
Cold-start knowledge base population
using ontology-based information extraction

with conditional random fields

Hendrik ter Horst, Matthias Hartung and Philipp Cimiano

CITEC, Bielefeld University
{hterhors, mhartung, cimiano}@techfak.uni-bielefeld.de

Abstract. In this tutorial we discuss how Conditional Random Fields
can be applied to knowledge base population tasks. We are in particular
interested in the cold-start setting which assumes as given an ontology
that models classes and properties relevant for the domain of interest, and
an empty knowledge base that needs to be populated from unstructured
text. More specifically, cold-start knowledge base population consists in
predicting semantic structures from an input document that instantiate
classes and properties as defined in the ontology. Considering knowledge
base population as structure prediction, we frame the task as a statistical
inference problem which aims at predicting the most likely assignment to a
set of ontologically grounded output variables given an input document. In
order to model the conditional distribution of these output variables given
the input variables derived from the text, we follow the approach adopted
in Conditional Random Fields. We decompose the cold-start knowledge
base population task into the specific problems of entity recognition,
entity linking and slot-filling, and show how they can be modeled using
Conditional Random Fields.

Keywords: Cold-start Knowledge Base Population, Ontology-based In-
formation Extraction; Slot Filling; Conditional Random Fields

1 Introduction

In the era of data analytics, knowledge bases are vital sources for various down-
stream analytics tasks. However, their manual population may be extremely
time-consuming and costly. Given that in many scientific and technical domains,
it is still common practice to rely on natural language as the primary medium
for knowledge communication, information extraction techniques from natural
language processing [17,26] pose a viable alternative towards (semi-)automated
knowledge base population by transforming unstructured textual information
into structured knowledge.

Against this backdrop, cold-start knowledge base population [14] has recently
attracted increasing attention. Cold-start knowledge base population can be
seen as a particular instance of an information extraction problem with two
characteristics: First, information extraction serves as an upstream process in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211827466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

order to populate an initally empty knowledge base. Second, an ontology is given
that defines the structure of a domain of interest in terms of classes and properties
(entities and relations). Based on these requirements, the goal is to populate a
knowledge base that structurally follows the specifications of the ontology, given
a collection of textual data. This implies extracting classes (entities) and filling
their properties (as defined by the underlying ontology).

Knowledge base population can be modeled as a statistical inference problem.
Given a document as input, the goal is to infer the most likely instantiation(s) of
ontological structures that best capture the knowledge expressed in the document.
Modeling the cold-start population task as statistical inference problem requires
the computation of the distribution of possible outputs. Here, an output refers to a
specific variable assignment that determines the instantiation of such structure(s)
of interest. In the context of stochastic models, we are in particular interested in
the conditional probability of the variables of the output given an input document.
Let y = (y1, . . . , ym) specify the output vector of variables and x = (x1, . . . , xn)
the input vector of variables (usually tokens of a document). We are interested
in modeling the following probability distribution:

p(y|x) = p(y1, . . . , ym|x1, . . . , xn)

Given a model of this distribution, the goal is to find the assignment that
maximizes the likelihood under the model, that is:

ŷ1, . . . , ŷm = argmax
y1,...,yn

p(y1, . . . , ym|x1, . . . , xn)

Typically, probabilistic models are parameterized by some parameter vector θ
that is learned during a training phase:

p(y1, . . . , ym|x1, . . . , xn; θ)

One class of machine learning models that provides an efficient computation
of the above distribution are called Conditional Random Fields (CRFs; [11, 23]).
A CRF typically models the probability of hidden output variables conditioned
on given observed input variables in a factorized form, that is relying on a
decomposition of the probability into local factors. These factors reflect the
compatibility of variable assignments in predefined subsets of random variables.
Conditional random fields are typically trained in a discriminative fashion with
the objective to maximize the likelihood of the data given the parametrized
model.

In this tutorial, we discuss how conditional random fields can be applied to
two constitutive subtasks of knowledge base population.

Entity Recognition and Linking. As a first task, we show how the problem of entity
recognition and linking [6, 21] can be modeled. In particular, we investigate the
problem of disease recognition and linking from biomedical texts as illustrated
in the following example taken from PubMed1. We underline occurrences of

1 https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=2584179

3

diseases (recognition), concepts (as defined in the MeSH2 thesaurus) are shown
in subscript (linking):

Example 1. ”An instance of aortic intimal sarcomaD001157 [...], with clinical evi-
dence of acutely occurring hypertensionD006973 [...], and aortic occlusionD001157

in a 50-year-old male is reported.“

The conditional probability of the example can be explicitly expressed as3 :

p(y|x) = p(y1 = 〈”aortic intimal sarcoma“, D001157〉,
y2 = 〈”occurring hypertension“, D006973〉,
y3 = 〈”aortic occlusion“, D001157〉 |
x1 = ”An“, x2 = ”instance“, . . . ,

xn−1 = ”reported“, xn = ”.“)

Slot Filling. Second, we show how slot filling can be modeled via conditional ran-
dom fields. We consider slot filling as a relation extraction task with ontologically
defined templates as output structures. Such templates consist of a number of
typed slots to be filled from unstructured text [3]. Following an ontology-based
approach [26], we assume that these templates (including slots and types of their
potential fillers) are pre-defined in a given ontology.4 Consider the following input
document:

Example 2. ”Six- to eight-week-old adult female (192-268 g) Sprague-Dawley
rats were used for these studies.“

In this example, we are interested in predicting an AnimalModel template as
specified by the Spinal Cord Injury Ontology (SCIO) [2]. This ontological template
specifies details about the animal model that was used in a pre-clinical study. A
probable variable assignment of the output might be:

age → ”Six- to eight-week”,
age category → Adult,
gender → Female,
weight → ”192 - 268 g”,
species → Sprague Dawley Rat.

This tutorial paper is structured as follows. Section 2 provides an introduction to
conditional random fields as well as inference inference and parameter learning.
In Section 3, we apply this approach to the problem of named entity recognition
and linking in the biomedical domain, namely for diseases and chemicals. In

2 https://www.ncbi.nlm.nih.gov/mesh
3 Note, the conditional probability can be modeled in many different ways, depending

on the model structure.
4 Considering ontological properties, one must distinguish between object-type and

data-type properties. Values for the latter case are arbitrary literals and thus not
predefined.

4

Section 4, we apply our approach to the task of slot filling in the domain of
therapies about spinal cord injury and provide all necessary information to tackle
this task. This tutorial ends with Section 5 in which we conclude our proposed
approach. Parts of the materials presented here are taken from our previous
publications [4, 7, 8].

2 Conditional Random Fields for Knowledge Base
Population

Many tasks in knowledge base population and natural language processing in
general can be modeled as structure prediction problems where ontology-defined
target structures need to be predicted from some input structure [22]. A particular
case of this are sequence-to-sequence prediction problems such as part-of-speech
tagging or named-entity-recognition. Here, an output sequence needs to be
predicted from a given sequence of tokens.

From a general perspective, such tasks require predicting a hidden output
vector y on the basis of an observed input vector x. Usually x represents a
tokenized document (containing natural language) in which all variables xt ∈ x
correspond to single tokens in the document. Thus, the length of the input vector
is equal to the number of tokens T in the document, that is |x| = T , where xt
corresponds to the tth token. The hidden output vector y may vary in length
and complexity depending on the structure of the problem.

Such problems can be modeled via a conditional distribution of the following
form:

p(y|x; θ),

where the probability of the output is conditioned on the input and parametrized
by some vector θ.

The variable assignment that maximizes the probability can be found by what
is called Maximum A Posteriori (MAP) inference:

ŷ = argmax
y

p(y|x; θ).

Conditional Random Fields (CRF) are widely applied for such problems as they
can model the above conditional distribution via a product of factors directly.
These factors are parameterized with subsets of yi ⊆ y and xi ⊆ x. Factors
and the corresponding variables are typically specified in a so called factor
graph [9, 10]. A factor graph is a bipartite graph G = (V,E, F) consisting of a
set of random variables V , factors F and edges E. We define vj ∈ V as a subset
of all possible random variables: vj = yj ∪ xj . Each factor Ψj ∈ F represents a
function: Ψj : Vj → R≥0 that is parameterized with vj and returns a non-negative
scalar score indicating the compatibility of variables in vj . Further, an edge
ej ∈ E is defined as a tuple: ej = 〈Vj , Ψj〉. An important aspect is that CRFs
assume x as fully observed and thus do not model statistical dependencies between
variables in x. Figure 1 shows an example factor graph with V = {A,B,C,D} and

5

Fig. 1. Bipartite undirected factor graph with V = {A,B,C,D} and F =
{Ψ1, Ψ2, Ψ3, Ψ4} (black boxes).

F = {Ψ1, Ψ2, Ψ3, Ψ4}. Based on the structure of this factor graph, the factorization
can be formulated as:

p(A,B,C,D) =
1

Z
Ψ1(A,B) · Ψ2(A,C) · Ψ3(C,D) · Ψ4(B,D) (1)

where Z is the partition function that sums up over all possible variable assign-
ments in order to ensure a valid probability distribution:

Z =
∑

a∈A,b∈B,c∈C,d∈D

Ψ1(a, b) · Ψ2(a, c) · Ψ3(c, d) · Ψ4(b, d). (2)

To concretize the example, let each random variable in V can take binary values,
that is A = {a1, a2}, B = {b1, b2}, C = {c1, c2}, D = {d1, d2}, and each factor Ψi
computes a score that reflects the compatibility of two variables as shown in Table
1. The probability for a concrete variable assignment e.g. A = a1, B = b1, C = c2
and D = d1 is then explicitly calculated as:

p(a1, b1, c2, d1) =
1

Z
(Ψ1(a1, b1) · Ψ2(a1, c2) · Ψ3(c2, d1) · Ψ4(b1, d1))

=
1

Z
(5 · 4 · 1 · 1) =

1

Z
20

(3)

where

Z = Ψ1(a1, b1) · Ψ2(a1, c1) · Ψ3(c1, d1) · Ψ4(b1, d1)

+ Ψ1(a1, b1) · Ψ2(a1, c1) · Ψ3(c1, d2) · Ψ4(b1, d2)

+ . . .

+ Ψ1(a2, b2) · Ψ2(a2, c2) · Ψ3(c2, d2) · Ψ4(b2, d2)

= 659

(4)

So that the probability is calculated as: p(a1, b1, c2, d1) = 20
659 = 0.03.

This is essentially the approach taken by conditional random fields which
model the conditional distribution of output variables given input variables
through a product of factors that are defined by a corresponding factor graph:

6

A B Ψ1(·, ·) A C Ψ2(·, ·) B D Ψ3(·, ·) C D Ψ4(·, ·)

a1 b1 5 a1 c1 3 b1 d1 1 c1 d1 3
a1 b2 2 a1 c2 4 b1 d2 1 c1 d2 2
a2 b1 2 a2 c1 0 b2 d1 1 c2 d1 1
a2 b2 1 a2 c2 3 b2 d2 7 c2 d2 4

Table 1. Compatibility table for all possible pairwise variable assignments. The specific
assignment A = a1, B = b1, C = c2, and D = d1 is highlighted.

p(y|x) =
1

Z(x)

∏
Ψi∈F

Ψi(N (Ψi)), (5)

where N (Ψi) is the set of variables neighboring Ψi in the factor graph:

N (Ψi) := {vi | (vi, Ψi) ∈ E}

Typically, factors are log-linear functions specified in terms of feature functions
fj ∈ Fj as sufficient statistics:

Ψi(N (Ψi)) = exp

 ∑
fj∈Fi

fj(yi,xi) · θi

This yields the following general form for a conditional random field that repre-
sents the conditional probability distribution:

p(y|x) =
1

Z(x)

∏
Ψi∈F

exp

 ∑
fj∈Fi

fj(yi,xi) · θi

 (6)

The number of factors is determined by the length of the input and by the
output structure as defined by the problem. The number of factors differs in
any case by the size of the input. This leads one to consider factor types that
are determined by so called factor templates (sometimes clique templates) that
can be rolled out over the input yielding specific factor instances. Hereby, all
the factors instantiating a particular template are assumed to have the same
parameter vector θΨ . Each template Cj ∈ C defines (i) subsets of observed and
hidden variables for which it can generate factors and (ii) feature functions to
provide sufficient statistics. All factors generated by a template Cj share the same
parameters θj . With this definition, we reformulate the conditional probability
from Equation (5) as follows:

p(y|x; θ) =
1

Z(x)

∏
Cj∈C

∏
Ψi∈Cj

Ψi(yi,xi, θj) (7)

7

Fig. 2. Linear chain CRF for a sequence-to-sequence application with |y| = |x| and
xt = {xt}. Observed variables x are tokens from a tokenized input sentence.

Linear Chain CRF A Linear Chain CRF is a linear structured instance of a
factor graph which is mostly used to model sequence-to-sequence problems. The
linear chain CRF factorizes the conditional probability under the following restric-
tion. A hidden variable yt at position t ∈ [0..T] depends only on itself, the value
of the previous hidden variable yt−1 and a subset of observed variables xt ⊆ x. xt
contains all information that is needed to compute the factor Ψt(yt, yt−1,xt) at
position t. For example, factors that are based on the context tokens with distance
of δ to each side, the observed vector at position t is xt = {xt−δ, . . . , xt, . . . , xt+δ}.
Each factor Ψt ∈ F computes a log-linear value based on the scalar product of a
factor related feature vector Ft, to be determined from the corresponding subset
of variables, and a set of related parameters θt. Due to the linear nature of the
factor graph G, feature functions are formulated in the form of ft(yt, yt−1,xt).
The decomposed conditional probability distribution is then defined on the joint
probability p(yt, yt−1,xt) as formulated in Equation (8):

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,xt) (8)

where each Ψt has the log-linear form:

Ψt(yt, yt−1,xt) = exp

{ Ft∑
i=1

fi(yt, yt−1,xt) · θi

}
(9)

An example of a linear chain CRF for a sequence-to-sequence application
with |y| = |x| and xt = {xt} is shown in Figure 2. Observed variables x is a
sequence of tokens from the sentence: “Barack Obama is the former president of
the USA.”.
Linear chain CRF models are commonly used for sequence tagging problems where
|y| = |x|. A well known problem that fits this condition is POS tagging. Given
a finite set Φ of possible (POS) tags e.g. Φ = {NNP, V BZ,DT, JJ,NN, IN, .},
the goal is to assign a tag to each token in x so that the overall probability of the
output tag-sequence p(y) is maximiized. 5 But also more complex tasks such as
named entity recognition can be formulated as a sequence-to-sequence problem

5 Based on the given example, the optimal output vector is y∗ =
{NNP,NNP, V BZ,DT, JJ,NN, IN,DT,NNP, .}.

8

although the number of entities is priorly unknown. For that, the input document
is transformed into an IOB-sequence, that is the document is tokenized and each
token is labeled with one value of Φ = {I,O,B}, (where B states the beginning
of an entity, I states that the token is inside of an entity, and tokens labeled
with O are outside of an entity).6

2.1 Inference and Learning

Although the factorization of the probability density already reduces the com-
plexity of the model, exact inference is still intractable for probabilistic graphical
models in the general case and for conditional random fields in particular. While
efficient inference algorithms exist for the case of linear chain CRFs (cf. [23]), in
the general case inference requires computing the partition function Z(x) which
sums up over an exponential number of possible assignments to the variables
Y1, ..., Yn. Further, inference for a subset YA ⊆ Y of variables requires marginal-
ization over the remaining variables in addition to computing the partition
function.

Maximum-A-Posteriori Inference (MAP) in turn requires considering all
possible assignments to the variables Y1, ...Yn to find the maximum.

To avoid the exponential complexity of inference in conditional random fields,
often approximative inference algorithms are used. One class of such algorithms
are Markov Chain Monte Carlo (MCMC) methods that iteratively generate
stochastic samples from a joint distribution p(y) to approximate the posterior
distribution.

Samples are probabilistically drawn from a state space Y that contains (all)
possible variable assignments (state) for y. While walking through the state
space, MCMC constructs a Markov Chain that, with sufficient samples, converges
against the real distribution of interest. That means the distribution of states
within the chain approximates the marginal probability distribution of p(yi) for
all yi ∈ y. The drawback of this method is that it is priorly unknown how many
iterations are needed to ensure convergence.

Inference: In high dimensional multivariate distributions the Markov Chain
can be efficiently constructed by Metropolis–Hastings sampling algorithms. In
Metropolis–Hastings, new samples are drawn from a probability distribution Q.
The next drawn sample y′ is only conditioned on the previous sample y making
it a Markov Chain. If Q is proportional to the desired distribution p, then, with
sufficient samples, the Markov Chain will approximate the desired distribution
by using a stochastically-based accept/reject strategy. The pseudo-code for the
standard procedure of Metropolis–Hastings is presented in Algorithm 2.1.

Here, the function acceptanceRatio(·, ·) calculates a ratio for a new state to
be accepted as the next state. In standard Metropolis–Hastings, this ratio is

6 Based on the given example, the optimal output vector for NER is y∗ =
{B, I,O,O,O,O,O,O,B,O}. The generated sequence, tells us that the tokens Barack
and Obama belong to the same entity (B is directly followed by I), whereas USA is
another single token entity.

9

Algorithm 1 Pseudo-code Metropolis–Hastings Sampling

1: y0 ← random sample
2: t← 1
3: repeat
4: y′ ∼ Q(y′|yt)
5: α← acceptanceRatio(y′, yt)
6: if α ≥ rand[0, 1] then
7: y(t+1) ← y′

8: else
9: y(t+1) ← y

10: end if
11: t← t+ 1
12: until convergence

computed as the probability of the new state divided by the probability of the
current state:

acceptanceRatio(y′, y) =
f(y′)

f(y)
, (10)

where f(y) is a function that is proportional the real density p(y). Note that,
if f(y′) ≥ f(y), the new state y′ will be always accepted as the resulting ratio
is greater 1. Otherwise, the likelihood of being accepted is proportional to the
likelihood under the model.

One special case of the general Metropolis–Hastings algorithm is called Gibbs
sampling. Instead of computing the fully joint probability of all variables in
p(y) = p(y1, . . . , yn) in Gibbs each variable yi individually resampled while
keeping all other variables fixed, that makes p(yi|y\i) . Resnik et al. [20] describe,
drawing the next Gibbs sample as:

Algorithm 2 Create next sample with Gibbs

1: for i = 1 to n do
2: y

(t+1)
i ∼ p(yi|y(t+1)

1 , . . . , y
(t+1)
i−1 , y

(t)
i+1, . . . , y

(t)
n)

3: end for

We propose a slightly different sampling procedure (hereinafter called atomic
change sampling) as depicted in Figure 3.

While in standard Gibbs sampling, one needs to specify the order of variables
that are resampled, we relax this prerequisite by extending the state space in
each intermediate step to all possible states that can be reached by applying
one atomic change to the current state. Let Ω(y) be the set of states that can
be generated from y by applying one atomic change operation to y, then the
probability distribution Q can be described as:

Q(y′,y) =

{
q(y′) iff y′ ∈ Ω(y)

0 else
, (11)

10

F
ig
.
3
.

C
o
m

p
a
riso

n
o
f

sta
n

d
a
rd

G
ib

b
s

sa
m

p
lin

g
(left)

a
n

d
A

to
m

ic
C

h
a
n

g
e

S
a
m

p
lin

g
(rig

h
t).

T
h

e
va

ria
b

le
a
ssig

n
m

en
t

th
a
t

w
a
s

d
raw

n
a
n

d
a
ccep

ted
fro

m
th

e
d
istrib

u
tio

n
o
f

p
o
ssib

le
a
ssig

n
m

en
ts

is
h
ig

h
lig

h
ted

11

where

q(y′) =
f(y′)∑

ŷ∈Ω(y) f(ŷ)
. (12)

Parameter Learning The learning problem consists of finding the optimal weight
vector θ that maximizes the a-posteriori probability p(y|x; θ).

Typically, the parameters of the distribution are optimized given some training
data D = (yi,xi) to maximize the likelihood of the data under the model, that
is

θ̂ = argmaxθ
∏

yi,xi∈D
P (yi|xi, θ)

However, parameter optimization typically calls the inference procedure to esti-
mate the expected count of features under the model θ to compute the gradient
that maximizes the likelihood of the data under the model.

Another solution to parameter learning is to rely on a ranking objective that
attempts to update the parameter vector to assign a higher likelihood to preferred
solutions. This is the approach followed by SampleRank [25]. The implementation
in our approach is shown below:

Algorithm 3 Sample Rank

1: Inputs: training data D
2: Initialization: set θ ← 0, set y ← y0 ∈ Y
3: Output: parameter θ
4: repeat
5: y′ ∼ M(·|y)
6: ∆← φ(y′, x)− φ(y, x)
7: if θ ·∆ > 0 ∧ P(y, y′) then
8: θ ← θ − η∆
9: else if θ ·∆ ≤ 0 ∧ P(y′, y) then

10: θ ← θ + η∆
11: end if
12: if accept(y′, y) then
13: y ← y′

14: end if
15: until convergence

SampleRank is an online algorithm which learns preferences over hypotheses
from gradients between atomic changes to overcome the expensive computational
costs that arise during inference. The parameter update is based on gradient
descent on pairs of states (yt,y(t+1)) consisting of the current best state yt and
the successor state y(t+1). Two states are compared according to the following
objective preference function P : Y × Y → {false, true}:

P(y,y′) = O(y′) > O(y) (13)

12

Here, O(y) denotes an objective function that returns a score indicating its
degree of accordance with the ground truth from the respective training document.
M : Y × Y → [0, 1] denotes the proposal distribution that is provided by the
model, φ : Y ×X → R|θ| denotes the sufficient statistics of a specific variable
assignment and:

accept(y, y′)↔ p(y′) > p(y) (14)

3 Conditional Random Fields for Entity Recognition and
Linking

As a subtask in machine reading, i.e., automatically transforming unstructured
natural language text into structured knowledge [18], entity linking facilitates
various applications such as entity-centric search or predictive analytics in knowl-
edge graphs. In these tasks, it is advisable to search for the entities involved at the
level of unique knowledge base identifiers rather than surface forms mentioned
in the text, as the latter are ubiquitously subject to variation (e.g., spelling
variants, semantic paraphrases, or abbreviations). Thus, entities at the concept
level can not be reliable, retrieved or extracted from text using exact string match
techniques.

Prior to linking the surface mentions to their respective concepts, named
entity recognition [16] is required in order to identify all sequences of tokens in
the input sentence that potentially denote an entity of a particular type (e.g.,
diseases or chemicals). Until recently, named entity recognition and entity linking
have been mostly performed as separate tasks in pipeline architectures ([6, 19],
inter alia).

Although linear chain CRFs are widely used for NEL, recent research outlines
the positive impact of complex dependencies between hidden variables that
exceeds the limitations of a linear model. We frame the entity recognition and
linking tasks as a joint inference problem in a general CRF model. In the following,
we describe (i) the underlying factor graph, (ii) the joint inference procedure and
(iii) the factor template / feature generation to provide sufficient statistics.

We train and evaluate our system in two experiments focusing on both diseases
and chemical compounds, respectively. In both tasks, the BioCreative V CDR
dataset [24] is used for training and testing. We apply the same model to both
domains by only exchanging the underlying reference knowledge base. We show
that the suggested model architecture provides high performance on both domains
without major need of manual adaptation or system tuning.

3.1 Entity Linking Model and Factor Graph Structure

We define a document as a tuple d = 〈x,m, c, s〉 comprising an observed sequence
of tokens x, a set of non-overlapping segments determining entity mentions
m and corresponding concepts c. We capture possible word synonyms s as
hidden variables of individual tokens. In the following, we refer to an annotation
ai = 〈mi, ci, si〉 ∈ d as a tuple of corresponding variables. Further, we define

13

Fig. 4. General factor graph of our model for joint entity recognition and linking. The
factor graph consists of hidden variables m, c, and s and observed variables x as well
as factor types Ψ i connecting subsets of these variables.

a state as a specific assignment of values to each hidden variable in d. The
factor graph of our model is shown in Figure 4. It consists of hidden variables
m, c, and s and observed variables x as well as factor types Ψi connecting
subsets of these variables. Note that the figure does not show an unrolled factor
graph but a general viewpoint to illustrate different types of factors (cf. Figure 5
for an unrolled example). We distinguish 5 factor types by their instantiating
factor template {T 1, T 2, T 3, T 4, T 5} ∈ T e.g. Ψ1 : T 1 is a factor type that solely
connects variables of m.

Let y = A be represented as a set of annotations of the document, then the
conditional probability p(y|x) from formula (5) can be written as:

P (y|x) =
1

Z(x)

My∏
mi

Ψ1(mi) ·
Cy∏
ci

Ψ2(ci) ·
Sy∏
si

Ψ3(si) ·
Xy∏
xi

Ψ4(xi) ·
Ay∏
ai

Ψ5(ai) (15)

Factors are formulated as Ψi(·) = exp(〈fTi(·), θTi〉) with sufficient statistics fTi(·)
and parameters θTi . In order to get a better understanding of our model, we
illustrate an unrolled version of the factor graph in Figure 5. Given this example,
d can be explicitly written out as: c = {c1 = D011507, c2 = D011507, c3 =
D007674}, s = {s3 = disease → dysfunction}, and m = {m1 = {x7},m2 =
{x13},m3 = {x16, x17}} and x = {x0, . . . , x17}.

3.2 Inference

Exploring the Search Space. Our inference procedure is based on the MCMC
method with the exhaustive Gibbs sampling as defined in Section 2.1. The infer-
ence procedure is initialized with an empty state s0 that contains no assignment
to any hidden variables, thus s0 = {x = {x0, . . . , xn−1},m = ∅, s = ∅, c = ∅}. In
each iteration, a segmentation-explorer and a concept-explorer are consecutively
applied in order to generate a set of proposal states. The segmentation explorer
(recognition) is able to add a new non-overlapping segmentation7, remove an

7 We do not extend or shrink existing spans. Instead, new annotations can be of
different length, spanning 1 to 10 tokens.

14

Fig. 5. Unrolled factor graph of our model from Figure 4 given a concrete example
annotated document.

existing segmentation, or apply a synonym replacement to a token within an ex-
isting segmentation. The concept-explorer (linking) can assign, change or remove
a concept to/from any segmentation.

Applying these explorers in an alternating consecutive manner, as illustrated
in Figure 6, effectively guarantees that all variable assignments are mutually
guided by several sources of information: (i) possible concept assignments can
inform the segmentation explorer in proposing valid spans over observed input
tokens, while (ii) proposing different segmentations together with synonym
replacements on these may facilitate concept linking. Thus, this intertwined
sampling strategy effectively enables joint inference on the recognition and the
linking task. Figure 7 shows an exemplary subset of proposal states that are
generated by the segmentation explorer.

Objective Function Given a predicted assignment of annotations y′ the objective
function calculates the harmonic mean based F1 score indicating the degree of
accordance with the ground truth ygold. Thus:

O = F1(y′,ygold) (16)

3.3 Sufficient Statistics

In the following, we describe our way of creating sufficient statistics by features
that encode whether a segmentation and its concept assignment is reasonable or
not. All described features are of boolean type and are learned from a set of labeled
documents from the training data. We introduce δ as a given dictionary that
contains entity surface forms which are linked to concepts, and the bidirectional
synonym lexicon κ that contains single token synonyms of the form x↔ xsynonym.

Dictionary Generation

15

Fig. 6. Illustration of the joint inference procedure for named entity recognition and
linking. The procedure begins with an empty state that is passed to the recognition
explorer. The successor state is stochastically drawn from the model distribution of
proposal states and passed to the linking explorer. We do this for n iterations until
convergence.

Dictionary Generation A main component of this approach is a dictionary
δ ⊆ S × C, where C = {c0, . . . , cn} is the set of concepts from a reference
knowledge base and S = {s0, . . . , sm} denotes the set of surface forms that can
be used to refer to these concepts. We define two functions on the dictionary:
(i) δ(s) = {c | (s, c) ∈ δ} returns a set of concepts for a given name s, and (ii)
δ(c) = {s | (s, c) ∈ δ} returns a set of names for a given concept c.

Synonym Extraction. We extract a bidirectional synonym lexicon from the
dictionary δ by considering all surface forms of a concept c that differ in one
token. We consider these tokens as synonyms. For example, the names kidney
disease and kidney dysfunction are names for the same concept and differ in the
tokens ‘disease’ and ‘dysfunction’. The replacement (disease ↔ dysfunction) is
(bidirectional) inserted into the synonym lexicon denoted as κ provided that the
pair occurs in at least two concepts.

Feature Generation For simplicity reasons, we refer in the following with mi

to the underlying text of the ith segmentation and si to the underlying text
of the corresponding segmentation that includes its synonym replacement. The
feature description is guided by the following example sentence:

“ Hussein Obama is the former president of the USA . ”

Here, three segments are annotated (framed tokens). Throughout the concrete
feature examples that are provided to each feature description, we denote:
m0 = “Hussein Obama”, s0 = {Hussein↔ Barack}, c0 = ∅
m1 = “former”, s1 = ∅, c1 = ∅,
m2 = “USA”, s2 = ∅, c2 = dbpedia : United States.

16

Fig. 7. Subset of proposal states generated by the segmentation explorer, originating
from the current state st which has already one linked segmentation on token t13. Each
proposal state has a new non-overlapping segment annotation (marked in grey) that is
not linked to any concept. Proposal states may include synonym replacements (depicted
as dashed boxes) that are accepted for all subsequent sampling steps.

Dictionary Lookup For each segmentation mi in the document, a feature fmi

mi∈δ(yi)
is created that indicates whether the text within mi corresponds to any entry in
the dictionary δ. Further, a feature f ci(mi,ci)∈δ(yi) indicates whether the text of a

segmentation refers to its assigned concept ci. Analogously, a pair of features is
computed that indicate whether si is in or is related to the concept ci according
to the dictionary.

fmi

mi∈δ(yi) =

{
1 iff ∃c ∈ C(mi, c) ∈ δ
0 otherwise.

f ci(mi,ci)∈δ(yi) =

{
1 iff (mi, ci) ∈ δ
0 otherwise.

(17)

Example 3.
fm0

m0∈δ(y0) = “Hussein Obama” ∈ δ = 1

f c0(m0,c0)∈δ(y0) = (“Hussein Obama”,∅) /∈ δ = 0

fm1

m1∈δ(y1) = “former” /∈ δ = 0

f c1(m1,c1)∈δ(y1) = (“former”,∅) /∈ δ = 0

fm2

m2∈δ(y2) = “USA” ∈ δ = 1

f c2(m2,c2)∈δ(y2) = (“USA”, dbpedia : United States) ∈ δ = 1

In this example, Hussein Obama and USA are part of the dictionary, whereas
former is not. Further, the assigned concept c2 to m2 matches an entry in the
dictionary.

17

Synonyms Recall that the synonym lexicon κ is generated automatically from
training data. Thus, not all entries are meaningful or equally likely and may be
concept dependent. Thus, we add a feature fκ that measures the correlation for
a segment mi to its synonym si ∈ κ if any.

fmi,si
κ (yi) =

{
1 iff (mi, si) ∈ κ
0 otherwise.

(18)

Example 4.

fm0,s0
κ (y0) = (“Hussein”↔ “Obama”) ∈ κ = 1

fm1,s1
κ (y1) = (“former”↔ ∅) /∈ κ = 0

fm2,s2
κ (y2) = (“USA”↔ ∅) /∈ κ = 0

In this example, Hussein Obama is a synonym for Barack Obama based on the
synonym lexicon.8

Token Length Given a segment mi, we consider its length ni = len(mi) by binning
ni into discrete values ranging from 1 to ni: B = [b0 = 1, b1 = 2, . . . , bn−1 = ni].
For each element in B, we add a feature flen that tells whether bj ∈ B is less or
equal to ni. Analogously, the feature is conjoined with the annotated concept ci.

f
bj ,ni

len (yi) =

{
1 iff bj <= ni

0 otherwise.
(19)

Example 5.

f b0,n0

len (yi) = “len (1 ≤ 2)” = 1

f b1,n0

len (yi) = “len (2 ≤ 2)” = 1

f b0,n1

len (yi) = “len (1 ≤ 1)” = 1

f b0,n2

len (yi) = “len (1 ≤ 1)” = 1

f b0,n2

len (yi) = “len + dbpedia : United States (1 ≤ 1)” = 1

In this example, n0 = len(“Barack Obama”) = 2, n1 = len(“former”) = 1,
ni = len(“USA”) = 1.

8 Note that, just because the feature is active it does not mean its a good replacement.
This is determined during training.

18

Token Context and Prior We capture the context of a segmentation mi in form
of token based N -grams. Let πk be the kth n-gram within or in the context
of mi, then features of type fmi,x

πk context(yi) and fmi

within(yi) are created for each
πk that indicate whether a segmentation is (i) preceded by a certain πk, (ii)
followed by πk, (iii) surrounded by πk, and (iv) within mi. In order to model
recognition and linking jointly, each of these features is additionally conjoined
with the corresponding concept ci that is: fmi,cix

πk context(yi) and fmi,ci
within(yi) .

Example 6.

∀πk ∈ Πcontext
0 : fm0,x

πk context(y0) = πk = 1

∀πk ∈ Πwithin
0 : fm0

πk within(y0) = πk = 1

∀πk ∈ Πcontext
1 : fm1,x

πk context(y1) = πk = 1

∀πk ∈ Πwithin
1 : fm1

πk within(y1) = πk = 1

∀πk ∈ Πcontext
2 : fm2,x

πk context(y2) = πk = 1

∀πk ∈ Πwithin
2 : fm2

πk within(y2) = πk = 1

∀πk ∈ Πcontext
2 : fm2,c2,x

πk context(y2) = πk + dbpedia : United States = 1

∀πk ∈ Πwithin
2 : fm2,c2,x

πk within(y2) = πk + dbpedia : United States = 1

In this example, we restrict N to 3 which means we consider only uni-, bi-, and
tri-grams. We provide exemplary the N -grams for the first annotation which
are: Πcontext

0 = {“is”,“the”,“former”, “is the”, “the former”, “is the former”}
and Πwithin

0 = {“Hussein”, “Hussein Obama”, “Obama”}. Πcontext
1 , Πcontext

2

and Πwithin
1 , Πwithin

2 are defined analogously.

Coherence We measure the pairwise coherence of annotations with the feature
fcoh defined as:

f
aj ,ak
coh (yj , yk) =

{
1 iff (mj == mk) ∧ (sj == sk) ∧ (cj == ck)

0 otherwise.
(20)

Example 7.

fa0,a1coh (y0, y1) =

(“Hussein Obama” 6= “former”) ∧
((“Hussein”↔ “Barack”) 6= ∅) ∧
(∅ == ∅)

= 0

19

fa1,a2coh (y1, y2) =

(“former” 6= “USA”) ∧
(∅ == ∅) ∧
(∅ == ∅)

= 0

fa0,a2coh (y0, y2) =

(“Hussein Obama” 6= “USA”) ∧
(∅ == ∅) 6= ∅) ∧
(∅ == ∅)

= 0

For this example, we do not have any active features as they do not share surface
forms, concepts and synonym replacements.

Abbreviation We address the problem of abbreviations (cf. [5]) in the task of
entity linking with features fabb that indicate whether the segmentation mi

represents an abbreviation9 and its longform is locally known. That is, iff a
non-abbreviation segmentation mj exists that has the same concept assigned as
the abbreviation mi:

f
ai,aj
abb (yi, yj) =

{
1 iff (isAbbr(mi) ∧ ¬isAbbr(mj)) ∧ (ci == cj) ∧ (ci 6= ∅)

0 otherwise.

(21)

Example 8.

fa0,a1abb (y0, y1) = (false ∧ true) ∧ (∅ == ∅) ∧ (∅ 6= ¬∅) = 0

fa1,a2abb (y1, y2) = (false ∧ true) ∧ (∅ == ∅) ∧ (∅ 6= ¬∅) = 0

fa0,a2abb (y0, y2) =

(true ∧ true) ∧
(∅ 6= dbpedia : United States) ∧
(dbpedia : United States == ¬∅)

= 0

For this example, we do not have any active features as no longform of an
annotated abbreviation exists that shares the same concept.

3.4 Experiments

The objective of this model is to recognize segments in text denoting an entity
of a specific type and link them to a reference knowledge base by assigning a
unique concept identifier. In this section, we describe our experiments on two
types of biomedical entities. The first experiment evaluates our system in disease
recognition and linking. The second experiment is conducted on chemicals. Both
experiments use the same data set described below.

9 We define an abbreviation as a single token which is in uppercase and has at most 5
characters.

20

Data Sets and Resources

Data Sets. All experiments were conducted on data from the BioCreative V
Shared Task for Chemical Disease Relations (BC5CDR) [24]. The data set was
designed to solve the tasks of entity recognition and linking for disease and
chemicals and further to find relations between both. However, the latter task is
not yet considered in our approach. Each annotation contains information about
its span in terms of character offsets and a unique concept identifier. Annotated
entities are linked to the Comparative Taxicogenomics Database10 for diseases
(CTDdis) or chemicals (CTDchem), respectively.

The data set consists of 1,500 annotated Pubmed abstracts equally distributed
into training, development and test set with about 4,300 unique annotations
each.

Reference Knowledge Base. CTDdis is derived from the disease branch of MeSH
and the Online Mendelian Inheritance in Man (OMIM)11 data base. CTDdis

contains 11,864 unique disease concept identifiers and 75,883 disease names.
CTDchem is solely derived from the chemical branch of MeSH. It comprises
163,362 unique chemical concept identifiers and 366,000 chemical names.

Cleaning Procedure. In order to remove simple spelling variations, we implement
a text cleaning procedure which is applied to all textual resources and data sets.
The strategy uses six manually created regular expressions like replacing ’s by s.
Further, we convert all tokens into lowercase if they are not solely in uppercase,
we remove all special characters including punctuation and brackets, and replace
multiple whitespace characters by a single blank. We apply the same strategy to
both diseases and chemicals.

Resources used in the Experiments. In the experiments for disease recognition
and linking, we initialize the dictionary δ with CTDdis and enhance it with the
disease annotations from the training data. We then apply the text cleaning
procedure as described above to all entries, as well as to all documents in training
and test set. Due to the cleaning, the size of the dictionary reduces to 73,773
unique names (−2,113), while the number of concepts remains the same. The
resulting synonym lexicon κ stores 2,366 entries.

In the experiments for chemicals, the dictionary δ is initialized with CTDchem

and enhanced with the chemical annotations from the training data. After the
cleaning procedure, the size of the dictionary reduces to 359,564 unique names
(−8.186), while the number of concepts remains the same. The resulting synonym
lexicon κ stores 4,912 entries.

The system’s overall performance depends on the two parameters k and λ that
influence the candidate retrieval procedure (cf. Section 3.3), as they determine
the maximum recall that can be achieved. We empirically set the best parameter

10 http://ctdbase.org, version from 2016.
11 http://www.omim.org

21

values using a two-dimensional grid search on the development set, assuming
perfect entity recognition. Best performance is achieved with k = 20 and λ = 0.7.
Given these parameters, a maximum recall of 90.4 for diseases, and 91.5 for
chemicals can be obtained by our system on the BC5CDR test set.

Baselines We compare our approach to the two state-of-the-art systems DNorm
[13] and TaggerOne [12], as well as against two simple baselines (LMB and
LMB+). The latter baselines are based on non-overlapping longest matches, using
the dictionary as described in Section 3.3. While in LMB+ all resources (including
the dictionary and documents) were cleaned, resources in LMB remain as they
are.

Due to the cleaning, we lose track of the real character offset position. Thus,
these baselines are not applicable to the entity recognition subtask.

Experimental Settings

Evaluation Metrics. We use the official evaluation script as provided by the
BioCreative V Shared Task organizers [24]. The script uses Precision, Recall and
F1 score on micro level. In the recognition task the measure is on mention level
comparing annotation spans including character positions and the annotated text.
Experiments on the linking task are evaluated on concept level by comparing
sets of concepts as predicted by the system and annotated in the gold standard,
i.e., multiple occurrences of the same concept and their exact positions in the
text are disregarded.

Hyper-Parameter Settings. During development, the learning rate α and the
number of training epochs ε as hyper-parameters of SampleRank were empirically
optimized by varying them on the development set. Best results could be achieved
with α = 0.06. The results reached a stable convergence at ε = 130.

Results We report results on the BC5CDR test set in Table 2. Results on
the disease and chemicals subtasks are shown in the left and right part of the
table, respectively. For both tasks, we assess the performance of our system on
end-to-end entity linking (columns labeled with “Linking”), as well as the entity
recognition problem in isolation (“Recognition”).

Disease Recognition and Linking In disease recognition, our approach exhibits
the best F1 score of all systems compared here (F1=83.2). Only in terms of
Precision, TaggerOne has slight advantages.

In the linking task, our system (J-Link) clearly outperforms both lexicon-
based baselines as well as both state-of-the-art systems. In particular, J-Link
exceeds TaggerOne by 2.2 and DNorm by 5.3 points in F1 score, respectively.

Comparing these results to the baselines, we observe that a simple lexicon
lookup (LMB) already achieves robust precision levels that cannot be met by the

22

Table 2. Evaluation results on BC5CDR test set for recognition and linking on diseases
(left part) and chemicals (right part)

Diseases Chemicals
Recognition Linking Recognition Linking
P R F1 P R F1 P R F1 P R F1

J-Link 84.6 81.9 83.2 86.3 85.5 85.9 90.0 86.6 88.3 85.9 91.0 88.4
TaggerOne 85.2 80.2 82.6 84.6 82.7 83.7 94.2 88.8 91.4 88.8 90.3 89.5
DNorm 82.0 79.5 80.7 81.2 80.1 80.6 93.2 84.0 88.4 95.0 80.8 87.3

LMB+ n/a n/a n/a 80.5 80.9 80.7 n/a n/a n/a 80.4 82.7 81.5
LMB n/a n/a n/a 82.3 58.5 68.3 n/a n/a n/a 84.0 58.8 69.2

DNorm system. More than 22 points in recall can be gained by simply applying
a cleaning step to the dictionary and documents (LMB+).

However, the increasing recall comes with a drop in precision of 1.8 points.
This shows that preprocessing the investigated data can be helpful to find more
diseases, while aggravating the linking task. Obviously, our system (in contrast
to DNorm and to a greater extent than TaggerOne) benefits from a number
of features that provide strong generalization capacities beyond mere lexicon
matching.

Chemicals Recognition and Linking. In the second experiment, we are interested
in assessing the domain adaptivity of our model. Therefore, we apply the same
factor model to a different reference knowledge base, without changing any system
parameters or engineering any additional domain-specific features.

The evaluation (cf. Table 2, right part) shows promising results regarding
the adaptation to chemicals, particularly in the linking task. Our approach is
competitive to DNorm and TaggerOne, while clearly outperforming both lexicon
baselines.

Compared to DNorm, our approach lacks in precision (−9.1), but shows
better results in recall (+10.2), which results in a slightly higher F1 score (+1.1).
Overall, TaggerOne obtains the best performance in this experiment, due to
the best precision/recall trade-off. However, the superior recall of our system
is remarkable (R=91.0), given that the dictionary for chemicals as used in
TaggerOne was augmented in order to ensure that all chemical element names
and symbols are included [12].

4 Conditional Random Fields for Slot Filling

Initiated by the advent of the distant supervision [15] and open information
extraction paradigms [1], the last decade has seen a tendency to reduce information
extraction problems to relation extraction tasks. In the latter, the focus is on
extracting binary entity-pair relations from text by applying various types of
discriminative classification approaches.

23

We argue that many tasks in information extraction (in particular, when
being used as an upstream process for knowledge base population) go beyond
the binary classification of whether a given text expresses a given relation or not,
as they require the population of complex template structures.

We frame template-based information extraction as an instance of a structured
prediction problem [22] which we model in terms of a joint probability distribution
over value assignments to each of the slots in a template. Subsequently, we will
refer to such templates as schemata in order to avoid ambiguities with factor
templates from the factor graph. Formally, a schema S consists of typed slots
(s1, s2, . . . , sn). The slot-filling task corresponds to the maximum a posteriori
estimation of a joint distribution of slot fillers given a document d

(s1, s2, . . . , sn) = argmax
s′1,s

′
2,...,s

′
n∈Φ

P (s1 = s′1, . . . , sn = s′n | d) , (22)

where Φ is the set of all possible slot assignments.
Slots in a schema are interdependent, and these dependencies need to be

taken into account to avoid incompatible slot assignments. A simple formulation
in terms of n binary-relation extraction tasks would therefore be oversimplifying.
On the contrary, measuring the dependencies between all slots would render
inference and learning intractable. We therefore opt for an intermediate solution,
in which we analyze how far measuring pairwise slot dependencies helps in
avoiding incompatibilities and finally to improve an information extraction model
for the task.

We propose a factor graph approach to schema/template-based information
extraction which incorporates factors that are explicitly designed to encode such
constraints. Our main research interest is therefore to (1) understand whether
such constraints can be learned from training data (to avoid the need for manual
formulation by domain experts), and (2) to assess the impact of these constraints
on the performance.

We evaluate our information extraction model on a corpus of scientific pub-
lications reporting the outcomes of pre-clinical studies in the domain of spinal
cord injury. The goal is to instantiate multiple schemata to capture the main
parameters of each study. We show that both types of constraints are effective, as
they enable the model to outperform a naive baseline that applies frequency-based
filler selection for each slot.

4.1 Slot Filling Model and Factor Graph Structure

We frame the slot filling task as a joint inference problem in undirected probabilis-
tic graphical models in a distant supervised fashion. Our model is a factor graph
which probabilistically measures the compatibility of a given textual document d
consisting of tokenized sentences χ, a fixed set of entity annotations A, and a to
be filled ontological schema S. The schema S is automatically derived from an
ontology and is described by a set of typed slots, S = {s1, . . . , sn}. Let C denote
the set of all entities from the ontology, then each slot si ∈ S can be filled by a

24

Fig. 8. Factor graph of our model for an exemplary ontological schema S. It shows
three different types of factors. Each set of factors of the same type is instantiated by a
different factor template.

pre-defined subset of C called slot filler. Further, each annotation a ∈ A describes
a tuple 〈t, c〉 where t = (ti, . . . , tj) ∈ χ is a sequence of tokens with length ≥ 1
and a corresponding filler type c ∈ C.

Factorization of the Probability Distribution We decompose the overall
probability of a schema S into probability distributions over single slot and
pairwise slot fillers. Each individual probability distribution is described through
factors that measure the compatibility of single/pairwise slot assignments. An
unrolled factor graph that represents our model structure is depicted in Figure 8.
The factor graph consists of different types of factors that are connected to subsets
of variables of y = {y0, y1, . . . , yn} and of x = {χ,A}, respectively. We distinguish
three factor types by their instantiating factor template {T ′, T ′d, T ′′d } ∈ T : (i)
Single slot factors Ψ ′(yi) ∈ T ′ that are solely connected to a single slot yi, (ii)
Single slot+text factors Ψ ′(yi,x) ∈ T ′d that are connected to a single slot yi
and x, (iii) Pairwise slot+text factors Ψ ′′(yi, yj ,x) ∈ T ′′d that are connected
to a pair of two slots yi, yj and x.

The conditional probability P (y | x) of a slot assignment y given x can be
simplified as:

P (y|x) =
1

Z(x)

∏
yi∈S

[
Ψ ′(yi) · Ψ ′(yi,x)

] ∏
yi∈S

∏
yj∈S

[
Ψ ′′(yi, yj ,x)

]
. (23)

Factors are formulated as Ψ(·) = exp(〈fT (·), θT 〉) with sufficient statistics fT (·)
and parameters θT (T ∈ T and Ψ ∈ {Ψ ′, Ψ ′′}).

4.2 Inference and Learning

Ontological Sampling The initial state s0 in our exploration is empty, thus y = (∅).
A set of potential successors is generated by a proposal function changing a slot
by either deleting an already assigned value or changing the value to another slot
filler. The successor state st+1 is chosen based on the probability distribution

25

generated by the model. The higher the probability (according to the model) of
a state, the higher is the chance of being chosen as successor state. However, the
state is only accepted iff q(st+1) > q(st), where q(s′) is the model probability of
the state s′. The inference procedure stops if the state selected for each sampling
step does not change for three iterations.

Objective Function Given a predicted assignment y∗ of all slots in schema type
Ŝ and a set S of instantiated schemata of type Ŝ from the gold standard, the
training objective is

O(y∗) = max
y′∈S

F1(y∗,y′) , (24)

where F1 is the harmonic mean of precision and recall, based on the overlap of
assigned slot values between y and y′.

4.3 Factors and Constraints

At the core of this model are features that encode soft constraints to be learned
from training data. In general, these constraints are intended to measure the
compatibility of slot fillers within a predicted schema. Such soft constraints are
designed through features that are described in the following.

Single-slot constraints in template T ′ We include features which measure common,
acceptable fillers for single slots with numerical values. Given a filler annotation
ai = 〈v, c〉 of slot yi, the model can learn individual intervals for different types
of fillers such as temperature (−10–40), or weight (200–500), for example. For
that, we calculate the average µ and standard deviation σ for each particular
slot based on the training data. For each slot si in schema S, a boolean feature
fsiσ=n is instantiated for each n ∈ {0, . . . , 4}, indicating whether the value yi is
within n standard deviations σsi of the corresponding mean µsi . To capture the
negative counterpart, a boolean feature fsiσ>n is instantiated likewise.

fsiσ=n(yi) =

{
1 iff

⌈
(
v−µsi

σsi
)
⌉

= n

0 otherwise.
fsiσ>n(yi) =

{
1 iff

⌈
(
v−µsi

σsi
)
⌉
> n

0 otherwise.
(25)

In this way, the model learns preferences over possible fillers for a given slot
which effectively encode soft constraints such as “the weight of rats typically
scatters around a mean of 300 gram by two standard deviations of 45 gram”.

Pairwise Slot Constraints in T ′′d In contrast to single-slot constraints, pairwise
constraints are not limited to slots with filler type v ∈ R. Soft constraints on
slot pairs are designed to measure the compatibility and (hidden) dependencies
between two fillers, e.g., the dependency between the dosage of a medication and
its applied compound, or between the gender of an animal and its weight. This
is modeled in terms of their linguistic context and textual locality, as discussed
in the following.

26

We assume that possible slot fillers may be mentioned multiple times at
various positions in a text. Therefore, given a pair of slots (si, sj), we define λ
as an aggregation function that returns the subset of annotations λ(si) = {a =
〈t, c〉 ∈ A | a(c) = si(c)}. We measure the locality of two slots in the text by
the minimum distance between two sentences containing annotations for the
corresponding slot fillers. A bi-directional distance for two annotations is defined
as δ(ak, al) = |sen(ak)− sen(al)| where sen denotes a function that returns the
sentence index of an annotation. For each n ∈ {0, . . . , 9} a boolean feature fδ=n
is instantiated as:

f
si,sj
δ=n (yi, yj) =

{
1 iff n = minak∈λ(yi),al∈λ(yj) δ(ak, al)

0 otherwise.
(26)

To capture the linguistic context between two slot fillers yi and yj , we define a
feature fsiπn

(yi, yj) that indicates whether a given N -gram πn ∈ π with 1 < N ≤ 3
occurs between the annotations ak ∈ λ(yi) and al ∈ λ(yi) in the document.

Standard Textual Features in T ′ and T ′d Given a single slot si with filler yi and
the aggregated set of all corresponding annotations λ(yi), we instantiate three
boolean features for each annotation a ∈ λ(yi) as follows.

Let Ls(lyi , a(t)) be the Levenshtein similarity between the ontological class la-
bel lyi , and the tokens of an annotation a(t). Two boolean features fbin(smax)<∆(yi)
and fbin(smax)≥∆(yi) are computed as:

fbin(smax)<∆(yi) =

{
1 iff b < ∆

0 otherwise.
fbin(smax)≥∆(yi) =

{
1 iff b ≥ ∆
0 otherwise.

,

(27)
where b = bin(smax) is the discretization of the maximum similarity smax into
intervals of size 0.1, and

smax = max
a∈λ(yi)

Ls(lyi , a(t)) with Ls = 1− levenshtein(lyi , a(t))

max(len(lyi), len(a(t)))
. (28)

Finally, we instantiate features fsiπk context(si) and fsiwithin, indicating whether
an N -gram πk occurs in the context (before or after) or within any annotation
of slot yi.

4.4 Cold-start Knowledge Base Population in the Spinal Cord
Injury Domain

Problem Description We address the problem of ontology-based information
extraction in a slot-filling setting as a prerequisite for cold-start knowledge base
population. The extraction task comprises multiple schemata of different types,
each of them provided by a domain ontology and containing multiple slots. Each
slot in a schema needs to be filled either by a literal from the input document or

27

by a class or individual from the ontology, depending on whether it is derived
from a data-type or object-type property

We consider slot-filling as a document-level task, i.e., entities filling the slots
of a particular schema may be dispersed across the entire text. In addition,
each literal or ontological category can, in principle, fill multiple slots of the
appropriate type. We approach the task in a supervised machine learning approach;
supervision is available at the document level in terms of fully instantiated gold
schemata without direct links between slot fillers and text mentions.

Spinal Cord Injury Ontology (SCIO) Pre-clinical trials in the spinal cord
injury domain follow strict methodological patterns. Experimental protocols
and the main outcomes of pre-clinical studies on spinal cord injury are formally
represented in SCIO [2]. In total, the ontology contains more than 500 classes and
approx. 80 properties (slots). SCIO top-level classes defining the schema types
are AnimalModel, InjuryModel, Treatment, InvestigationMethod and
Result. Slots are either object-type properties which can be filled by a SCIO
class, or data-type properties which are filled with free text.

Annotated Data Set The annotated data set was created by two SCI experts
who annotated 25 full-text scientific papers from the SCI literature. Annotations
were provided at the level of fully instantiated schemata per document, using
the set of top-level classes in SCIO and their corresponding properties as annota-
tion schema. The entire annotation process comprises three steps: (i) mention
identification, (ii) entity recognition (in case of data-type properties) and linking
(object-type properties), (iii) schema instantiation, and (iv) filling the slots of
an instantiated schema with an appropriate entity. The latter steps are due to
the fact that the cardinality of schemata of a particular type per document is
unknown a priori, and multiple schemata may share individual slot fillers. The
following example shows a sentence that describes two instantiations of an Ani-
malModel schema which share the slot fillers species (SpragueDawleyRat)
and ageCategory (Adult): “A total of 39 Sprague-Dawley rats were used for
these experiments: adult males (285-330 g) and females (192-268 g).”

Inter-annotator agreement at the level of fully instantiated schemata in terms
of F1 score between annotators amounts to 0.93 for AnimalModel, 0.79 for
Injury, 0.77 for Treatment and 0.65 for InvestigationMethod.

4.5 Experiments

In the following section, we describe our experimental settings, the evaluation
metrics and results. Model performances are independently reported for four SCIO
schemata: AnimalModel, Injury, Treatment, and InvestigationMethod.
As a preprocessing step, we apply symbolic entity recognition in order to generate
annotations A. The regular expressions used are automatically generated from
ontology class labels. In case of data-type properties (e.g., weight of an animal),
regular expressions are manually created.

28

Experimental Settings The system is evaluated in a 6-fold cross validation
on the complete data set. In all experiments, we restrict the complexity of the
schemata to first-order slots, i.e., ontological properties that are directly connected
to their respective domain class. In the current approach, we are not aiming at
predicting the correct number of instantiations per schema type. Thus, our system
is restricted to fill a single schema of each type per document, even if it contains
multiple instances of the same schema type (e.g., multiple Treatments).

With respect to this restriction, we report the evaluation results for both, i)
Full Evaluation (taking the actual number of gold schemata into account), and ii)
Best Match Evaluation (comparing the predicted schema to the best matching
gold schema).

Further, we report the performance for two different models, in order to inves-
tigate the relative impact of single-slot constraints vs. pairwise slot constraints.
In the pairwise slot filling (PSF) model, the inference and the factor graph is
based on the joint assignment of slot pairs, whereas in single slot filling (SSF)
model, all slots are independently filled.

Evaluation Metrics We report model performances as macro precision, recall
and harmonic F1. Given a document with a set of gold schemata G of type
S = {s0, . . . sn} and the predicted schema p, the comparison is always based on
the best assignment g′ = argmaxg∈G F1(p, g). For the computation of the overall
F1 score, we convert all ontological schemata into sets of slot-filler pairs with
p = {s′0 = cj , . . . , s

′
n = ck} and G = {g0, . . . , g′, . . . , gl} = {(s00 = ca, . . . , s

0
n =

cb), . . . , (s
′
0 = cc, . . . , s

′
n = cd), . . . , (s

l
0 = ce, . . . , s

l
n = cf)}. The overall F1 score

is calculated based on the two sets of p and G. We define a true positive (tp) as
a slot-filler pair that are in both p and G, a false positive (fp) as a pair that is
in p but not in G, and a false negative (fn) as a pair that is in G but not in p.
During the Best Match Evaluation, we set G = {g′}.

Most Frequent Filler Baseline We compare the performance of our models in
all settings against a plausible but naive baseline. Following the intuition that
important information is mentioned in a higher frequency than non-important
information, a slot is always filled with the filler that has the highest annotation
frequency. In the following, we refer to this procedure as Most Frequent Filler
(MFF) baseline.

Results In the following, we describe the evaluation results for all experiments.
First, we compare the performance in the Full Evaluation vs. Best Match Eval-
uation settings. In the former setting, we expect a rather low recall due to the
restriction of predicting exactly one schema per type. This leads to many false
negatives, as multiple instances of the same type can not be fully covered yet.
Hence, we hypothesize a significant increase in recall in the Best Match Evalu-
ation setting. By comparing the predicted schema to the best match only, we
investigate whether the low recall is due to the large amount of missing schemata.
If so, this would indicate that our model is able to select the correct slot fillers

29

among a huge set of possible candidates. The performance of all models in both
settings is reported in Table 3.

Table 3. Performance of Most Frequent Filler Baseline (MFF) vs. Single Slot Filler
(SSF) and Pairwise Slot Filler (PSF) models in the Full Evaluation (full) and Best
Match (best) setting.

MFF SSF PSF

P R F1 P R F1 P R F1

Animal full 0.48 0.55 0.51 0.84 0.90 0.86 0.91 0.90 0.90
Model best 0.48 0.57 0.52 0.84 1.00 0.91 0.91 1.00 0.95

Injury full 0.28 0.38 0.31 0.52 0.22 0.31 0.77 0.30 0.43
best 0.28 0.43 0.33 0.52 0.29 0.35 0.77 0.40 0.50

Treat- full 0.39 0.26 0.30 0.70 0.16 0.26 0.87 0.16 0.27
ment best 0.39 0.74 0.51 0.70 0.63 0.65 0.87 0.63 0.73

Invest. full 0.36 0.45 0.36 1.00 0.39 0.50 1.00 0.39 0.50
Method best 0.36 0.98 0.52 1.00 1.00 1.00 1.00 1.00 1.00

Full Evaluation Results The results show a strong recall of our baseline model
with a distinct lack in precision. The baseline yields the highest recall among
all models and schema types except for the AnimalModel (0.55 for baseline
vs. 0.90 for SSF/PSF). Compared to the SSF model, we notice a considerable
increase in precision in all schema types which is most pronounced in the Investi-
gationMethod (+0.64). The increase in precision for the three other schemata
are between +0.24 and +0.36. Comparing the PSF to the SSF model, we observe
further strong improvements in precision and slight improvements in recall. The
PSF model clearly outperforms the baseline for the AnimalModel with an
increase in F1 of +0.39, the Injury +0.12, and the InvestigationMethod
with +0.14. Despite the precision being increased by +0.46 in the Treatment,
the baseline shows a higher F1 score in this configuration (+0.03), due to a drop
in recall by −0.10.

Best Match Evaluation Results In this setting, we further investigate the recall
performance of our models compared to the previously discussed Full Evaluation
results. As we only remove uncaptured schema instances from G (cf. Section 4.5),
the precision remains the same. All models show an overall increase in recall for
all schema types. With respect to the PSF model, we can see a strong increase
in recall for InvestigationMethod by +0.61 and for Treatment by +0.47.
Further, slight increases by +0.10 and +0.07 can be observed for AnimalModel
and Injury, respectively. Similar observations can be made for the SSF model.

30

Discussion Comparing the baseline model with the SSF model, we notice a
very strong increase in precision in combination with a slight drop in recall. This
positive trend in precision is continued when considering the PSF model. Further,
the results show a positive impact of pairwise over single-slot constraints on
recall.

The high recall of 0.90 for the AnimalModel in the full evaluation is mainly
due to a low number (1 to 2) of instances per schema type in each document. The
fact that there is no difference in the performance of the SSF and SPF models
for the InvestigationMethod suggests a strong slot independence, so that
pairwise slot constraints do not have a big impact. The low increase in recall
between the two evaluation settings for the Injury suggests difficulties for this
schema. In contrast, the recall increase for the Treatment schema from 0.16 to
0.63 clearly shows that most of the errors are due to a large number of schema
instances per document.

Overall, the results show that our system is often able to select the correct
set of slot fillers for a schema, even from a huge set of possible schemata and
their corresponding slot filler candidates.

5 Conclusion

In this paper accompanying our tutorial, we have discussed how the cold-start
knowledge base population task can be modeled as structure-to-structure pre-
diction problems as statistical inference. We have adopted the framework of
conditional random fields which represent parametrized conditional probability
densities in which a set of output variables is conditioned on a set of input
variables. The conditional distribution is represented as a product of so called
local factors that model the compatibility between assignments to a subset of
variables. The structure of a CRF is typically represented by a factor graph that
connects factors to the variables in their scope.

We have shown how tasks in knowledge base population that consist in
predicting the most likely instantiation of a given ontology structure given a
document can be modeled as statistical inference using conditional random fields.
As two prominent problems we have shown how the problem of linking named
entities to the corresponding URI representing the real world entity as well as
the problem of slot filling can be solved using the proposed framework.

Acknowledgments

This work has been funded by the Federal Ministry of Education and Research
(BMBF, Germany) in the PSINK project (project number 031L0028A).

References

1. Banko, M., Cafarella, M., Soderland, S., Broadhead, M., Etzioni, O.: Open infor-
mation extraction from the web. In: Proceedings of IJCAI. pp. 2670–2676 (2007)

31

2. Brazda, N., ter Horst, H., Hartung, M., Wiljes, C., Estrada, V., Klinger, R.,
Kuchinke, W., Müller, H.W., Cimiano, P.: SCIO: An Ontology to Support the
Formalization of Pre-Clinical Spinal Cord Injury Experiments. In: Proc. of the 3rd
JOWO Workshops: Ontologies and Data in the Life Sciences (2017)

3. Freitag, D.: Machine learning for information extraction in informal domains.
Machine Learning 39(2-3), 169–202 (2000)

4. Hartung, M., ter Horst, H., Grimm, F., Diekmann, T., Klinger, R., Cimiano,
P.: SANTO: A Web-based Annotation Tool for Ontology-driven Slot Filling. In:
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (System Demonstrations). Association for Computational Linguistics
(2018), in press

5. Hartung, M., Klinger, R., Zwick, M., Cimiano, P.: Towards Gene Recognition from
Rare and Ambiguous Abbreviations using a Filtering Approach. In: Proceedings of
BioNLP 2014. pp. 118–127 (2014)

6. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva,
B., Thater, S., Weikum, G.: Robust Disambiguation of Named Entities in Text. In:
Proceedings of EMNLP. pp. 782–792 (2011)

7. ter Horst, H., Hartung, M., Cimiano, P.: Joint Entity Recognition and Linking in
Technical Domains Using Undirected Probabilistic Graphical Models. In: Gracia, J.,
Bond, F., McCrae, J.P., Buitelaar, P., Chiarcos, C., Hellmann, S. (eds.) Language,
Data, and Knowledge (Proceedings of the 1st International LDK Conference),
Lecture Notes in Artificial Intelligence, vol. 10318, pp. 166–180. Springer (2017)

8. ter Horst, H., Hartung, M., Klinger, R., Brazda, N., Müller, H.W., Cimiano, P.:
Assessing the Impact of Single and Pairwise Slot Constraints in a Factor Graph
Model for Template-based Information Extraction. In: Silberztein, M., Atigui, F.,
Kornyshova, E., Mtais, E., Meziane, F. (eds.) Proceedings of the 23rd International
Conference on Natural Language and Information Systems (NLDB), Lecture Notes
in Computer Science, vol. 10859, pp. 179–190. Springer International Publishing
(2018)

9. Koller, D., Friedman, N.: Probabilistic Graphical Models. Principles and Techniques.
MIT Press (2009)

10. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor Graphs and Sum Product
Algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

11. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields. Probabilistic
Models for Segmenting and Labeling Sequence Data. In: Proceedings of ICML. pp.
282–289 (2001)

12. Leaman, R., Lu, Z.: TaggerOne. Joint Named Entity Recognition and Normalization
with Semi-Markov Models. Bioinformatics 32, 2839–46 (2016)

13. Leaman, R., Dogan, R.I., Lu, Z.: DNorm. Disease Name Normalization with Pairwise
Learning to Rank. Bioinformatics 29, 2909–2917 (2013)

14. Min, B., Freedman, M., Meltzer, T.: Probabilistic inference for cold start knowledge
base population with prior world knowledge. In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume
1, Long Papers. pp. 601–612. Association for Computational Linguistics, Valencia,
Spain (April 2017)

15. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-
tion without labeled data. In: Proc. of ACL. pp. 1003–1011 (2009)

16. Nadeau, D., Sekine, S.: A Survey of Named Entity Recognition and Classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

32

17. Piskorski, J., Yangarber, R.: Information extraction: Past, present and future.
In: Poibeau, T., Saggion, H., Piskorski, J., Yangarber, R. (eds.) Multi-source,
Multilingual Information Extraction and Summarization. Theory and Applications
of Natural Language Processing, pp. 23–49. Springer (2013)

18. Poon, H., Domingos, P.: Machine Reading: A “Killer App” for Statistical Relational
AI. In: Proc. of StarAI. pp. 76–81 (2010)

19. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for
disambiguation to wikipedia. In: Proceedings of ACL:HLT. pp. 1375–1384 (2011)

20. Resnik, P., Hardisty, E.: Gibbs sampling for the uninitiated. Tech. rep., MARYLAND
UNIV COLLEGE PARK INST FOR ADVANCED COMPUTER STUDIES (2010)

21. Röder, M., Usbeck, R., Ngomo, A.C.N.: Gerbil–benchmarking named entity recogni-
tion and linking consistently. Semantic Web Journal (2018), http://www.semantic-
web-journal.net/system/files/swj1671.pdf

22. Smith, N.A.: Linguistic Structure Prediction. Morgan and Claypool (2011)
23. Sutton, C., McCallum, A., et al.: An introduction to conditional random fields.

Foundations and Trends R© in Machine Learning 4(4), 267–373 (2012)
24. Wei, C.H., Peng, Y., Leaman, R., Davis, A.P., Mattingly, C.J., Li, J., Wiegers,

T.C., Lu, Z.: Overview of the BioCreative V Chemical Disease Relation (CDR)
Task. In: Proc. of the BioCreative V Evaluation Workshop. pp. 154–166 (2015)

25. Wick, M., Rohanimanesh, K., Culotta, A., McCallum, A.: SampleRank. Learning
Preferences from Atomic Gradients. In: Proc. of the NIPS Workshop on Advances
in Ranking. pp. 1–5 (2009)

26. Wimalasuriya, D.C., Dou, D.: Ontology-based information extraction: An intro-
duction and a survey of current approaches. Journal of Information Science 36(3),
306–323 (2010)

