 100.15 211.60
MGMA SWPA SWRMe2 0.7053 0.8101 0.6245 725 170 269 131 305 101.26 211.60
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Figure C.17.: Runtime plot for mSPA dataset II. The B iPACE variants and Guineu

all have runtimes below five seconds. The SWPA variants run about 100 seconds,
while most of the mSPA variants have runtimes exceeding 150 seconds.
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Figure C.18.: Memory plot for mSPA dataset II. The mSPA, SWPA, and Guineu

variants all use about 180-200 MBytes of memory, while most B iPACE instances using
the cosine, dot product, and Pearson’s linear correlation as mass spectral similarities
use around 100-120 MBytes of memory.
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Figure C.19.: CoverageR plot for mSPA dataset II. The best B iPACE, Guineu, and
mSPA instances achieve a coverage of around 85% concerning the peaks contained in
the reference alignment, while SWPA achieves lower numbers.
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Figure C.20.: CoverageT plot for mSPA dataset II. Here, the best B iPACE variants
using the dot product can assign the largest number (85%, 52%) of their aligned peaks
to the reference alignments, while the other methods have considerably lower numbers.
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Figure C.21.: Best pairwise average F1 instances for SWPA dataset I. mSPA-PAM
achieves the highest average pairwise values and has the lowest standard deviation. All
other methods show a considerably large standard deviation and rather low median
values for the pairwise F1 score.
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Table C.3.: Best evaluation results for SWPA Dataset I for each algorithm variant concerning achieved F1 score on the GMA
and MGMA references. The best value within each column is highlighted in bold face. mSPA-PAM achieves the highest F1,
Precision and Recall scores. Guineu has the lowest runtime and the B iPACE variants consume the least amount of memory.

Reference Method F1 Precision Recall TP FP TN FN Unm. in Ref. Runtime (s) Memory (MB)

GMA BiPACE 0.6584 0.9049 0.5174 609 64 87 424 144 3.39 93.34
GMA BiPACE w/ 2D RT 0.6953 0.8588 0.5841 663 109 84 424 48 4.96 92.41
GMA BiPACE w/ RT 0.6966 0.8801 0.5764 668 91 78 427 64 3.97 91.06
GMA Guineu 0.7061 0.8163 0.6221 693 156 58 309 112 3.15 131.87
GMA mSPA DWPAS 0.6732 0.8408 0.5613 618 117 110 483 0 38.27 116.20
GMA mSPA PAD 0.6656 0.8413 0.5506 615 116 95 486 16 35.70 116.20
GMA mSPA PAM 0.8366 0.9397 0.7538 888 57 93 242 48 41.16 116.20
GMA mSPA PAS 0.7994 0.9206 0.7064 823 71 92 310 32 31.23 116.20
GMA mSPA SWPAD 0.7657 0.9087 0.6616 776 78 77 333 64 30.18 116.20
GMA SWPA SWRE 0.5212 0.8315 0.3796 454 92 40 582 160 18.43 115.40
GMA SWPA SWRM 0.5220 0.7904 0.3897 445 118 68 569 128 18.81 115.40
GMA SWPA SWRMe 0.5178 0.8138 0.3797 437 100 77 618 96 19.21 115.40
GMA SWPA SWRMe2 0.5187 0.8172 0.3799 438 98 77 619 96 19.43 115.40

MGMA BiPACE 0.6788 0.9146 0.5397 578 54 75 365 128 3.39 93.34
MGMA BiPACE w/ 2D RT 0.7127 0.8631 0.6070 624 99 73 372 32 4.96 92.41
MGMA BiPACE w/ RT 0.7136 0.8834 0.5985 629 83 66 374 48 3.97 91.06
MGMA Guineu 0.7148 0.8181 0.6347 643 143 44 258 112 3.15 131.87
MGMA mSPA DWPAS 0.6814 0.8360 0.5750 571 112 95 422 0 36.44 116.20
MGMA mSPA PAD 0.6785 0.8519 0.5637 575 100 80 429 16 35.70 116.20
MGMA mSPA PAM 0.8517 0.9475 0.7735 830 46 81 211 32 41.16 116.20
MGMA mSPA PAS 0.8129 0.9310 0.7214 769 57 77 265 32 31.23 116.20
MGMA mSPA SWPAD 0.7807 0.9169 0.6797 728 66 63 279 64 30.18 116.20
MGMA SWPA SWRE 0.5301 0.8294 0.3895 423 87 27 519 144 18.43 115.40
MGMA SWPA SWRM 0.5194 0.7791 0.3895 402 114 54 518 112 18.23 115.40
MGMA SWPA SWRMe 0.5185 0.8093 0.3815 399 94 60 567 80 19.21 115.40
MGMA SWPA SWRMe2 0.5195 0.8130 0.3817 400 92 60 568 80 19.43 115.40
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Figure C.25.: Runtime plot for SWPA dataset I. The runtime of the B iPACE instances
varies between 3 and 4 seconds, while Guineu runs in close to 3 seconds. The mSPA
variants all run for at least 30 seconds, some even for more than 45 seconds. SWPA
variants vary in runtime around 20 seconds.
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Figure C.26.: Memory plot for SWPA dataset I. The SWPA and mSPA variants
consume around 115 MBytes of main memory. The B iPACE instances show a larger
variation, with a majority consuming between 70 and 80 MBytes. Some instances
require larger amounts of memory due to more relaxed parameters and due to the
mass spectral similarity used.
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Figure C.27.: CoverageR plot for SWPA dataset I. The reference coverage for the
B iPACE and mSPA variants varies between 90% and almost 100%, while SWPA
covers at most slightly more than 90% of the peaks contained in the reference. Thus, the
mSPA and B iPACE variants achieve a considerably larger coverage of the reference
alignment.
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Figure C.28.: CoverageT plot for SWPA dataset I. Here, the tool coverage shows
that most methods report many more aligned peak groups than are contained in the
reference alignment. A high value, like in the case of B iPACE using the dot product
similarity indicates, that not many peak groups were actually found, but those that
were, could be assigned to 75% and 68% of reference peak groups, respectively.
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Figure C.29.: Best pairwise average F1 instances for chlamy dataset I. B iPACE 2D
with the weighted cosine score achieves the highest average pairwise values and has
the lowest standard deviation.
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Table C.4.: Best evaluation results for chlamy Dataset I for each algorithm variant concerning achieved F1 score on the GMA,
MANUAL, and MGMA references. The best value within each column is highlighted in bold face. B iPACE 2D achieves the
highest F1 and Recall scores, while B iPACE gains the highest Precision.

Reference Method F1 Precision Recall TP FP TN FN Unm. in Ref. Runtime (s) Memory (MB)

GMA BiPACE 0.6507 0.8466 0.5284 1612 292 1085 731 708 3.92 110.97
GMA BiPACE w/ 2D RT 0.6692 0.7998 0.5752 1702 426 1043 585 672 4.78 107.59
GMA BiPACE w/ RT 0.6482 0.8086 0.5408 1622 384 1045 633 744 4.32 111.41
GMA Guineu 0.5401 0.6844 0.4461 1390 641 671 370 1356 5.00 206.37
GMA mSPA DWPAS 0.5923 0.7668 0.4824 1401 426 1098 939 564 190.89 157.90
GMA mSPA PAD 0.5693 0.7412 0.4621 1346 470 1045 979 588 130.35 163.80
GMA mSPA PAM 0.6027 0.7821 0.4902 1425 397 1124 894 588 126.54 157.90
GMA mSPA PAS 0.5842 0.7736 0.4693 1377 403 1091 921 636 127.43 157.90
GMA mSPA SWPAD 0.5894 0.7687 0.4780 1379 415 1128 942 564 178.34 157.90
GMA SWPA SWRE 0.4803 0.7888 0.3453 1128 302 859 1131 1008 83.74 169.90
GMA SWPA SWRM 0.4895 0.7600 0.3610 1140 360 910 1130 888 81.67 176.40
GMA SWPA SWRMe 0.4816 0.7602 0.3524 1116 352 909 1175 876 79.38 169.90
GMA SWPA SWRMe2 0.4823 0.7590 0.3535 1118 355 910 1169 876 84.00 169.90

MANUAL BiPACE 0.7310 0.7539 0.7095 337 110 231 78 60 3.92 110.97
MANUAL BiPACE w/ 2D RT 0.7430 0.7271 0.7596 357 134 212 53 60 4.78 107.59
MANUAL BiPACE w/ RT 0.7320 0.7320 0.7320 336 123 234 87 36 4.41 108.72
MANUAL Guineu 0.6892 0.7874 0.6128 326 88 196 62 144 5.15 204.45
MANUAL mSPA DWPAS 0.7239 0.7573 0.6933 312 100 266 102 36 133.46 163.80
MANUAL mSPA PAD 0.7138 0.7400 0.6894 313 110 252 105 36 131.40 163.80
MANUAL mSPA PAM 0.7277 0.7441 0.7120 314 108 267 103 24 129.03 157.90
MANUAL mSPA PAS 0.7067 0.7574 0.6623 306 98 256 108 48 132.34 157.90
MANUAL mSPA SWPAD 0.7262 0.7542 0.7002 313 102 267 110 24 163.42 157.90
MANUAL SWPA SWRE 0.6221 0.8612 0.4869 242 39 280 171 84 82.34 176.40
MANUAL SWPA SWRM 0.6334 0.7449 0.5510 254 87 268 147 60 81.43 169.90
MANUAL SWPA SWRMe 0.6236 0.7404 0.5386 251 88 262 155 60 79.38 169.90
MANUAL SWPA SWRMe2 0.6236 0.7404 0.5386 251 88 262 155 60 84.00 169.90

Continued on next page y233



A
ppendix

C
.

S
upplem

entary
M

aterialfor
B

IP
A

C
E

2
D

Table C.4 – continued from previous page

Reference Method F1 Precision Recall TP FP TN FN Unm. in Ref. Runtime (s) Memory (MB)

MGMA BiPACE 0.7389 0.8844 0.6345 1132 148 756 340 312 4.68 108.89
MGMA BiPACE w/ 2D RT 0.7662 0.8349 0.7079 1229 243 709 243 264 4.78 107.59
MGMA BiPACE w/ RT 0.7359 0.8420 0.6536 1151 216 711 298 312 4.11 110.29
MGMA Guineu 0.6556 0.7418 0.5873 1086 378 461 175 588 5.00 206.37
MGMA mSPA DWPAS 0.6757 0.7759 0.5984 997 288 734 477 192 135.68 163.80
MGMA mSPA PAD 0.6328 0.7648 0.5396 940 289 657 514 288 130.35 163.80
MGMA mSPA PAM 0.6735 0.8171 0.5728 983 220 752 505 228 126.54 157.90
MGMA mSPA PAS 0.6502 0.8057 0.5449 958 231 699 476 324 132.34 157.90
MGMA mSPA SWPAD 0.6613 0.8076 0.5599 982 234 700 496 276 172.49 163.80
MGMA SWPA SWRE 0.5474 0.7861 0.4199 768 209 650 665 396 81.48 176.30
MGMA SWPA SWRM 0.5551 0.7947 0.4265 778 201 663 662 384 81.43 169.90
MGMA SWPA SWRMe 0.5495 0.8195 0.4133 772 170 650 652 444 82.57 169.90
MGMA SWPA SWRMe2 0.5510 0.8184 0.4153 775 172 650 647 444 80.67 169.90
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Figure C.33.: Runtime plot for chlamy dataset I. The runtimes for the B iPACE
variants are below 5 seconds, while the SWPA instances run for around 85 seconds.
The mSPA variants show the largest runtime variability between 120 to around 140
seconds. The Guineu instances have a runtime of about 5 seconds.
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Figure C.34.: Memory plot for chlamy dataset I. The mSPA and SWPA instances
consume between 160 and 170 MBytes of memory while B iPACE and its variants
consume between 100 and 130 MBytes of memory. Guineu consumes around 200
MBytes of memory.
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Figure C.35.: CoverageR plot for chlamy dataset I. The reference coverage for all
algorithms, except for Guineu, on the different references is between 70 and 90%.
Due to the reduced size of the MGMA alignment reference in comparison to the
GMA reference alignment, a higher coverage is expected. The manual reference shows
higher coverage values for all algorithms.
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Figure C.36.: CoverageT plot for chlamy dataset I. The coverage of the reported tool
peak alignments varies largely between GMA and MGMA variants. This is a result of
the exclusion of a larger number of peaks failing the consistency criterion, which may
exclude valid peaks. Finally, due to its constrained size, the tool alignment coverage
for the MANUAL reference alignment is lower, since most algorithm instances will
report many more aligned peak groups, than are present in the reference alignment.
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C.6. Parameter Selection for B I PAC E 2 D

C.6.1. Parameters influencing alignment quality

Good starting parameters for B iPACE 2D are D1 = σ̂(t1), D2 = σ̂(t2), effectively
the expected standard deviation in the first and second retention time, and T1 = 0.0
and T2 = 0.0, as the retention time matching thresholds to control the number of
false positives. Peaks with peak retention time deviations resulting in a function
value of the Gaussian retention penalty term (function value ranges between 0 and 1)
below the given threshold (T1 or T2) are removed from further consideration.

The minimum clique size parameter only influences the output of B iPACE 2D,
so it is a simple filter to select only cliques that match or exceed the given parameter
value. As the similarity function, the weighted cosine has proven to be both fast and
precise.

C.6.2. Setting the parameters for B I PAC E 2 D

B iPACE 2D is included in the Maltcms software framework that is available
from http://maltcms.sf.net. After downloading and extracting the Maltcms dis-
tribution, the directory structure contains a folder termed cfg. Below that folder,
the pipelines/xml folder contains the definition of various pipelines that can be exe-
cuted with Maltcms. The folder pipelines contains one .mpl properties file for each
XML-based pipeline definition in the xml folder. The configuration file bipace2D.xml
contains the configuration information for the parameters used by B iPACE 2D.

These include, as direct parameters of the bean tag element with id
peakCliqueAlignment:

• MCS =minCliqueSize - the minimum clique size to be reported in the multiple
alignment

• saveUnmatchedPeaks - whether peaks without a best hit should be saved to an
MSP compatible file

• saveUnassignedPeaks - whether peaks that are not a part of a biclique or bidi-
rectional best hit should be saved to an MSP compatible file

• saveIncompatiblePeaks - whether peaks that were not mergeable into larger
cliques should be saved to an MSP compatible file

Other parameters are configured in other bean tags, that are referenced by their id
in the peakCliqueAlignment tag.

Array Similarity (referenced in bean with id timePenalizedProductSimilarity), one
of:

• dotSimilarity - dot product similarity

• cosineSimilarity - cosine similarity

• linCorrSimilarity - Pearson’s linear correlation coefficient
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• weightedCosineSimilarity - weighted cosine similarity

Retention Time Penalties (referenced in bean with id timePenalizedProductSimilarity):

• first rt dimension: bean with id gaussianDifferenceSimilarityRt1:

– D1 =tolerance - the retention time tolerance in the first separation dimen-
sion

– T1 =threshold - the retention time tolerance threshold in the first separa-
tion dimension

• second rt dimension: bean with id gaussianDifferenceSimilarityRt2:

– D2 =tolerance - the retention time tolerance in the second separation
dimension

– T2 =threshold - the retention time tolerance threshold in the second
separation dimension

Maximum search range for first and second column retention times (in bean with
id worker2DFactory):

• maxRTDifferenceRt1 - maximum retention time difference on first column to
include in comparison, usually = 2 ∗ D1

• maxRTDifferenceRt2 - maximum retention time difference on second column
to include in comparison, usually = 2 ∗ D2

C.6.3. Converting ChromaTOF peak lists to netCDF format

• Download the latest release of the Maltcms User Interface Maui (http://
maltcms.sf.net/maui)

• Install the application and create a new project

• Select the ChromaTOF peak reports as your ’Data Files’

• Assign groups to your peak reports

• Set the ’Separation Type’ to GCxGC

• Set the ’Detector Type’ to TOF-MS (for Leco Pegasus IV data)

• Select ’Override’ and set ’Modulation Time’ and ’Scan Rate’ according to your
setup

• Finish the wizard and wait for the import to complete

• The converted files are now below the project’s directory, below
import/ChromaTofPeakListImporter and a time stamp indicating the date and
time of the import.
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C.6.4. Running B I PAC E 2 D

Change to the directory where you extracted the downloaded Maltcms version
and run:

> bin/maltcms.sh -f path/to/converted/files/*.cdf -c cfg/pipelines/chroma2D.mpl

The program will start up and print its progress to the terminal. When it is finished,
it will have created a folder maltcmsOutput below which the results are stored.

C.7. Discussion of Pairwise Alignment vs. Row Wise Multiple
Alignment Evaluation

In order to compare the multiple alignments generated by the algorithms under
consideration in this manuscript, a quality measure that captures how well the
algorithms have reproduced the given reference multiple alignment has to be defined.
In principle, there are two possible ways to approach this.

The first approach evaluates the performance of all pairwise alignments individ-
ually against the corresponding columns of the reference multiple alignment, as
used by Kim, Fang, et al. 2011. However, this approach can not count double or
larger gaps, spanning multiple peak lists (columns in the multiple alignment). This
would be necessary in order to assess the number of true negatives in relation to the
reference alignment. Kim, Fang, et al. 2011 count the TP, FP, FN, and TN numbers
in the following way: They count, based on the comparison of pairwise alignments,
how many of the pairs between reference and result have the same identity (in this
case, they use the name as identity criterion) (TP), a different identity (FP), were
not aligned, but should have (FN), and those that were correctly not aligned (TN).
The last number is defined as the product of the length of the reference peak list
m multiplied with the length of the reported peak list n minus the length of the
reported positive peaks u minus the FPs (mn− u− FP).

The second approach tries to achieve a related but slightly different goal by defining
the reference multiple alignment as the ground truth against which the aligned peak
rows reported by the different algorithms are tested in turn. In that sense, we try to
cover each row of the reference alignment with the best matching row as reported by
the peak alignment algorithm. Then, we count for each matching peak pair between
reference and result a TP, a FP when the result reports a peak, whereas the reference
did not contain a peak at that position. We count an FN if the result did not report a
peak at that position, whereas the reference did and finally, we count peaks that are
reported as absent in the result and the reference as TN. Additionally, all non-missing
peaks within reference groups that have not been covered by any result group are
counted as additional FN (unassigned peaks), to normalize for the total number of
peaks contained within the reference alignment. Thus, our F1 score is automatically
normalized towards the number of peaks contained in the reference alignment.
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Thus, in the second approach, TP+FP+FN+TN+UNASSIGNED = number of Peaks
in Ground Truth. This is also supported by our CoverageT (Coverage of Peaks re-
ported by Tool against the reference) and CoverageR (Coverage of Peaks within the
reference covered by the peaks reported by the tool, both measures shown in this
section) measures. These also show, that both mSPA and SWPA achieve a good
CoverageR, meaning that they score most of the peaks reported by their methods
against the reference.

In the first approach, the F1p score and other measures of classification performance
are based on comparing the pairwise alignments and can therefore give only limited
information about the full multiple alignment performance due to the exclusion
of double and longer gaps in the pairwise alignment comparison across samples.
Additionally, their total number for TP, FP, FN and TN are much higher than ours,
since they count each peak list multiple times when all pairwise alignments are
evaluated. With our row-wise counting method, these double or longer gaps do not
hamper the calculation of the performance numbers, since the minimum number of
reported peaks in a row is two, which always allows to map reported peak groups
against the correct reference group. Thus, we have a one-to-one mapping of peaks as
reported by each tool against those contained in the reference alignment and a single
performance number in contrast to having to define an average (here termed F1p)
with standard deviation over the pairwise alignments for each algorithm’s results.

Since both approaches are viable methods to quantify the performance of the
alignments, giving weight to slightly different aspects, we have additionally men-
tioned and referenced the best average results for F1p in the main manuscript and
included the corresponding charts in this section for each dataset. Further tables
and plots of precision and recall, as well as FPs, TPs, FNs, and TNs are provided in
Supplementary Material 2 of Hoffmann et al. (2014).
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