
johannes wienke

F R A M E W O R K - L E V E L R E S O U R C E AWA R E N E S S
I N R O B O T I C S A N D I N T E L L I G E N T S Y S T E M S

johannes wienke

F R A M E W O R K - L E V E L R E S O U R C E AWA R E N E S S
I N R O B O T I C S A N D I N T E L L I G E N T S Y S T E M S

Improving dependability by exploiting knowledge about system resources

A doctoral thesis presented for the degree of
Doctor of Engineering (Dr.-Ing.) at

CoR-Lab / CITEC
Faculty of Technology
Bielefeld University
Inspiration 1

33619 Bielefeld
Germany

reviewers

Dr.-Ing. Sebastian Wrede
Prof. Dr. Davide Brugali

board

Prof. Dr. Philipp Cimiano
Dr. rer. nat. Malte Schilling

defended and approved

September 13, 2018

Printed on permanent paper as per ISO 9706.

A B S T R A C T

Modern robots have evolved to complex hardware and software sys-
tems. As such, their construction and maintenance have become more
challenging and the potential for failures has increased. These failures
and the resulting reduction of dependability have a considerable ef-
fect on the acceptance and usefulness of robotics systems in their in-
tended applications. Even though different software engineering tech-
niques have been developed to control dependability-critical aspects
of such complex systems, the state of the art for experimental robot-
ics and intelligent systems is that – if at all – functional properties are
systematically controlled though techniques such as unit testing and
simulation runs. Yet, system dependability can also be impaired if
nonfunctional properties behave unexpectedly. This thesis focuses on
the utilization of system resources such as CPU, memory, or network
bandwidth as an important nonfunctional aspect, which has not re-
ceived much systematic treatment in robotics and intelligent systems
so far. Unexpected utilizations of system resources can have effects
ranging from merely wasting energy and reducing a robot’s opera-
tional time to a degradation in its function due to processing delays.
Even safety-critical situations can arise, for instance, if a motion plan-
ner or obstacle avoidance component cannot react before a collision.
Therefore, the systematic analysis of a system’s resource utilization, a
guidance of developers regarding these aspects, and testing and fault
detection for unexpected resource utilization patterns are an effective
contribution of this thesis towards more reliable robots.

In this work I describe a concept for integrating resource awareness
into component-based robotics and intelligent systems. This concept
specifically addresses the often loosely controlled development pro-
cess predominant in experimental research. As such, the presented
methods have to be applicable without a high overhead or large
changes to the evolved development methods and system structures.
Within this concept, which I termed framework-level resource awareness,
I have explored methods in two directions: On the one hand, a set
of tools helps developers to understand and systematically control
the resource utilization while developing and testing systems. On the
other hand, I have applied machine learning techniques to enable
autonomous reactions at runtime based on predictions about the re-
source utilization of system components. With the two views, this
work explores novel directions for implementing resource awareness
in research systems and the conducted evaluations underline the suit-
ability of the framework-level resource awareness concept.

A C K N O W L E D G M E N T S

Pursuing a PhD is a huge and long endeavor and many people influ-
enced and supported me on the way to this thesis. First of all, I have
to thank my parents for giving me the opportunity to study and for
their constant support and questions about the completion of this the-
sis. Of course, I also have to thank Vanessa for supporting me every
day, even though regular conference trips and occasional long days
at the university had a noticeable impact on the time we could spend
together.

Special thanks are directed to Sebastian for supervising this the-
sis, his constant support, and many lively and fruitful discussions.
Moreover, I have to thank Prof. Brugali for accepting my invitation
to review this thesis. My apologies to both of you for the amount of
pages you have to work through.

Many decisions regarding the work included in this thesis were the
result of interesting discussions with my colleagues. I have to thank
all of them for their willingness to collaborate and to discuss. Their
feedback helped to shape many solutions presented here and I could
always find someone to debug the most obscure problems. They all
contributed to a wonderful and fun work environment.

Finally, I have to thank everyone who agreed to proof-read this the-
sis. Thank you, Dennis, Hendrik, Jan, Jochen, Leon, Michael, Norman,
Torben, and Vanessa.

C O N T E N T S

i research topic 1

1 introduction 3

2 fundamental concepts and terminology 7

2 .1 Resources and related concepts 7

2 .1 .1 Resource categorization schemes 8

2 .1 .2 Metrics, KPIs, and performance counters 10

2 .1 .3 A conceptual model of system resources 11

2 .2 Dependable computing and FD* 12

2 .2 .1 Dependability . 13

2 .2 .2 Threads to dependability 14

2 .2 .3 Means of dependability 15

2 .2 .4 Dependability and performance 17

3 a survey on bugs in robotics systems 21

3 .1 Tool usage . 22

3 .2 Bugs and their origins . 24

3 .3 Performance bugs . 25

3 .4 Bug examples . 27

3 .5 Summary . 28

3 .6 Threats to validity . 29

4 a concept of resource awareness 31

4 .1 Resource awareness in computing systems 32

4 .1 .1 Server infrastructure operation 32

4 .1 .2 Cloud computing . 33

4 .1 .3 Model-based performance prediction 33

4 .2 Resource awareness in robotics 35

4 .2 .1 Space robotics . 35

4 .2 .2 Cloud robotics . 35

4 .2 .3 Resource-aware algorithms 36

4 .2 .4 Resource-aware planning and execution 36

4 .2 .5 Infrastructure monitoring of robotics systems . 37

4 .2 .6 Model-driven approaches 38

4 .3 Summary . 39

ii technological foundation 41

5 component-based robotics systems 43

5 .1 Component-based software engineering 43

5 .2 CBSE and distributed systems 45

5 .3 CBSE in robotics . 45

5 .4 Patterns in component-based robotics systems 49

5 .5 Summary . 50

x contents

6 middleware foundation : rsb 51

6 .1 Architecture . 54

6 .1 .1 Event model . 55

6 .1 .2 Naming model . 56

6 .1 .3 Notification model . 58

6 .1 .4 Time model . 60

6 .1 .5 Observation model . 61

6 .1 .6 Extension points . 61

6 .2 Introspection . 61

6 .3 Domain data types: RST . 63

6 .4 Tool support . 65

6 .5 Interoperability with other middlewares 66

6 .6 Applications . 67

6 .7 Summary . 68

7 a holistic dataset creation process 71

7 .1 Challenges in creating datasets 72

7 .2 Description of the holistic process 73

7 .3 Realization based on RSB . 75

7 .3 .1 Data sources . 75

7 .3 .2 Calibration . 76

7 .3 .3 Unification . 76

7 .3 .4 View generation and annotation 77

7 .4 Summary . 77

8 system metric collection 79

8 .1 Available system metric sources 80

8 .2 Resource acquisition tools . 83

8 .3 Implementation . 84

8 .3 .1 Host collection . 85

8 .3 .2 Processes collection . 86

8 .3 .3 Subprocess handling . 87

8 .3 .4 Data representation . 88

8 .3 .5 System integration . 88

8 .4 Summary . 89

iii developer perspective 91

9 runtime resource introspection 93

9 .1 Available tools . 93

9 .2 Resource utilization dashboard implementation 95

9 .2 .1 Time series database adapter 95

9 .3 Dashboard design . 97

9 .4 Evaluation . 98

9 .4 .1 Qualitative evidences . 99

9 .4 .2 Quantitative evaluation 101

9 .5 Summary . 103

10 systematic resource utilization testing 105

10 .1 Related work . 105

contents xi

10 .2 Performance testing framework concept 107

10 .3 Realization . 109

10 .3 .1 Load generation . 109

10 .3 .2 Environment setup . 114

10 .3 .3 Test execution . 115

10 .3 .4 Test analysis . 116

10 .3 .5 Automation . 119

10 .4 Evaluation . 120

10 .5 Summary . 122

11 model-based performance testing 125

11 .1 Related work . 126

11 .2 Language design . 127

11 .2 .1 Metamodel . 129

11 .2 .2 Editors . 130

11 .2 .3 Code generation . 132

11 .3 Notable language features . 132

11 .3 .1 Inline data generation 132

11 .3 .2 Type safety for embedded custom code 133

11 .3 .3 Expressive custom code via embedding 134

11 .4 Evaluation . 135

11 .5 Summary . 136

iv autonomy perspective 139

12 a dataset for performance bug research 141

12 .1 Recording method . 142

12 .2 Included performance bugs . 144

12 .2 .1 Algorithms & logic . 144

12 .2 .2 Resource leaks . 144

12 .2 .3 Skippable computation 144

12 .2 .4 Configuration . 145

12 .2 .5 Threading . 145

12 .2 .6 Inter-process communication 145

12 .3 Automatic fault scheduling . 145

12 .4 Summary . 147

13 runtime resource utilization prediction 149

13 .1 Feature generation . 151

13 .1 .1 Accumulated event window features 152

13 .1 .2 Adding previous system metrics 155

13 .1 .3 Baseline: system metrics 156

13 .1 .4 Preprocessing . 156

13 .2 Model learning . 157

13 .3 Evaluation . 158

13 .3 .1 Results on the ToBi dataset 158

13 .3 .2 Influences of the component behavior 164

13 .4 Learning from performance tests 167

13 .4 .1 Evaluation . 169

xii contents

13 .4 .2 Influences of the test structure 170

13 .5 Related work . 172

13 .6 Summary . 173

14 runtime performance degradation detection 175

14 .1 Related approaches . 176

14 .2 Residual-based performance degradation detection . . . 177

14 .3 Evaluation . 179

14 .3 .1 Results on the ToBi dataset 179

14 .3 .2 Influence of component behavior 183

14 .4 Summary . 184

v perspectives 187

15 conclusion 189

16 outlook 193

vi appendix 195

a survey : failures in robotics systems 197

b failure survey results 207

c survey : dashboard evaluation 231

d dashboard survey results 235

e tobi dataset details 237

acronyms 239

glossary 245

bibliography 253

L I S T O F F I G U R E S

Figure 2.1 Linux kernel system metric discretization example 10

Figure 2.2 Conceptual model of system resources 11

Figure 2.3 System failure terms and performance counterparts 18

Figure 3.1 Participant development time 22

Figure 3.2 Monitoring tools usage frequencies 22

Figure 3.3 Debugging tools usage frequencies 23

Figure 3.4 Observed mean time between failures 24

Figure 3.5 Frequency of system failure reasons 25

Figure 3.6 Frequency of bug effect on system resources 26

Figure 3.7 Frequency of reasons for performance bugs 26

Figure 5.1 Prevalence of keywords in robotics publications . . 46

Figure 5.2 Citation counts for robotics frameworks 47

Figure 6.1 Dependency graphs of robotics middlewares 53

Figure 6.2 Dependency graph of RSB C++ 54

Figure 6.3 Architecture concept of RSB 55

Figure 6.4 RSB concepts and relations 57

Figure 6.5 Exemplary RSB scopes . 58

Figure 6.6 RSB introspection mechanism structure 63

Figure 6.7 Evolution of the RST data type count 65

Figure 7.1 HUMAVIPS vernissage recording setup 72

Figure 7.2 Holistic dataset creation process schema 74

Figure 7.3 ELAN export of a dataset trial 77

Figure 8.1 Structure of the host collector 85

Figure 8.2 Structure of the process collector 86

Figure 8.3 System integration of collection daemons 89

Figure 9.1 Implementation scheme of dashboards 94

Figure 9.2 Dashboard data pipeline . 95

Figure 9.3 Time series database adapter architecture 96

Figure 9.4 Time series database adapter processing steps . . . 97

Figure 9.5 Generic resource dashboards 98

Figure 9.6 TTS memory leak in the ToBi system 100

Figure 9.7 BonSAI RSB participant leak 101

Figure 9.8 Usage frequency of the dashboards 102

Figure 9.9 Improved understanding of system resources 102

Figure 10.1 Performance testing concept 109

Figure 10.2 Structure of the testing API 110

Figure 10.3 Exemplary performance test structure 114

Figure 10.4 Testing framework execution steps 115

Figure 10.5 Exemplary performance testing time series 116

Figure 10.6 Testing framework application in Jenkins CI 119

Figure 10.7 Test execution number influence on detection 123

Figure 11.1 Modularization of the performance testing DSL . . 128

Figure 11.2 Metamodel of the performance testing DSL 129

Figure 11.3 Test phase with Protobuf data 131

Figure 11.4 Test suite example . 131

Figure 11.5 Integration of custom Java code 133

Figure 11.6 DSL and AST for a test case 134

Figure 12.1 ToBi dataset recording scene 143

Figure 12.2 Scheduling of performance bugs 146

Figure 13.1 Feature generation and synchronization 153

Figure 13.2 Examples for file descriptors metrics 160

Figure 13.3 Memory metric for the objectbuilder component . 160

Figure 13.4 Prediction error per metric on ToBi dataset 162

Figure 13.5 System metric prediction examples 163

Figure 13.6 Mock component prediction errors 165

Figure 13.7 Mock component prediction examples 166

Figure 13.8 Prediction error from performance tests 168

Figure 13.9 Mock component prediction examples from tests . 169

Figure 13.10 Prediction errors depending on test configs 172

Figure 14.1 Fault detection scheme . 178

Figure 14.2 Detection scores per component 181

Figure 14.3 Detection scores per fault 182

Figure 14.4 Fault detection scores for a mock component 184

L I S T O F TA B L E S

Table 3.1 Origin differences of performance and general bugs 27

Table 6.1 Extension points in Robotics Service Bus (RSB) . . . 62

Table 8.1 Comparison of Linux system metric sources 81

Table 10.1 Identified performance test actions 111

Table 10.2 Available evaluation data . 121

Table 10.3 ROC AUC scores for regression detection 122

Table 11.1 Comparison of Java testing framwork and DSL . . . 135

Table 13.1 AEW feature dimensions for ToBi components 155

Table 13.2 Regression results on AEW features 158

Table 13.3 Comparison of KR-FA and baseline Mean 159

Table 13.4 Regression results without degraded metrics 161

Table 14.1 Mean ToBi fault detection results 180

L I S T O F C O D E L I S T I N G S

Listing 6.1 RST data type for produced speech utterances . . . 64

Listing 10.1 Action interface and exemplary implementation . . 112

Listing 10.2 Protocol Buffers data generation API 113

Listing 10.3 ParameterProduct instantiation 113

N O TAT I O N

margin notes

C Key point

Definition

statistical significance

* p 6 0.05

** p 6 0.01

*** p 6 0.001

**** p 6 0.0001

attribution of authorship

I will speak of myself using I in case of work originally done by
myself alone. In case the results of a collaboration with others are
presented, I will use we. The respective collaborators are indicated by
the co-authors of the publication the results are based on.

Part I

R E S E A R C H T O P I C

The first part of this thesis will introduce the general scope
of work. I will motivate the necessity for research, explain
the relation to other disciplines, and will formulate the re-
search questions addressed in this thesis. Moreover, gen-
eral terms and concepts will be defined.

1
I N T R O D U C T I O N

Since Czech writer Karel Čapek first coined the word robot in his
1920 play R.U.R [Čap14], robots have evolved from a distant futur-
istic fantasy to real machines that are able to fulfill meaningful pur-
poses. Even though completely autonomous and reliable multi-pur-
pose robots are not yet available, research has made serious progress
within the last decades. Starting with the first commercially available
pick-and-place robot in the 1950s [Dhi91], technology has constantly
evolved and new application areas for robots have been opened up.
Ranging from robotic vacuum cleaners and lawn mowers to physical
human–robot interaction (HRI) in industrial settings as well as space
exploration missions, these applications require complex robotic sys-
tems, often both, in terms of hardware and their control software,
which inevitably increases the potential for a diverse set of issues or
complete failures. Such failures have negative effects for the users of
robotic systems as well as the manufacturers. For robots intended to
be used by end users, failures first result in a degraded user experi-
ence [BBY16] and eventually mean a decrease in business revenue for
the manufacturer, in case a product cannot be sold as expected. For
robots that are physically harmful, failures can also result in severe
injuries, which need to be avoided at all cost. To avoid these effects,
and also to cope with increasing regulations for industrial robotics
applications [Laz16], developers need to systematically analyze and
verify the dependability of their systems and take measures to avoid
catastrophic failures in case of potential bugs. Such measures must
cover the complete systems ranging from their hardware design and
safety to the controlling software system.

In the context of this thesis, I am concerned with the software as-
pects of robots and other intelligent systems such as virtual agents
or smart homes, which are constructed using comparable principles.
The software industry has developed a set of established methods to
control the dependability of their systems. Despite many advanced
techniques, the robotics research community has primarily adopted
functional testing, for instance, through unit tests and simulation
runs. These techniques mainly deal with functional requirements of
the systems and their constituting software artifacts, which means
whether intended functionality is provided at all, or not. However,
dependability also encompasses further nonfunctional aspects. This
thesis particularly focuses on the utilization of system resources as
one of these nonfunctional aspects, which has not received much sys-
tematic treatment in robotics so far. Unexpected utilization of system

4 introduction

resources can have effects ranging from merely wasting energy and
reducing a robot’s operational time to a degradation in its operation
due to processing delays. Even safety-critical situation can arise, for
instance, if a motion planner or obstacle avoidance component can-
not react timely before a collision. Therefore, the contributions of this
work towards more reliable robotics systems are a systematic analy-
sis of resource utilization, a guidance of developers regarding these
aspects, and testing and fault detection for unexpected resource uti-
lization patterns.

It is hard to subsume all kinds of research and development ac-
tivities regarding robotics systems under the single umbrella robotics
without stumbling across differences. Robotics has become an increas-
ingly broad discipline with a multitude of different systems and ap-
plications. Among others, common directions and application areas
include:

• Industrial manipulators in closed production cells without hu-
man interaction.

• Research prototypes of manipulators in close physical HRI.

• Robotic vacuum cleaners or lawn mowers.

• Medical robots.

• Wheeled service robots with multimodal HRI capabilities.

• Humanoid robots.

• Bio-inspired robots.

Apart from the breadth of types of robots and their intended applica-
tions, also their origins differ and with that their development activ-
ities. While mature technologies such as industrial manipulators are
usually constructed and programmed in the context of established
companies, more cutting-edge technology is often developed in an
academic context or in start-ups originating from this area.1 The de-
mand for dependability and techniques to achieve this property is
most obvious for systems that have reached the product level. How-
ever, achieving a sufficient level of dependability is required and ben-
eficial in research settings, too. Despite less strict regulatory environ-
ments, also in research robots can impose security hazards and their
system design has to ensure that no scientist or laboratory visitor is
harmed. Moreover, scientific tasks have become increasingly depen-
dent on the proper functionality of integrated systems, for instance,
for analyzing HRI with real robots. The success of such experiments
depends on a reliable robot system. Finally, the close collaboration of
robotics research institutions and industrial partners has established

1 For instance, the Franka Emika robot.

introduction 5

a short transfer chain from research into industrial applications and
if research prototypes already posses the required level of depend-
ability, the time to market is reduced. Yet, achieving dependability
in research settings is a challenge. Software developed in academic
contexts is often of lower quality because software and system devel-
opment is carried out under different conditions than in an industrial
setting [Wre08, pp. 31 sqq.; HLN10]. Scientific development is usually
embedded into research projects with developers being either PhD
students primarily interested in finishing their thesis or constantly
changing student assistants [HLN10]. The development process can-
not be as rigorous as it would need to be to embed all available meth-
ods that ensure a proper system dependability. Due to the lack of
time, expertise, or incentives, many available techniques are not ap-
plied, partially due to the overhead their application creates.

The solutions developed in this thesis target exactly such a scien-
tific research environment. Instead of providing techniques that re-
quire rigor, time, and a complete shift of development practices, the
focus in this work was to establish methods that are easily applicable
in the existing ecosystems and processes. By reducing the amount
of effort and change these methods cause to existing and established
workflows, the hypothesis is that the resistance to use them is min-
imized. Thus, the developed methods are applicable to distributed
component-based systems as they are commonly seen in robotics and
intelligent systems research. The idea is to improve their dependabil-
ity by incorporating resource awareness through generally applica-
ble methods. This idea also encompasses that methods should follow
the natural separation of concerns created by the component-based
paradigm often used in these domains. Individual developers should
be able to decide which methods to apply and the generated results
and outputs should be assignable to individual components so that
responsibilities become evident. I will later define this approach as
framework-level resource awareness. Generally, the explicit tradeoff
taken here is that applicability is favored for groundbreaking results.
Yet, the developed methods have proved their usefulness in the eval-
uations presented in this work and are therefore effective means to
improve the dependability of robotics and intelligent systems.

2
F U N D A M E N TA L C O N C E P T S A N D T E R M I N O L O G Y

Before explaining the approach of this work, I will first introduce fun-
damental concepts and related terms to establish a common ground
for the following explanations. Due to varying influences and direc-
tions, diverging understandings and definitions for common comput-
ing terms related to the general idea of resource awareness have
evolved. I will summarize these definitions for the relevant sub-do-
mains and establish the terminology used throughout this work.

2 .1 resources and related concepts

Establishing resource awareness inevitably encompasses understand-
ing the behavior of resources of the involved hardware. Thus, a pre-
cise understanding of the term resource as well as knowledge about
the connection of resources to other parts of the system is required.
Generally, Merriam-Webster defines a resource as “a source of sup-
ply or support” [MwRes] or “an available means” [MwRes]. In the
computing domain, a resource is therefore – in the broadest sense –
a means available to perform computations. Stemming from differ-
ent directions, such means are usually classified as being of abstract
or concrete nature. Abstract resources are unrelated to physical execu-
tion environments with the aim to describe the utilization of available
computing means in a generic and comparable fashion. Originating
from the area of complexity analysis of algorithms (e.g., using Big-
O-notation), abstract resources are commonly called computational re- # computational

resourcesources [Wik16a] and examples are space and time. On the other hand,
actual physical execution environments (such as a server or desktop
computer) have concrete resources of limited availability that are uti-
lized to enable the computation. These resources are either direct or
indirect results of the physical properties of the host system hardware
and can therefore be called system resources [IHE15; Wik16e]. Such sys- # system resource

tem resources are the central processing unit (CPU), working memory,
file descriptors, disk space, network bandwidth, etc. An implementa-
tion of an algorithm with an abstract complexity in space and time
will eventually utilize a certain amount of system resources of a host
system when being executed on input data. The basic distinction be-
tween computational and system resources has been a useful tool also
in other areas of software engineering, for instance, in model-driven
engineering [BKR09].

This thesis focuses on analyzing the concrete utilization of system
resources. Therefore, if not explicitly stated otherwise, any use of the

8 fundamental concepts and terminology

word resource automatically refers to system resources for the sake of
brevity. For robotics one can think of further resources regarding the
physical system such as battery or fuel. In case such resources are of
critical interest, for instance, in planetary exploration missions, these
types of resources are usually well controlled within the software of
appropriate robots (cf. Section 4.2 on page 35). Therefore, I will ignore
such resources as a topic of this thesis and focus on system resources,
which have not received a systematic treatment in robotics so far.

Most system resources are of limited availability. This availability is
also termed a resource’s capacity [IHE15; Mol15] or quantity [Kub17],resource capacity #

which is then utilized [IHE15; Mol15] by applications running on aresource utilization #

computer. As all common computer systems nowadays are multi-
tasking systems where processes are executed in parallel, resourceresource contention #

contention [Koz10; Wik16c] constantly happens on such systems, be-
cause the parallel processes compete for the available resources. De-
pending on the ratio of capacity and utilization, different effects and
effect strengths can be observed. These range from no noticeable im-
plications for the running processes to different slow downs and ul-
timately execution failures in case required resources cannot be pro-
vided by the system at all. The latter situation is called resource starva-resource starvation #

tion [Wik16d]. The way contention effects the running applications on
a system depends on the type of resources that are affected. Therefore,
a categorization of resources is helpful.

2 .1 .1 Resource categorization schemes

Muskens and Chaudron [MC04] propose a generic two-dimensional
classification of system resources along the dimensions processing –
non-processing and pre-emptive – non-pre-emptive. Processing resources
are those that process (and therefore discard) something. For instance,
a CPU processes instructions and a network link processes packets.
Other resources such as memory do not discard the elements they
operate on and are therefore non-processing. For the second dimen-
sion, pre-emptive resources are those where a desired request for quan-
tity can be rejected, reduced, interrupted, or postponed by a resource
scheduling system without being fatal to the requesting process. This
means that the resource can be reused for serving other processes in
parallel despite still being requested. This, for instance, includes the
CPU, where a process can be interrupted at any time or receive only
a fraction of the available CPU cores at a given time to handle con-
tention. On the other hand, non-pre-emptive resources such as memory
or file handles can be used only by one requester at any given mo-
ment and they become available again once they are released by the
requester. Not provisioning the requested resources to the requester
is usually an exception that needs to be specifically handled in the
requesting process’ code. The second dimension (pre-emptiveness)

2.1 resources and related concepts 9

matches the classification proposed in The Kubernetes resource model
[Kub17], where the matching properties are called compressible and
non-compressible. The first dimension is primarily based on the physi-
cal nature of the resources whereas the second dimension addresses
usage and provisioning properties. Another example for a compara-
ble classification approach is presented in Seneviratne et al. [SLB13]
with the aim to predict the resource utilization in grid computing
environments. The terms they introduce are time-shared (pre-emptive)
and space-shared (non-pre-emptive).

Becker et al. [BKR09] have proposed to classify system resources as
processing or passive resources, with a special subclass of processing
resources being used to model network connections. Although this
definition seems to match the processing – non-processing dimension
of Muskens and Chaudron [MC04], Becker et al. [BKR09] specifically
mention memory as a processing resource. In the sense that working
memory has a limited speed at which read and write operations can
be processed, this definition makes sense, but it disregards the avail-
able memory size, which is of passive nature.

In the robotics domain, Volpe et al. [Vol+00] propose four distinct
resource categories. These are depletable, non-depeletable, atomic and
concurrent resources. A resource is depletable if its resource capacity
decreases when being utilized, for instance, the battery. Conversely,
the capacity of a non-depletable system resource is permanent. Concur-
rent resources can be utilized by multiple consumers (e.g., the CPU)
in parallel whereas atomic resources can be used by only one con-
sumer at a time, e.g. a sound device. Within their model, these four
categories are mutually exclusive (i.e., every system resource belongs
to exactly one of these categories) despite addressing distinct proper-
ties. If these categories were meant as pairwise attributes instead, the
dimension depletable – non-depletable would be a new dimension unre-
lated to aforementioned schemes whereas concurrent – atomic would
relate to the pre-emptive – non-pre-emptive dimension of Muskens and
Chaudron [MC04].

Finally, Shimizu et al. [Shi+09] distinguish between computation,
communication, and storage resources. This scheme is based primar-
ily on the physical nature of the available system resources. However,
beyond this categorization – and in line with the varying views on
memory between Muskens and Chaudron [MC04] and Becker et al.
[BKR09] – Shimizu et al. [Shi+09] show that different parameters re-
lated to system resources exist. These parameters can be categorized
individually. Therefore, a more fine-grained model is required to de-
pict the actual situation of what constitutes system resources in terms
of physical properties, measurable metrics, and their impact on the
execution of software applications. I will devise this model in Sec-
tion 2.1.3 on page 11 after explaining the remaining concepts.

10 fundamental concepts and terminology

0 20 40 60 80 100
wall-clock time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
PU

 ti
m

e
(%

 o
f 1

 c
or

e)
Figure 2.1: Example for discretization artifacts created by the Linux kernel

for a system metric representing CPU utilization.

The presented resource categorization schemes differ in the num-
ber of categories or dimensions they provide. However, a general
trend is visible: Resources are categorized either based on their physi-
cal properties (e.g., depletable – non-depletable or computation, communi-
cation, storage) or based on the way contention is commonly addressed
by the operating system (e.g., time-shared – space-shared).

2 .1 .2 Metrics, KPIs, and performance counters

So far, resources have been described primarily based on their physi-
cal availability and the way they operate. However, from the perspec-
tive of processes being executed on a computer and a developer or
software supervising the execution of these processes and the com-
puter system in total, such properties are not directly measurable.
Instead, the operating system provides a set of system metrics [IHE15;system metric #

Syd11, p. 9], which express the utilization of system resources. In
the area of application performance monitoring (APM), such system
metrics are also called (system-level or efficiency-oriented) key per-key performance

indicator (KPI)
#

formance indicators (KPIs) [IHE15; Mol15, p. 2]. The relation of these
metrics to the actual utilization of the system resources is often not
straightforward, potentially ambiguous, and operating system spe-
cific. In some situations, low-level metrics exist that are closely cou-
pled to the physical hardware where the relation is much clearer. For
instance, hardware performance counters [Wik16b] allow monitoring
the internal details of a CPUs computation. As these detailed metrics
often require access via special tools or instrumentation (e.g., Proces-
sor Counter Monitor (PCM) [iPCM] for Intel CPUs) and their interpre-
tation requires special knowledge, most developers do not use them.
The operating system provides different system metric sources, whichsystem metric source #

are the technical interfaces that allow reading out the system metrics.
For instance, common system metric sources in Linux are the proc file
system [MSO01, p. 147; Proc17] or the taskstats interface [Lin06] (cf.
Section 8.1 on page 80 for a systematic review).

2.1 resources and related concepts 11

DiskNetworkCPU

CPU
cl
oc
k	
sp
ee
d

ca
ch
e	
si
ze

...

Disk

si
ze

sp
ee
d

...

Network

ba
nd
w
id
th

la
te
nc
y

...

File
system

de
sc
rip
to
rs

Operating
System

in
od
es

Network
stack

so
ck
et
s

po
rts

Resources

Physical	Resources Virtual	Resources

Resource
Properties

C
PU

	ti
m
es

de
sc
rip
to
rs

R
SS ...

th
re
ad
s

Process	1
C
PU

	ti
m
es

de
sc
rip
to
rs

R
SS ...

th
re
ad
s

Process	2 Host

C
PU

	u
sa
ge

m
em

or
y

us
ag
eSystem

Metrics

Processes	&
Host

? ??

Figure 2.2: A conceptual model of system resources. The operating system
maps resource and their properties to measurable system metrics
for individual processes and the host system itself. The exact
mapping is usually an implementation detail of the operating
system and its concrete version and thus a black box.

When collecting system metrics over time, one acquires time se-
ries data of the resource utilization of processes and the host system.
These time series reflect the dynamics of the resource utilization as ex-
posed by the operating system. Unfortunately, the real dynamics are
often hidden behind several layers of abstraction and discretization
created by the operating systems and their system metric sources.
These distortions have different reasons, ranging from pure imple-
mentation details to optimizations, which make acquiring the metrics
less expensive. For instance, when measuring the CPU utilization of
a process using the Linux proc file system, the metric is not updated
continuously (e.g., with a fixed rate) but instead the update depends
on factors such as changes of the monitored process’ state [Sta15] and
a minimum required value increment. Hence, a continuously small
utilization of CPU time is usually visible as spiking, which is visual-
ized in Figure 2.1 on the preceding page.

2 .1 .3 A conceptual model of system resources

To visualize the relation of the aforementioned aspects of system re-
sources, Figure 2.2 exemplifies a conceptual model of how the differ-
ent aspects relate to each other. At the top of the figure the hardware
resources of a computer system are depicted, which have a set of re-
source properties describing their capabilities grounded in their phys-
ical structure. These resources are connected to the operating system
where usually a kernel with appropriate driver code is responsible of

12 fundamental concepts and terminology

making these resources usable for computational tasks. The operating
system itself can provide further virtual resources with own properties.virtual resource #

These virtual resources usually reflect a software abstraction of phys-
ical system resources. The gray dashed lines exemplify how the file
system and the network stack are virtual resources, which are derived
from the hard disks and the networking hardware of a host system.

In the direction of applications and system users, the operating
system exposes system metrics for individual processes and the host
system in total. These system metrics allow measuring the resource
utilizations, and they often have different abstractions than the real
physical properties of the system resources. Thus, no strict 1:1 map-
ping exists among the physical resources with their properties and
the system metrics. For instance, as depicted with the orange dashed
lines, Linux provides a system metric to count open file descriptors
currently handled by a process. This metric includes real files relating
to the file system but also network sockets are represented as file de-
scriptors. Therefore, the measurable system metrics often represent
an interpretation of the physical world, with no direct mapping to
physical properties. Finally, the developer or system maintainer mak-
ing use of the resource information usually has a simplified mental
model of the provided information that does not necessarily match
the technical representation provided through system metrics.

2 .2 dependable computing and fd*

Whenever one talks about the reliability, safety, or fault tolerance of
computer-based systems, two distinct areas can be seen as origins
for research and terminology in this direction. One of these research
areas is dependable computing. This term and related concepts have pri-dependable

computing
#

marily been coined in the 1980s as a community effort to unify the
terminology used to describe aspects related to the dependability of
technical systems [Avi+04]. The results of this effort have been col-
lected by Laprie in his seminal publication “Dependable Computing
and Fault Tolerance: Concepts and Terminology” [Lap95, reprint of
a 1985 paper]. An updated version of the definitions found in this
paper has been presented with Avižienis et al. [Avi+04]. As a second
discipline, the control engineering community has also tried to stan-
dardize terminology. Isermann and Ballé [IB97] presents the most no-
table result of these efforts with updated definitions of terminology
being described in Isermann [Ise06].

In the following paragraphs I will summarize the most important
terms and definitions from both areas to establish a common ground
for the remainder of this document.

2.2 dependable computing and fd* 13

2 .2 .1 Dependability

According to Avižienis et al. [Avi+04], dependability is defined as “the # dependability

ability to avoid service failures that are more frequent and more
severe than is acceptable” [Avi+04]. The “service delivered by a sys- # service

tem (in its role as a provider) is its behavior as it is perceived by its
user(s)” [Avi+04] and “a user is another system that receives service
from the provider” [Avi+04]. Therefore, dependability is achieved in
case the rate of failures of a system is within an acceptable range
for its application. Isermann [Ise06, p. 24] has collected two further
definitions of dependability, where the first subscribes to the afore-
mentioned functional perspective based on the delivered service of a
system, whereas the second definition focuses on the ability to rely
on a dependable system. This second definition is, however, compa-
rable to the original definition of dependability from Laprie [Lap95]:
“computer system dependability is the quality of the delivered service
such that reliance can justifiably be placed on this service” [Lap95].

Dependability is usually understood as a general concept that en-
compasses different attributes, which can be assessed individually.
From the list of attributes presented in Avižienis et al. [Avi+04] I con-
sider most important the following ones:

availability “[R]eadiness for correct service” [Avi+04]. A better
conceivable definition is provided by Isermann [Ise06] as the
“probability that a system or equipment will operate satisfacto-
rily and effectively at any period of time” [Ise06, p. 23]. Others
agree on this view [III10; Mol15].

reliability “[C]ontinuity of correct service” [Avi+04] or “a mea-
sure of the continuous service accomplishment” [Lap95]. This
can also be described as the “ability to perform a required func-
tion for a certain period of time” [Ise06, p. 21]. While availability
describes the chance that a system can potentially be used at
all, reliability focuses on the chance that the system, once used,
correctly delivers its service.

safety “[A]bsence of catastrophic consequences on the user(s) and
the environment” [Avi+04] or in other words the “ability of a
system not to cause danger to persons or equipment or the en-
vironment” [Ise06, p. 23].

integrity “[A]bsence of improper system alterations” [Avi+04]. Is-
ermann [Ise06] provides a conflicting definition of integrity that
instead focuses on the detection of faults: “integrity of a system
is the ability to detect faults in its own operation and to inform
a human operator” [Ise06, p. 24].

confidentiality “[T]he absence of unauthorized disclosure of in-
formation” [Avi+04].

14 fundamental concepts and terminology

I have excluded maintainability, which Avižienis et al. [Avi+04] de-
fine as the “ability to undergo modifications and repairs” because, in
contrast to the aforementioned attributes, maintainability expresses a
property of a system that is not of immediate relevance to the user
of the system. A system with poor maintainability will eventually
degrade in the aforementioned attributes and therefore becomes less
dependable, however, this relation is indirect.

Another frequently used term related to dependability is robustness.robustness #

The IEEE standard 24765 [III10] defines robustness as “the degree to
which a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions”. As such, ro-
bustness quantifies a system’s ability to cope with unexpected con-
ditions imposed on the system by its environment, for example, the
user or other software components. Avižienis et al. [Avi+04] describe
robustness as a secondary attribute, which refines or specializes the
aforementioned primary ones. Unfortunately, no indication is given
which attributes are addressed exactly. However, robustness is com-
monly seen as an extension of reliability and in this view robustness
describes the dependability of a system in cases it has to operate un-
der conditions that go beyond the intended design [Jen14]. Reliability
is therefore restricted to delivering the service under nominal condi-
tions.

2 .2 .2 Faults, failures and errors: threats to dependability

Dependability is the ability of a system to deliver its service. However,
technical systems fail and therefore the times in which a system does
not perform its service according to its “service specification [which] is
an agreed description of the expected service” [AL86] are called ser-
vice outages [Avi+04]. Regarding such outages, several terms are com-
monly used to describe the causes: failure, error, fault, and bug. In the
dependable computing domain, the first three of them have proper
definitions and their most recent forms from Avižienis et al. [Avi+04]
are partially compatible with the ones found in the control engineer-
ing discipline. According to Avižienis et al. [Avi+04], the “event that
occurs when the delivered service deviates from correct service” is
called a system or service failure [Lap95; Avi+04]. Isermann and Balléfailure #

[IB97] provide a compatible definition of a failure as a “permanent in-
terruption of a system’s ability to perform a required function under
specified operating conditions” and Isermann [Ise06] later clarifies
that “a failure is an event” [Ise06, p. 20].

Avižienis et al. [Avi+04] define an error as follows:

Since a service is a sequence of the system’s external states,
a service failure means that at least one (or more) external
state of the system deviates from the correct service state.
The deviation is called an error.

2.2 dependable computing and fd* 15

This mean that an error is the externally observable deviation of
the delivered service from the agreed upon service specification. Fi-
nally, the “adjudged or hypothesized cause of an error is called a
fault” [Avi+04].

In contrast, the control engineering community uses the term fault # fault

comparably to error in the dependable computing sense: “an unper-
mitted deviation of at least one characteristic property (feature) of the
system from the acceptable, usual, standard condition” [Ise06, p. 20].
Furthermore, the term error is used to describe a measurable effect
of a fault (in the control engineering sense): a “deviation between a
measured or computed value (of an output variable) and the true,
specified or theoretically correct value” [Ise06, p. 413]. That means
both control engineering versions are related to the dependable com-
puting definition of error but must not be confused with the term fault
as the cause of an observable deviation from the service specification.

In contrast to the aforementioned terms, neither dependable com-
puting nor control engineering formally define the term bug, despite # bug

the fact that this term is commonly used among users and software
developers. However, Avižienis et al. [ALR01] indicate that the de-
pendable computing community treats a bug as a special class of
faults (in the dependable computing sense) and therefore a bug is
a software or hardware defect that ultimately impairs a system’s de-
pendability.

2 .2 .3 Means of dependability

To increase the dependability of technical systems a vast amount
of techniques has been developed. Within the dependable comput-
ing domain, these techniques are grouped into four different cate-
gories [Avi+04] (using the dependable computing terminology):

fault prevention aims at preventing the occurrence of faults in
the first place, for instance by using appropriate engineering
methods [Avi+04; Gol13].

fault tolerance aims at avoiding “failures in the presence of
faults” [Avi+04], for instance by automatically detecting these
faults and recovering the service.

fault removal aims at reducing the number of faults in a techni-
cal system, for example, through manual verification [Gol13].

fault forecasting aims at estimating the number of future faults
and their impact on the system to justify the dependability of a
system [Avi+04].

One common source for fault tolerance techniques is the control
engineering discipline, which has established definitions for common

16 fundamental concepts and terminology

tasks focusing on the runtime detection of system faults to reconfigure
the system before a severe service outage can take place. Common
tasks in this area are defined in Isermann and Ballé [IB97] as:

fault detection Determination of faults present in afault detection #

system and the time of the detection.

fault isolation Determination of the kind, location
and time of detection of a fault. Follows fault
detection.

fault identification Determination of the size and
time-variant behaviour of a fault. Follows fault isola-
tion.

fault diagnosis Determination of the kind, size, loca-
tion and time of detection of a fault. Follows fault
detection. Includes fault isolation and identification.1

Another important task is system reconfiguration, which follows the
aforementioned tasks with the aim to counteract the detected faults
by adapting the system configuration [WF13]. Combinations of these
tasks are commonly referred to as fault detection and isolation (FDI),
fault detection and diagnosis (FDD) or fault detection, isolation, and
recovery (FDIR), where FDI refers to fault detection and fault isolation,
FDD additionally includes the identification (which results in fault di-
agnosis), and FDIR additionally includes system reconfiguration [WF13].

Regarding the implementation of fault detection techniques, differ-
ent classes of methods have evolved, ranging from plausibility checks
to complex model-based methods.2 However, the common ground for
all these methods is that they observe a running system to decide
whether it delivers the correct service or not. As such, the term fault
for the related tasks has to be understood in the phenomenological
sense of the definition from the control engineering domain, because
such methods are not directly capable to detect the underlying hard-
ware or software defects.

Actual implementations of FDIR techniques are commonly realized
as monitors. A monitor, is “a software tool or hardware device thatmonitor #

operates concurrently with a system or component and supervises,
records, analyzes, or verifies the operation of the system or compo-
nent” [III10].

2 .2 .3 .1 Unified terminology

As seen, dependable computing and control engineering have estab-
lished partially conflicting definitions for common terms used when
discussing concepts related to the dependability of technical systems.

1 It is important to note that fault diagnosis is a more general term for the combination
of fault isolation and identification.

2 Refer, for instance, to Ding [Din08] for an overview of fault detection methods.

2.2 dependable computing and fd* 17

Because dependable computing provides a concise set of definitions
for common attributes of dependability (cf. Section 2.2.1 on page 13)
I will use these terms throughout the course of this work. However,
for naming threats to dependability I will use the terms from the
control engineering community. This decision is based on the idea
that fault detection is a well-established technique. A constant ten-
sion regarding the term fault would arise if the dependable comput-
ing definitions were used, because – from an external viewpoint –
fault detection techniques can detect only a visible effect (definition
of fault from control engineering) and not the underlying software or
hardware defect (dependable computing). As the control engineering
definitions lack a term to describe the root cause of a failure, I will
use the term bug for this purpose. To summarize, the used definitions
are:

failure “An event that occurs when the delivered service deviates C unified terms for
describing system
problems

from correct service” [Avi+04].

fault “An unpermitted deviation of at least one characteristic prop-
erty (feature) of the system from the acceptable, usual, stan-
dard condition” [Ise06, p. 20], which can potentially be observed
through measurable errors.

bug A software or hardware defect that potentially causes a failure.

Bugs can be introduced into systems in different ways. For exam-
ple, when adding new functionality, the new implementation might
contain an unknown bug. Conversely, an important case in the con-
text of this work is if a modification impairs existing functionality of a
piece of software. In this case, the bug is a software regression [NTY08] # software regression

and one major aspect of software testing is regression testing to imme-
diately detect such software regressions.

2 .2 .4 Dependability and performance

A term closely related to the concept of dependability is performance.
This term is as often used as imprecise or implicit definitions exist for
it. The IEEE standard 24765 [III10] defines performance as “the degree # performance

to which a system or component accomplishes its designated func-
tions within given constraints, such as speed, accuracy, or memory
usage” [III10]. In this view, performance is an overarching property
quantifying the mission success of a system given a set of measurable
constraints such as KPIs. This view is supported by Ibidunmoye et
al. [IHE15]. However, the question remains, how to measure perfor-
mance. As performance addresses the service delivered by a system,
a general definition is hard to establish due to the different appli-
cation domains. Therefore, Molyneaux [Mol15] explains that perfor-
mance should always be defined from a user acceptance perspective

18 fundamental concepts and terminology

start	of

failure

caused	by

fault

bug

caused	by

may	lead	to

performance
degradation

performance	bug

general performance

underlying	defect

visible	effect

event

Figure 2.3: Relation of general terms used to describe system failures and
performance-related counterparts. Arrows with a hollow triangle
as the tip represent inheritance as in UML class diagrams.

for the system at hand. Nevertheless, a set of commonly used met-
rics has evolved, which often includes response times, latency, availabil-
ity, throughput, and utilization [Mol15; Syd11; IHE15]. While the first
three of them have a clear relation to the perception of a system from
a user’s perspective, the last two represent internal workings of the
software system. Molyneaux [Mol15] therefore differentiates between
service-oriented and efficiency-oriented KPIs [Mol15, p. 2]. System met-
rics are either directly used to represent efficiency-oriented KPIs, or
they are the basis for derived ones. Therefore, measuring the per-
formance of a system involves both, system-related and user-related
metrics. When a quantification and a potential agreement on the per-
formance of a system is intended, performance is often replaced with
a defined set of measurable properties that is then termed qualityquality of ser-

vice (QoS)
#

of service (QoS). The agreement on a required level for these prop-
erties is furthermore called service level agreement (SLA). Originating
from the telecommunications domain [ITU08], these terms have been
adopted by the software engineering and system operation commu-
nities [Dob04; Wik17] where the meaning was extended to nonfunc-
tional properties of software systems, thereby including performance.

Performance is not a binary property. Hence, one usually cannot
simply say that a system does not perform at all because the ser-
vice, from a functional point of view, is still delivered. Instead, an
impairment of a system’s performance is often called a performanceperformance

degradation
#

degradation [e.g. She+09; Mol15; Koz10; IHE15; Avi+04; Foo+15]. The
reasons for such performance degradations in the sense of software
or hardware defects are called performance bugs [Rey+06; She+09]. Itperformance bug #

is important to note that a performance bug usually does not lead to
a complete service outage. Given a performance bug, the system still
delivers its functional service, but a performance degradation is the
visible effect of such a bug. This distinction of origin and visible phe-
nomena resembles the distinction between the general terms bug and
fault shown earlier. Given these general terms, performance bugs can
be seen as special cases of bugs and a performance degradation is a
special type of fault. However, for performance bugs no direct coun-

2.2 dependable computing and fd* 19

terpart to failures exists. As performance bugs usually do not lead to
a service outage, no single event exists that describes the start of a ser-
vice outage. Nevertheless, performance bugs can (usually gradually)
lead to complete system failures [IHE15], for instance, if a memory
leak results in processes being killed, or an increased delay leads to a
timeout in a client subsystem. In these cases, the general terms apply
again. Figure 2.3 on the facing page summarizes the relation of these
concepts and the terms used throughout this thesis.

Similar to the general bugs, a change to a piece of software can
also affect the performance of the (existing) software without the in-
tention to do so. This is often called a performance regression [KBT05; # performance

regressionMHH13; Ngu+12; Sha+15; ZAH12; JH15]: “Performance regressions
are regressions [. . .] caused by the degradation of system performance
compared to prior releases” [JH15].

The effects of performance bugs on deployed software products dif-
fer from those of other types of bugs. For instance, Jin et al. [Jin+12]
note that performance bugs are more costly to detect and hide longer
before being noticed. However, performance bugs have a higher po-
tential for successful recovery at system runtime without being no-
ticed by end users because their visible effect is often only a perfor-
mance degradation without complete service outage.

In the context of this thesis, performance is mainly analyzed from
the technical perspective through system metrics as representatives
of efficiency-oriented KPIs. Therefore, whenever I use the term perfor-
mance, I will refer to its efficiency perspective except otherwise noted.

3
A S U RV E Y O N B U G S I N R O B O T I C S S Y S T E M S

To better understand the state of dependability in current robotics sys-
tems, I have carried out an online survey.1 The aim of this survey was
to collect the impressions of robotics developers on the reliability of
systems, reasons for failure, and tools used to ensure successful oper-
ation and to debug in case of failures. Such an analysis is necessary to
verify that the developed solutions address relevant problems [Ste13].
The survey focuses on software issues and software engineering as-
pects. Apart from general bugs, performance bugs have been specif-
ically addressed to understand their nature and their effects on sys-
tems. A considerable amount of work in this direction has been done
in other computing domains such as high-performance computing or
for cloud services [e.g. Gun+14; Jin+12; ZAH12]. However, in robot-
ics such work is missing. To my knowledge, only Steinbauer [Ste13]
presents a systematic study on general faults in robotics systems, but
without specifically analyzing performance aspects.

I implemented the survey as an online questionnaire (following
method advice from Gonzalez-Bañales and Adam [GA07]) and dis-
tributed it among robotics researchers using the well-known mailing
lists euRobotics (euron-dist)2 and robotics-worldwide3 as well as
more focused mailing lists. The detailed structure of the survey can
be found in Appendix A on page 197. Please refer to this appendix
for details on the phrasing of questions and permitted answers. Re-
sults presented in the following sections are linked to the respective
questions of the survey.

In total, 61 complete submissions and 141 incomplete ones4 were
collected. 86 % of the participants were researchers or PhD candidates
at universities, 7 % regular students and 7 % from an industrial con-
text (A.12.1). Participants had an average of 5.8 years of experience
in robotics (sd: 3.3, A.12.2). On average, participants spend their ac-
tive development time primarily with software architecture and in-
tegration as well as component development, despite individual dif-
ferences visible in the broad range of answers (cf. Figure 3.1 on the
following page, A.12.3). Other activities such as hardware or driver
development are pursued only for a limited amount of time.

1 An initial discussion of survey results was published in Wienke et al. [WMW16].
Parts of this chapter are based on this publication.

2 https://lists.iais.fraunhofer.de/sympa/info/euron-dist
3 http://duerer.usc.edu/mailman/listinfo.cgi/robotics-worldwide
4 Incomplete submissions also include visitors who only opened the welcome page

and then left.

https://lists.iais.fraunhofer.de/sympa/info/euron-dist
http://duerer.usc.edu/mailman/listinfo.cgi/robotics-worldwide

22 a survey on bugs in robotics systems

Arch
itectu

re

Components IPC

Hardware
Others

Drive
r

0

20

40

60

80

%
 o

f d
ev

el
op

m
en

t t
im

e

59 58 59 57 38 57

Figure 3.1: Development time spent by survey participants on different as-
pects. Individual answers have been normalized to sum up to
100 %. Inside the violins, a box plot is shown with the white
dot representing the median and the red dot the mean value.
Numbers above the plot express the sample size, which differs
as answers were optional.

Spec. v
isu

aliza
tions

OS tools
Logfile

s

IPC introspect.

Remote deskt
ops

Others

Fault d
etectio

n

Dashboards

Never

Rarely

Sometimes

Regularly

Always

84 85 81 85 83 32 82 82

Figure 3.2: Usage frequencies for different categories of monitoring tools.
For each category the answer counts are displayed as a histogram
and the gray point marks the median value. Categories are or-
dered by median and, if equal, mean values. Numbers above the
histograms express the sample size.

3 .1 tool usage

A first set of questions tried to assess which software tools are used
to monitor and debug robotics systems in general. For different types
of tools, participants could rate on a 5 point scale from 0 (Never) to 4

(Always), how often the respective type of tool is used during usual
development and operation of their systems. For general monitoring
tools (A.2.1) the answers are depicted in Figure 3.2. According to the
developers’ opinion, special purpose visualization tools such as RViz
[RViz] or debug windows for image processing operations are most
frequently used to monitor systems. These are followed by low-level
operating system level tools such as ps or htop and log files. Tools re-
lated to distributed systems such as utilities of the inter-process com-

3.1 tool usage 23

Printf e
tc.

Logging

Simulation

Debuggers

IPC introspect.

(Unit) t
estin

g

Memory c
hecke

rs

Profile
rs

Network a
nalyz

ers

Syst
em ca

ll in
trosp.

Others

Never

Rarely

Sometimes

Regularly

Always

79 77 77 78 77 78 76 75 76 75 18

Figure 3.3: Usage frequencies for different debugging tools and methods.

munication (IPC) mechanism form the final category of tools that
is regularly used. Remote desktop connections are used only some-
times. In contrast, autonomous fault detection methods and special
dashboards for visualizing system metrics are rarely used, although
such tools are well-established for operating large-scale systems with
high dependability requirements.

A second question regarding monitoring tools asked for the exact
names of tools that are used (A.2.2). The answers to this question
are summarized in Appendix B.1 on page 207. The most frequently
mentioned category of tools matched the previous question (visual-
ization tools, most notably RViz [RViz]). These are followed by mid-
dleware-related tools, most notably the ROS command line tools and
rqt, as well as operating system tools with htop and ps being the most
frequently mentioned examples. Finally, manual log reading, remote
access tools, custom mission-specific tools, and generic network moni-
toring tools such as Wireshark [WiSha] are used. Additionally, one par-
ticipant also explicitly mentioned hardware indicators such as LEDs
for this purpose.

Regarding tools used to debug robotics systems (A.3.1), partici-
pants often use basic methods such as printf or log files as well
as simulation (cf. Figure 3.3). General-purpose and readily available
debuggers are less often used than these basic methods. Unit testing
is sometimes practiced and accepted in the robotics and intelligent
systems community.

The actual tools being used have been summarized in Appendix B.2
on page 208 based on question A.3.2. Debuggers represent the most
frequently mentioned category of tools with GDB [GDB] leading this
category. Another frequently used debugging tool is Valgrind [Valg]
for checking memory accesses. Besides printf debugging, other cat-
egories of used tools are middleware utilities, simulation and visual-
ization (with gazebo being mentioned most often), and unit testing.

24 a survey on bugs in robotics systems

<0.5 h <1 h <6 h
<12 h

<1 week

>1 week
0

5

10

15

nu
m

be
r o

f a
ns

w
er

s

Figure 3.4: Participant answers for the observed MTBF in their systems.

3 .2 bugs and their origins

In a second set of questions I have addressed the reasons for and
effects of bugs in robotics systems. Due to the limited availability
of failure rates in robotics systems, one question asked participants
for the mean time between failures (MTBF) they have observed in
systems they are working with (A.4.1). As visible in Figure 3.4, the
answers form a bimodal distribution where one part rates the MTBF
of their systems to be within the range of minutes to a few hours,
whereas others indicate MTBF rates in the range of days to weeks. I
have thought about different explanations for this discrepancy:

• The participants’ systems differ in maturity.

• Answers with a higher MTBF include the system’s idle time,
despite an explicit note in the explanation of the question that
the operation time is the basis for this number.

• Differences can be explained by the way people use debugging
or monitoring tools in their systems. For instance, systems of
survey participants who frequently use more advanced tools
could be more reliable with higher MTBF rates. However, no
significant relations exist in the data.

As for the first two hypotheses no data are available to validate them
and the third one cannot be proofed using the survey results, the
effective reasons for the bimodal distribution are unknown.

To generally understand why systems fail, participants were asked
to rate how often bugs from a set of categories were the root cause
of system failures (A.4.2). The categories have been selected based on
related survey work from robotics and other domains [Ste13; Gun+14;
Jin+12; McC04]. Figure 3.5 on the facing page displays the results for
this question. Hardware bugs represent the most frequent category
followed by a set of categories representing high-level issues (config-
uration, coordination, deployment, IPC) as well as general logic bugs.
Most of the high-level issues seem to be technical problems and not
specification problems because specification issues only rarely cause
failures.

3.3 performance bugs 25

Hardware

Configuration
Logic

Coordination

Deploym
ent

IPC

Threading

Resource
 leaks

Specifi
cation

Erro
r handling

Others

Never

Rarely

Sometimes

Regularly

Very often

69 70 70 66 57 71 70 68 68 67 14

Figure 3.5: Frequencies of different bug categories being the reason for sys-
tem failures.

Apart from the aforementioned categories, participants could de-
scribe further causes in text form (A.4.3). After removing items that re-
late to categories already presented in the previous question, answers
can be summarized as a) environment complexity/changes (8 men-
tions) b) low-level driver and operating system failures (3 mentions)
c) hardware configuration management (1 mention) and d) hardware
limitations (1 mention). Appendix B.3 on page 209 shows the answers
in detail as well as how categories have been assigned. In the survey,
I explicitly excluded the (physical) environment as an origin of sys-
tem failures because it does not represent a real defect in any com-
ponent of the system. However, the results still show how important
the discrepancy between intended usage scenarios and capabilities of
systems in their real application areas is in robotics and intelligent
systems.

3 .3 performance bugs

To understand performance bugs in robotics and intelligent systems,
a dedicated set of questions was added to the survey. First, partici-
pants were asked for the percentage of bugs that affected resource uti-
lization (A.5.1). On average, 24 % (sd: 17 %) of all bugs affected system
resources. Participants also had to rate how often different system re-
sources were affected by performance bugs (A.6.1). These results are
visualized in Figure 3.6 on the following page. Memory, CPU, and
network bandwidth are the most frequently affected resources. Net-
work bandwidth can be explained by the distributed nature of many
of the current robotics systems. These resources are followed by disk
space. Countable resources such as processes or network connections
are rarely affected. A question for further types of affected resources
(A.6.2) yielded IPC-related virtual resources such as event queues and
IO bandwidth in addition to the previous categories (cf. Appendix B.4
on page 210).

26 a survey on bugs in robotics systems

Memory
CPU

Network b
andwidth

Disk
 sp

ace

Processe
s/th

reads

Net co
nnectio

ns

File descr
iptors

Never

Rarely

Sometimes

Regularly

Very often

67 67 66 66 66 64 62

Figure 3.6: Frequency of bug effects on system resources.

Algorith
ms

Resource
 leaks

Skip
pable co

mp.

Configuration
Logic

Threading IPC

Hardware

Coordination

Deploym
ent

Specifi
cation

Erro
r handling

Others

Never

Rarely

Sometimes

Regularly

Very often

56 58 56 55 54 55 57 56 56 49 53 56 9

Figure 3.7: Frequency of reasons for performance bugs.

To get an impression of common causes for performance issues
in robotics and intelligent systems, a question asked participants to
rate how frequently different categories of root causes were the ori-
gin of performance bugs in their systems (A.7.1). The categories are
the ones of the previous general questions on bug origins (A.7.1) ex-
tended with two items specifically targeting performance bugs: skip-
pable computation, that is, unnecessary computation that does not
affect the functional outcomes (based on the results in Gunawi et al.
[Gun+14]) and algorithmic choices. Figure 3.7 depicts the results for
this question. The most frequent reason for performance bugs is the
choice of inappropriate algorithms followed by resource leaks and un-
necessary computations. To my surprise, configuration issues are also
among the frequent causes for performance bugs. When comparing
answers to this question with the answers for origins of general bugs
(A.4.2, comparison in Table 3.1 on the next page), most categories are
less likely origins for performance bugs than for general bugs apart
from resource leaks. Interestingly, no significant difference exists in
the way threading issues affect performance bugs compared to gen-
eral bugs.

3.4 bug examples 27

category change

Communication −0.28

Configuration −0.51**

Coordination −0.79****

Deployment −0.71****

Error handling −0.44*

Hardware −0.98****

Resource leaks 0.47**

Logic −0.44*

Others −0.58

Specification −0.46*

Threading 0.04

Table 3.1: Changes to the mean ratings for different categories being the
origins of failures when comparing performance bugs to general
bugs. A change of 1 would indicate a shift from one answer cat-
egory to the next higher one. Significances have been computed
using a Mann-Whitney U test.

3 .4 bug examples

Finally, participants were asked to describe the bugs they had ob-
served in their systems in detail. Two questions in this direction were
asked with four sub-answers explicitly requesting a) the visible ef-
fects on the system, b) the underlying defect causing the bug, c) the
steps performed to debug the problem, and d) the affected system
resources. These questions were added to the survey to get an impres-
sion of the actual problems current robotics developers are facing in
their systems and how they are addressed.

The first of these questions asked for a description of any type of
bug participants remembered from their systems that is particularly
representative for the kind of bugs frequently observed (A.9). In total,
21 answers were submitted for this question with a complete listing
of the answers available in Appendix B.5 on page 211. Most notably,
10 of the answers (48 %) were related to basic programming issues
such as segmentation faults or memory leaks, for instance caused by
C/C++ peculiarities. 8 answers (38 %) described an issue that can be
classified as a performance bug. Issues related to the IPC usage or
infrastructure were mentioned by 4 answers (19 %). Also, 4 answers
indicated bugs related to the coordination of the system (e.g., loops
in the controlling state machines) of which 2 answers were related to
unexpected environment situations. Also, 2 answers were related to
timing aspects and 2 answers indicated that a bug was never or only
accidentally understood and solved. Please refer to the tagging in
Appendix B.5 on page 211 for details on how answers were counted.

28 a survey on bugs in robotics systems

A second question asked participants to describe the most interest-
ing bug they remembered in the same format. This was done to get
an impression of which extreme types of bugs are possible in robotics
systems. 14 participants answered this question and their answers are
listed in Appendix B.6 on page 219. In line with the previous ques-
tion, programming problems related to low-level issues also represent
the most frequently mentioned type of bugs with 6 answers (43 %).
Furthermore, 3 answers (21 %) described bugs caused by driver or
operating system problems.

Answers to both questions indicate that debugging of memory-
management-related programming issues is often performed using
established tools such as GDB [GDB] or Valgrind [Valg] – however –
with varying success. One answer specifically mentioned that these
tools are often not helpful for distributed systems.

3 .5 summary

The presented results show that a great potential for improvements
in the dependability of robotics systems still exists. With MTBF rates
in the range of hours, a large part of the surveyed systems is far from
being reliable enough for longer-term operations and work in this di-
rection is needed, even if the majority of developers reached with this
survey is working on research systems, which rarely end up in pro-
duction use cases. Nevertheless, an appropriate level of dependability
is required also in this domain to allow efficient experimentation and
reliable studies. Still, monitoring tools that are specifically geared to-
wards operating systems with high availability and reliability such as
fault detection or dashboards for a quick manual inspection of sys-
tems states are only rarely applied in robotics. The survey does not
offer answers why this is the situation. Reasons could include the
overhead of deploying such approaches, which might not be feasi-
ble in smaller, short-lived systems; or the lack of knowledge about
such approaches, especially as many robotics researchers do not have
a background related to maintaining large-scale systems. Therefore,
improving approaches and making them more easily usable is one
promising direction to increase their adoption.

Regarding system failures and their origins, the quantitative re-
sults from this survey indicate that hardware issues are among the
most frequent causes for failure. This contradicts the findings from
Steinbauer [Ste13], which might be caused by the wider range of ap-
plications covered in this survey. Generally, system failures seem to
originate more frequently from bugs occurring in high levels of ab-
straction such as coordination, deployment, or configuration and less
often from component-internal issues such as crashes. Still, a major-
ity of the requested bug descriptions for representative bugs dealt
with such component-internal issues. One reason for this might be

3.6 threats to validity 29

that, although frequently being observed, such component-related is-
sues are often noticed immediately and therefore are perceived as
part of the development work and not as system failures. In any case,
these issues are strikingly often caused by basic programming issues,
often related to the manual memory management and syntax idiosyn-
crasies of C/C++. A general shift in robotics towards less error-prone
languages with automatic memory management, clearer syntax, and
better debugging abilities has the potential to avoid a large amount
of bugs currently found during development and operations.

Generally, systems are often debugged using log files and printf

instructions specifically placed for debugging. Participants have in-
dicated that debuggers and memory checkers such as Valgrind [Valg]
are used less often. The detailed bug reports show that these tools are
applied frequently only to debug programming issues on the compo-
nent level. Participants have also indicated that these tools cannot
be easily used for other problems related to the distributed systems
nature of current robots. Further work on debugging infrastructure
respecting this fact might improve the situation. Finally, simulation
seems to be an important tool for debugging robotics systems and
explicit support for simulation-based testing and debugging might
provide one future direction for more dependable robotics systems.

Regarding performance aspects, one quarter of the bugs found in
current (research) systems can be classified as performance bugs. In
the descriptions of representative bugs even more than one third of
the answers was performance-related. Therefore, specifically address-
ing such issues is not only a niche but instead provides the potential
to avoid a large amount of failures in the future. The survey has in-
dicated that performance bugs are significantly less often caused by
high-level aspects such as coordination or deployment and also by
hardware issues. Therefore, addressing them on the level of system C performance bugs

can be addressed at
the component level

components as intended in this thesis is a valid approach that will be
able to capture many of the issues present in current systems.

3 .6 threats to validity

The survey results represent the opinions and memorized impres-
sions of interviewed developers, not objective measurements of the
real effects. As such, results may be biased. However, general tenden-
cies derived from the results should still be valid because a complete
misassessment is unlikely across all participants.

Due to the distribution of the survey via primarily research-related
mailing lists, results are representative only for systems developed
in this context and cannot be generalized towards industrial, produc-
tion-ready systems.

The categories used in questions regarding the frequencies of bug
origins may have partially been hard to distinguish from each other.

30 a survey on bugs in robotics systems

Sometimes, ratings might thus be blurred between categories. When
possible, the conclusions drawn from the survey have been based on
a grouping of multiple categories to mitigate this effect.

4
A C O N C E P T O F R E S O U R C E AWA R E N E S S

Chapter 2 has introduced dependability as a global aim of technical
systems, how dependability can be achieved in such systems, and
how performance issues can affect it. Moreover, the survey presented
in the previous chapter has shown that performance bugs are a com-
mon problem in robotics system. Resources form a major aspect of
performance and as visible in the survey results, an unexpected uti-
lization can severely impact dependability. Therefore, awareness of
availability and utilization of system resources is required for improv-
ing the dependability of technical computing systems. Awareness, in
this context, is required along the whole lifecycle of technical systems
– including planing, development and operation [SS11] – because per-
formance issues can originate or appear in any of these stages [Mol15,
p. 7]. As dependability is a requirement for any technical system, a
multitude of methods and approaches have been developed that en-
able such an awareness at different stages of the lifecycle of com-
puting systems. Systems that incorporate such techniques are often
termed to be resource-aware or to incorporate resource awareness. How-
ever, no accepted definition exists for this term and usage varies. Of-
ten, resource awareness is used to indicate that a piece of software or an
architecture adapts dynamically to the available resources [e.g. Krö17,
p. 6; PKK12; Zha+15; Men+12]. This definition is limiting, as more as-
pects of a system and the surrounding development and operations
require knowledge about resources. Therefore, I will use the term re- # resource awareness

source awareness to describe an overarching concept that comprises the
software itself as well as the software development process and life
cycle. Resource awareness, in this broader understanding, is the idea
of uncovering the resource utilization of a system and making this in-
formation usable, either for developers during software development,
or for supervision at operation time by tailored software or human
operators. In most existing cases, resource awareness is a result of
intrinsic properties of pieces of software, which – for instance – were
constructed by following a resource-aware programming paradigm.
Such an approach results in an obligation for programmers to explic-
itly incorporate the necessary techniques – which they need to know
and understand in detail – into their programs. I will call this imple- # implementation-level

resource awarenessmentation-level resource awareness. On the other hand, resource aware-
ness can also be achieved through generic means of the software in-
frastructure and testing landscape without requiring modifications
to the actual domain-specific program implementations. In the fol-
lowing, methods subscribing to such an approach will be termed to

32 a concept of resource awareness

implement framework-level resource awareness and this work focuses onframework-level
resource awareness

#

such methods. Although framework-level methods are restricted in
the effects they can achieve compared to implementation-level ones,
their application is much easier, which follows the essential require-
ment of this work to introduce methods that can be applied in exist-
ing systems with the least amount of overhead . This overhead com-
prises the necessary time to install and maintain solutions as well
as their own demands for system resources [Kha+15; SW05]. The re-
duction of effort tries to avoid potential arguments against using a
solution for resource awareness in the first place.

In the following sections I will summarize existing work related
to the concept of resource awareness. I will give an overview of gen-
eral resource awareness methods and highlight approaches that im-
plement framework-level resource awareness.

4 .1 resource awareness in computing systems

Before going into the details on how resource awareness is currently
realized in robotics, I will first present related approaches in other
software engineering domains.

4 .1 .1 Server infrastructure operation

Generally, the operation of server infrastructure for frequently used
applications imposes high demands on dependability and therefore
a variety of resource awareness methods originates form this domain.
As applications are constantly changing, tools for this purpose need
to be easily applicable and general-purpose. Many framework-level
monitoring and alerting systems have been developed that respect
these requirements and are readily available. Common implementa-
tions of such systems (for instance Prometheus [Prom]) continually
acquire KPIs of the system and running applications, collect them for
later retrieval, visualize them using dashboards, and alert in case col-
lected metrics violate specified checks [Tur16]. As such, monitoring
systems contribute to the resource awareness principles by making
software operators aware of their systems’ resource utilizations. A va-
riety of commercial and open-source implementations of such tools
exists. Aceto et al. [Ace+13] and Fatema et al. [Fat+14] provide exten-
sive surveys on the available tools from the perspective of operating
cloud computing systems. Depending on the scale of the system and
the intended level of detail for monitoring, such monitoring systems
may have a noticeable resource utilization. Some systems address this
by sub-sampling the monitoring data, for instance, Sigelman et al.
[Sig+10], whereas Meng et al. [Men+12] propose to also make the
monitoring system itself resource-aware.

4.1 resource awareness in computing systems 33

Monitoring approaches are also available for the underlying net-
work and data distribution systems of complex distributed systems.
For example, the PIP framework [Rey+06] allows expressing expecta-
tions regarding different aspects of performance, including resources,
using a declarative language. These expectations are checked at sys-
tem runtime and violations are reported. PIP has been evaluated
against different data dissemination and multicast systems.

Another common technique is load balancing, which aims to dis-
tribute usage load – for instance, from requests on a web server –
across multiple parallel instances to prevent overloading of individ-
ual instances [Bou01]. This technique tries to mitigate resource star-
vation on the individual nodes. Many off-the-shelf load balancers for
diverse applications are available and therefore contribute to frame-
work-level resource awareness. Examples include solutions for web
servers such as Apache [Apache] or nginx [nginx], the standalone
HAProxy [HAProxy], or even on the network level in routers [Cis15].

4 .1 .2 Cloud computing

Apart from generic infrastructure operation tools, cloud computing
as a prominent discipline has developed methods that are more spe-
cific for the platform as a service (PaaS) and infrastructure as a service
(IaaS) idea with virtualized hardware resources that can be acquired
or released on demand. For instance, Malik et al. [MHC12] describe
a framework to automatically select appropriate cloud providers for
executing applications based on resource and QoS properties with
the aim to maximize the performance of the application. Johnsen et
al. [JST12] addresses the comparable problem of deciding when to
acquire and release resources by means of a model-based approach.
After modeling applications and cloud providers using the ABS mod-
eling language, developers can execute the models to simulate differ-
ent scenarios before the actual development starts. This idea matches
with the general aims explained by Hähnle and Johnsen [HJ15] who
argue that resource awareness for cloud computing should already
be addressed during the design phase because this will lead to appli-
cations that incorporate resource awareness on the implementation
level.

4 .1 .3 Model-based performance prediction

Along these lines of Hähnle and Johnsen [HJ15], model-based ap-
proach for forecasting the performance and resource utilization of
systems form one important method to incorporate resource aware-
ness in the design phase. A prominent example targeting component-
based systems is the Palladio Component Model (PCM) [BKR09]. In
PCM components are described in terms of their behavior and as-

34 a concept of resource awareness

sociated resource utilizations; their assembly to systems; deployment
targets and available resources; as well as request-based system usage
scenarios specified as user-role specific models. PCM provides differ-
ent mechanisms to simulate and validate the actual resource utiliza-
tion and performance of systems modeled this way. It has also been
extended to event-based systems [Rat+14] with explicit model ele-
ments to specify event-based component connections including queu-
ing behavior. This extension makes PCM an interesting candidate to
model event-based robotics systems in case a model-driven approach
is intended. Another solution for predicting the resource utilization
of a system is presented in Jonge et al. [JMC03] and Muskens and
Chaudron [MC04]. Here, the Robocomp component model describes
component-based systems using multiple task-specific models. Op-
erations are annotated with the expected resource utilization and a
method is presented to derive the effective demands for chained ser-
vice calls.

Others have presented resource forecasting methods based on stan-
dardized modeling languages. For instance, Garousi et al. [GBL09]
show an approach to predict the resource utilization in distributed
real-time systems based on Unified Modeling Language (UML) se-
quence diagrams with custom annotations. Comparably, Tribastone
and Gilmore [TG08] use the standardized Modeling and Analysis of
Real-Time Embedded Systems (MARTE) [OMG11] profile for UML
to annotate resource information. These UML models are then trans-
formed into PEPA [GH94] models for analysis. The same authors also
proposed another method that uses Layered Queuing Networks as
the target formalism instead [TMW10].

All the aforementioned method require system models that contain
the necessary resource utilization and capacity information. Creating
such models and keeping them up to date with the evolving system
requires a considerable amount of work, which might prohibit the
application of these methods. To address these issues, Kounev et al.
[Kou+10] describe an approach how the aforementioned PCM models
can be maintained at runtime after their initial construction. Based
on these models, a prediction of a system’s performance at runtime
is intended. Caban and Walkowiak [CW15], in contrast, describe how
existing choreography or orchestration descriptions of web services
can be used for simulation-based prediction.

For a systematic survey on further model-based performance fore-
casting systems, please refer to Koziolek [Koz10]. Generally, model-
based techniques can be classified as framework-level resource aware-
ness implementations, because the same methods can be applied to
different models and all parts of a system. However, in case appropri-
ate models do not exist, their construction and maintenance usually
conflicts with the aim to limit the required effort for applying a re-
source awareness method.

4.2 resource awareness in robotics 35

4 .2 resource awareness in robotics

Despite being sometimes neglected, resource awareness has also been
addressed in robotics. Some approaches used here have been adopted
from other disciplines but robotics has also developed own solutions.
In the following, I will give an overview of those.

4 .2 .1 Space robotics

Probably the first systematic architectural approach to specify and ex-
ploit knowledge about the utilization of system resources in robotics
has been formulated in the CLARAty architecture [Vol+00; Vol+01],
which has been used for multiple rovers for planetary exploration
missions [Nes07a]. Inside CLARAty, each functional component has
the duty to provide predictions about its resource utilization for a
given task on request from the planning layer, which can then in-
corporate the resource utilization in generated plans. Prediction is
performed inside the functional components to locate such knowl-
edge close to the actual implementation. Resource predictions can
be requested with varying levels of accuracy to control the required
time and processing power for generating the prediction. During plan
execution, predictions are compared with actual utilization values
and repair actions are take if necessary [Vol+00]. The CLARAty ap-
proach – despite being enforced by the architectural framework – re-
quires implementation-level changes in each component to provide
the required resource predictions. As planetary exploration exception-
ally demands for well-managed resources, further works for resource
awareness exist here, where awareness for system resources is often
a side effect of maintaining physical resources such as power. For in-
stance, Castano et al. [Cas+06] present another architecture for a Mars
rover that explicitly include resource predictions in the planning pro-
cess. Ai-Chang et al. [AiC+04] describe the MAPGEN mixed-initiative
planner for the Mars rover that is used to plan the execution of scien-
tific experiments, initiated either through the rover software itself or
by a remote operator. The planning tool APGEN allows precomputing
CPU usage profiles before sending a command to the rover.

4 .2 .2 Cloud robotics

Another robotics research area where resource awareness is tackled
is cloud robotics. Here, the idea is – among others – to offload com-
putations onto cloud computing services to overcome the resource
restrictions of the robot platforms [Wan+16]. In this domain, resource
demands need to be known to allocate the required cloud resources
and also to decide whether to upload a task to the cloud or to pro-
cess it locally because offloading requires network bandwidth and

36 a concept of resource awareness

might lead to communication latencies and errors. This trade-off is
termed the resource allocation and scheduling problem [Wan+16]. Hu et
al. [HTW12] propose an optimization approach to solve this problem,
which is embedded in their software architecture.

4 .2 .3 Resource-aware algorithms

Resource awareness can also be realized on an algorithmic level. A
common implementation-level approach, which implicitly enables re-
source awareness inside individual computations, is the use of any-
time algorithms [DB88; Zil96]. “Anytime algorithms are algorithms
whose quality of results improves gradually as computation time in-
creases” [Zil96]. The iterative processing allows interrupting such an
algorithm at any given moment at which the latest approximate re-
sults are returned [Zil96]. This way, the planing layer of a system can
decide on the desired time or resources a computation should utilize.
Anytime algorithms have been used for many applications in robot-
ics.1 Among others, these include localization and simultaneous local-
ization and mapping (SLAM) [Fox+99; NR11], mobile robot path plan-
ning [Thr+00; Lik+05; Kar+11], computer vision machine learning
tasks [Mör+10; ZV08; Uen+06], execution planning problems [TLI11;
Yu+15], and modular robot reconfiguration [Dut+14]. Furthermore,
many general algorithms used as the basis for robotics applications
can be formulated as anytime algorithms [e.g. PGT03; Pai+15; MY13].

A different and more integrated approach that couples algorithms
to the available resources is invasive programming [Pau+14]. With the
aim to efficiently use many-core systems for robotics, the operating
system level in invasive programming differs from traditional PC-
based systems. Resource management is shifted from the operating
system to the applications, which have to explicitly request resources
and handle situations in which less resources are granted then re-
quested. This brings awareness about such restrictions closer to the
actual implementation of algorithms and programmers have to explic-
itly handle such situations. Paul et al. [Pau+14] and Kröhnert [Krö17]
show how this programming model can be used to implement re-
source-aware computer vision algorithms.

4 .2 .4 Resource-aware planning and execution

Another robotics area where resource awareness has been addressed
before is planing and execution. Here, the idea is that while plan-
ing actions and executing them, a robot should consider the available
resources and their expected utilization to prevent overloading the
system and degrading the QoS. For this purpose, a planner can make

1 Sometimes, approaches realizing anytime algorithms do not even explicitly mention
that they implement this idea.

4.2 resource awareness in robotics 37

use of the resource awareness already implemented in the system’s
components. In addition to the space robotics work already discussed
in Section 4.2.1 on page 35, further more general resource-aware plan-
ning and execution approaches exist.

Park et al. [PKK12] present an architectural framework-level solu-
tion to the planing problem. In their system, first a task-based plan
for a given goal of a robot is generated. The software architecture
provides one or multiple sub-architectures and realizing components
for each of the tasks. The effective architecture of the system is then
rearranged by selecting the sub-architectures and components that
best fulfill the task requirements while utilizing the least amount
of resources, in their examples CPU and memory. Additionally, op-
timization is used to decide which components need to be active at
which time to further reduce resource utilizations. For this purpose,
a static model of resource utilization is assumed (a constant amount
of resources is utilized only if a component is active), which has been
generated beforehand through simulation.

Another framework-level approach in the planing and execution
area is described in Kröhnert et al. [Krö+14]. Here, the state-chart-
based execution of the robot as well as its perceived state of the world
are exposed to a prediction component, which aims to predict fur-
ther actions of the robot including their resource requirements. For
this purpose, Markov chains and static resource utilization values per
state are used (CPU and memory). The Markov chains are trained by
observing executions of the robot whereas the resource values have
been hand-crafted beforehand based on experience and insights into
the algorithms realizing the states. Results of the prediction are not
used for generating or adapting plans.

The aforementioned approach has later been integrated into the
concept of speculative resource management [Krö17] where the idea is
to manage resources based on a prediction starting from the current
state of the robot system. Although Kröhnert [Krö17] also presents
different resources-aware algorithms (cf. Section 4.2.3 on the facing
page) the integration between the prediction and such algorithms as
building blocks for resource-aware systems is left for future work.

4 .2 .5 Infrastructure monitoring of robotics systems

Robotics systems are usually larger systems of interconnected, poten-
tially distributed, components. To effectively monitor such systems
at runtime, special monitoring software is required, which has been
introduced for general systems in Section 4.1.1 on page 32. Interest-
ingly, not many of the concepts from server operations and infrastruc-
ture monitoring made their way into robotics and are actively used
there, although solutions commonly realize framework-level resource
awareness.

38 a concept of resource awareness

In the ROS [Qui+09] ecosystem, the Advanced ROS Network Intro-
spection (ARNI) [BW14; BHW16] provides a system to introspect a
running ROS system and acquire runtime information about it. Be-
sides its main purpose to collect and visualize information about the
message flow inside the distributed system, ARNI also acquires in-
formation about system resources such as CPU, memory, and the
GPU for hosts and individual ROS nodes. It further allows visualizing
them using an interactive dashboard. Additionally, basic constraints
such as range checks on the measures properties can be defined and
violations will be reported by ARNI.

Another example of a monitoring approach for ROS-based robots
can be found in Monajjemi et al. [MWV14]. Here, the Drums frame-
work provides low-level system resource monitoring on the host and
component level. The basic concept of the framework is that a frame-
work-specific adapter exposes the system-level resources such as PIDs
or sockets of components such as ROS nodes to allow the low-level
monitoring. Based on this information, Drums instruments the run-
ning system with monitoring processes, which acquire resource uti-
lization information using means of the operating system. The ac-
quired system metrics are then processed and exposed to a human
operator using standard solutions available from the infrastructure
monitoring domain (Graphite [Graph] in this case).

4 .2 .6 Model-driven approaches

Also, for robotics few model-based approaches to resource awareness
exist. In case models are available, these model-driven methods are
representatives of framework-level resource awareness.

Lotz et al. [LSS11] describe a generic pattern how to integrate the
aforementioned monitoring capabilities into component-based robot-
ics systems constructed using model-driven software development
(MDSD) principles. They propose to instrument each component with
a black box that realizes several software sensors. These software sen-
sors provide monitoring data described by profiles. The black box
optionally exposes an interface to the user-code inside the compo-
nent to acquire processing details. Sensor data are exposed through
an additional diagnosis port in each component and can be used by
service requesters. The code generation of the model-driven approach
is responsible of generating the black box instrumentation into each
component. In the provided examples, component states and commu-
nication information are reported using this technique. However, the
presented approach would also allow generating an additional soft-
ware sensor for reporting resource utilization information into the
black box. As no interface has to be exposed to the user-code, this
could realize framework-level resource awareness.

4.3 summary 39

In Steck and Schlegel [SS11], the same authors further describe an
extension to their SmartSoft MDSD framework for developing robot-
ics applications. The extension enables users to attach desired QoS
properties for communication patterns and realtime requirements to
the model. During model-transformation this information and addi-
tional knowledge about the capabilities of the target platform can be
used to verify the required constraints and to perform schedulability
analysis.

4 .3 summary

The review of related resource awareness approaches has shown that
the topic is generally accepted and that methods exist for different as-
pects of resource awareness. However, in robotics, these methods are
either on the implementation level, which requires that developers
actively realize or apply them (e.g., resource-aware algorithms, plan-
ing), or the methods that follow the idea of framework-level resource
awareness are limited to basic functions such as monitoring and make
strong assumptions (e.g., constant resource utilization). Model-driven
methods could be an option. However, only few of them have been
proposed and in case model do not exist, the effort resulting from
their construction only for the purpose of achieving resource aware-
ness usually prohibits the application. Thus, a need for further ap-
proaches with broader scopes becomes visible that enable resource
awareness without requiring deep changes to the systems, their com-
ponents, and the assorted development workflow.

Part II

T E C H N O L O G I C A L F O U N D AT I O N

This part introduces the technological foundation the de-
veloped methods build upon. Apart from an introduction
to state of the art development methods for current ro-
botics and intelligent systems, the set of technologies that
was used in this thesis will be presented. Finally, this part
also explains how information about the current resource
utilization is acquired as a prerequisite for the work in
further parts of this thesis.

5
C O M P O N E N T- B A S E D R O B O T I C S S Y S T E M S

Nowadays, any robotics system that does not merely serve as limited
proof of concept is usually a complex software system with a mul-
titude of different functionalities and technologies constituting the
intended system behavior [Nes07b]. Therefore, robotics is a multi-dis-
ciplinary problem and most systems combine software developed by
different authors, each being experts in their discipline. Thus, robotics
faces similar software engineering challenges as other domains with
comparable complexity and diversity [BS09]. Additionally, due to the
experimental nature of systems in many robotics areas and their re-
search background, systems and their individual parts are constantly
changing to answer new research questions. This implies that sys-
tems have to be easily adaptable while still maintaining a sufficient
level of isolation for the different domains experts. Reuse of software
parts is an essential property needed to fulfill these requirements and
component-based software engineering (CBSE) [HC01; CL02; Szy03] is a # component-based

software engineering
(CBSE)

common approach to realize this. CBSE has been widely adopted and
accepted in the robotics community.

One of the premises of the work pursued in this thesis was to create
solutions that are applicable to a wide range of systems without high
overheads that would prevent their application. As such, component-
based robotics systems are a natural target for this work. Therefore,
I will give a short introduction of CBSE and related terms and con-
cepts in the following paragraphs. Then, I will briefly present existing
component-based frameworks from the robotics domain to show the
importance of CBSE for current robotics development. The remain-
ing chapters in this part of the thesis will then introduce the specific
frameworks and techniques used on which the developed framework-
level resource awareness methods build.

5 .1 component-based software engineering

CBSE represents the idea to split up a large software engineering
problem into smaller, well-separated parts, which – when composed
– create the solution to the problem. These parts are formed follow-
ing separation of concerns and one intended effect is their reusability
in other contexts. Moreover, the individual parts can be developed in-
dependently and implementations can be changed to support main-
tenance and development of component-based systems.

These parts of software are called components and due to the wide # component

adoption of the CBSE idea, many definitions of CBSE and its consti-

44 component-based robotics systems

tuting concepts exist. A good review of the different definitions of
the term component can be found in Crnkovic et al. [Crn+02] where
a minimum consensus is derived. It states that “a component is a
unit of composition, and it must be specified in such a way that it is
possible to compose it with other components and integrate it into
systems in a predictable way” [Crn+02]. Components are connected
to other components via specified and documented interfaces and ex-
ecutable code implements these interfaces [Crn+02]. Apart from the
basic definitions as a composable unit, other definitions put more
emphasis on the functionality a component represents. For instance,
IEEE 24765 [III10] defines a component (among other potential defi-
nitions) as a “set of functional services in the software, which, when
implemented, represents a well-defined set of functions” [III10]. On
the other hand, some authors put more emphasis on the ability to
deploy and update components at runtime, for instance Crnkovic et
al. [Crn+02]: “components can be composed at run time without the
need for compilation” or Lewis and Fowler [LF14]: “a component is a
unit of software that is independently replaceable and upgradeable”.
In any case, component reuse largely depends on a specification of
nonfunctional properties and the documentation of design and imple-
mentation aspects [Crn+02].

Third parties access a component’s functionality via component in-component interface #

terfaces. These are “access points [. . .] [which] allow clients of a compo-
nent, usually components themselves, to access the services provided
by the component” [Szy03, p. 42]. The component interface usually
“names a collection of operations and provides only the descriptions
and the protocols of these operations” [Crn+02].

To achieve executable and reusable components, a stricter and more
technical specification of components, their interfaces, and their exe-
cution context is required. Such a specification is called componentcomponent model #

model. It “defines a set of standards for component implementation,
naming, interoperability, customization, composition, evolution, and
deployment” [WS01]. Actual frameworks that realize a component
model and which allow executing components specified for the re-
spective component model are called component platform [Szy03, p. 44]component platform #

or component model implementations [WS01]. Different examples for es-
tablished component models exist, for instance within the Common
Object Request Broker Architecture (CORBA) [II12], the Microsoft
Component Object Model (COM) [Mic17], or JavaBeans [Sun97].

Besides a suitable specification and documentation of components,
reuse is to a large extent determined by how accepted a component
model is [WS01]. As interoperability between different component
models is usually not supported, components can be reused only in-
side the model they have been created for and therefore the market
share of a component model determines whether it is worth to de-
velop components for a certain model [WS01].

5.2 cbse and distributed systems 45

5 .2 cbse and distributed systems

Even though CBSE provides a general principle how applications can
be combined from reusable parts, the granularity at which the separa-
tion into components takes place can differ and even multiple levels
of granularity may be used in a single application. On the lower gran-
ularity levels, CBSE can be used to compose single executable applica-
tions based on multiple in-process components. On the other end of
the scale, large-scale distributed systems communicating via network # distributed system

links can be constructed following the CBSE approach. Individual
components of such an architecture might internally use CBSE prin-
ciples on finer levels of granularity. For the course of this thesis, I
will focus on the latter case of distributed systems constructed using
CBSE principles, which are common in robotics nowadays (cf. Sec-
tion 5.3). As distributed systems need to communicate via network
links, appropriate transport mechanisms, protocols, and data formats
are required to enable the communication between components po-
tentially written in different programming languages. Therefore, com-
ponent platforms commonly include a middleware layer, which pro- # middleware

vides an abstraction of the heterogeneity of the underlying technol-
ogy in distributed systems [Cou+12], especially regarding the mes-
sage passing between distributed components through hiding the dis-
tribution [Kra09, p. 1–4]. Middlewares in distributed systems can be
seen as “the software layer that lies between the operating system and
the applications on each site of the system” [Kra09] with the aim to
make application development easier [Kra09].

5 .3 cbse in robotics

As initially stated, CBSE has been widely adopted in the robotics
community within recent years. A first idea for the acceptance can be C relevance of CBSE

and middlewares in
robotics

established by analyzing the number of publications regarding this
topic. Figure 5.1 on the next page shows the percentage of publica-
tions per year that contain the keyword robotics as well as each of
the other keywords shown in the plot. I have acquired these num-
bers by scraping the scientific search engine Google Scholar1 using
academic-keyword-occurrence [ACO]. The estimated number of publica-
tions per year returned by Google Scholar for the compound query
+"robotics" +"<keyword>" has been divided by the numbers of pub-
lications in that year for only the term robotics (query +"robotics") to
normalize for the general growth of the robotics domain. Although
these figures are far from perfect (Google Scholar only estimates the
total count and the search includes fuzziness), they show that – in
relation to other terms and techniques – CBSE and the less specific
but related term middleware are active topics in robotics research,

1 https://scholar.google.com

https://scholar.google.com

46 component-based robotics systems

1990
1995

2000
2005

2010
2015

year

0

1

2

3

4

5

6

7

%
 p

ub
lic

at
io

ns

component-based
K-means
ASR
SIFT
SLAM
subsumption
middleware
ZMP

Figure 5.1: Percentage of robotics publications per year containing differ-
ent keywords. The dataset was generated by scraping Google
Scholar using academic-keyword-occurrence [ACO].

which are still gaining attention. Despite being less used in publica-
tions than long-established navigation- and vision-related terms, or
classical algorithms (SLAM, SIFT, and K-means), these software engi-
neering aspects are more frequently mentioned than common terms
from speech recognition and motion research areas (ASR and ZMP).
Hence, they are mid-table and far from being irrelevant to robotics
research.

Based on the CBSE concepts, various robotics frameworks have
been developed in the last 20 years [Bru+13]. In this context, the terms
framework and middleware are often used interchangeably. To under-relevance of different

robotics middlewares
C

stand the relevance of different robotics frameworks, I have taken the
list of component-based ones from Bruyninckx et al. [Bru+13] and
acquired citation counts from Google Scholar for the initial publica-
tions introducing each framework (cf. Figure 5.2 on the facing page).
These initial publications are in detail: Quigley et al. [Qui+09] (ROS),
Bruyninckx [Bru01] (OROCOS), Ando et al. [And+05] (OpenRTM),
Metta et al. [MFN06] (YARP), Fleury et al. [FHC97] (GenoM), and
Jang et al. [Jan+10] (OPRoS). I have excluded Proteus [MP08], which
was a research consortium that did not result in an actual framework
realizing middleware functionality, and SmartSoft [SW99] because it
has been cited less than 100 times. I have added the citation counts
for other common robotics software products such as the PCL 3D per-
ception library [RC11] and the Gazebo simulator [KH04] to the plot
to provide reference points.

The plot visualizes that the ROS [Qui+09] middleware dominates
CBSE in robotics with by far the highest number of citations. ROS
is an open-source framework for distributed robotics systems with
support for multiple programming languages and operating systems.
In ROS, systems are constructed as a graph of nodes (components),
which are usually executed as individual operating system processes.
They communicate via a custom network protocol in a peer-to-peer

5.3 cbse in robotics 47

ROS

OROCOS

OpenRTM
YARP

GenoM
OPRoS

PCL
Gazebo

publication

0

1000

2000

3000

4000

ci
ta

tio
ns

3588

561 508 460 250 115

2184

762

Figure 5.2: Citation counts for initial publications of component-based ro-
botics frameworks at August 7, 2017.

fashion using defined communication patterns. ROS implements a
publish-subscribe pattern where components distribute messages to
multiple interested receivers via named topics. Moreover, a remote
procedure call (RPC) pattern implementation exists. The data types
used for communication are described in a custom interface descrip-
tion language (IDL).

A considerable ecosystem has evolved around the ROS core, in-
cluding device drivers for different robotic platforms; common robot-
ics software components for simulation, motion planing, navigation,
interaction, or visualization; and tools to introspect and debug the
system at runtime or offline. It is reported that ROS is used by at
least 186 different institutions [ROS14] and others have postulated
an exponential growth of the ROS ecosystem [Cou11]. ROS is there-
fore a good example for the component market effects described in
Section 5.1 on page 43 and its market share seems to be important
enough that other frameworks started to interface with ROS [Cou11].

The OROCOS framework [Bru01] is the second-most cited com-
ponent-based robotics framework and particularly suitable for real-
time motion control applications. Within the OROCOS project, the
Real-Time Toolkit (rtt) [RTT] provides a component model and a com-
ponent platform to execute components in a real-time context. rtt
components are implemented in C++ and use data flow ports as the
primary communication mechanism. The data types are realized as
plugins called typekits, which can be created from ROS IDL files or
from C++ headers. OROCOS components can be co-located inside
real-time processes as individual threads. IPC between different real-
time processes is realized by different transport plugins, including
a CORBA and a custom message queue transport. A limited set of
OROCOS components is distributed directly with the base libraries.
Additionally, motion planing libraries are tightly integrated with the
ecosystem. OROCOS can interface with ROS using the rtt_ros_integra-
tion [RRI] packages.

48 component-based robotics systems

Another framework for component-based robotics engineering is
OpenRTM-aist [And+05; ASK08], a Japanese effort to provide a com-
mon ground for robotics development. OpenRTM-aist is based on
CORBA and therefore reuses a well-defined component model. Com-
ponents communicate using data flow ports (publish-subscribe) and
service calls following the RPC pattern. Furthermore, components
have configuration ports that allow controlling parameters at runtime.
Ports and their data types are declared using the CORBA IDL.

A component-based framework comparable to OpenRTM-aist is
OPRoS [Jan+10]. OPRoS provides a well-defined component model
and an execution engine as a component platform. Communication
between components is network-based. In contrast to OpenRTM-aist,
transport mechanisms are flexible and besides CORBA, others have
been implemented. Components with their ports and data types are
declared using an IDL. OPRoS places emphasis on providing an inte-
grated development environment for creating and maintaining com-
ponents through Eclipse-based tools.

The YARP framework [MFN06] connects multiple operating sys-
tem processes (acting as components) to a distributed robotics sys-
tem. Such processes use ports to exchange data. Ports implement a
publish-subscribe pattern which is realized through different trans-
port implementations respecting varying requirements. For instance,
a transmission control protocol (TCP) based transport enables reliable
communication while a multicast transport is more efficient at dis-
tributing the same messages to multiple receivers. Ports are named
and can be connected programmatically or at runtime using a com-
mand line tool. In contrast to the aforementioned frameworks, YARP
does not use an IDL-based approach for data types. Instead, bottles,
which are dynamically allocated arrays of flexible size and included
data types, are exchanged between processes. Comparable to ORO-
COS, YARP can also interface with ROS.

GenoM [FHC97; FHM12] is a framework for building real-time ro-
botics systems as a graph of modules. These modules are generated
from user-defined executable C code for the implemented algorithms
and a declaration of the properties of each module. A generator cre-
ates a compilable project where each module is executed as a sep-
arate operating system process. Modules offer services that are the
callable actions following an RPC pattern. Additionally, a publish-
subscribe pattern is available through posters. Each module provides
such a memory that is only writable by itself but world-readable. In-
stead of other frameworks, communication between components is
realized through shared memory and not via the network. GenoM
seems unmaintained since several years.

For an overview of further robotics middlewares with a more de-
tailed comparison, please refer to [Iñi+12].

5.4 patterns in component-based robotics systems 49

5 .4 patterns in component-based robotics systems

For the presented robotics middlewares that are still actively used
and developed,2 a common architectural style can be observed: com-
ponents usually form individual operating system processes and com-
municate using the network. Only in case of strong performance re-
quirements or real-time functionality, components are combined in-
side a single process (for example in OROCOS). Data types used for
the network communication are usually defined in an IDL (except
in YARP) and the frameworks provide tools to introspect and ma-
nipulate systems at runtime for logging and debugging purposes.3

Additionally, the aforementioned robotics middlewares usually pro-
vide a set of predefined communication patterns that guide and restrict
the design space for the component interface [Sch06].

Regarding the types of components that exist in robotics systems,
Brugali and Scandurra [BS09] have identified three distinct categories
based on the position on the components inside the system architec-
ture. Horizontal components “provide functionality to a variety of appli- # horizontal compo-

nentcations that may implement totally different use cases” [BS09]. Exam-
ples include libraries for mathematical computations, device drivers,
or simulators. Vertical components “capture [. . .] know-how in specific # vertical component

functional areas such as kinematics, motion planning, deliberative
control, and address the requirements of target application domains
such as service robotics, space robotics, or humanoid robotics” [BS09].
Most of the reuse in robotics is achieved on this level [BS09]. Finally,
application components are at the top of the software architecture and # application compo-

nentorchestrate the functionality provided by the rest of the system such
that the system’s mission is accomplished. So, they are tightly cou-
pled to the target scenario and hardly reusable.

The operating system processes in frameworks such as ROS or
YARP usually execute individual vertical components or application
components. Architectures following such a style, where applications
are developed “as a suite of small services, each running in its own
process and communicating with lightweight mechanisms” [LF14]
are also called microservice architectures [LF14]. Processes in such an # microservice

architecturearchitectural style are “built around business capabilities and inde-
pendently deployable” [LF14], which resembles separation of con-
cerns, and the processes “may be written in different programming
languages” [LF14]. Such microservices are components that are called # microservice

out of process by their clients [LF14] using IPC mechanisms. Overall,
microservice architectures “are [. . .] about being able to very rapidly
iterate” [Bri16]. Such an architectural style meets the requirements of
robotics research, where experts from different domains use different

2 This means all presented ones except GenoM.
3 Examples for data logging: rosbag [ROSb], yarpdatadumper [YarpDD]. Examples for

runtime introspection: OROCOS TaskBrowser [OTB], rtshell [RTsh] (OpenRTM-aist),
rostopic [ROSt].

50 component-based robotics systems

programming technologies and a high level of flexibility is required
to fulfill experimentation on different system levels at a fast pace. Al-
though the term microservice architecture has not yet received wide
attention in the robotics community (I have found only one source
that explicitly classifies ROS systems as microservice systems [WC17,
p. 296]), many systems in research robotics are structured this way.

5 .5 summary

The previous analysis has shown that many research systems in the
robotics and intelligent systems domains are constructed based on
comparable principles that can be subsumed under the microservice
architecture term. The framework-level resource awareness concept
presented in this work therefore targets this architectural style andtargeted system types C

builds upon it. Apart from the predominance of the style and there-
fore the wide applicability of the developed methods, microservices
also provides a set of natural extension points that enable an efficient
implementation of framework-level resource awareness. The separa-
tion of the system in microservices or components (from now on usedfocus on individual

components
C

interchangeably) results in graspable units with clear boundaries (the
component interface) and developer responsibilities. Therefore, meth-
ods developed in this thesis will follow this separation. Methods will
be applicable for individual components and generated results will
be related to these components so that the decision to use the meth-
ods and the responsibility to handle results are assigned to individual
developers. As the network communication between the components
can be introspected at runtime with generic means, a clear path to ac-
quire knowledge about the component’s processing without manual
instrumentation exists. Finally, the focus on components also allows
achieving a level of resilience against the ongoing system changes
(also for the resource awareness methods), because the behavior of
several components is often unaffected from ongoing modifications
to other parts of the system. To summarize, microservice-based sys-
tems in robotics and intelligent systems are the targets of the work in
this thesis.

6
M I D D L E WA R E F O U N D AT I O N : R S B

The work in this thesis addresses systems constructed using the ideas
of CBSE and microservice architectures. In the robotics context this
usually implies a fixed middleware for a system. For my work, I have
used system built around our own middleware called Robotics Service # Robotics Service Bus

(RSB)Bus (RSB), which I am going to explain here. RSB is in constant use
in different robotics and intelligent systems scenarios since our initial
publication about the middleware [WW11] and has since then been
maintained and improved by many people. Parts of the description
in this chapter are based on the original publication, but updated to
the current state. Development of RSB was initiated to fulfill require-
ments of different research projects that could not be addressed with
existing middlewares at that time. These are in detail: C middleware require-

ments
integration of heterogeneous parts To enable a rapid con-

struction of new research systems, the middleware needs to
enable the integration of diverse types of components and ro-
botics platforms. Components are often reused across research
projects, hardware, and software platforms. Therefore, integra-
tion of technologically diverse software artifacts needs to be en-
abled by the middleware to speed up the system construction
and modification process; and therefore also the research tasks.
Moreover, architecture and computational power of intended
target platforms vary and RSB needs to be usable on platforms
ranging from embedded devices to well-equipped mobile ro-
bots or smart-home systems with multiple desktop computers
or servers for processing.

interoperability For being able to reuse components from the
component market of other middleware, RSB needs to interface
with these systems, ideally without requiring modifications to
components from both ecosystems. Therefore, explicit interop-
erability is required to enable component reuse as envisioned
by the CBSE idea (cf. Chapter 5 on page 43).

facilitation of research tasks To fulfill the scientific require-
ments, the middleware has to support common tasks related
to the experimental work robotics systems. These especially in-
clude recoding datasets and introspecting running systems to
analyze their structure.

Existing middlewares, such as the ones presented in Section 5.3 on
page 45, failed to meet at least one of the requirements. One com-
mon issue we have observed is that dependency footprint of these

52 middleware foundation : rsb

frameworks is large. Such a large dependency graph results in a con-
siderable amount of work when using the software on new hardware
platforms because developers have to port all dependencies to the
new system. Additionally, large dependency footprints at runtime re-
sult in higher memory requirements, which small embedded devices
cannot fulfill. To visualize this issue, the dependency graphs of the
YARP and ROS C++ implementation on an Ubuntu Xenial system
are depicted in Figure 6.1 on the facing page. The implications of
large graphs such as the presented ones contradict the first one of the
defined requirements.

Another issue with existing middlewares is that these often result
in a high level of vendor lock-in by providing a complete application
development framework for component developers, for instance with
build systems, tools, or tailored support libraries. Despite being con-
venient in the first place, this couples the component implementation
to the middleware. As a consequence, transitions to other frameworks
are costly because large parts of the component and build system
code rely on the framework and therefore need to be rewritten for
the new framework. For instance, ROS provides catkin as its own
build system, which prevents reusing components in other frame-
works without creating a new build system for these cases.

Regarding the technical realization, existing robotics frameworks
often require a central server to establish communication channels,
for example, the YARP nameserver or the ROS master. Such a central
service has to be started before client components and forms a single
point of failure.

Finally, existing middlewares do not posses principled approaches
for interoperability with other frameworks. Although some work has
been done to enable interoperability between selected ecosystems (cf.
Section 5.3 on page 45), the created solutions are often ad hoc and
tailored to the specific interoperability case, or they do not provide
complete transparency because artifacts ripple through the architec-
ture and need to be addressed manually in the components. For ex-
ample, when using YARP to communicate with ROS systems, special
data types need to be generated and used inside the YARP compo-
nents [YRT], which prevents reuse without modification.

To avoid such issues and to fulfill the defined requirements, we de-technologi-
cal decisions

C

cided to realize RSB as a lightweight library. We explicitly focused on
the communication of components across the network and did not
provide further application development functionality. Apart from re-
ducing vendor lock-in, the library approach and the lack of an ex-
plicitly enforced component model also allows integrating with li-
braries or frameworks that themselves impose a lifecycle. One exam-
ple where RSB could be used due to this decision is the multimedia
framework GStreamer [Gst], which requests such a lifecycle for its plu-
gins.

middleware foundation : rsb 53

yarp

qtbase5-dev

dpkg

libqt5svg5

qtdeclarative5-dev

qtmultimedia5-dev

libtinyxml-dev

libace-dev

subversion

cmake

wget

libeigen3-dev

qml-module-qtquick2

qml-module-qtquick-window2

qml-module-qtmultimedia

qml-module-qtquick-dialogs

qml-module-qtquick-controls

libgl1-mesa-dev

libxext-dev

libgles2-mesa-dev

libglu1-mesa-dev

libqt5concurrent5

libqt5core5a

libqt5dbus5

libqt5gui5

libqt5network5

libqt5widgets5

libqt5printsupport5

libqt5sql5

libqt5test5

libqt5xml5

qt5-qmake

qtchooser

qtbase5-dev-tools

libqt5opengl5-dev

mesa-common-dev

libx11-dev

libdrm-dev

libgl1-mesa-glx

libx11-xcb-dev

libxcb-dri3-dev

libxcb-present-dev

libxcb-sync-dev

libxshmfence-dev

libxcb-dri2-0-dev

libxcb-glx0-dev

libxdamage-dev

libxfixes-dev

libxxf86vm-dev

x11proto-dri2-dev

x11proto-gl-dev

libdrm2

libdrm-intel1

libdrm-radeon1

libdrm-nouveau2

libdrm-amdgpu1

libpciaccess0

libexpat1

libglapi-mesa

libx11-xcb1

libxcb-dri2-0

libxcb1

libxcb-dri3-0

libxcb-glx0

libxcb-present0

libxcb-sync1

libxdamage1 libxext6

libxfixes3

libxshmfence1

libxxf86vm1

libudev1

libgl1-mesa-dri

libxau6

libxdmcp6

libelf1

libllvm3.8

libtxc-dxtn-s2tc0

libedit2

libtinfo5

libffi6

libbsd0

libxcb1-dev

libpthread-stubs0-dev

libxau-dev

libxdmcp-dev
x11proto-core-dev xorg-sgml-doctools

libxcb-randr0-dev

libxcb-xfixes0-dev

libxcb-randr0

libxcb-render0-dev

libxcb-render0

libxcb-xfixes0

libxcb-shape0-dev

libxcb-shape0

x11proto-damage-dev

x11proto-fixes-dev

x11proto-xext-dev
x11proto-input-dev

x11proto-xf86vidmode-dev

libgles2-mesa

libegl1-mesa-dev
libegl1-mesa

libwayland-egl1-mesa

libmirclient-dev

libwayland-dev

libgbm1

libwayland-client0

libwayland-server0

libmirclient9

libmircommon-dev libprotobuf-dev

libmircookie-dev

libboost-system1.58.0

libmircommon5

libmirprotobuf3

libprotobuf-lite9v5

libxkbcommon0

libboost-filesystem1.58.0

xkb-data

libxkbcommon-dev

zlib1g-dev

libprotobuf9v5

libmircookie2

libnettle6

libwayland-cursor0

libglu1-mesa

libglib2.0-0

libicu55

libpcre16-3

qttranslations5-l10n

libdbus-1-3

qtbase-abi-5-5-1

libsystemd0

dbus

libgcrypt20

liblzma5

libselinux1

libgpg-error0

libpcre3

fontconfig

libfontconfig1

libfreetype6
libpng12-0

libharfbuzz0b

libice6

libinput10

libmtdev1

libjpeg8

libsm6

libxcb-icccm4 libxcb-image0

libxcb-shm0

libxcb-keysyms1

libxcb-render-util0

libxcb-xkb1
libxi6

libxkbcommon-x11-0

libxrender1

libgraphite2-3

x11-common

libevdev2

libwacom2

libgudev-1.0-0

libwacom-common

libwacom-bin

libjpeg-turbo8

libproxy1v5

libuuid1

passwd

uuid-runtime

adduser

init-system-helpers

perl-base

debconf

libxcb-util1

libcups2

libavahi-client3

libavahi-common3
libgnutls30

libgssapi-krb5-2

libavahi-common-data

libgmp10

libhogweed4

libidn11

libp11-kit0

libtasn1-6

libcomerr2

libk5crypto3 libkrb5support0

libkrb5-3

libkeyutils1

krb5-locales

libqt5sql5-sqlite
libsqlite3-0

perl

libqt5opengl5

libqt5qml5

libqt5quick5

libqt5quickparticles5

libqt5quicktest5

libqt5quickwidgets5

libdouble-conversion1v5

qtdeclarative-abi-5-5-0

libqgsttools-p1

libqt5multimedia5libqt5multimediawidgets5

libqt5multimediaquick-p5

libasound2

libgstreamer-plugins-base1.0-0

libgstreamer1.0-0

libasound2-data

liborc-0.4-0
iso-codes

gstreamer1.0-plugins-base

libcap2

libcap2-bin

libpam-cap libpam0glibpam-runtime

libaudit1 libaudit-common

libpam-modules

libdb5.3

libpam-modules-bin

update-motd

libcdparanoia0

libogg0

libopus0

libtheora0

libvisual-0.4-0

libvorbis0a

libvorbisenc2

libpulse0

libasyncns0

libjson-c2

libsndfile1

libwrap0

libflac8

tcpd

libtinyxml2.6.2v5

libace-6.3.3

libssl1.0.0

ca-certificates
openssl

pkg-config

dpkg-dev libdpkg-perl

bzip2

xz-utils

patch

make

binutilsbase-files

gcc

build-essential

fakeroot

gnupg

gpgv

libalgorithm-merge-perl

libfile-fcntllock-perl

perlapi-5.22.1

libbz2-1.0

awk ...
-3-

g++ cpp

g++-5

gcc-5

cpp-5

gcc-5-base

libisl15

libmpc3

libmpfr4

libstdc++-5-dev

libcc1-0

libgcc-5-dev libgomp1

libitm1

libatomic1

libasan2

liblsan0

libtsan0

libubsan0

libcilkrts5

libmpx0

libquadmath0

libfakeroot

libalgorithm-diff-perl

libalgorithm-diff-xs-perl

libqt5multimedia5-plugins

qml-module-qtquick-privatewidgets

qml-module-qtquick-layouts

(a) YARP 2.3.70

ros-kinetic-roscpp

libboost-filesystem1.58.0

libboost-system1.58.0

libboost-thread1.58.0

ros-kinetic-cpp-commonros-kinetic-message-runtime ros-kinetic-roscpp-serialization ros-kinetic-roscpp-traits

ros-kinetic-rostime

ros-kinetic-rosconsole

ros-kinetic-rosgraph-msgs ros-kinetic-std-msgs

ros-kinetic-xmlrpcpp

libconsole-bridge0.2v5

libboost-all-dev

libconsole-bridge-dev

libboost-dev

libboost-tools-dev

libboost-atomic-dev

libboost-chrono-dev

libboost-context-dev

libboost-coroutine-dev

libboost-date-time-dev
libboost-exception-dev

libboost-filesystem-dev

libboost-graph-dev

libboost-graph-parallel-dev

libboost-iostreams-dev

libboost-locale-dev

libboost-log-dev

libboost-math-dev

libboost-mpi-dev

libboost-mpi-python-dev

libboost-program-options-dev

libboost-python-dev

libboost-random-dev

libboost-regex-dev

libboost-serialization-dev

libboost-signals-dev

libboost-system-dev

libboost-test-dev

libboost-thread-dev

libboost-timer-dev

libboost-wave-dev

libboost1.58-dev libstdc++-4.8-dev gcc-4.8-base

libgcc-4.8-dev

libgomp1

libitm1

libatomic1

libasan0

libtsan0

libquadmath0

gcc-5-base

libboost1.58-tools-dev

libboost-atomic1.58-dev

libboost-atomic1.58.0

libboost-chrono1.58-dev

libboost-chrono1.58.0

libboost-context1.58-dev

libboost-context1.58.0

libboost-coroutine1.58-dev

libboost-coroutine1.58.0

libboost-date-time1.58-dev

libboost-date-time1.58.0

libboost-serialization1.58-dev

libboost-serialization1.58.0

libboost-exception1.58-dev

libboost-filesystem1.58-dev

libboost-system1.58-dev

libboost-graph1.58-dev

libboost-graph1.58.0

libboost-test1.58-dev

libboost-regex1.58.0

libicu55

libboost-test1.58.0

libboost-graph-parallel1.58-dev

libboost-graph-parallel1.58.0 libboost-mpi1.58.0

libopenmpi1.10 libhwloc5

libibverbs1

openmpi-bin

libltdl7

libnuma1

libhwloc-plugins libpciaccess0

libxml2

ocl-icd-libopencl1

liblzma5

xml-core

adduser
perl-base

passwd

debconf

dpkg

openmpi-common

libboost-iostreams1.58-dev

libboost-regex1.58-dev

libboost-iostreams1.58.0

libicu-dev

icu-devtools

libstdc++-5-dev

libgcc-5-dev

libasan2

liblsan0

libubsan0

libcilkrts5

libmpx0

libbz2-1.0

libboost-locale1.58-dev

libboost-locale1.58.0

libboost-log1.58-dev
libboost-log1.58.0

libboost-thread1.58-dev

libboost-math1.58-dev

libboost-math1.58.0

libboost-mpi1.58-dev

mpi-default-dev

libopenmpi-dev

libibverbs-dev

libhwloc-dev

libnuma-dev

libltdl-dev

libtool

gcc

cpp

file

autotools-dev

cpp-5 libgmp10

libisl15

libmpc3

libmpfr4

libmagic1

libboost-mpi-python1.58-dev

libboost-mpi-python1.58.0

libboost-python1.58.0

python

python:any

mpi-default-bin

libboost-program-options1.58-dev

libboost-program-options1.58.0

libboost-python1.58-dev

python-dev
libpython-dev

python2.7-dev

libpython2.7-dev

libpython2.7-stdlib

libpython2.7

libexpat1-dev

libpython2.7-minimal

mime-support

libdb5.3

libexpat1

libffi6

libncursesw5

libtinfo5

libreadline6

libsqlite3-0

libssl1.0.0

libgpm2

readline-common

python2.7

libboost-random1.58-dev

libboost-random1.58.0

libboost-signals1.58-dev

libboost-signals1.58.0

libboost-timer1.58-dev
libboost-timer1.58.0

libboost-wave1.58-dev libboost-wave1.58.0

pkg-config

libglib2.0-0

dpkg-dev

libdpkg-perl
bzip2

xz-utils

patch

make

binutils

base-files

build-essential

fakeroot

gnupg

gpgv

libalgorithm-merge-perl

perl

libfile-fcntllock-perl perlapi-5.22.1

awk ...
-3-

g++ g++-5

gcc-5

libcc1-0

libfakeroot

libalgorithm-diff-perl

libalgorithm-diff-xs-perl

ros-kinetic-genpy

ros-kinetic-genmsg

ros-kinetic-catkin

cmake

libgtest-dev

python-catkin-pkg
python-empy

python-nose

python-docutils

python-dateutil

python-argparse

python-catkin-pkg-modules

python-roman

docutils-common

python-pil

python-pygments

libpaper-utils
docutils-doc

sgml-base

libfreetype6

libjpeg8

liblcms2-2

libtiff5

libwebp5
libwebpmux1

libpng12-0

libjpeg-turbo8

libjbig0

python-chardet
python-pkg-resources libpaper1

ucf

python-six

tzdata

python2.7:any

liblog4cxx10v5

libapr1-dev
libaprutil1-dev

liblog4cxx10-dev

ros-kinetic-rosbuild

libapr1

libaprutil1

libuuid1

uuid-runtime
init-system-helpers

libsystemd0

libgcrypt20

libselinux1

libgpg-error0

libpcre3uuid-dev

libsctp-dev

libsctp1

libldap2-dev

libldap-2.4-2 libgnutls30

libgssapi3-heimdal

libsasl2-2

libhogweed4
libnettle6

libidn11

libp11-kit0

libtasn1-6

libasn1-8-heimdal libcomerr2

libroken18-heimdal

libhcrypto4-heimdal

libheimntlm0-heimdal libkrb5-26-heimdal
libwind0-heimdal

libheimbase1-heimdal

libhx509-5-heimdal

libsasl2-modules-db

libsasl2-modules

liblog4cxx-dev

ros-kinetic-message-generation

ros-kinetic-gencpp

ros-kinetic-geneus

ros-kinetic-genlisp

ros-kinetic-gennodejs

(b) roscpp Kinetic

Figure 6.1: Dependency graphs of C++ implementation of other robotics
middlewares. Boxes represent system packages up to the level of
C/C++ base libraries. Generated using debtree [DebT] on Ubuntu
Xenial.

54 middleware foundation : rsb

librsb0.16

libprotoc-dev

libboost-regex-dev

librsc0.16

libprotoc9v5

libprotobuf-dev

libprotobuf9v5

zlib1g-dev

libprotobuf-lite9v5

libboost-regex1.58-dev

libboost1.58-dev

libboost-regex1.58.0

libicu-dev

libstdc++-4.8-dev

gcc-4.8-base

libgcc-4.8-dev

libgomp1

libitm1

libatomic1

libasan0

libtsan0

libquadmath0

gcc-5-base

libicu55icu-devtools

libstdc++-5-dev

libgcc-5-dev

libasan2

liblsan0

libubsan0

libcilkrts5

libmpx0

libboost-signals-dev

libboost-program-options-dev

libboost-filesystem-dev

libboost-thread-dev

libboost-signals1.58-dev
libboost-signals1.58.0

libboost-program-options1.58-dev libboost-program-options1.58.0

libboost-filesystem1.58-dev

libboost-filesystem1.58.0

libboost-system1.58-dev

libboost-system1.58.0

libboost-thread1.58-dev
libboost-atomic1.58-dev

libboost-chrono1.58-dev

libboost-date-time1.58-dev

libboost-thread1.58.0

libboost-atomic1.58.0

libboost-chrono1.58.0

libboost-date-time1.58.0

libboost-serialization1.58-dev libboost-serialization1.58.0

Figure 6.2: Dependency graph of the RSB C++ implementation.

Regarding the implementation of RSB, we decided to reduce the
dependency graph to a minimal size as long as the reimplementation
of larger parts of common functionality can be avoided. The depen-
dencies that are included must be well-known with good package
coverage in Linux distributions and support for different operating
systems and hardware architectures. Finally, RSB can be used with
different programming languages (C++, Java, Python, and Common
LISP) and for each language a different implementation of the mid-
dleware exists. In contrast to an approach with a main C library and
bindings for other languages, this approach prevents unconventional
programming idioms and C library dependencies in target languages,
allows using established build systems in each language, and results
in an immediate verification of the defined communication protocols.
To visualize the consequence of these decisions, Figure 6.2 depicts the
dependency graph of the RSB C++ implementation, which is much
smaller compared to the graphs shown in Figure 6.1 on the previous
page. Additionally, RSB does not posses a central nameserver to pre-
vent the aforementioned issues. Instead, the naming and discovery
tasks are realized using decentralized protocols.

6 .1 architecture

In essence, RSB can be described as a message-oriented, event-driven
middleware based on a logically unified bus. As a result, message
senders are decoupled from receivers and the native communication
semantic is m : n broadcast. Figure 6.3 on the facing page visualizes
the core architectural concepts of RSB. Processes use participants to
exchange events using the unified bus. On the bus, the events are
encoded as notifications. Participants form the primary interface be-participant #

tween the user code and the middleware and informer participantsinformer #

can be used to send events whereas receiving is performed through
listeners. We adopted this naming scheme from Barrett et al. [Bar+96].listener #

Besides the broadcast semantics, other communication patterns are
constructed based on this fundamental mechanism. For instance, an

6.1 architecture 55

Unified	RSB	Bus

Informer Listener

User	Code

Events ...
Informer Listener

User	Code

Events

Notifications Notifications

Processes

Participants

Figure 6.3: Architecture concept of RSB. Blue processes are connected to the
RSB bus using participants (yellow).

asynchronous RPC pattern is contained in the RSB core. Patterns are
also represented as special participants, which internally use the base
participant types. Therefore, participants form a hierarchy.

In the following sections, I will describe the architecture of RSB in
detail along selected modeling dimensions for event-based systems
introduced by Rosenblum and Wolf [RW97] but with the interpreta-
tions from Cugola et al. [CDF01]. First, I will describe the event model,
which provides “a definition of event types with a detailed descrip-
tion of the nature and structure for the events” [RSS07]. Second, the
naming model describes how generated events can be addressed. Af-
terwards, the notification model is presented with the mechanisms
used to transport events between participants. Third, the temporal
dynamics of sending and receiving events are explained in the time
model. Finally, the observation model is introduced, which specifies
how participants indicate the relevant events they want to receive.
Figure 6.4 on page 57 presents the involved concepts and entities and
their relations and supplements the following explanations.

6 .1 .1 Event model

Regarding the nature of an event we have adopted the definitions
of Faison [Fai06], who defines an event as “a detectable condition # event

that can trigger a notification” [Fai06, p. 71]. A notification, in turn, is # notification

“an event-triggered signal sent to a runtime defined recipient” [Fai06,
p. 71]. Hence, all information required to fully specify and trace the
condition an event represents need to be present in its framework
representation. Therefore, we have decided to equip events in RSB
with a rich set of information that allows tracing each event and its
relation to others in detail. An event contains the following items:

payload The payload of an event is a user-defined object of the re-
spective programming language that contains the primary infor-
mation specifying the condition the event represents. It is of an
arbitrary domain type to reduce the framework lock-in through
an early transition from framework types to domain objects (cf.
Section 6.1.3 on page 58 for the technical realization).

56 middleware foundation : rsb

id Each event has a unique ID to allow a global identification. The
ID is based on the ID of the sending participant (represented as
a universally unique identifier (UUID)) and a sequence number.
It can be represented as UUID, too.

metadata Each event is supplemented by a set of metadata to pro-
vide further details regarding the origin and processing of the
event. Metadata originate from the RSB framework as well as
from the user code that creates the event. The framework pro-
vides detailed timing information regarding the creation, pro-
cessing, and delivery of an event and its associated notification,
as, for instance, proposed by Luckham [Luc10, p. 96]. User code
can provide further timestamps and string entries in a key-value
store for further information.

method An event can be tagged with a method that indicates its
role in a communication or the kind of action this event repre-
sents, comparable to methods in the Hypertext Transfer Proto-
col (HTTP) protocol [IET14].

causal vector As an event is often the result of processing caused
by other events in the system, RSB events contain a causal vec-
tor as proposed by Luckham [Luc10, p. 97]. This vector contains
IDs of other events that caused the respective event to be cre-
ated. It provides information for automatic system analysis and
debugging.

destination scope Specifies the channel of the logically unified
bus an event is visible on as described in Section 6.1.2.

In contrast to other robotics middlewares, this event model pro-
vides more metadata directly at the framework level to improve the
runtime traceability and automatic analysis of systems constructed
with RSB. Moreover, we have reduced the vendor lock-in by allowing
any kind of programming language object to form the payload of an
event. This approach prevents that client code is coupled to special
framework data types and instead, the actual domain data types can
be used directly when interfacing with the middleware. In combina-
tion with appropriate extension points and configuration possibilities,
this approach is one method to meet the aforementioned interoper-
ability requirement (cf. Section 6.5 on page 66).

6 .1 .2 Naming model

An interested participant has to be able to express which set of events
it intends to receive. The naming model in RSB is based on what Fai-
son [Fai06, p. 81] calls a channel-based subscription model. In its basic
form, clients subscribe to a specific channel of the bus system (green

6.1 architecture 57

Event

<<singleton,	virtual>>
Bus

Channel

-scope

Participant

InformerListener

Notification

realizes

Connector

Converter

<<virtual>>
Transport

realizes
1..*

structured	by

1*

attached	to

1

1

communicates	via

1..*

child	of

1

Filter

Handler

selects	relevant	events	with

*

notifies	about	received	events

*

receives

*sends *

re
pr
es
en
ts
	o
n	
tra
ns
po
rt

1

1

broadcasted	on

sends	and	receives *realizes

*

uses

*

(de)serializes	payload	of

*

Sending/
Receving	Strategy uses

1

QoS	Parameters has

1

Converter
Selection	Strategy

has 1

selects

parent

Figure 6.4: Overview of RSB concepts and their relations. Aspects of the
event model are colored blue, while elements of the naming
model are colored in green. Notification model parts are filled
in yellow and red to distinguish between client level and back-
end realization respectively. Entities of the observation model
are depicted in purple and aspects related to the timing model
in gray. virtual annotations express that the respective entity is
not an actual artifact represented in code, but instead is implic-
itly formed.

boxes in Figure 6.4) and receive all events sent on the respective chan-
nel, comparable to TV programs. RSB extends this concept through
a channel hierarchy. All channels form a tree structure, starting from
a global root channel, and an event sent on a channel is thus visi-
ble on this single channel and on all parent channels including the
root one. To express this channel hierarchy, a notation comparable to
UNIX file systems, compatible with requirements for path segments
in Uniform Resource Identifiers (URIs) [IET98], is used. A channel
represented this way is called a scope. For instance, the root scope is # scope

written as / and a direct sub-scope could be /sub/. Further levels are
added by extra segments separated by forward slashes.

Figure 6.5b on the following page shows an exemplary list of used
scopes from Scenario ToBi on page 142 with the resulting hierarchy
depicted on the left in Figure 6.5a on the following page. An event
sent to the scope /armserver/openGripper can be received by listen-
ers on the channels /armserver/openGripper, /armserver, and on the
root scope /. Another event sent to the scope /speech/tts/mary/-

server will be visible on scopes /speech/tts/mary/server, /speech/-
tts/mary, /speech/tts, /speech, and /. However, it will not be visible
to listeners on scope /speech/tts/mary/server/say_raw or on scope
/monitoring/father.

58 middleware foundation : rsb

/
/armserver

/graspObject
/openGripper
/setObstacles

/hri
/percepts
/legs

/persons
/monitoring

/father
/armcontrol
/legdetector
/objectbuilder

/muthr
/texttospeech

/speech
/tts
/mary
/server

/say_raw

(a) Hierarchical representation

/armserver/graspObject/
/armserver/openGripper/
/armserver/setObstacles/

/hri/percepts/legs/
/hri/persons/

/monitoring/father/armcontrol/
/monitoring/father/legdetector/
/monitoring/father/objectbuilder/

/monitoring/muthr/texttospeech/

/speech/tts/mary/server/say_raw/

(b) Scope representation

Figure 6.5: Different representations of RSB scopes found in Scenario ToBi.

The chosen hierarchical channel layout provides benefits for data
logging and recording purposes because it allows addressing parts
of or the whole system communication using a single scope decla-
ration. As the hierarchical structure provides a means to structure
the data space, for example with sub-scopes for different services or
subsystems, logic segments of system communication can be formed.
Therefore, the hierarchical scoping theme facilitates dataset creation
for research tasks, and runtime introspection and debugging.

6 .1 .3 Notification model

As introduced before, RSB forms a logically unified bus. Each par-
ticipant is associated to one channel, but multiple participants can
participate at the same channel, which results in m : n semantics. To
realize the notification model, which described how events are trans-
mitted from informer participants to listener participants, we have
considered a set of different constraints:

1. The middleware must support different protocols and technolo-
gies for delivering events in parallel. For instance, an in-pro-
cess connection should fulfill high performance requirements
in selected components through collocated optimization [VP07],
while other parts of a system use usual network-based methods
in parallel. Moreover, different network-based transports must
be usable at the same time to support varying performance or
interoperability requirements.

6.1 architecture 59

2. The payload of events is – by design – a user-defined program-
ming language object of any type (cf. Section 6.1.1 on page 55).
Thus, no common (de-)serialization mechanism can be used and
a more flexible (un-)marshaling [Cou+12, p. 158; ZKV04; WS01,
p. 41] approach is required.

3. If different transports are used, they may require different (un-)
marshaling strategies.

4. The middleware must be able to create compatible serialization
formats used on the wire from different domain objects to en-
able standardization and compatibility between different appli-
cations and libraries. For instance, an informer used in a C++
program might send OpenCV [Bra00] images and a Python ap-
plication should be able to receive these images represented us-
ing the appropriate data type of the Pillow [Pil] library.

5. Depending on the application, client-level code may impose dif-
ferent QoS and performance requirements on the transmission
of events.

To meet constraint 1, RSB has a notion of distinct transport mech- # transport

anisms. The logically unified bus of the middleware is realized by
these transports, which define the technology and (network) protocol
for message exchange. Participants are connected to the bus through
one or more connectors, which realize the transport. These connec- # connector

tors implement sending and receiving of events by transmitting (usu-
ally) serialized representations of these events, called notifications,
via their protocol. This protocol imposes restrictions on the technical
representation of notifications. For instance, one network-based trans-
port might be able to send any sequence of bytes, whereas another
network-based transport might only be able to cope with Extensible
Markup Language (XML) data. This technical representation of seri-
alized data is called wire type in RSB. # wire type

Three transports are available in RSB. For complex distributed sys-
tems over a network connection, a transport using the Spread Toolkit
[Spread; AS98; Ami+04] can be used. A more lightweight network-
based transport using TCP communication can be applied with less
configuration overhead. Finally, an in-process transport implements
efficient event exchange without serialization overhead for partici-
pants operating in a single operating system process.

Although the general structure of events is defined by the event
model (cf. Section 6.1.1 on page 55) and each transport can chose an
appropriate marshaling scheme, the user-defined payload is of an ar-
bitrary data type and cannot be serialized using generic methods. For
this purpose, a converter interface exists in RSB. Converters have the # converter

responsibility of (de-)serializing user data types to and from serial-
ized representations that can be transmitted using a transport. They

60 middleware foundation : rsb

vary in the following three dimensions and have to be chosen along
these dimensions to successfully perform the marshaling task:

• The wire type.

• The wire schema. Given a wire type, still different representa-
tions can be formed. For instance, the binary encoding or XML
schema might differ. The wire schema is a string representation
of the convention used to lay out the serialized data in a format
compatible to the wire type.

• The user data type. For instance, OpenCV or Pillow [Pil] images.

Given a specific connector, only those converters matching its wire
type can be used to (de-)serialize events. However, no clear selection
criterion for a certain converter exists that also covers the other two as-
pects. For instance, the desired wire schema is a design decision of the
overall system and, for deserialization, multiple converters can exist
that produce different user data types. Therefore, RSB uses exchange-
able converter selection strategies to select appropriate converters (fol-converter selec-

tion strategy
#

lowing the strategy pattern [Gam+95, p. 315]). A default implementa-
tion is provided, which automatically selects a converter as long as
no ambiguity exists. Another included strategy is based on a user-
defined set of predicates to select the first matching converter. RSB
includes a set of predefined converters for fundamental data types
such as boolean, numbers, and strings. This set can be extended by
the user to integrate user-defined payload types.

Converters are the technical solution to constraint 2 and together
with converter selection strategies they meet constraints 3 and 4. Fur-
ther details will be outlined in Section 6.5 on page 66.

6 .1 .4 Time model

Regarding the dynamics of transmitting events, different application
requirements can exist. To meet these, RSB uses exchangeable strate-
gies for sending and receiving, as well as explicit QoS parameters.

On the informer side, the default strategy realizes synchronous
sending. However, if client code sometimes produces more events
than a transport can handle immediately, and sporadic delays in the
processing are acceptable, a queuing strategy can be more suitable to
prevent blocking the client code. A comparable strategy interface also
exists for the receiving side of the communication.

Available QoS parameters concern reliability and ordering of event
submission. Both properties can be defined using a set of available
options, which have a strict ordering so that, for example, a higher
level of reliability includes all aspects of lower levels. QoS parameters
are defined at the level of participants. So, the effective level is the
minimum for each aspect of each pair of communicating informers

6.2 introspection 61

and listeners. For instance, specifying [reliable, ordered] at the send-
ing side and [unreliable, ordered] at the receiving side will effectively
result in [unreliable, ordered]. QoS parameters are realized by each
transport independently so that the possibilities of each realizing tech-
nology can be used effectively.

6 .1 .5 Observation model

Client code interested in receiving events uses listener participants
to receive the unmarshaled notifications, which are represented as
events again. RSB uses an asynchronous, push-based model for re-
ceiving events. By registering handlers at a listener, the client informs # handler

the framework about callback code to execute asynchronously on
each received event. Multiple handlers can be registered on a listener.

Besides specifying the scope to indicate which events will be re-
ceived – which is already defined by the listener – clients may re-
quire further filtering to avoid receiving irrelevant information. For
this purpose, they can install dedicated filters at each listener to re- # filter

strict the set of received events. All filters registered at a listener are
interpreted as a conjunction. Thus, the first filter that rejects an event
leads to a complete rejection of the event. Filters of a listener affect all
registered handlers.

RSB implements content-based [Fai06, p. 84], client-side filtering,
where filters are explicitly allowed to inspect the user-defined pay-
load of events. Users can extend the available set of filters according
to their requirements.

6 .1 .6 Extension points

The preceding description of the architectural elements of RSB has
shown that the user needs to specify selection criteria and provide
extensions for entities such as converters and filters to match the ap-
plication requirements. Thus, RSB provides explicit extension points
to include the user implementations. Apart from the explicit con-
figuration of these extensions via code instructions, a plugin mech-
anism and configuration files allow reconfiguration of some exten-
sion points without recompilation. Table 6.1 on the following page
enumerates the available extension points, motivates their usefulness,
and indicates how they can be configured.

6 .2 introspection

To support runtime analysis and debugging of systems, RSB has a dis-
tributed introspection system, which does not require a central name-
server. Using the introspection mechanism, interested clients can get
the following information about a running RSB system:

62 middleware foundation : rsb

ext. point description c p

converter additional converters for (un-)
marshaling of user data types

X

converter selection additional strategies for converter
selection for special applications;
configurable disambiguation for the
default strategy

X

filter additional filters for restricting the
received events

transport addition of transports via plugins,
configuration and selection in config
file

X X

sending/receiv-
ing strategy

customized event processing

Table 6.1: Extension points in RSB. Column c indicates whether an exten-
sion point can be configured using the configuration file (apart
from inside the source code) and column p indicates whether ex-
tensions can be loaded via plugins.

operating system processes For all processes, the following in-
formation is available: a) command line, b) process start time,
c) system user running the process, and d) RSB version.

participants For all active RSB participants, the following infor-
mation is available: a) unique ID, b) participant type, c) scope
d) transports, e) payload type, and f) parent participant.

hosts For all hosts participating in the communication, the follow-
ing data are available: a) operating system and version, b) CPU
type, c) uptime, d) clock offset, and e) communication latency.

Figure 6.6 on the next page visualizes the conceptual structure
of how the introspection support is implemented in RSB. Each pro-
cess has a single localIntrospection object, which is responsible of
collecting the necessary information. For this purpose, the localIn-

trospection object is notified about the creation and destruction of
participant instances. It uses two additional objects to acquire host-
and process-related information. To expose this information to in-
terested remote clients, three participants are used. During normal
operation, whenever a participant appears or is removed in a pro-
cess, an event is broadcasted using the broadcastInformer. This event
contains a respective hello or bye message with the required infor-
mation. Therefore, under normal conditions, the introspection uses a
differential protocol and interested clients need to keep track of the
notified changes. However, when a new introspection client (remote-
Introspection) is created, it needs to know the initial state of the

6.3 domain data types : rst 63

RSB	Process

<<singleton>>
localIntrospection

processInformation

hostInformation
surveyListener:Listener

broadcastInformer:Informer

infoServer:LocalServer

Introspection	Client

remoteIntrospection

surveyInformer:Informer

broadcastListener:Listener

infoRemoteServer:RemoteServer

p1:Participant

p2:Participant

survey

participant	added:	hello

participant	removed:	bye

echo()

return

Figure 6.6: Structural view of the RSB introspection mechanism realization
as a UML object diagram. Separated operating system processes
are indicated through gray blocks. Objects of the local introspec-
tion information provider are colored in green and remote client
objects are colored in yellow. Normal Participants are blue.

system. For this purpose, the remoteIntrospection object can broad-
cast an event to all running RSB processes using its surveyInformer.
After receiving the survey request, each process will expose its cur-
rent state by sending out hello events for all participants using the
aforementioned mechanism. Finally, remote clients can use the infoS-

erver, which is an RPC server, to periodically exchange ping-pong
messages. These are used to compute the communication latency be-
tween the remote introspection client and each process and also to
detect whether a process is still alive.

The exchanged events regarding the introspection are part of the
normal bus communication below a reserved scope /__rsb/intro-

spection. Therefore, they can be examined and recorded using the
usual mechanism for debugging and dataset creation.

6 .3 domain data types : rst

One important aspect of component interoperability is an agree-
ment on common data types. Even though the RSB architecture con-
tains special means to overcome integration challenges imposed by di-
verging network protocols and data formats, the application of such
special methods can be prevented if a common ground of established
data types is used in the first place. Through the converter mechanism
the core of RSB is agnostic to the agreed upon format and technology
for serialization. However, systems constructed with RSB usually use
data types from the Robotics Systems Types (RST) library. This is a re- # Robotics Systems

Types (RST)viewed library of domain data types which we have collected in our
own robotics systems. Data types in this library follow a specified
lifecycle and review process to migrate from a proposal stage in a
sandbox area to stable data types, which may become deprecated.
This process is set up to ensure that collected data types meet quality
and reuse criteria before client software depends on them.

64 middleware foundation : rsb

1 package rst.audition;
2

3 import "rst/audition/PhonemeCollection.proto";
4 import "rst/audition/SoundChunk.proto";
5

6 /**
7 * Objects of this represent a single utterance of speech.
8 *
9 * The data describes a single utterance in three different forms:

10 *
11 * * @ref .phonemes describes the utterance as a list of phone symbols
12 * and durations (useful e.g. for lip animation).
13 *
14 * * @ref .audio is a @ref SoundChunk that can be played back on audio
15 * devices containing the realization (e.g. by a TTS system)
16 * of the included phoneme list
17 *
18 * * @ref .description is a textual description of the utterance for
19 * debugging purposes.
20 */
21

22 messsage Utterance {
23

24 /**
25 * A collection of phonemes. Will be played back in the same
26 * ordering as given by @ref .Phoneme
27 */
28 required PhonemeCollection phonemes = 1;
29

30 /**
31 * A chunk of audio data that can be played back containing the
32 * realization (e.g. by a TTS system) of the included phoneme list
33 */
34 required SoundChunk audio = 2;
35

36 /**
37 * Textual representation of the utterance.
38 */
39 required string textual_representation = 3;
40

41 }

Listing 6.1: RST data type for speech utterances that have been produced
by a text to speech (TTS) engine. The audio sample is annotated
with phonemes, for instance, to control the lip motions of a hu-
manoid robot.

6.4 tool support 65

2012
2013

2014
2015

2016
2017

version control commit date

0

50

100

150

200

nu
m

be
r o

f d
at

a
ty

pe
s

Figure 6.7: Evolution of the number of data types contained in RST. Down-
ward peaks are the result of using Git commit dates for the x-axis,
which do not necessarily reflect the actual time of inclusion in the
main line.

RST data types are defined using an IDL. In contrast to other robot-
ics middlewares, which have defined custom data formats or IDLs
(for instance, ros_msg in ROS or the bottle format in YARP), we have
decided to use an established IDL technology. This prevents further
vendor lock-in on the middleware and its ecosystem, reduces the im-
plementation efforts in RSB, ensures a high code quality and maturity
of the data type support libraries, and results in available tool support
(syntax highlighting, code completion, validation). The RST library is
based on Protocol Buffers [Protobuf]. This IDL is well-known outside
the robotics community and is not inherently coupled to a broader
framework, nor is the RST project itself limited to RSB. RSB has a
converter for Protocol Buffers [Protobuf] data types, which enables the
usage of RST data types for communication.

Listing 6.1 on the facing page visualizes an exemplary data type
from RST that meets the intended quality requirements regarding
naming, reuse, and documentation. At the time of writing, RST con-
tained more than 200 data types. The evolution of this count over the
years is presented in Figure 6.7.

6 .4 tool support

Alongside the middleware core, a set of tools has been developed to
carry out common tasks and to fulfill the initially stated requirements
on a research middleware.

For debugging and analysis purposes, a set of command line tools
has been developed. A logger allows intercepting the ongoing commu-
nication of a live system with different display options. Apart from
printing the decoded event instances (optionally including the pay-
load), timeline-based views can be used to continuously plot the dy-
namics of the communication. In case events or commands should be
sent for debugging purposes or in scripting contexts, the send and call

66 middleware foundation : rsb

tools enable this from the command line. A client for the introspection
protocol implements the localIntrospection object (cf. Section 6.2
on page 61) and allows examining the system structure at runtime.
Besides a snapshot mode, which dumps the structure at a certain
time, a live mode provides the possibility to continuously monitor a
system using a tree-based view. The snapshot mode allows exporting
in the JavaScript Object Notation (JSON) format as an established for-
mat. Finally, a bridge tool can be used to selectively map parts of the
bus communication to other scopes or transports.

The task of recording datasets for scientific and debugging pur-
poses is accomplished by the rsbag tool [MNW13]. rsbag attaches to
the ongoing system communication through the usual listener partic-
ipants and records all events on a set of specified scopes and all their
sub-scopes based on the hierarchical structure of RSB. Thus, rsbag can
be used to record the whole system communication or selected parts
of it. Each recording session is stored in a single file, which can be re-
played or transformed to other formats. For replay, different strategies
are available. Apart from using the same timing as while recording,
further strategies such as a fixed rate replay can be used. Moreover,
control can also be achieved using the RSB RPC pattern, which allows
remote controlling the emission of recorded event. Another mode per-
mits exporting recorded events using user-specified conversions, for
instance to comma-separated values (CSV) files, which can then be
used for offline analyses. In both modes the scopes to process and
additional filters to apply can be specified.

6 .5 interoperability with other middlewares

With the availability of the different extension points, RSB provides
unique opportunities for interoperability with other middlewares and
systems. The availability of the extension point for transports allows
communication with other ecosystems through implementations of
their protocols. Due to the explicit representation and configurabil-
ity of transports through plugins and the configuration system, no
code changes are necessary to adapt a component from a native RSB
transport to a foreign one. We have implemented and used transports
for ROS topics and YARP ports [MNW13] as a verification of this ap-
proach.

Even if a network protocol of a different framework can be used for
communication, ad hoc reuse of components in foreign frameworks is
usually impossible without code modifications due to different data
types and encodings. For instance, when using YARP with ROS, spe-
cial data types need to be generated and used [YRT] or the native
bottles need to structurally match ROS types [YRS]. Another com-
mon approach is to use explicit bridge components. However, these
introduce an additional hop in the network communication, which

6.6 applications 67

increases latency, resource utilization, and system deployment effort.
With an explicit interface for data type conversion, which is designed
as a configurable extension point, RSB provides a systematic solution
to this problem. Existing component can be configured to use spe-
cial converters that perform the translation of data types from two
distinct ecosystems. Consequently, interoperability in RSB is a com-
bination of configuring the appropriate transports and the necessary
converters.

Converters that translate between data types from different frame-
work could be implemented manually. However, such an approach is
error-prone and requires manual labor. To improve this situation, we
have evaluated the possibility to represent data types from different
framework using a common metamodel in Wienke et al. [WNW12].
The analysis of IDLs and data representation formats from different
robotics ecosystems, as well as solutions used outside of the robot-
ics domain, has shown that a core set of features can be identified,
which can be used to represent the majority of data types formulated
using the analyzed formats. From this feature set a metamodel and a
tool for the automatic generation of conversion code were designed.1

As data types often do not match structurally, a mapping between
fields inside the data types is required to translate between them. For
instance, field names might not match or one ecosystem represents
angles in degrees, while another one uses radians. We have analyzed
the required capabilities between RST and ROS data types to over-
come such issues. The resulting feature set can be used to specify the
mappings between data types in a declarative from. The created tool
uses such a mapping definition and parsers for the data type defi-
nitions in both frameworks to construct conversion code. Generated
converters directly translate between the serialized representation of
the foreign framework and the native data type representation, in
our case RST types encoded using Protocol Buffers [Protobuf]. This
approach prevents unnecessary intermediate representations.

Converters created using the presented declarative approach, as
well as manually created ones, can be compiled into a plugin for RSB
and loaded to enable a seamless integration into foreign frameworks
without code modifications. Such an approach, especially the ability
to prevent intermediate representations, is impossible in frameworks
that do not provide an explicit extension point for conversion.

6 .6 applications

Since the initial release of RSB, the middleware has been used in a va-
riety of different application scenarios with different sizes, operating
systems, and performance requirements. In the HUMAVIPS project,2

1 The implementation has been done by Jan Moringen.
2 http://humavips.eu

http://humavips.eu

68 middleware foundation : rsb

the humanoid robot NAO has been controlled in HRI scenarios us-
ing a distributed system based on RSB [Klo+11]. This scenario specif-
ically included dealing with synchronized audio and stereo video
signals [San+12]. Further applications of RSB and the NAO robot
for HRI include different versions of a museum tour guide and re-
lated experiments [Dan+16; Geh+17]. Other HRI scenarios include
a RoboCup@Home platform [Mey+15] and a system where NAO is
used as a sport instructor [SGK17].

RSB has also been used to control other types of robotics platforms.
This includes small embedded devices [Her+16; NRW12], the KUKA
LWR IV robotics arm in different scenarios [TFR13; NWS15], and a
continuum robot [Rol+15].

Another application area for RSB is smart homes. In the Cognitive
Service Robotics Apartment (cf. Scenario CSRA on page 99). This is by
far the largest system using RSB I am aware of with more than 20

computers and high throughput, for instance, from several Kinect
devices.

In addition to such scenarios, RSB has also been used as a basis
for other software. For instance, a framework for incremental dialog
uses RSB for system communication [KKS14]. This system has been
applied, for instance, for in-car dialog [Kou+14]. RSB has also formed
the communication layer of a formal component model targeting com-
pliant robots [NRW12]

The amount of systems based on RSB demonstrates that the mid-
dleware is a suitable platform for robotics and intelligent systems in
production use cases. Most of the systems make active use of the
provided introspection and recording capabilities for the ongoing re-
search work as well as for debugging purposes. RSB has been up-
dated constantly based on requirements and feedback from the appli-
cation scenarios.

6 .7 summary

The presented middleware RSB allows constructing robotics applica-
tions as a distributed system. Comparable to other common solutions,
RSB systems are usually constructed following the microservice archi-
tecture style with isolated operating system processes per functional
component. The availability of detailed runtime introspection and
data logging facilities makes RSB a suitable platform for an imple-
mentation of framework-level resource awareness concepts. Such an
implementation has to be built on top of data and abstractions generi-
cally available through the middleware or component model to avoid
code changes. The hierarchical bus with the broadcast semantics and
the introspection mechanism are directly available to acquire the data.
With the unique interoperability concept provided through exchange-
able transports and converters, the solutions developed in this thesis,

6.7 summary 69

which are directly based on RSB, can be integrated in other ecosys-
tems without reimplementation. Yet, the concepts of RSB are close
enough to other common middlewares such as ROS or YARP (cf. Sec-
tion 5.4 on page 49) that no severe conceptual gap has to be expected.
Therefore, a reimplementation of the framework-level resource aware-
ness concept directly for these frameworks is possible even without
using the interoperability mechanisms. Thus, although this thesis pri-
marily focuses on RSB, solutions are conceptually compatible with
other common frameworks and therefore a majority of research ro-
botics systems as well as other systems employing microservice ar-
chitectures.

The presentation of RSB has skipped several aspects such as bench-
marks or optimization techniques. For these details, please refer to
the original publication [WW11].

7
A H O L I S T I C D ATA S E T C R E AT I O N P R O C E S S

The previous chapter has already introduced dataset recording as an
essential task for the scientific research process. Without appropriate
datasets many qualitative and quantitative analyses are impossible.
Furthermore, publicly available datasets support reproducibility and
reliable benchmarking of scientific results [Pen11]. However, depend-
ing on the scenario and target system, creating datasets that have
the required quality for the research tasks and public distribution is
a challenging, complex, and time-consuming task. Merely recording
the available system data using the middleware facilities will barely
suffice to create a dataset that contains all required aspects. Moreover,
simply redistributing such data in the proprietary format of each mid-
dleware will hinder the exploitation of the data in other ecosystems
and offline research tasks. Instead, especially for datasets including
HRI aspects, additional data sources – for instance, external video
cameras or motion capturing – need to be recorded and combined
with the middleware data to form the complete corpus. The creation
process for such complex datasets often involves dealing with a mul-
titude of devices and output formats. The data from these diverging
sources have to be synchronized to be usable in combination and
appropriate exports to globally accepted formats are required for dis-
tribution. Moreover, manual annotations may be required. All these
generated data fragments must be managed consistently to prevent
errors and to streamline this intrinsically complex process.

Driven by our own requirements to record such a complex HRI
dataset for the EU FP7 research project HUMAVIPS, we have inves-
tigated how to establish such a streamlined and generic dataset cre-
ation process, which we have published in Wienke et al. [WKW12].
Parts of this chapter are based on this publication. The scenario of
our own recording activities was chosen to provide data that can be
used to improve the abilities of a robot interacting with a group of
people through audio-visual integration. For this purpose, the setting
of a small vernissage was chosen, where the humanoid robot NAO
explained several paintings to a small group of visitors. This scenario
was inspired by Pitsch et al. [Pit+11]. To ensure natural behavior, we
invited naive participants to represent the visitors of the exhibition.
The robot behavior was remote controlled, because the dataset was
intended to provide the foundation for developing the necessary ca-
pabilities for autonomous interaction. These capabilities included ad-
dressee detection and visual focus of attention (VFOA) recognition.
To acquire the necessary ground truth information, different exter-

72 a holistic dataset creation process

C
ou
ch

Cupboard

CupboardCupboard

Ta
bl
e

X

Z Y

Figure 7.1: Overview of the recording setup. Orange: NAO, blue: motion
tracking cameras, red: video cameras, green lines: paintings.

nal sensors had to be recorded in addition to the robot system data,
which included cameras and microphones, as well as the remote con-
trol instructions. On the one hand, video cameras were required to
obtain permanent recordings of the participants for the reliable an-
notation of speech and addressees. On the other hand, exact ground
truth of the positions and orientations of the participants’ heads was
required, which was achieved by including a motion capturing sys-
tem based on infrared markers. Figure 7.1 visualizes the resulting
recording setup.

Comparable to the HUMAVIPS scenario, research in HRI often re-
quires correlating data from multiple input streams for a joint analy-
sis of system-level and interaction-level data [Loh+09]. Our proposed
process specifically addresses the needs for creating and distributing
multimodal HRI datasets that enable these research tasks. Because
such datasets include data from all levels of the system and interac-
tion, I will refer to this approach as a holistic dataset creation process.

7 .1 challenges in creating datasets

We have developed the process to address a set of key challenges in
creating datasets that we have identified.

One of the primary issues when recording multimodal datasets is
the synchronization of all modalities. For cameras or audio streams
this could be done manually in a post-processing phase. However,
synchronization is much more complicated with modalities which
are less intuitive to observe for humans such as robot internal states.
Moreover, manual synchronization takes time. Hence, one challenge
is the reduction of post-processing tasks. This challenge can be addressed
already in the recording phase through appropriately chosen devices
and recording methods.

Another key challenge is achieving a high integrity of the recorded
data. A high level of automation and the availability of automated val-
idation mechanism already during the recording time address this

7.2 description of the holistic process 73

challenge. Another aspect related to this challenge is the calibration
of recording devices. For instance, by calibrating all cameras with
respect to a motion capturing system, previously unintended oppor-
tunities to use the dataset are preserved.

Regarding the integration of system-level data into the dataset, an
important requirement is that the gap between the recording and the
production system is as small as possible. On the one hand, this implies
that the usual robot system should not need modifications to enable
the recording task. On the other hand, recorded system data should
be immediately usable for exercising the existing system components.
Yet, it is important that the dataset can be used even without the
system integration. Thus, export facilities to established formats are
necessary, for instance, common video formats or CSV files.

Finally, established annotation tools should be usable to allow an ef-
ficient progression in the labor-intensive manual annotation phase.
This task should be supported by the availability of system-level data for
the annotation inside the annotation tools. In any case, manual anno-
tations should be prevented whenever it is possible to generate annota-
tions from system-level data automatically.

7 .2 description of the holistic process

The fundamental concept of the proposed holistic dataset creation
process is to use the middleware recording facilities (summarized in
Section 5.4 on page 49) as the primary technical solution for record-
ing. Apart from being the easiest way to record system-level data, this
decision has several beneficial consequences. First, all data recorded
using the middleware is automatically synchronized as soon as all
nodes forming the distributed robot system are time synchronized.
This can easily be solved with established solutions such as NTP. Ad-
ditionally, this approach also ensures that recorded system-level data
can easily be reused for offline experiments with system components
through the middleware utilities (cf. Section 6.4 on page 65 for exam-
ples of such tools).

Regarding recording devices external to the robot system, when-
ever possible, appropriate devices or methods (e.g., network cameras
instead of camcorders, grabber programs) should be chosen to inter-
face these data streams with the middleware. Once these data can be
captured using the middleware tools, the aforementioned benefits –
especially the automatic synchronization – directly apply here as well,
and the need for manual post-processing is reduced. This decision is
based on the assumption that for large enough datasets and poten-
tially multiple dataset recordings using the same setup, selecting and
integrating suitable hardware and recording software requires less
time than manual synchronization and error fixing. In case such a di-
rect integration is not feasible or possible, we proposed to reintegrate

74 a holistic dataset creation process

An
no
ta
tio
n

Ex
po
rt

U
ni
fic
at
io
n

R
ec
or
di
ng

Reference	recording External	recording

Reference	data External	data

Synchronization

Synchronized
external	data

Integration

[more	views	to	generate]

Corpus

View	generation

AnnotationView

Annotations

Integration

<<datastore>>
Views

Figure 7.2: Schematic overview of the holistic dataset creation process as
a UML activity diagram. Actions are depicted using white
rounded boxes and produced data using gray boxes.

the data recorded using other technologies back into the middleware
storage format in the post-processing phase. The same idea also ap-
plies to manually constructed annotations. As a result, the dataset
is available in a single file format that is intrinsically synchronized.
Therefore, all further tasks operate on a uniform storage format.

Figure 7.2 visualizes the proposed process as a set of necessary ac-
tions and their relations through generated data. In the holistic data-
set creation process, the middleware data forms the reference data withreference data #

intrinsic synchronization. Data that could not be gathered using this
system is termed external data and the first post-processing step isexternal data #

to synchronize these data with the robot data. When designing the
recording setup, it is advisable to think of automatic solutions for the
synchronization to reduce the amount of manual work. In this ap-
proach this usually means that an additional component is added to
the robot system that, at the same time, emits a system message and
a physical signal noticeable by the external sensors (e.g., a beeping
sound). After synchronization, the external data are then integrated
into the middleware recording format through appropriate scripts,
resulting in a unified corpus.

7.3 realization based on rsb 75

To address the requirement of exporting parts of the dataset to com-
mon formats, we propose a view-based approach on the reference data.
Views are immutable exports of (parts of) the datasets and their tim-
ing directly reflects the timestamps in the reference data. Apart from
generating common export formats, further views are generated to
serve as inputs for annotation. The manually created annotations are
then fed back into the corpus by converting them to the middleware
recording format. A further synchronization is not necessary as an-
notations are already based on the timing of reference data. View
generation and annotation do not have to follow the strict ordering
presented in the idealized process in Figure 7.2 on the preceding page.
Once all views have been generated and all annotations have been cre-
ated and integrated, the result of the holistic dataset creation process
is a corpus entirely represented in the middleware recording format,
as well as a set of views for external use of the generated data.

7 .3 realization based on rsb

For the HUMAVIPS dataset we have realized the presented process
based on the RSB middleware (cf. Chapter 6 on page 51), which pro-
vides a suitable recording infrastructure with the rsbag tool (cf. Sec-
tion 6.4 on page 65). The following sections describe the realization
of the process and the dataset recording.

7 .3 .1 Data sources

All internal data from NAO as well as the control commands for re-
mote operation have been recorded directly using the middleware
without modifications to the system. The NAO robot, a control com-
puter, and a recording server with sufficient disk space were synchro-
nized using NTP to ensure time consistency.

Besides these system-level data, we used a Vicon motion capturing
system1 to acquire ground truth position data of participants and the
robot. The tracking results of the motion capturing system were ex-
ported into the middleware with an adapter program that translated
between a proprietary network protocol of the Vicon system and RSB
events. Additionally, we still recorded the complete source data of the
motion capturing system using its proprietary software and storage
format. These external data allow tuning the tracking parameters af-
ter the fact to correct potential tracking errors. This – unfortunately
– is impossible with the direct export into the middleware. For an
automatic synchronization of these external data in the unification
phase, we started each recording trial with a clapperboard which car-
ried markers for the Vicon system. The sound of the clapperboard
was contained in the audio recordings of NAO’s microphones and

1 http://www.vicon.com

http://www.vicon.com

76 a holistic dataset creation process

therefore could be correlated with the clapperboard motion in the ex-
ternal recordings. These events can be detected automatically in both
modalities (cf. Section 7.3.3).

For the additional cameras in the scene, we had to resort to cam-
corders due to technical restrictions with the available network cam-
eras and webcams at the time of recording. Their external data can
also be synchronized using the detection of the clapperboard sounds.

Finally, wireless close talk microphones carried by each participant
were recorded directly in the reference data with an RSB adapter
based on GStreamer [Gst].

7 .3 .2 Calibration

Besides the actual recording of the scenario with different partici-
pants, calibration sequences were recorded to unify the coordinate
systems. During these recordings, a special Vicon marker was placed
at different important positions such as the paintings. To automate
the extraction of the appropriate measurements of the marker from
the continuous detections, we used the clapperboard to mark the
times when the marker was placed at the respective positions.

Besides this calibration aspect, we recorded a checkerboard pattern
for all cameras (including NAO) so that distortions can be calibrated.
Moreover, a special Vicon subject with 4 tracked markers has been
presented to the external cameras and the Vicon at the same time.
Hence, the location of each camera in the Vicon coordinate system
can be computed if required.

7 .3 .3 Unification

After the recording sessions, the data were synchronized. To auto-
matically synchronize the videos from the external cameras to the
reference data, we calculate the cross-correlation peak of the cameras’
audio channels with a reference audio channel from NAO’s micro-
phones. The audio processing tool Praat [Praat] was used to realize
the required calculations. Based on the correlation peak we deduced
the offset of the external videos to the audio from NAO, which in
turn allowed us to compute the start time of the external videos in
the RSB time frame.

Because of the expected tracking errors, the external data of the Vi-
con system had to be used instead of the automatically synchronized
data. To fix the tracking errors manual parameter tuning in the Vicon
software was necessary for each recorded trial. After this processing,
an export of the tracking results to CSV as an intermediate format
supported by the Vicon software was performed for later conversion
to the RSB format. For synchronization, the detection of the clapper-
board motion in the Vicon recordings was implemented by compar-

7.4 summary 77

Figure 7.3: Export of one synchronized dataset trial to an ELAN [ELAN]
project with added annotations.

ing the distances of the different markers attached to the clapper-
board to select the moment the two board halves touched. The time
of the clapperboard closing sound could have been detected using a
template and cross-correlation again. However, because of issues with
the detection accuracy, we had to resort to manual annotation using
an audio editor.

7 .3 .4 View generation and annotation

We decided to perform the manual annotation task using the estab-
lished tool ELAN [ELAN; Wit+06]. For this purpose, we created a
script to generate appropriate projects as views on the dataset. The
script used the synchronized data created in the unification phase,
converts video and audio to file formats compatible with ELAN us-
ing FFmpeg [FFmpeg], and automatically creates a project file to load
in ELAN including system state information (cf. Figure 7.3).

In addition to the ELAN view, we have created several other views
for analysis tasks. These include audio exports to wav format, video
exports to MPEG-4, and CSV exports for the person tracking and the
proprioception data of the robot.

7 .4 summary

The presented holistic process for recording and post-processing data-
sets in robotics research takes a unique approach on the problem of
recording and maintaining large datasets that comprise system and
interaction data. Although others have presented systematic meth-
ods for acquiring datasets, some also in the form of frameworks (cf.
Wienke et al. [WKW12] for a review of related work), none of the re-
lated approaches combines the benefits of automatic synchronization
and replay abilities gained by using the middleware as the record-

78 a holistic dataset creation process

ing framework. This decision improves the situation by reducing the
manual effort required to perform the recording tasks. The proposed
framework has been used for different scenarios – often though with-
out the reintegration steps. Apart from the initial dataset published
in Jayagopi et al. [Jay+13], this approach has also been used for a
physical HRI study [Wre+13] and in the context of Scenario CSRA for
automatic recordings of user interactions [Wre+17].

In the context of the work presented in this thesis, the holistic
recording process is important for quantitative research tasks. These
tasks require appropriate datasets, which have been recorded using
the proposed process. Moreover, the method implemented for mea-
suring the resource utilization of system components presented in
the next chapter is influenced by the recording process and uses the
middleware for the acquired measurements.

8
S Y S T E M M E T R I C C O L L E C T I O N

After introducing the basic building blocks of the systems this work
is based on, this chapter now moves towards establishing resource
awareness. To realize any concept of resource awareness, the first nec-
essary task is to uncover the resource utilization of the different sys-
tem parts or components and to make the acquired system metrics
available to the remaining system. Programs realizing this task are
commonly called collection daemons or collection tools [Full; Telg; Diam;
Cold]. I have identified a set of functional and nonfunctional require-
ments, which mandated the technological decisions for this task from
the point of view of the framework-level resource awareness concept.
From a functional perspective, the following requirements exist:

FR1 System metrics need to be available at least at the level of
operating system processes because in the targeted microser-
vice architectures components are usually deployed as indi-
vidual processes.

FR2 Provided system metrics must cover at least the types of re-
sources that are primarily affected by performance bugs as
identified in Section 3.3 on page 25. These are at least mem-
ory, CPU, and network bandwidth.

FR3 Data rates have to allow a correlation of utilization changes
to potentially fast-paced task changes. For example, in Sce-
nario ToBi on page 142 the object recognition component is
activated sporadically for only one or two seconds. Thus, sys-
tem metrics have to be updated at least every few seconds.

FR4 Acquired system metrics must be made available following
the ideas of the previously presented holistic dataset creation
process (cf. Chapter 7 on page 71) by exposing the acquired
information via the middleware. Apart from the aforemen-
tioned benefits for dataset creation, this approach also allows
processing the gathered metrics at runtime using established
and well-known interfaces and tools.

Additionally, I derived the following list of nonfunctional require-
ments from the framework-level resource awareness concept and fur-
ther considerations:

NFR1 The collection must be possible with the least amount of
changes to existing systems or workflows (cf. Chapter 4 on
page 31). This, for instance, prohibits solutions that require
an explicit instrumentation of each component.

80 system metric collection

NFR2 Errors in the collection solution must not impair the depend-
ability of the remaining system. For instance, a crash of a
monitoring process must not crash functional components
of the system. Software that is meant to improve the depend-
ability of systems should obviously not impair it.

NFR3 The processing overhead (own resource utilization) of the
collection solution must be as minimal as possible. Any so-
lution with a high processing overhead usually results in
discussions with system developers and often ultimately re-
fusal to use such a solution.

In the following sections, available technologies for system metric
collection will be presented and evaluated regarding their applicabil-
ity given the aforementioned requirements. I will primarily discuss
solutions applicable to Linux because target systems of this thesis
were Linux-based. After describing available collection methods, the
established solution will be presented.

8 .1 available system metric sources

The Linux operating system and its kernel offer different application
programming interfaces (APIs) to acquire resource utilization infor-
mation. These APIs form the potential system metric sources avail-
able in an unpatched Linux operating system without further spe-
cialized kernel modules or other extensions. Especially for the less
widespread APIs, the documentation state is sometimes daunting.
Man pages and the kernel documentation are often incomplete or
outdated and refer to archived mailing list postings or the source
code itself for undocumented aspects. Therefore, a solid assessment
of the capabilities of the different system metric sources is a chal-
lenging task. For the following descriptions of the different available
sources, Table 8.1 on the facing page serves as a references and tries
to summarize the findings regarding the different solutions. APIs are
described regarding the provided system metric categories, the scope
at which information can be acquired (for a host, individual process,
or event for threads/tasks), and further nonfunctional properties.

The oldest and most widespread system metric source is the proc

file system [Proc17], which is a virtual file system that provides in-
formation about different internal data structure of the kernel in the
form of pseudo-files. These files give access to a multitude of system
metrics regarding the overall system as well as running processes and
threads. As these metrics are spread across multiple files, bulk access
to them is a rather costly operation and race conditions and inconsis-
tencies might arise from the asynchronous, unsynchronized updates
of the distributed information. Yet, the proc file system is the most
established method to acquire system metrics and many common

8.1 available system metric sources 81

proc taskstats rusage cgroups pcap

s
y

s
t

e
m

m
e

t
r

i
c

s
cpu detailed detailed simple simple 7

memory detailed detailed simple detailed 7

i/o detailed detailed 7 detailed 7

descriptors detailed 7 7 simple 7

bandwidth only host 7 7 7 3

delays 7 detailed 7 7 7

tasks detailed 7 7 ? 7

s
c

o
p

e host 3 7 7 7 3

process 3 3 3 3 3

threads 3 3 3 ? 7

p
r

o
p

e
r

t
i
e

s

overhead medium low low medium high

consistent 7 3 3 3 7

deployment easy medium difficult difficult medium

availability high high high medium high

Table 8.1: Comparison of common Linux system metric sources. Categories
of available system metric: CPU utilization (cpu), memory us-
age (memory), block device data throughput (i/o), information
about open descriptors such as files and sockets (descriptors),
network throughput (bandwidth), processing delays such as
waiting for CPU or I/O (delays), information about operating
system tasks such as threads (tasks). Scopes describe for which
entities data are provided: the whole system (host), for a process
(process), for individual threads/tasks (threads). Nonfunc-
tional properties categorize: the processing overhead for getting
data (overhead), whether data can be accessed without incon-
sistencies or race conditions (consistent), the required effort
to use a solution (deployment), the availability across different
systems (availability).

Linux tools use this mechanism (e.g., top, ps). Access to the provided
information is usually available without requiring further authenti-
cation (as the root user) and proc is available on all common Linux
distributions without further needs for configuration.

To reduce the overhead, avoid the consistency issues [Hol10], and
to offer a unified interface for kernel accounting, the taskstats inter-
face has been incorporated into the kernel [Lin06]. taskstats uses a
netlink-based connection to distributed accounting information about
Linux tasks (processes and threads). While the proc file system can
use usual file system permissions to ensure that unprivileged users
can only access detailed information about their own processes, a net-
work-based protocol cannot use this mechanism. Therefore, only the
root user can access this interface [Com11], which complicates its use
compared to proc. Additionally, taskstats does not provide as many
system metrics as proc and also only for tasks and threads, not for
the host system.

82 system metric collection

Another means to acquire system metrics is the Portable Oper-
ating System Interface (POSIX) compliant system interface function
getrusage [III08, p. 1068], which allows a process to acquire informa-
tion about its own resource utilization or of its children. This compli-
cates the application of this method for the intended use case because
every component would need to be instrumented so that it can pro-
vide information about itself. An external approach is prevented by
this method. Additionally, the provided set of system metrics is only
limited.

Another modern approach to acquired system metrics for individ-
ual processes is termed control groups (cgroups) [Heo15]. Intended
to restrict the resource utilization of individual or groups of pro-
cesses, cgroups also allow measuring the utilized resources for each
group. For this purpose, control groups for the desired aspects of
resource utilization need to be created and processes have to be as-
signed to them. Afterwards, resource utilization can be measured for
each group and a multitude of different aspects using a virtual file
system with the same drawbacks that apply to proc. cgroups are a
relatively modern feature, and they are primarily used in advanced
scenarios such as virtualization. The situation regarding the way how
control groups are handled and which front ends exist differs be-
tween Linux distributions and versions. Also, recently the API has
been completely renewed [Ros16]. Therefore, using cgroups generi-
cally across different systems is not easily possible and efforts need
to be made for each started process to assign it to an appropriate
control group.

All APIs mentioned so far are closely coupled to the Linux kernel
and undergo frequent extensions and changes. Especially, the inter-
pretation of system metrics might change from one kernel version to
the next as they are often direct reflection of the internal data struc-
tures of the kernel.

The aforementioned APIs did not provide information on the net-
work bandwidth that is used per process. The proc file systems of-
fers accumulated metrics for the host system, but not for individual
processes. To acquire system metrics on this level, network packets
need to be sniffed and attributed to the running processes. On Linux,
the de facto standard method for performing packet sniffing is libp-
cap [Pcap; Pcap17]. Captured network packages can be tracked back
to the sockets that were used to send or receive them and these de-
scriptors of these sockets can be attributed to individual processes
using the proc file system. While the task of sniffing all packages
on a busy host is already computationally intensive, the additional
parsing of the proc file system adds even more processing overhead.
Moreover, the proc file system does not provide immediate notifica-
tions in case new processes are spawned. Thus, some packages might
not be correctly related to their causing processes, resulting in slight

8.2 resource acquisition tools 83

inconsistencies when measuring the actual network bandwidth per
process. Nevertheless, this seems to be the only possibility to acquire
these detailed system metrics. As sniffing all packages including their
content is a potential security issue, this operation requires root per-
missions or special configurations, increasing the efforts for a generic
application of this method.

From the presented system metric sources, only the proc file system
allows fulfilling NFR1. All other sources require special care when
deploying a collection solution based on them. Moreover, proc offers
the widest range of system metrics. Therefore, this source is the pri-
mary provider for system metrics for this work. To meet FR2, which
requests network bandwidth to be included in the uncovered system
metrics, also libpcap has to be used, despite violating NFR1, as no
other solutions exists for this problem.

8 .2 resource acquisition tools

A multitude of tools and libraries that realize the collection of system
metrics exists. These tools cover different resources, provide them in
different ways, and have varying footprints. Despite their availabil-
ity, I have decided to implement the collection from scratch and the
following paragraphs will explain the necessity of this task.

A first category of existing tools is command line tools for Linux/
Unix that give access to a single kind of resource for manual system
inspection such as htop [Htop], iotop [Iotop], nethogs [Neth], netstat
from net-tools [Nett], or lsof [Lsof]. These tools already contain the
necessary code to read out the respective sources (proc and libpcap).
However, they only focus on a single aspect each and – apart from
nethogs, which just recently started deploying its functions also as a
shared library [Bou16] – are not intended to be integrated into differ-
ent contexts such as a program that exposes the collected information
via the RSB middleware.

Tools such as nmon [Nmon] or Glances [Gla] combine metrics for
different resources with the aim to present information with a unified
view. While nmon is also only designed as a standalone tool, Glances
started to expose its results on the network via JSON or Extensible
Markup Language Remote Procedure Call (XML-RPC) with version
2 [Hen17], which did not exist at the time this project started.

Another set of existing tools is primarily geared towards contin-
uously acquiring and persisting system metrics related to the host
system while ignoring individual processes. sar from Sysstat [Syss]
is a daemon to continuously collect metrics and to store them in cus-
tom files. collectl [Coll] can be used for the same purpose. Moreover,
it can distribute the collected metrics using a socket interface. These
tools only focus on the host and are therefore not appropriate for the
intended use case.

84 system metric collection

From the domain of server and infrastructure monitoring, collec-
tion daemons exist, which are able to provide resource utilization met-
rics apart from more specialized metrics. Exemplary tools comprise
collectd [Cold], Diamond [Diam], fullerite [Full], and Telegraf [Telg].
They are primarily used to fill time series databases / metric stores
used for visualization and anomaly detection purposes. Therefore,
they assume an appropriate database to be running and network pro-
tocols are used to submit the data. Apart from the aforementioned
restriction that these tools often only provide resource utilization in-
formation for the host system, data rates in these applications are
usually lower.

Most of the presented tools have drawbacks for the intended use
case such as:

• They often focus on a single resource type and a combination
of multiple tools would be needed (increasing the deployment
overhead, which conflicts NFR1).

• They are often not intended to be integrated into novel environ-
ments.

• Tools that provide network interfaces require adapters to trans-
late the collected metrics to RSB events, which increases process-
ing overhead (NFR3) and deployment efforts (NFR1) because of
the additionally needed processes.

• Tools that are sufficiently flexible to integrate custom output
sinks to implement an RSB export are highly generic and re-
quire a high configuration overhead (e.g., fullerite [Full], con-
flicts NFR1).

Therefore, I did not consider any of these tools to realize a system
metric collection solution suitable for the easy application demanded
by the framework-level resource awareness concept. Instead, I have
created a custom implementation suitable to fulfill all stated require-
ments for the intended application in RSB-based scenarios.

8 .3 implementation

The system metric collection solution implemented for this thesis is
structured into two distinct executables representing different collec-
tion scopes. On the one hand, the host collector realizes the collection
of host-related system metrics while, on the other hand, the process
collector is responsible of collecting per-process system metrics (FR1).
This explicit distinction is suitable because the different reporting
scopes imply different lifetimes and partially different requirements.
The process collection task must be configured for each new process
(representing a component) whereas the host collection is indepen-
dent of the lifetime and is only needed once per host.

8.3 implementation 85

<<Interface>>
Interface

+	provide_data(HostInformation)

CpuDataSource MemoryDataSource DiskDataSource ...

Figure 8.1: Data source structure of the host collector daemon as a UML
class diagram.

Generally, both collectors use a periodic reporting scheme where
current system metrics are reported with a configurable frequency.
This frequency can be used to trade off between the desired tempo-
ral resolution of the data (FR3) and the imposed processing over-
head (NFR3). System metrics are reported using appropriate RST
data types via the RSB middleware to fulfill FR4. The detailed list of
collected host and process system metrics is available in Appendix B.7
on page 225.

8 .3 .1 Host collection

Collecting system metrics for a host system is a relatively lightweight
task and therefore no special care is needed to reduce the resource
utilization of the collection daemon itself (cf. NFR3). Therefore, the
host collector could be implemented as a Python program based on
the established psutil [Psut] library. psutil provides an abstraction of
common Linux system metric sources, especially the proc file system.
It is an established library, which is available in many common Linux
distributions and can easily be installed using the standard packaging
tools (e.g., pip). Therefore, a dependency on it does not conflict with
NFR1. For the host itself, the proc file system provides all necessary
metrics directly without the need for special configurations or root
permissions and psutil wraps all required aspects. Hence, FR2 can
easily be fulfilled for the host level with this approach.

For reporting the data via RSB, the rst.devices.generic.Host-

Information RST data type is used, which groups host-related sys-
tem metrics into different related units, for instance, network, CPU,
and memory. As depicted in Figure 8.1, the implementation of the
host collector picks up this logical separation and is structured into
different data sources. Each of them is responsible of acquiring the
respective metrics, which are filled into an instance of HostInforma-
tion in the provide_data method. The orchestration code of the host
collector periodically prepares such a message data structure, calls
all data sources, and publishes the acquired metrics using the mid-
dleware.

86 system metric collection

<<Interface>>
MetricsSource

+	provideResults(ProcessCues):	void

ProcStatSource

ProcIoSource

ProcFdSource

NetBandwidthSource

1..*

CollectionThread

+	pid:	int
+	handleSubprocesses:	bool

<<Executable>>
HostCollector

1..*

<<Interface>>
MetricsSourceFactory

+	create(pid:	int):	MetricsSource

1..*

creates

ProcStatFactory

ProcIoFactory

ProcFdFactory

NetBandwidthFactory

creates

creates

creates

creates

Figure 8.2: Structure of the process collection daemon represented as a UML
class diagram. Metric sources are responsible of contributing co-
herent aspects to the reported data. The collection threads dy-
namically creates sources for subprocesses using factories.

8 .3 .2 Processes collection

For collecting system metrics on a process level, more care needs to be
taken regarding the resource utilization the collection daemon itself
imposes. The number of components and therefore processes is usu-
ally much higher than the number of hosts and therefore more data
needs to be acquired and processed. Therefore, the process collector
daemon has been implemented in C++ to reduce the own processing
overhead (cf. NFR3). The process collector follows the same principles
regarding dependencies and lock-in as the RSB middleware itself (cf.
Chapter 6 on page 51) and avoids unconventional dependencies that
could prohibit an easy application (NFR1).

Structurally, the process collector daemon is organized in a compa-
rable way to the host collector. Figure 8.2 shows that a set of Metric-
Source instances is used to acquire the desired system metrics. In con-
trast to the host collection, these sources are not solely determined by
their purpose but also by the system metric source they represent. The
differences in system configuration and usage requirements (e.g., re-
quiring root permissions) have influenced this decision. Hence, users
can select appropriate sources matching the desired set of system met-
rics to collect and the effort required to configure the system (NFR1).
Each source is responsible of placing the collected system metrics into
an instance of the RST data type rst.monitoring.ProcessCues.

8.3 implementation 87

The daemon executable can be launched to monitor multiple pro-
cesses in parallel. Each of the processes is then monitored by a single
CollectionThread, which implements the fixed frequency sampling.
The ability to handle multiple processes in parallel gives some free-
dom regarding the way the daemon is integrated into the orchestra-
tion of existing systems (e.g., one instance per component or a single
instance per host; NFR1). Moreover, sources might be able to opti-
mize their processing in case they operate for multiple processes in
parallel (NFR3). This is especially important for the NetBandwidth-

Source, which collects per-process network bandwidth information
using libpcap.1 As explained in Section 8.1 on page 80, this approach
requires sniffing all network packages and relating them to the run-
ning processes. This computationally intensive work should be per-
formed only once per host system and therefore a single instance of
the collection daemon per host is best suited for this task. Moreover,
the special configuration for packet sniffing only needs to be applied
to a single daemon instance in this case. The combination of the avail-
able sources for the proc file system as well as for libpcap includes all
resources demanded by FR2.

The process collection daemon operates as an executable that runs
in parallel to the monitored processes, which are identified by their
process identifiers (PIDs). This method of operation is supported by
the implemented sources and ensures that a potential crash of the
collection daemon does not influence the running processes (NFR2).

8 .3 .3 Subprocess handling

The microservice architecture style used by potential target systems
of this work does not impose restrictions on the individual compo-
nents or service implementations. So, component implementations
are not restricted and can use child processes to perform their op-
erations. This situation already arises in case a process is started by
a script which configures the actual binary to launch. In this case
there will be a permanent process hierarchy for the whole runtime of
the component with the root being the script executor and the actual
implementation being a child process of the executor. In other situa-
tions, a component can temporarily launch child processes to perform
some operations. Only collecting system metrics for the root process
in the actual hierarchy of processes would therefore ignore important
parts of the effective resource utilization of that component. There-
fore, the process collection daemon explicitly includes measurements
for the whole process hierarchy starting from the root component

1 The implementation of the NetBandwidthSource is based on nethogs [Neth]. As the
standalone nethogs library did not exist at the time the process collector was imple-
mented [Bou16], this is a copy of the source code with optimizations for the specific
use case.

88 system metric collection

PID. To avoid complicating the implementation metric sources with
the subprocess handling, the CollectionThread itself is responsible
of this task. Sources, on the other hand, are coupled to a single pro-
cess and can ignore the hierarchy. At each measurement iteration, the
collection thread determines the process tree for the monitored com-
ponent, instantiates new sources for subprocesses that have appeared
since the last iterations, and discards sources for subprocesses that
have terminated. To enable this behavior, the thread instance is not
directly parameterized with the MetricsSource instances themselves,
but with MetricsSourceFactory instances that create the respective
sources for individual PIDs.

8 .3 .4 Data representation

For both collection daemons, I have decided to provide the acquired
metric values directly in the way as gathered from the system met-
ric source, even if this strategy prevents and abstraction from differ-
ent sources providing comparable metrics, and also from the operat-
ing system itself. As already explained in Section 2.1.2 on page 10,
different system metric sources generate different kinds of measure-
ment artifacts in the acquired metrics and a general method to filter
these artifacts does not exist. Moreover, downstream computations
may make use of specialized strategies to deal with these artifacts
more efficiently than a general method can. Finally, many of the met-
rics provided by the Linux kernel are represented as increasing coun-
ters instead of current bandwidth measurements. While being unin-
tuitive, these counters have many benefits for further processing. For
instance, even if the aforementioned collection thread misses a new
subprocess in one iteration due to race conditions in the proc file
system, the next iteration still includes the complete resource utiliza-
tion since the start of the new subprocess. Therefore, these counter
representations prevent data loss for some concurrent operations and
also more accurate subsampling after the fact without the need for
integrating multiple subsequent measurements.

Regarding the representation of data for subprocesses, a similar
strategy has been used. The whole process tree is represented with
measurements attached to each process in the tree. This representa-
tion enables downstream computations to individually decide how
to deal with the information.

8 .3 .5 System integration

To facilitate the integration into existing architectures, the collection
daemons can be attached to the system in multiple ways. Figure 8.3
on the next page visualizes the possibilities. The process collector
daemon provides two distinct modes of operation. On the one hand,

8.4 summary 89

RSB	Bus

Component	1 Component	2

Component	3

notify	PID

st
ar
t(P
ID
)

M
on
	1

notify	PID

st
ar
t(P
ID
s)

M
on
	2

start

M
on
	3

Host	Monitor

System	Orchestration

st
ar
t

Figure 8.3: Integration of host and process collection daemons into a system.
Process collection daemons can either be started for a fixed set
of processes specified via PIDs as startup (Mon 1 and Mon 2), or
without such an initial association (Mon 3). In that case, the PIDs
to monitor is expected via RSB.

the processes to monitor can be specified using command line argu-
ments (Mon 1 and Mon 2 in Figure 8.3). The collector will then operate
until all processes to monitor have disappeared. Commonly, a single
collection daemon is attached to a single component to allow restart-
ing of individual components (Mon 1), but also multiple components
are supported (Mon 2). On the other hand, a remote control mode
is implemented. In this case, the collector will be launched without
specifying PIDs on the command line (Mon 3). Instead, processes to
monitor are accepted on an RSB channel. Host collection daemons
are started on each host and no association to processes is necessary.

In the systems used for this work, the command line mode has
been used for proc file system based data and for every process a
new instance of the collector was started. This was easy to integrate
into the existing system orchestration by generically instrumenting
the component start function. In contrast, network bandwidth collec-
tion has been realized by starting a single collector instance per host
in remote control mode to avoid unnecessary overhead. Sending the
appropriate PIDs to the remote controlled instances has been real-
ized by letting the existing collector instances for proc-based system
metrics send out the processes they monitor periodically via RSB (cf.
Figure 8.3).

8 .4 summary

Based on a review of existing solutions and sources, I have realized
daemons to acquire system metrics for components and the host sys-
tem. These daemons follow the ideas of the framework-level resource
awareness concept as they can be applied with a limited configura-
tion overhead and without special instrumentation. Moreover, they
integrate with the holistic recording process to support experimen-
tal research tasks, including the work pursued in this thesis. On cur-

90 system metric collection

rent operating systems, the selected approach unfortunately implies
that the number of acquired system metrics is limited and the pro-
duced time series contain discretization artifacts. The following meth-
ods based on these data have to deal with these inaccuracies, which
are of different severity for the different kinds of metrics.

Part III

D E V E L O P E R P E R S P E C T I V E

An important aspect of improving the dependability of
robotics and intelligent systems is to establish an under-
standing among system developers on how the utilization
of system resources behaves and is influenced by develop-
ment decisions. Methods introduced in this part therefore
aim to establish resource awareness by informing devel-
opers about these aspects and by providing methods to
control the resource utilization during development work.

9
R U N T I M E R E S O U R C E I N T R O S P E C T I O N

A first possibility to increase the resource awareness in robotics and
intelligent systems is to make their developers aware of resource uti-
lizations. Through appropriate visualizations, system metrics can be
made graspable at system runtime. In the infrastructure monitoring
domain, this task is often accomplished by using browser-based dash-
boards. Generally a dashboard has been defined as a “visual display of # dashboard

the most important information needed to achieve one or more objec-
tives; consolidated and arranged on a single screen so the information
can be monitored at a glance” [Few04]. Dashboards have found wide
adoption in different domains (e.g., for business decisions [Eck11])
as a tool to quickly understand the current state of operations with
the aim to derive necessary decisions. In the context of infrastruc-
ture monitoring, the types of dashboards that are typically used are
called operational dashboard (in contrast to strategic or analytical dash-
boards) [Few06] with their focus on displaying primarily the current
state of a system and the immediate past.

As shown in the next section, a large amount of solutions for realiz-
ing operational dashboards for infrastructure monitoring exists and
these tools are in frequent use. Yet, up to my knowledge, no scien-
tific study exists that systematically validates their usefulness. The
wide adoption is an indicator that valuable insights can be achieved
with these tools and Fatema et al. [Fat+14] conclude for monitoring
solutions in general (in a cloud context) that they “have an important
role [. . .] by allowing informed decisions to be made regarding re-
source utilisation” [Fat+14]. Therefore, I have decided to implement
such a tool for the robotics domain with a focus on monitoring the re-
source utilization of the system and its components. As described in
Section 4.2.5 on page 37, only few solutions exist in robotics. They fo-
cus on ROS-based systems and due to the extensive coupling to ROS,
adaptation of these approaches for other middlewares was not easily
possible. Therefore, I have realized the dashboard using generic tools
from the infrastructure monitoring domain. In the following, I will re-
view existing tools, introduce the architecture of the created solution,
and present an evaluation for the usefulness of the approach.

9 .1 available tools

A vast amount of tools exists to realize the monitoring task for server
infrastructure. Apart from the visualization of system-level KPIs us-
ing dashboards, these tools also pursue other tasks such as presenting

94 runtime resource introspection

custom
Collector	Daemon

HTTP JavaScript
Visualizaton

Time	Series	Database

Graphing Aggregations	/
Transformations

Figure 9.1: Common implementation scheme of dashboards.

business KPIs or automatic alerting in case of system issues. In the
following discussions, I have only included tools that support the re-
alization of operational dashboards for system metrics.

Generally, all solutions used to create resource utilization dash-
boards follow a common theme: A collector daemon acquires system
metrics and stores them in a time series database. A front end is then
constructed asynchronously based on queries to the stored data.

Early implementations of this approach are usually based on RRD-
tool [RRD], which is a fixed-size round robin database for time series
with accompanying graphing tools. Examples for integrated monitor-
ing solutions that provide dashboards based on RRDtool are Munin
[Munin], Cacti [Cacti], and Ganglia [Ganglia]. The presented graphs
in these dashboards are included as image files, which is the stan-
dard output format of the RRDtool graphing commands. Therefore,
constantly updating these dashboards is an expensive task and direct
user interaction with the graphs is limited.

Modern implementations usually separate the visualization from
the database implementation by means of a remote API. While the
database provides data aggregation methods, the main visualization
is browser-based. This results in the scheme depicted in Figure 9.1.

Probably the oldest implementation of this approach is Graphite
[Graph], which adds an HTTP API to its own RRDtool-like round
robin database whisper. Besides raw data access, this API also pro-
vides a selection of commonly required transformation and aggrega-
tion functions for the data. Despite also providing integrated graph-
ing code, Graphite is nowadays primarily used in combination with
more advanced visualization front ends.

In contrast to the fixed-frequency round robin databases, a set of
more flexible time series databases has evolved recently. These data-
bases do not require data to be recorded at fixed rate and their data ac-
cess and querying features are often designed more thoroughly. Pop-
ular candidates from this category include InfluxDB [IDB], OpenTSDB
[OTSDB], Prometheus [Prom], and KairosDB [KDB].

On top of the time series databases, dashboards are commonly im-
plemented as JavaScript front ends rendered in a web browser. One of
the most prominent solutions is Grafana [Grafana],1 which supports
a variety backends and plugins for different graph types. Other, less
known or maintained solutions include Cyclotron [Cyclo] and gdash
[Gdash], or Open MCT for space missions [TR16].

1 Close to 19 000 stars on Github at November 14, 2017.

9.2 resource utilization dashboard implementation 95

Host	CollectorHost	Collector

custom HTTP
GrafanaGraphiteTime	Series

Database	Adapter

Host	CollectorHost	Collector

Host	Collector

Process	Collector

RSB

Figure 9.2: Data pipeline of the realized resource utilization dashboard.

Finally, some tools offer integrated solutions spanning multiple of
the aforementioned tasks. In the open-source world, netdata [netdata]
is such an example. Moreover, many commercial services exists.

Commercial services requiring a connection to an external host can-
not be used in robotics settings with potentially unstable Internet
links. Moreover, the necessity to acquire a license contradicts an easy
application as required by the framework-level resource awareness
concept. Therefore, I did not consider these solutions as candidates
for my own implementation. I have also excluded solutions which are
tightly integrated with an existing collection daemon. These existing
daemons have not been considered for my work because they did not
meet the requirements on the collection process explained in Chap-
ter 8 on page 79. Dashboards that are tightly integrated with their
own collection daemons are hardly usable without them. I finally
decided to use Graphite and Grafana [Grafana] to implement the re-
source utilization dashboard. Even though more modern time series
databases provide interesting features to create suitable dashboards
more easily, initial experiments with InfluxDB have shown that their
flexible design imposes a higher resource utilization.

9 .2 resource utilization dashboard implementation

In contrast to the general implementation scheme for dashboards pre-
sented in Figure 9.1 on the preceding page, the existing collection
daemons use the RSB middleware to publish system metrics instead
of directly sending the data to target time series database as a con-
sequence of supporting the holistic recording process. Therefore, an
adapter is required to bridge between the RSB event bus and the pro-
prietary data format and transmission protocol of the target database
Graphite. The resulting processing pipeline is visualized in Figure 9.2
with exact tool names.

9 .2 .1 Time series database adapter

The primary task of the time series database adapter is to translate
between the RSB events containing RST data types and the custom
protocol of the target time series database. Moreover, some raw sys-

96 runtime resource introspection

ProcessProcessor

+	insert(metrics,	timestamp)

HostProcessor

+	insert(metrics,	timestamp) <<Interface>>
DatabaseBackend

+	submit_process(data,	timestamp)
+	submit_host(data,	timestamp)
+	shutdown()

TimeSeriesDbBackend

+	submit(metric,	fields,	timestamp)

GraphiteBackend InfluxDBBackend DebugBackend

Figure 9.3: Architecture of the time series database adapter.

tem metrics contained in the RST data types are hard to visualize
with the available solutions (e.g., aggregating data from a variable
number of subprocesses). Therefore, the adapter also performs a pre-
processing of the data before passing them to the database. For this
purpose, the adapter implementation is structured as depicted in Fig-
ure 9.3. Two distinct processor classes implement the necessary com-
putation to prepare the data for storage in a database. Preprocessing
of host system metrics is separated from process-level system metrics
because of different data types and calculations that are necessary.
After preprocessing, the data are handed over to an instance of a
DatabaseBackend, which is responsible of storing the data in the ac-
tual database. Besides a debug backend which prints the generated
data, two real storage backends have been implemented: one for the
target database Graphite and one for testing purposes with InfluxDB.
In both databases, metrics are stored as time series that are identi-
fied by string-based keys. The intermediate abstract class TimeSeries-
DbBackend converts the structured data passed to the two submit_*
methods to this string-based representation, before handing it over to
the concrete implementations via the submit method.

For Graphite, the backend uses the Python pickle-based [PP17] pro-
tocol to send the data to the database using a socket connection. This
protocol is the most efficient one and easy to implement in the Python-
based adapter code.

The preprocessing performed by the two processor classes is best
described for the process scope case (cf. Figure 9.4 on the facing page).
First, the data from potentially running subprocesses is integrated
into the system metrics of the root process for a monitored compo-
nent. This is achieved by summing up all numeric system metrics
and creating a new virtual metric with the number of subprocesses.
Afterwards, the data for the subprocesses is discarded. This opera-
tion is necessary because detailed plots on the level of potentially
transient subprocesses of a component are usually not necessary and
contradict the idea of dashboards as a quick overview. A detailed rep-

9.3 dashboard design 97

Process	metrics Aggregated
process	metrics

Aggregated	and	trans-
formed	process	metrics

Aggregate
subprocesses Compute	derivatives Send	to	backend

Figure 9.4: Processing steps performed by the time series database adapter
represented as a UML activity diagram.

resentation of the variable number of subprocesses per component is
hard to achieve in time series databases that are based on a fixed set
of stored metric keys.

The second preprocessing step is to compute derivatives for all sys-
tem metrics that are represented as counters. Computing this deriva-
tive on the fly for visualization purposes would be possible but costly.
Moreover, the current value of a metric is usually what is visualized
in a dashboard and not the accumulated counter. Therefore, this step
reduces the computational demands of the dashboard rendering pro-
cess and the complexity for creating the appropriate queries to visu-
alize the data. Afterwards, the preprocessed data are handed over to
the database backend.

9 .3 dashboard design

Following the framework-level resource awareness concept, I have de-
signed two Grafana dashboards that can be used generically on any
system monitored using the proposed pipeline without requiring fur-
ther configuration. One dashboard is responsible of displaying the
host-level resource utilization (cf. Figure 9.5a on the next page) while
the other focuses on the individual components (cf. Figure 9.5b on
the following page). Both dashboards are structured along the pri-
mary types of system resources via distinct graph rows provided by
Grafana. Each row contains separate plots for the different system met-
rics reflecting the resources and can be collapsed (as done for a few
resources in Figure 9.5b on the next page). Within each graph, the
history of the system metrics is plotted per process or host. The time
range is configurable and individual plots can be focused by the user
via a full screen display. Finally, the total amount of components and
hosts can be filtered for the whole dashboard to temporarily limit the
number of visible graphs.

Even though the generic dashboards provide an easily applicable
solution – depending on the number of components or hosts – the vi-
sual load might become high. Therefore, more targeted and specially
crafted dashboards might provide a more suitable and better gras-
pable solution for individual application scenarios. By applying an
established technology (Grafana), creating new dashboards or adapt-
ing existing ones is facilitated for end users. Grafana [Grafana] is well
maintained, extensive help is available through online documentation

98 runtime resource introspection

(a) Host-level dashboard

(b) Process-level dashboard

Figure 9.5: Screenshots of the generic dashboards for inspecting a system’s
resource utilization with situations from Scenario CSRA.

and community support, and many examples can be found on how
to construct dashboard for specific use cases. Therefore, the support
situation for end users is much better compared to a custom solution.

9 .4 evaluation

The dashboards have primarily been used in two scenarios: In Sce-
nario CSRA on the facing page they are in constant use to moni-
tor the operations of the system. In Scenario ToBi on page 142 the
dashboards were used as a validation while recording the dataset
presented in Chapter 12. In the following sections I will present qual-
itative and quantitative evidences to underline the usefulness of the
approach for robotics and intelligent systems.

9.4 evaluation 99

The Cognitive Service Robotics Apartment (CSRA) is a smart home environ-
ment operated within a research project of the Cluster of Excellence Cogni-
tive Interaction Technology (CITEC) at Bielefeld University [Wre+17]. The Cog-
nitive Service Robotics Apartment (CSRA) is an apartment equipped with a
dense sensor and actuator network in which multiple embodied agents such
as a service robot interact. On the one hand, research focuses on establishing a
software architecture that enables the continuous operation of the system while
providing the necessary facilities for qualitative and quantitative research work
inside the apartment. For this purpose, the appropriate recording and process-
ing capabilities have to be provided. On the other hand, learning and interac-
tions in such an environment are analyzed, especially regarding the use of the
embodied agents. The CSRA is one of the largest systems ever built at CITEC,
comprising more than 200 component distributed across 22 hosts, connected
using the RSB middleware (as of November 16, 2017).

The CSRA living room and kitchen area with different sensors, actuators, and
agents (photo: CSRA, CITEC, reproduced with permission). The dashboard is
constantly visible for developers on a large screen shown on the left side.

Scenario CSRA: The Cognitive Service Robotics Apartment (CSRA)

9 .4 .1 Qualitative evidences

In both application scenarios, merely presenting the resource utiliza-
tion to the developers has already helped to identify a set of previ-
ously unknown performance bugs in the system.

In the CSRA system, an unintended cyclic CPU utilization pattern
could be identified with the approach. As visible in Figures 9.5a
and 9.5b on the facing page, the flobi_sim component, while theo-
retically idling, produced a long-running saw tooth pattern of CPU
utilization. This issue was clearly identified once the system metrics
were visualized in the dashboards.

A second issue in the CSRA system that could be identified us-
ing the dashboards was an interesting interplay between the way
one component used the RSB middleware and the implementation
of RSB itself. The developers of the system noticed that once the
component was started, the system’s performance started to degrade.

100 runtime resource introspection

Figure 9.6: Memory leak of the TTS component in the ToBi system visible in
the resident set size (RSS) graph of the process-level dashboard
(TTS component: brown line, second one from the top).

Through the dashboards it could quickly be revealed that this com-
ponent opened more than 1000 network connections on start, which
effectively overloaded the Spread [Spread] daemon that is used as the
transport in this system. A 100 % CPU utilization of the spread pro-
cess was subsequently visible in the process-level dashboard. With
another dashboard created to visualize details of the RSB introspec-
tion mechanism it could be verified that this component used a lot
more participants than other components and because network con-
nections were not shared between participants, the Spread daemon
was flooded with as many connections as participants existed. After
adding connection sharing in RSB, this issue could be resolved.

In the ToBi system, two notable issues were identified based on
the dashboards. First, a memory leak could be identified in the TTS
component of the system. Figure 9.6 shows a screenshot from the
respective graph of the dashboard that helped to identify the leak.

A second issue in the ToBi system that was unnoticed before de-
ploying the dashboard in the system was related to the handling of
RSB participants in the state machine library BonSAI. This Java library
contains code to automatically create RSB participants at the time a
state or transition depends on them. Once created, these participants
are stored in a hash map using a utility key class for retrieval in case a
subsequent state requires a participant of the same type for the same
scope again. This key class did not implement hashCode and equals.
As a consequence, cached participants could not be looked up in the
map. Instead, new instances were created and the old ones were not
cleaned up. Consequently, more and more network connections piled
up during runtime, which received the same data. Therefore, the total
network bandwidth of this component increased over time. Addition-
ally, as each receiving participant has its own thread in RSB, also the
number of threads of the component increased during the runtime.
These effects, depicted in Figure 9.7 on the facing page, were easily
spotted using the dashboard.

9.4 evaluation 101

(a) Incoming network traffic

(b) Number of threads

Figure 9.7: Screenshots of two dashboard graphs for an RSB participant leak
in the state machine of the ToBi system (blue lines).

9 .4 .2 Quantitative evaluation

Apart from the previously presented qualitative evidences, I have also
tried to acquire quantitative data that underline the usefulness of the
approach. For this purpose, I prepared an online questionnaire that
was distributed across the developers participating in the CSRA sce-
nario (cf. Scenario CSRA on page 99). The structure of the survey is
documented in Appendix C on page 231 and in the following I will
refer to the individual questions from this structure. Because of the
limited size of the project, only 7 answers were submitted.

9 .4 .2 .1 Dashboard usage

A first set of questions was designed to understand in which situa-
tions the dashboards are being used and how useful they are in these
situations. I first asked the participants to rate how often they con-
sult the dashboards in different typical situations that appear in the
scenario (C.2.1). Answers could be given on a five-point scale from
never (0) to always (4). As shown in Figure 9.8 on the next page, the
most valuable situation is in case a problem has been detected. The

102 runtime resource introspection

Syst
em sta

rt

Operation
Testin

g

Problem
Studies

Never

Once or twice

Sometime

Regularly

Always
**

*
*

Figure 9.8: Usage frequency of the dashboards in different situations. Sig-
nificances have been computed using a two-sample dependent
t-test after checking for normality with a Kolmogorov-Smirnov
(KS) test.

Threads
CPU

Memory

Connectio
ns

Files

Network Disk
Not at all

Much deeper

Figure 9.9: Rating of how much the dashboards improved the understand-
ing about the utilization of different types of resources.

developers use the dashboards significantly more often in this situa-
tion than in most of the other situations they could rate. The largest
individual differences exist for study situations and the system start.

To get an impression how much the dashboards help to get insights
into the resource utilization of the system and its individual compo-
nents, I asked participants to rate this on a five-point scale from no
insight at all (0) to better insights than before and with any other tool (4)
(C.2.3). For both, the hosts and the individual components, results
are comparable with a mean of 3.14, which indicates that the CSRA
developers have gained good insights by using the dashboards.

All participants indicated that they have a better understanding
for resource utilization as a result of using the dashboards (C.2.3). I
have further detailed this analysis by asking for individual resources
(C.2.4). Figure 9.9 visualizes the results. The rating of network band-
width is probably spoiled as the per-process network bandwidth col-
lection daemon was not running continuously in the CSRA system.
Especially knowledge about the number of threads per process/com-

9.5 summary 103

ponent seems to improve. This can potentially be explained because
common command line tools such as htop usually do not display this
system metric directly.

Finally, I asked whether the availability of the dashboards reduced
the use of other tools for the purpose of understanding resource uti-
lization (C.4.2). The answers to this question are mixed and no clear
tendency can be determined.

9 .4 .2 .2 Usefulness for debugging

A second set of questions tried to evaluate the usefulness of the dash-
boards for debugging purposes.

With question C.3.1 I have asked how often detected bugs were
visible in the dashboards. Participants could rate on a five-point scale
from never to always. Mean and median reply agree on the result
sometimes, which is expected, as not all bugs are performance bugs.

When asked whether the dashboards help to isolate the origin of
bugs, all participants agreed that the dashboards help (C.3.2). More-
over, all participants indicated that they have found bugs they would
not have found otherwise by using the dashboards (C.3.3). The types
of bugs the participants reported they have found (C.3.4) can all be
categorizes as performance bugs, being either leaks or overloading of
individual resources. Please refer to Appendix D.1 on page 235 for
the exact answers.

9 .5 summary

Despite the limited sample size of the presented survey, the results
strongly suggest that dashboards focused on resource utilization as-
pects of a system are a valuable tool for developers and operators of
robotic and intelligent systems. For all important aspects, participants
of the survey have indicated that the dashboards have improved their
understanding of resource utilization aspects. The dashboards are –
as intended – used most often to identify and debug performance
problems and the participants of the survey have clearly indicated
that dashboards help to find the bug origins. The list of identified
bugs acquired in the survey as well as the selected performance bugs
described in Section 9.4.1 on page 99 demonstrate the usefulness as
well as the necessity for such an approach in the robotics and intelli-
gent systems community.

10
S Y S T E M AT I C R E S O U R C E U T I L I Z AT I O N T E S T I N G

Apart from visualizing the resource utilization of systems and their
components, another important aspect that needs to be addressed by
the framework-level resource awareness concept is the development
process under which components are created and maintained. Perfor-
mance bugs are usually the result of a developer making changes to
the implementation of a component, who accidentally introduces a
performance regression. The effects of changes on the performance
and resource utilization of the component are most likely unknown
to the developer and will only eventually be detected when using
the component in the integrated system, possibly during production
use with severe consequences. Therefore, performance bugs should
already be detected as early as possible, ideally even before an af-
fected component revision or version is published and put into use.
This can only be accomplished inside the development process that
lead to new component revisions.

The software industry and the robotics community have developed
established methods that are frequently used to detect bugs during
development. These are methods such as unit testing at class level
and integration testing at component level [Lim+10; Ben+09], as well
as domain-specific simulations [Ste13; LSL12; Ben+09]. Sometimes,
also formal methods are applied to verify properties of components
or systems [Ben+09]. These methods primarily verify the functional
requirements and nonfunctional requirements such as the resource
utilization are often ignored or only partially checked as side effects.
Hence, the resource utilization is not systematically controlled during
the development process and performance bugs stay unnoticed.

To address this situation, I have developed a framework for sys-
tematically testing components regarding their resource utilization
profile in a fashion similar to unit and integration tests. In the follow-
ing sections I will introduce this framework, which was published
in Wienke and Wrede [WW16d; WW17a]. Parts of the following text
have previously appeared in or are based on these publications.

10 .1 related work

In contrast to the robotics and intelligent systems domain, systemati-
cally testing software for performance regressions is common practice
in other disciplines, the most notable being large scale enterprise sys-
tems and website operation, where APM is applied. Performance test-
ing in these systems is usually performed on a much coarser-grained

106 systematic resource utilization testing

level with the whole system being deployed for testing as a mono-
lithic unit. Tests are often performed based on mimicking or abstract-
ing the human users of the systems (e.g., through HTTP interactions)
and test runs can last up to several hours or days [Syd11]. Common
tools such as Apache JMeter [JMeter] or research results such as Chen
et al. [Che+08] reflect this. The outcomes of such tests are numerous
KPIs for the system under test (SUT), which need to be analyzed
by the performance engineers. Visualization and simple threshold
checks are common techniques applied here.

A recent survey by Jiang and Hassan [JH15] provides a good over-
view of publications dealing with performance testing of large-scale
systems. The authors separate the testing process into three succes-
sive steps: test design, execution, and analysis; and categorize publica-
tions along several axes inside each step. The review does not men-
tion any work that specifically focuses on individual components as
the unit of testing. Instead, most approaches follow the APM idea of
analyzing the complete system as a single entity.

I will follow the separation of the testing process proposed in Jiang
and Hassan [JH15] for the remaining analysis of related work. Re-
garding the design of performance tests, different methods exist. Tools
such as Apache JMeter [JMeter] and Tsung [Tsung] test applications via
network protocols such as HTTP or XMPP and provide methods to
generate test interactions and data for these protocols. Often, record-
ing capabilities exist to generate these interactions based on proto-
typical executions, and loops and parallel execution can be used to
generate extended test loads using an abstract specification of the in-
teractions. In Apache JMeter, interactions are specified primarily using
a GUI, whereas Tsung uses an XML configuration file and command
line utilities for defining tests. Other tools such as Locust [Locust],
NLoad [NLoad], The Grinder [Grinder], and Chen et al. [Che+08] use
the programming language level to define load tests. Tools such as
Gatling [Gatling] are between these two categories by generating code
from exemplary executions. Further related work based on domain-
specific language (DSL) will be presented in Section 11.1. Most of the
presented approaches provide a way to structure the performance or
load test into distinct units such as test cases or test phases.

For test execution, frameworks have the duty to generate the load
and to log metrics during the test. Depending on the framework, load
can be generated from one or several hosts [Tsung; JMeter; Locust].
Most frameworks targeting web applications automatically log met-
rics such as response times for the issued requests. Additionally, some
of them incorporate ways to also log the resource utilization of the
SUT [Tsung; JMeter; Grinder].

For the analysis of performance tests with the aim to automatically
detect performance regressions, several methods have been proposed.
One common technique is the use of control charts [MHH13; Ngu12;

10.2 performance testing framework concept 107

Ngu+12]. However, they assume a normal distribution of the mea-
sured values, which is usually not the case for system metrics such
as CPU utilization under varying system states. Another category of
approaches exploits the correlation of multiple KPIs in a test run.
Changes in these correlations could indicate a performance regres-
sion. Moreover, correlations can be used to reduce the amount of met-
rics that needs to be analyzed. Foo et al. [Foo+10] and Žaleźničenka
[Žal13] implement this approach with association rule learning tech-
niques whereas Shang et al. [Sha+15] use clustering and regression.
Additionally, Malik et al. [MHH13] present two other approaches
based on clustering and principle component analysis (PCA).

Generally, the existing work mostly focuses on performance testing
for integrated systems. Here, a key problem is to summarize the large
amount of generated data [JH15]. Although similar tests are also de-
sirable for robotics and intelligent systems, they are much harder to
set up and maintain due to the complex interactions of robots with
the real world and the nonstandard interfaces in contrast to protocols
such as HTTP. Moreover, performance regressions detected in inte-
grated tests cannot directly be attributed to individual components
without further analyses. Therefore, testing the performance charac-
teristics of individual components provides a parallel and currently
more applicable method in robotics and intelligent systems.

In addition to data-driven methods, performance regressions can
also be detected from appropriate software models. Relevant methods
have already been discussed in Sections 4.1.3 and 4.2.6.

10 .2 performance testing framework concept

The design of the implemented testing framework follows the general
idea of the framework-level resource awareness concept by focusing
on individual components as the SUT (cf. Section 5.5 on page 50)
instead of complete systems. In addition to the considerations for the
general concept, this decision is based on the following thoughts:

1. Testing a complete robotics system for performance regressions
in an automated fashion is hard to achieve because of the in-
teractions with the real world, e.g. via speech-based dialog or
computer vision algorithms. Inputs for these interactions would
need to be simulated or prerecorded and special interfaces to
interact with a simulation or recorded data chunks are then re-
quired. Availability of such interfaces is limited.

2. The middleware-based component interface allows creating per-
formance tests that are quite stable during component and sys-
tem evolution. Although changes to the interface might occur,
these should be infrequent. Otherwise, the integration of sys-
tems that use a respective component would be impaired.

108 systematic resource utilization testing

3. Detected performance regressions can be attributed to individ-
ual components. This avoids complicated searches for the origin
of a regression and the responsibility to fix the detected issues
is clearly assigned to the component developer.

4. Component developers should have the most extensive knowl-
edge about their components and the expected loads and behav-
iors. Therefore, developers are in a better position than system
integrators to test the complete range of functionality and loads
a component is intended to handle, and not only the require-
ments of a single target system. Moreover, it is also much easier
to explore the space of potential loads on a component under
test in isolation because the middleware inputs to the compo-
nent do not need to be generated through several layers formed
by the surrounding integrated system and ultimately the inter-
actions of the system with the real world. The possibility for
systematic exploration increases the test coverage for the indi-
vidual components and ensures that important situations that
might trigger exceptional resource utilization patterns are cov-
ered by the tests.

5. Components usually outlive individual robotics systems and
might be used in several systems in parallel. Isolated perfor-
mance tests per component ensure that the test suite does not
need to be rebuilt with each new application and test results are
continuously comparable despite changing application areas of
the components.

Therefore, the developed testing framework is designed to test com-
ponents individually.

The general concept of this framework is visualized in Figure 10.1testing via mid-
dleware interface

C

on the facing page. The middleware inputs of a component under
test are replaced with inputs generated using the testing framework
and the component is instrumented to acquire resource utilization
information. The whole test progression consisting of testing meta-
data, component communication, and system metrics is recorded and
stored. To decide whether the resource utilization of the current revi-
sion of the component under test has changed significantly compared
to a previously recorded reference, the stored data is processed by a
regression detection component of the framework.

The actual test cases constructed with the framework are main-
tained alongside the component similar to unit tests. This ensures
that tests are kept up to date with the component by the component
developers and test results are immediately available after changes.

Depending on the connectivity of a component with the remain-focus on vertical
components

C

ing system or the underlying operating system and hardware, the
complexity of testing via the middleware can vary. For example, a
controlling state machine usually communicates with many other

10.3 realization 109

Component

under	test		

Resources
Test	Progress

Performance	Test

TC TC TC TC

Rev	t
Recorded
Resource	and
Execution	Data

Regression	Detection

Figure 10.1: Visualization of the component-based performance testing con-
cept. Black arrows represent the middleware interface and com-
munication of the tested component. Blue arrows represent data
that is recorded during test execution.

components in the system. Therefore, it is hard to test it in isolation.
Although it is possible to test such a component (e.g., by implement-
ing mock components for the tests), the testing framework primarily
targets vertical components (cf. Section 5.4 on page 49), which have
isolated and well-defined component interfaces.

10 .3 realization

In the following subsections I describe the realization of the testing
framework. According to Malik et al. [MHH13], a common load or
performance test (terms are often used interchangeably [JH15]) con-
sists of “a) test environment setup, b) load generation, c) load test
execution, and d) load test analysis” [MHH13]. I agree with this view
and the detailed description of the framework follow this separation
(with a changed order).

10 .3 .1 Load generation

For vertical components, I assume that the resource utilization of the
component at runtime is to a large extent related to the middleware
communication the component is exposed to (including different as-
pects such as message size, message rate, communication channels,
etc.). For instance, a face detection algorithm might utilize more ore
less CPU time depending on the rate and size of images it receives via
the middleware. Similarly, a person tracker’s CPU and memory uti-
lization might be related to the number of person percepts it receives.
Finally, parameters inside the received messages might influence the
processing, for instance, a desired quality criterion for a solver. The
underlying hypothesis will be analyzed in more detail in Chapter 13

on page 149. Therefore, generating load in terms of the middleware

110 systematic resource utilization testing

TestCase

<<Interface>>
ParameterProvider

TestPhase

1..*

Action

ParameterSet

Parameter

1

1..* 1

* children

generates

resolves	in

Figure 10.2: Class structure of the testing API.

communication provides a way to abstract the ongoing development
changes inside the component while testing the aspects that are rele-
vant to its use inside a robotics system.

To generate such middleware-defined loads, the testing framework
allows specifying middleware interactions with components via a
Java API. I have chosen the Java language for realizing the frame-
work because it provides the required performance to generate heavy
loads (e.g., in contrast to Python) while providing a relatively easy
to use programming language and environment (e.g., compared to
C++), which is usable for most developers.

Inside this framework, a performance test consists of multiple test
cases (cf. Figure 10.2). Each test case comprises one or more test phases
and a parameter provider. A test phase is a named entity that consists
of a tree of parameterized actions to perform via the middleware. Ac-
tions therefore specify the actual interaction of the test with the com-
ponent. These actions have variable parameters such as a sending rate
for messages or a number of faces to include in a face detection mes-
sage. The parameter provider generates parameter sets, which specify
the actual values for all variable parameters. Executing a test case
means executing the action tree sequentially for all parameter sets,
therefore generating different load levels on the component.

Parameters allow specifying the load profile of tests, whereas ac-
tions specify the structure of the interaction. Parameters can for in-
stance be: a) communication rates, b) the number of generated mes-
sages, c) data sizes, d) sets of precomputed messages, or e) middle-
ware communication channels. Separating these parameters from the
structure of the interaction results in the following benefits:

• The influence of these parameters on the performance of the
component can be analyzed systematically.

• Tests can be executed with different granularities. For example,
this enables a developer to run a quick smoke test with a re-
duced parameter set on his own workstation before submitting
changes to a component. The same test case can then be exe-
cuted by a build server with a larger parameter set and longer
runtime to generate detailed results.

• Test cases can be reused across different, functionally compara-
ble components by changing the parameter providers.

10.3 realization 111

data

Parameter Resolve a value from the current parameter set

StaticData Return a predefined, static value

flow

Sequence Execute multiple actions sequentially

Loop Loop an action n times or indefinitely

Parallel Execute multiple actions in parallel

WithBackground Execute one main action with multiple background actions.
Background is interrupted when the main action finishes.

timing

Sleep Sleep for a specified time

LimitedTime Execute an action for a limited time and then interrupt it

FixedRate Execute an action at a fixed rate

middleware

InformerAction Send an RSB event

RpcAction Call an RSB RPC method and optionally wait for the reply

WaitEvent Wait for an event to arrive

BagAction Replay prerecorded RSB communication from a file

DynamicEvent Construct an event (for Informer or RPC action)

ProtobufData Generate protocol buffers event payloads from parameters

Table 10.1: Identified actions for constructing performance tests.

Test phases provide the ability to group operations to perform with
the component under test. These phases are uniquely identifiable for
a later analysis step. As test phases are executed sequentially inside
each test case for all parameter combinations, they can also be used
to realize the necessary actions for following the communication pro-
tocol expected by the tested component.

10 .3 .1 .1 The action tree

Actions that can be performed to interact with the component under
test form a limited specification language suitable for the needs of
performance testing. Each action generally is a function that takes
the current parameter set as its input and optionally returns a result
that may be processed by parent actions. Listing 10.1 on the following
page shows the simplified Action interface as well as an exemplary
implementation stub. As visible, mandatory arguments to actions are
provided by the return values the child actions’ execute methods. Pa-
rameters are specializations of Action (cf. Figure 10.2 on the preced-
ing page) and their execute method resolves the current parameter
value from the provided ParameterSet and returns it. This structure
has the benefit that all configuration aspects of all actions can be con-

112 systematic resource utilization testing

1 public interface Action<ReturnType> {
2 ReturnType execute(ParameterSet parameters);
3 }
4

5 public class Loop implements Action<Void> {
6 private final Action<?> action;
7 private final Action<Integer> iterations;
8

9 public Loop(final Action<?> action,
10 final Action<Integer> iterations) {
11 this.action = action;
12 this.iterations = iterations;
13 }
14

15 Void execute(ParameterSet parameters) {
16 final int iterations = this.iterations.execute(parameters);
17 for (int i = 0; i < iterations; ++i) {
18 this.action.execute(parameters);
19 }
20 return null;
21 }
22 }

Listing 10.1: Simplified Action interface and implementation of the Loop
action displaying how subactions are used as parameters
(iterations) and to specify side effects such as interactions
with the component under test (action).

trolled via parameters if necessary. However, this also means that the
special action StaticData has to be used whenever an argument of
an action should be statically defined without using parameters. I
have identified and implemented the actions shown in Table 10.1 on
the preceding page as a result of testing components from different
systems.

One of the most frequent tasks to perform while testing is the gen-
eration of data to send via the middleware based on the current pa-
rameter values. The framework provides support for this task for
the RSB middleware. The ProtobufData action is used to construct
Protocol Buffers [Protobuf] messages from templates by scaling (re-
peated and string) fields based on parameters. Listing 10.2 on the
next page demonstrates how this action is applied, including the use
of the Protocol Buffers [Protobuf] API for generating the template and
the variable fragments. As a second possibility for generating data,
the BagAction replays prerecorded data, optionally with modulations
such as speed or channel selection. If a user requires further actions
or methods for generating test data, custom implementations of Ac-
tion can be added. Performance tests are created by forming a tree
of these actions inside different test phases and test cases. Figure 10.3
on page 114 visualizes the action trees that have been used for testing
the leg detector component from Scenario ToBi on page 142.

10.3 realization 113

1 public class LegGenerator implements DataGenerator {
2 @Override
3 public Object generate(final int index, final int totalEntries) {
4 final Random rand = new Random();
5

6 final Legs.Builder builder = Legs.newBuilder();
7 builder.setPair(rand.nextBoolean());
8 builder.setAngle(rand.nextFloat());
9 builder.setAngleVariance(rand.nextFloat());

10 builder.setDistance(rand.nextFloat());
11 builder.setDistanceVariance(rand.nextFloat());
12

13 return builder.build();
14 }
15 }
16

17 // when specifying the action tree
18 Parameter<Integer> LEG_NUMBER = new Parameter<Integer>(
19 "legNumber", Integer.class);
20 Action<?> action = new ProtobufData(
21 new StaticData<GeneratedMessage.Builder<?>>(
22 new BuilderValue(
23 LegDetections.newBuilder().setOrigin("legDetectorJava"))),
24 new VariableRepeatedField("legs", LEG_NUMBER, new LegGenerator()))

Listing 10.2: API for varying Protocol Buffers data based on parameters.

1 new ParameterProduct(
2 Lists.<ParameterRange<?>> newArrayList(
3 new ParameterRange<Long>(REQUEST_LENGTH,
4 new FixedValue<>(50L, 500L, 10000L)),
5 new ParameterRange<Long>(WAIT_TIME,
6 new LongRange(500L, 2000L, 20000L)),
7 new ParameterRange<Integer>(REPETITIONS,
8 new FixedValue<>(5, 10, 100))),
9 Lists.<ParameterConstraint> newArrayList(

10 new ScriptConstraint(
11 "repetitions * (requestLength + waitTime) <= 70000"))));

Listing 10.3: Exemplary instantiation of a ParameterProduct for three pa-
rameters with a constraint specified using a Groovy script.

10 .3 .1 .2 Parameters

Each test case is equipped with a parameter provider, which gener-
ates one or more sets of parameter combinations. Each parameter
itself is a programming language object and has a printable name for
the analysis (cf. line 18 in Listing 10.2). Moreover, it must be serializ-
able by RSB (cf. Section 6.1.3 on page 58) because it will be reported
using the middleware. The framework provides two implementations
of parameter providers: a table, where the user manually specifies
the row values, and a Cartesian product, where combinations of indi-
vidual parameter values are created, optionally with constraints. For
specifying these constraints, scripting languages such as Groovy can
be used. Listing 10.3 demonstrate how a ParameterProduct can be
instantiated.

114 systematic resource utilization testing

Test Legdetector

TestCase smoke

TestPhase fire

FixedRateTiming

StaticData 10000

Parameter scanFrequency

InformerAction

DynamicEvent

StaticData rst.vision.LaserScan

StaticData /sensors/laserscan/

GenerateData

Parameter numberOfPersons

StaticData rsb.Informer

TestCase real-recording

TestPhase replay

RecordedTimeBagReplay

Parameter tideFile

TestCase recording-modulated

TestPhase replay

FixedRateBagReplay

Parameter tideFile

Parameter scanFrequency

Figure 10.3: Structure of a performance test for the legdetector component
from Scenario ToBi on page 142. The test consists of three dis-
tinct test cases, each with a single test phase. The general test
case and phase structure is marked in green, actions are marked
in red, and data-related actions are marked in blue.

10 .3 .2 Environment setup

For executing performance tests, the API contains a test runner. On
test execution, the first task of this test runner is to set up the test
environment based on a configuration file, which specifies the follow-
ing aspects: a) locations of utility programs, b) the RSB configuration,
c) processes that act as a test fixture (e.g. daemons, mock compo-
nents), d) components to test, and e) test cases and their parameter
providers. Using this configuration, the initialization of the test envi-
ronment is performed in the following steps (cf. Figure 10.4 on the
next page):

1. Configuration of the middleware to ensure that test execution
is isolated from the remaining system.

2. Creation of a temporary workspace for the test execution. The
workspace is used as the working directory for executed pro-
cesses and stores intermediate logs, which can be retained for
debugging.

3. Start of all defined fixture processes. These could be daemons re-
quired for the middleware, database services used by the tested
component, etc.

10.3 realization 115

Tear	down

Test	case	execution

Test	setupEnvironment	setup

Configure
middleware

Create
workspace

Start	fixture
processes

Validate
test	cases

Start	components
under	test

Start
collection	daemons

Start
rsbag	recording

Report
test	case	start

Get	next
parameter	set

Report
parameter	set

Report
test	phase	start

Execute
action	tree

Report
test	phase	end

Stop	components
and	fixture

Clean
workspace

[n
o	

m
or

e
te

st
	c

as
es

]

[more	test	phases]

[m
or

e	
pa

ra
m

et
er

	s
et

s]

Figure 10.4: Visualization of steps performed to execute a performance test.

10 .3 .3 Test execution

Refer to Figure 10.4 for a visualization of the following aspects.

10 .3 .3 .1 Orchestration

After the environment setup, the configuration is used to instantiate
and execute the performance test. First, the configured test case and
parameter provider instances are created and a static validation of pa-
rameter references is performed. If validation succeeds, the defined
components to test are started. Although usually only a single compo-
nent is started, it is also possible to test a combination of components.
This could be the case if a small set of components is tightly cou-
pled and creating mocks is harder than testing the set of components
in combination. After starting all components, the test cases are exe-
cuted sequentially. Inside each test case, the defined test phases are
executed for all parameter sets returned by the parameter provider.
Finally, all started components and the test fixture are terminated.
I have decided to use a single execution of the component processes
without intermediate restarts, for example, for each parameter set. On
the one hand, test runs require more time with component restarts
and, on the other hand, most robotics components usually operate
for a longer time without restarting. Artificial restarts would make
it harder to detect performance issues such as memory leaks, which
slowly build up over time.

10 .3 .3 .2 Data acquisition & recording

To generate and record data for later performance analysis, the test-
ing framework applies the previously introduced holistic dataset cre-
ation process (cf. Chapter 7 on page 71) by focusing the recording
on the middleware communication. For this purpose, the test runner

116 systematic resource utilization testing

0
25
50
75

%
 o

f o
ne

 C
PU

proc/stat-utime

0

10000

20000

30000

kB
/s

proc/io-rchar

30
,1

00
00

0

30
,1

0

60
,1

00
0

60
,1

00
00

0

stringPayload

protobufPayload

stringPayload

protobufPayload

stringPayload

protobufPayload

stringPayload

protobufPayload

0

2

4

6

kB
/s

proc/io-wchar

Figure 10.5: Excerpt from a test for a logging component. Two test phases
are executed for different parameter combinations, in this case
frequency and size of events to display by the logger. Parameter
are marked with labels written from bottom to top and test
phases with labels written from top to bottom.

launches the previously presented resource collection daemons (cf.
Section 8.3 on page 84) for all tested components so that the acquired
system metrics are contained in the middleware communication. Fig-
ure 10.5 shows an excerpt of a test case recording for a single test case
with two test phases, which are executed for different parameters.

10 .3 .4 Test analysis

The recorded performance test data have to be analyzed to decide
whether a new component revision exhibits a different behavior re-
garding resource utilization compared to a previous revision. For this
purpose, an analysis tools has been implemented, which performs
the different tasks related to the detection of regressions. The tool
is designed as a command line program to be integrated into shell
scripts, for example, for a continuous integration (CI) server, so that
the whole testing and analysis procedure can easily be embedded
into existing development processes. In the following, the different
tasks realized in this tool will be described.

10 .3 .4 .1 Data preparation

The output of a performance test is an rsbag-compatible file with
all middleware events including the component communication, in-
formation about the test progress, and system metrics for the tested
components. To analyze the performance of the tested components

10.3 realization 117

across their revision, the recorded information needs to be persisted.
However, depending on the amount and type of component commu-
nication, the resulting file size might prevent persisting these files for
a longer time. Moreover, rsbag files are optimized for continuous re-
play and not for random access. Therefore, the recorded data are first
transformed into hierarchical data format 5 (HDF5) files using the
Python pandas library [McK10], which only contains the system met-
rics as well as the information about the test progress. In this step, in-
formation about the tested component revision is attached to the data
in the form of a human readable title (e.g., a Git hash for tests per Git
commit or a time stamp for nightly builds) and a machine-sortable
representation (e.g., the Git commit date or an ISO 8601 formatted
date [II04]) so that executions can be ordered. These HDF5 files are
the artifacts that are usually persisted for each test execution.

10 .3 .4 .2 Manual inspection

As a first means of manually inspecting the performance of a com-
ponent, the analysis tool supports generating different plots from the
recorded data. The generated plots include the raw system metrics
time series of a single execution, correlations between system metrics
and numeric test parameters, and several plots, which show how sys-
tem metrics have evolved with component revisions. For latter case,
system metrics are summarized for each test case, test phase, and pa-
rameter set via mean and standard deviation, and they are plotted for
each revision of the component. This allows one to track how the uti-
lization of individual resources has evolved. Figure 10.5 on the facing
page is an example for a generated plot displaying the system metric
time series of a single test execution.

10 .3 .4 .3 Automatic regression detection

To automatically detect changes in the resource utilization of a com-
ponent, I have implemented three different methods in the analysis
tool. All methods take one or more test execution results (as HDF5

files) and compare the observed resource utilization against a base-
line from one or more other test executions. As no specific semantics
are given regarding what is the baseline and what is the current test
execution data, multiple testing modes can be realized with the same
tools and analysis methods. These modes can be realized by provid-
ing different HDF5 files to the analysis tool. The following modes are
common:

• no-worse-than-before principle [JH15]: the current revision is com-
pared to the previous one (or a window of n previous revisions)
to ensure that the current state is at least as good as the previous
one.

118 systematic resource utilization testing

• Comparison to a hand-selected baseline: all revisions can be
compared to a manually selected baseline to ensure that the
criteria of this baseline are met. The baseline needs to be res-
elected to match intentional performance changes. In contrast
to the previous mode, this mode is more likely to detect slow
trends which are not detectable between consecutive revisions
at the cost of requiring a manual baseline selection. For instance,
a new feature per revision, each adding just a slight amount of
resource utilization, can result in such a trend across multiple
revisions.

Most existing methods for detecting performance regressions actu-
ally detect any change in the performance characteristics of the tested
system. Although an automatic categorization whether a change is a
regression or an improvement regarding the performance would be
a desirable feature, this is often not easily possible. For instance, a
new component revision might result in a higher CPU utilization for
small workloads whereas the utilization improves for higher work-
loads. Therefore, the analysis tools detects any significant change of
the resource utilization and the developer has to decide (e.g., based
on the plots), whether the change is acceptable. This is often also the
case for related existing methods. Therefore, I will continue to use the
term performance regression to indicate those detected changes for the
remainder of this chapter.

For the actual detection of performance regressions I have imple-
mented multiple methods:

• The method proposed by Foo et al. [Foo+10] as an example for
an association rule learning based approach. In this method, the
KPIs are discretized and association rules are extracted. In case
these rules show a low evidence on the new software revision,
a performance regression is indicated.

• The method proposed by Shang et al. [Sha+15] as a reference
for a recent method based on clustering and regression. Here,
the KPIs are clustered and for each cluster one KPI is selected
as a dependent variable. Then, a regression model is trained
from the remaining KPIs to the dependent variable. In case this
model creates a high prediction error for a new software revi-
sion, a performance regression is indicated.

• A basic two sample KS test for each system metric. For this
purpose, the individual measurements of each system metric
across the whole test execution time (of potentially multiple ex-
ecutions) are assumed to form an observation and the obser-
vation from the test executions is compared to the observation
from the baseline. A threshold on the test statistic is used to
determine whether a performance regression occurred or not.

10.3 realization 119

Figure 10.6: Integration of the testing framework in the Jenkins CI server.
Each black rounded box with white background represent a
single Jenkins build and therefore execution of the tests for a
component. Red cylinders represent the stored data of the per-
formance tests. Blue rounded boxes indicate the actual test run
and green ones post-processing actions. Time and component
versions progress from left to right.

The first two methods have been tested by their authors on websites
and enterprise systems by testing the whole deployed system. They
have not been tried on data for individual components. Here, I test
their applicability for this purpose.

10 .3 .5 Automation

The analysis tool reports results using JUnit [JUnit] XML files [JXS],
which can be parsed by many automation tools, for example, the
Jenkins [Jenk] CI server. This allows the integration of the approach
with such tools, which can then automatically give feedback on poten-
tial performance regressions. Figure 10.6 visualizes how performance
testing can be automated inside Jenkins. For each new software revi-
sion, a Jenkins build executes the performances tests, loads previous
testing data (HDF5) from the job artifacts storage of Jenkins, and per-
forms the regression detection. The resulting JUnit XML file is parsed
by Jenkins using one of the available plugins and in case of regres-
sions, developers can be notified, for instance, via mail. The Jenkins
integration is an easy way to trigger a test execution for each new
software revision with automatic notifications.

The system metrics recorded while executing performance tests are
coupled to the execution platform. Therefore, a dedicated host should
be used for all test executions and this host should be free from other
tasks to avoid influences of resource contention in the measurements.
For instance, this can be realized by adding a dedicated performance
testing slave to a Jenkins server.

120 systematic resource utilization testing

10 .4 evaluation

To determine the accuracy of the automatic detection of performance
regressions and to find out which of the detection methods intro-
duced in Section 10.3.4.3 on page 117 performs best, I have imple-
mented a set of performance tests for several vertical components
and infrastructure components from RSB-based systems. These are
components for which I had in-depth knowledge available, so that
ground truth information about performance changes could be gath-
ered. The selected components cover a range of different tasks and
programming environments to ensure that the evaluation does not
overfit on a specific environment. In detail, the following components
were tested:

• 2dmap: A Java-based visualization for person tracking results in
the CSRA scenario (cf. Scenario CSRA on page 99).

• legdetector: A Java component for detecting legs in laser scans
on the ToBi system (cf. Scenario ToBi on page 142).

• objectbuilder: A C++-based component that generates stable
person hypotheses from detected legs and the SLAM position
of the ToBi robot (cf. Scenario ToBi on page 142).

• logger-*: A console-based logger for middleware events with
different output styles indicated by the wildcard. Implemented
in Common Lisp.

• bridge: An infrastructure component, which routes parts of the
middleware communication to other networks (Common Lisp).

For all these components, tests have been written using the pre-
sented Java API and results have been processed using the afore-
mentioned analysis methods. All tests could be generated with the
provided actions, which suggests that the provided set of actions is
generally sufficient for writing tests for such components.

For the evaluation I have tested the presented components using
the no-worse-than-before principle by comparing each revision against
the previous one. This is automatically possible without the need for
a manual baseline selection and therefore the easiest method to apply
in line with the requirements of the framework-level resource aware-
ness concept. For the 2dmap, legdetector, and objectbuilder compo-
nent I used all Git commits that I could compile without errors. For
logger and bridge archived nightly builds were available instead.

To acquire ground truth information on the performance regres-
sions introduced into the tested components, the generated plots dis-
playing the evolution of system metrics across revisions have been
manually examined and annotated. Additionally, the commit logs

10.4 evaluation 121

revisions execs changes

2dmap 25 4 10

legdetector 14 4 4

objectbuilder 23 4 7

logger-compact 306 2 16

logger-detailed 306 2 7

logger-monitor 228 2 6

bridge 176 2 6

Table 10.2: Available evaluation data per component.

have been used, especially in cases where a decision was not eas-
ily possible from the plots. Although I took great care with the an-
notations, I still expect some amount of errors because it is some-
times hard to decide whether visible changes are real performance
regression or caused by other unknown influences. Especially for the
nightly builds, the Git commit log was not sufficient to trace all pos-
sible changes, for instance, to the compilation environment used to
create each build. Table 10.2 displays the amount of available data per
component. Column revisions shows the number of revisions that
were tested per component and column execs indicated how often
the test has been executed per revision. Finally, changes shows how
many revisions contained performance regressions in the manual an-
notations. The resulting dataset including ground truth information
is publicly available [WW17b].

I have evaluated the performance of the different analysis methods
by applying them to the whole history of each component. Given the
binary ground truth annotation, the task to detect performance regres-
sions has been treated as a classification problem. All analysis meth-
ods return multiple scores per test (Shang et al. [Sha+15] returns one
score per cluster, Foo et al. [Foo+10] returns one score per frequent
item set, and the KS test returns one score per system metric). I have
decided to combine these individual scores using different functions
and then to use the resulting number to compute an area under curve
(AUC) score on the receiver operator characteristic (ROC) curve for
the classification task, which is an established metric to assess a clas-
sifier [Faw06]. For aggregation of the individual scores, I have used
the min, max, and mean functions as three straightforward options.

Based on the available data I receive the evaluation results visible
in Table 10.3 on the next page, which shows the AUC score for each
component, detection method, and the three aggregation methods.
The highest scores per component are highlighted. As visible, for
component tests the basic KS test is generally superior to the other
methods. Only for some settings the method by Shang et al. shows
comparable or slightly better scores. Especially the method proposed
by Foo et al. does not work on this kind of data.

122 systematic resource utilization testing

foo et al . shang et al . ks test

min max mean min max mean min max mean

2dmap 0.50 0.72 0.71 0.81 0.81 0.83 0.50 0.50 0.89

legdetector 0.50 0.51 0.47 0.75 0.97 0.97 0.50 0.50 0.97

objectbuilder 0.50 0.63 0.66 0.28 0.76 0.55 0.50 0.50 0.84

logger-compact 0.50 0.49 0.51 0.45 0.56 0.48 0.59 0.59 0.76

logger-detailed 0.50 0.39 0.39 0.46 0.60 0.57 0.61 0.50 0.84

logger-monitor 0.50 0.57 0.57 0.69 0.82 0.80 0.48 0.50 0.72

bridge 0.50 0.59 0.59 0.55 0.56 0.48 0.44 0.49 0.61

mean 0.50 0.56 0.56 0.57 0.73 0.67 0.52 0.51 0.81

Table 10.3: ROC AUC scores for different analysis and aggregation methods.
For each component and the average across all components, the
highest scores have been marked in red.

For the results shown in Table 10.3, the tests have been executed
multiple times (cf. Table 10.2 on the previous page for the actual
numbers). This has been done, because some aspects of the compo-
nent performance characteristics differ across test runs of the same
component revision. For instance, due to garbage collection timings
in Java or Common Lisp programs, the memory footprint can be dif-
ferent across runs. Generally, I have observed that memory is one of
the most common causes for false-positives due to such issues, and
averaging across multiple runs provides a way to counteract this. In
contrast to component restarts during test execution (e.g. for each pa-
rameter set and test phase) this is still faster to perform due to fewer
restarts while retaining the ability to detect issues such as memory
leaks. Additionally, effects of component initialization (warming up
caches, loading files, and libraries, etc.) are less visible in the data. To
quantify the effect of the number of test executions on the detection of
performance regressions, I have varied the number of executions for
all components that have been tested four times in total. Figure 10.7
on the facing page shows the results for the most promising detection
methods. Although a slight improvement can be observed for Shang
et al. with more test executions, the results for the KS test are incon-
clusive. On the other hand, both methods already show a reasonable
performance with a single execution of the tests.

10 .5 summary

The presented framework introduces systematic performance testing
in the robotics domain. While being established in other disciplines,
the robotics and intelligent systems community largely lacks this
practice and therefore a systematic way to control the resource uti-
lization within the development process. I assume that one reason

10.5 summary 123

1 2 3 4
Number of test executions

0.6

0.7

0.8

0.9

1.0

R
O

C
 A

U
C

Shang et al.

1 2 3 4
Number of test executions

KS test

2dmap
legdetector
objectbuilder

Figure 10.7: Influence of the number of test executions on the two most
promising detection methods. For Shang et al. the max aggre-
gation method was used and for the KS test the mean.

for this issue is the often less controlled development process in re-
search settings. Thus, I have specifically designed the testing frame-
work to meet the requirements of this domain by testing isolated com-
ponents based on their middleware interfaces instead of integrated
systems. This clearly assigns the testing responsibility to the individ-
ual component developers, allows a gradual adoption of the testing
approach, and makes it resilient regarding system and component-
internal changes. Testing components individually is also a novel
perspective on performance testing in general and I am not aware
of other work in this direction. Finally, I have designed the created
testing tools such that they integrate with existing development pro-
cesses without enforcing specific tool or automation requirements to
enable an easy application of the approach.

Special care has been taken to provide abstractions suitable for ver-
tical components and the required data generation tasks. The chosen
concepts are the result of a domain analysis that I have carried out.
Yet, the API is eventually meant only as a base tool for specifying
performance tests. Java was chosen as a compromise between an ac-
ceptable coding experience and the required efficiency to generate
load tests. However, the syntax is often verbose and requires many
code-level constructs (e.g. StaticData, Protocol Buffers Builder pat-
tern, Java generics declarations). Moreover, sometimes it is technically
necessary to separate closely related aspects on the code level. For in-
stance, the data generation code for Protocol Buffers data has to be dis-
connected from the actual instantiation of the action (cf. Listing 10.2
on page 113) and it needs to be linked to its message field using an
error-prone string-based identifier. Apart from explaining the API, I
have also included the code listings in Section 10.3 on page 109 to
show these issue. Therefore, the next section introduces a DSL on top
of the framework that abstracts the technical details that are manda-
tory in the Java API. With this DSL, the presented framework will be
the technology mapping used in the model-based testing paradigm.

11
M O D E L - B A S E D P E R F O R M A N C E T E S T I N G

Although the performance testing framework presented in the previ-
ous chapter enables performance tests for robotics components, their
creation requires a reasonable amount of code. In Section 10.5 on
page 122 I have already delineated several code-level aspects that
complicate writing performance tests from the point of view of a
potential framework user and explained why they cannot easily be
removed without sacrificing functionality. Following the ideas of the
framework-level resource awareness concept, the existing situation is
not ideal, because using the testing framework in the form of a pure
Java implementation is sometimes more complicated than necessary
and therefore might prevent adoption. With Wienke et al. [Wie+18],
we have applied MDSD techniques to improve on this situation by
creating a DSL front end to the testing framework. Parts of this chap-
ter are based on this publication. The aim of the DSL is to abstract all
technical details so that testers can specify the performance tests in a
concise way with all editing aids developers are used to from modern
integrated development environments (IDEs).

When using DSLs to create software tests, one enters the domain of
model-based testing, which is a term that is often used with slightly dif-
ferent meanings [UL07]. To clarify these diverse meanings, Utting and
Legeard [UL07] distinguish between four different types of model-
based testing:

1. Generation of test input data from a domain model

2. Generation of test cases from an environment model

3. Generation of test cases with oracles from a behavior
model

4. Generation of test scripts from abstract tests

[UL07]

The first two interpretations focus on (cleverly) generating test inputs
from different descriptions of possible or common usage scenarios
of the SUT, which are then the models. The third interpretation adds
knowledge about the expected reactions of the SUT so that effectively,
the SUT is automatically tested against its specification. Finally, the
fourth interpretation focuses on generating executable tests from ab-
stract descriptions. With the work presented in this chapter, we have
developed a solution that fulfills this last interpretation of model-
based testing: abstract test descriptions are made executable by gen-
erating test programs realized using the testing framework presented
in Chapter 10.

126 model-based performance testing

In the following sections I will present related model-based test-
ing approaches for the performance testing task, explain the design
of the created performance testing DSL, and present an evaluation
to demonstrate how it helps to reduce the effort required for perfor-
mance testing.

11 .1 related work

For performance testing, several model-based approaches already ex-
ist in domains comparable to the related work presented for the test-
ing framework in Section 10.1 on page 105: large scale websites and
enterprise operations. In the following paragraphs, I will shortly in-
troduce important candidates, specifically those that apply DSLs for
the purpose of specifying model-based tests following interpretation
4 of Utting and Legeard [UL07].

Not explicitly designed for performance tests, yet interesting be-
cause of the standardization efforts is the UML Testing Profile (UTP)
[OMG13], which is a proposal for an application-agnostic language
to define general software tests. Test behavior is modeled using ex-
tensions for UML behavioral diagrams (sequence, state machine). Be-
cause of the high abstraction level of UTP, in depth knowledge about
UML is required for using the language efficiently and acceptance is
limited [WSS11]. Moreover, UTP does not provide special support for
performance tests.

Regarding performance testing, Gatling [Gatling] (already reviewed
in Section 10.1 on page 105) is related because the Scala language is
used to provide an internal DSL for describing the test behavior. With
the more concise syntax of Scala and some more flexibility, Gatling in
the end provides a common programming API comparable to the test-
ing framework introduced in this work, but with less code overhead.

Other approaches in this domain use external DSL to specify per-
formance tests. The solutions presented in Sun et al. [Sun+16] and
Cunha et al. [CMS13] mostly focus on specifying the test environ-
ment, measurements to take, and test workloads to execute without a
detailed behavioral description. In Sun et al. [Sun+16] this is achieved
through a JSON-inspired notation called GROWL, which is trans-
formed into tests for Apache JMeter [JMeter]. Cunha et al. [CMS13],
present the CRAWL DSL, which resembles YAML Ain’t Markup Lan-
guage (YAML) instead of JSON and the generation target is a custom
test execution framework. Also, the approach presented in Jayasinghe
et al. [Jay+12] primarily focuses on configuration aspects of perfor-
mance tests while avoiding detailed behavioral descriptions. How-
ever, in contrast to custom DSLs, XML files are used, which are trans-
formed to the required fragments such as executable scripts or con-
figuration files by a multi-stage transformation process.

11.2 language design 127

Dunning and Sawyer [DS11] present a DSL for specifying load tests
for data management solutions. In contrast to reusing existing syn-
tax, here, a declarative programming language tailored to the specific
needs of the application scenarios has been designed which covers
all aspects required to execute a load test. Test cases are declared in
a single configuration file comprising all required configuration and
behavior generation aspects.

With a surface syntax even less similar to programming languages,
Bernardino Da Silveira et al. [BZR16; BRZ16] introduce the Canopus
DSL for performance testing of server systems. Based on a prose-like
representation, performance tests are specified as simulated virtual
users for the tested system. Multiple aspects of the DSL allow mod-
eling how the system is monitored, which scenarios are tested, and
how virtual users behave.

Finally, more related to interpretation 2 of Utting and Legeard
[UL07], the Wessbas-DSL presented in Hoorn et al. [Hoo+15] is used
to specify probabilistic performance tests and their load profile based
on Markov chains. Tests are transformed into configurations for a
custom extension in Apache JMeter enabling Markov-based testing.

Most approaches presented here and in Section 10.1 on page 105

address testing complete systems based on HTTP interactions or com-
parable protocols. The test behavior in this case is often described by
a combination of the Uniform Resource Locator (URL) to load, po-
tential request parameters or POST data, and rates or probabilities
for these interactions with the tested server. Some tools further al-
low formulating more complex behaviors of virtual users with multi-
ple sequential interactions, called sessions [Gatling; BZR16]. However,
more flexible declarative behavior specifications can rarely be found
and targeting individual components is out of scope for existing tools.
While UTP could be applied in such cases, further tooling would be
necessary to execute the tests and the steep learning curve would
prevent adoption in the fast-paced robotics research process.

Finally, as already mentioned in Section 10.1 on page 105, no per-
formance testing framework exists for the robotics domain and there-
fore also no DSL for robotics performance testing is known. This is
confirmed by a recent survey on DSLs in robotics, which does not
list a single work for this purpose [Nor+16]. Therefore, work in this
direction is a novel perspective for the robotics domain.

11 .2 language design

To design a DSL targeting the performance testing framework, we
have decided to use JetBrains MPS [Jet]. MPS is a language work-
bench [Fow05], which facilitates the whole process of creating and us-
ing DSLs by providing modern IDE features in an environment that
allows language modularization and composition [Wig+17]. Through

128 model-based performance testing

Performance	testing

Base	language
(Java)

Protocol	buffers INI

RST

Math XML	literals XML

Performance	tests

Figure 11.1: Modularization of the testing DSL. Languages are colored yel-
low and models in blue. Dashed arrows with hollow tips repre-
sent realizations of a language as a solution, solid arrows with
hollow tips are language extensions, and all other arrows repre-
sent dependencies.

the reused of languages, duplication can be avoided, existing domain
knowledge can easily be reused, and the syntax and editing aids are
consistent and immediately available. For instance, a language for
mathematical expression can be embedded into another language to
specify system parameters. That way, computations for numeric pa-
rameters can be expressed using an established syntax without the
need to reinvent the required logic.

MPS uses projectional editing, which means that the concrete syn-
tax of a DSL is a direct representation (projection) of the abstract
syntax tree (AST) of a model. Consequently, no parsing is required
and models are always syntactically correct. Moreover, a model can
be represented by multiple projections and the user can select the
most appropriate one for the task at hand.

Apart from this, MPS provides many features of modern IDEs such
as code completion, error checking, syntax highlighting [Voe13], and
direct execution of created solutions. Therefore, MPS is a good candi-
date to create a DSL intended to simplify the creation of performance
tests from a user perspective. It thus brings testing closer to the ideas
of the framework-level resource awareness concept by reducing the
necessary effort and knowledge.

In addition to the user-facing features, MPS provides a complete
model of the Java programming language as a DSL termed base lan-
guage. Other languages can target the base language using model-to-
model (M2M) transformation to eventually generate executable Java
code. This mechanism is used in the performance testing DSL to gen-
erate code against the Java-based API of the testing framework.

The performance testing DSL makes use of the language modular-
ization capabilities of MPS and builds on several existing languages.
Figure 11.1 shows these languages and their relations. Their applica-
tion will be described below when adequate.

11.2 language design 129

IParameterProviderTestCase

ParameterTableRow

MessageCreator FixedParameterRangeValues LinearParameterRange

ParameterRangeAction

ParameterTableParameterReference

InstanceMethodDeclaration

ParameterProduct

TestSuite

ProtobufData

Expression

JavaAction

ClassifierType

TestPhase

TestConfig

ParameterRangeBinding

ConstraintParameter

ExponentialParameterRange

[0..*] parameters

[1..*] values

[1..*] rows

[0..*] constraints

[1..*] configs

Figure 11.2: Metamodel of the performance testing DSL. Most Action imple-
mentations are not depicted for the sake of brevity. White and
gray: performance testing DSL, red: Protocol Buffers DSL, blue:
base language.

11 .2 .1 Metamodel

The metamodel of the performance testing language (cf. Figure 11.2)
closely follows the class structure of the target framework and the sep-
aration of behavioral description with actions (white) and parameter
generation (gray) is clearly visible. A TestSuite is the top-level entity
that configures TestCases with appropriate ParameterProviders. As
an exception to the generally mirrored structure, the Java framework
represents test suites through configuration files instead of classes.

11 .2 .1 .1 Actions

Executable actions in the Java framework are represented by subcon-
cepts of the abstract Action concept. These actions as well as their
mandatory arguments (Actions themselves) are typed using the MPS
type system, comparable to the Java Generics approach chosen in the
target framework (cf. Listing 10.1 on page 112). The general exten-
sibility of the Java framework through custom Action (class) imple-
mentations (cf. Section 10.3.1.1 on page 111) is realized in the DSL
by the JavaAction concept, which embeds concepts from the Java
base language to formulate the required behavior. Please refer to Sec-
tion 11.3.2 on page 133 for details on how this was realized. It is
important to note that custom Java extensions are entirely modeled
using the Java base language and no parsing is required here as well.
As a consequence, common Java IDE features such as linting and code
completion are available here, too.

11 .2 .1 .2 Data generation

To improve the generation of Protocol Buffers data in performance
tests, the protocol buffers DSL has been included (cf. Figure 11.1 on
the preceding page), which represents these data types and provides
design-time checks to ensure the consistency of the generated data.

130 model-based performance testing

The ProtobufData concept represents the generation of such data as
an Action by composing a MessageCreator concept from the Proto-
col Buffers DSL. This MessageCreator represents the root of an ed-
itable data type. The concrete available data types in our system have
been parsed from the RST data type definitions and are available as
a model based on the Protocol Buffers language.

To generate data inside Protocol Buffers messages using Java code
(cf. Section 10.3.1.1 on page 111), such code can directly be embedded
into the declarative data notation at the appropriate places. This pre-
vents the implicit connection of the data generation code to the data
fields using strings (cf. Section 10.3.1.1 on page 111), which therefore
avoids runtime errors. Please refer to Section 11.3.1 on page 132 for
further details on how this feature was realized.

11 .2 .1 .3 Parameter specification

For specifying the actual parameters values to for the test execution,
both available ParameterProviders from the Java framework have
been mirrored by concepts of the DSL (cf. gray parts of Figure 11.2
on the previous page). The DSL representation of tabular data was
equipped with consistency checks based on checking rules and the
type system of MPS (cf. Figure 11.4 on the facing page for an exam-
ple). For instance, parameter values in each table row are checked for
the correct type and each row needs to have the appropriate number
of values matching the parameters declared in the table header.

For the Cartesian parameter product, comparable type system and
checking rules have been implemented. Constraints on the generated
parameters are encoded by embedding a method declaration from the
base language which represents the constraint in a type safe fashion
instead of a runtime-parsed Groovy expression. Please refer to Sec-
tion 11.3.2 on page 133 for further details on a type-safe realization
for the embedded Java code.

11 .2 .2 Editors

The projectional editors of the performance testing language for the
behavior description have been designed to mimic a simple program-
ming language familiar to programmers, who are the primary users
of this DSL. Consequently, actions are represented in a way resem-
bling simple function calls with named arguments (comparable to
Python keyword arguments) and the tree structure of the actions is
directly represented through nesting and indentation. However, ac-
tions that are not necessary to understand the structure of the test
(i.e. StaticData) are not explicitly visualized and only their values
are shown to reduce the visual complexity. Visible actions are dis-
played using a keyword color to be easily recognizable and potential
complexity can temporarily be hidden using the code folding feature.

11.2 language design 131

Phase : sendData
sendEvent(

scope=/persons,
data=makeEvent(

scope=/persons,
data=new rst.hri.PersonHypothesis {

attention_targets : parameter numberOfTargets
// immutable head
public PersonHypothesisType.PersonHypothesis.AttentionTarget generate(

final int index, final int totalEntries) {
PersonHypothesisType.PersonHypothesis.AttentionTarget.Builder builder

= AttentionTarget .newBuilder ();
builder.setName(ByteString.copyFromUtf8 ("target" + index));
builder.setProbability (new Random().nextFloat());
return builder.build();

}
age: new rst.hri.PersonHypothesis.AgeRange {

age_max: 35.0
age_min: 30.0

}
gender: rst.hri.PersonHypothesis.Gender.FEMALE
name: "Mary"

}))

Figure 11.3: An exemplary test phase containing a representation of Protocol
Buffers data with custom Java code for filling a repeated field.

Figure 11.4: Test suite configuration with different parameter providers, in-
line Java constraints, and design-time checks.

Figure 11.3 gives an impression of the general syntax of the designed
editors. This figure also shows that the editors for Protocol Buffers data
from the Protocol Buffers DSL were designed to match the well-read-
able text format representation already used for debugging purposes
inside the Protocol Buffers implementations. Custom Java extensions
are included in the editors directly using the provided Java-like repre-
sentation at the appropriate places inside the AST. This avoids having
to mentally connect visually disconnected concepts.

The editor for test suites (cf. Figure 11.4) maps a reference on an ex-
isting test case to an appropriate parameter provider, which is defined
inline. Constraints for the Cartesian parameter product are defined in-
line using Java syntax (upper part of Figure 11.4). For the parameter
table, a tabular presentation is used as an intuitive format.

Because all editors are direct projections of the underlying AST
that represents a test case, context-dependent code completion, quick-
fixes to automatically resolve inconsistencies, and design-time type
checking are provided.

132 model-based performance testing

11 .2 .3 Code generation

For most aspects of the performance testing DSL, code generation
ultimately targets plain Java source code implemented against the
Java performance testing framework API presented in Chapter 10 on
page 105. For this reason, generators for test cases and actions, as well
as the ones for parameter providers use M2M transformations into
concepts of the Java base language from MPS. This base language
eventually generates Java source code as text, which is automatically
compiled so that compilation errors are prevented. The base language
also forms the common generation target for other embedded lan-
guages that are used inside test cases (i.e. the Math and XML literals
languages shown in Figure 11.1 on page 128). The Protocol Buffers lan-
guage itself is agnostic to specific programming language bindings.
For this reason, appropriate generators were added that target the
Java API of Protocol Buffers using M2M transformations. Depending
on the types of concepts and their origins from different languages
that are used to model a test case, appropriate generator pipelines
are dynamically formed by MPS. They combine the necessary trans-
formations to target Java in the end.

The second type of artifacts that are generated are INI configu-
ration files. As in the testing framework test suites are represented
through configuration files, instances of the TestSuite concept are
transformed into concepts from the INI language using an M2M
transformation. Test case classes and parameter providers are refer-
enced using the generated class names. The INI language (cf. Fig-
ure 11.1 on page 128) then provides the necessary text generation
capabilities.

11 .3 notable language features

The following subsections will explain in more detail, how a selected
set of features has been implemented. These features all aim to re-
duce the complexity while creating performance tests and to ensure
consistency as early as possible in the development of performance
tests.

11 .3 .1 Inline data generation

One important feature of the testing framework is the ability to vary
field values inside Protocol Buffers message depending on the cur-
rent parameter values. To improve on the situation explained in Sec-
tion 10.5 on page 122, where the custom data generation code is
disconnected from the data specification and linked by a string in-
dicating the targeted field, we wanted to enable inline declarations
at the exact position inside the data specification based on the Pro-

11.3 notable language features 133

IFieldInitializer

IJavaFieldFiller

JavaRepeatedFieldFiller

OptionalFieldInitializer

MessageCreator

InstanceMethodDeclaration

 returnType : Type

 parameter : ParameterDeclaration

 body : StatementList

 throwsItem : Type

JavaOptionalStringFieldFiller

RepeatedFieldInitializer

JavaRequiredStringFieldFiller

RequiredFieldInitializer

FieldAssignment [0..*] fields

Figure 11.5: Integration of custom Java code into concepts of the Protocol
Buffers DSL. Red: concepts from the Protocol Buffers DSL, blue:
base language, white: performance testing DSL.

tocol Buffers DSL. For this purpose, concepts from this DSL had to
be extended to allow an integration of the Java-based data gener-
ation into the AST. In the Protocol Buffers DSL, a MessageCreator

(cf. Figure 11.5) contains a set of FieldAssignments, which connect
a field with its value represented using an instance of the IField-

Initializer interface concept. Protocol Buffers distinguishes between
three different kinds of fields: repeated, optional, and required fields,
which are represented by three different implementations of IField-
Initializer. In the performance testing DSL, a subconcept of each
of these initializers has been created to integrate the data generation
code into the AST. The created subconcepts compose a method decla-
ration from the Java base language for the executable code. An MPS
behavior is used to automatically assign the correct arguments and re-
turn types to this method based on the type of field that is addressed.
As a result, the user is able to choose whether to use static values,
custom code, or a combination of both to define Protocol Buffers data
and string-based connections are avoided.

11 .3 .2 Type safety for embedded custom code

Custom Java-based action implementations, for instance, as depicted
in Figure 11.6a on the next page, as well as constraints for param-
eter products can depend on parameters. In the testing framework,
access to these parameters is performed through the generic Param-

eterSet (cf. Listing 10.1 on page 112), which eventually uses string-
based lookup for parameter values. Consequently, a set of runtime
errors is possible in case nonexisting parameters are referenced. To
avoid such errors in the DSL, we pre-generate methods with an argu-
ment list matching the available parameters using a custom behavior.
Moreover, the respective entry point methods (execute for actions
and satisfied for constraints) are made immutable for the user ex-

134 model-based performance testing

(a) DSL representation

(b) Abstract syntax tree (AST)

Figure 11.6: DSL representation and corresponding AST of an exemplary
performance test visualizing the use of concepts from differ-
ent languages. Some elements in both representations were hid-
den for the sake of brevity. The AST displays the used concept
names color-coded with their originating language.

cept for the contained statements. The generator is then responsible
for correctly performing the string-based lookup of parameter val-
ues in the generated wrapper code. In case the available parameters
change, checking rules indicate the mismatch and a quickfix in the
IDE regenerates the method declaration.

11 .3 .3 Expressive custom code via embedding

We particularly designed the performance testing DSL to allow em-
bedding of expressive DSLs for specialized domains. For instance, the
user can use existing XML and math DSLs inside custom Java code
to express these domains more naturally. Figure 11.6 shows an exam-
ple for a test case embedding such concepts with an additional view

11.4 evaluation 135

time (s) interactions instances

Case Java DSL Factor Java DSL Factor Java DSL Factor

1 399 95 0.24 914 274 0.30 124 37 0.30

2 305 91 0.30 731 229 0.31 215 92 0.43

3 150 55 0.37 436 123 0.28 49 9 0.18

4 78 26 0.33 258 83 0.32 41 6 0.15

5 232 86 0.37 668 236 0.35 307 183 0.60

6 415 95 0.23 1095 268 0.24 188 74 0.39

7 695 203 0.29 1707 530 0.31 289 105 0.36

8 355 165 0.47 1058 412 0.39 373 98 0.26

9 537 265 0.49 1292 736 0.57 508 147 0.29

10 516 136 0.26 1412 337 0.24 321 113 0.35

mean 368 122 0.34 957 323 0.33 242 86 0.33

Table 11.1: Comparison of DSL and Java API solutions.

as an AST. Other languages can be imported, too, depending on the
use-case and requirements of the user to enhance the usability as well
as to reduce the effort. The technical requirement is that generators
exist for the embedded languages that eventually target the Java base
language. In case of XML, these generators are provided by the XML
literals language depicted in Figure 11.1 on page 128.

11 .4 evaluation

The primary aim for creating the presented DSL was the reduction
of the complexity for creating performance tests to better integrate
the testing approach with the framework-level resource awareness
concept. This complexity encompasses the necessary programming
work as well as the mental complexity of understanding the Java API.
Both should be minimized to simplify the creation and subsequent
maintenance of performance tests.

To verify that the DSL helps to reduce the necessary work for creat-
ing new tests I selected 10 existing performance tests for components
from both reference scenarios of this work (Scenarios CSRA and ToBi)
as candidates for realistic tests. These tests were then recreated from
scratch with the Java API and the DSL based on an abstract descrip-
tion of their contents. This description was constructed to neither re-
semble the DSL, nor the Java-based implementations. The recreation
of the test cases was performed by myself as an expert user of both,
the framework and the DSL, to prevent a bias towards one of the solu-
tions and also to prevent learning effects during the experimentation.
For creating the Java-based tests, Eclipse [Ecl] was used as a modern
Java IDE with versatile code completion and refactoring features to
compare the DSL-based approach against a state-of-the-art develop-

136 model-based performance testing

ment workflow in Java. Starting from an empty workspace, in both
cases the time required to complete the reconstruction of the tests and
input device interactions (key presses + mouse clicks) were measured
as indicators of the required work. Custom Java code (actions or logic
for filling Protocol Buffers data) was only reconstructed up to the nec-
essary framing (e.g., class stubs which enable compilation), because
an abstract description of the contents of these Java fragments would
have been hard to achieve and therefore no comparable experiment
setup could be determined. The results of these experiments can be
found in the first two column blocks of Table 11.1 on the previous
page. The column “Factor” expresses the fraction of time or interac-
tions required by the DSL solution compared to the Java framework.
As visible, for both measurements, the DSL only requires one third
of the effort of the Java-based solution.

To assess and compare the complexity of the test cases created us-
ing both methods, I first imported the existing Java test cases into
MPS as models using the concepts of the Java base language. The as-
sumption is that the complexity of a test case relates to the decisions
and thoughts a developer has to perform when creating or under-
standing the test case. These decisions are reflected by the number of
concept instances inside a model. Therefore, we have compared the
sizes of the AST (number of concept instances) of the Java test imple-
mentations with their respective DSL representations. Please note that
the Java base language of MPS automatically takes care of Java im-
ports. Thus, such necessary helper constructs in the final text output
are not represented in the AST of the solution and consequently also
not counted for the results. The final numbers for this comparison
can be found in the third column block in Table 11.1 on the preceding
page. Again, the DSL-based approach, on average, only requires one
third of the concept instances of comparable Java implementations.

11 .5 summary

With the presented DSL, the application of the performance testing
framework for robotics components becomes much easier. The eval-
uation demonstrates that test cases can be created in approximately
one third of the time and with only one third of the keyboard and
mouse interactions compared to their Java pendants, in case of ex-
perienced users. Moreover, the complexity of the test cases in terms
of concepts is also only on third of the Java solutions. Therefore, the
DSL is an important step towards establishing a culture of systematic
performance tests in robotics and intelligent systems. The proposed
testing concept is generic and does not require modifications to exist-
ing components and therefore follows the general aims of the frame-
work-level resource awareness idea. Nevertheless, more than for all
other aspects presented in this work, applying this method still re-

11.5 summary 137

quires manual labor and discipline and therefore the willingness of
the component developers to provide these resources. With the in-
tended integration of the testing framework into CI systems and the
DSL as a means of reducing the testing effort, we have tried to min-
imize the required manual effort. Still, in the end, there is no free
lunch. While for most parts of this work the additional efforts have
been limited to sporadic activities such as software deployment or
computational overheads at runtime, a method that specifically ad-
dresses the software development workflow can ultimately only be
brought to life if developers accept it.

Part IV

A U T O N O M Y P E R S P E C T I V E

Resource awareness can also be exploited at system run-
time to increase the dependability and autonomy with-
out a direct intervention of the system developers. In this
part, I will present methods that exploit the available in-
formation about the system’s resource utilization at run-
time to enable autonomous reactions that prevent criti-
cal situations such as resource starvation or performance
bugs. These methods are data-driven and based on ma-
chine learning techniques.

12
A D ATA S E T F O R R E S E A R C H O N P E R F O R M A N C E
B U G S I N R O B O T I C S S Y S T E M S

Resource awareness can also be established at system runtime. If a ro-
bot or any other intelligent systems knows about the current resource
utilization and has an expectation about it, this information can be
used at runtime to improve the system’s functionality, dependability,
and autonomy. For instance, the planning layer of a system can use a
prediction of the utilized system resources to avoid undesirable levels
of resource contention or even resource starvation, both being able to
severely degrade the system’s functionality. Further, an expectation
about the resource utilization can be used to decide whether compo-
nents behave normally at runtime. In case the current resource uti-
lization of a component differs from the expectation, this is likely un-
intended and the system should react before its processing becomes
severely affected. This example shows that runtime fault detection
can be based on, or be a part of a resource awareness concept. These
two perspectives – resource utilization prediction and fault detection
– will be addressed in this part of the thesis. However, before I can
describe the details of these methods, an important question is how
to develop and evaluate them. In the end, the presented methods are
data-driven and a dataset with system metrics and performance bugs
is required for a quantitative evaluation.

Others have addressed runtime fault detection in robotics systems
before [SW05; PWW06; JED13; Gol+11]. However, the datasets used
for their evaluations are not published and the research did not ad-
dress resource utilization and performance bugs in component-based
robotics systems. Therefore, I had to acquire a dataset that contained
the required information with accurate ground truth on my own. Al-
though performance bugs can often be observed during normal sys-
tem operation, gathering usable data from these executions is usually
impossible. Either the appropriate execution traces are not recorded
at all or in an insufficient quantity. In case recordings exist, ground
truth information about resource utilizations and observed perfor-
mance degradations including their timings are missing. Therefore,
reference datasets need to be explicitly created. With Wienke et al.
[WMW16] we have created such a dataset, which I will briefly de-
scribe in the following sections. Parts of the descriptions are based on
this publication.

142 a dataset for performance bug research

ToBi (Team of Bielefeld) is CITEC’s mobile robot platform used for the
RoboCup@Home competitions [Mey+15] since 2009. The robot consists of a
mobile base with differential drive and two laser range finders with 360° cov-
erage for distance data. Mounted on top of the robot are two RGBD cameras
for object recognition, obstacle avoidance, gesture recognition, and scene inter-
pretation, as well as an RGB camera for face recognition. For manipulation, a
5 DOF manipulator is used. The robot carries two Linux-based laptops, which
are connected via Gigabit Ethernet. They run the distributed software system
controlling the platform.
The software architecture of ToBi uses sensor components to provide extracted
information about the scene, for instance, object recognition, person tracking,
and speech recognition. Actuator components comprise navigation, text to
speech, and grasping. All components communicate using the RSB middle-
ware. For coordination, the BonSAI framework [SW11] abstracts the different
components as software sensors and actuators and allows modeling the system
behavior as a finite state machine.

Left: ToBi interacting with a person (photo: CITEC/Susanne Freitag, repro-
duced with permission). Right: Sensors and actuators of the robot.

Scenario ToBi: The ToBi system (Team of Bielefeld)

12 .1 recording method

To acquire a representative dataset, we have selected the ToBi sys-
tem (cf. Scenario ToBi) as a reference for an established robot system,
which has successfully participated at the international RoboCup-
@Home competitions. We selected a modified version of the restau-
rant task from the competitions in 2015 [Bee+15] as the recording
scenario for the dataset. In this scenario, a robot that has no prior
knowledge about the scene acts as a server in a restaurant. The plot
consists of three phases. First, an operator sets up the robot and trains
important locations. These comprise the place where the robot can
pick up drinks as well as the tables drinks have to be delivered to.
In the second phase, the robot waits for somebody waving to order.
The robot approaches the person and asks for the name and the de-
sired drink. After taking all orders, ToBi can be told to enter the third
phase in which the orders get executed one after another. During
these interactions, SLAM is used for navigation; face recognition and

12.1 recording method 143

Figure 12.1: Scene from the dataset recording as captured by the external
camera. Drinks to deliver are on the round table and the table
on the right side. Different guests were simulated to reduce the
recording effort using the photos on the round table.

object recognition are used to identify persons and objects; and RGBD
sensors are used for grasping tasks. The scenario thus integrates a di-
verse range of behaviors and skills necessary for a mobile robot with
a high complexity and variability, especially due to the involved HRI.
Figure 12.1 shows the unstructured laboratory environment in which
the dataset recording took place.

For recording the actual dataset trials, the holistic dataset creation
process introduced in Chapter 7 on page 71 was used. To include the
required system metrics, the system was instrumented with the collec-
tion daemons presented in Chapter 8 on page 79 and the dashboard
(cf. Chapter 9 on page 93) was used to manually inspect and verify
the intended behavior of the robot system. In addition to the mid-
dleware-based reference recording, we added a camera as an external
recording to provide an overview of the scene for manual inspection
and potential unplanned annotations.

The software system was manually patched to contain a diverse set
of performance bugs so that exact ground truth information was avail-
able. These performance bugs were selected to be bugs that result in
a performance degradation only after a special condition. Permanent
problems are easier to detect during development (for instance, using
the testing framework) and less valuable to detect at runtime. The
following sections explain in more detail, how the performance bugs
were selected and included in the resulting dataset.

144 a dataset for performance bug research

12 .2 included performance bugs

When adding bugs to a system for creating a dataset used to evaluate
fault detection methods, an important question to answer is whether
the bugs are representative. To avoid tuning the dataset towards unre-
alistic or favorable conditions for the applied methods, we based the
included performance bugs on the survey results presented in Chap-
ter 3 on page 21. We selected the types of implemented performance
bugs to match the reported frequencies for the different categories
and used the case study results for an inspiration of actual implemen-
tation errors to add.

Using these sources, the following performance bugs are included
in the dataset. They are described along the categories from the sur-
vey and represent the 7 most frequent types of performance bugs in
the survey results. Some of the included performance bugs do not
directly influence system resources. Instead, they are causing delays
or performance degradations visible primarily in the scenario pro-
gression and are therefore mostly visible in efficiency-oriented KPIs.
Please refer to Appendix E on page 237 for a detailed list of system
components and how they are affected by the included bugs.

12 .2 .1 Algorithms & logic

These two categories from the survey were combined as it turned out
to be hard to distinguish between them.

btlAngleAlgo A mathematical error was added to a conversion be-
tween Euler angles and quaternion representations, which is
used to compute the location of persons in front of the robot.

armserverAlgo The grasping controller for the arm performs unnec-
essary movements due to a bug in generating a trajectory in a
graph of valid postures.

12 .2 .2 Resource leaks

bonsaiParticipantLeak The central state machine did not deallocate
unused RSB participants, resulting in a TCP connection leak.

pocketSphinxLeak The speech recognizer did not deallocate memory
for the sound buffers, which results in a memory leak.

12 .2 .3 Skippable computation

objectBuilderSkippable The component that tracks persons trans-
forms egocentric coordinates of detected person into global co-
ordinates multiple times instead of only once per person.

12.3 automatic fault scheduling 145

facerecSkippable The throttling of the main loop in the face detec-
tion component was removed, which increases the CPU load.

legdetectorSkippable The detector for legs in the laser scans per-
formed operations multiple times.

12 .2 .4 Configuration

bonsaiTalkTimeout The configuration of the state machine used a
wrong RSB scope to communicate with the TTS engine and had
to wait for a timeout before resorting to a fallback scope.

clockShift To emulate a configuration issue with the clock synchro-
nization via network time protocol (NTP), the clock of one com-
puter was shifted at system runtime.

12 .2 .5 Threading

clafuSleep An unnecessary sleep instruction was added to the ob-
ject recognition component, which delayed the classification re-
sults for 5 s to simulate the effect of inefficient threading strate-
gies in this component.

12 .2 .6 Inter-process communication

spreadLatency The Spread daemon used by RSB was affected by con-
stantly adding and removing a participant to the daemon net-
work, which is a costly operation. As a consequence, RSB events
had much higher latencies and jitter.

12 .3 automatic fault scheduling

Given the implemented set of performance bugs, the next question
is how and when to trigger them during the recordings. To acquire
ground truth information about when the different performance bugs
are active in each trial, the natural choice was to follow the holis-
tic recording approach. Therefore, we decided to trigger the perfor-
mance bugs via RSB events so that exact ground truth information is
automatically contained in the recorded data.

Existing publications such as Golombek et al. [Gol+11] and Jiang
et al. [JED13] used a straightforward strategy to induce faults into
the system: at certain points in each trial a single bug is triggered
manually and maintained until the end of the trial or until a system
crash. Although this approach provides an easy to analyze dataset, it
would be time-consuming to provide a statistically feasible amount
of occurrences given the more complex scenario and number of bugs

146 a dataset for performance bug research

FaultFault
Slice SlicePause

Pause
Offset

Figure 12.2: Scheduling of induced performance bugs (blue). The time of a
trial (horizontal axis, from left to right) is separated into slices
(black lines with round markers) with an initial offset at trial
start (red dashed) and pauses between slices (green dashed).

in our dataset. Therefore, we opted for a strategy where multiple re-
versible bugs were triggered during each recording trial to maximize
the amount of occurrences being recorded. This means that each per-
formance bug that was triggered via RSB could also be reverted back
to a healthy system state as if it had never occurred. Such an approach
forbids performance bugs that result in an actual system failure. How-
ever, our main interest are bugs that are only visible as performance
degradations without resulting in failures. Complete system failures
would be detectable using other methods.

To prevent an operator bias on when to trigger the performance
bugs or accidental correlations of the triggered bugs with the sys-
tem behavior, we implemented an automatic scheduling component,
which was added to the system. The algorithm used to trigger the dif-
ferent performance bugs is visualized in Figure 12.2. Starting with the
initial execution of the system state machine, each trial is separated
into consecutive time slices of a fixed length, which are additionally
separated by a fixed length pause. Within each of the slices, a single
performance bug is scheduled for a fixed time interval. The bug in-
stance is uniformly drawn from the set of available ones and its start
time within the slice is also determined using a uniform distribu-
tion.1 A uniform selection was chosen to provide the same statistical
confidence for each performance bug. To further reduce potential cor-
relations, the start of the first slice is randomly offset after the start of
state machine using a uniform distribution up to 30 s. For the length
of activation of each performance bug 80 s were used. We selected
this duration so that a system expert was able to detect each perfor-
mance bug in the robot’s behavior or appropriate visualizations,2 but
without resulting in a system failure. The length of each slice was se-
lected to be 160 s to provide enough variation for the bug occurrence
and the pause time between slices was set to 20 s as the minimum ac-
ceptable delay between consecutive performance bugs. This reflects
the maximum time the recovery from any of the performance bugs
did take (after the signal to recover normal state, heuristically deter-
mined) so that instances are correctly separated in any case. The start
of each slice is exposed via RSB to include scheduling information in
the dataset.

1 Limited so that the intended execution time fits into the slice.
2 In appropriate situations. For instance, the performance bug added to the grasping

controller is only detectable in case the arm is used.

12.4 summary 147

12 .4 summary

With the explained method we have recorded a dataset which con-
sists of 10 executions of the system without triggered performance
bugs as a baseline and 33 successful trials with performance bugs. We
recorded this number of trials so that at least 10 complete instances
of each performance bug were recorded during execution. The total
time of recordings is 8:16 h, which results in an average of 11:33 min
per trial.

Apart from the 33 trials of the core dataset, 23 additional trials are
available separately, which contain unexpected behaviors of the sys-
tem. The number of trials with undesired faults is this high because
during the recording session an actual hardware problem appeared.
A lose screw in the gripper of the arm resulted in the system being
unable to detect grasped objects. As a consequence, grasping often
stopped at the point when the gripper was closed and the system
could not recover from this state. We have annotated these situations,
which results in an additional fault type being included in the dataset.

Within the lines of the holistic dataset creation process, the final cor-
pus has been exposed using different views for external distribution
as well as for my own needs. These views comprise CSV files and
pandas [McK10] data frames for events and system metrics as well
as metadata files for the system structure. Moreover, ELAN [ELAN]
project files with automatically exported system communication tiers
have been added to offer a basis for potential manual annotations. We
released this dataset as open data for reuse and replication of research
results [WW16a; WW16b].

13
R U N T I M E R E S O U R C E U T I L I Z AT I O N P R E D I C T I O N

The primary aim of this part of the thesis is to establish resource
awareness at system runtime so that a system can autonomously
judge about its resource utilization. Ideally, a system should inher-
ently avoid critical situations by using expectations about the resource
utilization to plan its actions appropriately. Moreover, if resource-
aware planning is not available, fails, or in case of unexpected events,
the system must be able to detect the arising critical situations be-
fore a performance degradation leads to a system failure. The least
a system can do is to actively notify its users or developers about
such situations. Users are then able to act appropriately and develop-
ers can debug the problem sooner and with more information about
potential origins.

The task of notifying developers about unexpected resource uti-
lization patterns is also a common task when operating servers or
enterprise systems with high reliability requirements. Here, alerting
systems are responsible of continuously checking different conditions
that determine whether a system is healthy. These conditions often in-
clude system metrics, which are checked with simple averaging and
threshold schemes. For instance, open-source solutions for monitor-
ing and alerting such as Prometheus; Grafana; Riemann [Prom; Grafana;
Riem] are primarily based on these basic rules. Even though this tech-
nique is applicable for some systems, it has an obvious drawback: in-
formation about the system state is not included in the decision logic.
If a system exhibits different resource utilization patterns in different
but expected application contexts, static thresholds can either be op-
timistic regarding the system’s health in the sense that alerts are only
generated in extreme cases, ignoring many undesired situations; or
thresholds can be pessimistic resulting in many false positive alerts.
Some off-the-shelf solutions try to solve this problem by avoiding ab-
solute thresholds. Instead, the local history of a system metric time
series is used to implicitly derive the state or context [Skyl; Riem].

None of these approaches is convincing in the context of robotics
and intelligent systems. With the commonly observed flexibility and
context-dependence of experimental systems such as the ones found
in the scenarios used for this work, simply ignoring the system and
environment state will lead to imprecise solutions. Implicitly deriving
the system state and context from the raw system metrics will also
fail. For instance, in contrast to websites, where many parallel users
cause a constant load on the systems that behaves smoothly, system
state and context changes in the target systems of this work are often

150 runtime resource utilization prediction

discrete, especially on the level of system components. For example,
the ToBi robot described in Scenario ToBi on page 142 exhibits such
discrete behavior changes. Once the robot has received all orders from
the guests, the system switches to a completely different control state
where it activates a vision component and the path planner for the
arm to grasp the ordered drinks. These components have been idling
up to this moment and now need to do their processing. Therefore,
the system metric time series for these components will show sudden
changes. An algorithm that operates only on these time series without
context information cannot accept such a sudden change and will
trigger and alert if it was not parameterized with high thresholds
that make it completely useless. Therefore, I have decided that it isruntime resource

awareness re-
quires state and

context information

C

inevitable to use information about the system and environment state
for enabling resource awareness at runtime. Yet, explicit modeling of
such information contradicts the framework-level resource awareness
concept. In addition to the question of how and in which formalism to
specify how system metrics change with different states and contexts,
a manual specification has many issues:

• Manual specification takes time and specifications need to be
maintained continuously with the evolving system.

• The accuracy of the specified rules depends on the experience
of the developer and his or her rigor when specifying the rules.

• It is questionable whether a suitable human-readable represen-
tation can be found to describe the relation of states, contexts,
and resource utilization.

To realize resource awareness on the level of components in a way
that prevents the presented problems and that complies with the
framework-level resource awareness concept, I have devised the fol-
lowing hypothesis, which has already been used for the performance
testing framework in Chapter 10 on page 105:

hypothesis 1 For a component that is connected to the surrounding sys-
tem only through the middleware, the communication of this component
contains all relevant state and context information and is therefore a suit-
able proxy to predict its resource utilization.

This hypothesis is based on the idea that components, especially ver-
tical component, usually perform well-defined computational tasks,
which are determined by the information or requests they receive.
These tasks are assumed to have a predictable resource utilization.
Their utilization is assumed to depend on parameters extracted from
the received messages encoding the relevant system state and envi-
ronment context, as well as on internal state of the component. This
internal state is ideally visible in the outgoing communication of a
component. In the following sections I will show that this hypothesis
is valid for the systems examined in this work.

13.1 feature generation 151

Under the assumption that Hypothesis 1 is valid, I have decided
to realize runtime framework-level resource awareness on a compo-
nent-level using machine learning techniques. For each component
a separate model is trained, which predicts the component’s current
resource utilization based on its middleware communication. These
models can form the basis for different applications contributing to
the system’s resource awareness. I will later present potential appli-
cations. By constructing models from training data using machine
learning, I avoid the aforementioned issues regarding manual spec-
ifications. Hence, the quality of the results does not depend on the
experience of the developer providing specifications. The exact ma-
chine learning techniques used in this work are mainly intended to
show that it is possible to realized such a runtime perspective on
framework-level resource awareness. For this reason I have decided
to approach the task as a well-understood regression problem for
which a set of established methods is readily available.

In the following sections I will first explain how one can generically
train a prediction model for each component based on the middle-
ware communication. Afterwards, I will present an evaluation of how
the proposed model performs on the different datasets to show the
applicability of the chosen approach. This will also validate Hypoth-
esis 1. Finally, I will analyze one solution to the problem of acquiring
suitable training data.

13 .1 feature generation

To construct regression models for predicting the resource utilization
of system components, their event-based communication has to be
encoded into mathematical representations, which can be used as fea-
ture vectors for the learners. These feature vectors have to be synchro-
nized with the acquired system metrics so that a valid mapping from
features to metrics can be learned. In this work, the system metrics
for each component are collected with a fixed frequency using the
acquisition tools presented in Chapter 8 on page 79. In contrast, the
communication events that a component receives and sends are not
required to follow any rules regarding their timing and therefore they
are not intrinsically synchronized with the system metrics. Thus, the
feature generation approach has to handle this flexibility.

In the following paragraphs I will present an extended version
of the feature generation method that I have initially published in
Wienke and Wrede [WW16c]. This approach operates individually
for each system component and assumes a static connectivity of the
component regarding the middleware scopes it uses for communica-
tion by requiring a fixed set of communication channels. For most
of the components used in the scenarios of this work, this assump-
tion is directly fulfilled. If so, all leaf scopes of the scope tree that a

152 runtime resource utilization prediction

component uses are declared to be the communication channels. If
instead a component dynamically creates participants on changing
scopes at runtime and a static configuration of this component with
the aforementioned rule would not be possible, the scope hierarchy
of the RSB middleware provides a means to reestablish static connec-
tivity: by using the common parent scope of the dynamically created
participants, the set of communication channels can be made static
and independent of the component runtime. In the worst case, this
means that the root scope / has to be used.

The set of communication channels of a component can be config-
ured manually. However, to improve the applicability of the approach
in terms of the framework-level resource awareness concept, another
possibility to get the necessary configuration is to use the introspec-
tion mechanism of the middleware. The introspection can uncover
the communication channels from a trial run of the system. For com-
ponents that dynamically create participants on different scopes, this
requires a pruning strategy. For the experiments in this work I have
used the JSON export of the introspection tools (cf. Section 6.4 on
page 65) to specify the scopes of components.

Another important aspect is that the feature generation approach
does not require special configurations depending on the kind of data
exchanged by the component, which would increase the configura-
tion and deployment overhead. Under these assumptions and con-
straints, the feature generation approach used in this work is mathe-
matically defined as follows.

13 .1 .1 Accumulated event window features

For the basic feature generation approach used in this work, which I
termed accumulated event window (AEW), I assume that for a systemaccumulated event

window (AEW)
#

component c := {S} the set of communication channels S := {s1, . . . sσ}
is known, where S := Si ∪ So denotes the union of the component’s
input channels Si and output channels So.

For a given execution of a component (inside a system), the ac-
quired system metrics are encoded as a time series denoted by:

P := {pt : t ∈ T } (13.1)

where pt ∈ Rϕ is the vector of ϕ system metric values at time t
and T is the set of equidistant timestamps for the measurements, for
instance at 1 Hz in Scenario ToBi. Additionally, for each communica-
tion channel s ∈ S a time series with the communication events that
occurred is required, which I have defined as

Es := {m(rt) : t ∈ Ts} (13.2)

13.1 feature generation 153

t − w2 t − w1 t

pt
P

Es1

Es2

Figure 13.1: Visualization of the feature generation and synchronization ap-
proach for two scopes s1 and s2 with two temporal windows
w1 (red) and w2 (green). Features are computed for the system
metric measurement (blue) pt at time t. For each scope, Ewis,t
comprises all events on that scope that are inside the rectangu-
lar region for the respective window. elasts,t is marked in yellow
for each scope.

where Ts is of no specified frequency as explained before, and

m(rt) : R 7→ Rµ := et (13.3)

is an encoding function that converts each structured communication
event from the set of raw events R into a vector of dimensionality µ.
Although the previous descriptions were middleware-independent,
R is specific for the middleware and therefore the encoding function
m(rt) needs to be defined for each middleware. For RSB, I use the
following generic encoding function that respects the initially stated
requirements and constraints:

mrsb(rrsb) :=

Size of payload

Size of causal vector

Size of user info vector

hash(Data type)

hash(Method)

(13.4)

The variable payload is abstracted by its byte size to avoid type-
specific mapping functions that would require manual configuration.
Lists contained in the event metadata are abstracted using their size,
too. For the string items data type and method, I use a hash value.
Although it would be possible to use their length, I expect many col-
lisions from this approach. For instance, for every data type in RST,
on average 6.5 other data types with a name of similar length exist.
These types would be indistinguishable if only the string length was
used. The hash is realized by the Python hash function.1

As the different event series Es are not yet synchronized with the
system metrics P, a synchronization is required. To create constant
prediction results at a fixed frequency, I have decided to reuse the
timing T of the system metrics P for this purpose and therefore the

1 The hash function returns deterministic results for strings in Python 2.7 [Pet12].

154 runtime resource utilization prediction

events will be conformed to this frequency. For each communication
channel s ∈ S I generate a new multi-dimensional feature time series

Fs := {fst : t ∈ T } (13.5)

where each fst is computed at the timestamps t ∈ T of the system
metric time series P and has the following structure:

fst :=

(
mean(Ew1s,t)

count(Ew1s,t)

)
...(

mean(Ewωs,t)

count(Ewωs,t)

)
elasts,t

(13.6)

W := {w1 . . . wω} are temporal windows of length wi ∈ R. Inside
each of these windows, Ewis,t denotes all events on communication
channel s that are inside the window starting from timestamp t and
going backwards in time until t−wi, thereby fulfilling:

Ewis,t := {esτ ∈ Es : τ ∈ [t−wi, t[} (13.7)

In case no events were communicated inside a window, Ewis,t is empty.
mean computes the element-wise mean of all event instances in Ewis,t

2

and count computes the number of instances. Finally, elasts,t , indicates
the most recent event in Es that occurred before timestamp t. Fig-
ure 13.1 on the previous page visualizes this approach. While the dif-
ferent windows represent information about different temporal hori-
zons of the component communication, elasts,t is used to include in-
formation about the last communicated event, for instance, in case
no communication took place within the length of the temporal win-
dows.

To create the complete feature vector for a component, the channel
feature vectors fst are stacked to form:

FAEW := {ft : t ∈ T } (13.8)

ft :=

fs1t

...

fsσt

 (13.9)

By incorporating the temporal structure of the event-based com-
munication already in the feature vector, the intended application of
non-temporal models for learning becomes feasible. I have used tem-
poral windows of length 2.5 s and 6 s in my experiments. These times

2 Not a Number (NaN) is returned in case the window is empty.

13.1 feature generation 155

component d

armcontrol 187

facerec 85

legdetector 34

objectbuilder 51

objectrecognition 51

rsbnavigation 306

scenersbam 85

speechrec 136

statemachine 765

texttospeech 51

Table 13.1: Dimensionality of the AEW features for components from the
ToBi dataset.

were chosen empirically to match the expected communication fre-
quencies for the components in the application scenarios. The whole
feature generation approach only uses information about events sent
up to the point in time of the decision and can thus be used online.

The dimensionality of the AEW features depends on the number
of scopes a component uses for communication. This dimensionality
d follows the formula

d := σ · (ω · (µ+ 1) + µ) (13.10)

where σ is the number of communication scopes, µ is the dimensional-
ity of the encoding function m(rt), and ω is the number of temporal
windows. In case of the described encoding function for RSB with
ω = 2 and µ = 5, this results in

drsb := 17 · σ (13.11)

Table 13.1 lists the size of the effective feature vectors created using
this method for the component from the ToBi dataset.

13 .1 .2 Adding previous system metrics

Predicting the resource utilization of a component at system runtime
from AEW features can be compared to an open loop control problem:
The current resource utilization is ignored. However, at runtime, the
previous values of the system metrics are available from the data
acquired by the collection daemons. They can therefore be used in
addition to the AEW features to provide further information for the
prediction task. Thus, I have created a second type of features by

156 runtime resource utilization prediction

combining the existing AEW features with the current system metrics
using a concatenation:

FCombined := {fct : t ∈ T } (13.12)

fct :=

(
ft

pt

)
(13.13)

The applicability of the combined features has to be evaluated per ap-
plication. Due to the included previous state, models might be able
to simply track the actual behavior of a component, independent of
the communication. For instance, for fault detection purposes this
could be an undesirable effect. Other applications might not be able
to provide the previous state. Thus, even though better results are
to be expected with the additional information conveyed, applicabil-
ity might be limited and the pure AEW features need to suffice for
achieving usable results in many situations.

13 .1 .3 Baseline: system metrics

To understand how much information the AEW features convey, a
comparison to a baseline approach is advisable. For this purpose, I
use the current resource utilization of a component in form of the
acquired system metrics as features to predict the future resource
utilization:

FPrevious := P (13.14)

This decision reflects the idea that most system metrics will evolve
smoothly given an adequate sampling interval and that they are cor-
related over time [Bey+09]. Therefore, the AEW features must prove
that they convey more usable information than what is visible from
the immediate past of the system metrics.

13 .1 .4 Preprocessing

The part of an AEW feature vector representing a single scope fst can
contain values different from NaN only in case there has been com-
munication on this scope. However, some components create more
RSB participants than used in some scenarios. So, training samples
gathered in these situations contain dimensions consisting only of
missing values. Thus, the first step of preprocessing is the elimination
of these dimensions from the feature vector. Afterwards, the second
phase of preprocessing imputes the remaining missing values with
the mean value of the respective dimension [Buu12, p. 10]. Missing
values at this point are the result of empty temporal windows Ewis,t
reflecting times when temporarily no communication appeared on a

13.2 model learning 157

communication channel. Finally, all dimensions are centered around
zero and scaled to unit variance to prevent a dominance of the dimen-
sions with the highest amplitudes in the learning task.

13 .2 model learning

Based on the previously presented features, I have experimented with
several regression methods, which I will briefly describe here. The
learning problem solved by all approaches is to estimate the function:

r(ft) : F 7→ P (13.15)

This function predicts the current system metrics based on a feature
vector and reflects the decision to model the temporal constraints
only implicitly. The target of this function, the system metrics pt, are
vectors with the dimensionality of all metrics collected for a compo-
nent. I have realized r(ft) through a set of independent learners per
dimension of the output vector pt.

For the learning task I have evaluated two established and readily
available regression methods. The first method is gradient boosted
regression trees (GBR) [HTF09, p. 359], which extends boosting to ar-
bitrary loss functions. A grid search with cross validation was used to
optimize the hyperparameters of this approach. The second method
that I have tested is kernel ridge regression (KR) [Mur12, p. 492] with
a radial basis function (RBF) kernel [Mur12, p. 480]. KR combines
ridge regression [Mur12, p. 225] with the kernel trick [Mur12, p. 488]
to overcome the linear relation of features and targets. It can be com-
puted in a closed form. Also for this method the parameters of the
kernel have been optimized using a grid search with cross validation.
I have tested KR in combination with two different dimensionality re-
duction approaches: feature agglomeration (FA) and feature selection
(FS). FA uses agglomerative clustering [Mur12, p. 895] to group to-
gether similar features and FS uses an extra trees regressor [GEW06]
as a fast preliminary regression method and selects the most impor-
tant features from this model. To summarize, I have tested the follow-
ing learning methods indicated by the names used from now on:

gbr Gradient boosted regression trees

kr-fa Kernel ridge regression with feature agglomeration

kr-fs Kernel ridge regression with feature selection

mean Baseline that predicts the mean value for each system metric
found in the training samples.

The main purpose of testing more than one method was to show that
a suitable learner for this problem can be found.

158 runtime resource utilization prediction

approach rrse

GBR 0.78

Mean 1.02

KR-FA 23.90

KR-FS 29.67

Table 13.2: Mean prediction errors on AEW features.

13 .3 evaluation

The aim of the evaluation was to find out whether one of the pre-
sented approaches is able to learn the resource utilization from the
encoded events and on which factors the achieved results depend.
For this purpose, I have first conducted an evaluation on the ToBi
dataset (cf. Chapter 12 on page 141) as an example for a real scenario.

13 .3 .1 Results on the ToBi dataset

The following results have been acquired by testing the different fea-
ture versions and regression methods on the trials without induced
bugs or unexpected faults from the ToBi dataset presented in Chap-
ter 12. Methods have been tested using a five-fold cross-validation
with random folds.

Presenting an overall quantitative evaluation for the introduced pre-
diction task is challenging due to the different measurement units and
scales of the different system metrics. Therefore, a straightforward av-
eraging of the root mean square error (RMSE) across the different met-
rics is impossible because this well-interpretable error is represented
in the unit of each system metric. Instead, I will use the root relative
squared error (RRSE) for parts of the evaluation that average across
the different metrics. RRSE is an established loss function for such
cases [HK06]. It weights the relative squared error with the one of the
naive approach of predicting the mean of the true data and therefore
returns a fraction that is independent of the unit. It is defined as

RRSE =

√√√√∑Ni=1 (θ̂i − θi)2∑N
i=1

(
θ− θi

)2 (13.16)

with θi being the true value of the i-th data item, θ̂i the predicted
value, and θ being the arithmetic mean of all values. An error of 1

is achieved if the mean value of the data is predicted. Lower errors
indicate actual success in the prediction task.3

3 This is only true in case the statistical properties of the training and test set are equal.
Otherwise, scores above 1 can still indicate success, but worse than predicting the
mean of the test data.

13.3 evaluation 159

system metric kr-fa mean dataset

rrse rmse mean

proc/fd-open_connections 3.85 2.52 19.08

proc/fd-open_fds 0.97 2.54 45.37

proc/fd-open_files 1.01 0.0008 16.80

proc/stat-num_threads 2.57 4.66 64.75

proc/stat-stime 0.90 0.83 % 0.44 %

proc/stat-utime 0.75 11.52 % 12.93 %

proc/stat-rss 1.53 29.65 MB 187.90 MB

proc/stat-vsize 298.68 170.45 MB 4719.43 MB

proc/io-rchar 0.78 87.05 kB s−1
3.30 kB s−1

proc/io-wchar 0.66 686.65 kB s−1
741.03 kB s−1

proc/io-read_bytes 1.24 17.55 kB s−1
0.32 kB s−1

proc/io-write_bytes 0.89 3.20 kB s−1
1.27 kB s−1

netbandwidth-received_bytes 0.90 13.53 kB s−1
21.76 kB s−1

netbandwidth-sent_bytes 0.85 97.47 kB s−1
297.50 kB s−1

Table 13.3: Detailed comparison of the kr-fa method to the baseline mean.

Table 13.2 on the facing page displays the mean RRSE across all
components for the task of predicting the current resource utilization
from the AEW features. The results show that only GBR is able to
successfully learn from the results and improve on the RRSE achieved
by the baseline approach of predicting the mean training values (not
to be confused with the naive baseline used in the RRSE computation).

To understand why the other regression methods fail to learn mod-
els that are, on average, better than predicting the mean value, a closer
look at the individual system metrics is necessary. The second column
of Table 13.3 displays the RRSE of the kr-fa method. The highlighted
rows represent system metrics for which the prediction is worse than
the naive baseline of the RRSE computation (values greater than 1).
Apart from proc/io-read_bytes, one important observation for these
metrics is that they can already be predicted with a reasonable accu-
racy just using the mean of the training data. To visualize this, the
third column of table Table 13.3 shows the RMSE of the baseline ap-
proach converted to graspable measurement units and the fourth col-
umn shows the average value of the metrics across the components
of the dataset. In the marked cases, the baseline RMSE is only a small
fraction of the absolute values. As the prediction of the mean value is
already sufficient to achieve low errors in these cases, other methods
can hardly improve the results. Moreover, especially KR seems to ex-
hibit overfitting on the training data as it cannot resort to predicting
the mean value.

The reasons why some learning methods cannot improve on the
mean prediction can also be explained by the type of affected met-
rics (cf. Appendix B.7 on page 225 for a detailed description of the

160 runtime resource utilization prediction

0 100 200 300
20

30

40

50

60

scenersbam

0 100 200 300

texttospeech

0 100 200 300

speechrec

Figure 13.2: Examples for the proc/fd-open_fds metric from the ToBi data-
set. The x-axis represents trial time in seconds and the y-axis is
the number of open file descriptors of a component.

0 100 200 300 400 500 600

30

31

32

33

R
SS

 (M
B)

Figure 13.3: Progression of the resident set size (RSS) of the objectbuilder
component in the ToBi dataset. The x-axis is time in seconds.

metrics). The first four metrics in Table 13.3 are counters for entities
that usually do not fluctuate much. Figure 13.2 shows examples from
the dataset of how the proc/fd-open_fds system metric behaves for
some components. The mean value can hardly be beaten here. Apart
from the previously mentioned exception of proc/io-read_bytes, the
remaining two metrics measure the memory a component uses. As
already explained in Section 10.4 on page 120 for the testing frame-
work, memory often behaves unpredictably, for instance, because of
garbage collection processes unrealated to the current processing of
a component. Hence, the event-based communication cannot provide
further information to improve the prediction.

Finally, another criterion exists that applies to all metrics where
learning fails (previous exception applies): The time series of these
metrics are characterized by longer periods with exactly the same
measurement values, sometimes followed by an instantaneous shift
to a different level where the pattern continues. Figure 13.3 shows an
example for the RSS of a component. Such degraded time series can
also be classified automatically by comparing the amount of change
in the time series to the mean value of the time series using

degraded(m) :=
1

|Dm|

∑
d∈Dm

d 6 0.1 (13.17)

13.3 evaluation 161

approach rrse

GBR 0.795

KR-FS 0.810

KR-FA 0.814

Mean 1.003

Table 13.4: Mean prediction errors on AEW features after removing de-
graded system metrics from the evaluation.

where m is the current metric and Dm is a boolean series indicat-
ing whether each value in a metrics time series is different from the
previous value:

Dm :=
{
bin

(∣∣pmt − pmt−1
∣∣) : t ∈ T , t > 1

}
(13.18)

bin(x) :=

1 if x > 0

0 otherwise
(13.19)

In other words: if the time series contains less than 10 % entries with
values different from their predecessor, the time series is degraded.
By applying this heuristic to the aforementioned trials of the dataset,
all four counter metrics (first four in Table 13.3 on page 159), the two
memory metrics, and proc/io-read_bytes are identified. Therefore,
I have decided to ignore these metrics for the remaining evaluation
because of their special nature. After exclusion, all models are able to
achieve reasonable errors, as shown in Table 13.4. This indicates that
KR exhibits overfitting in case the best thing to do is to predict the
mean value. On the other hand, GBR handles these cases gracefully
and is therefore the best general-purpose method for the task, as long
as training time is not important.

For further analyses, in Figure 13.4 on the following page I have
plotted the RMSE for the most promising two prediction methods
individually for the remaining 7 system metrics. Apart from netband-

width/received_bytes and proc/io-rchar, the AEW features result
in much lower errors than the baseline approach and the errors are
in an acceptable range. Apart from netbandwidth-sent_bytes, the
prediction from the encoded events alone is also better than from
previous metric values. The error that is achieved with the Previous
features (FPrevious) compared to the baseline varies for the different
metrics and is a result of the average complexity of the utilization
behavior of each metric. The exception for the network metric can
be explained by the lower sampling frequency used for this metric
in the original recording (0.5 Hz instead of 1 Hz). Before training the
models, I have upsampled the network metrics to the common 1 Hz
frequency. Thus, 50 % of the time of the upsampled data it is a perfect
assumption to guess the previous metric value. The exception here is

162 runtime resource utilization prediction

6

8

10

12

%
 o

f o
ne

 C
PU

proc/stat-utime

0.6

0.7

0.8

%
 o

f o
ne

 C
PU

proc/stat-stime

60

70

80

90

100
kB

/s
netbandwidth-sent_bytes

11.0

11.5

12.0

12.5

13.0

13.5

kB
/s

netbandwidth-received_bytes

200

400

600

kB
/s

proc/io-wchar

80

90

100

110

kB
/s

proc/io-rchar

2.4

2.6

2.8

3.0

3.2

kB
/s

proc/io-write_bytes
Mean
AEW - GBR
AEW - KR-FS
Combined - GBR
Combined - KR-FS
Previous - GBR
Previous - KR-FS

Figure 13.4: RMSE per system metric of different regression methods on the
ToBi dataset. Note that the y-axes do not start at zero.

hence a result of the imperfect data recording and the post-process-
ing and not systematic for the general task. Finally, the first men-
tioned two exceptions regarding netbandwidth/received_bytes and
proc/io-rchar are also explainable. The components of the dataset
have two options for communication with the central Spread [Spread]
daemon of the system: C++ component on the same host as the dae-
mon can use Unix domain sockets whereas Java component and all
components on other hosts use network links. In the former case,
the incoming communication to the components is reflected in the
proc/io-rchar metric whereas in the latter case it is measured in
netbandwidth/received_bytes. The resource utilization of the data-
set components is primarily influenced by the incoming communica-
tion. Therefore, the regression models cannot predict these metrics
because once the predictor events are received and available to con-
tribute to the feature vectors, they have already been reflected in the
metrics. Thus, such metrics reflecting the incoming communication
are effectively unpredictable with any method based on the commu-
nication.

13.3 evaluation 163

0
%

10
 %

20
 %

30
 %

40
 %

50
 %

60
 %

proc/stat-utime

st
at

em
ac

hi
ne re

al
AE

W
 -

KR
-F

S
C

om
bi

ne
d

- K
R

-F
S

0
%

50
 %

10
0

%

15
0

%

20
0

%

25
0

%

30
0

%

fa
ce

re
c

0
%

20
 %

40
 %

60
 %

80
 %

10
0

%

ob
je

ct
bu

ild
er

0
b

10
 k

b

20
 k

b

30
 k

b

40
 k

b

50
 k

b

60
 k

b

proc/io-wchar

0
b

10
 M

b

20
 M

b

30
 M

b

40
 M

b

0
b

50
0

b

1
kb

1.
5

kb

0
25

50
75

10
0

12
5

15
0

0
b

20
 k

b

40
 k

b

60
 k

b

80
 k

b

10
0

kb

netbandwidth-sent_bytes

0
25

50
75

10
0

12
5

15
0

0
b

1
M

b

2
M

b

3
M

b

4
M

b

5
M

b

6
M

b

0
25

50
75

10
0

12
5

15
0

0
b

2
kb

4
kb

6
kb

Figure 13.5: Examples for the prediction of three system metrics for different
components. The x-axis shows time in seconds.

164 runtime resource utilization prediction

Finally, Figure 13.5 on the previous page shows examples for the
prediction of system metrics to visualize the achieved prediction per-
formance. Here, models were trained on two trials of the dataset be-
fore predicting another trial. Already on the open loop AEW features,
both regression methods are able to capture the essential behavior.

13 .3 .2 Influences of the component behavior

The previous evaluation has shown that the prediction error varies
for different system metrics. However, also the structure of the com-
ponents and the way their internal processing works will influence
the results. I have constructed a set of mock components to system-
atically analyze this aspect. These components follow the component
interfaces of components from the ToBi dataset so that I could feed
them with realistic input data originating from the dataset. All mocks
implement different processing strategies that primarily influence the
CPU utilization. Therefore, the following analyses are limited to the
proc/stat-utime metric as the metric with the highest variability.
This also reduces the complexity of the analysis and for the inter-
pretation. In detail, the mock components are:

peak-loads Modeled along the facerec component, this mock pro-
duces peaks of constant CPU utilization between longer idle
times. The length of the peaks depends on the number of train-
ing phases triggered before. These training phases produce a
constant load until the caller stops them. Thus, the mock is an
example for a component doing short on-demand computations
and long-term knowledge would be required to correctly pre-
dict all details of the utilization pattern.

constant-input This mock scales its CPU utilization with the re-
ceived inputs data. It models components performing constant
processing without internal state such as vision algorithms.

constant-state Implements a comparable input dependence as
the previous component, but the utilization mainly depends
on an additional internal state that is periodically changed to
different random values. The mock is thus an example for a
more complex algorithm with constant processing activity. It is
intended to analyze the influence of internal state on the predic-
tion. For this purpose, two configurations have been tested by
reporting or not reporting the state through output events.

constant-complex Realizes even more complex constant process-
ing. In contrast to the previous mocks, this one depends on two
periodic inputs in parallel, where one input results in a con-
stant base load. The other input can be processed by a variable
amount of worker threads. With a single thread, the incoming

13.3 evaluation 165

0 %

2 %

4 %

6 %

8 %

peak-loads

0 %

5 %

10 %

15 %
constant-input

0 %

10 %

20 %

constant-state-invisible

0 %

10 %

20 %

constant-state-visible

0 %

10 %

20 %

constant-complex-1

0 %

20 %

40 %

60 %
constant-complex-2

0 %

25 %

50 %

75 %

100 %

constant-complex-4
Mean
AEW - GBR
AEW - KR-FS
Combined - GBR
Combined - KR-FS
Previous - GBR
Previous - KR-FS

Figure 13.6: RMSE of different prediction methods on the proc/stat-utime
metric for the different mock components. The measurement
unit is the utilization of a single CPU core in percent.

work saturates the worker thread most of the time. However, the
more threads are used, the more variability appears in the CPU
utilization due to less saturation. The purpose of this mock is
to understand how the prediction behaves with changing levels
of variability for a constantly processing component. This mock
has already been used in Wienke and Wrede [WW17a].

All mock components have been evaluated using a five-fold cross-
validation with random folds on a concatenation of 5 fault-free tri-
als from the ToBi dataset. Figure 13.6 shows the results for different
approaches on the mock components. Moreover, examples for the
achieved predictions can be seen in Figure 13.7 on the next page.

For the peak-loads component, predictions based on AEW features
result in lower errors than the baseline. Hence, the regression meth-
ods are able to learn the occurrences of peaks. However, due to miss-
ing knowledge about the exact length and the resource utilization be-
havior resembling the degradations explained before with long times
of the same measurements, predictions based on previous metric val-
ues are able to achieve lower errors. Predicting the previous values is

166 runtime resource utilization prediction

0 %

20 %

40 %

peak-loads

0 %

20 %

40 %

60 %

80 %

constant-input

0 %

20 %

40 %

60 %

constant-state-invisible

0 %

20 %

40 %

60 %

80 %
constant-state-visible

0 %

50 %

100 %

constant-complex-1

0 %

50 %

100 %

150 %

200 %

250 %
constant-complex-2

0 20 40 60 80 100
0 %

100 %

200 %

300 %

400 %
constant-complex-4

real
AEW - GBR
AEW - KR-FS
Combined - GBR
Combined - KR-FS

Figure 13.7: Examples for the predictions achieved for the mock components
(proc/stat-utime). The unit of the y-axis is the utilization of a
single CPU core in percent.

usually correct and only fails at the few times when the peaks start
and stop. Still, a pure open loop prediction achieved reasonable re-
sults. The example in Figure 13.7 for this component underlines this
analysis, but also demonstrates that the prediction accuracy based on
AEW features is still good and captures the essential behavior of the
component.

For all constantly processing components where the utilization is
primarily determined by the inputs (constant-input and constant-

complex), the AEW features dominate the prediction accuracy and
knowledge about the previous metric values does not help much to
further improve the results. Thus, components with such a direct
input dependence and constant processing can be modeled with a
high accuracy. The results of the different constant-complex config-
urations further show that the dominance of the AEW features for
achieving low errors increases with more flexibility and less CPU sat-
uration. With more threads, the difference between AEW errors and
Previous errors increases.

13.4 learning from performance tests 167

Finally, for the constant-state component, the AEW features do
not convey any information as long as the component does not ex-
pose its determining internal state. Once this information becomes
available, the AEW features outperform knowledge from previous
metric values.

These experiments show that components with constant process-
ing can be predicted well as long as the necessary information are
available in the communication. From an architectural point of view,
this underlines the necessity for small and coherent components that
avoid complex internal processing and state for a successful appli-
cation of the proposed resource awareness method. For components
with short on-demand activities, the general tendencies can be pre-
dicted with a reasonable accuracy. However, extensions to the fea-
tures are necessary to capture complex interaction protocols such as
the dependent RPC calls in the peak-loads example.

13 .4 learning from performance tests

The evaluation has shown that it is possible to predict system metrics
with a good accuracy using the presented approach. However, train-
ing the prediction models from real executions of a system has several
implications that contradict the framework-level resource awareness
concept. First of all, such a training requires the availability of a suf-
ficient amount of representative execution data of the target system.
Hence, every time a system is modified, it has to be run for some
time to acquire training data. The resulting effort often conflicts with
the idea of having methods that are easily applicable. Second, the
resulting prediction models are only trained with interactions that
appear in a single system. Thus, they do not capture correct opera-
tional states of components outside these interactions. Consequently,
a model learned for one component is not resilient against changes
to its surrounding system that would result in acceptable but pre-
viously unseen inputs to the component. For instance, a system de-
veloper might decide that it is better to capture image data from a
camera with a higher frame rate or resolution. An existing model for
a component processing these frames has to be retrained because no
training data including this variability was available so far. From this
point of view, the training data should ideally capture more variabil-
ity than what is available in a single system instance.

The performance testing framework presented in Chapter 10 on
page 105 provides a potential solution to both aspects. By design,
during test execution the complete event communication as well as
the system metrics for the tested component are recorded. Therefore,
the necessary information to construct the AEW features and to learn
prediction models are available. Moreover, the framework is designed
to systematically explore the complete range of expected input vari-

168 runtime resource utilization prediction

0 %

20 %

40 %

60 %
peak-loads

0 %

5 %

10 %

15 %
constant-input

0 %

10 %

20 %

constant-state-invisible

0 %

10 %

20 %

constant-state-visible

0 %

10 %

20 %

constant-complex-1

0 %

20 %

40 %

60 %
constant-complex-2

0 %

25 %

50 %

75 %

100 %

constant-complex-4
Mean
AEW - GBR
AEW - KR-FS
Combined - GBR
Combined - KR-FS
Previous - GBR
Previous - KR-FS

Figure 13.8: Comparison of prediction errors (RMSE for proc/stat-utime)
between models trained on the dataset (solid, results from Fig-
ure 13.6) and models trained on performance tests (hatched).

ability for a component. Thus, the regression models trained on test
execution data represent more variability in the application context
of a component than from a single application. Hence, these mod-
els should be resilient against changes to the external system and in
case they need to be retrained, the tests allow retraining models for
individual components without needing data from the integrated sys-
tem.4 This approach, which I have initially explored in Wienke and
Wrede [WW17a], will drastically reduce the required effort to apply
the prediction method. However, the learning problem in this case is
harder, because the underlying statistical properties of the features at
training time differ from the ones at application time and the learner
must generalize between these situations. Therefore, a drop in accu-
racy can be expected and the question is whether the acquired models
are still usable.

4 Training still has to be performed on the target computer due to the coupling of
learned models to the executing hardware.

13.4 learning from performance tests 169

0 %

20 %

40 %

60 %

80 %

peak-loads

0 %

20 %

40 %

60 %

80 %

constant-input

0 %

20 %

40 %

60 %

constant-state-invisible

0 %

20 %

40 %

60 %

80 %
constant-state-visible

0 %

50 %

100 %

constant-complex-1

0 %

50 %

100 %

150 %

200 %

constant-complex-2

0 20 40 60 80 100
0 %

100 %

200 %

300 %

400 %
constant-complex-4

real
AEW - GBR
AEW - KR-FS
Combined - GBR
Combined - KR-FS

Figure 13.9: Examples for the predictions achieved for the mock compo-
nents (proc/stat-utime) when training models from perfor-
mance tests. Shows the same situations as Figure 13.7.

13 .4 .1 Evaluation

To evaluate the presented idea, I have again used the mock compo-
nents from the previous evaluation. As these components fulfill com-
ponent interfaces of components from the real ToBi system, I could
reuse the existing performance tests for ToBi components for acquir-
ing training data. These tests were already used in Section 11.4 on
page 135. Models trained from the acquired test training data were
then tested on executions of the mock components with inputs from
the ToBi dataset as a simulation of a real application scenario. The
experiments were repeated 5 times and the presented results are the
arithmetic means. The achieved errors as well as examples for pre-
dicted time series are depicted in Figures 13.8 and 13.9 on the preced-
ing page and on this page.

The plots show mixed results. While the prediction generally works
for components with constant processing – although with varying
levels of success – it fails for the peak-loads component with its on-
demand processing. The respective prediction example in Figure 13.9

170 runtime resource utilization prediction

demonstrates the problems. Even though the general tendency for
changes in the prediction at the correct times is visible, the mean lev-
els diverge from the real values. This phenomenon can be explained
when comparing the inputs to the component generated by the per-
formance test to the ones generated by real system executions. In the
test, the pauses between the RPC calls are much shorter than in the
real application to avoid extensive test runtimes. Thus, the properties
of training data are too different compared to the test dataset and the
learned models fail to generalize across this gap.

For the constant-input and the constant-state component with
visible state, the prediction results are close to perfect or even slightly
better than the results from the dataset. In these cases, training from
the performance tests was able to generalize to the dataset situation.
Finally, for the constant-complex component, the prediction results
are generally acceptable, but the amplitude of the system metric is
not reproduced correctly, resulting in higher errors. The increased
complexity of the component could be one reason for the decreased
accuracy of the prediction, but further analyses are required to verify
this hypothesis.

13 .4 .2 Influences of the test structure

Generally, the evaluation shows that the achievable error rates de-
pend on how well the training data from the performance tests resem-
bles – at least partially – the test data. In Wienke and Wrede [WW17a]
I have analyzed this influence in detail for the constant-complex com-
ponent. The component interface adopted from the objectbuilder

component accepts global SLAM positions of the robot on one scope
and a list of detected leg pairs on a seconds scope. The effective CPU
utilization of the mock depends on three aspects encoded in these
events. To analyze their influence on the prediction results, I have
executed the existing performance test with combinations of three
different configurations per aspect, resulting in 9 effective test config-
urations. The configurations for the aspects were:

leg number The number of detected legs.

d: Match the dataset and produce 1 to 22 detected legs in
steps of 3.

l: Produce less data by sending 1 to 13 detected legs in steps
of 3 to test extrapolation.

m: Produce more data by sending 1 to 28 detected legs in steps
of 3 to test the influence of additional training data.

13.4 learning from performance tests 171

leg rate The rate of leg detection results.

d: Match the dataset with leg detection results at 30 Hz.

r: Use a range of different production rates, but not exactly
the target rate from the dataset, i.e. 10, 20, 40 and 50 Hz to
test interpolation.

dr: Use a range of production rates including the dataset tar-
get rate, i.e. 10, 20, 30, 40 and 50 Hz.

pose rate The rate of SLAM position results. Similar conditions:

d: 10 Hz

r: 2.5, 5, 15 and 20 Hz

dr: 2.5, 5, 10, 15 and 20 Hz

The results of these experiments are visualized in Figure 13.10 on
the next page for the most promising open loop prediction approach
AEW - GBR. I did not select an approach including previous system
metrics to specifically analyze only the influence of the event-based
communication.

The results show that presenting more flexibility in the training
data helps to learn a prediction model that generalize to the novel
situation. For the event rates, the d and dr conditions produce lower
error rates and expectedly the condition including the dataset rate
(dr) results in the lowest average prediction error. For the leg number,
which is a property of the data contained in the sent events, the condi-
tion with less variability than the dataset results in the lowest errors.
Even though this is unintuitive at first, an explanation for this behav-
ior is that most leg detection results in the dataset contain only a few
pairs of legs and the theoretical maximum of 22 legs is only rarely
reached. Thus, the l condition focuses on the most frequent cases of
the dataset while ignoring seldom outliers and therefore allows train-
ing models that are more accurate for the majority of samples.

These analyses show that the structure of the performance tests has
a noticeable effect on the achievable results. In case prediction models
will be trained from tests, the test structure and parameters should
thus be optimized so that at least the variability of potential appli-
cation scenarios is contained in the training data to achieve better
results. Further research will be necessary to devise useful guidelines
on how to structure the performance tests for this purpose. With the
performance testing DSL as a front end for specifying performance
tests, these guidelines can be transformed into directly applicable
editing aids realized through model checking and further IDE fea-
tures. The model-driven engineering approach chosen here will there-
fore directly help to follow these guidelines and thus again limits the
effort a developer has to put into applying the framework-level re-
source awareness ideas.

172 runtime resource utilization prediction

d l m
0

200

400

600

800

%
 R

M
SE

 o
f d

at
as

et
 le

ar
ni

ng

Leg number

d dr r

Leg rate

d dr r

Pose rate

1 thread 2 threads 4 threads

Figure 13.10: Prediction errors of the AEW - GBR approach for the constant-
complex component for training based on different perfor-
mance test configurations. Errors are expressed in percent of
the RMSE a comparable model trained on dataset trials would
make, which are the errors reported in Figure 13.8. Gray bars
show mean values across all three thread configurations.

13 .5 related work

The presented approach for predicting the resource demands of robot-
ics software components is a data-driven method. Such methods are
also used in other areas, most notably, for the operation of large data
centers for cloud environments or grid computing. Predictions of the
future resource demands are necessary to provision just enough re-
sources to an application so that SLAs are met while minimizing
costs. The majority of data-driven methods in this domain realizes
the prediction task as a time series forecasting problem by using past
measurements of resource utilization to predict future demands with-
out further information. For instance, Bey et al. [Bey+09] use fuzzy
inference based on clusters of the historical time series data. Davis
et al. [Dav+13] propose regression methods to predict the utilization
of cloud hosts with adaptations to predict average and peak loads
equally well. In contrast, Gong et al. [GGW10] approach the task with
a mixture of two distinct methods. First, pattern mining is used to
detect repeating patterns, which are then used for forecasting. If no
such patterns can be found, the approach resides to Markov chains
for forecasting short-term demands. Finally, Xue et al. [Xue+15] pre-
dict the resource utilization of data center applications using neural
networks that use the history of the system metrics to predict their
future values. Multiple networks are combined with bagging to im-
prove the prediction. Further comparable forecasting methods are re-
viewed systematically in Gupta and Dinesh [GD17] and useful exten-
sions are described. In contrast to the multi-step procedure of first
forecasting the resource utilization and then deciding on how to pro-
vision resources so that SLAs are met, Xiong et al. [Xio+15] directly
model the relation of available computing resources to the costs of
potentially violating the SLAs using machine learning techniques.

13.6 summary 173

A closely related problem is the prediction of runtimes and load
profiles of CPU-bound jobs in high performance computing and grid
settings. For instance, Seneviratne and Levy [SL11] introduce a pre-
diction method for this problem based on a load profile of an appli-
cation without resource contention and current measurements. Other
approaches in this area are reviewed in Seneviratne et al. [SLB13].

With the advent of virtualized hosting several years ago, another
interesting and related problem was the question of how application
resource demands change when an application is transfered from a
real system to a virtualized one. Wood et al. [Woo+08] have addressed
this task by systematically benchmarking different virtualization so-
lutions. From the acquired data, regression models were trained per
virtualization solution. Each of them predicts the resource demands
on the virtualized platform based on runtime data acquired while
executing an application on real hardware. A generalized problem
of predicting resource utilization of applications for previously un-
known platforms is addressed in Shimizu et al. [Shi+09].

A related solution to the resource provisioning problem is to pre-
dict the requests that will arrive on an application for being able to
scale the available resources accordingly. A common approach here
is to construct generative models from past data to predict future
requests [YKZ16; DVC13].

To summarize, most prediction methods for resource utilization op-
erate primarily on larger units of deployed software with a horizon
from a few minutes to hours or days using time series forecasting
techniques. Instead, this work targets much smaller software parts
in the sense of microservices, which operate with more flexibility on
the short-term time scale of interest. I am not aware of any other ap-
proach in this direction that uses the network-based communication
as a primary feature for the prediction. Therefore, this is a novel per-
spective on the forecasting problem for resource utilizations.

13 .6 summary

With the preceding evaluations I have shown that communication
events can be used to predict the resource utilization for a set of sys-
tem metrics. They convey enough information about the requested
workload and the external and internal system state to predict the
resource utilization of robotics components. Therefore, the initially
stated Hypothesis 1 on page 150 holds and this approach can be used
as a tool for implementing the framework-level resource awareness
concept. However, it is important to note that prediction in this work
does not imply predicting future values. Instead, the trained regres-
sion models encode an expectation about the current resource utiliza-
tion based on external information received through the event-based
communication. Therefore, the question is how this basic method can

174 runtime resource utilization prediction

be exploited with actual value for the robotics system. First, the next
chapter will show a runtime fault detection approach that is based
on an expectation about the resource utilization of each component
encoded through the presented regression models. It is the proof of
concept for the applicability of the AEW features and the presented
regression models. However, also other exploitation scenarios can be
envisioned. As an additional runtime application, trained models can
potentially be used for mid-term planing with the aim to avoid re-
source contention or resource starvation based on simulated commu-
nication events. For a larger set of components, the actual structure of
the ongoing communication is either regular (inputs at a fixed rate)
or determined by control commands of controlling state machines.
Therefore, from the perspective of such a state machine, a simulation
of future event sequences should be possible. This approach cannot
use information about previous metric values and can only rely on
the AEW features without additions for previous values. The evalua-
tion has shown that such open loop predictions already result in good
error rates and are thus sufficient for the task. Being able to train re-
gression models from performance tests is an important step towards
reducing the required effort for the application of such methods.

Going back to the developer perspective presented in Part III of
this work, trained regression models could also be used as another
method for detecting performance regressions in the testing frame-
work introduced in Chapter 10 on page 105. If the resource utiliza-
tion of a new software revision deviates from the predictions made
by the trained model from a former version, a performance bug might
have been added. Both ideas as well as other exploitation scenarios
required a verification in future work.

Two important restrictions apply to the presented work in this chap-
ter. First, all trained models are coupled to the execution hardware
the training data was acquired on. The availability and utilization of
system resources will differ across platforms and this variation is cur-
rently not modeled. Second, the presented work does not explicitly
model resource contention aspects. All analyzed systems were suffi-
ciently sized so that no severe resource contention appeared. As the
overall load on the host system is not part of the features or models,
predictions will degrade in case the training data or the actual system
execution is affected by resource contention. Both aspects have to be
addressed in future work to make the resulting models more flexible.

14
R U N T I M E P E R F O R M A N C E D E G R A D AT I O N
D E T E C T I O N

The previous chapter has introduced a way to represent the relation
between communication events and the resource utilization of system
components using machine learning techniques. The learned mod-
els were meant as a foundation to realize different runtime resource
awareness functions. In this chapter, I am going to explore an exem-
plary application by detecting performance bugs at system runtime.
This work extends an initial publication of the method in Wienke and
Wrede [WW16c].

Even though the previous part of this thesis has introduced meth-
ods to prevent performance bugs already at development time, such
methods can never completely prevent bugs from ending up in a pro-
duction systems, especially in cases where they are currently being
adopted. Edsger W. Dijkstra already concluded in 1972: “program
testing can be a very effective way to show the presence of bugs, but
it is hopelessly inadequate for showing their absence” [Dij72]. There-
fore, performance bugs also need to be controlled at system runtime
and the survey presented in Chapter 3 on page 21 has underlined
the need for such runtime detection methods. Detecting performance
bugs allows reacting on them and repairing the system state before
a critical situation arises or a system failure eventually renders the
robot or intelligent system useless [Ste13; Zam+13]. Although other
disciplines have started to adopt autonomous fault detection meth-
ods, only limited use can be observed in robotics research. Here, the
largest part of the existing fault detection work focuses on specific
areas such as sensor or actuator faults [cf. Pet05; SMW06]. However,
bugs in the control software of intelligent systems and performance
bugs have mostly been ignored so far. Thus, the presented fault de-
tection approach for performance bugs – apart from demonstrating
the usefulness of the previously introduced features and regression
models – brings a novel perspective to the robotics and intelligent
systems community that has not been addressed before. It is impor-
tant to note that the presented approach cannot detect performance
bugs directly. Instead, it can only detect their visible effects, namely
the performance degradations, as already explained in Section 2.2.3.1 on
page 16. Hence, the presented specific form of fault detection could
also be called performance degradation detection. For the sake of brevity
and relation to existing work, I will however continue to use the term
fault detection.

176 runtime performance degradation detection

14 .1 related approaches

Fault detection, or more general, novelty or anomaly detection has
a long tradition in several domains and many techniques have been
developed. Chandola et al. [CBK09] and Miljkovi [Mil11] present thor-
ough overviews about these general techniques, their categorization,
and application domains.

Regarding existing approaches used in robotics, Pettersson [Pet05]
gives a good overview on early research and distinguishes between
analytical, data-driven, and knowledge-based approaches. The data-
driven approaches are closest to my own work. However, most of
them treat the fault detection problem as a classification problem with
known faults. This requires annotated training data with recorded
and known fault instances and I have already argued in Chapter 12

on page 141 that such data hardly exists in the robotics domain. Ad-
ditionally, these methods cannot generalize to unexpected types of
faults. Finally, none of the presented methods specifically focuses on
faults in the control system or on performance bugs.

A method with focus on the control system has been presented in
different development stages by Weber and Wotawa [WW06], Kleiner
et al. [KSW08], and Zaman et al. [Zam+13]. This fault detection mech-
anism is based on observers, which either check invariants in the
communication using Horn clauses or thresholds on common system
properties. Observers are manually designed or derived automati-
cally from reference executions in case of invariant checks. Due to
the strict nature of the invariants, imperfect training data will likely
affect the results of this approach. Based on the observer results, a
diagnosis engine searches for contradictions of the current state with
a predefined model of the system. Thus, despite being data-driven
regarding invariants, this method also requires a system model.

In contrast to the previous approach, Khalastchi et al. [Kha+15] in-
troduce an online fault detection purely data-driven approach that
compares the correlations of automatically clustered redundant mea-
surements using a sliding window. This approach does not specifi-
cally handle performance bugs. Instead, it is evaluated with sensor
data. Because of using only the recent history of sensor readings, the
method lacks explicit state knowledge and sudden behavior changes
will likely result in false positive classification results (cf. Chapter 13

on page 149). Moreover, no explicit knowledge about the origin of a
detected fault is available. With Khalastchi and Kalech [KK17] the au-
thors have recently presented an improved version of this approach
and incorporated the same idea as Zaman et al. [Zam+13] to use
model-based diagnosis for deriving the root cause of a detected fault.

Jiang et al. [JED16] recently proposed an approach that uses the
communication of the system to assess its health state. Invariants in
the communication are learned based on templates and reference ex-

14.2 residual-based performance degradation detection 177

ecutions of the system. The presented evaluation shows the ability
of the approach to detect and correct violations that originate from
external disturbances of the expected environment of a UAV (e.g.,
increased wind speed). The method does not specifically address is-
sues in the control software and detected faults cannot be attributed
to system components.

Finally, Golombek et al. [Gol+11] describe a fault detection method
that also utilizes the communication of the robot to assess the system
state. Even though this method is a general fault detection approach,
it was also able to detect some performance-related faults. However,
only the complete system is inspected and the detection results do
not carry information about the affected components.

The runtime detection of performance degradations is also of inter-
est and more established in domains such as server administration
or cluster computing. Because the variations in resource demand are
often more stable than in robotics, many solutions here use time-se-
ries processing methods without incorporating context information
such as event streams. Examples include Skyline [Skyl] and Riemann
[Riem]. One noteworthy exception is Knorn and Leith [KL08], where
in addition to a base model of the resource utilization, an additive
event model exists that adds utilization patterns for pretrained events.
These event models need to be recorded beforehand, which prohibits
the easy application of the approach in the robotics domain with
many state changes and events that need to be modeled.

The review of the related work shows that a data-driven runtime
detection of performance degradations for individual system compo-
nents is a novel perspective in the robotics domain. Existing methods
focus on sensor data or require extensive system models to provide
a component-level report resolution and system state is often not ex-
plicitly modeled.

14 .2 residual-based detection of performance degra-
dations using resource predictions

To realize a fault detection method compatible with the framework-
level resource awareness concept, an important influence is that train-
ing data with system execution traces containing annotated fault in-
stances is not available and a structured acquisition of such data is
infeasible. Thus, the fault detection method can only be realized as a
novelty detection or one-class classification problem. In such a setting,
the classifier has the task to decide whether a sample belongs to the
class of known healthy system executions or not, without knowing
counter-examples. To realize this classification task with a focus on
performance bugs, I have decided to use the previously presented
resource prediction models as model of the known and expected
healthy system behavior and a residual-based fault detection scheme

178 runtime performance degradation detection

Component

Middleware
inputs

System
metrics

Middleware
outputs

Prediction	model -*
Residual

Threshold
Fault?

Figure 14.1: Scheme of the fault detection approach. Adaptation of the gen-
eral residual-based fault detection scheme in Ding [Din08, p. 7].

[Din08, p. 7] based on the predicted and actual resource utilization
to implement the decision logic. Thus, for each component of the
system, a fault detection scheme as visualized in Figure 14.1 is used.
This scheme encodes the idea that a performance degradation for aresidual-based fault

detection scheme
C

single system component is a deviation of its current resource uti-
lization from the predicted resource utilization above an acceptable
threshold. As the uncovered and predicted system metrics are vector-
valued, I have decided to use the Mahalanobis distance (indicated as
-∗ in Figure 14.1) to compute a scalar residual that can be compared to
a threshold. The Mahalanobis distance is an established method for
fault detection in case of low-dimensional problems [LKK10; VF11],
which is the case for the limited set of system metrics used in this
work (cf. Appendix B.7 on page 225).

All aspects of the presented scheme can be learned from suitable
training data. In the simplest case, the training corpus comprises ref-
erence executions [She+09] of the system in the intended scenario that
have been classified to be free of visible faults by an expert user or
developer of the system. This method cannot ensure that a healthy
system is used for training in all cases. Therefore, the expert user
needs to closely monitor the important KPIs (for instance using the
monitoring tools presented in Chapter 9 on page 93) as well as the de-
livered service of the system to reduce the likelihood that the training
data are severely impaired. Despite not being perfect, this method is
used by several other publications in this area, for instance, Golombek
et al. [Gol+11] and Jiang et al. [JED16]. Moreover, suitable modeling
methods are able to deal with some amount of noise in the training
data [CBK09].

Using the training data, the following three steps are performed for
each system component:

1. Based on a first fraction of the training data, the resource predic-
tion model as described in Chapter 13 on page 149 is trained.

2. A second fraction of the training data is used to estimate an em-
pirical covariance matrix of the prediction error for the system
metrics. This covariance matrix characterizes the ability of the
prediction model to reproduce the different system metrics.

14.3 evaluation 179

3. In the last step, the remaining fraction of the training data is
used to estimate a suitable threshold for the Mahalanobis dis-
tances. One possibility to realize this step is to use gradient
descend to achieve a desired false-positive rate on this part of
the training data.

In addition to this fault detection method based on the previously
presented regression models, I have also implemented another ap-
proach to validate the usefulness of the AEW features for fault detec-
tion purposes independent from the regression models. Here, a one-
class support vector machine (OCSVM) is used as a standard novelty
detection technique to detect faults as outliers in the joint space of
features and system metrics represented by FCombined presented in
Equation (13.12) on page 156. This additional approach is intended to
provide a second view on the ability to detect performance degrada-
tions based on the encoded event communication of components.

14 .3 evaluation

To validate the proposed fault detection methods for performance
degradations, I have performed two evaluations. After an initial eval-
uation on the dataset presented in Chapter 12 on page 141, a detailed
analysis based on a mock component is presented as a further valida-
tion step.

14 .3 .1 Results on the ToBi dataset

For the initial evaluation of the fault detection approach I have used
the ToBi dataset with its different components (cf. Chapter 12). Differ-
ent prediction models as well as feature variations have been tested to
find out how the combinations perform. Additionally, I have added
a baseline method to compare against. This baseline is a threshold
based on the Mahalanobis distance of the empirical covariance matrix
for the vector of system metrics, independent of the AEW features.
The threshold can be learned using the same procedure as described
in step 3 of the training procedure presented before. However, it is di-
rectly performed on the real system metrics of a component instead
of the predicted ones.

For each approach I have trained a fault detection model for all
components of the ToBi system that communicate via RSB. The mod-
els were trained on the 10 fault-free trials of the dataset. Afterwards,
for all healthy trials with induced faults, each model was used to pre-
dict the current state of its component at each time step of the data
(1 Hz). To compute aggregated scores, the temporal order of the time
series has been ignored and the task was treated as a binary classifi-
cation problem by combining all individual time series of predictions
(per trial) into a single set of points. As all approaches offer a numer-

180 runtime performance degradation detection

approach auc

AEW - GBR 0.624

AEW - KR-FS 0.634

AEW - OCSVM 0.614

Combined - GBR 0.631

Combined - KR-FS 0.634

Combined - OCSVM 0.624

threshold 0.582

Table 14.1: Detection results for different fault detection approaches on the
ToBi dataset as the mean value across all components.

ical value that is compared to a threshold for the final class decision,1

I used the ROC AUC metric as an established and resilient metric for
comparing the performance of the different approaches. Training and
evaluation have been performed 5 times and results were averaged to
account for randomness in the approaches.

A first assessment of how well the different approaches perform
can be found in Table 14.1. It shows that all approaches based on
AEW features outperform the basic threshold model. However, the
difference to the baseline is low. Therefore, a more detailed analy-
sis for this reason is required. One aspect is how much the features
help in the detection task for the different system components (cf. Ap-
pendix E.1 on page 237 for a detailed list of components and their pur-
poses and behaviors). Figure 14.2 on the next page shows the scores
for the most promising approaches per component. It becomes visible
that the additional information from the feature vectors only help for
some components while for others the threshold model or even a ran-
dom classification (a score of 0.5) cannot be outperformed. Especially
in case of the rsbnavigation and the scenersbam components, scores
below 0.5 are reported. This suggests that these components show no
stable resource utilization behavior and thus conclusions drawn from
the training are invalid on the test data. The components where scores
of the regression model based approach are better than a random
classification and than the baseline are armcontrol, objectbuilder,
objectrecognition, and texttospeech. Looking at the behavior of
these components it becomes visible that these are components that
show variability and state or input dependence in the way they utilize
resources. armcontrol, objectrecognition, and texttospeech imple-
ment an on-demand processing based on RPC method calls. There-
fore, they usually do not cause any load on the system apart from the
times they were called. objectbuilder is one of the few other com-
ponents in the system that, despite exhibiting a constant processing
scheme, does not constantly saturate a single CPU. Therefore, in these
cases, the approaches based on the feature vectors can make use of

1 For the OCSVM the distance from the separating hyperplane can be used.

14.3 evaluation 181

armcontrol

facerec

legdetecto
r

objectb
uilder

objectre
cognitio

n

rsb
navig

ation

sce
nersb

am

speechrec

sta
temachine

textto
speech

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

Combined - KR-FS
Combined - OCSVM
Threshold

Figure 14.2: Detection scores of the Combined - KR-FS approach compared to
baseline Threshold per component. The bars wrap at 0.5, which
represents a random decision.

the encoded state information, whereas the threshold model can only
learn a fixed threshold independent of the current processing state
of the component. This basic threshold is sufficient for an accurate
classification for components that show a constant load across the
whole execution time, but not for the aforementioned components
with more variability. Additionally, the OCSVM is able to achieve su-
perior results for the rsbnavigation and texttospeech components.
These are components that are only affected by the spreadLatency

bug, which results in the delayed transmission of events. The OC-
SVM can handle bugs that manifest primarily in the events better
than the approaches based on regression models, because the events
directly contribute to the features on which the classification is per-
formed and are not reduced to predicted system metrics before the
classification.

Another perspective is to look at the different performance bugs
contained in the dataset and how their visible performance degrada-
tions can be detected. For this analysis, I have used the slice structure
of the dataset explained in Section 12.3 on page 145. Each slice con-
tains a single performance bug and each performance bug can affect
one or more components in parallel.2 Therefore, one way to measure
the detection performance for individual performance degradations
is to cut out the respective slices from the binary result time series for
the affected components and to compute the metrics on these frag-
ments. This procedure ignores most parts of the execution data of
each component in which no performance degradation is expected.
Additionally, in each included slice for a single performance bug it

2 For instance, the shift of the clock on one of the two hosts affects all components
operating on that host or the temporary interruption of the Spread daemon affects
all components (cf. Section 12.2 and Appendix E.2 on page 144 and on page 238).

182 runtime performance degradation detection

pocke
tSphinxLeak

legdetecto
rSkip

pable

facerecSkip
pable

objectB
uilderSkip

pable

spreadLatency

bonsaiPartic
ipantLeak

clo
ckS

hift

armserve
rAlgo

cla
fuSleep

btlAngleAlgo

bonsaiTalkT
imeout

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Combined - KR-FS
Combined - OCSVM
Threshold

Figure 14.3: Detection scores of the Combined - KR-FS approach compared to
the baseline Threshold per performance bug in the dataset.

is much more likely that at each point in time the respective perfor-
mance degradation is visible. Thus, the analyzed detection problem
in this kind of evaluation is different and therefore the resulting ab-
solute scores are not comparable with the previous evaluation results.
Figure 14.3 depicts the results of this evaluation. It is visible that most
performance bugs that directly influence one of the system metrics
(leaks and skippable computations) are easily detectable, even by the
baseline approach. On the other hand, the remaining performance
bugs contained in the dataset with low detection rates have only indi-
rect and limited influence on system resources. Instead, they often af-
fect timing of events or of the scenario progression. This information
is not covered in the features and therefore expectedly hard to detect.
Important exceptions from this rule are the objectBuilderSkippable

and the armserverAlgo performance bugs. objectBuilderSkippable
affects the previously mentioned objectbuilder component with its
high variability in the resource utilization. Here, the available state
information from the encoded events pays off and the proposed fault
detection method achieves much higher scores. On the other hand,
armserverAlgo represents a performance bug that could be detectable
through unexpectedly long peaks of resource utilization of the com-
ponent. However, because of the design of the dataset recording it is
possible that inside a slice a performance bug is triggered, but the
affected component never exhibits the required behavior to result in
a visible performance degradation. In the scenario, the affected arm
controller is used only for a few seconds in each trial and therefore
the chance that the required component activity (motion planing in
this case) and the respective slice appear together is low.

Thus – in retrospect – it becomes visible that the dataset, which has
been recorded before developing the fault detection approach, is in
some parts a severe challenge for the detection algorithms, whereas

14.3 evaluation 183

other parts of the data are already well covered by the baseline ap-
proach. Another factor that affect the results is the effective commu-
nication graph of the components in the system. As explained in the
previous chapter, prediction models trained only on the targets sys-
tem do not generalize to unseen inputs to a component. Once an
upstream component is in a faulty state during execution, its outputs
might change and thus downstream components receive unexpected
inputs. The fault detection models for these downstream components
will likely report a fault in these cases, which will be interpreted as
a false positive. These effects further reduce the achievable scores.
Still, the evaluation shows that the developed method can correctly
detect performance degradations that are visible in the resource uti-
lization and the objectbuilder example shows that the regression
model based method provides real benefit in case a component ex-
hibits high variability and input dependence in its processing. In this
case, also the generic OCSVM is outperformed.

14 .3 .2 Influence of component behavior

To provide further hints whether the approach is beneficial in case of
components with high variability, I have performed a second eval-
uation using the constant-complex component introduced in Sec-
tion 13.3.2 on page 164. The variability of resource utilization of this
component can be influenced by the number of threads it is using
to process incoming work. With more threads, less CPU saturation
appears and the behavior becomes more variable (see Figure 13.7 on
page 166 for a visualization of the mock utilization behavior). Thus,
this component is a good candidate to analyze the performance of the
fault detection method for different levels of variability. I have added
a bug to the component that results in more work being performed
by the mock per input event than necessary for a few seconds before
switching back to a normal state for some time. The evaluation has
reused the input events from the fault-free trials of the ToBi dataset
to simulate realistic inputs. The average ROC AUC scores for the ap-
proaches after repeating the model training and classification 5 times
are depicted in Figure 14.4 on the following page.

As expectable, a threshold is unable to detect performance degrada-
tions in the condition with one thread. The component already uses
the complete range of possible CPU utilization values for its normal
processing and any threshold either reports false positives most of
the time or nothing at all. With the increasing number of threads, the
threshold method gains more chances to correctly report faults for
high CPU values. As such highs values are used less often during
normal operation of the component, the false positive rate decreases.
Yet, the achievable scores are low. In contrast, most methods based
on the prediction models are able to achieve much better scores apart

184 runtime performance degradation detection

AEW - G
BR

AEW - K
R-FS

AEW - O
CSVM

Combined - G
BR

Combined - K
R-FS

Combined - O
CSVM

Threshold

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

1 thread
2 threads
4 threads

Figure 14.4: Fault detection ROC AUC scores on the different thread config-
urations of the constant-complex component.

from some combinations that seem to exhibit overfitting. As devia-
tions from the expected CPU utilization can only be detect in case no
saturation exists and these times are infrequent for the configuration
with one thread, the scores are lower compared to configurations with
more variability. Thus, the evaluation shows that this model of detect-
ing performance degradations works best in these cases with high
variability without saturation. Even with saturation, the approach can
successfully detect performance degradations at the times where no
CPU saturation would be expected. The most stable models for this
experiment are AEW - GBR and Combined - KR-FS. Further analyses
will be required to understand why the other combinations of fea-
tures and learners do not generalize. Finally, the results show that
the OCSVM is not able to capture the variability and is unable to
provide useful detection results.

14 .4 summary

The presented fault detection approach enables systems to auton-
omously detect and handle performance degradations at runtime.
With appropriate strategies that react on the detection results, the
dependability of the systems can thus be increased despite the exis-
tence of performance bugs in the implementation of the constituting
system components. Moreover, also the system developers will gain
better insights into their systems and detect performance degrada-
tions provide more detailed information where to start debugging.
This is a novel perspective on fault detection in the robotics domain,
where most approaches are specialized on hardware faults or external
disturbances to the system. Apart from these immediate benefits to-

14.4 summary 185

wards more stable systems, I could also demonstrate the applicability
of the prediction method presented in the previous chapter.

The evaluation of the fault detection method has shown that the
achievable detection rates depend on the types of bugs and the char-
acteristics of the components. Expectedly, only performance bug that
affect the system metrics were detectable with good scores. For other
types of performance bugs, other methods have to be applied. For
instance, changes to expected event rates would be detectable by in-
variant learning techniques such as the ones presented in Weber and
Wotawa [WW06]. Thus, a complete safety network requires different
fault detection methods depending on the types of bugs that are ex-
pected or that should be covered. However, for the scope of this thesis,
the presented fault detection methods has shown to be an effective
tool to handle performance degradations at system runtime.

Part V

P E R S P E C T I V E S

The last part of this thesis will summarize the contribu-
tions, assess their impact, and outline future opportunities
for research.

15
C O N C L U S I O N

With this thesis, I have presented a set of methods that help to im-
prove the dependability of robotics and intelligent systems as com-
monly found in research settings. By exploiting knowledge about the
utilization of system resources, the developed methods establish re-
source awareness throughout the design and the runtime of systems,
which is a perspective on dependability often ignored in research sys-
tems. To address the requirements of the development process in this
domain, the methods were designed to be applicable with limited
effort and in loosely controlled environments. I have taken the pre-
dominant architectural style of component-based systems realized in
microservice architectures as the foundation for the developed meth-
ods. By hooking into the existing extensions points and introspec-
tion abilities, labor-intensive modifications to the components can be
avoided. Moreover, the presented techniques can be applied individ-
ually for different components to enable a gradual integration into
production use. In contrast to existing approaches for resource aware-
ness in these systems, the focus of this work on easy applicability,
individual components, and its foundation in the distributed system
architecture are a novel perspective on resource awareness, which I
have termed framework-level resource awareness.

In contrast to others, I understand resource awareness as an overar-
ching property of systems that can only be achieved if it is addressed
during all phases of system design and operation. Thus, I have pre-
sented methods that target the development process and the autono-
mous runtime of robotics and intelligent systems. Successfully estab-
lishing resource awareness includes that system and component de-
velopers are aware of resources, their utilization, and the effects mod-
ifications have on these properties. A resource-aware algorithm in a
planner or scheduling component of a system cannot work around
all implementation errors and oversights introduced into a system
during development time, especially if a modification to the planner
introduced a performance bug in its own implementation. Thus, the
first set of methods presented in Part III is directed to the system de-
velopers. An appropriate visualization through a dashboard ensures
that developers can gain an understanding of the resource utiliza-
tion of their systems and a performance testing framework supervises
changes to component implementations. Instead of requiring manual
verifications or accidental discoveries, the testing framework system-
atically uncovers unexpected changes to the resource utilization of
components and test execution is automated using a CI setup.

190 conclusion

For enabling resource awareness at runtime, in Part IV I have ex-
plored the unique perspective of using machine learning methods
to predict the resource utilization of components. Many existing ap-
proaches for runtime resource awareness either operate on the im-
plementation level or require extensive modeling. The chosen way
avoids these efforts and can instead be used as a plugin to existing
systems. For instance, the presented fault detection method based on
the learned prediction models is an additional service that can be
applied selectively and without component modifications. Generally,
the idea to use the middleware communication as a predictor for the
resource utilization is a novel perspective. I am not aware of other
approaches following this idea.

The existing microservice architectures with their realization as dis-
tributed systems based on a common middleware with introspection
abilities have proofed to provide enough information for enabling
framework-level resource awareness. Without modifications to exist-
ing components or infrastructure I was able to realize my methods
only through transparent additions to the systems. I am convinced
that even without modifications, further methods for enabling re-
source awareness and improving the dependability in general can be
developed and integrated. Future work in this direction is one factor
that determines the maturity of robotics and intelligent systems and
contributes to their applicability and success. From an architectural
point of view, this thesis has shown that a fine-grained separation
of systems is an important step towards enabling supervising func-
tions such as the ones presented in this work. In case information
are hidden in component implementations, they are not available to
framework-level techniques. Especially hidden camera inputs and ac-
tuator control outputs have been a challenge in the systems I have
been working with. Future system architects should separate the al-
gorithmic processing from the hardware interface using component
boundaries to support system analysis and supervision.

With the methods developed in this thesis I have shown that it is
feasible to implemented resource awareness in robotics systems on
the framework level and that these methods provide a benefit for
the systems and their developers. Ultimately, I hope that future sys-
tems will be implemented using a mixture of framework-level and
implementation-level resource awareness methods. As intended, the
framework-level methods offer an easy entry into enabling resource
awareness, especially at runtime. However, some applications with
their constraints and requirements can only be realized successfully
if parts of the system also reflect resource awareness on the imple-
mentation level. For instance, severe resource constraints as the ones
found on planetary rovers can only be met if a resource-aware planner
is used. In such cases, framework-level methods can be used to gather
the required expectations about resource utilizations of other parts of

conclusion 191

the system, especially for legacy applications, while only a fraction
of the components will require modifications on the implementation
level. Moreover, the coverage of the development process is a unique
perspective. Thus, I envision a coexistence of both approaches and
both sides of resource awareness have their unique application areas.

16
O U T L O O K

Technical systems and solutions always offer potential for improve-
ment and also this thesis has opened up perspectives for future de-
velopment and change.

One obvious point for improvement is the application of the de-
veloped methods in more systems. This would give further insights
into their strengths and limitations and would also validate their gen-
erality. With the dominance of ROS in robotics research, a good per-
spective to attract further users is porting the tools to this ecosystem.
From a conceptual point of view, I have tried to limit the requirements
of the methods on the underlying system with its middleware to the
common set of features identified in Section 5.4 on page 49. There-
fore, I assume that no severe obstacles exist on the way to implemen-
tations for other frameworks. A verification is needed though. Tech-
nically, the new ecosystem requires comparable daemons to uncover
the resource utilization, which needs to be exposed using the middle-
ware. With ARNI [BHW16] and Drums [MWV14] suitable bases exists
and only limited modifications are required to realize the full metric
collection concept. For the developer perspective, the performance
testing framework will need additional actions to generate ROS pay-
loads in addition to RSB, and the DSL has to be extended for these
additional actions including the related data types. Moreover, the test
runner and the analysis tool have to be adapted to support rosbag
[ROSb]. For the runtime perspective, apart from adapter code for the
new middleware, the biggest difference is the limited availability of
metadata on ROS messages compared to RSB events. A different en-
coding function for constructing feature vectors is necessary that han-
dles the reduced amount of information. As in RSB-based systems the
payload size is usually the strongest source of information, I do not
think that the missing remaining information are a severe obstacle,
though. Thus, I am confident that the approach can be transported to
other ecosystems.

Apart from moving to a different ecosystem, a lot of detail improve-
ments to the developed methods are possible. However, on a broader
perspective, larger features could make a real difference. For instance,
to provide better support for the developer for resolving detected per-
formance bugs, an integrated development approach closing the loop
from detection results to code modifications is an interesting perspec-
tive. If the developer automatically gets targeted feedback up to the
level of code lines on performance regression detected while testing
or after a detected performance degradation at runtime, chances will

194 outlook

become higher that these issues are quickly resolved. Thus, a connec-
tion of detected issues back to the code level, probably based on the
commit history, would be an interesting research topic.

Another perspective is to combine the runtime fault detection with
system simulations. As not all performance bugs can be avoided with
testing, detecting them in simulations instead of production runs of
the system will further increase the dependability and reduce the con-
sequences of newly detected issues. Ideally, the simulations would au-
tomatically be constructed to systematically search through the state
space of the components. Similarly, an automatic generation of per-
formance tests would reduce a lot of the currently necessary effort.
Validating the suitability of generated test cases directly opens up the
need for a coverage metric for performance aspects.

On a broader scale, it will be interesting to see how the provided
methods integrate into more structured approaches to robotics de-
velopment, where systems are rigorously modeled and code is gen-
erated. These approaches will reduce the need for some of the de-
veloped methods. However, similar questions regarding the resource
utilization and the effect of changes can also be asked on the level of
models. It will be interesting to see how existing knowledge can be
transfered into model checking rules and simulations on this level.

In any case, many aspects of resource awareness for robotics sys-
tems have not been researched so far or have only been covered on a
high level. Therefore, many possibilities for improvement remain to
be explored.

Part VI

A P P E N D I X

A
S U RV E Y: FA I L U R E S I N R O B O T I C S A N D
I N T E L L I G E N T S Y S T E M S

The following sections represent the structure of the online survey
about performance problems in robotics systems, which is discussed
in Chapter 3 on page 21. This is a direct export of the survey structure
without modifications. Please note that the questions do not use the
unified terms introduced in Chapter 2 on page 7.

a .1 introduction

Thank you very much for taking the time to participate in this sur-
vey. This survey is part of my PhD project with a focus on exploit-
ing knowledge about computational resource consumption in robot-
ics and intelligent systems, persued at Bielefeld University. Therefore,
in order to participate, you should be involved or have been involved
in the development or maintenance of such systems. In case you have
worked or are working with mutiple systems in parallel, please pro-
vide answers on the combination of all theses systems.

Participating in this survey should not take longer than 15 min-
utes. The survey consists of several questions and you are free to skip
questions in case you do not want to answer them. Moreover, you
can go back and forth between the questions you have already an-
swered in order to revise them. All data you enter in this survey will
be anonymized.

Johannes Wienke
jwienke [at] techfak.uni-bielefeld.de

a .2 monitoring tools

The first part of this survey addresses how robotics and intelligent
systems are monitored at runtime in order to assess their health and
understand the ongoing operations. Monitoring includes the ongoing
collection of runtime data, the observation of operations as well as the
assessment of system health.

a .2 .1 How often do you use the following kinds of tools to monitor the
operation of running systems?

Rate individually for:

• Operating system command line tools e.g. htop, iotop, ps (OS)

198 survey : failures in robotics systems

• Logfiles (LOG)

• Dashboard views e.g. munin, graphite, nagios (DASH)

• Inter-process communication introspection e.g. middleware log-
ger (IPC)

• Autonomous fault or anomaly detectors (FD)

• Special-purpose visualizations e.g. rviz, image processing de-
bug windows (VIS)

• Remote desktop connections e.g. VNC, rdesktop (RDP)

• Others (OTH)

answer type Fixed choice

• Never (0)

• Rarely (1)

• Sometimes (2)

• Regularly (3)

• Always (4)

a .2 .2 Please name the concrete tools that you use for monitoring running
systems.

Separate different tools with a comma.

answer type longtext (length: 40)

a .3 debugging tools

This part of the survey addresses tools that are used in order to de-
bug systems in case a failure has been detected. Debugging is the
process of identifying the root cause of an observed abnormal system
behavior.

a .3 .1 How often do you use the following tools for debugging?

Rate individually for:

• Console output e.g. printf, cout (PRNT)

• Logfiles (LOG)

• Debuggers e.g. gdb, pdb (DBG)

A.4 general failure assessment 199

• Profilers e.g. kcachegrind, callgrind (PROF)

• Memory checkers e.g. valgrind (MEMC)

• System call introspection e.g. strace, systemtap (SYSC)

• Inter-process communication introspection e.g. middleware log-
ger (IPC)

• Network analyzers e.g. wireshark (NWAN)

• Automated testing e.g. unit tests (TEST)

• Simulation (SIM)

• Others (OTH)

answer type Fixed choice

• Never (0)

• Rarely (1)

• Sometimes (2)

• Regularly (3)

• Always (4)

a .3 .2 Please name the concrete tools that you use for debugging.

Separate different tools with a comma.

answer type longtext (length: 40)

a .4 general failure assessment

Please provide information about failures you have observed in the
systems you are working with.

a .4 .1 Averaging over the systems you have been working with, what to
do you think is the mean time between failures for these systems?

The mean time between failures is the average amount of operation
time of a system until a failure occurs.

answer type Fixed choice

• < 0.5 hours (0)

• < 1 hour (1)

200 survey : failures in robotics systems

• < 6 hours (2)

• < 12 hours (3)

• < 1 week (4)

• > 1 week (5)

a .4 .2 Please indicate how often the following items were the root cause
for system failures that you know about.

Rate individually for:

• Hardware issues (HW)

• System coordination e.g. state machine (COORD)

• Deployment (DEPL)

• Configuration errors e.g. component configuration (CONF)

• Logic errors (LOGIC)

• Threading and synchronization (THRD)

• Wrong error handling code (ERR)

• Resource leaks or starvation e.g. RAM full, CPU overloaded
(LEAK)

• Inter-process communication failures e.g. dropped connection,
protocol error (COMM)

• Specification error / mismatch e.g. component receives other
inputs than specified (SPEC)

• Others (OTH)

answer type Fixed choice

• Never (0)

• Rarely (1)

• Sometimes (2)

• Regularly (3)

• Very often (4)

a .4 .3 Which other classes of root causes for failures did you observe?

Separate items by comma.

A.5 resource-related bugs 201

answer type text (length: 24)

a .5 resource-related bugs

The following questions deal with the consumption of computational
resources like CPU, memory, disk, network etc.

a .5 .1 How many of the bugs you have observed or know about had an
impact on computational resources, e.g. by consuming more or less
of these resources as expected?

Please approximate the amount with a percentage value of the total
number of bugs you can remember. A quick guess is ok here.

answer type integer (length: 10)

a .6 impact on computational resources

The following questions deal with the consumption of computational
resources like CPU, memory, disk, network etc.

a .6 .1 Please indicate how often the following computational resources
were affected by bugs you have observed.

A computational resource was affected by a bug in case its consump-
tion was higher or less than expected, e.g. in comparable or non-faulty
situations.

Rate individually for:

• CPU (CPU)

• Working memory (MEM)

• Hard disc space (HDD)

• Network bandwidth (NET)

• Number of network connections (CON)

• Number of processes and threads (PROC)

• Number of file descriptors (DESC)

answer type Fixed choice

• Never (0)

• Rarely (1)

• Sometimes (2)

202 survey : failures in robotics systems

• Regularly (3)

• Very often (4)

a .6 .2 If there are other computational resources that have been affected by
bugs, please name these.

answer type longtext (length: 40)

a .7 performance bugs

The following question specifically addresses performance bugs. A
system failure or bug is a performance bug in case it is visible either
through degradation in the observed performance of the system (e.g.
delayed or very slow reactions) or through an unexpected consump-
tion of computational resources like CPU, memory, disk, network etc.

a .7 .1 Please rate how often the following items were the root causes for
performance bugs you have observed.

Rate individually for:

• Hardware issues (HW)

• System coordination e.g. state machine (COORD)

• Deployment (DEPL)

• Configuration errors e.g. component configuration (CONF)

• Logic errors (LOGIC)

• Threading and synchronization (THRD)

• Wrong error handling code (ERR)

• Unnecessary or skippable computation (SKIP)

• Resource leaks or starvation e.g. RAM full, CPU overloaded
(LEAK)

• Inter-process communication failures e.g. dropped connection,
protocol error (COMM)

• Specification error / mismatch (SPEC)

• Algorithm choice (ALGO)

• Others (OTH)

A.8 case studies 203

answer type Fixed choice

• Never (0)

• Rarely (1)

• Sometimes (2)

• Regularly (3)

• Always (4)

a .8 case studies

For the following questions, please provide descriptions of any kind
of bug that you remember.

a .8 .1 Thinking about the systems you have worked with so far, is there a
bug that you remember which happened several times or which is
representative for a class of comparable bugs?

answer type Fixed choice

• Yes (Y)

• No (N)

a .9 case study : representative bug

Please briefly describe the representative bug that you remember.

a .9 .1 How was the representative bug noticed?

Please explain the observations that were made and how they di-
verged from the expectations.

answer type longtext (length: 40)

a .9 .2 What was the root cause for the bug?

Please explain which component(s) of the system failed and in which
way.

answer type longtext (length: 40)

a .9 .3 Which steps were necessary to analyze and debug the problem?

Please include the information sources that had to be observed and
the tools that got applied.

204 survey : failures in robotics systems

answer type longtext (length: 40)

a .9 .4 Which computational resources were affected by the bug?

Computational resources include CPU, working memory, hard disc
space, network bandwidth & connections, number of processes and
threads, nubmer of file descriptors etc.

answer type longtext (length: 40)

a .10 case studies

For the following questions, please describe any kind of bug that you
remember.

a .10 .1 Thinking about the systems you have worked with so far, is there
a bug that you remember which was particularly interesting for
you?

answer type Fixed choice

• Yes (Y)

• No (N)

a .11 case study : interesting bug

Please describe briefly the most interesting bug that you remember
from one of the systems you have been working with.

a .11 .1 How was the interesting bug noticed?

Please explain the observations that were made and how they di-
verged from the expectations.

answer type longtext (length: 40)

a .11 .2 What was the root cause for the bug?

Please explain which component(s) of the system failed and in which
way.

answer type longtext (length: 40)

A.12 personal information 205

a .11 .3 Which steps were necessary to analyze and debug the problem?

Please include the information sources that had to be observed and
the tools that got applied.

answer type longtext (length: 40)

a .11 .4 Which computational resources were affected by the bug?

Computational resources include CPU, working memory, hard disc
space, network bandwidth & connections, number of processes and
threads, nubmer of file descriptors etc.

answer type longtext (length: 40)

a .12 personal information

As a final step, please provide some information about your experi-
ence with robotics and intelligent systems development.

a .12 .1 In which context do you develop robotics or intelligent systems?

answer type Fixed choice

• Student (excluding PhD students) (STUD)

• Researcher at a university (PhD students, scientific staff) (RES)

• Industry (IND)

• Other (OTHER)

a .12 .2 How many years of experience in robotics and intelligent systems
development do you have?

answer type integer (length: 10)

a .12 .3 How much of your time do you spend on developing in the follow-
ing domains?

Please indicate in percent of total development time. Numbers may
not sum up to 100.

Rate individually for:

• Hardware (HW)

• Drivers (DRV)

206 survey : failures in robotics systems

• Functional components (COMP)

• Inter-process communication infrastructure (COMM)

• Software architecture and integration (ARCH)

• Other (ANY)

answer type integer (length: 3) Hint: Percent of development
time

a .13 final remarks

Thank you very much for participating in this survey and thereby
supporting my research.

In case you have further questions regarding this survey or the
research topic in general, please contact me via email.

Johannes Wienke
jwienke [at] techfak.uni-bielefeld.de

B
FA I L U R E S U RV E Y R E S U LT S

b .1 used monitoring tools

The following table presents the results for question A.2.2. The free
text answers have been been grouped into categories (caption lines in
the table). For each answer that included at least one item belonging
to a category, the counter of each category was incremented. Hence,
the counts represent the number of answers that mentioned a cate-
gory at least once. Additionally, for each category, representative en-
tries have been counted the same way. Some of the answers include
uncommon or special-purpose tools or techniques. These have not
been counted individually and, hence, are visible only in the category
counts.

Notes regarding entries:

• “Middleware tools” represents entries that are specific to the
middleware-related aspects of an ecosystem. For instance, ROS_-
DEBUG has not been counted here. Instead, this belongs to the
“Manual log reading” category.

tool answer count

visualization 27

rviz 22

gnuplot 2

matplotlib 1

middleware tools 23

ROS command line 14

rqt 5

RSB 4

basic os tools 22

htop 12

ps 7

top 7

acpi 1

du 1

free 1

lsof 1

procman (gnome) 1

pstree 1

screen 1

tmux 1

Continued on next page

208 failure survey results

tool answer count

manual log reading 13

remote access 9

ssh 5

putty 1

rdesktop 1

vnc 1

custom mission-specific 4

generic network 2

netstat 1

tcpdump 1

wireshark 1

hardware signals 1

b .2 used debugging tools

The following table presents the results for question A.3.2. The free
text answers have been been grouped into categories (highlighted
lines in the table). For each answer that included at least one item be-
longing to a category, the counter of each category was incremented.
Hence, the counts represent the number of answers that mentioned a
category at least once. Additionally, for each category, representative
entries have been counted the same way. Some of the answers in-
clude uncommon or special-purpose tools or techniques. These have
not been counted individually and, hence, are visible only in the cat-
egory counts.

Notes regarding entries:

• “Middleware tools” represents entries that are specific to the
middleware-related aspects of an ecosystem. For instance, ROS_-
DEBUG has not been counted here. Instead, this belongs to the
“Manual log reading” category.

tool answer count

debuggers 19

gdb 17

pdb 3

VS debugger 2

ddd 1

jdb 1

Continued on next page

B.3 summarization of free form bug origins 209

tool answer count

runtime intropsection 13

valgrind 12

callgrind 2

kcachegrind 1

strace 1

generic 15

printf, cout, etc. 14

logfiles 4

git 1

middleware 12

ROS command line 5

RQT 2

RSB 2

simulation & visualization 7

gazebo 4

rviz 1

Vortex 1

stage 1

functional testing 6

gtest 2

junit 2

cppunit 1

rostest 1

ides 4

Qt Creator 2

KDevelop 1

LabVIEW 1

Matlab 1

Visual Studio 1

generic network 2

wireshark 2

tcpdump 1

dynamic analysis 1

Daikon 1

b .3 summarization of free form bug origins

The following table presents all answers to question A.4.3. Individual
answers have been split into distinct aspects. These aspects have been
assigned either to an existing answer category from question A.4.2 or
to new categories.

210 failure survey results

answer category

existing new

unknown driver init problems (start a
driver, and works only after second trial)

Driver & OS

environment noise (lighting condition vari-
ation, sound condition in speach recogni-
tion) hard to adapt to every possible varia-
tion

Environment

Insufficient Component Specifications Specification

Changed maps/environments Environment

lossy WiFi connections Hardware

unreliable hardware Hardware

in Field robotics, the environment is the
first enemy. . .

Environment

Environment changes Environment

sensor failures Hardware

unprofessional users Environment

Operation System / Firmware failure Driver & OS

network too slow Hardware

Loose wires Hardware

other researchers changing the robot con-
figuration

Config mgmt

coding bugs Logic

algorithm limitations Environment

sensor limitations Hardware lim

perception limitations Environment

wrong usage Environment

Failures in RT OS timing guarantees Driver & OS

b .4 summarization of other resources affected by bugs

The following table presents the free text results of question A.6.2. An-
swers have been split into distinct aspects and these aspects have been
assigned either to one of the existing categories from question A.6.1
or – if these did not match – new categories have been created to
capture the answers. Parts of answers that did not represent system
resources, which have a resource capacity that can be utilized, have
been ignored. These are marked as strikethrough text.

B.5 representative bugs 211

answer resource

existing new

USB bandwidth and or stabil-
ity

IO bandwidth

locks on files/devices/re-
sources

File descriptors

permissions

file system integrity

interprocess communication
queues, e.g. queue overflow

IPC

Files (devices) left open. File descriptors

Wrong operation in GPU leads
to restart.

Memory leak – not sure why or
where

Memory

b .5 representative bugs

The following subsections present answers to the questions for rep-
resentative bugs (A.9). For the analysis, answers have been tagged
for various aspects and types of bugs being mentioned in them. Raw
submission texts have been reformatted to match the document and
typographical and grammatical errors have been corrected.

b .5 .1 Representativ bug 8

observation computer system unresponsive

cause memory leak

debugging

• find faulty process

• analyze memory usage (valgrind/gdb)

• repair code

affected resources main memory

tags basic programming issue; performance bug

212 failure survey results

b .5 .2 Representativ bug 10

observation System got stuck in infinite loop.

cause Unexpected infinite loop in the behaviour (state machine).
Noise in the data caused the system to infinitely switch between two
states.

debugging

1. Detection of which states were affected.

2. Detection of the responsible subsystem(s).

3. Detection of the responsible functions.

4. Recording data that caused the problem.

5. Analyzing the data and searching for unexpected situations.

6. Modification of the system in order to handle such situation
correctly.

affected resources CPU

tags coordination; environment-related

b .5 .3 Representativ bug 14

observation high latency in spread communication

cause wrong spread configuration/wrong deployment of compo-
nents

debugging trial & error: reconfiguration, stopping and starting
components, monitoring of latency via rsb-tools

affected resources network-latency

tags communication; performance bug

b .5 .4 Representativ bug 21

observation Incorrect response of the overall system according
to requested task request. System thinks it did not grasp an object
although it did and restarts grasping operation or cancels the task
due to the missing object in hand.

B.5 representative bugs 213

cause State machine design and/or logic error and/or untrig-
gered event due to sensor not triggering as expected (hardware) or
too much noise (environment noise). The root cause is often a case
not being handled correctly in a big system with a lot of sensors and
possible case.

debugging event logger analysis over XCF XML data, unit test of
single sensor output to see noise level or false positives.

affected resources Hardware (noise in the sensor)

tags coordination; environment-related

b .5 .5 Representativ bug 26

observation Segfault

cause Segfault

debugging gdb

affected resources

tags basic programming issue

b .5 .6 Representativ bug 30

observation Unexpected overall behavior.

cause Wrong logic in the abstract level.

debugging Run simulation in the abstract layer.

affected resources None.

tags coordination

b .5 .7 Representativ bug 41

observation Failure to observe expected high-level output. More
specifically, a map that was being built was lacking data.

cause Congested wireless network connection. The amount of
data could not be transmitted within the expected time frame.

214 failure survey results

debugging Logging of signals between modules on the deployed
system to verify data was being produced and transmitted correctly,
and logging of data received.

affected resources Network connection

tags communication; timing

b .5 .8 Representativ bug 42

observation Because of timing mismatch the planning system
was working with outdated data.

cause Non-event based data transfer.

debugging Going through multiple log files in parallel to find the
data that was transmitted in comparison to the data that was used in
the computation.

affected resources Non. Mostly mismatch between specifica-
tion and performed actions.

tags coordination; timing

b .5 .9 Representativ bug 46

observation Navigation did not work correctly

cause Algorithmic errors

debugging Dig in and verify steps in the algorithm

affected resources

tags

b .5 .10 Representativ bug 60

observation delays in robots command execution

cause supervision and management part of the framework

debugging benchmarking, profiling

affected resources

B.5 representative bugs 215

tags performance bug

b .5 .11 Representativ bug 69

observation memory leak

cause resource management, dangling pointers

debugging check, object/resource timeline, usually start with re-
sources that are created often and handed over regularly and there-
fore might have unclear ownership

affected resources memory, CPU

tags basic programming issue; performance bug

b .5 .12 Representativ bug 70

observation constantly increasing memory consumption

cause Memory leaks

debugging Running the code in offline mode with externally pro-
vided inputs and observing the memory consumption pattern. Tools
like valgrind or system process monitor helps to discover the prob-
lem

affected resources Working memory

tags basic programming issue; performance bug

b .5 .13 Representativ bug 76

observation Visually in system operation. In one case, elements
within a graphical display were misdrawn. In another, command
codes were misinterpreted, resulting in incorrect system operation.

cause Variable type mismatch e.g. integer vs. unsigned integer –
such as when a number intended to be a signed integer is interpreted
as an unsigned integer by another subsystem.

debugging Debugger using single step and memory access.

affected resources None

tags basic programming issue; performance bug

216 failure survey results

b .5 .14 Representativ bug 81

observation segfault

cause C++ pointers

debugging gdb, valgrind

affected resources none

tags basic programming issue

b .5 .15 Representativ bug 96

observation segmentation fault

cause logical errors, bad memory management

debugging using debuggers, looking and studying code

affected resources working memory, number of process and
threads

tags basic programming issue

b .5 .16 Representativ bug 128

observation Robot software is not working / partially working
(e.g. recognizing and grasping an object)

cause Wrong configuration and/or API changes that hasn’t been
changes in all components (Problem with scripting languages like
python)

debugging

• identify error message and component via log files / console
output

• Think about what could have caused the problem (look into
source code, git/svn commit messages/diffs)

• try to fix it directly or talk with other developers in case of
bigger changes / out of my responsibility

affected resources none

B.5 representative bugs 217

tags

b .5 .17 Representativ bug 135

observation middleware communication stopped / was only
available within small subsets of components

cause unknown

debugging

affected resources

tags not/accidentally solved; communication

b .5 .18 Representativ bug 136

observation

1. Application/process hang.

2. 100 % core usage on idle

3. Unbalanced load between cores (Monolithic code).

cause

1. Loose wire/couple (mostly USB)

2. Active wait
while(1) while(!flag); process(); flag = 0;

3. A bad design. No threads were used, but time measurements to
switch between tasks.

debugging

1. Check everything, realize that the file-device is open but device
is no longer present or has different pointer or has reseted

2/3. Check every code file. People use to make old-style structured
programming when using C/C++

when you notice the performance go brick, check CPU/memory us-
age with OS tools and notice one process is using everything but is
idle.

affected resources Mostly CPU

tags basic programming issue; performance bug

218 failure survey results

b .5 .19 Representativ bug 156

observation Difficult to reproduce, random segmentation faults

cause 90 % of the time it has been either accessing unallocated
memory (off-by-one errors) or threading issues

debugging When working with a system with many processes,
threads, inter-process communications, etc., the standard tools (gdb,
valgrind) are often not that helpful. If they can’t immediately point
me to the error, I’ll often resort to print statement debugging.

affected resources Memory leaks, CPU usage

tags basic programming issue

b .5 .20 Representativ bug 190

observation unforeseen system behavior, decreased system per-
formance

cause misconfiguration of middleware

debugging

• monitoring middleware configuration of concerned compo-
nents

• checking log-files

• sometimes debug print-outs

affected resources CPU, network load

tags communication; performance bug

b .5 .21 Representativ bug 191

observation Software controlling the robot crashed immediately
after started in robot or robot stop to move when has to perform
certain operation

cause The error was caused by not checking range of allocated
memory in some object’s constructor, we used sprintf instead of
snprintf

debugging

B.6 interesting bugs 219

• gdb – did not find anything

• valgrind – did not find anything

Both tools were run on PC, where the error did not occur, but we did
not use them on the robot’s pc. The bug was found accidentally.

affected resources access to non-allocated memory lead im-
mediately to crash of program.

tags basic programming issue; not/accidentally solved

b .6 interesting bugs

The following subsections present answers to the questions for inter-
esting bugs (A.11). Answers have been processed the same way as for
Appendix B.5 on page 211.

b .6 .1 Interesting bug 5

observation There are too many to remember. A recent one got
noticed by surprisingly high latency in a multithreaded processing
and visualization pipeline.

cause Sync to vblank was enabled on a system and due to a
possible bug in Qt multiple GL widgets contributed to the update
frequency. The maximum display update frequency dropped below
30 Hz.

debugging Compare systems and analyze timing inside the ap-
plication. Google the problem.

affected resources None

tags driver & OS

b .6 .2 Interesting bug 21

observation On an arm and hand system, with hand and arm
running on separate computers linked via an Ethernet bus, times-
tamped data got desynchronized. This was noticed on the internal
proprioception when fingers moved on the display and the arm did
not although both moved in physical world.

cause NTP not setup correctly. University had a specific NTP set-
ting requirement that was not set on some computers. Could actually
never synchronize.

220 failure survey results

debugging Looking at timestamps in the messages over rosbag

or rostopic tools. Analysing system clock drift with command line
tools.

affected resources working memory and CPU would be used
more due to more interpolation/extrapolation computation between
unsynced data streams.

tags configuration

b .6 .3 Interesting bug 32

observation PCL segfaulted on non-Debian/Ubuntu machines
when trying to compute a convex hull.

cause The code was written to support Debian’s libqhull, ignor-
ing the fact that Debian decided to deviate from the upstream module
in one compile flag that changed a symbol in the library from struct

to struct*. That way all non-Debian ports of libqhull failed to work
with PCL, and instead segfaulted while trying to access the pointer.

debugging

• minimal example

• printf within the PCL code

• printf within an overlayed version of libqhull

• gdb

• Debian package build description for libqhull

• upstream libqhull package

• 12 hours of continuous debugging.

affected resources Well, segfault, the entire module stopped
working. So basically everything was affected to some degree..

tags driver & OS; basic programming issue

b .6 .4 Interesting bug 46

observation The robot kept asking someones name.

cause Background noise in the microphone

B.6 interesting bugs 221

debugging The bug was obvious: no limit on the amount of ques-
tions asked. Simply drawing/viewing the state machine made this
very obvious.

affected resources

tags coordination; environment-related

b .6 .5 Interesting bug 60

observation signal processing in component chain gave differ-
ent results after several months

cause unknown

debugging

affected resources

tags not/accidentally solved

b .6 .6 Interesting bug 69

observation segfault

cause timing and location of allocated memory

debugging memory dumps. . . many many memory dumps

affected resources it did not affect resources constantly, but
system stability in general; maybe CPU and memory

tags basic programming issue

b .6 .7 Interesting bug 76

observation While operating, a robot system normally capable
of autonomous obstacle avoidance would unexpectedly drop commu-
nication with its wireless base station and drive erratically with high
probability of collision.

cause The main process was started in a Linux terminal and
launched a thread that passed wheel velocity information from the
main process to the robot controller. When the terminal was closed
or otherwise lost, the main process was terminated but the thread
continued to run, supplying old velocities to the robot controller.

222 failure survey results

debugging top, debugger, thought experiments

affected resources None

tags coordination

b .6 .8 Interesting bug 83

observation Random segfaults throughout system execution.

cause Bad memory allocation: malloc for sizeof(type) rather
than sizeof(type*).

debugging Backtrace with gdb, profiling with valgrind, eventual
serendipity to realize the missing * in the code.

affected resources Memory

tags basic programming issue

b .6 .9 Interesting bug 133

observation memory mismatch, random crashes

cause different components using different boost versions

debugging debugger, printf. Finally solved after hint from col-
league

affected resources

tags basic programming issue

b .6 .10 Interesting bug 149

observation Erratic behaviour of logic

cause Error in mathematical modeling

debugging Unit tests

affected resources None

tags

B.6 interesting bugs 223

b .6 .11 Interesting bug 150

observation An algorithm was implemented in both C++ and
MATLAB exactly the same way. However, only the MATLAB imple-
mentation was working correctly.

cause Difference in storing the float point variables in MATLAB
and C++. MATLAB rounded the numbers, however, C++ cut them.

debugging Step by step tracing and debugging, and watching
variables. Then, comparing with each other.

affected resources Working memory

tags basic programming issue

b .6 .12 Interesting bug 153

observation Control Program crash after a consistent length of
time

cause Presumably memory leak. Never knew for sure.

debugging Not sure

affected resources Not sure

tags basic programming issue; performance bug

b .6 .13 Interesting bug 156

observation Visualization window crashing 100 % of the time I
open it. Running the program inside of gdb resulted in the program
successfully running 100 % of the time.

cause ??? Likely something internal to closed-source graphics
drivers interacting with OpenGL/OGRE

debugging Was able to eventually generate a backtrace that
pointed to graphics drivers.

affected resources CPU/Memory/GPU were all affected be-
cause I had to run the program inside of gdb

tags driver & OS

224 failure survey results

b .6 .14 Interesting bug 162

observation bad localization of a mobile robot in outdoor cam-
pus environment. Jump of the estimation

cause Bad wheel odometry reading.

debugging Analyze log file

affected resources None. Loss of performance due to incor-
rect position tracking

B.7 collected system metrics 225

b .7 collected system metrics

b .7 .1 Host system metrics

b .7 .1 .1 Memory

total (B)
The total amount of working memory currently available in the
system.

used (B)
The currently used amount of memory, including caches etc.

usable (B)
The amount of memory that can be used by processes without
swapping. This can be a different value than total - used because
of caches etc.

b .7 .1 .2 Swap

total (B)
The total amount of swap space currently available in the sys-
tem.

used (B)
The amount of swap space currently being used.

b .7 .1 .3 CPU

CPU utilization is expressed using counters directly resembling the
entries of the proc file system. These counters represent the total
amount of time a CPU spent for one of the declared aspects since boot
(or overflow of the counter). These counters are measured in jiffies,
which is the length of one clock tick of the Linux software clock [MT].
The number of clock ticks per second is a kernel configuration pa-
rameter that varies between kernel versions and user choices [MT].
Therefore, the CPU measurements contain the length of one jiffy as a
data item to compute back these values to real units:

jiffy length (µs)
The length of one software clock tick.

For each (virtual) CPU core of a host, the following counters are
reported. Explanations are based on [Proc17; Per16]

total (jiffies)
The total time this CPU has spent in any mode, including idle
state.

idle (jiffies)
The time this CPU has been idling.

226 failure survey results

user (jiffies)
The time spent in user mode. These are executions in user space,
excluding other special calculations.

user_low (jiffies)
Time spent in user mode with lower processing priority (nice).

system (jiffies)
Time spent for processing system calls.

iowait (jiffies)
Time spent waiting for input/output (I/O) operations to com-
plete. This is usually an unreliable value because other opera-
tions are scheduled while waiting [Proc17].

irq (jiffies)
Time spent servicing hardware interrupts.

softirq (jiffies)
Time spent servicing softirqs, which are software-defined inter-
rupts to handle important processing, for instance, required to
fulfill real-time guarantees [Cor17].

steal (jiffies)
Time spent serving other operating systems in case the current
system is running in a virtualized context.

guest (jiffies)
Time spent serving a virtualized guest operating system.

Ideally, idle + all other detailed fields sum up to the total value.
However, no guarantee for this exists and new kernel versions might
introduce new detailed counters. If they are not represented by the
collection daemon, this calculation will fail.

In addition to these per-core system metrics, the Linux load is mea-
sured, which is “the number of processes in the system run queue
averaged over various periods of time” [Gla16]:

load 1 (number)
System run queue length average within the last minute.

load 5 (number)
System run queue length average within the last 5 minutes.

load 15 (number)
System run queue length average within the last 15 minutes.

b .7 .1 .4 Disk

For each file system partition, the following metrics are reported:

B.7 collected system metrics 227

space total (B)
The total size of the partition.

space used (B)
The currently used space on the partition.

Additionally, throughput metrics are available for each (physical)
block device. Due to implementation details of the kernel, these de-
vices are not always mutually exclusive. For instance, in case LVM
[LVM] or disk encryption using LUKS [Crypt] are used, the Linux
kernel device mapper places virtual devices above the actual physi-
cal hardware so that virtual resources are created with system metrics
coupled to the originating physical block devices. For each of these
devices, the following metrics are collected.

read/write count (number)
The number of read/write operations performed on this device
so far.

read/write bytes (B)
The number of bytes read from / written to this device so far.

read/write time (ms)
The time this device spent reading/writing data so far.

b .7 .1 .5 Network

For each network interface the following metrics are collected:

bytes sent/received (B)
The number of bytes this interface has sent/received so far.

packets sent/received (packets)
The number of network packets this interface has sent/received
so far.

send/receive errors (number)
The number of send/receive errors that have happened so far.

send/receive drops (packets)
The number of network packets dropped while sending or re-
ceiving.

Additionally, the number of currently existing network connections
is reported. These numbers are grouped by the address family used
by the connection (e.g. IPv4/6, Unix domain sockets) and the used
protocol (e.g. TCP, UDP). For all combinations of the two aforemen-
tioned axes, the current number of connections in different states is
reported.

228 failure survey results

num {state} (number)
Current number of connections in state {state}.

Please refer to the rst.devices.generic.NetworkState.Network-

Connection data type for the detailed list of states.

b .7 .1 .6 Users

The following metrics regarding currently logged in users of the host
system are reported:

users (number)
Current number of distinct users logged in.

sessions (number)
Current number of login sessions opened by all logged in users.
This represents the number of TTYs used by all users.

hosts (number)
Current number of distinct hosts users are logged in from.

b .7 .1 .7 Processes

Finally, the number of currently running processes on the host is
tracked:

processes (number)
Current number of running processes.

b .7 .2 Process metrics

For the process collection, the following metrics are collected. I will
represent the metrics with the pattern ${source}-${metric}, which I
will be using throughout the rest of this work.

b .7 .2 .1 Source proc/stat

The proc/stat source provides metrics regarding CPU and memory
utilization as well as the number of threads.

proc/stat-utime (µs)
Amount of time a process has spent in user mode since its start.

proc/stat-stime (µs)
Amount of time a process has spent in kernel mode (e.g. system
calls) since its start.

proc/stat-num_threads (number)
The number of operating systems threads (tasks) that a process
currently has.

B.7 collected system metrics 229

proc/stat-vsize (B)
The current virtual memory size of a process. This is the “to-
tal amount of virtual memory used by the task [(i.e. process
or thread)]. It includes all code, data and shared libraries plus
pages that have been swapped out and pages that have been
mapped but not used” [Top17]. Virtual memory also comprises
memory-mapped I/O.

proc/stat-rss (B)
The current RSS of a process. This is a “subset of the [. . .] [vir-
tual memory] representing the non-swapped physical memory
a task is currently using” [Top17].

As already explained in Section 2.1.2 on page 10, the utime and
stime metric are not updated periodically by the kernel. Instead, up-
dates are made in relation to a process’ activity [Sta15]. Especially
for processes with limited processing this leads to the described dis-
cretization artifacts in theses metrics, especially in stime, because
most processes spend less time in this state.

b .7 .2 .2 Source proc/io

The proc/io source provides information regarding the I/O band-
width a process imposes on a host system.

proc/io-rchar (B)
Number of bytes a process has caused to be read since its start.
“This is simply the sum of bytes which this process passed to
read(2) and similar system calls. It includes things such as ter-
minal I/O and is unaffected by whether or not actual physical
disk I/O was required” [Proc17].

proc/io-wchar (B)
Number of bytes a process has written since its start. Similar to
proc/io-rchar, this is not physical I/O, but just the sum of all
bytes passed to certain Linux system calls.

proc/io-read_bytes (B)
By the respective Linux man page, this is described as an “at-
tempt to count the number of bytes which this process really
did cause to be fetched from the storage layer” [Proc17]. This
is only accurate for block-based file systems and, for instance,
for NFS, the state is effectively unknown [see notes in Kle07].
Therefore, this has to be treated as a rough guess.

proc/io-write_bytes (B)
Similar to proc/io-read_bytes, an “attempt to count the num-
ber of bytes which this process caused to be sent to the storage
layer” [Proc17]. The same restrictions apply.

230 failure survey results

b .7 .2 .3 Source proc/fd

This source provides metrics regarding opened files.

proc/fd-open_fds (number)
The number of file descriptors a process has currently opened.
This includes all kinds of files that are available in Linux includ-
ing, for instance, sockets, terminal stream, and pipes.

proc/fd-open_files (number)
The number of currently opened data files of a process, exclud-
ing special types such as sockets and pipes.

proc/fd-open_connections (number)
The number of open network connections of a process.

C
S U RV E Y: D A S H B O A R D E VA L U AT I O N

The following sections represent the structure of the online survey
about the usefulness of resource utilization dashboards for robot-
ics and intelligent systems, which is discussed in Section 9.4.2 on
page 101. This is a direct export of the survey structure without mod-
ifications.

c .1 introduction

Thank you very much for pariticipating in this survey. The survey
aims at validating aspects of the resource dashboards (processes and
host) installed at the CSRA system.

Please mind that this specifically excludes the RSB introspection
information.

Completing this survey should take approximately 10 minutes. All
results will be handled anonymously.

c .2 general

c .2 .1 Please rate, how often you consult the monitoring dashboard in
different situations?

Rate
Rate individually for:

• During system startup (START)

• During normal system operation (NORM)

• When testing new features / components (TESTING)

• In case of a system problem (PROBLEM)

• During studies (STUDY)

answer type Fixed choice

• Never (0)

• Once or twice (1)

• Sometimes (2)

232 survey : dashboard evaluation

• Regularly (3)

• Always (4)

c .2 .2 How much insight do you gain into the consumption and availabil-
ity of computational resources (like CPU, I/O or memory) when
using the dashboard?

Please rate individually.
Rate individually for:

• the host system (computer) (HOST)

• individual system components (COMP)

answer type Fixed choice

• 0 No insight at all (0)

• 1 (1)

• 2 (2)

• 3 (3)

• 4 Better insights than before and with any other tool (4)

c .2 .3 Do you think you have a better understanding of the use of compu-
tational resource in the system as a result of the dashboard?

answer type Fixed choice

• Yes (Y)

• No (N)

c .2 .4 For the different kinds of computational resources, how much did
the dashboard improve your understanding of the consumption of
these resources?

Rate individually for:

• CPU usage (CPU)

• Memory usage (MEM)

• Disk usage and throughut (DISK)

• Network bandwidth / throughput (NET)

• Number of threads per process (THREAD)

• Open file descriptors (FDS)

• Established network connections (CONN)

C.3 debugging 233

answer type Fixed choice

• 0 Not at all (0)

• 1 (1)

• 2 (2)

• 3 (3)

• 4 Much deeper understanding (4)

c .2 .5 Please describe briefly, in which situation you find the dashboard
most valuable.

answer type longtext (length: 40)

c .3 debugging

The following questions relate to the use of the resource dashboards
in situations where issues like bugs or performance degradations
have appeared in the system.

c .3 .1 How often are issues that you observe in the system visible in the
dashboard?

answer type Fixed choice

• Never (0)

• Rarely (1)

• Sometimes (2)

• Regularly (3)

• Always (4)

c .3 .2 Does the dashboard help to isolate the origin of bugs?

answer type Fixed choice

• Yes (Y)

• No (N)

234 survey : dashboard evaluation

c .3 .3 Did you find bugs through the dashboard that you wouldn’t have
noticed at all or much later otherwise?

answer type Fixed choice

• Yes (Y)

• No (N)

c .3 .4 Please briefly describe the bugs that you have found.

answer type longtext (length: 40)

c .4 tools

c .4 .1 Which tools do / did you use apart from the dashboard to understand
resource utilization?

answer type longtext (length: 40)

c .4 .2 Did the dashboard reduce the use of other tools for the purpose of
understanding resource utilization?

answer type Fixed choice

• Yes (Y)

• No (N)

c .5 end

c .5 .1 In case you have further comments or ideas regarding the perfor-
mance dashboard, please indicate them here.

answer type longtext (length: 40)

c .6 final remarks

Thank you very much for participating in this survey and supporting
my research!

D
D A S H B O A R D S U RV E Y R E S U LT S

d.1 found bugs

Answers to question C.3.4:

Answer 3

• huge amounts of threads

• dying java applications due to reallocation of big heap blocks

• lagging due to overloading a machine with too many compo-
nents

Answer 4

• memory leaks

• infinite loops

Answer 5

• unusual CPU usage of components and correlation to other pro-
cesses

• very high thread usage

• too high network connections

Answer 6

• threads have not been shut down correctly

• components induced general slowness due to heavy resource
usage (network, i/o)

Answer 7

Threading problem.

Answer 9

Memory leaks and thread limits

E
T O B I D ATA S E T D E TA I L S

e .1 included components

The following list provides a short description of the purpose of each
component of the ToBi system used in the fault detection dataset pre-
sented in Chapter 12 on page 141. Components are indexed by their
technical names used during analyses based on this dataset.

armcontrol Controls the Katana arm used as a manipulator for the
system. It implements the required motion planing tasks and
is directly connected to interface of the arm. Processing only
happens on request via RPC methods.

facerec Implements a face recognition system. The component is
directly connected to the used camera. Processing happens on
RPC requests.

legdetector Continuously detect legs and leg pairs in laser scanner
results provided via RSB.

objectbuilder Implements tracking of persons in global coordinates
based on the detected legs from the legdetector. Processing is
continuous.

objectrecognition Realizes an on-demand object recognition sys-
tem which is triggered via RPC calls. The component is directly
connected to the used camera.

rsbnavigation Provides an RSB front end to the navigation stack of
the mobile base. Some parts of this component operate only on
request, while other parts operate continuously.

scenersbam A memory component that persists knowledge about the
world. Processing happens on request.

speechrec A speech recognition component directly connected to the
system microphone. Uses continuous processing.

spread The underlying communication daemon of the RSB middle-
ware.

texttospeech On-demand speech production directly connected to
the system sound output.

statemachine The central controlling state machine of the system
based on Siepmann and Wachsmuth [SW11]. Connects to most
of the other system components.

238 tobi dataset details

e .2 relation of bugs to components

The following list explains which performance bug included in the
ToBi dataset (cf. Section 12.2 on page 144) affects which of the system
components.

armserverAlgo armcontrol

bonsaiParticipantLeak statemachine

bonsaiTalkTimeout statemachine

btlAngleAlgo statemachine

clafuSleep objectrecognition

clockShift Affects all components running on the laptop where the
clock was shifted: armcontrol, legdetector, objectbuilder, ob-
jectrecognition.

facerecSkippable facerec

legdetectorSkippable legdetector

objectBuilderSkippable objectbuilder

pocketSphinxLeak speechrec

spreadLatency Affects all components.

A C R O N Y M S

A
AEW

accumulated event window. used on: pp. 152, 155, 156, 158, 159,
161, 164–167, 174, 179, 180

API
application programming interface. used on: pp. 80, 82, 94, 110,
112–114, 120, 123, 126, 132, 135

APM
application performance monitoring. used on: pp. 10, 105, 106

AST
abstract syntax tree. used on: pp. 128, 131, 133–136

AUC
area under curve. used on: pp. 121, 122, 180, 183, 184

C
CBSE

component-based software engineering. used on: pp. 43, 45, 46,
51

CI
continuous integration. used on: pp. 116, 119, 137, 189

CPU
central processing unit. used on: pp. v, 7–11, 25, 35, 37, 38, 62,
79, 81, 99, 100, 107, 109, 118, 145, 164–166, 170, 173, 180, 183,
184

CSRA
Cognitive Service Robotics Apartment. used on: pp. 99, 101,
102, 120

CSV
comma-separated values. used on: pp. 66, 73, 76, 77, 147

D
DSL

domain-specific language. used on: pp. 106, 123, 125–137, 171

F
FA

feature agglomeration. used on: p. 157
FDD

fault detection and diagnosis. used on: p. 16
FDI

fault detection and isolation. used on: p. 16

240 acronyms

FDIR
fault detection, isolation, and recovery. used on: p. 16

FS
feature selection. used on: p. 157

G
GBR

gradient boosted regression trees. used on: pp. 157, 159, 161
GUI

graphical user interface. used on: p. 106

H
HDF5

hierarchical data format 5. used on: pp. 117, 119
HRI

human–robot interaction. used on: pp. 3, 4, 68, 71, 72, 78, 143
HTTP

Hypertext Transfer Protocol. used on: pp. 56, 94, 106, 107, 127

I
I/O

input/output. used on: pp. 81, 226, 229
IaaS

infrastructure as a service. used on: p. 33
IDE

integrated development environment. used on: pp. 125, 127–
129, 134, 135, 171

IDL
interface description language. used on: pp. 47–49, 65, 67

IPC
inter-process communication. used on: pp. 22, 24, 25, 27, 47

J
JSON

JavaScript Object Notation. used on: pp. 66, 83, 126, 152

K
KPI

key performance indicator. used on: pp. 10, 17–19, 32, 93, 94,
106, 107, 118, 144, 178

KR
kernel ridge regression. used on: pp. 157, 159, 161

KS
Kolmogorov-Smirnov. used on: pp. 102, 118, 121–123

M
M2M

model-to-model. used on: pp. 128, 132

acronyms 241

MARTE
Modeling and Analysis of Real-Time Embedded Systems.
used on: p. 34

MDSD
model-driven software development. used on: pp. 38, 39, 125

MTBF
mean time between failures. used on: pp. xiii, 24, 28

N
NaN

Not a Number. used on: pp. 154, 156
NTP

network time protocol. used on: pp. 73, 75, 145

O
OCSVM

one-class support vector machine. used on: pp. 179–181, 183,
184

P
PaaS

platform as a service. used on: p. 33
PCA

principle component analysis. used on: p. 107
PID

process identifier. used on: pp. 87–89
POSIX

Portable Operating System Interface. used on: p. 82

Q
QoS

quality of service. used on: pp. 18, 33, 36, 39, 59–61

R
RBF

radial basis function. used on: p. 157
RMSE

root mean square error. used on: pp. 158, 159, 161, 162, 165,
168, 172

ROC
receiver operator characteristic. used on: pp. 121, 122, 180, 183,
184

RPC
remote procedure call. used on: pp. 47, 48, 55, 63, 66, 111, 167,
170, 180, 237

RRSE
root relative squared error. used on: pp. 158, 159

242 acronyms

RSB
Robotics Service Bus. used on: pp. xiii, xv, 51, 52, 54–63, 65–69,
75, 76, 83–86, 89, 95, 99–101, 111–114, 120, 142, 144–146, 152,
153, 155, 156, 179, 193, 237

RSS
resident set size. used on: pp. 160, 229

RST
Robotics Systems Types. used on: pp. xiii, xvi, 63–65, 67, 85, 86,
95, 96, 130, 153

S
SLA

service level agreement. used on: pp. 18, 172
SLAM

simultaneous localization and mapping. used on: pp. 36, 142,
170, 171

SUT
system under test. used on: pp. 106, 107, 125

T
TCP

transmission control protocol. used on: pp. 48, 59, 144, 227
TTS

text to speech. used on: pp. 64, 100, 145

U
UML

Unified Modeling Language. used on: pp. 18, 34, 63, 74, 85, 86,
97, 126

URI
Uniform Resource Identifier. used on: p. 57

URL
Uniform Resource Locator. used on: p. 127

UTP
UML Testing Profile. used on: pp. 126, 127

UUID
universally unique identifier. used on: p. 56

V
VFOA

visual focus of attention. used on: p. 71

X
XML

Extensible Markup Language. used on: pp. 59, 60, 106, 119, 126,
132, 134, 135

XML-RPC
Extensible Markup Language Remote Procedure Call. used
on: p. 83

acronyms 243

XMPP
Extensible Messaging and Presence Protocol. used on: p. 106

Y
YAML

YAML Ain’t Markup Language. used on: p. 126

G L O S S A RY

B
bug

A software or hardware defect that potentially causes a fail-
ure. used on: pp. 14, 15, 17–19, 21, 24–29, 103, 105, 143–146, 158,
175, 181, 183, 185

C
component

A “component is a unit of composition, and it must be speci-
fied in such a way that it is possible to compose it with other
components and integrate it into systems in a predictable
way” [Crn+02]. See Section 5.1 on page 43. In this work, used
interchangeably with microservice. used on: pp. v, 4, 5, 21, 25,
29, 33–35, 37–39, 43–52, 58, 63, 66–68, 73, 74, 78–80, 82, 84,
86–89, 93, 96, 97, 99, 100, 102, 105–112, 114–123, 125, 127, 135–
137, 141, 142, 144–146, 150–152, 154–157, 159, 160, 162–170,
172–175, 177–185, 189–191, 194, 237, 238

component interface
“[A]ccess points [. . .] [which] allow clients of a component,
usually components themselves, to access the services pro-
vided by the component” [Szy03, p. 42]. used on: pp. 44, 49,
50, 107, 109, 164, 169, 170

component model
A “component model defines a set of standards for com-
ponent implementation, naming, interoperability, customiza-
tion, composition, evolution, and deployment” [WS01]. used
on: pp. 34, 44, 47, 48, 52, 68

component platform
“[D]efines the rules of deployment, installation, and activa-
tion of components” [Szy03, p. 44]. used on: pp. 44, 45, 47, 48

computational resource
Abstract resources used to perform complexity analysis of
algorithms. See Section 2.1 on page 7. used on: p. 7

connector
Technical interface in RSB that realizes a transport and con-
nects participants to this transport. used on: pp. 59, 60

converter
An object in RSB that is responsible for serialization between
user-defined event payload and specific wire format, for in-
stance a binary representation. used on: pp. 59–63, 65, 67, 68

246 glossary

converter selection strategy
Exchangeable and user-definable strategies to select appro-
priate RSB converters. used on: p. 60

D
dashboard

“A dashboard is a visual display of the most important in-
formation needed to achieve one or more objectives; consoli-
dated and arranged on a single screen so the information can
be monitored at a glance” [Few04]. used on: pp. xiii, 23, 28, 32,
38, 93–103, 143, 189, 231

dependability
“The ability to avoid service failures that are more frequent
and more severe than is acceptable” [Avi+04]. used on: pp. v,
3–5, 12–17, 21, 23, 28, 31, 32, 80, 91, 139, 141, 184, 189, 190, 194

dependable computing
Unifying term for research and methods dealing with the re-
liability, safety and security of computing systems. See Sec-
tion 2.2 on page 12. used on: pp. 12, 14–17

distributed system
“A distributed system is one in which components located
at networked computers communicate and coordinate their
actions only by passing messages” [Cou+12, p. 1]. used on:
pp. 22, 28, 29, 33, 38, 45, 59, 68, 189, 190

E
event

In event-based systems, “a detectable condition that can trig-
ger a notification” [Fai06]. If not stated otherwise, this refers
to events in the RSB middleware. used on: pp. 54–63, 65, 66, 75,
84, 95, 111, 116, 120, 145, 147, 151–155, 158, 160–162, 164, 167,
171, 173–175, 179, 181–183, 185, 193

F
failure

Short for system failure. used on: pp. v, 14, 17, 19, 21, 28, 29,
146

fault
“An unpermitted deviation of at least one characteristic
property (feature) of the system from the acceptable, usual,
standard condition” [Ise06, p. 20], which can potentially be
observed through measurable errors. See Section 2.2.2 on
page 14. used on: pp. 14, 15, 17, 18, 21, 147, 158, 175–179, 183,
184

fault detection
“Determination of faults present in a system and the time of
the detection” [IB97]. used on: pp. v, 4, 16, 17, 23, 28, 141, 144,
156, 174–180, 182–185, 190, 194, 237

glossary 247

filter
In RSB, code that evaluates whether a received event should
be delivered to registered handlers. used on: pp. 61, 62, 66

framework-level resource awareness
A realization of the resource awareness concept in terms of
reusable and generic methods that are provided by a soft-
ware architecture environment. In contrast to implementa-
tion-level resource awareness, the resource awareness is cre-
ated by the framework and requires only a minimum amount
of support from individual components and developers. used
on: pp. v, 5, 32–34, 37–39, 43, 50, 68, 69, 79, 84, 89, 95, 97, 105,
107, 120, 125, 128, 135, 136, 150–152, 167, 171, 173, 177, 189,
190

functional requirement
Defines a “necessary task, action or activity that must be ac-
complished” [US 01] by software. used on: pp. 3, 79, 105

H
handler

In RSB, a callback to be called on each received event. used
on: p. 61

hardware performance counter
A special system metric directly provided by a hardware com-
ponent of a system. See Section 2.1.2 on page 10. used on: p. 10

I
implementation-level resource awareness

A realization of the resource awareness concept in terms of
special modifications to or methods used for creating the
functional components of a software system. For instance:
anytime algorithms (cf. Section 4.2.3 on page 36). used on:
p. 31

informer
An RSB participant that sends events. used on: pp. 54, 58–60

infrastructure as a service
A service model of a cloud computing provider which en-
ables a cloud user to use “processing, storage, networks, and
other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can in-
clude operating systems and applications” [MG11]. used on:
p. 33

introspection
A method to “obtain metadata about an object or applica-
tion” [Vin05] at runtime. used on: pp. 51, 58, 61–63, 66, 68, 100,
152, 189

248 glossary

K
key performance indicator

Synonym for system resource originating from APM. used on:
pp. 10, 17–19, 32, 93, 94, 106, 107, 118, 144, 178

L
listener

An RSB participant that receives events. used on: pp. 54, 57, 58,
61, 66

M
mean time between failures

The “expected or observed time between consecutive failures
in a system or component” [III10]. used on: pp. 24, 28

microservice
An unit in a microservice architecture which is “built around
business capabilities and independently deployable” [LF14].
In this work, used interchangeably with component. used on:
pp. 49, 50, 173

microservice architecture
An architectural style where applications are developed “as
a suite of small services, each running in its own process and
communicating with lightweight mechanisms” [LF14]. used
on: pp. 49–51, 68, 69, 79, 87, 189, 190

middleware
A “software layer that provides a programming abstraction
as well as [a] masking [of] the heterogeneity of the under-
lying networks, hardware, operating systems and program-
ming languages” [Cou+12, p. 17]. used on: pp. xiii, 45, 46, 48,
49, 51–54, 56, 58, 59, 65–69, 71, 73–75, 77–79, 85, 86, 93, 95, 99,
107–110, 112–116, 120, 123, 142, 143, 150–153, 190, 193, 237

monitor
A “software tool or hardware device that operates concur-
rently with a system or component and supervises, records,
analyzes, or verifies the operation of the system or compo-
nent” [III10]. used on: p. 16

N
nonfunctional requirement

A “software requirement that describes not what the software
will do but how the software will do it” [III10]. used on: pp. 79,
105

notification
In event-based systems, a notification is “an event-triggered
signal sent to a run-time defined recipient” [Fai06]. used on:
pp. 54–56, 59, 61

glossary 249

P
participant

An object of the RSB middleware that forms the user-code en-
try point to communicate via the unified bus. used on: pp. 54–
56, 58–63, 66, 100, 101, 144, 152, 156

performance
The “degree to which a system or component accomplishes
its designated functions within given constraints, such as
speed, accuracy, or memory usage” [III10]. used on: pp. 17–19,
21, 31, 33, 67, 99, 105, 110, 116–118, 122

performance bug
A programming defect that causes decreases the perfor-
mance of a system in certain situations, but does not result in
a service outage. used on: pp. xiii, xiv, 18, 19, 21, 25–27, 29, 31,
79, 99, 103, 105, 139, 141, 143–147, 174–177, 181, 182, 184, 185,
189, 193, 194, 238

performance degradation
The visible effect of a performance bug, i.e. a reduction of
performance of a system that still delivers the correct service.
used on: pp. 18, 19, 141, 143, 144, 146, 149, 175, 177–179, 181–
185, 193

performance regression
A performance bug in existing functionality that was in-
troduced unintendedly while modifying a system. used on:
pp. 19, 105–108, 118–122, 174, 193

platform as a service
A service model of a cloud computing provider that en-
ables a cloud user to “to deploy onto the cloud infrastructure
consumer-created or acquired applications created using pro-
gramming languages, libraries, services, and tools supported
by the provider. The consumer does not manage or con-
trol the underlying cloud infrastructure including network,
servers, operating systems, or storage, but has control over
the deployed applications and possibly configuration settings
for the application-hosting environment” [MG11]. used on:
p. 33

Q
quality of service

The “description or measurement of the overall performance
of a service, such as [a] telephony or computer network or
[a] Cloud computing service” [Wik17]. used on: pp. 18, 33, 36,
39, 59–61

250 glossary

R
reliability

A “measure of the continuous service accomplish-
ment” [Lap95] or the “ability of a system to perform a
required function under stated conditions, within a given
scope, during a given period of time” [Ise06, p. 21]. used on:
pp. 14, 21, 28, 60, 149

resource
Synonym for system resource. used on: pp. 7–11, 25, 31, 33–38,
79, 82, 84, 97, 102, 103, 116, 117, 172, 173, 180, 189

resource awareness
A software construction and operation concept that focuses
on uncovering the usually hidden resource utilization of tech-
nical systems for developers and automated monitoring sys-
tems. See Chapter 4 on page 31. used on: pp. v, 5, 7, 31–39, 50,
79, 91, 93, 139, 141, 149–151, 167, 175, 189–191, 194

resource capacity
A quantification of the availability of a system resource. See
Section 2.1 on page 7. used on: pp. 8, 9, 210

resource contention
Conflict of multiple processes requesting the same system
resources in parallel. See Section 2.1 on page 7. used on: pp. 8,
119, 141, 173, 174

resource starvation
Situation in which the capacity of system resources is not
sufficient to fulfill a request that is therefore rejected. See Sec-
tion 2.1 on page 7. used on: pp. 8, 33, 139, 141, 174

resource utilization
Usage of system resource by processes running on a system.
See Section 2.1 on page 7. used on: pp. v, 4, 8, 9, 11, 12, 25, 31–
35, 37–39, 41, 67, 78–80, 82, 84–88, 91, 93–95, 97–99, 102, 103,
105, 106, 108, 109, 116–118, 122, 139, 141, 149–151, 155, 156,
158, 159, 162, 165, 172–175, 177, 178, 180, 182, 183, 189, 190,
193, 194, 231

Robotics Service Bus
The robotics middleware used in this work. used on: pp. 51, 52,
54–63, 65–69, 75, 76, 83–86, 89, 95, 99–101, 111–114, 120, 142,
144–146, 152, 153, 155, 156, 179, 193, 237

Robotics Systems Types
A library of data types for robotics and intelligent systems de-
fined using the Protocol Buffers [Protobuf] IDL. used on: pp. 63–
65, 67, 85, 86, 95, 96, 130, 153

robustness
The “degree to which a system or component can function
correctly in the presence of invalid inputs or stressful envi-
ronmental conditions” [III10]. used on: p. 14

glossary 251

S
scope

In RSB, the notation used to express a hierarchical communi-
cation channel. used on: pp. 57, 58, 61–63, 66, 100, 145, 151–153,
155, 156, 170

service
A system’s delivered function or, in other words: “the service
delivered by a system (in its role as a provider) is its behavior
as it is perceived by its user(s)” [Avi+04]. used on: pp. 13–18,
178

software regression
A bug in existing functionality that was introduced through
a modification to the software. used on: p. 17

system failure
An “event that occurs when the delivered service deviates
from correct service” [Avi+04]. See Section 2.2.2 on page 14.
used on: pp. xiii, 18, 19, 24, 25, 28, 29, 146, 149, 175

system metric
A measurable value exposed by an operating system, which
loosely reflects aspects of resource utilizations. See Sec-
tion 2.1.2 on page 10. used on: pp. xiii, 10–12, 18, 19, 23, 38,
79–87, 89, 90, 93–97, 99, 103, 107, 108, 116–121, 141, 143, 147,
149–164, 167, 170–173, 178, 179, 181, 182, 185, 226, 227

system metric source
Technical interface to access system metrics. See Section 2.1
on page 7. used on: pp. xv, 10, 11, 80, 81, 83, 85, 86, 88

system resource
(Physical) resources of a computer that can be allocated to a
computational task, for example, the CPU, working memory,
or network bandwidth. See Section 2.1 on page 7. used on:
pp. v, xiii, 3, 7–12, 25–27, 31, 32, 35, 38, 91, 97, 141, 144, 174,
182, 189, 210

T
transport

A transport in RSB realizes the transmission of event notifica-
tions between participants. used on: pp. 59–62, 66–68, 100

V
vendor lock-in

“Vendor lock-in, or just lock-in, is the situation in which
customers are dependent on a single manufacturer or sup-
plier for some product (i.e., a good or service), or products,
and cannot move to another vendor without substantial costs
and/or inconvenience” [Lip06]. used on: pp. 52, 56, 65

252 glossary

vertical component
Vertical components “capture know-how in specific func-
tional areas such as kinematics, motion planning, delibera-
tive control, and address the requirements of target applica-
tion domains such as service robotics, space robotics, or hu-
manoid robotics” [BS09]. used on: pp. 49, 108, 109, 120, 123,
150

virtual resource
A system resource that is not directly coupled to hardware,
but instead exists only as a software artifact of the operating
system, potentially with relation to physical resources. For
instance, the file system is a virtual resource with own prop-
erties and a relation to the disk as a hardware resource. used
on: pp. 12, 25, 227

W
wire schema

String-based declaration of the encoding of serialized event
payloads in RSB. used on: p. 60

wire type
The technical representation in which an RSB transport ex-
pects serialized content for transmission, for instance, byte
sequences or XML documents. used on: pp. 59, 60

B I B L I O G R A P H Y

own publications

[Jay+13] Dinesh Babu Jayagopi et al. “The vernissage corpus. A conver-
sational Human-Robot-Interaction dataset.” In: Proceedings of
the 8th ACM/IEEE International Conference on Human-Robot In-
teraction. Ed. by Hideaki Kuzuoka et al. IEEE, 2013, pp. 149–
150. doi: 10.1109/HRI.2013.6483545. used on: p. 78

[Klo+11] David Klotz et al. “Engagement-based Multi-party Dialog with
a Humanoid Robot.” In: Proceedings of the SIGDIAL 2011 Confer-
ence. Association for Computational Linguistics, 2011, pp. 341–
343. used on: p. 68

[San+12] Jordi Sanchez-Riera et al. “Online multimodal speaker detec-
tion for humanoid robots.” In: 12th IEEE-RAS International
Conference on Humanoid Robots (Humanoids 2012). IEEE, 2012,
pp. 126–133. doi: 10.1109/HUMANOIDS.2012.6651509. used on:
p. 68

[Wie+18] Johannes Wienke et al. “Model-Based Performance Testing for
Robotics Software Components.” In: Second IEEE International
Conference on Robotic Computing. IEEE, 2018, pp. 25–32. doi:
10.1109/IRC.2018.00013. used on: p. 125

[WKW12] Johannes Wienke, David Klotz, and Sebastian Wrede. “A
Framework for the Acquisition of Multimodal Human-Robot
Interaction Data Sets with a Whole-System Perspective.” In:
Multimodal Corpora: How Should Multimodal Corpora Deal with
the Situation? Ed. by Jens Edlund, Dirk Heylen, and Patrizia
Paggio. 2012, pp. 46–49. used on: pp. 71, 77

[WMW16] Johannes Wienke, Sebastian Meyer zu Borgsen, and Sebastian
Wrede. “A Data Set for Fault Detection Research on Compo-
nent-Based Robotic Systems.” In: Towards Autonomous Robotic
Systems. Ed. by Lyuba Alboul, Dana Damian, and Jonathan M.
Aitken. Lecture Notes in Artificial Intelligence 9716. Springer
International Publishing, 2016, pp. 339–350. doi: 10.1007/978-
3-319-40379-3_35. used on: pp. 21, 141

[WNW12] Johannes Wienke, Arne Nordmann, and Sebastian Wrede. “A
Meta-Model and Toolchain for Improved Interoperability of
Robotic Frameworks.” In: Simulation, Modeling, and Program-
ming for Autonomous Robots. Ed. by Itsuki Noda et al. Lec-
ture Notes in Artificial Intelligence 7628. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 323–334. doi: 10.1007/
978-3-642-34327-8_30. used on: p. 67

https://doi.org/10.1109/HRI.2013.6483545
https://doi.org/10.1109/HUMANOIDS.2012.6651509
https://doi.org/10.1109/IRC.2018.00013
https://doi.org/10.1007/978-3-319-40379-3_35
https://doi.org/10.1007/978-3-319-40379-3_35
https://doi.org/10.1007/978-3-642-34327-8_30
https://doi.org/10.1007/978-3-642-34327-8_30

254 bibliography

[WW11] Johannes Wienke and Sebastian Wrede. “A Middleware for
Collaborative Research in Experimental Robotics.” In: IEEE /
SICE International Symposium on System Integration (SII 2011).
IEEE, 2011, pp. 1183–1190. doi: 10.1109/SII.2011.6147617.
used on: pp. 51, 69

[WW16a] Johannes Wienke and Sebastian Wrede. A Fault Detection Data
Set for Performance Bugs in Component-Based Robotic Systems.
2016. doi: 10.4119/unibi/2900912. Dataset. used on: p. 147

[WW16b] Johannes Wienke and Sebastian Wrede. A Fault Detection Data
Set for Performance Bugs in Component-Based Robotic Systems -
Sources. 2016. doi: 10.4119/unibi/2900911. Dataset. used on:
p. 147

[WW16c] Johannes Wienke and Sebastian Wrede. “Autonomous Fault
Detection for Performance Bugs in Component-Based Robotic
Systems.” In: 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. IEEE, 2016, pp. 3291–3297. doi: 10.
1109/IROS.2016.7759507. used on: pp. 151, 175

[WW16d] Johannes Wienke and Sebastian Wrede. “Continuous Regres-
sion Testing for Component Resource Utilization.” In: Interna-
tional Conference on Simulation, Modeling, and Programming for
Autonomous Robots. IEEE, 2016, pp. 273–280. doi: 10.1109/
SIMPAR.2016.7862407. used on: p. 105

[WW17a] Johannes Wienke and Sebastian Wrede. “Performance regres-
sion testing and run-time verification of components in robot-
ics systems.” In: Advanced Robotics 31 (22 2017), pp. 1177–1192.
issn: 0169-1864. doi: 10.1080/01691864.2017.1395360. used
on: pp. 105, 165, 168, 170

[WW17b] Johannes Wienke and Sebastian Wrede. Robotics Components Re-
source Utilization for Performance Regression Detection. 2017. doi:
10.4119/unibi/2913636. Dataset. used on: p. 121

general

[Ace+13] Giuseppe Aceto et al. “Cloud monitoring. A survey.” In: Com-
puter Networks 57 (9 2013), pp. 2093–2115. issn: 13891286. doi:
10.1016/j.comnet.2013.04.001. used on: p. 32

[AiC+04] Mitchell Ai-Chang et al. “MAPGEN: Mixed-Initiative Planning
and Scheduling for the Mars Exploration Rover Mission.” In:
IEEE Intelligent Systems 19 (1 2004), pp. 8–12. issn: 1541-1672.
doi: 10.1109/MIS.2004.1265878. used on: p. 35

[AL86] Algirdas Antanas Avižienis and Jean-Claude Laprie. “Depend-
able computing. From concepts to design diversity.” In: Pro-
ceedings of the IEEE 74 (5 1986), pp. 629–638. issn: 0018-9219.
doi: 10.1109/PROC.1986.13527. used on: p. 14

[ALR01] Algirdas Antanas Avižienis, Jean-Claude Laprie, and Brian
Randell. Fundamental Concepts of Dependability. Tech. rep.
010028. Los Angeles, USA: University of California, 2001? url:
http : / / www . idt . mdh . se / kurser / computing / DVA416 /

https://doi.org/10.1109/SII.2011.6147617
https://doi.org/10.4119/unibi/2900912
https://doi.org/10.4119/unibi/2900911
https://doi.org/10.1109/IROS.2016.7759507
https://doi.org/10.1109/IROS.2016.7759507
https://doi.org/10.1109/SIMPAR.2016.7862407
https://doi.org/10.1109/SIMPAR.2016.7862407
https://doi.org/10.1080/01691864.2017.1395360
https://doi.org/10.4119/unibi/2913636
https://doi.org/10.1016/j.comnet.2013.04.001
https://doi.org/10.1109/MIS.2004.1265878
https://doi.org/10.1109/PROC.1986.13527
http://www.idt.mdh.se/kurser/computing/DVA416/Lectures/avizienis01fundamental.pdf
http://www.idt.mdh.se/kurser/computing/DVA416/Lectures/avizienis01fundamental.pdf

bibliography 255

Lectures/avizienis01fundamental.pdf (visited on 2017-05-
04). used on: p. 15

[Ami+04] Yair Amir et al. The Spread Toolkit: Architecture and Performance.
Tech. rep. CNDS-2004-1. Johns Hopkins University, 2004. url:
http://www.cnds.jhu.edu/pub/papers/cnds-2004-1.pdf

(visited on 2016-09-08). used on: p. 59

[And+05] Noriaki Ando et al. “RT-middleware: distributed component
middleware for RT (robot technology).” In: 2005 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE, 2005,
pp. 3933–3938. doi: 10.1109/IROS.2005.1545521. used on:
pp. 46, 48

[AS98] Yair Amir and Jonathan Stanton. The Spread Wide Area Group
Communication System. Tech. rep. CNDS-98-4. Johns Hopkins
University, 1998. url: http://www.cnds.jhu.edu/pub/papers
/spread.ps (visited on 2016-09-08). used on: p. 59

[ASK08] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. “A Soft-
ware Platform for Component Based RT-System Development:
OpenRTM-Aist.” In: Simulation, Modeling, and Programming for
Autonomous Robots. Ed. by Stefano Carpin et al. Lecture Notes
in Artificial Intelligence 5325. Berlin, Heidelberg: Springer,
2008, pp. 87–98. doi: 10.1007/978- 3- 540- 89076- 8. used
on: p. 48

[Avi+04] Algirdas Antanas Avižienis et al. “Basic concepts and taxon-
omy of dependable and secure computing.” In: IEEE Transac-
tions on Dependable and Secure Computing 1 (1 2004), pp. 11–33.
issn: 1545-5971. doi: 10.1109/TDSC.2004.2. used on: pp. 12–
15, 17, 18, 246, 251

[Bar+96] Daniel J. Barrett et al. “A framework for event-based software
integration.” In: ACM Transactions on Software Engineering and
Methodology 5 (4 1996), pp. 378–421. doi: 10.1145/235321.
235324. used on: p. 54

[BBY16] Daniel J. Brooks, Momotaz Begum, and Holly A. Yanco. “Anal-
ysis of reactions towards failures and recovery strategies for
autonomous robots.” In: 25th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN). IEEE,
2016, pp. 487–492. doi: 10.1109/ROMAN.2016.7745162. used
on: p. 3

[Bee+15] Loy van Beek et al. RoboCup@Home 2015: Rules and Regulations.
2015. url: http://www.robocupathome.org/rules/2015_
rulebook.pdf (visited on 2016-09-06). used on: p. 142

[Ben+09] Saddek Bensalem et al. “Designing autonomous robots.” In:
IEEE Robotics & Automation Magazine 16 (1 2009), pp. 67–77.
issn: 1070-9932. doi: 10.1109/MRA.2008.931631. used on:
p. 105

[Bey+09] K. Beghdad Bey et al. “CPU Load Prediction Model for Dis-
tributed Computing.” In: Eighth International Symposium on Par-
allel and Distributed Computing, 2009. Ed. by Leonel Sousa and
Yves Robert. Los Alamitos, California: IEEE, 2009, pp. 39–45.
doi: 10.1109/ISPDC.2009.8. used on: pp. 156, 172

http://www.idt.mdh.se/kurser/computing/DVA416/Lectures/avizienis01fundamental.pdf
http://www.idt.mdh.se/kurser/computing/DVA416/Lectures/avizienis01fundamental.pdf
http://www.cnds.jhu.edu/pub/papers/cnds-2004-1.pdf
https://doi.org/10.1109/IROS.2005.1545521
http://www.cnds.jhu.edu/pub/papers/spread.ps
http://www.cnds.jhu.edu/pub/papers/spread.ps
https://doi.org/10.1007/978-3-540-89076-8
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1145/235321.235324
https://doi.org/10.1145/235321.235324
https://doi.org/10.1109/ROMAN.2016.7745162
http://www.robocupathome.org/rules/2015_rulebook.pdf
http://www.robocupathome.org/rules/2015_rulebook.pdf
https://doi.org/10.1109/MRA.2008.931631
https://doi.org/10.1109/ISPDC.2009.8

256 bibliography

[BHW16] Andreas Bihlmaier, Matthias Hadlich, and Heinz Wörn. “Ad-
vanced ROS Network Introspection (ARNI).” In: Robot Op-
erating System (ROS). The Complete Reference (Volume 1). Ed.
by Anis Koubâa. Studies in Computational Intelligence 625.
Cham: Springer International Publishing, 2016, pp. 651–670.
isbn: 978-3-319-26052-5. doi: 10.1007/978- 3- 319- 26054-
9_25. used on: pp. 38, 193

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Pal-
ladio component model for model-driven performance predic-
tion.” In: Journal of Systems and Software 82 (1 2009), pp. 3–22.
issn: 0164-1212. doi: 10.1016/j.jss.2008.03.066. used on:
pp. 7, 9, 33

[Bou01] Tony Bourke. Server load balancing. Sebastopol, CA: O’Reilly,
2001. isbn: 978-0-596-00050-9. used on: p. 33

[Bou16] Mohamed Boussaffa. Support building as a library. 2016. url:
https://github.com/raboof/nethogs/pull/40. used on: pp. 83,
87

[Bra00] Gary Bradski. The OpenCV Library. 2000. url: http://www.
drdobbs.com/open-source/the-opencv-library/184404319

(visited on 2017-08-17). used on: p. 59

[Bri08] Robert Bringhurst. The Elements of Typographic Style. 3.2. Point
Roberts, Wash.: Hartley & Marks, 2008. isbn: 978-0-88179-206-
5. used on: p. 285

[Bri16] Adrian Bridgwater. Microservices are not the same thing as com-
ponents. 2016. url: https://www.theregister.co.uk/2016/
01/06/inside_microservices/ (visited on 2017-07-31). used
on: p. 49

[Bru+13] Herman Bruyninckx et al. “The BRICS component model.” In:
Proceedings of the 28th Annual ACM Symposium on Applied Com-
puting. Ed. by Sung Y. Shin and José Carlos Maldonado. New
York, New York, USA: ACM Press, 2013, pp. 1758–1764. doi:
10.1145/2480362.2480693. used on: p. 46

[Bru01] Herman Bruyninckx. “Open robot control software: the ORO-
COS project.” In: Proceedings 2001 ICRA. IEEE International Con-
ference on Robotics and Automation. IEEE, 2001, pp. 2523–2528.
doi: 10.1109/ROBOT.2001.933002. used on: pp. 46, 47

[BRZ16] Maicon Bernardino Da Silveira, Elder M. Rodrigues, and
Avelino Francisco Zorzo. “Performance Testing Modeling: an
empirical evaluation of DSL and UML-based approaches.” In:
Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting. Ed. by Sascha Ossowski. New York, New York, USA:
ACM Press, 2016, pp. 1660–1665. doi: 10 . 1145 / 2851613 .

2851832. used on: p. 127

[BS09] Davide Brugali and Patrizia Scandurra. “Component-based
robotic engineering (Part I). Reusable Building Blocks.” In:
IEEE Robotics & Automation Magazine 16 (4 2009), pp. 84–96.
issn: 1070-9932. doi: 10.1109/MRA.2009.934837. used on:
pp. 43, 49, 252

https://doi.org/10.1007/978-3-319-26054-9_25
https://doi.org/10.1007/978-3-319-26054-9_25
https://doi.org/10.1016/j.jss.2008.03.066
https://github.com/raboof/nethogs/pull/40
http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.drdobbs.com/open-source/the-opencv-library/184404319
https://www.theregister.co.uk/2016/01/06/inside_microservices/
https://www.theregister.co.uk/2016/01/06/inside_microservices/
https://doi.org/10.1145/2480362.2480693
https://doi.org/10.1109/ROBOT.2001.933002
https://doi.org/10.1145/2851613.2851832
https://doi.org/10.1145/2851613.2851832
https://doi.org/10.1109/MRA.2009.934837

bibliography 257

[Buu12] Stef van Buuren. Flexible imputation of missing data. Chapman
& Hall/CRC interdisciplinary statistics series. Boca Raton, FL,
USA: CRC Press, 2012. isbn: 978-1-4398-6824-9. used on: p. 156

[BW14] Andreas Bihlmaier and Heinz Wörn. “Increasing ROS Re-
liability and Safety through Advanced Introspection Capa-
bilities.” In: Informatik 2014. Big Data - Komplexität meistern.
Ed. by Erhard Plödereder et al. GI-Edition Proceedings 232.
Gesellschaft für Informatik. Bonn: Gesellschaft für Informatik,
2014, pp. 1319–1326. used on: p. 38

[BZR16] Maicon Bernardino Da Silveira, Avelino Francisco Zorzo, and
Elder M. Rodrigues. “Canopus: A Domain-Specific Language
for Modeling Performance Testing.” In: 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2016, pp. 157–167. doi: 10.1109/ICST.2016.13. used on:
p. 127

[Čap14] Karel Čapek. R.U.R. Dover Thrift Editions. Newburyport:
Dover Publications, 2014. isbn: 978-0-486-41926-8. used on: p. 3

[Cas+06] Rebecca Castano et al. “Opportunistic Rover Science: Finding
and Reacting to Rocks, Clouds and Dust Devils.” In: 2006 IEEE
Aerospace Conference. IEEE, 2006, pp. 1–16. doi: 10.1109/AERO.
2006.1656011. used on: p. 35

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
“Anomaly detection: A survey.” In: ACM Computing Surveys 41

(3 2009), 15:1–15:58. issn: 0360-0300. doi: 10.1145/1541880.
1541882. used on: pp. 176, 178

[CDF01] G. Cugola, E. Di Nitto, and A. Fuggetta. “The JEDI event-based
infrastructure and its application to the development of the
OPSS WFMS.” In: IEEE Transactions on Software Engineering
27 (9 2001), pp. 827–850. issn: 0098-5589. doi: 10.1109/32.
950318. used on: p. 55

[Che+08] Shiping Chen et al. “Yet Another Performance Testing Frame-
work.” In: 19th Australian Conference on Software Engineering
(ASWEC 2008). Ed. by Farookh Khadeer Hussain. Los Alami-
tos, Calif.: IEEE Computer Soc, 2008, pp. 170–179. doi: 10 .

1109/ASWEC.2008.4483205. used on: p. 106

[Cis15] Cisco. How Does Load Balancing Work? 2015. url: https://
www.cisco.com/c/en/us/support/docs/ip/border-gateway-

protocol-bgp/5212-46.html (visited on 2017-06-29). used on:
p. 33

[CL02] Ivica Crnkovic and Magnus Peter Henrik Larsson, eds. Build-
ing reliable component-based software systems. Artech House com-
puting library. Boston: Artech House, 2002. isbn: 978-1-58053-
327-0. used on: p. 43

[CMS13] Matheus Cunha, Nabor Mendonca, and Americo Sampaio. “A
Declarative Environment for Automatic Performance Evalua-
tion in IaaS Clouds.” In: 2013 IEEE Sixth International Confer-
ence on Cloud Computing. IEEE, 2013, pp. 285–292. doi: 10 .

1109/CLOUD.2013.12. used on: p. 126

https://doi.org/10.1109/ICST.2016.13
https://doi.org/10.1109/AERO.2006.1656011
https://doi.org/10.1109/AERO.2006.1656011
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/32.950318
https://doi.org/10.1109/32.950318
https://doi.org/10.1109/ASWEC.2008.4483205
https://doi.org/10.1109/ASWEC.2008.4483205
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/5212-46.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/5212-46.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/5212-46.html
https://doi.org/10.1109/CLOUD.2013.12
https://doi.org/10.1109/CLOUD.2013.12

258 bibliography

[Com11] CVE-2011-2494. Common Vulnerabilities and Exposures. 2011.
url: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2011-2494 (visited on 2017-10-25). used on: p. 81

[Cor17] Jonathan Corbet. Software interrupts and realtime. 2017. url: h
ttps://lwn.net/Articles/520076/ (visited on 2017-11-10).
used on: p. 226

[Cou+12] George Coulouris et al. Distributed Systems. Concepts and Design.
5th ed. Harlow, Essex: Pearson Education, 2012. isbn: 978-0-
13-214301-1. used on: pp. 45, 59, 246, 248

[Cou11] Steve Cousins. “Exponential Growth of ROS.” In: IEEE Robotics
& Automation Magazine 18 (1 2011), pp. 19–20. issn: 1070-9932.
doi: 10.1109/MRA.2010.940147. used on: p. 47

[Crn+02] Ivica Crnkovic et al. “Basic Concepts in CBSE.” In: Building
reliable component-based software systems. Ed. by Ivica Crnkovic
and Magnus Peter Henrik Larsson. Artech House computing
library. Boston: Artech House, 2002. Chap. 1, pp. 1–22. isbn:
978-1-58053-327-0. used on: pp. 44, 245

[CW15] Dariusz Caban and Tomasz Walkowiak. “Prediction of the
Performance of Web Based Systems.” In: Dependability Prob-
lems of Complex Information Systems. Ed. by Wojciech Zamojski
and Jarosław Sugier. Vol. 307. Advances in Intelligent Systems
and Computing 307. Cham: Springer International Publishing,
2015, pp. 1–18. isbn: 978-3-319-08963-8. doi: 10.1007/978-3-
319-08964-5_1. used on: p. 34

[Dan+16] Timo Dankert et al. “Engagement Detection During Deictic
References in Human-Robot Interaction.” In: Social Robotics.
Ed. by Arvin Agah et al. Lecture Notes in Computer Science
9979. Cham: Springer International Publishing, 2016, pp. 930–
939. doi: 10.1007/978-3-319-47437-3_91. used on: p. 68

[Dav+13] Ian John Davis et al. “Regression-Based Utilization Prediction
Algorithms: An Empirical Investigation.” In: CASCON ’13: Pro-
ceedings of the 2013 Conference of the Center for Advanced Studies
on Collaborative Research. Ed. by James R. Cordy, Kryztof Czar-
necki, and Sang-Ah Han. Riverton, NJ, USA: IBM Corp., 2013,
pp. 106–120. used on: p. 172

[DB88] Thomas Dean and Mark Boddy. “An Analysis of Time-Depen-
dent Planning.” In: Proceedings of the Seventh National Confer-
ence on Artificial Intelligence. Ed. by Tom M. Mitchell and Reid
G. Smith. Association for the Advancement of Artificial Intelli-
gence. AAAI Press, 1988. used on: p. 36

[Dhi91] Balbir. S. Dhillon. Robot Reliability and Safety. New York, NY:
Springer New York, 1991. isbn: 978-1-4612-3148-6. doi: 10.
1007/978-1-4612-3148-6. used on: p. 3

[Dij72] Edsger W. Dijkstra. “The Humble Programmer.” In: Communi-
cations of the ACM 15 (10 1972), pp. 859–866. issn: 00010782.
doi: 10.1145/355604.361591. used on: p. 175

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2494
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2494
https://lwn.net/Articles/520076/
https://lwn.net/Articles/520076/
https://doi.org/10.1109/MRA.2010.940147
https://doi.org/10.1007/978-3-319-08964-5_1
https://doi.org/10.1007/978-3-319-08964-5_1
https://doi.org/10.1007/978-3-319-47437-3_91
https://doi.org/10.1007/978-1-4612-3148-6
https://doi.org/10.1007/978-1-4612-3148-6
https://doi.org/10.1145/355604.361591

bibliography 259

[Din08] Steven X. Ding. Model-based fault diagnosis techniques. Design
schemes, algorithms and tools. 2nd ed. Advances in Industrial
Control. Berlin: Springer, 2008. isbn: 978-1-4471-6111-0. doi:
10.1007/978-3-540-76304-8. used on: pp. 16, 178

[Dob04] Glen Dobson. Quality of Service in Service-Oriented Architectures.
Tech. rep. Lancaster University, 2004. url: http://digs.sour
ceforge.net/papers/qos.pdf (visited on 2017-05-17). used on:
p. 18

[DS11] Shaun Dunning and Darren Sawyer. “A little language for
rapidly constructing automated performance tests.” In: Pro-
ceedings of the second joint WOSP/SIPEW international conference
on Performance engineering - ICPE ’11. Ed. by Samuel Kounev et
al. New York, New York, USA: ACM Press, 2011, pp. 371–380.
doi: 10.1145/1958746.1958798. used on: p. 127

[Dup07] Lyn Dupré. BUGS in writing. A guide to debugging your prose.
Rev ed., 10. print. Boston: Addison-Wesley, 2007. isbn: 978-0-
201-37921-1. used on: p. 285

[Dut+14] Ayan Dutta et al. “searchUCSG: A fast coalition structure
search algorithm for modular robot reconfiguration under un-
certainty.” In: Robotica 32 (2 2014), pp. 225–244. issn: 0263-
5747. doi: 10.1017/S0263574714000095. used on: p. 36

[DVC13] Bruno Lopes Dalmazo, Joao P. Vilela, and Marilia Curado.
“Predicting Traffic in the Cloud. A Statistical Approach.” In:
Proceedings 2013 International Conference on Cloud and Green
Computing. IEEE, 2013, pp. 121–126. doi: 10.1109/CGC.2013.
26. used on: p. 173

[Eck11] Wayne W. Eckerson. Performance dashboards. Measuring, moni-
toring, and managing your business. 2nd ed. Hoboken, N.J: Wiley,
2011. isbn: 978-0-470-58983-0. used on: p. 93

[Fai06] Ted Faison. Event-Based Programming. Taking Events to the Limit.
Apress, 2006. isbn: 978-1-59059-643-2. used on: pp. 55, 56, 61,
246, 248

[Fat+14] Kaniz Fatema et al. “A survey of Cloud monitoring tools:
Taxonomy, capabilities and objectives.” In: Journal of Parallel
and Distributed Computing 74 (10 2014), pp. 2918–2933. issn:
07437315. doi: 10.1016/j.jpdc.2014.06.007. used on: pp. 32,
93

[Faw06] Tom Fawcett. “An introduction to ROC analysis.” In: Pattern
Recognition Letters 27 (8 2006), pp. 861–874. issn: 0167-8655.
doi: 10.1016/j.patrec.2005.10.010. used on: p. 121

[Few04] Stephen Few. “Dashboard Confusion.” In: Intelligent Enterprise
(2004). used on: pp. 93, 246

[Few06] Stephen Few. Information dashboard design. The effective visual
communication of data. Beijing: O’Reilly, 2006. isbn: 978-0-596-
10016-2. used on: p. 93

https://doi.org/10.1007/978-3-540-76304-8
http://digs.sourceforge.net/papers/qos.pdf
http://digs.sourceforge.net/papers/qos.pdf
https://doi.org/10.1145/1958746.1958798
https://doi.org/10.1017/S0263574714000095
https://doi.org/10.1109/CGC.2013.26
https://doi.org/10.1109/CGC.2013.26
https://doi.org/10.1016/j.jpdc.2014.06.007
https://doi.org/10.1016/j.patrec.2005.10.010

260 bibliography

[FHC97] Sara Fleury, Matthieu Herrb, and Raja Chatila. “GenoM: A
Tool for the Specification and the Implementation of Operating
Modules in a Distributed Robot Architecture.” In: Proceedings
of the 1997 IEEE/RSJ International Conference on Intelligent Ro-
bot and Systems. Innovative Robotics for Real-World Applications.
IEEE, 1997, pp. 842–849. doi: 10.1109/IROS.1997.655108.
used on: pp. 46, 48

[FHM12] Sara Fleury, Matthieu Herrb, and Anthony Mallet. GenoM
User’s Guide. 2012. url: https : / / www . openrobots . org /

distfiles/genom/genom.pdf (visited on 2017-08-07). used on:
p. 48

[Foo+10] King Chun Foo et al. “Mining Performance Regression Testing
Repositories for Automated Performance Analysis.” In: 10th
International Conference on Quality Software (QSIC). Ed. by Ji
Wang, W. K. Chan, and Fei-Ching Kuo. Piscataway, NJ: IEEE,
2010, pp. 32–41. doi: 10.1109/QSIC.2010.35. used on: pp. 107,
118, 121

[Foo+15] King Chun Foo et al. “An Industrial Case Study on the Au-
tomated Detection of Performance Regressions in Heteroge-
neous Environments.” In: 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering (ICSE 2015). Ed. by
Antonia Bertolino. 2. Los Alamitos, California: IEEE, 2015,
pp. 159–168. doi: 10.1109/ICSE.2015.144. used on: p. 18

[Fow05] Martin Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages? 2005. url: https://www.martinfowler.

com/articles/languageWorkbench.html. used on: p. 127

[Fox+99] Dieter Fox et al. “Monte Carlo Localization: Efficient Position
Estimation for Mobile Robots.” In: Proceedings of the Sixteenth
National Conference on Artificial Intelligence (AAAI-99), Eleventh
Innovative Applications of Artificial Intelligence Conference (IAAI-
99). Menlo Park, Calif. and Cambridge, Mass.: AAAI Press and
MIT Press, 1999, pp. 343–349. used on: p. 36

[GA07] Dora Luz Gonzalez-Bañales and Manuel Rodenes Adam.
“Web Survey Design and Implementation: Best Practices for
Empirical Research.” In: Proceedings of the European and Mediter-
ranean Conference on Information Systems 2007. 2007, pp. 1–10.
used on: p. 21

[Gam+95] Erich Gamma et al. Design patterns. Elements of reusable object-
oriented software. Addison-Wesley professional computing se-
ries. Boston, Mass.: Addison-Wesley, 1995. isbn: 978-0-201-
63361-0. used on: p. 60

[GBL09] Vahid Garousi, Lionel C. Briand, and Yvan Labiche. “A UML-
based quantitative framework for early prediction of resource
usage and load in distributed real-time systems.” In: Software
& Systems Modeling 8 (2 2009), pp. 275–302. issn: 1619-1366.
doi: 10.1007/s10270-008-0099-7. used on: p. 34

[GD17] Shaifu Gupta and Dileep Aroor Dinesh. “Online adaptation
models for resource usage prediction in cloud network.”
In: Twenty-third National Conference on Communications (NCC).
IEEE, 2017. doi: 10.1109/NCC.2017.8077082. used on: p. 172

https://doi.org/10.1109/IROS.1997.655108
https://www.openrobots.org/distfiles/genom/genom.pdf
https://www.openrobots.org/distfiles/genom/genom.pdf
https://doi.org/10.1109/QSIC.2010.35
https://doi.org/10.1109/ICSE.2015.144
https://www.martinfowler.com/articles/languageWorkbench.html
https://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1007/s10270-008-0099-7
https://doi.org/10.1109/NCC.2017.8077082

bibliography 261

[Geh+17] Raphaela Gehle et al. “How to Open an Interaction Be-
tween Robot and Museum Visitor?” In: Proceedings of the 2017
ACM/IEEE International Conference on Human-Robot Interaction.
Ed. by Bilge Mutlu et al. New York, New York, USA: ACM
Press, 2017, pp. 187–195. doi: 10.1145/2909824.3020219. used
on: p. 68

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely
randomized trees.” In: Machine Learning 63 (1 2006), pp. 3–42.
issn: 0885-6125. doi: 10.1007/s10994-006-6226-1. used on:
p. 157

[GGW10] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. “PRESS: PRe-
dictive Elastic ReSource Scaling for cloud systems.” In: 2010
International Conference on Network and Service Management
(CNSM 2010). Ed. by Yixin Diao, Hanan Lutfiyya, and Deep
Medhi. Piscataway, NJ: IEEE, 2010, pp. 9–16. doi: 10.1109/
CNSM.2010.5691343. used on: p. 172

[GH94] Stephen Gilmore and Jane Hillston. “The PEPA workbench. A
tool to support a process algebra-based approach to perfor-
mance modelling.” In: Computer Performance Evaluation Mod-
elling Techniques and Tools. Ed. by Günter Haring and Gabriele
Kotsis. Lecture Notes in Computer Science 794. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1994, pp. 353–368. doi:
10.1007/3-540-58021-2_20. used on: p. 34

[Gla16] getloadavg(3) - Linux Programmer;s Manual. 2016. url: http://m
an7.org/linux/man-pages/man3/getloadavg.3.html (visited
on 2017-11-10). used on: p. 226

[Gol+11] Raphael Golombek et al. “Online data-driven fault detection
for robotic systems.” In: 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Ed. by Nancy M. Amato. Pis-
cataway, NJ: IEEE, 2011, pp. 3011–3016. doi: 10.1109/IROS.
2011.6095034. used on: pp. 141, 145, 177, 178

[Gol13] Raphael Golombek. “Data-driven Fault Detection for Compo-
nent Based Robotic Systems.” Doctoral dissertation. Bielefeld:
Bielefeld University, 2013. used on: p. 15

[Gun+14] Haryadi S. Gunawi et al. “What Bugs Live in the Cloud?” In:
Proceedings of the 5th ACM Symposium on Cloud Computing. Ed.
by Edward D. Lazowska et al. New York, NY, USA: ACM, 2014,
pp. 1–14. doi: 10.1145/2670979.2670986. used on: pp. 21, 24,
26

[HC01] George T. Heineman and William T. Councill, eds. Component-
based software engineering. Putting the pieces together. Boston,
Mass.: Addison-Wesley, 2001. isbn: 978-0-201-70485-3. used on:
p. 43

[Hen17] Nicolas Hennion. The Glances 2.x API How to. 2017. url: https:
//github.com/nicolargo/glances/wiki/The-Glances-2.x-

API-How-to (visited on 2017-10-25). used on: p. 83

https://doi.org/10.1145/2909824.3020219
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1007/3-540-58021-2_20
http://man7.org/linux/man-pages/man3/getloadavg.3.html
http://man7.org/linux/man-pages/man3/getloadavg.3.html
https://doi.org/10.1109/IROS.2011.6095034
https://doi.org/10.1109/IROS.2011.6095034
https://doi.org/10.1145/2670979.2670986
https://github.com/nicolargo/glances/wiki/The-Glances-2.x-API-How-to
https://github.com/nicolargo/glances/wiki/The-Glances-2.x-API-How-to
https://github.com/nicolargo/glances/wiki/The-Glances-2.x-API-How-to

262 bibliography

[Heo15] Tejun Heo. Control Group v2. Linux. 2015. url: https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.

git/tree/Documentation/cgroup- v2.txt?id=ae59df0349b

af44c988b32a3b4dc21363d87df15 (visited on 2017-10-25). used
on: p. 82

[Her+16] Stefan Herbrechtsmeier et al. “AMiRo: A Modular & Cus-
tomizable Open-Source Mini Robot Platform.” In: 20th Inter-
national Conference on System Theory, Control and Computing (IC-
STCC). IEEE, 2016, pp. 687–692. doi: 10.1109/ICSTCC.2016.
7790746. used on: p. 68

[HJ15] Reiner Hähnle and Einar Broch Johnsen. “Designing Resource-
Aware Cloud Applications.” In: Computer 48 (6 2015), pp. 72–
75. issn: 0018-9162. doi: 10.1109/MC.2015.172. used on: p. 33

[HK06] Jiawei Han and Micheline Kamber. Data Mining. Concepts and
Techniques. 2nd ed. The Morgan Kaufmann series in data man-
agement systems. Amsterdam: Morgan Kaufmann Publishers
Inc., 2006. isbn: 978-1-55860-901-3. used on: p. 158

[HLN10] Veit Hoffmann, Horst Lichter, and Alexander Nyßen. “Pro-
cesses and Practices for Quality Scientific Software Projects.”
In: Proceedings of the 3rd International Workshop on Academic Soft-
ware Development Tools. 2010, pp. 95–108. used on: p. 5

[Hol10] Michael Holzheu. taskstats: Enhancements for precise accounting.
Linux Kernel Mailing List. 2010. url: https://lkml.org/
lkml/2010/11/11/275 (visited on 2017-10-25). used on: p. 81

[Hoo+15] André van Hoorn et al. “Automatic Extraction of Probabilistic
Workload Specifications for Load Testing Session-Based Appli-
cation Systems.” In: Proceedings of the 8th International Confer-
ence on Performance Evaluation Methodologies and Tools. Ed. by
Moshe Haviv et al. ICST, 2015, pp. 139–146. doi: 10.4108/
icst.valuetools.2014.258171. used on: p. 127

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The
Elements of Statistical Learning. Data Mining, Inference and Predic-
tion. 2nd ed. Springer series in statistics. New York: Springer,
2009. isbn: 978-0-387-84857-0. doi: 10 . 1007 / 978 - 0 - 387 -

84858-7. used on: p. 157

[HTW12] Guoqiang Hu, Wee Tay, and Yonggang Wen. “Cloud robotics:
Architecture, Challenges and Applications.” In: IEEE Network
26 (3 2012), pp. 21–28. issn: 0890-8044. doi: 10.1109/MNET.
2012.6201212. used on: p. 36

[IB97] Rolf Isermann and Peter Ballé. “Trends in the application of
model-based fault detection and diagnosis of technical pro-
cesses.” In: Control Engineering Practice 5 (5 1997), pp. 709–719.
issn: 0967-0661. doi: 10.1016/S0967-0661(97)00053-1. used
on: pp. 12, 14, 16, 246

[IET14] IETF. HTTP/1.1 Semantics and Content. RFC 7231. 2014. url:
https://tools.ietf.org/html/rfc7231 (visited on 2018-01-
03). used on: p. 56

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/cgroup-v2.txt?id=ae59df0349baf44c988b32a3b4dc21363d87df15
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/cgroup-v2.txt?id=ae59df0349baf44c988b32a3b4dc21363d87df15
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/cgroup-v2.txt?id=ae59df0349baf44c988b32a3b4dc21363d87df15
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/cgroup-v2.txt?id=ae59df0349baf44c988b32a3b4dc21363d87df15
https://doi.org/10.1109/ICSTCC.2016.7790746
https://doi.org/10.1109/ICSTCC.2016.7790746
https://doi.org/10.1109/MC.2015.172
https://lkml.org/lkml/2010/11/11/275
https://lkml.org/lkml/2010/11/11/275
https://doi.org/10.4108/icst.valuetools.2014.258171
https://doi.org/10.4108/icst.valuetools.2014.258171
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1109/MNET.2012.6201212
https://doi.org/10.1109/MNET.2012.6201212
https://doi.org/10.1016/S0967-0661(97)00053-1
https://tools.ietf.org/html/rfc7231

bibliography 263

[IET98] IETF. Uniform Resource Identifiers (URI): Generic Syntax. RFC
2396. 1998. url: https://www.ietf.org/rfc/rfc2396.txt
(visited on 2016-09-08). used on: p. 57

[IHE15] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez,
and Erik Elmroth. “Performance Anomaly Detection and Bot-
tleneck Identification.” In: ACM Computing Surveys 48 (1 2015),
pp. 1–35. issn: 0360-0300. doi: 10.1145/2791120. used on:
pp. 7, 8, 10, 17–19

[II04] ISO and IEC. Data elements and interchange formats — Informa-
tion interchange — Representation of dates and times. ISO/IEC
8601:2004. ISO, 2004. used on: p. 117

[II12] ISO and IEC. Information technology – Object Management Group
– Common Object Request Broker Architecture (CORBA) – Part 3:
Components. ISO/IEC 19500-3. Geneva, Switzerland: ISO, 2012.
used on: p. 44

[III08] IEEE, ISO, and IEC. Standard for Information Technology—
Portable Operating System Interface (POSIX®). IEEE 1003.1-2008.
Version 7. New York, NY, USA: IEEE, 2008. used on: p. 82

[III10] ISO, IEC, and IEEE. Systems and software engineering – Vocab-
ulary. ISO/IEC/IEEE 24765. Piscataway, NJ, USA: IEEE, 2010.
doi: 10.1109/IEEESTD.2010.5733835. used on: pp. 13, 14, 16,
17, 44, 248–250

[Iñi+12] Pablo Iñigo-Blasco et al. “Robotics software frameworks for
multi-agent robotic systems development.” In: Robotics and Au-
tonomous Systems 60 (6 2012), pp. 803–821. issn: 0921-8890.
doi: 10.1016/j.robot.2012.02.004. used on: p. 48

[Ise06] Rolf Isermann. Fault-Diagnosis Systems. An Introduction from
Fault Detection to Fault Tolerance. Berlin, Heidelberg, and New
York: Springer, 2006. isbn: 978-3-540-24112-6. doi: 10.1007/
3-540-30368-5. used on: pp. 12–15, 17, 246, 250

[ITU08] ITU-T. Definitions of terms related to quality of service. ITU-T
E.800. Recommendation. 2008. url: https://www.itu.int/
rec/T-REC-E.800-200809-I (visited on 2017-05-17). used on:
p. 18

[Jan+10] Choulsoo Jang et al. “OPRoS: A New Component-Based Robot
Software Platform.” In: ETRI Journal 32 (5 2010), pp. 646–656.
issn: 1225-6463. doi: 10.4218/etrij.10.1510.0138. used on:
pp. 46, 48

[Jay+12] Deepal Jayasinghe et al. “Expertus. A Generator Approach to
Automate Performance Testing in IaaS Clouds.” In: Proceedings
of the 2012 Fifth International Conference on Cloud Computing. Ed.
by Rong Chang. IEEE, 2012, pp. 115–122. doi: 10.1109/CLOUD.
2012.98. used on: p. 126

[JED13] Hengle Jiang, Sebastian Elbaum, and Carrick Detweiler. “Re-
ducing failure rates of robotic systems though inferred invari-
ants monitoring.” In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2013, pp. 1899–1906. doi:
10.1109/IROS.2013.6696608. used on: pp. 141, 145

https://www.ietf.org/rfc/rfc2396.txt
https://doi.org/10.1145/2791120
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1016/j.robot.2012.02.004
https://doi.org/10.1007/3-540-30368-5
https://doi.org/10.1007/3-540-30368-5
https://www.itu.int/rec/T-REC-E.800-200809-I
https://www.itu.int/rec/T-REC-E.800-200809-I
https://doi.org/10.4218/etrij.10.1510.0138
https://doi.org/10.1109/CLOUD.2012.98
https://doi.org/10.1109/CLOUD.2012.98
https://doi.org/10.1109/IROS.2013.6696608

264 bibliography

[JED16] Hengle Jiang, Sebastian Elbaum, and Carrick Detweiler. “Infer-
ring and monitoring invariants in robotic systems.” In: Auton-
omous Robots (2016). issn: 0929-5593. doi: 10.1007/s10514-
016-9576-y. used on: pp. 176, 178

[Jen14] Mike Jensen. Reliability vs Robustness. Mentor. 2014. url: http
s://blogs.mentor.com/mikej/blog/2014/10/07/reliability

-vs-robustness/ (visited on 2017-05-08). used on: p. 14

[JH15] Zhen Ming Jiang and Ahmed E. Hassan. “A Survey on Load
Testing of Large-Scale Software Systems.” In: IEEE Transactions
on Software Engineering 41 (11 2015), pp. 1091–1118. issn: 0098-
5589. doi: 10.1109/TSE.2015.2445340. used on: pp. 19, 106, 107,
109, 117

[Jin+12] Guoliang Jin et al. “Understanding and detecting real-world
performance bugs.” In: Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and Implementation.
Ed. by Jan Vitek, Lin Haibo, and Frank Tip. ACM Special Inter-
est Group on Programming Languages. New York, NY, USA:
ACM, 2012, p. 77. doi: 10.1145/2254064.2254075. used on:
pp. 19, 21, 24

[JMC03] Merijn de Jonge, Johan Muskens, and Michel Chaudron. “Sce-
nario-based prediction of run-time resource consumption in
component-based software systems.” In: 6th ICSE workshop
on component-based software engineering: automated reasoning and
prediction. Ed. by Ivica Crnkovic et al. 2003. used on: p. 34

[JST12] Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia
Tarifa. “Modeling Resource-Aware Virtualized Applications
for the Cloud in Real-Time ABS.” In: Formal Methods and Soft-
ware Engineering. Ed. by Toshiaki Aoki and Kenji Taguchi.
Lecture Notes in Computer Science 7635. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 71–86. doi: 10.1007/
978-3-642-34281-3_8. used on: p. 33

[JXS] Windy Road Technology. JUnit-Schema. 2016. url: https://
github.com/windyroad/JUnit-Schema (visited on 2017-11-28).
used on: p. 119

[Kar+11] Sertac Karaman et al. “Anytime Motion Planning using the
RRT*.” In: 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011, pp. 1478–1483. doi: 10.1109/ICRA.
2011.5980479. used on: p. 36

[KBT05] Tomáš Kalibera, Lubomír Bulej, and Petr Tůma. “Automated
Detection of Performance Regressions: The Mono Experience.”
In: 13th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems. Los
Alamitos, California: IEEE Computer Society, 2005, pp. 183–
190. doi: 10.1109/MASCOTS.2005.18. used on: p. 19

[KH04] Nathan Koenig and Andrew Howard. “Design and use
paradigms for Gazebo, an open-source multi-robot simulator.”
In: 2004 IEEE International Conference on Robotics and Automa-
tion. Piscataway, NJ: IEEE, 2004, pp. 2149–2154. doi: 10.1109/
IROS.2004.1389727. used on: p. 46

https://doi.org/10.1007/s10514-016-9576-y
https://doi.org/10.1007/s10514-016-9576-y
https://blogs.mentor.com/mikej/blog/2014/10/07/reliability-vs-robustness/
https://blogs.mentor.com/mikej/blog/2014/10/07/reliability-vs-robustness/
https://blogs.mentor.com/mikej/blog/2014/10/07/reliability-vs-robustness/
https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1007/978-3-642-34281-3_8
https://doi.org/10.1007/978-3-642-34281-3_8
https://github.com/windyroad/JUnit-Schema
https://github.com/windyroad/JUnit-Schema
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1109/MASCOTS.2005.18
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727

bibliography 265

[Kha+15] Eliahu Khalastchi et al. “Online data-driven anomaly detection
in autonomous robots.” In: Knowledge and Information Systems
43 (3 2015), pp. 657–688. issn: 0219-1377. doi: 10.1007/s
10115-014-0754-y. used on: pp. 32, 176

[KK17] Eliahu Khalastchi and Meir Kalech. “A sensor-based approach
for fault detection and diagnosis for robotic systems.” In: Au-
tonomous Robots 84 (4 2017). issn: 0929-5593. doi: 10.1007/
s10514-017-9688-z. used on: p. 176

[KKS14] Casey Kennington, Spyros Kousidis, and David Schlangen.
“InproTKs: A Toolkit for Incremental Situated Processing.”
In: Proceedings of the 15th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue (SIGDIAL). Ed. by Kallirroi
Georgila et al. Association for Computational Linguistics, 2014,
pp. 84–88. used on: p. 68

[KL08] Florian Knorn and Douglas J. Leith. “Adaptive Kalman Filter-
ing for anomaly detection in software appliances.” In: IEEE
INFOCOM workshops 2008. Piscataway, NJ: IEEE, 2008, pp. 1–6.
doi: 10.1109/INFOCOM.2008.4544581. used on: p. 177

[Kle07] Roland Kletzing. [PATCH] Documentation for io-accounting / re-
porting via procfs. 2007. url: https://github.com/torvalds/
linux/commit/f9c99463b0cd05603d125c915e2886d55a686b82.
used on: p. 229

[Kou+10] Samuel Kounev et al. “Towards Self-aware performance and
resource management in modern service-oriented systems.”
In: 2010 IEEE International Conference on Services Computing.
IEEE, 2010, pp. 621–624. doi: 10.1109/SCC.2010.94. used
on: p. 34

[Kou+14] Spyros Kousidis et al. “A Multimodal In-Car Dialogue System
That Tracks The Driver’s Attention.” In: Proceedings of the 16th
International Conference on Multimodal Interaction - ICMI ’14. Ed.
by Albert Ali Salah et al. New York, New York, USA: ACM
Press, 2014, pp. 26–33. doi: 10.1145/2663204.2663244. used
on: p. 68

[Koz10] Heiko Koziolek. “Performance evaluation of component-based
software systems: A survey.” In: Performance Evaluation 67 (8
2010), pp. 634–658. issn: 0166-5316. doi: 10.1016/j.peva.
2009.07.007. used on: pp. 8, 18, 34

[Kra09] Sacha Krakowiak. Middleware Architecture with Patterns and
Frameworks. Unpublished. 2009. url: http://lig- membres.
imag.fr/krakowia/Files/MW-Book/main-onebib.pdf (visited
on 2017-08-02). used on: p. 45

[Krö+14] Manfred Kröhnert et al. “Resource Prediction for Humanoid
Robots.” In: First Workshop on Resource awareness and adaptivity
in multi-core computing. Ed. by Frank Hannig and Jürgen Teich.
Paderborn, Germany, 2014, pp. 22–28. used on: p. 37

[Krö17] Manfred Kröhnert. A Contribution to Resource-Aware Architec-
tures for Humanoid Robots. Vol. 1. Karlsruhe Series on Hu-
manoid Robotics. Karslruhe, Germany: KIT Scientific Pub-
lishing, 2017. isbn: 978-3-7315-0632-4. doi: 10 . 5445 / KSP /

1000065884. used on: pp. 31, 36, 37

https://doi.org/10.1007/s10115-014-0754-y
https://doi.org/10.1007/s10115-014-0754-y
https://doi.org/10.1007/s10514-017-9688-z
https://doi.org/10.1007/s10514-017-9688-z
https://doi.org/10.1109/INFOCOM.2008.4544581
https://github.com/torvalds/linux/commit/f9c99463b0cd05603d125c915e2886d55a686b82
https://github.com/torvalds/linux/commit/f9c99463b0cd05603d125c915e2886d55a686b82
https://doi.org/10.1109/SCC.2010.94
https://doi.org/10.1145/2663204.2663244
https://doi.org/10.1016/j.peva.2009.07.007
https://doi.org/10.1016/j.peva.2009.07.007
http://lig-membres.imag.fr/krakowia/Files/MW-Book/main-onebib.pdf
http://lig-membres.imag.fr/krakowia/Files/MW-Book/main-onebib.pdf
https://doi.org/10.5445/KSP/1000065884
https://doi.org/10.5445/KSP/1000065884

266 bibliography

[KSW08] Alexander Kleiner, Gerald Steinbauer, and Franz Wotawa. “To-
wards Automated Online Diagnosis of Robot Navigation Soft-
ware.” In: Simulation, Modeling, and Programming for Autono-
mous Robots. Ed. by Stefano Carpin et al. Lecture Notes in
Artificial Intelligence 5325. Berlin, Heidelberg: Springer, 2008,
pp. 159–170. doi: 10.1007/978-3-540-89076-8_18. used on:
p. 176

[Kub17] The Kubernetes resource model. Kubernetes. 2017-02-24. url: ht
tps://github.com/kubernetes/community/blob/e0cf34381e

0842addf590bc43e62d669c25164ed/contributors/design-pr

oposals/resources.md (visited on 2017-04-26). used on: pp. 8, 9

[Lap95] Jean-Claude Laprie. “Dependable Computing and Fault Tol-
erance: Concepts and Terminology.” In: The Twenty-Fifth Inter-
national Symposium on Fault-Tolerant Computing. Highlights from
Twenty-Five Years. Los Alamitos, California: IEEE Computer So-
ciety, 1995. doi: 10.1109/FTCSH.1995.532603. used on: pp. 12–
14, 250

[Laz16] Maria Lazarte. Robots and humans can work together with new
ISO guidance. ISO. 2016. url: https://www.iso.org/news/
2016/03/Ref2057.html (visited on 2018-03-09). used on: p. 3

[LF14] Jamers Lewis and Martin Fowler. Microservices. a definition of
this new architectural term. 2014. url: https://martinfowler.
com/articles/microservices.html (visited on 2017-07-28).
used on: pp. 44, 49, 248

[Lik+05] Maxim Likhachev et al. “Anytime dynamic A*: an anytime,
replanning algorithm.” In: Proceedings of the Fifteenth Interna-
tional Conference on Automated Planning and Scheduling. Ed. by
Susanne Biundo. Menlo Park, California: AAAI Press, 2005,
pp. 262–271. used on: p. 36

[Lim+10] Jae-Hee Lim et al. “An Automated Test Method for Robot Plat-
form and Its Components.” In: International Journal of Software
Engineering and Its Applications 4 (3 2010), pp. 9–18. issn: 1738-
9984. used on: p. 105

[Lin06] Per-task statistics interface. Linux. 2006. url: https://git.ker
nel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

plain/Documentation/accounting/taskstats.txt?id=4ae

0edc21b152c126e4a8c94ad5391f8ea051b31 (visited on 2017-05-
12). used on: pp. 10, 81

[Lip06] The Linux Information Project. Vendor Lock-in Definition. 2006.
url: http://www.linfo.org/vendor_lockin.html (visited on
2017-08-14). used on: p. 251

[LKK10] Raz Lin, Eliahu Khalastchi, and Gal A. Kaminka. “Detecting
anomalies in unmanned vehicles using the Mahalanobis dis-
tance.” In: 2010 IEEE International Conference on Robotics and
Automation (ICRA 2010). IEEE, 2010, pp. 3038–3044. doi: 10.
1109/ROBOT.2010.5509781. used on: p. 178

https://doi.org/10.1007/978-3-540-89076-8_18
https://github.com/kubernetes/community/blob/e0cf34381e0842addf590bc43e62d669c25164ed/contributors/design-proposals/resources.md
https://github.com/kubernetes/community/blob/e0cf34381e0842addf590bc43e62d669c25164ed/contributors/design-proposals/resources.md
https://github.com/kubernetes/community/blob/e0cf34381e0842addf590bc43e62d669c25164ed/contributors/design-proposals/resources.md
https://github.com/kubernetes/community/blob/e0cf34381e0842addf590bc43e62d669c25164ed/contributors/design-proposals/resources.md
https://doi.org/10.1109/FTCSH.1995.532603
https://www.iso.org/news/2016/03/Ref2057.html
https://www.iso.org/news/2016/03/Ref2057.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/Documentation/accounting/taskstats.txt?id=4ae0edc21b152c126e4a8c94ad5391f8ea051b31
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/Documentation/accounting/taskstats.txt?id=4ae0edc21b152c126e4a8c94ad5391f8ea051b31
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/Documentation/accounting/taskstats.txt?id=4ae0edc21b152c126e4a8c94ad5391f8ea051b31
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/Documentation/accounting/taskstats.txt?id=4ae0edc21b152c126e4a8c94ad5391f8ea051b31
http://www.linfo.org/vendor_lockin.html
https://doi.org/10.1109/ROBOT.2010.5509781
https://doi.org/10.1109/ROBOT.2010.5509781

bibliography 267

[Loh+09] Manja Lohse et al. “Systemic interaction analysis (SInA) in
HRI.” In: Proceedings of the 4th ACM/IEEE International Confer-
ence on Human-Robot Interaction. Ed. by François Michaud et al.
New York, NY, USA: ACM, 2009, pp. 93–100. doi: 10.1145/
1514095.1514114. used on: p. 72

[LSL12] Florian Lier, Simon Schulz, and Ingo Lütkebohle. “Continuous
Integration for Iterative Validation of Simulated Robot Mod-
els.” In: Simulation, Modeling, and Programming for Autonomous
Robots. Ed. by Itsuki Noda et al. Lecture Notes in Artificial In-
telligence 7628. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 101–112. doi: 10.1007/978-3-642-34327-8_12. used
on: p. 105

[LSS11] Alex Lotz, Andreas Steck, and Christian Schlegel. “Runtime
monitoring of robotics software components. Increasing ro-
bustness of service robotic systems.” In: 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011, pp. 285–290.
doi: 10.1109/ICAR.2011.6088591. used on: p. 38

[Luc10] David Luckham. The power of events. An introduction to complex
event processing in distributed enterprise systems. 6th ed. Boston,
Mass.: Addison-Wesley, 2010. isbn: 978-0-201-72789-0. used on:
p. 56

[MC04] Johan Muskens and Michel Chaudron. “Prediction of Run-
time Resource Consumption in Multi-task Component-Based
Software Systems.” In: Component-Based Software Engineering.
Ed. by Ivica Crnkovic et al. Lecture Notes in Computer Sci-
ence 3054. Berlin and Heidelberg: Springer, 2004, pp. 162–177.
doi: 10.1007/978-3-540-24774-6_16. used on: pp. 8, 9, 34

[McC04] Steve McConnell. Code Complete. A practical handbook of soft-
ware construction. 2nd ed. Redmond, WA: Microsoft Press, 2004.
isbn: 978-0-7356-1967-8. used on: p. 24

[McK10] Wes McKinney. “Data Structures for Statistical Computing in
Python.” In: Proceedings of the 9th Python in Science Conference.
Ed. by Stefan van der Walt and Jarrod Millman. 2010, pp. 51–
56. used on: pp. 117, 147

[Men+12] Shicong Meng et al. “Resource-Aware Application State Moni-
toring.” In: IEEE Transactions on Parallel and Distributed Systems
23 (12 2012), pp. 2315–2329. issn: 1045-9219. doi: 10.1109/
TPDS.2012.82. used on: pp. 31, 32

[Mey+15] Sebastian Meyer zu Borgsen et al. ToBI - Team of Bielefeld: The
Human-Robot Interaction System for RoboCup@Home 2015. Tech.
rep. Bielefeld University, 2015. url: http://robocup2015.oss-
cn-shenzhen.aliyuncs.com/TeamDescriptionPapers/RoboCu

p@Home/RoboCup_Symposium_2015_submission_96.pdf (visited
on 2016-09-06). used on: pp. 68, 142

[MFN06] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. “YARP:
yet another robot platform.” In: Journal on Advanced Robotics 3

(1 2006), pp. 43–48. issn: 1729-8806. doi: 10.5772/5761. used
on: pp. 46, 48

https://doi.org/10.1145/1514095.1514114
https://doi.org/10.1145/1514095.1514114
https://doi.org/10.1007/978-3-642-34327-8_12
https://doi.org/10.1109/ICAR.2011.6088591
https://doi.org/10.1007/978-3-540-24774-6_16
https://doi.org/10.1109/TPDS.2012.82
https://doi.org/10.1109/TPDS.2012.82
http://robocup2015.oss-cn-shenzhen.aliyuncs.com/TeamDescriptionPapers/RoboCup@Home/RoboCup_Symposium_2015_submission_96.pdf
http://robocup2015.oss-cn-shenzhen.aliyuncs.com/TeamDescriptionPapers/RoboCup@Home/RoboCup_Symposium_2015_submission_96.pdf
http://robocup2015.oss-cn-shenzhen.aliyuncs.com/TeamDescriptionPapers/RoboCup@Home/RoboCup_Symposium_2015_submission_96.pdf
https://doi.org/10.5772/5761

268 bibliography

[MG11] Peter Mell and Timothy Grance. The NIST definition of cloud
computing. Tech. rep. 800-145. Gaithersburg, MD: National In-
stitute of Standards and Technology, 2011. doi: 10.6028/NIST.
SP.800- 145. url: http://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-145.pdf (visited on
2017-06-28). used on: pp. 247, 249

[MHC12] Sheheryar Malik, Fabrice Huet, and Denis Caromel. “RACS: A
framework for Resource Aware Cloud computing.” In: Interna-
tional Conference for Internet Technology and Secured Transactions.
Piscataway, NJ: IEEE, 2012, pp. 680–687. used on: p. 33

[MHH13] Haroon Malik, Hadi Hemmati, and Ahmed E. Hassan. “Au-
tomatic detection of performance deviations in the load test-
ing of Large Scale Systems.” In: 35th International Conference on
Software Engineering (ICSE). Ed. by David Notkin, Betty H. C.
Cheng, and Klaus Pohl. Piscataway, NJ: IEEE, 2013, pp. 1012–
1021. doi: 10.1109/ICSE.2013.6606651. used on: pp. 19, 106,
107, 109

[Mic17] Microsoft. Component Object Model (COM). 2017. url: https
://msdn.microsoft.com/library/ms680573(VS.85).aspx

(visited on 2017-08-01). used on: p. 44

[Mil11] Dubravko Miljkovi. “Fault Detection Methods: A Literature
Survey.” In: Proceedings of the 34th International Convention on
Information and Communication Technology, Electronics and Micro-
electronics (MIPRO 2011). Ed. by Petar Biljanovic. Piscataway,
NJ: IEEE, 2011, pp. 750–755. used on: p. 176

[MNW13] Jan Moringen, Arne Nordmann, and Sebastian Wrede. “A
Cross-Platform Data Acquisition and Transformation Ap-
proach for Whole-Systems Experimentation – Status and Chal-
lenges.” In: European Robotics Forum 2013. Working Session on
Infrastructure for Robot Analysis and Benchmarking. 2013. used on:
p. 66

[Mol15] Ian Molyneaux. The Art of Application Performance Testing. From
Strategy to Tools. 2nd ed. Theory in practice. Sebastopol, CA:
O’Reilly, 2015. isbn: 978-1-4919-0054-3. used on: pp. 8, 10, 13,
17, 18, 31

[Mör+10] Thomas Mörwald et al. “BLORT - The Blocks World Robotic
Vision Toolbox.” In: Best Practice in 3D Perception and Modeling
for Mobile Manipulation. in conjunction with ICRA 2010. 2010.
used on: p. 36

[MP08] Philippe Martinet and Bruno Patin. “PROTEUS: A platform
to organise transfer inside French robotic community.” In: 3rd
National Conference on Control Architectures of Robots. 2008. used
on: p. 46

[MSO01] Mark Mitchell, Alex Samuel, and Jeffrey Oldham. Advanced
Linux programming. Indianapolis, Indianapolis, USA: New Rid-
ers Publishing, 2001. isbn: 978-0-7357-1043-6. used on: p. 10

[MT] time(7) - Linux Programmer’s Manual. 2016. url: http://man7.
org/linux/man-pages/man7/time.7.html (visited on 2017-11-
10). used on: p. 225

https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://doi.org/10.1109/ICSE.2013.6606651
https://msdn.microsoft.com/library/ms680573(VS.85).aspx
https://msdn.microsoft.com/library/ms680573(VS.85).aspx
http://man7.org/linux/man-pages/man7/time.7.html
http://man7.org/linux/man-pages/man7/time.7.html

bibliography 269

[Mur12] Kevin Patrick Murphy. Machine learning. A probabilistic perspec-
tive. Adaptive computation and machine learning series. Cam-
bridge, Mass.: MIT Press, 2012. isbn: 978-0-262-01802-9. used
on: p. 157

[MwRes] Definition of resource. Merriam-Webster. url: https://www.m
erriam-webster.com/dictionary/resource (visited on 2017-
04-26). used on: p. 7

[MWV14] Valiallah Monajjemi, Jens Wawerla, and Richard Vaughan.
“Drums: A Middleware-Aware Distributed Robot Monitoring
System.” In: 11th Conference on Computer and Robot Vision. Ed.
by Dave Meger. IEEE, 2014, pp. 211–218. doi: 10.1109/CRV.
2014.36. used on: pp. 38, 193

[MY13] Brandon Malone and Changhe Yuan. “Evaluating Anytime Al-
gorithms for Learning Optimal Bayesian Networks.” In: Pro-
ceedings of the Twenty-Ninth Conference Conference on Uncertainty
in Artificial Intelligence. Ed. by Ann Nicholson and Padhraic
Smyth. Corvallis, Oregon: AUAI Press, 2013, pp. 381–390. used
on: p. 36

[Nes07a] Issa A. D. Nesnas. “CLARAty: A Collaborative Software for
Advancing Robotic Technologies.” In: 2007 NASA Science Tech-
nology Conference. NASA. 2007. used on: p. 35

[Nes07b] Issa A. D. Nesnas. “The CLARAty Project. Coping with Hard-
ware and Software Heterogeneity.” In: Software Engineering for
Experimental Robotics. Ed. by Davide Brugali. 30. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2007, pp. 31–70. isbn: 978-
3-540-68949-2. doi: 10.1007/978-3-540-68951-5_3. used on:
p. 43

[Ngu+12] Thanh H.D. Nguyen et al. “Automated detection of per-
formance regressions using statistical process control tech-
niques.” In: Proceedings of the 3rd ACM/SPEC International Con-
ference on Performance Engineering. Ed. by David Kaeli and Jerry
Rolia. New York, New York, USA: ACM, 2012, p. 299. doi:
10.1145/2188286.2188344. used on: pp. 19, 107

[Ngu12] Thanh H.D. Nguyen. “Using Control Charts for Detecting and
Understanding Performance Regressions in Large Software.”
In: IEEE Fifth International Conference on Software Testing, Veri-
fication and Validation. Piscataway, NJ: IEEE, 2012, pp. 491–494.
doi: 10.1109/ICST.2012.133. used on: p. 106

[Nor+16] Arne Nordmann et al. “A Survey on Domain-Specific Model-
ing and Languages in Robotics.” In: Journal of Software Engi-
neering in Robotics (2016). issn: 2035-3928. used on: p. 127

[NR11] Esha D. Nerurkar and Stergios I. Roumeliotis. “Power-SLAM:
A linear-complexity, anytime algorithm for SLAM.” In: The In-
ternational Journal of Robotics Research 30 (6 2011), pp. 772–788.
issn: 0278-3649. doi: 10 . 1177 / 0278364910390539. used on:
p. 36

https://www.merriam-webster.com/dictionary/resource
https://www.merriam-webster.com/dictionary/resource
https://doi.org/10.1109/CRV.2014.36
https://doi.org/10.1109/CRV.2014.36
https://doi.org/10.1007/978-3-540-68951-5_3
https://doi.org/10.1145/2188286.2188344
https://doi.org/10.1109/ICST.2012.133
https://doi.org/10.1177/0278364910390539

270 bibliography

[NRW12] Arne Nordmann, Matthias Rolf, and Sebastian Wrede. “Soft-
ware Abstractions for Simulation and Control of a Continuum
Robot.” In: Simulation, Modeling, and Programming for Autono-
mous Robots. Ed. by Itsuki Noda et al. Lecture Notes in Artifi-
cial Intelligence 7628. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2012, pp. 113–124. doi: 10.1007/978-3-642-34327-
8_13. used on: p. 68

[NTY08] Dor Nir, Shmuel Tyszberowicz, and Amiram Yehudai. “Locat-
ing Regression Bugs.” In: Hardware and Software: Verification
and Testing. Ed. by Karen Yorav. Lecture Notes in Computer
Science 4899. Berlin, Heidelberg: Springer, 2008, pp. 218–234.
doi: 10.1007/978-3-540-77966-7_18. used on: p. 17

[NWS15] Arne Nordmann, Sebastian Wrede, and Jochen J. Steil. “Mod-
eling of movement control architectures based on motion
primitives using domain-specific languages.” In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2015,
pp. 5032–5039. doi: 10.1109/ICRA.2015.7139899. used on:
p. 68

[OMG11] OMG. UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems. formal/2011-06-02. 2011. url: http:
//www.omg.org/spec/MARTE/1.1/PDF (visited on 2017-08-01).
used on: p. 34

[OMG13] OMG. UML Testing Profile (UTP). formal/2013-04-03. 2013.
url: http://www.omg.org/spec/UTP/1.2/PDF (visited on
2017-10-17). used on: p. 126

[Pai+15] Brooks Paige et al. “Asynchronous Anytime Sequential Monte
Carlo.” In: Advances in neural information processing systems 27.
Ed. by Zoubin Gharamani et al. Neural Information Processing
Systems Foundation. Red Hook, NY: Curran Associates, Inc.,
2015, pp. 3410–3418. used on: p. 36

[Pau+14] Johny Paul et al. “Resource-Aware Programming for Robotic
Vision.” In: First Workshop on Resource awareness and adaptivity
in multi-core computing. Ed. by Frank Hannig and Jürgen Teich.
Paderborn, Germany, 2014, pp. 8–13. used on: p. 36

[Pcap17] pcap - Packet Capture library. 2017. url: http://www.tcpdump.
org/manpages/pcap.3pcap.html (visited on 2017-10-25). used
on: p. 82

[Pen11] Roger D. Peng. “Reproducible research in computational sci-
ence.” In: Science 334 (6060 2011). PMC3383002 Journal Arti-
cle, pp. 1226–1227. issn: 1095-9203. doi: 10.1126/science.
1213847. eprint: 22144613. used on: p. 71

[Per16] Performance Co-Pilot. Understanding measures of system-level
processor performance. 2016. url: http://pcp.io/docs/howto.
cpuperf.html (visited on 2017-11-10). used on: p. 225

[Pet05] Ola Pettersson. “Execution monitoring in robotics: A survey.”
In: Robotics and Autonomous Systems 53 (2 2005), pp. 73–88.
issn: 0921-8890. doi: 10.1016/j.robot.2005.09.004. used on:
pp. 175, 176

https://doi.org/10.1007/978-3-642-34327-8_13
https://doi.org/10.1007/978-3-642-34327-8_13
https://doi.org/10.1007/978-3-540-77966-7_18
https://doi.org/10.1109/ICRA.2015.7139899
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/UTP/1.2/PDF
http://www.tcpdump.org/manpages/pcap.3pcap.html
http://www.tcpdump.org/manpages/pcap.3pcap.html
https://doi.org/10.1126/science.1213847
https://doi.org/10.1126/science.1213847
22144613
http://pcp.io/docs/howto.cpuperf.html
http://pcp.io/docs/howto.cpuperf.html
https://doi.org/10.1016/j.robot.2005.09.004

bibliography 271

[Pet12] Benjamin Peterson. Second release candidates for Python 2.6.8,
2.7.3, 3.1.5, and 3.2.3. Python-announce-list. 2012. url: https:
//mail.python.org/pipermail/python-announce-list/2012-

March/009394.html (visited on 2018-01-03). used on: p. 153

[PGT03] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. “Point-
based value iteration: An anytime algorithm for POMDPs.”
In: Proceedings of the 18th international joint conference on Arti-
ficial intelligence. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003, pp. 1025–1030. used on: p. 36

[Pit+11] Karola Pitsch et al. “Attitude of German museum visitors to-
wards an interactive art guide robot.” In: Proceedings of the 6th
ACM/IEEE International Conference on Human-Robot Interaction.
Ed. by Aude Billard et al. New York, NY, USA: ACM, 2011,
pp. 227–228. doi: 10.1145/1957656.1957744. used on: p. 71

[PKK12] Yu-Sik Park, Hyung-Min Koo, and In-Young Ko. “A task-based
and resource-aware approach to dynamically generate optimal
software architecture for intelligent service robots.” In: Soft-
ware: Practice and Experience 42 (5 2012), pp. 519–541. issn:
00380644. doi: 10.1002/spe.1074. used on: pp. 31, 37

[PP17] pickle — Python object serialization — Python 3.6.3 documentation.
2017. url: https://docs.python.org/3/library/pickle.
html (visited on 2017-11-14). used on: p. 96

[Proc17] proc(5) - Linux manual page. 2017. url: http : / / man7 . org /

linux/man-pages/man5/proc.5.html (visited on 2017-05-12).
used on: pp. 10, 80, 225, 226, 229

[PWW06] Bernhard Peischl, Jörg Weber, and Franz Wotawa. “Runtime
Fault Detection and Localization in Component-oriented Soft-
ware Systems.” In: 17th International Workshop on Principles of
Diagnosis (DX’06). 2006, pp. 203–210. used on: p. 141

[Qui+09] Morgan Quigley et al. “ROS: an open-source Robot Operating
System.” In: ICRA Workshop on Open Source Software. 2009. used
on: pp. 38, 46

[Rat+14] Christoph Rathfelder et al. “Modeling event-based communi-
cation in component-based software architectures for perfor-
mance predictions.” In: Software & Systems Modeling 13 (4 2014),
pp. 1291–1317. issn: 1619-1366. doi: 10.1007/s10270-013-
0316-x. used on: p. 34

[RC11] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point
Cloud Library (PCL).” In: 2011 IEEE International Conference
on Robotics and Automation. IEEE, 2011. doi: 10.1109/ICRA.
2011.5980567. used on: p. 46

[Rey+06] Patrick Reynolds et al. “Pip: Detecting the Unexpected in Dis-
tributed Systems.” In: NSDI’06 Proceedings of the 3rd conference
on Networked Systems Design & Implementation - Volume 3. Ed.
by Larry Peterson and Timothy Roscoe. San Jose, CA: USENIX
Association Berkeley, 2006. used on: pp. 18, 33

https://mail.python.org/pipermail/python-announce-list/2012-March/009394.html
https://mail.python.org/pipermail/python-announce-list/2012-March/009394.html
https://mail.python.org/pipermail/python-announce-list/2012-March/009394.html
https://doi.org/10.1145/1957656.1957744
https://doi.org/10.1002/spe.1074
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/proc.5.html
https://doi.org/10.1007/s10270-013-0316-x
https://doi.org/10.1007/s10270-013-0316-x
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/ICRA.2011.5980567

272 bibliography

[Rol+15] Matthias Rolf et al. “A multi-level control architecture for the
bionic handling assistant.” In: Advanced Robotics 29 (13 2015),
pp. 847–859. issn: 0169-1864. doi: 10.1080/01691864.2015.
1037793. used on: p. 68

[ROS14] ROS Users of the World. 2014? url: http://metrorobots.com/
rosmap.html (visited on 2017-08-07). Year deduced from first
GIT commit. used on: p. 47

[Ros16] Rami Rosen. Understanding the new control groups API. 2016.
url: https://lwn.net/Articles/679786/ (visited on 2017-
10-25). used on: p. 82

[RSS07] Szabolcs Rozsnyai, Josef Schiefer, and Alexander Schatten.
“Concepts and models for typing events for event-based sys-
tems.” In: Proceedings of the 2007 Inaugural International Confer-
ence on Distributed Event-Based Systems. Ed. by Hans-Arno Ja-
cobsen. New York, New York, USA: ACM Press, 2007, pp. 62–
70. doi: 10.1145/1266894.1266904. used on: p. 55

[RTT] The Orocos Real-Time Toolkit. url: http://www.orocos.org/rtt
(visited on 2017-08-07). used on: p. 47

[RW97] David S. Rosenblum and Alexander L. Wolf. “A design frame-
work for internet-scale event observation and notification.” In:
Software Engineering — ESEC/FSE ’97. Ed. by Mehdi Jazayeri
and Helmut Schauer. Lecture Notes in Computer Science 1301.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 344–
360. doi: 10.1007/3-540-63531-9_24. used on: p. 55

[Sch06] Christian Schlegel. “Communication Patterns as Key Towards
Component-Based Robotics.” In: International Journal of Ad-
vanced Robotic Systems 3 (1 2006), pp. 49–54. issn: 1729-8806.
doi: 10.5772/5759. used on: p. 49

[SGK17] Sebastian Schneider, Michael Goerlich, and Franz Kummert.
“A framework for designing socially assistive robot interac-
tions.” In: Cognitive Systems Research 43 (2017), pp. 301–312.
issn: 1389-0417. doi: 10.1016/j.cogsys.2016.09.008. used
on: p. 68

[Sha+15] Wei Shang et al. “Automated Detection of Performance Re-
gressions Using Regression Models on Clustered Performance
Counters.” In: Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering. Ed. by Lizy K. John et
al. New York, New York, USA: ACM, 2015, pp. 15–26. doi:
10.1145/2668930.2688052. used on: pp. 19, 107, 118, 121–123

[She+09] Kai Shen et al. “Reference-driven performance anomaly iden-
tification.” In: Proceedings of the eleventh international joint con-
ference on Measurement and modeling of computer systems. Ed.
by John Douceur et al. Performance Evaluation Review. ACM
Special Interest Group on Measurement and Evaluation. New
York, NY, USA: ACM, 2009, pp. 85–96. doi: 10.1145/1555349.
1555360. used on: pp. 18, 178

https://doi.org/10.1080/01691864.2015.1037793
https://doi.org/10.1080/01691864.2015.1037793
http://metrorobots.com/rosmap.html
http://metrorobots.com/rosmap.html
https://lwn.net/Articles/679786/
https://doi.org/10.1145/1266894.1266904
http://www.orocos.org/rtt
https://doi.org/10.1007/3-540-63531-9_24
https://doi.org/10.5772/5759
https://doi.org/10.1016/j.cogsys.2016.09.008
https://doi.org/10.1145/2668930.2688052
https://doi.org/10.1145/1555349.1555360
https://doi.org/10.1145/1555349.1555360

bibliography 273

[Shi+09] Shuichi Shimizu et al. “Platform-independent modeling and
prediction of application resource usage characteristics.” In:
Journal of Systems and Software 82 (12 2009), pp. 2117–2127.
issn: 0164-1212. doi: 10.1016/j.jss.2009.07.020. used
on: pp. 9, 173

[Sig+10] Benjamin H. Sigelman et al. Dapper, a Large-Scale Distributed
Systems Tracing Infrastructure. Tech. rep. Google, Inc., 2010.
url: https : / / research . google . com / archive / papers /

dapper-2010-1.pdf. used on: p. 32

[SL11] Sena Seneviratne and David C. Levy. “Task profiling model for
load profile prediction.” In: Future Generation Computer Systems
27 (3 2011), pp. 245–255. issn: 0167-739X. doi: 10.1016/j.
future.2010.09.004. used on: p. 173

[SLB13] Sena Seneviratne, David C. Levy, and Rajkumar Buyya. A Tax-
onomy of Performance Prediction Systems in the Parallel and Dis-
tributed Computing Grids. 2013. url: https://arxiv.org/pdf/
1307.2380v2 (visited on 2016-07-13). used on: pp. 9, 173

[SMW06] Gerald Steinbauer, Martin Mörth, and Franz Wotawa. “Real-
Time Diagnosis and Repair of Faults of Robot Control Soft-
ware.” In: RoboCup 2005: Robot Soccer World Cup IX. Ed. by
Ansgar Bredenfeld et al. Lecture Notes in Artificial Intelligence
4020. Berlin, Heidelberg: Springer, 2006, pp. 13–23. doi: 10.
1007/11780519_2. used on: p. 175

[SS11] Andreas Steck and Christian Schlegel. “Towards Quality of
Service and Resource Aware Robotic Systems through Model-
Driven Software Development.” In: Proceedings of the first inter-
national workshop on domain-specific languages for robotic systems
(DSLRob 2010). Ed. by Ulrik P. Schultz, Serge Stinckwich, and
Mikal Ziane. 2011. used on: pp. 31, 39

[Sta15] linux - /proc/[pid]/stat refresh period. Stack Overflow. 2015. url:
https://stackoverflow.com/questions/31219317/proc-pid-

stat-refresh-period (visited on 2017-05-11). used on: pp. 11,
229

[Ste13] Gerald Steinbauer. “A Survey about Faults of Robots Used in
RoboCup.” In: RoboCup 2012: Robot Soccer World Cup XVI. Ed.
by Xiaoping Chen et al. Lecture Notes in Computer Science
7500. Berlin, Heidelberg: Springer, 2013, pp. 344–355. used on:
pp. 21, 24, 28, 105, 175

[Sun+16] Yu Sun et al. “ROAR. A QoS-oriented modeling framework
for automated cloud resource allocation and optimization.” In:
Journal of Systems and Software 116 (2016), pp. 146–161. issn:
0164-1212. doi: 10.1016/j.jss.2015.08.006. used on: p. 126

[Sun97] Sun Microsystems. JavaBeans. Ed. by Graham Hamilton. Ver-
sion 1.01-A. 1997. url: http://www.oracle.com/technetwork/
java/javase/documentation/spec-136004.html (visited on
2017-08-01). used on: p. 44

[SW05] Gerald Steinbauer and Franz Wotawa. “Detecting and locating
faults in the control software of autonomous mobile robots.”
In: 16th International Workshop on Principles of Diagnosis (DX-05).
2005, pp. 13–18. used on: pp. 32, 141

https://doi.org/10.1016/j.jss.2009.07.020
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/10.1016/j.future.2010.09.004
https://doi.org/10.1016/j.future.2010.09.004
https://arxiv.org/pdf/1307.2380v2
https://arxiv.org/pdf/1307.2380v2
https://doi.org/10.1007/11780519_2
https://doi.org/10.1007/11780519_2
https://stackoverflow.com/questions/31219317/proc-pid-stat-refresh-period
https://stackoverflow.com/questions/31219317/proc-pid-stat-refresh-period
https://doi.org/10.1016/j.jss.2015.08.006
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

274 bibliography

[SW09] William Strunk and Elwyn Brooks White. The Elements of Style.
New York, NY: Longman, 2009. isbn: 978-0-205-30902-3. used
on: p. 285

[SW11] Frederic Siepmann and Sven Wachsmuth. “A Modeling Frame-
work for Reusable Social Behavior.” In: Works-In-Progress Track
at International Conference on Social Robotics (ICSR 2011). Ed. by
Ravindra Da Silva and Dennis Reidsma. 2011. used on: pp. 142,
237

[SW99] Christian Schlegel and Robert Wörtz. “The software frame-
work SMARTSOFT for implementing sensorimotor systems.”
In: Proceedings 1999 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. Human and Environment Friendly Ro-
bots with High Intelligence and Emotional Quotients. IEEE, 1999,
pp. 1610–1616. doi: 10.1109/IROS.1999.811709. used on: p. 46

[Syd11] Michael J. Sydor. APM Best Practices. Realizing Application Per-
formance Management. Berkeley, CA: Apress, 2011. isbn: 978-1-
4302-3141-7. used on: pp. 10, 18, 106

[Szy03] Clemens Szyperski. Component software. Beyond object-oriented
programming. In collab. with Dominik Gruntz and Stephan
Murer. 2nd ed. Addison-Wesley component software series.
London: Addison-Wesley, 2003. isbn: 978-0-201-74572-6. used
on: pp. 43, 44, 245

[TFR13] Lukas Twardon, Andrea Finke, and Helge J. Ritter. “Exploiting
eye-hand coordination. A novel approach to remote manipula-
tion.” In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2013, pp. 5463–5468. doi: 10.1109/
IROS.2013.6697147. used on: p. 68

[TG08] Mirco Tribastone and Stephen Gilmore. “Automatic extraction
of PEPA performance models from UML activity diagrams an-
notated with the MARTE profile.” In: Proceedings of the 7th
international workshop on Software and performance. Ed. by Al-
berto Avritzer, Elaine Weyuker, and Murray Woodside. New
York, New York, USA: ACM Press, 2008, p. 67. doi: 10.1145/
1383559.1383569. used on: p. 34

[The15] The Economist. Style Guide. The Bestselling Guide to English Us-
age. 11th ed. New York: PublicAffairs, 2015. isbn: 978-1-61039-
538-0. used on: p. 285

[Thr+00] Sebastian Thrun et al. “Probabilistic Algorithms and the In-
teractive Museum Tour-Guide Robot Minerva.” In: The Inter-
national Journal of Robotics Research 19 (11 2000), pp. 972–999.
issn: 0278-3649. doi: 10.1177/02783640022067922. used on:
p. 36

[TLI11] Florent Teichteil-Königsbuch, Charles Lesire, and Guillaume
Infantes. “A generic framework for anytime execution-driven
planning in robotics.” In: 2011 IEEE International Conference
on Robotics and Automation. IEEE, 2011, pp. 299–304. doi: 10.
1109/ICRA.2011.5980289. used on: p. 36

https://doi.org/10.1109/IROS.1999.811709
https://doi.org/10.1109/IROS.2013.6697147
https://doi.org/10.1109/IROS.2013.6697147
https://doi.org/10.1145/1383559.1383569
https://doi.org/10.1145/1383559.1383569
https://doi.org/10.1177/02783640022067922
https://doi.org/10.1109/ICRA.2011.5980289
https://doi.org/10.1109/ICRA.2011.5980289

bibliography 275

[TMW10] Mirco Tribastone, Philip Mayer, and Martin Wirsing. “Per-
formance Prediction of Service-Oriented Systems with Lay-
ered Queueing Networks.” In: Leveraging Applications of For-
mal Methods, Verification, and Validation. Part II. Ed. by Tiziana
Margaria and Bernhard Steffen. Lecture Notes in Computer
Science 6416. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 51–65. doi: 10.1007/978-3-642-16561-0_12. used
on: p. 34

[Top17] top - display Linux processes. 2017. url: http : / / man7 . org /

linux/man-pages/man1/top.1.html (visited on 2017-11-10).
used on: p. 229

[TR16] Jay Trimble and George Rinker. “Open Source Next Genera-
tion Visualization Software for Interplanetary Missions.” In:
SpaceOps 2016 Conference. Reston, Virginia: American Institute
of Aeronautics and Astronautics, 2016. doi: 10.2514/6.2016-
2348. used on: p. 94

[Tur16] James Turnbull. The Art of Monitoring. v1.0.0. 2016. isbn: 978-
0-9888202-4-1. used on: p. 32

[Uen+06] Ken Ueno et al. “Anytime Classification Using the Nearest
Neighbor Algorithm with Applications to Stream Mining.” In:
Sixth International Conference on Data Mining (ICDM’06). IEEE,
2006, pp. 623–632. doi: 10.1109/ICDM.2006.21. used on: p. 36

[UL07] Mark Utting and Bruno Legeard. Practical model-based testing. A
tools approach. Safari Tech Books Online. Amsterdam: Elsevier,
2007. isbn: 978-0-12-372501-1. used on: pp. 125–127

[US 01] US Army Department of Defense. Systems engineering funda-
mentals. Washington D.C., 2001. isbn: 978-1-4841-2083-5. used
on: p. 247

[VF11] Ghislain Verdier and Ariane Ferreira. “Adaptive Mahalanobis
Distance and k-Nearest Neighbor Rule for Fault Detection in
Semiconductor Manufacturing.” In: IEEE Transactions on Semi-
conductor Manufacturing 24 (1 2011), pp. 59–68. issn: 0894-6507.
doi: 10.1109/TSM.2010.2065531. used on: p. 178

[Vin05] Steve Vinoski. “A Time for Reflection.” In: IEEE Internet Com-
puting 9 (1 2005), pp. 86–89. issn: 1089-7801. doi: 10.1109/
MIC.2005.3. used on: p. 247

[Voe13] Markus Voelter. “Language and IDE Modularization and Com-
position with MPS.” In: Generative and Transformational Tech-
niques in Software Engineering IV. Ed. by Ralf Lämmel, João
Saraiva, and Joost Visser. 7680. Berlin, Heidelberg: Springer,
2013, pp. 383–430. isbn: 978-3-642-35991-0. doi: 10.1007/978-
3-642-35992-7_11. used on: p. 128

[Vol+00] Richard Volpe et al. CLARAty: Coupled Layer Architecture for
Robotic Autonomy. Tech. rep. Pasadena, California: Jet Propul-
sion Laboratory, California Institute of Technology, 2000. used
on: pp. 9, 35

https://doi.org/10.1007/978-3-642-16561-0_12
http://man7.org/linux/man-pages/man1/top.1.html
http://man7.org/linux/man-pages/man1/top.1.html
https://doi.org/10.2514/6.2016-2348
https://doi.org/10.2514/6.2016-2348
https://doi.org/10.1109/ICDM.2006.21
https://doi.org/10.1109/TSM.2010.2065531
https://doi.org/10.1109/MIC.2005.3
https://doi.org/10.1109/MIC.2005.3
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-642-35992-7_11

276 bibliography

[Vol+01] Richard Volpe et al. “The CLARAty architecture for robotic
autonomy.” In: 2001 IEEE Aerospace Conference Proceedings. Ed.
by Robert A. Profet. Piscataway, NJ: IEEE Operations Center,
2001, pp. 1/121–1/132. doi: 10.1109/AERO.2001.931701. used
on: p. 35

[VP07] M. Valente and R. Palhares. “Collocation optimizations in an
aspect-oriented middleware system.” In: Journal of Systems and
Software 80 (10 2007), pp. 1659–1666. issn: 0164-1212. doi: 10.
1016/j.jss.2007.01.033. used on: p. 58

[Wan+16] Jiafu Wan et al. “Cloud Robotics: Current Status and Open
Issues.” In: IEEE Access 4 (2016), pp. 2797–2807. issn: 2169-
3536. doi: 10.1109/ACCESS.2016.2574979. used on: pp. 35, 36

[WC17] Ruffin White and Henrik I. Christensen. “ROS and Docker.”
In: Robot Operating System (ROS). The Complete Reference (Vol-
ume 2). Ed. by Anis Koubâa. 707. Cham: Springer International
Publishing, 2017, pp. 285–307. isbn: 978-3-319-54926-2. doi:
10.1007/978-3-319-54927-9_9. used on: p. 50

[WF13] Alexandra Wander and Roger Förstner. “Innovative Fault De-
tection, Isolation and Recovery Strategies On-Board Spacecraft:
State of the Art and Research Challenges.” In: Deutscher Luft-
und Raumfahrtkongress 2012. Deutsche Gesellschaft für Luft-
und Raumfahrt. Bonn: Deutsche Gesellschaft für Luft- und
Raumfahrt - Lilienthal-Oberth e.V., 2013. used on: p. 16

[Wig+17] Dennis Leroy Wigand et al. “Domain-Specific Language Mod-
ularization Scheme Applied to a Multi-Arm Robotics Use-
Case.” In: Journal of Software Engineering in Robotics 8.1 (2017),
pp. 45–64. issn: 2035-3928. used on: p. 127

[Wik16a] Computational resource. Wikipedia. 2016-02-02. url: https://
en.wikipedia.org/w/index.php?oldid=702911944 (visited on
2016-07-26). used on: p. 7

[Wik16b] Hardware performance counter. Wikipedia. 2016-02-10. url: ht
tps://en.wikipedia.org/w/index.php?oldid=704224910

(visited on 2016-07-26). used on: p. 10

[Wik16c] Resource contention. Wikipedia. 2016-12-20. url: https://en.
wikipedia.org/w/index.php?oldid=755891262 (visited on
2017-04-26). used on: p. 8

[Wik16d] Starvation (computer science). Wikipedia. 2016-12-09. url: htt
ps://en.wikipedia.org/w/index.php?title=Starvation_

(computer_science)&oldid=753792573 (visited on 2017-04-26).
used on: p. 8

[Wik16e] System resource. Wikipedia. 2016-06-22. url: https://en.wik
ipedia.org/w/index.php?oldid=726423842 (visited on 2016-
07-26). used on: p. 7

[Wik17] Quality of service. Wikipedia. 2017-05-17. url: https : / / en .

wikipedia.org/w/index.php?oldid=778156644 (visited on
2017-05-17). used on: pp. 18, 249

https://doi.org/10.1109/AERO.2001.931701
https://doi.org/10.1016/j.jss.2007.01.033
https://doi.org/10.1016/j.jss.2007.01.033
https://doi.org/10.1109/ACCESS.2016.2574979
https://doi.org/10.1007/978-3-319-54927-9_9
https://en.wikipedia.org/w/index.php?oldid=702911944
https://en.wikipedia.org/w/index.php?oldid=702911944
https://en.wikipedia.org/w/index.php?oldid=704224910
https://en.wikipedia.org/w/index.php?oldid=704224910
https://en.wikipedia.org/w/index.php?oldid=755891262
https://en.wikipedia.org/w/index.php?oldid=755891262
https://en.wikipedia.org/w/index.php?title=Starvation_(computer_science)&oldid=753792573
https://en.wikipedia.org/w/index.php?title=Starvation_(computer_science)&oldid=753792573
https://en.wikipedia.org/w/index.php?title=Starvation_(computer_science)&oldid=753792573
https://en.wikipedia.org/w/index.php?oldid=726423842
https://en.wikipedia.org/w/index.php?oldid=726423842
https://en.wikipedia.org/w/index.php?oldid=778156644
https://en.wikipedia.org/w/index.php?oldid=778156644

bibliography 277

[Wit+06] Peter Wittenburg et al. “ELAN: a Professional Framework for
Multimodality Research.” In: Fifth International Conference on
Language Resources and Evaluation (LREC 2006). 2006, pp. 1556–
1559. used on: p. 77

[Woo+08] Timothy Wood et al. “Profiling and Modeling Resource Us-
age of Virtualized Applications.” In: Middleware 2008. Ed. by
Valérie Issarny and Richard E. Schantz. Programming and
Software Engineering 5346. Berlin, Heidelberg: Springer, 2008,
pp. 366–387. doi: 10.1007/978-3-540-89856-6_19. used on:
p. 173

[Wre+13] Sebastian Wrede et al. “A User Study on Kinesthetic Teaching
of Redundant Robots in Task and Configuration Space.” In:
Journal of Human-Robot Interaction 2 (1 2013), pp. 56–81. issn:
21630364. doi: 10.5898/JHRI.2.1.Wrede. used on: p. 78

[Wre+17] Sebastian Wrede et al. “The Cognitive Service Robotics Apart-
ment.” In: KI - Künstliche Intelligenz 31 (3 2017), pp. 299–304.
issn: 0933-1875. doi: 10.1007/s13218-017-0492-x. used on:
pp. 78, 99

[Wre08] Sebastian Wrede. “An Information-Driven Architecture for
Cognitive Systems Research.” Technische Fakultät. Doctoral
dissertation. Bielefeld: Bielefeld University, 2008. used on: p. 5

[WS01] Rainer Weinreich and Johannes Sametinger. “Component
Models and Component Services: Concepts and Principles.”
In: Component-based software engineering. Putting the pieces to-
gether. Ed. by George T. Heineman and William T. Councill.
Boston, Mass.: Addison-Wesley, 2001. Chap. 3, pp. 33–48. isbn:
978-0-201-70485-3. used on: pp. 44, 59, 245

[WSS11] Marc-Florian Wendland, Ina Schieferdecker, and Markus
Schacher. “Testen mit dem UML Testing Profile.” German. In:
OBJEKTspektrum (Testing 2011). used on: p. 126

[WW06] Jörg Weber and Franz Wotawa. “Using AI Techniques for Fault
Localization in Component-Oriented Software Systems.” In:
MICAI 2006: Advances in Artificial Intelligence. Ed. by David
Hutchison et al. Lecture Notes in Computer Science 4293.
Berlin, Heidelberg: Springer, 2006, pp. 1139–1149. doi: 10 .

1007/11925231_109. used on: pp. 176, 185

[Xio+15] Pengcheng Xiong et al. “SmartSLA. Cost-Sensitive Manage-
ment of Virtualized Resources for CPU-Bound Database Ser-
vices.” In: IEEE Transactions on Parallel and Distributed Systems
26 (5 2015), pp. 1441–1451. issn: 1045-9219. doi: 10.1109/
TPDS.2014.2319095. used on: p. 172

[Xue+15] Ji Xue et al. “PRACTISE: Robust Prediction of Data Center
Time Series.” In: Proceedings of the 11th International Conference
on Network and Service Management (CNSM). Ed. by Mauro Tor-
tonesi et al. IEEE, 2015, pp. 126–134. doi: 10.1109/CNSM.2015.
7367348. used on: p. 172

[YKZ16] Min Sang Yoon, Ahmed E. Kamal, and Zhengyuan Zhu. “Re-
quests Prediction in Cloud with a Cyclic Window Learning
Algorithm.” In: IEEE Globecom Workshops (GC Wkshps). IEEE,
2016. doi: 10.1109/GLOCOMW.2016.7849022. used on: p. 173

https://doi.org/10.1007/978-3-540-89856-6_19
https://doi.org/10.5898/JHRI.2.1.Wrede
https://doi.org/10.1007/s13218-017-0492-x
https://doi.org/10.1007/11925231_109
https://doi.org/10.1007/11925231_109
https://doi.org/10.1109/TPDS.2014.2319095
https://doi.org/10.1109/TPDS.2014.2319095
https://doi.org/10.1109/CNSM.2015.7367348
https://doi.org/10.1109/CNSM.2015.7367348
https://doi.org/10.1109/GLOCOMW.2016.7849022

278 bibliography

[YRS] Use YARP to talk to ROS services. url: http://www.yarp.it/
yarp_with_ros_services.html (visited on 2017-08-23). used
on: p. 66

[YRT] Writing code to talk to ROS topics. url: http://www.yarp.it/
yarp_with_ros_writing_code_topics.html (visited on 2017-
08-14). used on: pp. 52, 66

[Yu+15] Jingjin Yu et al. “Anytime planning of optimal schedules for a
mobile sensing robot.” In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 5279–5286.
doi: 10.1109/IROS.2015.7354122. used on: p. 36

[ZAH12] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. “A
qualitative study on performance bugs.” In: 9th IEEE Working
Conference on Mining Software Repositories (MSR), 2012. Ed. by
Michele Lanza, Massimiliano Di Penta, and Tao Xie. Piscat-
away, NJ: IEEE, 2012, pp. 199–208. doi: 10.1109/MSR.2012.
6224281. used on: pp. 19, 21

[Žal13] Źmicier Žaleźničenka. “Automated detection of performance
regressions in web applications using association rule min-
ing.” Master’s thesis. Delft: Delft University of Technology,
2013. used on: p. 107

[Zam+13] Safdar Zaman et al. “An Integrated Model-Based Diagnosis
and Repair Architecture for ROS-Based Robot Systems.” In:
2013 IEEE International Conference on Robotics and Automation
(ICRA 2013). Piscataway, NJ: IEEE, 2013, pp. 482–489. doi: 10.
1109/ICRA.2013.6630618. used on: pp. 175, 176

[Zha+15] Qi Zhang et al. “PRISM: Fine-Grained Resource-Aware
Scheduling for MapReduce.” In: IEEE Transactions on Cloud
Computing 3 (2 2015), pp. 182–194. issn: 2168-7161. doi: 10.
1109/TCC.2014.2379096. used on: p. 31

[Zil96] Shlomo Zilberstein. “Using Anytime Algorithms in Intelligent
Systems.” In: AI Magazine 17 (3 1996), pp. 73–83. used on: p. 36

[ZKV04] Uwe Zdun, M. Kircher, and M. Volter. “Remoting patterns:
design reuse of distributed object middleware solutions.” In:
IEEE Internet Computing 8 (6 2004), pp. 60–68. issn: 1089-7801.
doi: 10.1109/MIC.2004.70. used on: p. 59

[ZV08] Michael Zillich and Markus Vincze. “Anytimeness avoids pa-
rameters in detecting closed convex polygons.” In: The Sixth
IEEE Computer Society Workshop on Perceptual Organization in
Computer Vision. in Conjunction with IEEE CVPR 2008. IEEE,
2008. doi: 10.1109/CVPRW.2008.4562981. used on: p. 36

software packages

[ACO] academic-keyword-occurrence. url: https://github.com/Pol
d87/academic- keyword- occurrence (visited on 2017-08-02).
used on: pp. 45, 46

[Apache] Apache. Apache Software Foundation. url: https://httpd.
apache.org (visited on 2017-06-29). used on: p. 33

http://www.yarp.it/yarp_with_ros_services.html
http://www.yarp.it/yarp_with_ros_services.html
http://www.yarp.it/yarp_with_ros_writing_code_topics.html
http://www.yarp.it/yarp_with_ros_writing_code_topics.html
https://doi.org/10.1109/IROS.2015.7354122
https://doi.org/10.1109/MSR.2012.6224281
https://doi.org/10.1109/MSR.2012.6224281
https://doi.org/10.1109/ICRA.2013.6630618
https://doi.org/10.1109/ICRA.2013.6630618
https://doi.org/10.1109/TCC.2014.2379096
https://doi.org/10.1109/TCC.2014.2379096
https://doi.org/10.1109/MIC.2004.70
https://doi.org/10.1109/CVPRW.2008.4562981
https://github.com/Pold87/academic-keyword-occurrence
https://github.com/Pold87/academic-keyword-occurrence
https://httpd.apache.org
https://httpd.apache.org

bibliography 279

[Cacti] Cacti. 2017. url: https://www.cacti.net/ (visited on 2017-11-
14). used on: p. 94

[Cold] collectd. The system statistics collection daemon. url: https://
collectd.org/ (visited on 2017-10-26). used on: pp. 79, 84

[Coll] collectl. url: http://collectl.sourceforge.net/ (visited on
2017-10-26). used on: p. 83

[Crypt] cryptsetup. url: https://gitlab.com/cryptsetup/cryptsetu
p (visited on 2017-11-10). used on: p. 227

[Cyclo] Cyclotron. url: http://www.cyclotron.io/ (visited on 2017-
11-14). used on: p. 94

[DebT] debtree. url: https://collab- maint.alioth.debian.org/
debtree/ (visited on 2017-08-14). used on: p. 53

[Diam] Diamond. url: https://github.com/python-diamond/Diamon
d (visited on 2017-10-26). used on: pp. 79, 84

[Ecl] Eclipse. url: https://www.eclipse.org/ (visited on 2017-12-
04). used on: p. 135

[ELAN] ELAN. url: https://tla.mpi.nl/tools/tla-tools/elan/
(visited on 2017-08-29). used on: pp. 77, 147

[FFmpeg] FFmpeg. url: https://ffmpeg.org (visited on 2017-08-29).
used on: p. 77

[Full] fullerite. url: https://github.com/Yelp/fullerite (visited
on 2017-11-06). used on: pp. 79, 84

[Ganglia] Ganglia. 2016. url: http://ganglia.sourceforge.net/ (vis-
ited on 2017-11-14). used on: p. 94

[Gatling] Gatling. url: http://gatling.io (visited on 2016-08-30). used
on: pp. 106, 126, 127

[Gdash] gdash. url: https://github.com/ripienaar/gdash (visited
on 2017-11-14). used on: p. 94

[GDB] GDB. The GNU Project Debugger. url: https://www.gnu.org/
software/gdb/ (visited on 2017-06-08). used on: pp. 23, 28

[Gla] Glances. url: https://nicolargo.github.io/glances/ (vis-
ited on 2017-10-25). used on: p. 83

[Grafana] Grafana. url: https://grafana.com/ (visited on 2017-11-14).
used on: pp. 94, 95, 97, 149

[Graph] Graphite. url: https://graphiteapp.org (visited on 2017-07-
04). used on: pp. 38, 94–96

[Grinder] The Grinder. url: http://grinder.sf.net (visited on 2017-10-
22). used on: p. 106

[Gst] GStreamer. url: https://gstreamer.freedesktop.org (vis-
ited on 2017-08-18). used on: pp. 52, 76

[HAProxy] HAProxy. url: http://www.haproxy.org (visited on 2017-06-
29). used on: p. 33

[Htop] htop. An interactive process viewer for Unix. url: http://hisham.
hm/htop/ (visited on 2017-10-25). used on: p. 83

https://www.cacti.net/
https://collectd.org/
https://collectd.org/
http://collectl.sourceforge.net/
https://gitlab.com/cryptsetup/cryptsetup
https://gitlab.com/cryptsetup/cryptsetup
http://www.cyclotron.io/
https://collab-maint.alioth.debian.org/debtree/
https://collab-maint.alioth.debian.org/debtree/
https://github.com/python-diamond/Diamond
https://github.com/python-diamond/Diamond
https://www.eclipse.org/
https://tla.mpi.nl/tools/tla-tools/elan/
https://ffmpeg.org
https://github.com/Yelp/fullerite
http://ganglia.sourceforge.net/
http://gatling.io
https://github.com/ripienaar/gdash
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://nicolargo.github.io/glances/
https://grafana.com/
https://graphiteapp.org
http://grinder.sf.net
https://gstreamer.freedesktop.org
http://www.haproxy.org
http://hisham.hm/htop/
http://hisham.hm/htop/

280 bibliography

[IDB] InfluxDB. url: https://github.com/influxdata/influxdb
(visited on 2017-11-14). used on: pp. 94–96

[Iotop] iotop. url: http://guichaz.free.fr/iotop/ (visited on 2017-
10-25). used on: p. 83

[iPCM] Processor Counter Monitor (PCM). url: https://github.com/
opcm/pcm (visited on 2017-04-28). used on: p. 10

[Jenk] Jenkins. url: https://jenkins.io/ (visited on 2017-11-28).
used on: p. 119

[Jet] MPS. Version 2017.2. JetBrains. url: https://www.jetbrains.
com/mps/ (visited on 2017-10-19). used on: pp. 127–130, 132, 133,
136

[JMeter] Apache JMeter. Apache Software Foundation. url: https://
jmeter.apache.org/ (visited on 2016-08-08). used on: pp. 106,
126, 127

[JUnit] JUnit. 2017. url: http://junit.org (visited on 2017-11-28).
used on: p. 119

[KDB] KairosDB. url: https://kairosdb.github.io/ (visited on
2017-11-14). used on: p. 94

[Locust] Locust. url: http://locust.io (visited on 2016-08-30). used
on: p. 106

[Lsof] lsof. url: https://people.freebsd.org/~abe/ (visited on
2017-10-25). used on: p. 83

[LVM] LVM. Version 2. url: https://sourceware.org/lvm2/ (visited
on 2017-11-10). used on: p. 227

[Munin] Munin. url: http://munin-monitoring.org/ (visited on 2016-
09-08). used on: p. 94

[netdata] netdata. url: https://my-netdata.io/ (visited on 2017-11-14).
used on: p. 95

[Neth] nethogs. url: https://github.com/raboof/nethogs (visited
on 2017-10-25). used on: pp. 83, 87

[Nett] net-tools. url: https://wiki.linuxfoundation.org/networki
ng/net-tools (visited on 2017-10-25). used on: p. 83

[nginx] nginx. Nginx Inc. url: https://nginx.org (visited on 2017-
06-29). used on: p. 33

[NLoad] NLoad. url: http://www.nload.io (visited on 2016-08-23).
used on: p. 106

[Nmon] nmon. Nigel’s performance Monitor. url: http://nmon.sourcef
orge.net (visited on 2017-10-25). used on: p. 83

[OTB] OROCOS TaskBrowser. url: http://www.orocos.org/stable/
documentation / ocl / v2 . x / doc - xml / orocos - taskbrowser .

html (visited on 2017-08-09). used on: p. 49

[OTSDB] OpenTSDB. url: http://opentsdb.net/ (visited on 2017-11-
14). used on: p. 94

[Pcap] libpcap. url: https://github.com/the-tcpdump-group/libpc
ap (visited on 2017-10-25). used on: p. 82

https://github.com/influxdata/influxdb
http://guichaz.free.fr/iotop/
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://jenkins.io/
https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
https://jmeter.apache.org/
https://jmeter.apache.org/
http://junit.org
https://kairosdb.github.io/
http://locust.io
https://people.freebsd.org/~abe/
https://sourceware.org/lvm2/
http://munin-monitoring.org/
https://my-netdata.io/
https://github.com/raboof/nethogs
https://wiki.linuxfoundation.org/networking/net-tools
https://wiki.linuxfoundation.org/networking/net-tools
https://nginx.org
http://www.nload.io
http://nmon.sourceforge.net
http://nmon.sourceforge.net
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-taskbrowser.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-taskbrowser.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-taskbrowser.html
http://opentsdb.net/
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap

bibliography 281

[Pil] Pillow. url: https://github.com/python- pillow/Pillow
(visited on 2017-08-17). used on: pp. 59, 60

[Praat] Praat. doing phonetics by computer. url: http://www.fon.hum.
uva.nl/praat/ (visited on 2016-09-08). used on: p. 76

[Prom] Prometheus. url: https://prometheus.io (visited on 2017-06-
28). used on: pp. 32, 94, 149

[Protobuf] Protocol Buffers. Google. url: https://developers.google.
com/protocol-buffers/ (visited on 2016-08-17). used on: pp. 65,
67, 112, 113, 123, 129–133, 136, 250

[Psut] psutil. url: https://github.com/giampaolo/psutil (visited
on 2017-11-06). used on: p. 85

[Riem] Riemann. url: http://riemann.io/ (visited on 2017-12-21).
used on: pp. 149, 177

[ROSb] rosbag. url: http://wiki.ros.org/rosbag (visited on 2017-
08-09). used on: pp. 49, 193

[ROSt] rostopic. url: http://wiki.ros.org/rostopic (visited on
2017-08-09). used on: p. 49

[RRD] RRDtool. Version -. 2017. url: https : / / oss . oetiker . ch /

rrdtool/ (visited on 2017-11-14). used on: p. 94

[RRI] rtt_ros_integration. url: https://github.com/orocos/rtt_
ros_integration (visited on 2017-08-07). used on: p. 47

[RTsh] rtshell. url: http://www.openrtm.org/openrtm/en/content/
rtshell (visited on 2017-08-09). used on: p. 49

[RViz] RViz. url: http : / / wiki . ros . org / action / recall / rviz ?

action=recall&rev=79 (visited on 2017-05-24). used on: pp. 22,
23

[Skyl] Skyline. url: https://github.com/etsy/skyline (visited on
2017-12-21). used on: pp. 149, 177

[Spread] Spread. url: http://www.spread.org/ (visited on 2016-09-08).
used on: pp. 59, 100, 162

[Syss] Sysstat. url: http://sebastien.godard.pagesperso-orange.
fr/ (visited on 2017-10-25). used on: p. 83

[Telg] Telegraf. url: https://www.influxdata.com/time- series-
platform/telegraf/ (visited on 2017-10-26). used on: pp. 79, 84

[Tsung] Tsung. url: http://tsung.erlang-projects.org/ (visited on
2016-08-23). used on: p. 106

[Valg] Valgrind. url: http://valgrind.org (visited on 2017-06-06).
used on: pp. 23, 28, 29

[WiSha] Wireshark. url: https : / / www . wireshark . org/ (visited on
2017-06-06). used on: p. 23

[YarpDD] yarpdatadumper. url: http://www.yarp.it/yarpdatadumper.
html (visited on 2017-08-09). used on: p. 49

https://github.com/python-pillow/Pillow
http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/
https://prometheus.io
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/giampaolo/psutil
http://riemann.io/
http://wiki.ros.org/rosbag
http://wiki.ros.org/rostopic
https://oss.oetiker.ch/rrdtool/
https://oss.oetiker.ch/rrdtool/
https://github.com/orocos/rtt_ros_integration
https://github.com/orocos/rtt_ros_integration
http://www.openrtm.org/openrtm/en/content/rtshell
http://www.openrtm.org/openrtm/en/content/rtshell
http://wiki.ros.org/action/recall/rviz?action=recall&rev=79
http://wiki.ros.org/action/recall/rviz?action=recall&rev=79
https://github.com/etsy/skyline
http://www.spread.org/
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
http://tsung.erlang-projects.org/
http://valgrind.org
https://www.wireshark.org/
http://www.yarp.it/yarpdatadumper.html
http://www.yarp.it/yarpdatadumper.html

D E C L A R AT I O N O F A U T H O R S H I P

According to the Bielefeld University’s doctoral degree regulations
§8(1)g: I hereby declare to acknowledge the current doctoral degree
regulations of the Faculty of Technology at Bielefeld University. Fur-
thermore, I certify that this thesis has been composed by me and
is based on my own work, unless stated otherwise. Third parties
have neither directly nor indirectly received any monetary advan-
tages in relation to mediation advises or activities regarding the con-
tent of this thesis. Also, no other person’s work has been used without
due acknowledgment. All references and verbatim extracts have been
quoted, and all sources of information, including graphs and data
sets, have been specifically acknowledged. This thesis or parts of it
have neither been submitted for any other degree at this university
nor elsewhere.

Johannes Wienke Place, Date

colophon

This thesis was typeset using the classicthesis typographical look-
and-feel developed by André Miede. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic
Style” [Bri08]. The writing style has been influenced by Strunk and
White [SW09], Dupré [Dup07], and The Economist [The15].

	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	List of code listings
	Research topic
	1 Introduction
	2 Fundamental concepts and terminology
	2.1 Resources and related concepts
	2.1.1 Resource categorization schemes
	2.1.2 Metrics, KPIs, and performance counters
	2.1.3 A conceptual model of system resources

	2.2 Dependable computing and FD*
	2.2.1 Dependability
	2.2.2 Threads to dependability
	2.2.3 Means of dependability
	2.2.3.1 Unified terminology

	2.2.4 Dependability and performance

	3 A survey on bugs in robotics systems
	3.1 Tool usage
	3.2 Bugs and their origins
	3.3 Performance bugs
	3.4 Bug examples
	3.5 Summary
	3.6 Threats to validity

	4 A concept of resource awareness
	4.1 Resource awareness in computing systems
	4.1.1 Server infrastructure operation
	4.1.2 Cloud computing
	4.1.3 Model-based performance prediction

	4.2 Resource awareness in robotics
	4.2.1 Space robotics
	4.2.2 Cloud robotics
	4.2.3 Resource-aware algorithms
	4.2.4 Resource-aware planning and execution
	4.2.5 Infrastructure monitoring of robotics systems
	4.2.6 Model-driven approaches

	4.3 Summary

	Technological foundation
	5 Component-based robotics systems
	5.1 Component-based software engineering
	5.2 CBSE and distributed systems
	5.3 CBSE in robotics
	5.4 Patterns in component-based robotics systems
	5.5 Summary

	6 Middleware foundation: RSB
	6.1 Architecture
	6.1.1 Event model
	6.1.2 Naming model
	6.1.3 Notification model
	6.1.4 Time model
	6.1.5 Observation model
	6.1.6 Extension points

	6.2 Introspection
	6.3 Domain data types: RST
	6.4 Tool support
	6.5 Interoperability with other middlewares
	6.6 Applications
	6.7 Summary

	7 A holistic dataset creation process
	7.1 Challenges in creating datasets
	7.2 Description of the holistic process
	7.3 Realization based on RSB
	7.3.1 Data sources
	7.3.2 Calibration
	7.3.3 Unification
	7.3.4 View generation and annotation

	7.4 Summary

	8 System metric collection
	8.1 Available system metric sources
	8.2 Resource acquisition tools
	8.3 Implementation
	8.3.1 Host collection
	8.3.2 Processes collection
	8.3.3 Subprocess handling
	8.3.4 Data representation
	8.3.5 System integration

	8.4 Summary

	Developer perspective
	9 Runtime resource introspection
	9.1 Available tools
	9.2 Resource utilization dashboard implementation
	9.2.1 Time series database adapter

	9.3 Dashboard design
	9.4 Evaluation
	9.4.1 Qualitative evidences
	9.4.2 Quantitative evaluation
	9.4.2.1 Dashboard usage
	9.4.2.2 Usefulness for debugging

	9.5 Summary

	10 Systematic resource utilization testing
	10.1 Related work
	10.2 Performance testing framework concept
	10.3 Realization
	10.3.1 Load generation
	10.3.1.1 The action tree
	10.3.1.2 Parameters

	10.3.2 Environment setup
	10.3.3 Test execution
	10.3.3.1 Orchestration
	10.3.3.2 Data acquisition & recording

	10.3.4 Test analysis
	10.3.4.1 Data preparation
	10.3.4.2 Manual inspection
	10.3.4.3 Automatic regression detection

	10.3.5 Automation

	10.4 Evaluation
	10.5 Summary

	11 Model-based performance testing
	11.1 Related work
	11.2 Language design
	11.2.1 Metamodel
	11.2.1.1 Actions
	11.2.1.2 Data generation
	11.2.1.3 Parameter specification

	11.2.2 Editors
	11.2.3 Code generation

	11.3 Notable language features
	11.3.1 Inline data generation
	11.3.2 Type safety for embedded custom code
	11.3.3 Expressive custom code via embedding

	11.4 Evaluation
	11.5 Summary

	Autonomy perspective
	12 A dataset for performance bug research
	12.1 Recording method
	12.2 Included performance bugs
	12.2.1 Algorithms & logic
	12.2.2 Resource leaks
	12.2.3 Skippable computation
	12.2.4 Configuration
	12.2.5 Threading
	12.2.6 Inter-process communication

	12.3 Automatic fault scheduling
	12.4 Summary

	13 Runtime resource utilization prediction
	13.1 Feature generation
	13.1.1 Accumulated event window features
	13.1.2 Adding previous system metrics
	13.1.3 Baseline: system metrics
	13.1.4 Preprocessing

	13.2 Model learning
	13.3 Evaluation
	13.3.1 Results on the ToBi dataset
	13.3.2 Influences of the component behavior

	13.4 Learning from performance tests
	13.4.1 Evaluation
	13.4.2 Influences of the test structure

	13.5 Related work
	13.6 Summary

	14 Runtime performance degradation detection
	14.1 Related approaches
	14.2 Residual-based performance degradation detection
	14.3 Evaluation
	14.3.1 Results on the ToBi dataset
	14.3.2 Influence of component behavior

	14.4 Summary

	Perspectives
	15 Conclusion
	16 Outlook

	Appendix
	A Survey: failures in robotics systems
	A.1 Introduction
	A.2 Monitoring Tools
	A.2.1 How often do you use the following kinds of tools to monitor the operation of running systems?
	A.2.2 Please name the concrete tools that you use for monitoring running systems.

	A.3 Debugging Tools
	A.3.1 How often do you use the following tools for debugging?
	A.3.2 Please name the concrete tools that you use for debugging.

	A.4 General Failure Assessment
	A.4.1 Averaging over the systems you have been working with, what to do you think is the mean time between failures for these systems?
	A.4.2 Please indicate how often the following items were the root cause for system failures that you know about.
	A.4.3 Which other classes of root causes for failures did you observe?

	A.5 Resource-Related Bugs
	A.5.1 How many of the bugs you have observed or know about had an impact on computational resources, e.g. by consuming more or less of these resources as expected?

	A.6 Impact on Computational Resources
	A.6.1 Please indicate how often the following computational resources were affected by bugs you have observed.
	A.6.2 If there are other computational resources that have been affected by bugs, please name these.

	A.7 Performance Bugs
	A.7.1 Please rate how often the following items were the root causes for performance bugs you have observed.

	A.8 Case Studies
	A.8.1 Thinking about the systems you have worked with so far, is there a bug that you remember which happened several times or which is representative for a class of comparable bugs?

	A.9 Case Study: Representative Bug
	A.9.1 How was the representative bug noticed?
	A.9.2 What was the root cause for the bug?
	A.9.3 Which steps were necessary to analyze and debug the problem?
	A.9.4 Which computational resources were affected by the bug?

	A.10 Case Studies
	A.10.1 Thinking about the systems you have worked with so far, is there a bug that you remember which was particularly interesting for you?

	A.11 Case Study: Interesting Bug
	A.11.1 How was the interesting bug noticed?
	A.11.2 What was the root cause for the bug?
	A.11.3 Which steps were necessary to analyze and debug the problem?
	A.11.4 Which computational resources were affected by the bug?

	A.12 Personal Information
	A.12.1 In which context do you develop robotics or intelligent systems?
	A.12.2 How many years of experience in robotics and intelligent systems development do you have?
	A.12.3 How much of your time do you spend on developing in the following domains?

	A.13 Final remarks

	B Failure survey results
	B.1 Used monitoring tools
	B.2 Used debugging tools
	B.3 Summarization of free form bug origins
	B.4 Summarization of other resources affected by bugs
	B.5 Representative bugs
	B.5.1 Representativ bug 8
	B.5.2 Representativ bug 10
	B.5.3 Representativ bug 14
	B.5.4 Representativ bug 21
	B.5.5 Representativ bug 26
	B.5.6 Representativ bug 30
	B.5.7 Representativ bug 41
	B.5.8 Representativ bug 42
	B.5.9 Representativ bug 46
	B.5.10 Representativ bug 60
	B.5.11 Representativ bug 69
	B.5.12 Representativ bug 70
	B.5.13 Representativ bug 76
	B.5.14 Representativ bug 81
	B.5.15 Representativ bug 96
	B.5.16 Representativ bug 128
	B.5.17 Representativ bug 135
	B.5.18 Representativ bug 136
	B.5.19 Representativ bug 156
	B.5.20 Representativ bug 190
	B.5.21 Representativ bug 191

	B.6 Interesting bugs
	B.6.1 Interesting bug 5
	B.6.2 Interesting bug 21
	B.6.3 Interesting bug 32
	B.6.4 Interesting bug 46
	B.6.5 Interesting bug 60
	B.6.6 Interesting bug 69
	B.6.7 Interesting bug 76
	B.6.8 Interesting bug 83
	B.6.9 Interesting bug 133
	B.6.10 Interesting bug 149
	B.6.11 Interesting bug 150
	B.6.12 Interesting bug 153
	B.6.13 Interesting bug 156
	B.6.14 Interesting bug 162

	B.7 Collected system metrics
	B.7.1 Host system metrics
	B.7.1.1 Memory
	B.7.1.2 Swap
	B.7.1.3 CPU
	B.7.1.4 Disk
	B.7.1.5 Network
	B.7.1.6 Users
	B.7.1.7 Processes

	B.7.2 Process metrics
	B.7.2.1 Source proc/stat
	B.7.2.2 Source proc/io
	B.7.2.3 Source proc/fd

	C Survey: dashboard evaluation
	C.1 Introduction
	C.2 General
	C.2.1 Please rate, how often you consult the monitoring dashboard in different situations?
	C.2.2 How much insight do you gain into the consumption and availability of computational resources (like CPU, I/O or memory) when using the dashboard?
	C.2.3 Do you think you have a better understanding of the use of computational resource in the system as a result of the dashboard?
	C.2.4 For the different kinds of computational resources, how much did the dashboard improve your understanding of the consumption of these resources?
	C.2.5 Please describe briefly, in which situation you find the dashboard most valuable.

	C.3 Debugging
	C.3.1 How often are issues that you observe in the system visible in the dashboard?
	C.3.2 Does the dashboard help to isolate the origin of bugs?
	C.3.3 Did you find bugs through the dashboard that you wouldn't have noticed at all or much later otherwise?
	C.3.4 Please briefly describe the bugs that you have found.

	C.4 Tools
	C.4.1 Which tools do / did you use apart from the dashboard to understand resource utilization?
	C.4.2 Did the dashboard reduce the use of other tools for the purpose of understanding resource utilization?

	C.5 End
	C.5.1 In case you have further comments or ideas regarding the performance dashboard, please indicate them here.

	C.6 Final remarks

	D Dashboard survey results
	D.1 Found bugs

	E ToBi dataset details
	E.1 Included components
	E.2 Relation of bugs to components

	Acronyms
	Glossary
	Bibliography
	Own publications
	General
	Software packages

	Declaration
	Colophon

