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Abstract

Vision-based robot tracking is commonly used for monitoring and debugging in single-
and multi-robot environments. Currently, most of the established vision-based multi-
robot tracking systems are based on the implementations of a general purpose central
processing unit (CPU) in the computer. These solutions are not feasible for use-cases
with large frame sizes, multiple cameras, and a large number of robots to be tracked.
The most common solution to handle the increasing number of cameras and robots is
the addition of extra computers. As an alternative, hardware accelerators such as field
programmable gate arrays (FPGAs) and general purpose graphic processing unit (GPU)
can be used to release the host computer from computation-intensive tasks like vision
processing through their high inherent parallelism. FPGAs and GPUs offer different
approaches to maximize the performance of a computing system. An FPGA is an
integrated circuit (IC) designed to be hardware reconfigurable after manufacturing. It
is purpose-built hardware that can be used for specific algorithms according to the user’s
applications to obtain higher computing performance. Meanwhile, the advantages of
the GPU as an accelerator rely on its architecture, which consists of a large number
of lightweight cores and applies a single instruction multiple threads (SIMT) model
for executing programs. This thesis emphasizes the implementations of two distinct
heterogeneous computing systems for a vision-based multi-robot tracking application,
encompassing the use of FPGAs and GPUs as hardware accelerators. It aims to determine
which architecture offers the optimum solution, in terms of the detection performance,
computing performance, and power efficiency.

The proposed heterogeneous computing systems combine the advantages of a CPU
with the benefits of an FPGA or a GPU. The designs attempt to efficiently handle com-
putationally intensive vision-based multi-robot tracking algorithms. The FPGA and
GPU are utilized as hardware accelerators, processing the portion of the algorithm that
is computationally intensive to detect the robots’ locations. Meanwhile, the CPU is
used as the processor in the host PC for post-processing and display. In the FPGA-based
accelerated computing system, a complete design for detecting each robot’s location
is implemented, comprising a multi-camera frame grabber and IP cores for object
segmentation, edge filtering, and circle detection. The number of cameras used in the
proposed design is scalable. This design presents three basic configurations, which
differ in the number of streaming hardware accelerators and in the parallelism of the
implementation. Additionally, two unique architectures for FPGA-based circle detec-
tion for multi-robot tracking, using the combination of the circular Hough transform
(CHT)-graph cluster algorithm and circle scanning window (CSW) technique-graph
cluster algorithm, are proposed and implemented. Regarding the implementation
of the GPU as a hardware accelerator, the proposed GPU-based computing system is
designed to improve the computational performance by utilizing the benefits of the
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GPU’s architecture, particularly its thousands of lightweight processing cores. The
algorithm’s implementation in the GPU includes object segmentation (debayer, RGB
to HSV color conversion, and color masking operations), edge filtering, and circle
detection (CHT and CSW). The FPGA/GPU performs the computationally intensive
tasks for a full resolution image (a maximum of 2048× 2048 pixels), while the CPU
executes the post-processing algorithm for small sub-images (40×40 pixels). To obtain
the robots’ orientations and IDs, the advantage of the multi-core architecture of the
CPU is employed to process all of the sub-images in a multi-thread approach.

The results of this thesis show that the FPGA- and GPU-based hardware accelerators
greatly enhance the computational performance of the computing system for vision-
based multi-robot tracking. The maximum frame rate in the FPGA implementation
is optimized by utilizing four streaming hardware accelerators, working in parallel.
Meanwhile, the high-performance of the GPU implementation is achieved by employing
its many cores. According to the experiments, both the FPGA-based and GPU-based
designs present highly accurate performance. The design and its algorithm can provide
a highly accurate performance for the localization of multiple robots with a typical
detection performance (precision and recall) of 99 %. Additionally, both the FPGA
and GPU hardware accelerators offer higher power efficiency than the CPU. They can
increase the computation performance per watt of the computing system. Finally,
quantitative and qualitative parameters (e.g. computational performance, power
consumption, power efficiency, and developing time) are analyzes more details to
determine which technology is more suitable for the vision-based multi-robot tracking
application.
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1 Introduction

Vision-based localization and tracking is an approach that is frequently used for moni-
toring and debugging in single- and multi-robot environments, e.g., for the evaluation
of navigation algorithms and team behavior in multi-robot experiments. A main feature
of a vision-based robot tracking system is its ability to cope with different types of
robots, because it can operate without the need for additional components such as
electronic sensors to be installed on the robots. Therefore, this system is widely used
in robotic laboratories for analyzing and debugging the behavior of multiple robots, for
both homogeneous and heterogeneous types of mobile robots.

In general, a vision-based robot tracking system is usually used to provide ground-
truth data for performance analysis [103]. This data can be very beneficial for further
analysis or research such as to learn the behavior of a robot, measure the performance
of the scenario implemented for a group of robots, or simply to test the function of
an applied algorithm in a robot. In some applications, a vision-based robot tracking
system can also be applied to support robots with accurate position information during
runtime because the system emulates the function of an indoor GPS for every robot.
In other words, this system is considerably advantageous because it flexibly allows
the robots to compute their own positions, which make more resources available for
performing their own tasks.

To complete its operation, a vision-based robot tracking system uses one or more
cameras as the video input source. The video data are processed by a computing system
to extract the useful information (e.g., the locations, orientations, and identities (IDs)
of robots). A computationally intensive vision processing algorithms is required to
extract the relevant information. Additionally, the computational requirements increase
with the number of tracked robots, video frame size, and number of operated cameras.
According to the above operations and conditions, the implementation of a vision-based
robot tracking system imposes three challenges to be considered. First, rapid processing
is needed for applications that require real-time robot tracking. The second challenge
is the scalability with respect to the number of cameras. On one hand, scalability is
often required to increase the possible field of view, which may be restricted by the
environmental conditions of the setup. On the other hand, scalability makes it possible
to increase the total resolution, if required. Third, the system must be able to process
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1 Introduction

many robots (more than 50 robots) simultaneously. This is a requirement imposed by
various multi-robot experiments.

Previously, most of the established computing systems for vision-based robot tracking
were based on the general purpose central processing unit (CPU) in the host PC. These
systems focused on developing the software architecture and algorithms implemented in
CPU-based computing systems rather than investigating the use of alternative hardware
accelerators. For resource-efficient embedded applications or use cases with large
frame sizes, multiple cameras and a high number of tracked robots, PC-based solutions
are often not feasible. The most common solution to handle the increasing number of
cameras and robots is the addition of extra PCs, as was done in [74; 103; 104] to cover
a larger robot arena. Unfortunately, this approach can significantly increase the energy
consumption, total system complexity, and overall system costs. Therefore, finding an
alternative approach that utilizes other hardware architectures has become inevitable.
There has been some initial work in vision-based robot tracking using alternative
hardware accelerators. Yet, these studies were mostly still in the design or prototyping
phase, which involved only a single camera, a low-resolution video input, and a small
number of tracked robots. Additionally, such designs did not generally support a
comprehensive solution for multi-robot tracking applications, which have been well-
supported in CPU-based computing systems. Therefore, this thesis attempts to fill the
gap in the area of hardware-accelerated computing systems for vision-based multi-
robot tracking by presenting the combination of a CPU and an alternative hardware
accelerator.

In the area of vision processing, there are several types of hardware accelerators, e.g.,
DSPs, GPUs, FPGAs, and multi-core CPUs. Of course, every hardware architecture has
distinct advantages and disadvantages, which depend on the application requirements.
For instance, a CPU has various advantageous. First, it is ideal for complex scalar
processing and very suitable for executing complicated operations on a single or a few
streams of data. Second, a CPU is able to accommodate its integration with various
operating systems (OS). Third, it also provides a well-known software development
environment and I/O port access for sensors and devices (e.g., a camera, display,
or network). As a result, CPUs perform essential roles within computing systems,
especially in terms of comprehensive vision processing applications. However, despite
its positive advantages, a CPU still has a weakness because its parallel processing
capabilities are limited by the number of processing cores. In contrast with CPU, GPUs
and FPGAs are specialized devices with highly parallel architectures. Both can enhance
the computing performance for some vision processing algorithms. The former (GPU)
consists of hundreds or even thousands of small yet efficient cores, designed to handle
multiple tasks (threads) simultaneously. Meanwhile, the latter (FPGAs) offers a parallel
hardware structure that is re-programmable according to a specific user application.
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1.1 Contributions

Nowadays, heterogeneous (hybrid) computing systems are being widely used to
support highly computationally intensive applications. Heterogeneous computing
refers to a system that employs more than one different hardware accelerators or
processing core to increase its computational performance. In heterogeneous computing
systems, diverse types of processors or hardware accelerators cooperate to accelerate
the computational tasks. Heterogeneous computing systems typically combine CPUs
with hardware accelerators such as FPGAs and/or GPUs. The collaboration between a
CPU as the processor in the host PC and some hardware accelerator (FPGA or GPU)
can increase the parallel computational capability of the computing system. These
hybrid systems potentially reduce the power consumption and maximize the computing
performance.

In the context of heterogeneous computing systems, this thesis focuses on the im-
plementation and evaluation of hardware accelerator (FPGA and GPU) environments
rather than the development of an algorithm for a CPU. It emphasizes the implementa-
tions of two distinct heterogeneous computing systems for vision-based multi-robot
tracking applications, encompassing the use of the FPGA and GPU as hardware acceler-
ators. The main objective is to efficiently handle computationally intensive applications
like vision processing through their high inherent parallelism. In particular, this thesis
implements FPGA- and GPU-accelerated heterogeneous computing systems, compares
the results, and measures the advantages that can be achieved by both computing
systems for vision-based multi-robot tracking applications. In doing so, this thesis
focuses on the system architecture, detection performance, computing performance,
and power efficiency. Based on examinations and analyses, a suitable architecture is
proposed for a vision-based multi-robot tracking computing system.

1.1 Contributions

In heterogeneous computing systems, using FPGAs and GPUs as hardware accelerators
offers distinctive approaches to maximize the computing performance of systems.
FPGAs merely highlight purpose-built and customized design architectures for specific
algorithms with low power, low latency, and high computing performance. They deliver
hardware that is re-programmable with massive parallel structures according to user
applications. An FPGA can also be reprogrammed to have a direct interconnection
with an I/O port, including a direct interconnection with a single or multiple cameras.
Likewise, the use of a GPU as a hardware accelerator also provides significant benefits.
It relies on a large number of lightweight programmable cores (hundreds or even
thousands) and is designed to execute programs in a single instruction multiple thread
(SIMT) fashion. However, a GPU’s architecture is limited by a fixed hardware structure
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1 Introduction

that depends on sequential operations running on those programmable cores with
associated register and bus width limitations.

Considering the differences between an FPGA and a GPU, this work aims to compare
and analyze FPGA-CPU and GPU-CPU computing systems, to find the optimal system for
multi-robot tracking applications. The main contributions of this thesis are as follows:

• An FPGA-based hardware accelerated computing system for multi-robot tracking
using multiple cameras.

• A GPU-based hardware accelerated computing system for multi-robot tracking
using multiple cameras.

• Two distinct unique architectures for FPGA-based circle detection for multi- robot
tracking application. The first one integrates a combination of the circular Hough
transform (CHT) and graph cluster algorithms. The second architecture combines
the circle scanning window (CSW) technique and graph cluster algorithm.

• Performance analysis and evaluation of the advantages and bottlenecks for FPGA-
based and GPU-based multi-robot tracking systems.

• Accuracy and power consumption analysis from both FPGA-CPU and GPU-CPU
computing systems to find the optimum architecture.

1.2 Thesis Organization

Chapter 2 presents an overview of the main concept of a vision-based multi-robot
tracking system. This chapter also discusses the state of the art of vision-based robot
tracking systems, using both CPU-based and hardware-accelerated computing systems.
The focus is understanding the design of the existing computing systems, particularly
their strengths and weaknesses. This is followed by descriptions of the theoretical back-
grounds and architectures of multi-core CPU, GPU, and FPGA hardware accelerators.

Chapter 3 delineates a heterogeneous computing system as an alternative approach
for vision-based multi-robot tracking application. Both FPGA-CPU and GPU-CPU ar-
chitectures are explored to determine their advantages and challenges. Finally, the
implementations of algorithms for vision-based multi-robot tracking applications are
explored.

Chapter 4 presents an implementation of heterogeneous FPGA-CPU computing sys-
tems for vision-based multi-robot tracking. The advantages of the massive parallel
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1.2 Thesis Organization

structure and customizable design of the FPGA architecture are used to increase the
computing performances. Three basic configurations for FPGA-based video processing
are presented, which differ in the number of hardware accelerators and thus in the
parallelism of the implementation. Some video processing modules are implemented
on the FPGA to ensure the complete proposed system. These modules include multi-
camera frame grabber, object segmentation, edge filter, and circle detection modules
as FPGA hardware accelerators to obtain the maximum advantages of using the FPGA
technology. Two unique architectures for FPGA-based circle detection for multi-robot
tracking are presented and evaluated. The first integrates a combination of the CHT
and graph cluster algorithms. The second architecture combines the circle scanning
window (CSW) technique and a graph cluster algorithm.

Chapter 5 proposes the implementation of vision-based multi-robot tracking in
heterogeneous GPU-CPU computing systems. The discussion in this chapter begins
with descriptions of the proposed GPU-CPU hardware architectures. It is followed
by a presentation of the algorithm and its implementation on a GPU using CUDA
kernels. This implementation includes object segmentation (debayer, RGB to HSV color
conversion, and color masking operations), edge filter, and circle detection algorithms.

Chapter 6 shows the analysis results and comparisons of both FPGA- and GPU-
accelerated computing systems. The analysis and comparisons focus on the computing
performances, detection performance, and power efficiency. Additionally, a comparison
with some related work is also presented.

Finally, chapter 7 summarizes the proposed designs and implementation reports
presented in the previous chapters. This chapter also provides a conclusion and an
analysis based on the experience obtained during this thesis work.
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2 Vision-based Robot Tracking
Computing System

This chapter presents a literature review on vision-based multi-robot tracking computing
systems and the background concepts of different hardware accelerators used for vision
processing applications. The discussion begins with the basic concept of vision-based
robot tracking, which is followed by a review of related works on CPU-based and
hardware-accelerated computing platforms. Because one of the goals of this thesis is
finding the most suitable computing system and optimizing vision-based robot tracking
using an existing hardware accelerator, the architectures of multi-core CPU, GPU, and
FPGA systems are also outlined in this chapter. These subjects are very important to
provide a complete understanding of their individual costs and benefits.

2.1 Basic Concept of Vision-based Robot Tracking
System

The main advantage of using a vision-based robot tracking system is that there is no
need to install additional components such as an electronic sensor on the mobile robot.
The system uses a camera as a video input source, while robots are individually labeled
with a specific marker so that each of them can be recognized by the computing system
(e.g., computer) through the camera. The computing system processes the video data
to extract the useful information (e.g., location, orientation, and ID of the robot). With
this advantage, the system is well-matched and able to cope with different types of
mobile robots.

To extract the useful information from the video data, some vision processing algo-
rithms must be utilized. Thus, these algorithms become the fundamental operations to
identify objects or interpret the content in the video. As shown in Figure 2.1, there are
three main steps for the vision-based robot tracking algorithms: object segmentation,
robot detection, and post-processing [62]. Indeed, these vision processing algorithms
often involve highly computationally intensive operations. Some segmentation algo-
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2 Vision-based Robot Tracking Computing System

rithms such as for color space conversion, color masking, thresholding, and background
subtraction could be implemented to distinguish objects from a background. Subse-
quently, some shape detection, blob detection, or contour detection algorithms can be
applied to detect the robots. Finally, several post-processing operations such as com-
puting the robot orientation and decoding the robot ID can be applied to obtain more
detailed and accurate information, as well as an additional function, e.g., recording
the video or storing the computed data.

Camera
Object 

Segmentation

Robot 

Detection

Post-

processing

Figure 2.1: Top-level block diagram of a vision-based robot tracking method.

Figure 2.2 illustrates a typical configuration for a vision-based robot tracking system.
The system consists of a robot field (arena), robots with markers, a static camera, and a
computing system. First, the robot field (arena) refers to the location where the robots
are moving or the experiments take place. This arena is typically located indoors and
equipped with sufficient lighting. A well-defined lighting condition is very important
because this setting frequently influences the capability of the system to detect the
robot. Second, a robot marker is a custom symbol with a predefined shape and patterns
for the identification of individual robots. Third, the static camera that is attached
to the ceiling of the robot lab plays a role in capturing video frames from a top-view
perspective. Fourth, the computing system is a set of hardware used to process these
video frames by executing the robot tracking algorithms. The camera and computing
system are connected with a cable interface, which depends on the type of camera.
As an example, a GigE Vision camera is connected to the computing system using an
Ethernet cable.

Computing System

Camera

Robots with marker

Robot Field (Arena)

Segmentation
Robot 

Detection

Post-

processing

Figure 2.2: Typical configuration of vision-based robot tracking system [62].
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2.2 Related Work

Previously, most of the established computing systems for vision-based robot tracking
were based on a general purpose CPU. This was because a CPU has various advantageous
such as the flexibility to be integrated with an operating system (OS) and a well-known
software development environment, along with easy access to I/O ports, sensors, and
devices (e.g., camera, display, and network). Accordingly, these existing systems focused
on developing a software architecture and implementing algorithms on CPU-based
computing systems instead of investigating the use of alternative hardware accelerators.
However, some preliminary work has been performed on vision-based robot tracking
using alternative hardware accelerators, particularly FPGA- and GPU-based computing
systems for accelerating computationally intensive tasks. Therefore, the following
sections discuss some of the related work on vision-based computing systems.

2.2 Related Work

Many studies [10; 74; 75; 84; 98; 104] have proposed various vision-based robot
tracking systems. They offer different methods to track robots and support different
numbers of robots, video frame resolutions, and numbers of cameras. All of the systems
referenced above are established systems implemented on CPU-based platforms. Some
of the systems that are implemented on FPGA- and GPU-based platforms are mostly
still in the design or prototyping phase, which involves the use of only a single camera,
low-resolution video input, and small number of tracked robots. FPGA-based system
designs can be found in [9; 17; 42; 92; 120], while GPU-based systems are presented
in [45; 123]. The following subsections elaborate on the related work in more detail.

2.2.1 CPU-based Computing System

In the first developments of vision-based robot tracking systems, several researchers [10;
75; 98] used a single camera as an input with a low or medium resolution and a small
number of tracked robots. These were restricted by the limitations of the camera
resolution and CPU performance for processing robot tracking algorithms in real-time.

Lund et al. introduced a simple real-time mobile robot tracking system using a CCD
camera, frame grabber card, and tracking algorithm running on a CPU [75]. The system
worked by placing the camera above a test field and mounting two LEDs on top of a
robot to enable the easy detection of the position and orientation of the robot. This
early generation of vision-based systems only supported the tracking of a single robot.

9



2 Vision-based Robot Tracking Computing System

Then, Sirota developed a system to track multiple robots called RoboTracker [98].
It used a camera with a resolution of 1024× 768 pixels. The CPU-based computing
system implemented vision processing algorithms to determine the individual locations
and identities of the robots. Each robot was marked with a color-coded marker that
uniquely distinguished one robot from another. However, the system did not support
orientation detection of the robots.

The Cognachrome Vision System [84] is a low-cost embedded system platform for
vision-based tracking. The default tracking resolution is 200× 250 pixels at 60 frames
per second (fps). The system is based on a 32-bit microcontroller (MC68332) connected
to a host computer to establish the complete vision system. One of its applications is
micro-robot soccer tracking.

Balch et al. presented a system for tracking small insects such as ants [10]. The
system is running on a CPU-based platform. It is equipped with a color video camera
and a wide-angle lens, as well as a video capture card that can provide 640× 480 pixel
images at 30 fps. A hybrid vision algorithm is used to track multiple ants simultaneously.
The system combines color-based tracking and movement-based tracking to detect the
insects.

All of the previously discussed vision-based robot tracking systems are designed for
a single camera. These designs only allow small numbers of robots to be tracked and
support small robot fields. To consider the requirements for tracking many robots in a
larger environment, the advanced generation of vision-based robot tracking systems
intends to deliver systems that are scalable with respect to the number of cameras and
capable of tracking a larger number of robots. Figure 2.3 shows an existing vision-based
robot tracking system configuration that utilizes multiple (two) cameras. In this system
configuration, the robots in the arena are tracked by more than one overhead camera.
Each camera is handled by one CPU-based computing system, and the outputs from the
individual computing systems need to be merged for final processing. Several examples
of these systems are presented in the following.

Lochmatter et al. developed SwissTrack [74], a vision-based solution for multi-agent
tracking. One of its distinctive features is its modular software architecture. It has
the ability to add customized modules using the provided interface. These modules
extend the functionality of the existing components. The SwissTrack system is capable
of tracking up to 50 robots, as well as many insects (e.g., cockroaches) in both single
and multiple camera configurations. Its configuration for a single camera consists of a
GigE Vision camera with 1032× 778 pixels and a CPU-based computing system. This
computing system is used to process the algorithms for detecting the locations, IDs, and
orientations of the robots. It utilizes a blob detection algorithm to detect the locations
of the robots, and then implements a nearest-neighbor tracking algorithm to track the
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Figure 2.3: Block diagram of existing vision-based robot tracking using two cameras.

robots. Additionally, SwissTrack supports a multi-camera configuration for a larger
arena. To achieve parallel video processing from two cameras, two computers are
required, with each running an instance of SwissTrack. Each camera is handled by
one computer, while a simple script captures and merges the outputs of the instances,
along with recording the merged output video. Although the number of cameras in the
system is scalable, each additional camera requires an extra computer.

Another related study was conducted by Zickler et al. They proposed SSL-Vision
[123], a vision-based multi-robot tracking system that was intended to be used in the
Small Size League (SSL) of RoboCup-Soccer. The SSL-Vision system uses a multi-thread
approach on a multi-core CPU, as illustrated in Figure 2.4. The system configuration
consists of two Firewire 800 cameras (AVT Stingray F-46C), which provide a 780× 580
video stream at 60 Hz, and a multi-core CPU as the main computing system. By default,
the number of cameras is two, but it can be extended according to the dimensions
of the robot arena. SSL-Vision supports a smaller number of robots compared to the
SwissTrack system because it is intended to track the robots in RoboCup Soccer (12
robots). SSL-Vision only uses a single computing system to support the simultaneous
image processing of videos from multiple cameras. For processing parallel video frames
from multiple cameras, the application is divided into a main thread and several camera
threads. The main thread is responsible for the graphical user interface, while each
camera thread runs the vision processing algorithm on the respective camera video
frames to track the robots. SSL-Vision utilizes the CMVision library [24] to implement
color segmentation for robot marker detection.

Faigl et al. [32; 40; 67] introduced SyRoTek, a platform for practical verification
in the fields of Robotics and Artificial Intelligence. SyRoTek consists of an arena with
real autonomous mobile platforms, communication infrastructures, and a main control
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Figure 2.4: Vision-based robot tracking system with multi-thread approach on multi-
core CPU.

computer that is accessible from the Internet. The robot localization, orientation, and
identification are performed based on robot markers using vision-based multi-robot
tracking algorithms, executed on a CPU-based computing system. The robot marker
identification supports up to 16 robots. The system configuration uses a FireWire
interface camera with a resolution of 1600 × 1200 pixels at 12 fps. An additional
CPU-based video server and cameras are used to provide visualization of the real scene
and recorded video.

Tanoto et al. introduced Teleworkbench [104; 111], as a scalable and flexible
vision-based multi-robot tracking system. The infrastructure was built in the robotic
laboratory at Bielefeld University for various mobile robot experiments. It offers a
software architecture for a vision-based robot tracking system, which can be adapted
to different requirements and is easily extensible for additional functionalities [104].
Teleworkbench provides precise position information, as well as identification, for up
to 64 robots and supports a large robot arena using multiple cameras. Compared to
SwissTrack and SSL-Vision, it supports a higher resolution of video cameras and a larger
number of robots. Figure 2.5 and Figure 2.6 show the Teleworkbench environments
with multiple cameras and a multi-server. Regarding the computing hardware, a server
equipped with an Intel core i7 940 CPU (quad-core with Hyper-Threading and 2.93 GHz
clock speed) is used. Teleworkbench uses one video server for each camera [104] to
achieve real-time processing. However, this architecture is considered to be a high-cost
solution with a high energy consumption and very complex system maintenance. Thus,
in the second generation of Teleworkbench [103], optimizations utilizing a multi-thread
approach on a multi-core CPU have been applied. Using this approach, two cameras
can be handled by one video server.
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Figure 2.5: Teleworkbench: vision-based multi-robot tracking environment.

Figure 2.6: Configuration of the Teleworkbench system [103].
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2.2.2 FPGA Accelerated Computing System

The initial work on vision-based robot tracking using an FPGA as a hardware accelerator
was done by Bianci and Costa in 2002 [17]. They proposed the use of an FPGA in
the vision system of a soccer robotic team. A computer vision algorithm that includes
thresholding, edge detection, and chain-code segmentation was designed for the FPGA
using VHDL. The implementation was simulated for an input image of 320×240 pixels.
Little information can be found because it was in the prototyping and simulation phase.
The case study only showed the ball detection process.

Rinnerthaler et al. [92] introduced a method called Resource Optimized Co-processing
to boost the performance of a DSP-platform for an embedded vision application. The
system consists of a DSP coupled to an FPGA. The workload to be processed is dis-
tributed between the DSP (TI TMS320C6414) and FPGA and processed in parallel. As
a case study, the system was used for robot soccer. The tracking algorithm consisted
of Bayer interpolation, background filtering, HSV-based segmentation, color-based
classification, and region-based detection to identify the ball and the robot positions.
The design achieved a performance of 116 fps for an image resolution of 640× 480
pixels using a single camera. However, the concept has not been implemented on a
running system.

Ghorbel et.al. [42] proposed a HW/SW implementation on an FPGA for robot
localization. They used an Altera FPGA integrating a NIOS-II softcore processor coupled
to a hardware accelerator. Most parts of the video processing chain were performed
on the NIOS-II processor; only a Sobel filter was implemented in the FPGA fabric.
This design required 3.89 s to process one video frame. For the second generation
of their design [43], the authors implemented the system on a Xilinx Virtex-5 FPGA,
using the embedded PowerPC-440 processor with the Xilinx Floating Point Unit (FPU)
coprocessor to process the complete chain, except the Sobel filter. This design required
only 30 ms per frame for a video resolution of 640×480 pixels, but supported only the
tracking of single robots.

Yu et al. [48; 119; 120] explored the feasibility of using FPGAs in multi-robot
formation control applications. Their system used a single digital camera for tracking
color markers on moving robots. The monitoring area was 1.2 m× 1.6 m in an indoor
environment. Each robot was marked with the same marker. A dual color bull’s eye
marker was used to easily distinguish the robots from the background. To detect the
locations of the robots in real-time, a series of image processing algorithms such as
image demosaicing, color detection, relative distance estimation, and moving object
tracking were implemented in the FPGA. The design achieved a performance of 34
fps using a resolution of 1280× 1024 and directly displayed the results on a monitor.
Unfortunately, the use of the same color marker on each robot limited the information
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that could be extracted from the video data, making it difficult to obtain information
such as the IDs and directions of the robots.

In 2013, Bailey et al. [9; 34; 35] proposed an FPGA-based smart camera for robot
soccer applications. An input resolution of 640 × 480 pixels at 127 fps was used to
cover a robot arena of 1.5 m× 1.3 m. Robots were individually labeled with a specific
marker, where the ID of the robot was identified based on the marker color and shape
(circle, square, and rectangle). Therefore, the number of tracked robots was limited but
sufficient for robot soccer applications, as shown in Figure 2.7. A pipelined processing
approach was used to obtain the maximum performance on the streamed video data
from the camera sensor. Color segmentation and connected component labeling were
successfully implemented in the FPGA. However, the final stage, which is to group the
blobs into individual robots and calculate their locations and orientations, has not yet
been completely implemented. As a system, the design offers significant acceleration
for multi-robot tracking because most parts of the video processing chain for detecting
the location of the robot are designed to be executed in the FPGA. However, it offers a
restricted number of tracked robots, which means that only limited applications can be
supported.

Figure 2.7: Robot marker in FPGA-based smart camera system using shape feature [35].
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2.2.3 GPU Accelerated Computing System

The initial work implementing a GPU as a hardware accelerator for vision-based robot
tracking application was performed by Zickler et al. [123] in 2009. They conducted an
investigation on the potential of using a GPU to improve the computing performance
of their SSL-Vision system, a vision-based multi-robot tracking platform for the SSL of
RoboCup-Soccer. Using an NVIDIA Geforce GTX 7800 GPU, their GPU-based computing
system was 100 times faster than the CPU implementation for a thresholding algorithm.
Unfortunately, this approach introduced bottlenecks in the upload and download times
between the GPU memory and system memory. Thus, in total, this GPU-based approach
was more than four times slower than the implementation of the same thresholding
algorithm on the CPU. To solve the bottleneck problem, the authors recommended
moving most or all other image processing tasks (in addition to the thresholding) into
the GPU. They planned to implement this approach in their future work. However,
currently, there is no new documentation on this GPU implementation from the authors.
A system for rescue robot competition [45] in 2013 also reported the use of a GPU as a
hardware accelerator in its vision box computing system. Unfortunately, there is no
further documentation on the detailed implementation and experimental report.

While there has only been a small number of GPU implementations of vision-based
multi-robot tracking applications, GPUs have been widely used for accelerating various
object tracking algorithms. Some examples are the works presented in [70; 72; 83; 93].
To improve the performance of a six degree-of-freedom pose tracking image processing
algorithm, Ruiter et al. [93] utilized a GPU as a hardware accelerator for the blurring
and derivative filter. Liu et.al. [72] presented a stereo-vision based framework for
tracking the motion of a table-tennis ball in motion-blurred images. GPU-based image
processing and a multi-thread technique were used to reduce the latency of the vision
system. Limprasert et al. [70] proposed an approach to track people from multiple
cameras. They employed a GPU to accelerate the multi-camera tracking process for the
overlapping case. A GPU-based system for pedestrian detection using stereo vision on
a mobile robot is proposed in [83]. All of the above GPU implementations for object
tracking applications show the potential of using the GPU for accelerating vision-based
multi-robot tracking applications.

2.2.4 FPGA-GPU Accelerated Computing System

A computing system platform that uses an FPGA, a GPU, and a CPU for a wireless
locating system was developed by Alawieh et al. [4]. It is intended for real-time sports
analysis applications. Their system uses a radio-based approach rather than a vision-
based approach. To detect the locations of the players, each player is equipped with a
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transmitter device. The FPGA is used for data acquisition, and the GPU is utilized for
accelerating the computation of the algorithm to track players.

While there is no implementation of vision-based robot tracking that uses both an
FPGA and a GPU, an FPGA-GPU combination hardware accelerator has been imple-
mented for accelerating image processing algorithms in a medical application. Meng
et al. [79] proposed an implementation of the FPGA-GPU hardware accelerator for a
Cardiac Physiological Optical Mapping application. This implementation shows the
potential of using the FPGA-GPU for accelerating the video processing algorithm such
as for multi-robot tracking applications.

According to the related work, discussed above, most of the established comput-
ing systems for vision-based robot tracking are based on general purpose computers.
These systems were focused on developing the software architectures and algorithm
implementations on CPU-based computing systems rather than investigating alternative
hardware accelerators. The common solution to handle the increasing numbers of
cameras and robots is to add extra PCs. Unfortunately, this approach significantly
increases the energy consumption and the entire system’s complexity. There has been
initial work to accelerate the computing performance using an FPGA or a GPU. How-
ever, this work is mostly still in the design or prototyping phase, and also use only
a single camera, low resolution, and small number of tracked robots. Therefore, an
alternative design is proposed in this thesis, using FPGA and GPU implementations for
the most computationally intensive tasks of the application, supporting high-resolution
video, real-time processing, scalability of the number of cameras, and multi-robot
tracking. The Teleworkbench environment, discussed above, was used as the basis
for evaluating our implementation. Considering the difference between the FPGA
and GPU characteristics, this work focuses on the system architectures, accuracies,
computing performances, and power efficiencies of two distinct architectures: FPGA-
accelerated and GPU-accelerated computing systems for vision-based robot tracking
applications. The FPGA-GPU combination architecture is yet not part of this thesis. It
is intended to provide a detailed elaboration of the advantages and disadvantages of
the implementations of FPGA- and GPU-accelerated computing systems.

2.3 Hardware Accelerators in Vision Processing

Nowadays, hardware accelerators such as multi-core CPUs, FPGAs, and GPUs have
been widely used to support vision processing algorithms, which require highly com-
putationally intensive operations. Each of these hardware accelerators has different
advantages compared to the others. In this section, the benefits and drawbacks of
multi-core CPU, GPU, and FPGA hardware accelerators are discussed. This information
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is crucial to propose some alternative hardware accelerators that are able to enhance
the computing performance of vision-based multi-robot tracking systems.

2.3.1 Multi-core CPUs

A CPU is a general purpose processor that executes an instruction in a computer
program, such as a computational operation, along with input/output operations. The
development of the CPU was strongly influenced by the evolution of transistor and
integrated circuit (IC) technology. In 1965, Intel co-founder Gordon Moore predicted
that the number of transistors on a chip would double approximately every two years.
This prediction is the so-called Moore’s Law. Figure 2.8 [112] depicts the CPU technology
evolution and exponential growth of the number of transistors integrated into a CPU’s
chip, which follows Moore’s Law.

Figure 2.8: Processor transistor counts and Moore’s Law [112].
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Initially, a CPU had a single core. It could only execute one task at a time. Man-
ufacturers tended to increase the speed at which the processor’s clock operated to
maximize the CPU’s performance. This approach still exists almost three decades after
the introduction of the first generation of CPUs. The development of CPU performance
is illustrated in Figure 2.9. Until 2003, significant increases were seen in a CPU’s clock
rate and performance. Then, the limits on the power and available instruction-level
parallelism slowed down the performance of a single processor [90]. The single-core
CPU that pushed for higher and higher clock speeds reached the point of weakening
returns.
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Figure 2.9: Growth in processor performance [50].

Manufacturers discovered an alternative solution to increase the performance by
adding more “cores,” or central processing units (CPUs) in a single chip. In 2006, Intel
introduced the first multi-core CPU. Since then, the evolution of the CPU has been
based on multi-core architectures such as dual-cores, quad-cores, and octa-cores. An
N-core CPU chip has an N number of physical processor units that function to execute
different instructions at the same time. As a result of this parallelism, a multi-core CPU
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has significantly higher performance than a single-core CPU. An example of a CPU with
four processor cores is the Intel i7-4770K CPU, which is manufactured using 22 nm
transistor technology. It is the fourth generation of the Intel i7 family of processors
with a Haswell architecture. Figure 2.10 shows the top level die layout architecture
of the Intel i7-4770K CPU with its four processor cores. Each processor core has 32
KB of L1 cache memory and 256 KB of L2 cache. In addition, another 8 MB of L3
cache is shared across all four cores. As a result, this multi-core architecture delivers
independent processing on each processor core and increases the parallelization of the
computations.

Shared L3 Cache

Core Core Core Core
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Engine 
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Graphic

Memory Controller I/O

Figure 2.10: Actual die layout of fourth generation Intel i7-4770K CPU with its four
processor cores [60].

Additionally, Intel employs hyper-threading technology (Intel HT technology) [77]
to maximize the utilization of CPU resources. This technology was initially introduced
in 2002 on Xeon server processors and Pentium 4 desktop processors. It is currently
implemented on almost all of the new generation of Intel CPUs HT-technology provides
more efficiency for processor resource utilization, enabling multiple threads to run on
each core. As a performance feature, it increases processor throughput, improving
overall performance on threaded software.

Hyper-threading technology allows a single physical processor to appear as two
logical (virtual) processors in the operating system; the physical execution resources
are shared, and the architecture state is duplicated for the two logical processors. Each
logical processor has an architecture state that contains general purpose registers,
the control registers, advanced programmable interrupt controller (APIC) registers,
and some machine state registers [77]. An illustration of this HT-Technology in the
processor is shown in Figure 2.11. It shows that every physical processor core with
HT-Technology has two architecture states, while a processor without HT-Technology
only has one architecture state. Consequently, according to the software or architecture
perspective, operating systems and user programs are able to schedule processes or
threads to logical processors as they would on multiple physical processors. From a

20



2.3 Hardware Accelerators in Vision Processing

microarchitecture perspective, it shows that instructions from both logical processors
will persist and execute simultaneously on shared execution resources [77].

(a) (b)

Figure 2.11: (a) Processor without HT-technology and (b) processor with HT-technology
[77].

The evolution of the CPU has changed its design from a single to multiple core
processor, along with introducing the multi-thread approach in CPU programming. The
multi-core architecture and hyper (multi)-thread technology has effectively increased
the performance of a CPU by escalating its capability on parallel computations. As
a general purpose processor, the benefits of parallel processing are compatible with
its advantage in flexibility for application design and implementation. A CPU offers
the flexibility to build an ecosystem or a software design architecture, along with
convenience in accessing the I/O port and the steadiness of a well-known operating
system (OS) such as LINUX or Windows. Figure 2.12 shows a block diagram of the
Intel (i7) Haswell platform, one of the existing modern CPU. As can be seen, the
processor has a direct connection to the system memory, PCIe interface, and digital
display interface, as well as a connection to the platform controller hub (PCH). This
PCH provides an interface between the CPU and important ports such as USB 3.0/USB
2.0, SATA 6, High Definition Audio, VGA, integrated LAN, PCIe 2.0, TPM 1.2, and
Super IO/EC. All of these interconnections and interfaces enhance the high flexibility
of the CPU. As a result, the CPU has the necessary compatibility to work with different
operating systems, smoothly implement many software/applications, and conveniently
access the I/O ports. Because these advantages cannot all be found in other hardware
accelerators, the CPU plays a very significant role in many different applications as a
computing platform.

Based on its architecture and platform, a CPU is ideal for complex scalar processing
and I/O port access for a sensor or device (e.g., camera, display). It is very suitable
for executing complex operations on a single or a few streams of data. For parallel
processing, a multi-core CPU processes parallel computations, as many as the number
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Figure 2.12: Processor (Intel i7) platform block diagram [59].

of cores available. In other words, the capability of a CPU’s parallel computation is
limited by the number of cores. Because there are some applications that require an
excessive number of parallel computations, they cannot typically be implemented using
only a CPU. Therefore, the use of an alternative hardware accelerator is taken into
account to complement the weakness of a CPU and is combined with a CPU to maximize
the computational performance. The great flexibility of the CPU is always needed. It
plays an essential role in the complete system of a high computing platform.
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2.3.2 Graphic Processing Unit (GPU)

The previous section already described how the performance of a CPU can be enhanced
by increasing the number of processor cores in a CPU chip. The enhancement is
obtained by scaling up the parallel processing capability, which is nearly equivalent to
the growing number of cores in a single CPU chip. Therefore, some researchers believe
that the development of future microprocessor industries will continue to focus on
adding cores rather than increasing the single-thread performance [30].

Since the early 2000s, the semiconductor industry has generated two primary but
different philosophies in microprocessor design [57]. These are the multi-core archi-
tecture and many-core architecture. First, the multi-core CPU architecture is a design
approach that attempts to optimize the execution speed of sequential programs in every
single thread. This method minimizes the latency in the processor by extending its main
units such as the on-chip cache unit, control logic unit, and arithmetic-logic unit (ALU).
The units’ extensions require larger chip areas and higher power consumptions. This
means that a CPU core is considered a heavy-weight design. Consequently, the number
of cores in a CPU is limited, with a current maximum of 18 cores (Intel E7-8870V3).
Unlike the multi-core CPU architecture, the second microprocessor architecture used is
a many-core GPU, which merely focuses on improving the throughput of concurrent
kernel executions. It utilizes the chip area and power resources to increase the through-
put performance. As shown in Figure 2.13, a GPU uses fewer resources (transistor)
than a CPU for the on-chip cache, control logic, and arithmetic logic units. Additionally,
a GPU dedicates more transistors to data processing (in ALU) rather than data caching
and flow control (in on-chip cache and control logic units). As a result, its architecture
has a large number of processing cores.

Cache

ALU
Control

ALU

ALU

ALU

DRAM DRAM

CPU GPU

Figure 2.13: CPU vs GPU architectures [85].

A GPU core is a lightweight design that is dedicated to data-parallel tasks. Therefore,
an individual thread in a GPU likely needs a much longer execution time than a
CPU. However, by employing its many cores, a GPU can process thousands of threads
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simultaneously. In other words, a multi-core CPU uses the advantage of its heavy-weight
cores to process some computation tasks, while a GPU effectively handles tasks using
its hundreds or thousands of lightweight cores [102].

Indeed, the presences of GPU computing is not intended to replace the complete
function of CPU computing. The two approaches have their own advantages and both
are useful for different types of applications or tasks. The GPU technology is very
suitable for a program with a huge number of threads or data-parallel computation-
intensive tasks. Meanwhile, a CPU with its much lower latencies can achieve higher
performance for a program that has few threads but requires control-intensive tasks.
In other words, a complementary GPU and CPU combination potentially generates
significant improvements in many applications.

To explore the potentialities and characteristics of the GPU in more detail, including
its benefits in parallel computing, the next subsection describes two aspects of GPU
computing technologies. These include the GPU architecture as the hardware aspect
and parallel programming as the software aspect.

2.3.2.1 GPU Architecture Overview

This work emphasizes NVIDIA GPUs with their Compute Unified Device Architecture
(CUDA) programming platform. Figure 2.14 illustrates the top level block diagram of a
modern CUDA-supported GPU architecture, which consists of a cache memory, memory
controller, host interface, GigaThread Engine, and numerous streaming multiprocessors.
The cache memory refers to an on-chip memory that is allocated from among the
streaming multiprocessors. A memory controller is a unit to access an external memory
(global memory). The host interface has functions for communication and transferring
data to the host PC, whereas the GigaThread Engine schedules thread blocks to various
streaming multiprocessors.

The streaming multiprocessor (SM) is the most important part of the GPU. A single
GPU consists of numerous SMs (e.g 12, 15). As shown in Figure 2.14, the GPU
architecture replicates the SM architecture building block. This approach aims to
obtain high parallel computing capability since all of the SMs can run simultaneously.
Each SM in a state of the art GPU comprises up to hundreds of computing cores (CUDA
cores), as illustrated in Figure 2.15. Considering that each SM is able to support
the concurrent execution of hundreds of threads, one GPU can concurrently execute
thousands of threads [30].

Some examples of well-known GPU architectures that consist of SMs are the Fermi and
Kepler architectures. In this thesis, the GTX-580 and GTX 780 NVIDIA GPUs are used

24



2.3 Hardware Accelerators in Vision Processing

Streaming

Multiprocessor

Streaming

Multiprocessor

Streaming

Multiprocessor

Cache Memory

Streaming

Multiprocessor

Streaming

Multiprocessor

Streaming

Multiprocessor

M
e
m

o
ry

 C
o
n
tro

lle
r

M
e
m

o
ry

 C
o
n
tro

lle
r

M
e
m

o
ry

 C
o
n
tro

lle
r

M
e
m

o
ry

 C
o
n
tro

lle
r

M
e
m

o
ry

 C
o
n
tro

lle
r

M
e
m

o
ry

 C
o
n
tro

lle
r

Giga Thread Engine

Host Interface

…

…

Figure 2.14: Top-level block diagram of modern GPU, modified from [30].

CUDA cores

Warp Scheduler 

and

Dispatch Unit

Register File

Load/Store 

Unit

Special 

Function Unit

Double 

Precision 

Unit

Shared Memory

Figure 2.15: Streaming multiprocessor: Fermi (left) and Kepler (right) architectures,
modified from [86; 87].
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to represent the Fermi and Kepler architectures, respectively. The SM architectures of
both Fermi and Kepler are shown in 2.15 and their complete architecture are illustrated
in Figure 2.16 and Figure 2.17, respectively. The GTX-580 Fermi based GPU [86] is
fabricated using approximately 3.0 billion transistors and features 512 CUDA cores.
Meanwhile, the GTX 780 uses around 7.1 billion transistors and features 2304 CUDA
cores. Furthermore, the GTX-580 organizes its 512 CUDA cores in 16 SMs of 32
cores each; whereas the GTX 780 arranges its 2304 CUDA cores in 12 SMs (from
the maximum of 15 for the Kepler architecture) of 192 cores. Each CUDA processor
has a fully pipelined integer arithmetic logic unit (ALU) and and floating point unit
(FPU) [86]. Thus, it is able to execute a floating point or integer instruction per clock
for a thread.
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Figure 2.16: NVIDIA GTX580 Fermi architecture [86].

In a CUDA-supported GPU, an SIMT approach plays a role in handling and executing
many threads. All of the threads are processed in a group by group fashion. All
of the threads in the same group execute the same instruction simultaneously. The
warp scheduler and dispatch unit in the SM determine the threads in groups of 32
parallel threads called warps. In the GTX 580, each SM has two warp schedulers
and two instruction dispatch units, which allow two warps to be issued and executed
concurrently. The GTX 780 supports a higher number of warp schedulers, where each
SM features four warp schedulers and eight instruction dispatch units. It generates four
warps to be issued and executed concurrently. Unlike the GTX 580 Fermi architecture,
which does not permit double precision instructions to be paired with other instructions,
the GTX 780 Kepler architecture allows double precision instructions to be paired with
other instructions [87]. Both the GTX 580 and 780 GPUs have six 64-bit memory
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Figure 2.17: NVIDIA GTX780 Kepler architecture [87].

partitions, for a 384-bit memory interface, approximately supporting a total maximum
of 6 GB of GDDR5 DRAM memory. However, the GPU for this work only uses 1.5 GByte
for the GTX-580 and 3 GByte for GTX 780.

Figure 2.18 shows a block diagram of the CUDA device memory model, including its
association with the threads and SM. The block diagram uses only two thread blocks,
which are located in a distinct SM to represent the relationship between the threads and
SM in a simple way. In the CUDA-supported GPU, all of the threads located in the same
block are executed in one SM. Therefore, these threads can be synchronized and utilize
the same shared memory. In contrast, the threads in different blocks are executed in
separate SMs. They operate independently and use a distinct shared memory. This
condition prevents the different threads in blocks from cooperating with each other.

Based on the thread’s accessibility to the data in memory (as illustrated in Figure 2.18),
there are three memory groups in a GPU device:

• The thread level refers to data stored in the memory that is accessible only by
the thread that writes them. In this category, there are registers with low latency
(fast accessing time) and local memory with high latency (slow accessing time).

• The SM level is data stored in the memory that is only accessible by the threads
that are located in the same block and executed in the same SM. The shared
memory unit located in the SM is also accessible.

• The device level refers to data stored in the memory that are accessible by all
of the threads in a kernel. Additionally, the data at the device level are also

27



2 Vision-based Robot Tracking Computing System

Host-PC

(Device) Grid

Global Memory

Constant Memory

Texture Memory

Block (0,0) in SM-1

Thread (0,0)

Registers

Thread (0,1) Thread (0,2)

Registers Registers

Local

Memory

Shared Memory

Local

Memory

Local

Memory

Block (0,1) in SM-2

Thread (0,0)

Registers

Thread (0,1) Thread (0,2)

Registers Registers

Local

Memory

Shared Memory

Local

Memory

Local

Memory

Figure 2.18: Block diagram of CUDA device memory model, modified from [30].

accessible by the host PC. This category includes the global memory, constant
memory, and texture memory.

The global memory is an external DRAM with a high latency access time. However, it
has a huge amount of storage and is accessible by all of the SMs in the GPU. Meanwhile,
constant and texture memory are beneficial for very specific types of applications such
as for data having fixed values during a kernel execution. In contrast to the global
memory, the shared memory is a programmable on-chip memory with very low latency
and high bandwidth. It exists on every SM with a limited memory. It is shared and
partitioned among the thread blocks in a specific SM. A shared memory is not accessible
between different SMs. In some tasks or programs, it functions as a data buffer of the
global memory, reducing the data transfer latency between the CUDA core and global
memory.

2.3.2.2 CUDA software on GPU

CUDA is a general purpose parallel computing platform and programming model
invented by NVIDIA. It drives the parallel computing engine in NVIDIA GPUs, to
support various computationally intensive applications on GPU-accelerated computing
systems. Many algorithms and applications that can be formulated as data-parallel

28



2.3 Hardware Accelerators in Vision Processing

computations perform well in CUDA-supported GPUs [30]. Using CUDA, a programmer
is able to implement parallel computing in a more efficient approach.

A CUDA program consists of a combination of two different parts that are executed on
either a CPU (host PC) or GPU. It makes it possible to execute programs or applications
on heterogeneous computing systems. In CUDA programming, as illustrated in Figure
2.19, the parts that comprise few or no data-parallel (host code) operations are executed
in the host PC (CPU), whereas the parts that hold a huge number of data-parallel (kernel
GPU code) operations are performed in the GPU device [65].

host-PC (CPU)

CUDA Program

Device (GPU)

host code

kernel GPU code
Huge number of data-parallel

High computationally 

intensive

Few or no data-parallel

Figure 2.19: CUDA program structure.

A kernel to be executed in the GPU device holds a large number of threads to process
the data using an efficient concurrent approach. A programmer can write a sequential
program for a single thread, whereas the CUDA platform will manage the scheduling
for all the GPU threads. Figure 2.20 illustrates the organization of the many threads
in a CUDA-supported GPU. It applies two-level block and grid hierarchies. All of the
threads generated by a kernel are arranged into a grid. They are organized into blocks
of threads, and all of the blocks are organized into a grid. Based on this hierarchal
organization, CUDA provides a unique identity for each thread. CUDA uses block
index coordinates within a grid (blockIdx) and thread index coordinates within a block
(threadIdx) to identify all of the threads. Based on the identities (coordinates) of all
the threads, a programmer can define portions of data to different threads.
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Figure 2.20: Thread hierarchy in CUDA-supported GPU, modified from [30; 85].

After understanding how all the threads are organized, it is important to know
how they are processed from a hardware perspective. Figure 2.21 illustrates the
corresponding hardware component for each hierarchy from the logical perspective
of the software (kernel). Every single thread is executed sequentially in a CUDA core,
whereas all the threads in the same block (thread block) are executed simultaneously
in the same single SM. A kernel in the CUDA-supported GPU is performed using the
SIMT execution model. When this process is started, the kernel generates all the
threads and organizes them into a thread block grid. Afterward, the GigaThread
engine (Figure 2.14) schedules and distributes the grid of thread blocks to the SMs.

As described in the previous section, all of the threads in a group are processed in a
group fashion. The warp scheduler and dispatch unit in an SM the threads into groups
of 32 parallel threads called warps. The number of active warps is restricted by the
SM’s resources such as the registers and shared memory. These resources are shared
among warps and blocks. Therefore, not all of the warps are active. The ratio of active
warps to the total number of available warps is called the occupancy. A higher warp
occupancy means a better utilization of GPU computation resources [28].
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Figure 2.21: Illustration of logical view corresponding to hardware view, modified
from [30].

2.3.3 Field Programmable Gate Arrays (FPGAs)

In this section, the basic architectural features of FPGAs are explored to understand
their architectural benefits. An FPGA is a type of prefabricated integrated circuit
that can be re-programmed for different digital circuit or system functions. Some
modern FPGA devices consist of up to two million logic cells that can be configured
to implement a variety of software algorithms [115]. When an FPGA is configured,
the internal circuitry is connected in a way that creates a hardware implementation
of the software application. In a general purpose processor, an algorithm is executed
as a sequence of instructions by utilizing its fixed architecture. In other words, with a
processor, the computation architecture is fixed, and the best performance is obtained
by following the available processing structures. In this case, the performance is a
function of how well the algorithm maps to the capabilities of the processor [115].
Unlike general purpose processors, FPGAs use dedicated/customized hardware for
processing algorithms and do not have an operating system [1; 23]. An algorithm in
an FPGA is implemented by building separate hardware for each function using the
FPGA’s logic cells and components. This approach, which is inherently supported by
the FPGA’s architecture, allows a hardware design to have a parallel speed performance
while retaining the reprogrammable flexibility of software at a relatively low cost [8].
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The basic architecture and components of a generic FPGA are shown in Figure 2.22.
It consists of an array of configurable logic blocks, programmable interconnects, and
input/output (I/O) blocks. Logic blocks are used to implement the logic of a custom
algorithm or function. Each of these uses a look-up-table (LUT) to perform some
logic operations and flip-flops to store the result of the LUT. The logic blocks are
typically arranged in a two-dimensional matrix array and connected by configurable
interconnects. During the FPGA configuration process, this programmable interconnect
wire is used to enable the interconnections between the logic blocks. As an interface
between the FPGA and external devices, I/O blocks can be configured as input/output
ports. To increase the computational density and efficiency of the device, modern FPGA
architectures incorporate the above-mentioned basic components along with additional
computational and data storage blocks [115] such as DSP48 and Dual-Port RAM, as
shown in Figure 2.23. The combination of these components provides more flexibility in
the FPGA design, making it possible to implement any software algorithm that typically
runs on a processor. More details about these components will be discussed in the
following paragraphs.

I/O Block

Logic 
Block

Programmable 
Interconnect

Figure 2.22: Basic FPGA architecture [115].
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block RAMs (BRAMs)

DSP48 blocks

Figure 2.23: Contemporary FPGA architecture.

Each logic block in the FPGA is divided into several logic slices, and each logic slice
consists of numerous logic cells, which are the smallest logic unit within the FPGA
device. Different FPGA technologies usually have a distinct number of logic slices and
logic cells. The basic element inside the logic cell is illustrated in Figure 2.24. As the
smallest logic unit, each logic cell typically consists of a LUT and flip-flop. Basically,
a LUT is a truth table where different combinations of inputs implement different
functions to produce output values. A flip-flop is a basic storage unit for storing the
LUT output. The hardware implementation of a LUT can be represented as a collection
of memory cells connected to a set of multiplexers, as shown in Figure 2.24-a [115],
where the LUT inputs are used as selector bits on the multiplexer to choose the result at
a given point in time. Therefore, a LUT can be used as both a function of a computation
engine and a data storage element. A LUT and flip-flop combination within a logic cell
is illustrated in Figure 2.24-c.
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Figure 2.24: Basic elements in logic block of FPGA [115]: (a) functional representation
of LUT as collection of memory cells, (b) structure of flip-flop, and (c)
structure of logic cell in Xilinx FPGA.
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To efficiently support digital signal processing (DSP) applications, which typically use
many binary multipliers and accumulators, FPGAs are equipped with a DSP48 block,
as shown in Figure 2.25. The DSP48 block is an ALU embedded into the fabric of the
FPGA. One DSP48 block could contain two or more slices. Each DSP48 slice supports
many independent functions, including a multiplier, multiplier-accumulator (MACC),
multiplier followed by an adder, three-input adder, barrel shifter, wide bus multiplexer,
magnitude comparator, and wide counter. The architecture also supports connecting
multiple DSP48 slices to form wide math functions, DSP filters, and complex arithmetic
without the use of a general FPGA fabric [118].

Figure 2.25: Structure of a DSP48 block [115].

A BRAM in an FPGA device refers to a dedicated dual-port RAM module, which
functions as an embedded memory element. It is used to provide on-chip storage for a
relatively large set of data. Each FPGA device usually possesses two types of BRAM
memories, which can hold either 18 k or 36 k bits. Indeed, these memory numbers
are device specific. The dual-port nature of these memories allows for parallel, same-
clock-cycle access to different locations [115]. In the Xilinx FPGA, five memory types
can be generated from these block RAMs. These are single-port ROM, single-port RAM,
dual-port ROM, simple dual-port RAM, and true dual-port RAM. The single-port ROM
and single-port RAM have only one port to access the memory space. As illustrated
in Figure 2.26-a and b, the ROM type only provides read access, while the RAM type
uses the same port for both read and write accesses. The dual-port ROM (Figure 2.26-
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Figure 2.26: Five memory types [114] generated from block RAMs: (a) single-port
ROM, (b) single-port RAM, (c) dual-port ROM, (d) simple dual-port RAM,
and (e) true dual-port RAM.

c) allows read access to the memory space through two ports. Meanwhile, for the
simple dual-port RAM, as illustrated in Figure 2.26-d, the write access to the memory
is allowed through port A, and read access is allowed through port B. Lastly, as shown
in Figure 2.26-e, the true dual-port RAM allows read and write accesses to the memory
on either port A or B [114].
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2.4 Summary

This chapter has described the basic concept of vision-based robot tracking systems
and the related work in detail. In particular, it showed that most of the established
computing systems for vision-based robot tracking focus on developing the software
architecture and algorithm implementation on a general purpose processor (CPU)
rather than investigating alternative hardware accelerators. Therefore, this chapter
has shown the need for a computing system that uses the benefits of the CPU and
hardware accelerators (e.g., FPGA and GPU) to enhance the computing performance of
a vision-based multi-robot tracking algorithm. Additionally, this chapter has discussed
the architectures of the multi-core CPU, GPU, and FPGA to give a complete overview
of their costs and benefits. The qualitative comparison between them is summarized
in Table 2.1. To obtain an appropriate comparison, similar technology processes were
taken into account as important parameters during the comparison.

Table 2.1: Qualitative comparison between CPU, GPU and FPGA, based on [15; 27;
106].

CPU GPU FPGA

Parallelism Limited by the num-
ber of cores

Supported by SIMT
(single instruction
multiple threads)
approach

High parallelism
with a customized
design approach

Power effi-
ciency (per-
formance /
watt)

Low High Very high

Interfaces Support different in-
terfaces

Limited or depen-
dent on the interface
with CPU

Customizable,
including direct con-
nection to cameras

Development
time

Short Medium Long

Table 2.1 shows that each device technology has different advantages and disadvan-
tages in term of its parallelism, power efficiency, interfaces, and development time. The
technology selection depends on the architectural design considerations and application
requirements [15]. Therefore, the next chapter shows how heterogeneous computing
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systems are used in vision-based multi-robot tracking applications. In heterogeneous
computing systems, different types of processors or hardware accelerators cooperate to
accelerate the computation tasks. The discussions in chapter 3 and the rest of this thesis
will focus on the implementations of two distinct heterogeneous computing systems
for vision-based multi-robot tracking applications, encompassing the use of the FPGA
and GPU as hardware accelerators for a CPU.
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with Heterogeneous Computing
Systems

As presented in chapter 1, the development of a vision-based multi-robot tracking system
using multiple cameras as the video input source began with the objective to deal with
a larger robot arena and support various applications. Additionally, the computational
intensity of vision processing algorithms increases with the number of tracked robots,
video frame size, and number of used cameras. This chapter delineates FPGA-CPU and
GPU-CPU heterogeneous (hybrid) computing systems as alternative approaches for
vision-based multi-robot tracking applications. It includes a comprehensive elaboration
on heterogeneous computing systems, both the FPGA-CPU and GPU-CPU architectures,
and vision-based multi-robot tracking algorithms.

3.1 Heterogeneous Computing System

The mainstream computing system for a high-performance computer platform has been
rapidly evolving to combine more than one type of processor or hardware accelerator
over the last decade, changing from homogeneous into heterogeneous systems. This
development means a dynamic breakthrough in the field of high-performance com-
puting systems. For instance, conventional homogeneous computing uses only one
or more processors with the same architecture; heterogeneous computing alternately
combines the benefits from the different types of processors or hardware accelerators
to enhance the computation tasks.

Heterogeneous computing systems have been widely used in many highly compu-
tationally intensive applications and successfully provide significant improvements
compared to conventional computing systems. At this point, the FPGA and GPU are
the most prevalent hardware accelerators for heterogeneous computing systems. An
FPGA offers customized design features and a parallel structure, while a GPU provides
massively parallel processing using its thousands of cores. As a result, there have
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been various implementations of FPGA-CPU heterogeneous computing systems, such
as for big data applications [29; 108; 121], neural networks [69; 94], and image
processing applications. These image processing applications include an avionic test
application [2], a face detection algorithm [81], an optical flow algorithm [26], and
medical image processing for ultrasound computer tomography [19; 20].

GPU-CPU heterogeneous computing systems are more adaptable and can be imple-
mented in various applications. This is different from FPGA-based systems. One of
the reason is because the development time in a GPU is relatively much faster than
in an FPGA. Accordingly, many applications have been implemented on GPU-CPU
heterogeneous computing systems, including data processing [13; 71], numerical
method [3; 82; 109], chemistry [16; 49; 76], bioinformatics [25], electromagnet-
ics [38], physics [51; 56], and image processing applications. These image processing
applications include biomedical imaging [68; 73; 96; 110], face detection [47; 88],
and optical flow algorithm [89].

The FPGA and GPU hardware accelerators possess their own unique features and
advantages. To some extent, experts and researchers have been encouraged to investi-
gate these factors, particularly to identify their benefits and drawbacks. Consequently,
some prominent studies on various applications and algorithms have been conducted
by experts and researchers, including a heterogeneous computing platform [27; 113],
medical imaging [12; 18; 21], and pedestrians detection [22].

From the perspective of heterogeneous computing systems, the CPU and hardware
accelerator (e.g., FPGA or GPU) work together to improve the computing performance.
As illustrated in Figure 3.1, the hardware accelerator enhances the computing per-
formance of the system by executing massive parallel processing or computationally
intensive tasks. Meanwhile, the CPU has an essential task within the application, espe-
cially in executing complicated operations on a single or a few streams of data. A CPU
also easily accommodates integration between the computing system and operating
system (OS) and provides I/O port access to a sensor or device (e.g., camera, display).
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Computationally intensive tasks

Hardware accelerators
(FPGA / GPU)

CPU

Sequential tasks

Application algorithm

Figure 3.1: Tasks partitioned in heterogeneous computing system.

At the architectural level, there are two types of architectures, both of which are based
on the integration between the CPU and hardware accelerator [80]. They are defined
as discrete and integrated heterogeneous systems. The former (discrete) consists of
a multi-core CPU and hardware accelerator, both connected to a high-speed bus, and
each of them has a distinct memory, as shown in Figure 3.2. In contrast, as illustrated
in Figure 3.3, the latter integrates both a CPU and hardware accelerator in a single
chip, and it shares the same memory between the CPU and hardware accelerator.
This integrated heterogeneous system is also known as a programmable system-on-
a-chip (SoC). A low data transfer overhead is the main advantage of an integrated
heterogeneous computing system [52; 100]. However, this system normally uses a
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simpler CPU and hardware accelerator (GPU) architectural design. Hence, it generates
a lower performance on computationally intensive tasks than a discrete system.

Hardware 

Accelerators

System Memory Memory

High-speed system bus

CPU

Core-1 Core-2

Core-3 Core-4

Memory Controller Memory Controller

Figure 3.2: Discrete heterogeneous computing system architecture.

Hardware 

Accelerators

System Memory

Memory Controller

CPU

Core-1 Core-2

Core-3 Core-4

Figure 3.3: Integrated heterogeneous computing system or programmable SoC archi-
tecture.

In discrete heterogeneous computing systems, designers can independently combine
certain types of CPUs and GPUs to enhance the computing performance. Therefore, this
work uses a discrete architecture for the implementation of vision-based multi-robot
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tracking heterogeneous computing systems. The following section within this chapter
discusses the proposed system in more detail.

3.2 Architecture and Design Flow

As mentioned in the previous chapters, the realization of a vision-based multi- robot
tracking system imposes three challenges: fast processing for real-time robot tracking
using high-resolution images, scalability of the number of cameras to support larger
environments, and a system performance capable of simultaneously processing many
robots for multi-robot applications. Indeed, most of the established vision-based multi-
robot tracking systems are implemented on CPU-based computing systems. Therefore,
this chapter explores heterogeneous (hybrid) computing systems, particularly FPGA-
CPU and GPU-CPU based computing systems, which aim to increase the computation
performance. These will likely become alternative approaches in the field of vision-
based multi-robot tracking systems. Basically, the systems combine the advantage of
using a CPU as the processor in the host PC with the use of an FPGA or a GPU as a
hardware accelerator. The proposed systems have the objective of efficiently handling
computationally intensive vision-based multi-robot tracking algorithms.

Camera-1

Robots with marker

Robot Field (Arena)

Camera-2

Camera-3 Camera-4

CPU
FPGA

/GPU

System 

Memory
Memory

Heterogeneous 

Computing System

Figure 3.4: Heterogeneous computing system for vision-based multi-robot tracking.

Figure 3.4 depicts the top-level block diagram of the proposed heterogeneous com-
puting system for vision-based multi-robot tracking applications. It uses four cameras
to cover a robot arena with a size of 6 m× 6 m and a discrete computing system that
consists of the FPGA/GPU and CPU. The FPGA/GPU are utilized as hardware accelera-
tors for processing the computationally intensive tasks of the algorithm to detect the
locations of the robots. Meanwhile, the CPU is used as the processor in the host PC for
post-processing algorithms and display.
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3.2.1 FPGA-CPU Heterogeneous Computing System

This section presents the design flow and architecture of the FPGA-CPU computing
system for vision-based multi-robot tracking. Figure 3.5 illustrates the design flow for
the implementation of an FPGA-based heterogeneous computing system, which is a
modified version of the FPGA-based design process from Bailey [8]. The implementation
processes in the CPU and complete (heterogeneous) system are added to the design
process. Hence, the design flow consists of five main steps: problem specification, image
processing algorithm development, architecture selection, algorithm implementation
in the FPGA and CPU, and implementation on a complete (heterogeneous) system.

The problem specification includes at least three aspects [8; 36] that must be con-
sidered: the system functionality, which means the expected function or output of the
system; the system performance that must be achieved (e.g., frame rate, the number of
robots); and the system environment, including the number of cameras, robot arena,
etc. In the next step, the problem specification is used to develop the algorithm.

The objective of image processing algorithm development is to find a series of
operations that transform the input image into the expected output. In this work,
the output is some relevant information related to the tracked robots; for instance,
their locations, orientations, and IDs. In the FPGA design, the image processing
algorithm cannot be developed directly on the targeted FPGA device. This is because
the development cycles (e.g., synthesize, translate, map, place, and route) require too
much time, which influences the algorithm implementation. Therefore, it becomes
impracticable to have an interactive design. Thus, a software environment such as
MATLAB or OpenCV could be used to simulate and develop the algorithm. This approach
allows the algorithm to be tested up to the application level and meets the relevant
accuracy and robustness performance [8].

When an initial algorithm has been developed, the implementation architecture can
be defined, which includes system level and computational level architectures. Referring
to the system level architecture, this work uses a discrete heterogeneous computing
system, as shown in Figure 3.6. Indeed, the main goal of the computational architecture
design is to improve the computation performance, particularly to exploit the parallelism
in the FPGA structure and accelerate the execution of the algorithm. According to
the context of the heterogeneous computing system, the algorithm is divided and
distributed into the FPGA and CPU. Usually, an algorithm requires some modification
before it can be efficiently mapped into the FPGA as a hardware accelerator. However,
not all algorithms are well transformed into a hardware implementation. Algorithms
with complex data-dependent control and possibly frequent memory accesses are merely
suitable to be implemented in software [33]. Section 3.4 provides more details on
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Figure 3.5: Design flow for FPGA-CPU implementation. Modified version from [8].

partitioning the vision-based multi-robot tracking algorithm into the hardware and
software.
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Figure 3.6: Discrete FPGA-CPU heterogeneous computing system architecture.

Once the architecture and algorithm distribution are defined, the next process for
hardware implementation in the FPGA and software implementation in the CPU can be
started. The FPGA- and CPU-based algorithm implementations can be implemented
independently. However, the rules for developing the image processing algorithm,
computational architecture design, and implementation in hardware and software are
not always straightforward. It is possible to redesign and iterate the process to obtain
the desired performance. Additionally, the image processing algorithm implementations
in the CPU and FPGA differ significantly. The software implementation in the CPU is
mostly coding the algorithm, and it can be simulated interactively. Meanwhile, the
FPGA-based implementation requires the design of specific hardware to execute specific
operations of the algorithm. Therefore, the hardware design and simulation in the
FPGA is mostly performed in a step-by-step way based on a sequence of operations in
the algorithm. High performance and a resource efficient design are typically desired,
exploiting the benefits of the FPGA parallelism. Finally, after both the CPU and FPGA
implementations are completed and integrated into one system, the system is ready to
be tested for debugging and verification.

3.2.2 GPU-CPU Heterogeneous Computing System

The design flow for the implementation of a GPU-based heterogeneous computing
system is shown in Figure 3.7. It consists of five main steps: problem specification, image
processing algorithm development, architecture selection, algorithm implementation
in the GPU and CPU, and implementation on a complete (heterogeneous) system.
It basically uses the same approach as the FPGA-based system for determining the
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problem specification and developing the image processing algorithm. The design flow
involves a rich vision processing algorithm such as MATLAB or OpenCV library [105]
for developing the application algorithm. The use of these kinds of development tools
can accelerate the algorithm development process.

Problem specification

Develop image 
processing algorithm
(MATLAB, OpenCV)

Map algorithm to 
GPU architecture (SIMT)

Implement design
On GPU (CUDA C)

Select system and 
computational 

architecture

GPU profiling

Redesign algorithm
for operations

(OpenCL, CUDA C)

Simulation on GPU

Speed and resource
verification

System debug and
verification

Software 
implementation

and
simulation

Implement on 
complete system

CPU GPU

Figure 3.7: Design flow for GPU-CPU implementation.

Figure 3.8 shows the use of a discrete GPU-CPU heterogeneous computing system. At
the computational design level, the massively parallel architecture of the GPU, which
consists of many cores, is employed to accelerate the execution of the algorithm. The
algorithm is partitioned and distributed into the GPU and CPU. This means that the
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parts that comprise few or no data-parallelism are executed in the host PC (CPU),
whereas the parts that take a huge number of data-parallelism are performed in the
GPU device [65]. When the architecture and algorithm distribution are defined, the
algorithm implementation in the GPU and CPU can be started.

High-speed 
system bus

GPU

Memory

Memory Controller

Computationally intensive tasks

System Memory

CPU

Core-1 Core-2

Core-3 Core-4

Memory Controller

Sequential tasks

Figure 3.8: Discrete GPU-CPU heterogeneous computing system architecture.

The algorithm implementation in the GPU is different from its implementation
in the CPU and FPGA. In dealing with GPU programming, thinking in parallel and
acknowledging the basic understanding of the GPU architecture are needed, in order to
obtain an optimum computing performance [30]. As described in section 2.3.2, a GPU
architecture has hundreds or even thousands of built-in cores. Furthermore, an SIMT
method is used to execute a kernel (algorithm) by exploiting its many cores. Figure 3.9
shows that in the CUDA-supported GPU, when a kernel is launched, a grid consisting of
numerous threads blocks is scheduled to implement an algorithm. Every single thread
executes instructions as the CUDA platform manages the scheduling for all the GPU
threads to be executed in a concurrent processing manner.

In contrast to the FPGA, where it is likely unfeasible to perform an interactive
simulation, debugging and interactive simulation are fully accommodated in a GPU
development system. A GPU development tool such as the NVIDIA CUDA tool provides
a profiling tool to examine the speed performance, power consumption, and achieved
occupancy of the GPU. Therefore, the algorithm implementation in the GPU is relatively
faster and has more benefits than its implementation in the FPGA. Finally, after both
the GPU and CPU implementations are completed and integrated as a system, the
heterogeneous computing system is ready to be tested for debugging and verification.
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Figure 3.9: CUDA-supported GPU algorithm implementation.

3.3 Vision-based Multi-Robot Tracking Algorithm

The purpose of the computing system in a vision-based multi-robot tracking application
is to execute algorithms for extracting useful information (e.g., locations, orientations,
and IDs of the robots) from the video. There are at least three main steps for vision
algorithms, as illustrated in Figure 3.10. These consist of segmentation, robot detection,
and post processing. Segmentation is applied to distinguish objects from the background
image. It directly affects the robot detection step, which is able to classify or identify
each object, either as a robot or not. The output data from robot detection is no
longer image based, but the locations of the robots. Finally, some post-processing
algorithms such as for computing the orientations and identities (IDs) of the robots
are implemented, so that the system can obtain more accurate and comprehensive
information.

In a heterogeneous computing system, it is necessary to select an appropriate algo-
rithm to obtain the benefits of the hardware accelerator (FPGA or GPU). An algorithm
that can be effectively mapped into a stream, and parallel data processing approaches
are well-matched for FPGA- and GPU-based hardware accelerators. Stream processing
is a good fit for pixel-level image processing operations such as point operations and
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Figure 3.10: Heterogeneous computing system with its algorithm.

local filtering, where processing is executed during a raster scan through the video
frame input [8]. Additionally, point operations and local filtering can also be effectively
performed in the GPU by employing its many cores and an SIMT approach.

To identify each robot in multi-robot tracking applications, they are individually
labeled with a specific marker to be captured and recognized by the system using
its camera. The robot marker used in this application is designed to have a high
recognition rate. This can be achieved using a specific shape with predefined patterns
for the identification of the individual robots. This work adopts the robot marker used
in Teleworkbench [103]. Figure 3.11 depicts the marker that is used in our multi-robot
tracking application. Each marker consists of a circle, pentagon, and barcode. The
circle is used to detect the location of the robot. It is chosen because a circle shape can
be effectively recognized in a stream processing fashion, which is performed as a whole
circle detection process in one pass during the raster scan of the video frame. This
stream processing method is essential for effectively using the FPGA or GPU architecture
as a hardware accelerator. Furthermore, the circle detection method is also compatible
with detecting two or more colliding circles, which is necessary for multi-robot tracking
applications. The pentagon defines the robot’s direction, while the bar code represents
the robot’s identity (ID). The bar code comprises six cells (colored black or white)
arranged in three columns and two rows, enabling the identification of up to 64 robots.
Additionally, the use of a circle with color in the robot marker makes the maximum
number of IDs scalable. If needed, the maximum number can be doubled using two
distinct colors (e.g., red and blue) for the circle in the robot marker.
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Figure 3.11: Robot marker used in this multi-robot tracking application.

Figure 3.12 shows a detailed block diagram of the vision-based multi-robot tracking
algorithm and how its tasks are partitioned between the hardware accelerator and
CPU. The hardware accelerators (FPGA/GPU) are used to execute computationally
intensive tasks with huge data rates, while the CPU is utilized to perform complex and
control operations with low data rates. Therefore, this work divides the algorithm
implementations as follows:

• The segmentation and robot detection algorithms that are performed on a video
frame of up to 2048× 2048 pixels (approximately 120 MByte/s for 30 fps) using
the hardware accelerator (FPGA/GPU).

• The post-processing algorithm, which is executed on a small image, requires
frequent access to the memory and complex control operations, is implemented
in the CPU of the host PC.
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Figure 3.12: Details of vision-based multi-robot tracking algorithm and its task parti-
tions in hardware accelerators and CPU.
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The object segmentation algorithm includes the debayer, RGB to HSV color conver-
sion, and color mask operations to extract the circles from an image with a resolution
of 2048× 2048 pixels. The operations are based on the marker’s color. These three
operations are similar to point operations in image processing. Thus, they are well
mapped to an FPGA or a GPU hardware accelerator. For robot detection, the algorithm
involves edge filter and circle detection operations. Edge filtering is a gradient-based
method that relies on a convolution operation for processing the filter kernel and input
image. It can be effectively mapped into the FPGA and GPU architectures. Afterward,
the circle detection algorithm receives the edge filtered image to identify the locations
of the robots and sends the results to the post-processing step.

In the post processing phase, this work applies the same algorithm as in Telework-
bench [103] to calculate the orientations and IDs of the robots because the same
pentagon and barcode are used. Teleworkbench is a vision-based multi-robot tracking
system infrastructure that was developed by Congnitronics and the Sensoric Research
Group, CITEC, Bielefeld University. The post-processing algorithm is performed based
on the cropped images, 40×40 pixels each. To obtain these images, cropping operations
are conducted on the input image, where the region of interest (ROI) is determined by
the coordinates or locations from the previous image processing phase (segmentation
and robot detection). The computations for the robot’s orientation and ID are imple-
mented based on a 40×40 pixels image for each robot marker, utilizing some functions
in the OpenCV library (e.g., findContours, minAreaRect, getRotationMatrix2D). In
other words, the post-processing algorithm performs the computation operations on a
relatively small image, but it also requires frequent access to the memory and complex
control operations. As a result, the post-processing algorithm is more suitable for
implementation in the CPU rather than in the FPGA/GPU.

3.3.1 Segmentation

In the segmentation phase, the red circle within the robot marker is extracted using
a color segmentation algorithm. The goal is to acquire an image with the required
information to be used for detecting the robots’ locations. The segmentation algorithm
includes a Debayer, RGB to HSV color conversion, and color mask operations, as shown
in Figure 3.13.
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Figure 3.13: Top level block diagram of segmentation module.

3.3.1.1 Debayer

The captured video frame from the camera is raw image data in a Bayer pattern format.
As illustrated in Figuree 3.14, each pixel in the Bayer pattern image has only a single
color, where one quarter of the pixels are red, half are green, and another quarter are
blue. This means that each pixel has missing color components. Therefore, a Debayer
operation is needed to create a full RGB color image out of a Bayer-encoded image. To
retrieve the complete RGB values for each pixel, this work uses a bilinear interpolation
method.
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Figure 3.14: Bayer pattern and its color components.

The bilinear interpolation is an eight neighborhood filter. It uses the values of the
eight neighbors of a Bayer pattern pixel to estimate the missing color components.
Furthermore, the values of the missing color components are determined by calculating
the average of the adjacent pixels. Figure 3.15 illustrates the Bayer pattern pixel array,
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which is used to easily explain the interpolation process. For pixel G133 (green-1, pixel
number 33) as the center, the red (R33) component and blue (B33) component need to
be estimated. Their interpolation values are calculated based on Equation 3.1. For pixel
R34 (red, pixel number 34) as the center, the green (G34) component and blue (B34)
component are estimated using Equation 3.2, while for pixel B43 (blue, pixel number
43) as the center, the green (G43) component and red (R43) component are calculated
using Equation 3.3.
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Figure 3.15: Bayer pattern pixel array.

R33 =
(R32 + R34)

2
and B33 =

(B23 + B43)
2

(3.1)

G34 =
(G133 + G224 + G135 + G244)

4
and B34 =

(B23 + B25 + B43 + B45)
4

(3.2)

G43 =
(G242 + G133 + G244 + G153)

4
and R43 =

(R32 + R34 + R52 + R54)
4

(3.3)
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3.3.1.2 RGB to HSV color conversion

The hue saturation value (HSV) color space is a widely used color space in image
processing for color detection and enhancement. It offers intensity independence
for the hue and saturation, which enables more robust segmentation [8]. Previous
works [6; 78] proved that an HSV color space provides a more robust performance
than the RGB color space with respect to changes in the illumination and lighting.
Therefore, an RGB to HSV color conversion operation is integrated into the sequence of
the segmentation algorithm. In this work, the RGB to HSV operation is implemented
based on the Foley et al. [41] algorithm. Mathematically, the conversion from RGB to
HSV is performed as follows:

H =











































0 , if R= G = B

60× (G−B)
∆ , if R= max(R, G, B)

120+ 60× (B−R)
∆ , if G = max(R, G, B)

240+ 60× (R−G)
∆ , if B = max(R, G, B)

(3.4)

where ∆= max(R, G, B)−min(R, G, B) and if H < 0, then H = H + 360

S =







∆
max(R,G,B) , if max(R, G, B) 6= 0

0 , if max(R, G, B) = 0

(3.5)

V = max(R, G, B) (3.6)

3.3.1.3 Color Mask

A color mask operation is utilized to conceal all the colors except a specific color range
on the HSV colored image. In this case, it will be the HSV equivalent values for the red
color in the robot marker. The output of this operation is a binary image (as shown in
Figure 3.13), where the pixels are set to white (active pixels) if their HSV values fall
within the specified threshold parameters in all three channels. Otherwise, the pixels
are set to black. The color mask operation is defined as follows:
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ColorMask =







255 , if Hmask = Smask = V mask = 1

0 , otherwise

(3.7)

where Hmask, Smask, and Vmask are obtained using the following formulas:

Hmask =







1 , if HLow ¶ H ¶ HHigh

0 , otherwise

Smask =







1 , if SLow ¶ S ¶ SHigh

0 , otherwise

Vmask =







1 , if VLow ¶ V ¶ VHigh

0 , otherwise

3.3.2 Robot Detection

The robot localization algorithm includes edge filtering and circle detection, as shown
in Figure 3.16. The edge filter operation is used as a preprocessing operation to deliver
a decent input image for the circle detection operation. As described in the previous
subsection, the output of the segmentation module is a binary image that is obtained
from the color segmentation algorithm. In this case, it is the red color that is used in
the circle of the robot marker. If there is any additional object (apart from the robot
marker) with the same color that is used for the robot marker in the current frame,
this object will be not filtered out by the color mask. This could lead to false positive
detections of circle candidates. If the size of a homogeneously colored object is greater
than or equal to the robot’s marker, then this object will be detected as a possible circle.
Therefore, an edge detection filter is applied as a preprocessing step to remove large
colored areas that do not represent markers.

This design utilizes a Sobel filter for the edge detection filter. Sobel edge detection
is a gradient-based method that uses two 3× 3 kernels which are convolved with the
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Figure 3.16: Top level block diagram of robot detection algorithm.

input image to compute the approximations of the horizontal and vertical gradients,
as shown in Equation 3.8. For the gradient computation, the pixels within the image
(I) are multiplied by the corresponding kernel weights (both vertical and horizontal),
and then added. The resulting gradients are combined to acquire the total gradient
magnitude. The total magnitude of both gradients is ideally given by Equation 3.9.
However, the approximation approach shown in Equation 3.10 can also be applied.
Finally, the output of this Sobel filter is sent to the next image processing algorithm.

Gx =
1
8





−1 0 +1
−2 0 +2
−1 0 +1



 ∗ I and Gy =
1
8





−1 −2 −1
0 0 0
+1 +2 +1



 ∗ I (3.8)

where 1
8 refers to the normalization factor for the Sobel filter.

G = 2
q

G2
x + G2

y (3.9)

G = |Gx |+ |Gy | (3.10)
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The circle detection algorithm receives the edge filtered image, which enables it to
calculate the locations of the circles that represent the robots’ locations. As depicted
in Figure 3.17, two circle detection algorithms are presented in this work for the
multi-robot tracking application. The algorithm is intended to be implemented in the
hardware accelerator (FPGA/GPU). The first method integrates a combination of the
circle Hough transform (CHT) and graph cluster algorithms. The second combines
the circle scanning window (CSW) technique and graph cluster algorithm. The CHT
and CSW are used to generate the circle center candidates. These candidates are then
provided to the graph cluster, which analyzes all the candidates and calculates the true
centers of the circles.

Robots 
Locations

Circle Detection

CHT / CSW
Graph 

Clustering

Robots 
Locations

Edge Filtered 
Image

Circle Center 
Candidates

Robots 
Locations

Figure 3.17: CHT/CSW and graph clustering algorithms for the circle detection.

3.3.2.1 Circle Hough transform

One of the most popular methods in circle detection is the CHT algorithm, an extended
version of the Hough transform (HT). The generalized HT is a feature extraction
technique that is usually used in image analysis, computer vision, and digital image
processing [101]. It was invented by Richard Duda and Peter Hart in 1972 [37] based
on the related 1962 patent of Paul Hough [54]. Basically, the generalized HT is used to
detect geometrical curves such as lines, circles, and ellipses, while the CHT is specifically
designed to find circles using a voting procedure.

58



3.3 Vision-based Multi-Robot Tracking Algorithm

In a binary image, the HT can be used to determine the parameters of a circle when
the number of points that fall on the perimeter are known [31]. A circle with center
(a, b) and radius r is specified by the parameters (a, b, r) in Equation 3.11

(x − a)2 + (y − b)2 = r2 (3.11)

The CHT maps each of the binary image pixels into many points in the Hough (or
parameter) space. If the circles in the image are of a known radius r, then the search for
a circle is a two-dimensional computation, as illustrated in Figure 3.18. The objective is
to find the (a, b) coordinates of the circle’s center candidates, as shown in Equation 3.12.
Angle α sweeps through the full 360◦ with distance r for every (x , y). The locus of the
points (a, b) in the parameter space fall on a circle of radius r centered at (x , y). The
true center point will be common to all parameter circles and can be found using an
HT voting procedure [31].

x 

y 

a 

b 

Votes 

Center Candidate 
Active (Edge) Pixels  

Figure 3.18: CHT from x,y-space (left) to parameter space (right) for a constant radius.

a = x − r · cosα and b = y − r · sinα (3.12)

3.3.2.2 Circle Scanning Window

As an alternative method to find the circle center candidates, we have implemented
the circle scanning window technique. Unlike the CHT method, which uses a one-to-
many points approach by mapping each of the binary image pixels to many points in
the Hough space, the circle scanning window (CSW) technique uses a many-to-one
approach. It maps many pixels of the binary image space to one point to find the circle
center candidate. While the voting values in the CHT method are generated from the
accumulation of the points in the transformed space, in the CSW method, the voting

59



3 Vision-based Multi-Robot Tracking with Heterogeneous Computing Systems

values are obtained directly from the binary image. A point (coordinate) is considered
to be a circle center candidate of the CSW when the voting value for this coordinate is
higher than the selected threshold value.

As shown in Figure 3.19, a scanning window with its circle pattern pixels is used to
find the circle center candidates. In our application, the radius of the circle in the robot
marker is defined. Thus, a specific size is used for the scanning window. The N × N
pixels of the scanning window are chosen based on the diameter size of the circles
in the edge filtered image (binary image). This window consists of a circle pattern
with a predefined radius. The CSW moves in the raster scan mode, scanning the entire
image frame to find the circle center candidates. A location is considered to be a circle
center candidate if the accumulated voting value in the scanning window block is
higher than a selected threshold value. The calculation of the voting value refers to the
accumulation of the binary pixels in the scanning window using the predefined circle
pattern. The calculation of the circle pattern coordinates is based on Equation 3.13.
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Figure 3.19: Raster scan with circle detection scanning window.

x = a+ round(radius · cosα) and y = b+ round(radius · sinα) (3.13)
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3.3.2.3 Graph clustering

The process of identifying the structure of non-uniform data, in terms of grouping
the data elements, is known as clustering or data classification [66; 95]. The goal of
clustering is to identify all of the groups in a set of unlabeled data. Graphs are structures
that are formed by a set of vertices (also called nodes) and a set of edges, which are
connections between pairs of vertices. Graph clustering is the task of grouping the
vertices of the graph into clusters, taking into consideration the edge structure of the
graph [95]. Figure 3.20 illustrates an example of graph clustering.

Given input graph Graph clustered

Cluster-1

Cluster-2

Figure 3.20: Graph clustering operation.

Formally, given a data set, the goal of clustering is to divide the data set into clusters
such that the elements assigned to a particular cluster are similar or connected in some
predefined sense [95]. In other words, clustering is used to find patterns in data or
to group sets of data points together into clusters. Because our design is dedicated
to circle detection in multi-robot localization, the design of the clustering method is
based on the characteristics of the graph data provided by either the CHT or CSW
outputs. In this application, the outputs of the CHT and CSW represent all candidates
that have voting values higher than the predefined threshold (votingth). As shown in
Figure 3.21, the circle center candidates are all located inside the circle of the robot
markers, but further processing is needed to obtain the true centers of the circles.

According to the data characteristics, the clustering is built based on the distance
between the coordinates of the circle’s center candidates determined by the previous
module. The coordinates are assigned to the same cluster if the distances between them
are lower than the distance threshold. In our application, one cluster represents one
robot marker. Finally, the centroid of each cluster is calculated. These centroids become
the true centers of the circles, which represent the locations of the robot markers.
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Circle center candidates

Figure 3.21: Edge detection and its circle center candidates.

The algorithm for the graph clustering operation is illustrated using a flow chart, as
depicted in Figure 3.22. This flowchart shows that all of the circle center candidates
should initially be ready to be stored in the memory or registers. The first circle center
candidate is automatically considered to be the first cluster, and a new cluster ID
is subsequently created. When this candidate is not identified as the last one, the
next candidate is loaded and compared with previous candidates, in order to define
the connection between the new/current candidate and the former candidates. The
coordinates between two or more center candidates are considered to be connected or
collided when the distance between them is lower than a threshold value. If no collision
is detected, a new cluster ID is created. Otherwise, when a collision has occurred and
is related to one of the cluster IDs, the current center candidate is set using this cluster
ID, and then merged with the collided center candidate. If the collision is connected to
two or more cluster IDs, all of the candidates with the same value as those collided
cluster IDs are merged and updated with one of those cluster IDs (e.g., the smallest ID).
These complete processes are repeated until the last circle center candidate appears.
Finally, all of the centroids (circle centers) are calculated based on the average value
of all the members in each cluster (group). These centroids represent the locations of
the robots, which are sent to the host PC for further processes, including tracking and
visualization.
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Figure 3.22: Graph clustering flowchart.
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3.3.3 Post-processing

As previously explained, this work uses the same pentagon and barcode as utilized in
the Teleworkbench [103] robot marker. Therefore, the post-processing step applies the
same algorithm and library for detecting the orientations and IDs of the robots. This
approach allows robot marker identification of up to 64 unique IDs with detection rates
of 100% and 99.99% in static and dynamic tests, respectively [103].

Figure 3.23 depicts the flow chart of the post-processing algorithm. As illustrated
in this flow chart, the output of the hardware accelerator (robot markers’ locations)
is used to generate numerous sub-images (cropped images). Then, the complete
post-processing algorithm is performed on these images.

Crop Image

40x40 pixels

Robot marker
Locations (x,y)

Find Contour

Containing Pentagon

Find Center (x’,y’) and

Marker Head Side

Find Orientation (θ)

Rotate Image

Find ID

Robot (x’,y’,θ,ID)

Figure 3.23: Post processing algorithm in our application.
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Figure 3.24 shows examples of the cropped images (sub-images) with different
orientations of the robots with their markers. The size of each image is 40× 40 pixels.
All of these sub-images are collected and buffered in the host PC’s memory, and then
they are all processed by the quad-core CPU using a multi-thread approach. More
details about the multi-thread processing in the host PC will be discussed later in
section 4.5, while this section focuses on the post-processing algorithm.

Figure 3.24: Example of image robots with their marker that have been cropped based
on locations from hardware accelerators (FPGA/GPU).

To calculate the robot orientation in the 40× 40 pixels of the cropped image, the
algorithm begins by finding the pentagon. The f indContours and minAreaRect
functions from OpenCV library are applied to find the center of a rectangle that covers
the whole area of the pentagon, as shown in Figure 3.25. Using this approach, the circle
center coordinates from the hardware accelerator (FPGA or GPU) can be improved
because the pentagon is located in the center of the circle. Afterward, the head of the
pentagon can be calculated and detected.

Find center of 
contour box 
containing 
pentagon

Find the pentagon 
head side

Figure 3.25: Finding contour box of pentagon and its head side for calculating orienta-
tion.
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The orientation of the robot marker is calculated based on the previous informa-
tion about the pentagon’s center and head side. Finally, using the orientation value,
the getRotationMatrix2D function from OpenCV is applied to rotate the image back
into a standard position, as depicted in Figure 3.26, so that the robot’s ID can be
decoded from the barcode.

Calculate the 
orientation (Ө)

Rotate the image 
using the orientation

Figure 3.26: Calculate robot marker orientation and use orientation to rotate image.

3.4 Summary

The architectures of heterogeneous computing systems for vision-based multi-robot
tracking and their design flows in both FPGA-and GPU-accelerated platforms have
been presented in this chapter. Furthermore, this chapter has presented algorithms to
detect the locations, orientations, and IDs of the robots. These algorithms consist of
segmentation, robot detection, and post processing. For the robot marker detection, two
unique algorithms have been introduced. The first one integrates a combination of the
CHT and graph cluster algorithms. The second one combines the CSW technique and
graph cluster algorithm. Additionally, this chapter has shown how the task partitions are
divided between the hardware accelerators (FPGA/GPU) and CPU. The segmentation
and robot detection algorithms are designed to be implemented in hardware accelerators
because of their computationally intensive tasks and high data rate. Meanwhile, the
CPU is used for executing some complex and control operations with low data rates in
the post-processing algorithm.

More details about the implementation of the FPGA-accelerated computing system for
vision-based multi-robot tracking can be found in chapter 4, while the implementation
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with the same approach using the GPU-accelerated computing system is presented in
chapter 5.
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4 Implementation in
FPGA-accelerated Heterogeneous
Computing System

This chapter emphasizes the implementation of FPGA-accelerated heterogeneous com-
puting systems for vision-based multi-robot tracking. The FPGA architecture possesses
the benefits of a parallel structure and customizable design, which could be used to
increase the computing performances. In particular, this chapter delineates the system
architecture of the proposed design and the implementation of several video processing
modules on the FPGA, with the goal of constructing the complete proposed system. In
addition, it presents three basic configurations with different numbers of streaming
hardware accelerators and thus different levels of parallelism in the implementation.
Additionally, this chapter presents two unique architectures for FPGA-based circle
detection for multi-robot tracking, using the CHT-graph cluster algorithm and CSW
technique-graph cluster algorithm combinations. Finally, it analyzes the logic resource
requirements of all the video processing modules.

Figure 4.1 shows the architecture of the FPGA-CPU heterogeneous computing system
for vision-based multi-robot tracking applications. It is a vision-based multi-robot
tracking platform that utilizes FPGAs for video processing and a host PC for post-
processing and visualization. The architecture supports a scalable number of GigE
Vision cameras with a maximum frame size of 1024× 1024 pixels for each camera,
allowing them to cover a robot arena with a size of 6 m×6 m. Each robot is individually
labeled with a specific marker for distinct identification. Thus, the system can easily
support different types of robots. Four cameras are directly connected to the FPGA, and
most parts of the video processing chain for detecting the locations of robot markers
are implemented in hardware to achieve the maximum advantage of using FPGA
technology.
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Figure 4.1: Top-level block diagram of system architecture with circle detection IP core.

4.1 FPGA-CPU Hardware Environment Description

The proposed design is implemented on the CPU and modular FPGA-based rapid
prototyping system RAPTOR [91], as shown in Figures 4.2 and 4.3. It uses an Intel
i7 quad-core CPU as the processor in the host PC and Virtex-4 FPGA on the RAPTOR
development board as the hardware accelerator. For communication and data transfer
between the CPU and FPGA, the system uses the peripheral component interconnect
(PCI) bus, while the camera can be directly connected to the FPGA daughter board
module (DBM). Up to six DBMs can be attached in the RAPTOR system; it offers system
scalability in terms of the number of FPGAs and cameras.

RAPTOR is a modular base rapid prototyping system, which was designed by Cog-
nitronics and Sensoric Research Group, Bielefeld University. It applies a modular
approach, which consists of a base system and variety of extension daughter board
modules. The base system provides communication and management functionalities,
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Figure 4.2: FPGA-CPU hardware environment picture.
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Figure 4.3: FPGA-CPU hardware environment block diagram.

which are used by the extension daughter boards. Figure 4.4 illustrates the architecture
of the RAPTOR development board. The RAPTOR system supports up to six FPGA
daughter board modules. In our implementation, each daughter board consists of one
FPGA and one Ethernet board, providing two Gigabit Ethernet ports. Our design was
designed to use only one FPGA to handle four cameras. However, it is possible to
support more cameras and Gigabit Ethernet interfaces by utilizing additional FPGA
daughter boards, without the need for extra host PCs.
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Figure 4.4: RAPTOR development board architecture [91].

Figure 4.5 shows details of the complete platform of the proposed design, the so-
called FPGA hardware environment. A multi-port memory controller (MPMC) [116] is
used as the memory controller. It supports LL SDMA, VFBC, NPI, and PLB interfaces.
The MPMC provides access to the external DDR2-SDRAM memory through one to eight
ports. This memory is necessarily used as a frame buffer. In this regard, the AXI4-S to
video frame buffer controller (VFBC) becomes a bridge that connects the VFBC port of
the MPMC and the user IP core. The VFBC allows a user IP core to read and write data
in two-dimensional (2D) formats regardless of the size or organization of the external
memory transactions [116]. Furthermore, a local bus slave to NPI controller is designed
for a control signal and data transfer between the FPGA and the host PC through the
PCI interface [63]. All of the processes (from grabbing the video frame from the camera
to detecting the location of the robot through its marker) are implemented in the FPGA
as individual modules (IP cores).

Finally, the proposed design with its base system and all of the video processing
modules are implemented using the RAPTOR prototyping system populated with a
Xilinx Virtex-4 XC4VFX100-11 FPGA. The following sections provide more details on
the design of each video processing module and its implementation, including the
multi-camera GigE Vision frame grabber module, preprocessing module, edge filter
module, and circle detection module.
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4.2 Algorithm Implementation

Improving the computational performance is the main aim of the proposed FPGA-CPU
computing system. Therefore, the algorithm implementation for vision-based multi-
robot tracking is distributed between the FPGA and CPU, as depicted in Figure 4.6.
The FPGA implementation comprises four main modules, which are used to identify
the locations of all the robots. Meanwhile, the image post-processing algorithm in the
host PC plays a role in detecting the robot orientations and IDs. The computations
are implemented based on a 40× 40 pixel image for each robot marker, using some
functions in the openCV library. The post processing algorithm in the CPU is the same
algorithm used for Teleworkbench [103].

The FPGA hardware implementation includes the GigE Vision camera frame grabber,
object segmentation, edge detection, and circle detection modules, as shown in Fig-
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ures 4.1 and 4.6. The GigE Vision camera grabber module captures the video frames
directly from the multiple cameras. The object segmentation module includes the
debayer, RGB to HSV color conversion, and color mask operations to extract the circles
from the image based on the marker’s color using color segmentation. This segmented
image is a binary image containing the extracted circles. This image is downscaled to
reduce the number of required logic resources. It is scaled down by a factor of two in
the x and y directions by the integrated downscaling module. A factor of two is chosen
because this reduction size can still maintain a good recognition of the circle. The
image is scaled down by skipping all the odd columns and rows. Afterward, the resized
image is delivered to the edge detection module, which applies a Sobel filter. This filter
is applied as a preprocessing step for removing large colored areas, not representing
markers. Finally, the circle detection module acquires the centroids of the circles, which
represent the locations of the robots. This thesis presents two unique FPGA-based circle
detection architectures for multi-robot tracking applications. The first one integrates a
CHT and graph cluster algorithm combination. The second architecture combines the
CSW technique and a graph cluster algorithm. After the circle has been detected, the
robots’ locations are sent to the host PC for further processing, including tracking and
visualization.

Circle Detection:

CHT-graph cluster

CSW-graph cluster

Robot Orientation

Robot ID

Segmentation:

Debayer

RGB to HSV

Color Mask

Resize

Downscaling

Edge Filter

Crop ROI

Robot locations

FPGA

CPU in host-PC

Figure 4.6: FPGA-CPU algorithm distribution.

This design supports multiple cameras with different configurations of video pro-
cessing algorithms as hardware accelerators. Figure 4.7 shows three configurations (A,
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B,and C) of video processing hardware accelerators. It presents three basic configu-
rations that differ in the number of streaming hardware accelerators and thus in the
parallelism of the implementation.
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Figure 4.7: Examples of different configurations of video processing hardware acceler-
ators.
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Configuration A supports four cameras using only one video stream hardware ac-
celerator, as shown in Figure 4.7-a. Figure 4.7-b illustrates configuration B, which
utilizes two parallel video stream hardware accelerators, i.e., each video stream hard-
ware accelerator handles two cameras. This approach can significantly increase the
performance of the system. Finally, for the maximum performance, one video stream
hardware accelerator can be applied for every single camera, as shown in configura-
tion C (Figure 4.7-c). The number of parallel video stream hardware accelerators is
flexibly scalable, because it is limited only by the number of logic resources inside the
FPGA.

Figure 4.8 depicts an example of a configuration that supports an application that
uses two different colors (e.g., red and blue) for the circle in the robot marker. Each
color uses stream hardware accelerators to obtain the locations of the robots. Using
this configuration, the system performance will be comparable to the system that uses
configuration A, but the supported maximum number of robot IDs is doubled from 64
to 128. The configuration offers scalability in terms of the numbers of robots and IDs
supported without sacrificing the computing performance.
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Figure 4.8: Example of configuration that uses two different colors for circle in robot
marker, which can increase maximum numbers of used robots and IDs.
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4.3 Vision Processing Module Implementation in FPGAs

This section provides more details on the FPGA implementation of the hardware
accelerator module, as shown in Figures 4.1 and 4.6. It explores the design of the
multi-camera frame grabber, object segmentation, edge filter, and circle detection
modules.

4.3.1 Multi-Camera GigE Vision Frame Grabber Module

Figure 4.1, in the beginning of this chapter, shows that the design uses a GigE Vision
frame grabber module for directly interfacing with all the cameras. This module is a
scalable and lightweight FPGA implementation of the GigE Vision standard designed
by Congnitronic and Sensoric Research Group, CITEC, Bielefeld University [58]. It has
the ability to reconstruct the video frames at wire-speed by extracting the raw video
data from the GigE Vision packets of each camera. Multiple GigE Vision cameras (not
utilizing the complete bandwidth of 1 Gbit/s) can be connected to this module through
a single Gigabit Ethernet interface and Gigabit Ethernet switch.

GigE Vision is a global and widely adopted camera interface standard, which was
developed using the Gigabit Ethernet (IEEE 802.3) communication standard. It allows
for fast image transfer using the available bandwidth of 1 Gbps (faster data transfer is
supported using link aggregation and 10 Gigabit Ethernet). Additionally, GigE Vision
supports long-distance data transmission of up to 100 m using low-cost copper cables
(CAT5e, CAT6a, or CAT7). This transmission distance can be increased using switches
or optical fiber cables. With GigE Vision, hardware and software from different vendors
can interoperate seamlessly over GigE connections [7]. GigE Vision is based on UDP/IP,
and the raw video frames are packetized and transmitted as GigE Vision packets from
the GigE Vision camera.

In our vision-based multi-robot tracking platform, each pair of the four GigE Vision
cameras are connected to one Gigabit Ethernet PHY via a Gigabit Ethernet switch,
as shown in Figure 4.9. In this approach, the resources required for interfacing the
cameras are reduced because only two gigabit PHYs, two TEMACs, and two multi-
camera GigE Vision IP cores are used (instead of four gigabit PHYs, four TEMACs, and
four single-camera GigE Vision IP cores).

The multi-camera GigE Vision video frame grabber module consists of the tri-mode
Ethernet media access controller (TEMAC), the multi-camera GigE Vision (MC_GigEV),
and the camera configuration IP cores as shown in Figure 4.9. The video stream
from each camera consists of GigE Vision packets that encapsulate the raw video data.
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Figure 4.9: Multi-camera GigE Vision module used in TWB [62].

Afterward, the TEMAC controller that is responsible for the implementation of the
Ethernet link and physical layers [117] receives the GigE Vision packets, using its
Gigabit Media Independent Interface (GMII). It continuously passes the packets from
different camera sources to the MC_GigEV IP core. The MC_GigEV IP core extracts the
raw video data and reconstructs the video frames from each video stream. Finally, the
core provides the extracted video data as an AXI4-Stream in a separate channel for each
video stream, which allows the video data to be easily processed further. To configure
the cameras with the desired frame rates and resolutions, GigE Vision control packets
are sent to the desired camera through the camera configuration IP core (Cam_Config).

4.3.2 Object Segmentation

The output of the multi-camera video frame grabber module is the raw video data in
a Bayer pattern format [14]. Further processing is needed to distinguish the robot
markers from the background image. In this multi-robot tracking application, the red
circle in the robot marker is extracted using a color segmentation algorithm. This object
segmentation module includes a debayer, RGB to HSV color conversion, and color mask
units, as shown in Figure 4.10. The debayer unit creates a full RGB color image out of
Bayer encoded image. Afterward, the RGB to HSV unit converts the color space from
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RGB to HSV. It is implemented to provide a more robust segmentation performance
than the RGB color space with respect to changes in the illumination and lighting [6;
78]. Finally, the color mask unit thresholds the HSV image to extract the red circles in
the robot marker. All of these units are fully pipelined. Each unit performs its operation
and passes the result to the next stage (unit).

DEBAYER

Unit

RGB to HSV

Unit

Color Mask

Unit

Figure 4.10: Top-level block diagram of segmentation module [62].

The implementation of the debayer unit in VHDL is based on the bilinear interpola-
tion algorithm, which was described in section 3.3.1.1 using Equation 3.1, 3.2, and 3.3.
Figure 4.11 shows the hardware implementation block diagram of the bi-linear inter-
polation. It utilizes two-row buffers to form a 3× 3 window for an eight neighborhood
filter operation. The multiplexer outputs depend on the pixel that is currently being
processed. The operation of the debayer unit requires a latency of 2× image wid th,
which is equal to the total length of the row buffer. Latency refers to the difference in
the times (clock cycles) that the data is first input to an operation and the corresponding
output is available [8].

In this work, the RGB to HSV unit is designed based on the algorithm of Foley et
al. [41], which has been previously described in section 3.3.1.2. The implementation
is based on Equations 3.4, 3.5, and 3.6. The hue and saturation color conversions in
Equation 3.4 and Equation 3.5 require a divider operator, which is inefficient in relation
to the logic resource requirement in an FPGA design. Therefore, these equations are
modified to obtain a more efficient design in terms of the logic resource requirement by
removing the divider operator. The modifications of the hue and saturation formulas
are comprehensively presented in Equations 4.1 and 4.2. Finally, these two modified
equations, together with Equation 3.6, are implemented as a hardware accelerator in
the FPGA. Using these equations, the divider is not needed, as depicted in Figure 4.12.
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30× (G − B) , if R= max(R, G, B)

30× ((2×∆) + (B − R)) , if G = max(R, G, B)

30× ((4×∆) + (R− G)) , if B = max(R, G, B)

(4.1)

where ∆ = max(R, G, B) − min(R, G, B) and for a condition where the output is
negative: if H

2 ×∆< 0, then H
2 ×∆=

H
2 ×∆+ (180×∆)

S ×max =







∆ , if max(R, G, B) 6= 0

0 , if max(R, G, B) = 0

(4.2)

The FPGA implementation of color mask units is based on Equation 4.3, which is a
modification of Equation 3.7. As shown in Figure 4.12, the color mask unit directly
thresholds the output from the RGB to HSV unit. It consists of comparators with
threshold parameters (the highest and lowest values for each of the HSV channels).
The values of these threshold parameters must use the applied range values for the HSV
channels. They are between 0 and 180 for the H-channel, 0 and 128 for the S-channel,
and 0 and 255 for the V-channel. A comparison operation occurs between the HSV
image and the set threshold to obtain the output. The output of this unit is a binary
image, where the pixels are set to white (active pixels) if their HSV values fall within
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Figure 4.12: RGB to HSV and color mask units.

the specified threshold parameters in all three channels. Otherwise, the pixels are set
to black.

ColorMask =







255 , if Hmask = Smask = V mask = 1

0 , otherwise

(4.3)

where Hmask, Smask, and Vmask can be obtained using the following formulas:

Hmask =







1 , if HLow
2 ×∆¶

H
2 ×∆¶

HHigh

2 ×∆

0 , otherwise
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Smask =







1 , if SLow ×max ¶ S ×max ¶ SHigh ×max

0 , otherwise

Vmask =







1 , if VLow ¶ V ¶ VHigh

0 , otherwise

4.3.3 Edge Filter Module

This design uses a Sobel filter for the edge detection filter. As previously described in
section 3.3.2, a Sobel filter is a gradient-based method that applies two 3× 3 kernels
that are convolved with the input image to approximate the horizontal and vertical
gradients. Figure 4.13 shows a block diagram of the Sobel filter module. It utilizes
one pair of line buffers to execute two 3× 3 kernel windows simultaneously. During
the gradient computation, each pixel within the image (I) is multiplied in parallel by
the corresponding kernel weight and then added. The resulting gradients are then
combined to obtain the total gradient magnitude.

Kernel X
−1 0 +1
−2 0 +2
−1 0 +1

Kernel Y
−1 −2 −1
0 0 0

+1 +2 +1

Line Buffer 2

Line Buffer 1 + Thres-
holder

Threshold

Abs

Abs

Figure 4.13: Block diagram of Sobel fiter module.
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The total magnitude of the gradients is ideally given by Equation 3.9, which is G =
2
q

G2
x + G2

y . However, this equation is too costly in terms of the logic resource require-
ments for the FPGA design. As an alternative, the approximation approach shown in
Equation 3.10 (G = |Gx |+ |Gy |) can be applied. Finally, the total gradient magnitude
value is compared with the selected threshold value. A pixel is set to white if the
gradient value is higher than the specified threshold parameter. Otherwise, the pixel is
set to black.

The logic resource requirement of this Sobel filter module relies on the image size.
In particular, the length of the line buffers is equal to the image width size. Resizing
(downscaling) the segmented image is similar to reducing the logic resources. This
resizing also causes a reduction in the required logic resources in the circle detection
module.

4.3.4 Object Localization

The circle detection module has the main task of defining the locations of the circles,
which represent the locations of the robots. In the literature, several FPGA-based circle
detection designs have been proposed, e.g., [5; 39; 64; 99; 122]. However, this work
targets a resource-efficient approach that supports the detection of multiple circles
(objects) in real-time based on high-resolution video frames, which is not supported by
any of the above-mentioned implementations.

This work presents two unique architectures for FPGA-based circle detection for
a multi-robot tracking application, as depicted in Figure 4.14. The first architecture
integrates a combination of the CHT and graph cluster algorithms. The second one
combines the CSW technique and graph cluster algorithm. The CHT and CSW are used
for the generation of circle center candidates. These candidates are then provided to the
graph cluster, which analyzes all the candidates and calculates the true centers of the
circles. To reduce the number of required logic resources, the input video (segmented
image) is first scaled down by a factor of two in the x and y directions using the
integrated scaling module. This resizing also causes a reduction in the binary image
for the CHT module or CSW module, as shown in Figure 4.1. The diameter of the
circle markers in the real world is 10 cm (line thickness: 8 mm), corresponding to
a diameter of 26 pixels and an average line thickness of 3 pixels in the video frame.
More details about the CHT, CSW, and graph clustering modules are presented in the
following subsections.
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Figure 4.14: Proposed circle detection module: (a) CHT-graph cluster and (b) CSW-
graph cluster.

4.3.4.1 Circular Hough transform module

The FPGA implementation of the CHT algorithm is based on Equation 3.12, which
was previously described in section 3.3.2.1. In this implementation, 16 and 32 values
of α are used to sweep the full 360◦. As a result, we will have 16 or 32 votes for
each active pixel. These votes are considered to be a good trade-off between the circle
detection performance and the number of required logic resources for the FPGA, as
listed in Table 4.1. The 16 votes approach requires fewer logic resources but achieves a
slightly lower performance than the 32 votes approach for detecting the circle. Here,
the precision and recall are used as the standard detection metrics, as described in [44].
The precision is the ratio between the number of correctly detected circles (true positives
(TP)) and all the detections (true positives (TP) and false positives (FP)), as shown
in Equation 4.4. The recall is the number of circles that are correctly detected out of
the total number of circles that should have been detected (true positives and false
negatives (FN), i.e., the ground truth).

Precision=
T P

T P + F P
, Recall=

T P
T P + FN

(4.4)

The values in Table 4.1 are based on Matlab simulations using 16 generated test
circles and 12 different scenarios (images) with respect to the circle positions, in
particular for collision conditions between two or more circles. These results are
obtained using Equation 4.4 by calculating the average value over all the images.
In this step, the circle coordinates are predefined, and they are generated using a
Matlab simulation. Therefore, we verified the detected circles from the CHT using
these generated circles to obtain the true positives. The maximum difference between
the centroids of the detected circles and the generated ones is 3 pixels. Under certain
conditions, circle collisions can create a virtual circle center candidate for the CHT
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algorithm that potentially increases the number of false positives and false negatives.
The logic resources are based on synthesis results using a Xilinx Virtex-4 FPGA.

Table 4.1: Number of votes, detection metrics (precision and recall) and required logic
resources.

Votes per Pixel (N) Prec. Recall Registers LUTs BRAM

8 95.47% 91.66% 396 509 57

16 98.98% 99.47% 409 522 66

32 100% 100% 419 567 66

The top-level block diagram of the CHT module is shown in Figure 4.15. The
architecture is composed of three main units: the edge pixel buffer FIFO, calculation
unit for generating the votes, and dual-port memory (DP-RAM) unit for the voting
process. The edge pixel buffer FIFO unit stores the locations of active edge pixels. It
consists of a counter and an FIFO, as illustrated in Figure 4.16-a. The counter is used
to generate the locations of the edge filtered image. Only the coordinates of active
pixels are written into the FIFO, which is composed of eighteen 18-kbit BRAMs. Based
on simulations under worst case conditions, these FIFOs can buffer up to 16384 pixel
locations. This results in location information for up to 125 robots, considering that
only the active pixels are extracted from the robots. If there are more than 16384
unprocessed pixel locations, an FIFO overflow will occur. Additionally, the processing
in the CHT module must be completed within a time frame of 512× 512 pixel clocks
(equivalent to the image size after downscaling in configuration C for each camera).
This means, during this time, that all of the locations that are stored in the FIFO should
already be read and converted to votes. Otherwise, the output from the CHT module
will be corrupted. This situation is very unlikely to occur in a real scenario. However, if
detected, a flag register is set, allowing further debugging. By decreasing the number
of votes, this issue will be solved. Another solution is increasing the threshold in the
edge filter, which reduces the number of active edge pixels. In this case, the detection
accuracy could be decreased. Chapter 6 elaborates further on the accuracy when using
different numbers of votes and robots.

Calculation Unit of 

Votes Generation

Edge Pixels 

Buffer FIFO

DPRAM for Voting 

Accumulation

Figure 4.15: Top-level block diagram of FPGA-based CHT module.
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FIFO, and (c) dual-port RAM unit for Hough voting process [62].
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The structure of the calculation unit of the vote generator is depicted in Figure 4.16-b.
It consists of two LUTs for realizing the sine and cosine operations multiplied by the
predefined radius, a counter for selecting the LUT outputs, and two subtractors for
calculating the P(b, a) coordinates, which are used as offset address in the next step.
N votes are generated sequentially for every location of active edge pixels. This means
that N iterations are needed for N votes (e.g., 16 or 32). All of the processes are
controlled by the finite-state-machine (FSM).

Finally, the output from the votes generator is sent to the DP-RAM unit to be ac-
cumulated based on the repetition of their values. The data at the generated offset
address in the DP-RAM is incremented by 1. Utilizing a D-FF, this address is delayed
for writing-back the incremented value to the DP-RAM, as shown in Figure 4.16-c. In
this unit, for every pixel in the image after edge detection, there is a respective location
in the DP-RAM that is used for the accumulated value of the votes. The votes with a
final accumulation value higher than the predefined threshold (votingth) are provided
by the CHT module as the circle’s center candidates.

Regarding the DP-RAM implementation, there are two issues to be considered for
storing the votes. First, the size of the DP-RAM depends on the processed image size.
Because the DP-RAM size is limited in FPGAs, there is a need to reduce the use of the
internal memory in order to process high-resolution images. The second issue is that the
design should be able to process the video stream in real time. This means that using
an external memory is not an option because it significantly limits the throughput and
increases the latency. Therefore, our objective is to find an architecture that minimizes
the internal memory requirements.

The main reduction of the internal memory requirements in our approach is achieved
by dividing the image into blocks of 32 rows each. This block size covers markers with
a maximum diameter of 32 pixels, which is used in our application. All of the votes are
handled by a double buffering method, which allows accumulations to be performed
in a streaming approach. The votes of odd blocks are located in group A, while the
votes from even blocks are located in group B. When accumulating one block of data in
group A, the data in group B is erased and vice versa. For the accumulation, each vote
is stored in two DP-RAMs of the same group. When erasing the data, only one of the
two DP-RAMs in the same group is deleted, while the other one retains the data. This
means that for both groups (A and B), at least one of their DP-RAMs stores updated
values. This mechanism is useful for handling an overlap condition, where one or more
circles are located between odd and even blocks. It is realized using four 16-kbyte
DP-RAMs, which are divided into two groups, A and B, as depicted in Figure 4.16-c.

The two DP-RAM groups are controlled by a finite-state-machine, deciding which
DP-RAM will be deleted, written, or read. The respective addresses for the DP-RAM are

87



4 Implementation in FPGA-accelerated Heterogeneous Computing System

generated by the address counter generator. Only the accumulated votes with values
greater than the predefined threshold (votingth) will be considered for output as the
circle’s center candidates, as shown in Figure 4.16-c. Finally, the circle center candidate
output is delivered to the graph clustering module to obtain the true circle center,
which represents the location of the robot. Using the proposed approach reduces the
total amount of required memory by a factor of four compared to storing the vote’s
accumulation values for the whole image. The total number of clock cycles required
for the CHT module is (wid th× depth) cycles.

4.3.4.2 Circle scanning window module

As an alternative method to find the circle center candidates, an FPGA-based CSW has
been implemented. Basically, this method is similar to a convolution approach [11;
53]. As shown in Figure 4.17, a scanning window with its circle pattern pixels is used
to find the circle center candidates. It maps many pixels of the binary image space
to one point to find the circle center candidate. In our application, the circle radius
in the robot marker is fixed. Thus, a specific size is used for the scanning window,
with 13× 13 pixels selected based on the size of the circles in the edge filtered image
(after downscaling). This window consists of a circle pattern with a predefined radius.
The calculation of the circle pattern coordinates is based on Equation 3.13. The CSW
moves in the raster scan mode, scanning the entire image frame to find the circle center
candidates. A location is considered to be a circle center candidate if the accumulated
voting value in the scanning window block is higher than a selected threshold value.
The voting value is calculated based on the accumulation of the binary pixels in the
scanning window using the predefined circle pattern.

As shown in Figure 4.18, line buffers are needed to perform the raster scan window
operation on the edge filtered image. RAM-based shift registers are utilized to build
the line buffers. Twelve line buffers are needed for a 13× 13 block in the scanning
window operation. The scanning operation begins after 12 lines of the input frame
are buffered. To detect the circle center candidates, 13 × 13 registers are used for
temporarily storing the values of the buffered pixels. In our application, 32 of these
registers are used as voting registers, which are arranged in a circle shape, as shown
in Figure 4.18. The values of these voting registers are accumulated using the adder
unit. The total voting value of the adder unit is compared with a certain threshold.
If it is higher than the threshold, this means that a circle is detected, and its center
is obtained from the address counter as a new circle center candidate, as shown in
Figure 4.18. In our application, one circle usually has several circle center candidates.
Finally, these circle center candidates are sent to the graph clustering module to obtain
the true circle center, which represents the robot’s location
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Figure 4.17: Raster scan with circle detection scanning window [62].
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Figure 4.18: Top-level block diagram of the scanning window module [62].

4.3.4.3 Graph clustering module

In the proposed design, one of the main components used to implement the graph
clustering in hardware is the distance calculator unit [46], which computes the distance
between the previously determined candidates of circle centers. As illustrated in
Figure 4.19, the output is a binary value. Here, 1 means that the candidates are
connected and belong to the same cluster because the calculated distance d is smaller
than the threshold value dth. Binary distance 0 indicates that the corresponding
candidates belong to different clusters.
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Figure 4.19: Binary distance in graph clustering.

A possible method for the distance calculation is using the Euclidean distance (Equa-
tion 4.5). Unfortunately, this requires additional resources (logic and DSP blocks) on
the FPGA as a result of the square operations.

d =
Æ

(X2 − X1)2 + (Y2 − Y1)2 (4.5)

A resource-efficient solution is to use the Manhattan distance (Equation 4.6), which
just requires the implementation of subtraction and addition in hardware.

d = |X2 − X1|+ |Y2 − Y1| (4.6)

Another alternative that requires even fewer logic resources is a multiplier-less binary
distance calculation unit based on Chebyshev. It calculates the absolute magnitude of
the differences between coordinates [46]. This binary distance calculation unit uses
only subtraction, comparator, and logical AND operations, as shown in Equation 4.7.

i f |X2 − X1|< dth and |Y2 − Y1|< dth bindist = 1 else bindist = 0 (4.7)

Here, dth is the threshold value for the maximum distance, and bindist is the binary
distance result.

For our application, each distance calculation method is simulated in software, and
the results are listed in Table 4.2. In our simulation, we used our dataset, which is based
on multi-circle detection in a multi-robot application. All of the distance calculations
are in pixel units. As shown in Table 4.2, all of the methods provide sufficiently high
performances (precision and recall). Under some conditions, when two or more robots
collide, a virtual circle center candidate could be created that is either detected as a
circle or shifts the location of a real circle, thus reducing the precision and recall values.
The detection metrics are measured based on the calculated clusters for over 2000
images using Equation 4.4. All of the detected clusters are verified by detecting the
pentagon shape inside the marker. If the pentagon is detected based on the calculated
centroid of the clusters, this centroid is considered to be a correctly detected circle
(true positive). Otherwise, it is not counted as a circle (false positive). As stated earlier,
TP + FN in Equation 4.4 represents the total number of circles, which is predefined in
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our experiments. For the final implementation, we selected the modified Chebyshev
method because it achieves the required accuracy with the lowest amount of logic
resources. The threshold values dth were selected based on our empirical simulation
results.

Table 4.2: Simulation results of graph clustering using Euclidean, Manhattan and
Chebyshev distance for 8 robots.

Dist.Thresh. Euclidean Manhattan (dth.
p

2) Chebyshev

dth (in pixels) Pr. Rec. Pr. Rec. Pr. Rec.

10 99.82 99.79 99.57 99.43 99.81 99.79

12 99.70 99.70 99.67 99.30 99.56 99.57

14 99.55 99.47 99.72 99.14 99.57 99.40

16 99.68 99.32 99.75 99.04 99.74 99.30

18 99.73 99.21 99.74 98.98 99.74 99.14

The initial version of the FPGA-based graph clustering module is designed based on
the flow chart in Figure 3.22, which has previously been described in section 3.3.2.3. Its
architecture block diagram is shown in Figure 4.20. The system consists of three main
units: the circle center candidate registers, clustering unit, and centroid calculation
unit. More details about this graph cluster module can be found in [61]. There are two
main drawbacks in this design. First, based on the requirement of the algorithm, all of
the circle center candidates must be stored in registers before the clustering can begin.
A higher number of circle center candidates will take a larger amount of logic resources.
As a consequence, the number of circle center candidates is limited to 256. Second,
the design requires too many logic resources. This graph cluster module utilizes about
10600 slice registers and 12300 LUTs. Therefore, the architecture has been improved
in the current updated version.

Unlike the initial version, which processed the clustering after all of the center candi-
dates were completely collected, in the new implementation, the clustering is processed
immediately when the graph clustering module receives a new circle candidate. Using
this new approach, the number of candidates is not limited to 256, but can exceed 4096
circle center candidates in one frame. A block diagram of the FPGA-based graph cluster-
ing module and its flow chart are shown in Figures 4.21 and Figure 4.22, respectively.
It is an updated version of our previous implementation, as discussed in [61].
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The graph clustering module consists of five main units: the input FIFO buffer, binary
distance calculation (BDC) unit, cluster & centroid updater, new cluster creation, circle
center (centroid) registers, and output FIFO buffer. The input FIFO is used to buffer the
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circle center candidates. This buffering is needed because a minimum of three clock
cycles is required to process every candidate during the clustering operation.

The BDC, cluster & centroid updater, new cluster creation, and circle center (cen-
troid) register units work together in the clustering operation. These units are fully
pipelined so that incoming data can be processed every clock cycle. The BDC unit
uses a multiplier-less distance calculation, based on Equation 4.7. Therefore, it simply
requires a combination of a logical AN D operator, subtractors, and comparators, as
shown in Figure 4.21.

The functions of the other three units (cluster & centroid updater, new cluster
creation, and circle center (centroid) registers) are explained using the flowchart
depicted in Figure 4.22. As shown in this flow chart, the first circle center candidate
will automatically be considered to be the first cluster and centroid. The next candidate
from the input FIFO is processed in the BDC unit to find the connection between this
new candidate and the existing clusters, as illustrated in Figure 4.23. A value of “1”
at the BDC unit output means that the candidate is connected and belongs to one of
the existing clusters. In this case, the centroid of the connected cluster is updated
using the mean value of this circle center candidate and the centroid of the current
cluster. Next, the module will read the new circle center candidate from the input
FIFO for the subsequent clustering operation. Otherwise, if the output of the BDC
unit is “0”, the BDC calculations are repeated with the next existing clusters until the
BDC output is “1”, i.e., a connection with a cluster is found. If the last existing cluster
is reached and no connection is found (BDC output is “0”), a new cluster is created.
This process is repeated until the end of the frame. Finally, all of the centroids (circle
centers) are transferred to the output FIFO. These circle centers represent the locations
of the robots, which are sent to the host PC for further processing, including tracking
and visualization.

93



4 Implementation in FPGA-accelerated Heterogeneous Computing System

Start

First 

candidate?

Create new 

cluster

Find connection 

with an existing cluster 

using the BDC unit

BDC = 1

?

The last 

existing 

cluster?

End of 

frame?

Send the circle centers (centroids) to 

the output FIFO 

End

Yes

No

Update cluster 

and centroid

New circle center 

candidates from 

the input FIFO

Yes

No

No Yes

Yes

No
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4.4 Resource Utilization

This section evaluates the amount of logic resource utilization for the video processing
modules. The resource utilization report is related to the number of logic units used
in the FPGA implementation. As described in section 2.3.3, an FPGA consists of
different logic units, including the FF, LUTs, RAM, and DSP. Using the resource utilization
information, the required logic in the FPGA for each video processing module can be
determined and analyzed. In particular, video processing modules that require a large
or small number of resources can be identified. Based on this information, the scalability
of the proposed design in an FPGA can be predicted.

Table 4.3, Table 4.4, and Table 4.5 list the device utilization values on a Virtex-4 FX100-
11 for configurations A, B, and C, respectively. These configurations differ in the number
of streaming hardware accelerators and thus in the parallelism of the implementation,
as previously presented in section 4.2 and Figure 4.7. As shown in Table 4.3, the
required logic resources of the video processing modules in configuration A, including
the debayer, RGB to HSV color conversion, color mask, image scale down, CHT, and
CSW, are relatively small compared to the graph cluster module. In configurations
B and C, the designs use only one graph cluster and duplicate the other modules
to increase the parallel processing. Accordingly, the required logic resources of the
graph clustering module remain the same, while those of the other modules, which
require relatively few logic resources, are doubled. Therefore, the total number of used
logic resources, especially the numbers of FFs and LUTs, are not significantly different
between configurations A and B. However, the total numbers of BRAMs and DSPs are
doubled.
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As shown in the tables, most of the BRAMs are used for the implementation of the
CHT or CSW module. The CSW module requires significantly fewer logic resources
than the CHT module. Therefore, the design that uses the CSW module is more scalable
than the design with the CHT module. Table 4.5 shows that configuration C with the
CHT module requires about 76% of total BRAMs in the Virtex-4 FPGA, while the same
configuration with the CSW module uses only 19% of the total BRAMs. Because the
base system accounts for 38% of the total BRAMs in the Virtex-4 FPGA, the design that
uses the CHT module cannot be used to implement configuration C on a single Virtex-4
device. However, this is not an issue for the design with the CSW module. Therefore,
using the CSW module is preferable.

Table 4.3: Device utilization: Virtex-4 FX100-11 (configuration A).

Module FFs LUTs BRAM DSP48
1-bit 4-bit 18-Kbit

(Max.) (84352) (84352) (376) (160)
Debayer 333 272 2 0

RGB-HSV-Col.Mask 180 352 0 4
Sobel Filter 389 303 2 6
Scale Down 25 53 0 0
CHT / CSW 419 / 430 567 / 511 66 / 12 0 / 0

Graph Cluster 3040 3163 4 0
Total 4386 / 4397 4710 / 4654 74 / 20 10 / 10
(%) 5.20 / 5.21 5.58 / 5.52 19.68 / 5.32 6.25 / 6.25

Table 4.4: Device utilization: Virtex-4 FX100-11 (configuration B).

Module FFs LUTs BRAM DSP48
1-bit 4-bit 18-Kbit

(Max.) (84352) (84352) (376) (160)
Debayer 666 546 4 0

RGB-HSV-Col.Mask 360 732 0 8
Sobel Filter 776 604 4 12
Scale Down 50 106 0 0
CHT / CSW 803 / 776 1129 / 912 132 / 24 0 / 0

BridgeToGraph 213 126 2 0
Graph Cluster 3040 3163 4 0

Total 5908 / 5881 6406 / 6189 146 / 38 20 / 20
(%) 7.00 / 6.97 7.59 / 7.34 38.83 / 10.11 12.5 / 12.5

96



4.4 Resource Utilization

Table 4.5: Device utilization: Virtex-4 FX100-11 (configuration C).

Module FFs LUTs BRAM DSP48
1-bit 4-bit 18-Kbit

(Max.) (84352) (84352) (376) (160)
Debayer 1324 1084 8 0

RGB-HSV-Col.Mask 720 1464 0 16
Sobel Filter 1552 1208 8 24
Scale Down 100 212 0 0
CHT / CSW 1605 / 1336 2237 / 1509 264 / 48 0 / 0

BridgeToGraph 405 272 4 0
Graph Cluster 3040 3163 4 0

Total 8746 / 8477 9640 / 8912 288 / 72 40 / 40
(%) 9.89 / 9.57 11.11 / 10.24 76.59 / 19.15 25.0 / 25.0

Regarding the scalability of the proposed design related to the number of cameras
and the video resolution, the number of BRAMs increase significantly following the
number of cameras and the video resolution. This is because the BRAMs are utilized
as line buffers in the video processing modules. Meanwhile, increasing the number of
robots will enlarge the numbers of FFs and LUTs, because they are used as registers
and control units in the graph cluster module.

The remaining modules that are used in our implementation are the multi-camera
frame grabber and base system. The multi-camera frame grabber occupies 3% of the
total registers and 3% of the total LUTs of the Virtex-4 FPGA. The base system consists of
the VFBC bridges, multi-port memory controller (MPMC), TEMAC, local bus (LB)-slave
to native port interface (NPI) controller, PPC subsystem, and clock management. The
base system accounts for 22% of the total registers, 25% of the total LUTs , and 38% of
the total BRAMs of the Virtex-4 FPGA.

The IP cores can seamlessly be used in more recent FPGA technologies. As an
example, they have been implemented on the Xilinx Virtex-6 XC6SX475T-2 and Xilinx
Virtex-7 VX690T-2, and the respective results are presented in Table 4.6 and Table 4.7.
In contrast to the Virtex-4 FPGA which is fabricated using 90 nm process technology,
the Virtex-6 and Virtex-7 FPGA are built with newer process technologies. The Virtex-6
FPGA is built based on 40 nm, while the Virtex-7 is manufactured based on 28 nm
process technology. All of the reported logic resources are post-place and route data. A
maximum clock frequency of 160 MHz is achieved on the Virtex-4, whereas 185 MHz
and 230 MHz are achieved on the Virtex-6 and Virtex-7, respectively. Because the
newer FPGAs use 6-bit LUTs, while the Virtex-4 uses 4-bit LUTs, the tables show both
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values in order to provide a comparison. For conversion, it is assumed that a 6-bit LUT
is equivalent to one and a half 4-bit LUTs.

Table 4.6: Device utilization: Virtex-6 XC6SX475T-2 (configuration A).

Module FFs LUTs LUTs BRAM DSP48
1-bit 6-bit 4-bit Eq 18/36-Kbit

(Max.) (595200) (297600) (2128/1064 (2016)
Debayer 327 246 369 2/0 0

RGB-HSV-Col.Mask 180 226 339 0/0 4
Sobel Filter 375 269 403 2/0 6
Scale Down 25 29 43 0/0 0

CHT 393 367 550 0/33 0
CSW 230 206 309 12/0 0

Graph Cluster 3027 1260 1890 4/0 0
Total with 4327 2397 3594 8/33 10

CHT 0.73% 0.81% 0.81% 0.38/3.10% 0.50%
Total with 4164 2236 3353 20/0 10

CSW 0.70% 0.75% 0.75% 0.94/0% 0.50%

Table 4.7: Device utilization: Virtex-7 VX690T-2 (configuration A).

Module FFs LUTs LUTs BRAM DSP48
1-bit 6-bit 4-bit Eq 18/36-Kbit

(Max.) (866400) (433200) (2940/1470 (3600)
Debayer 335 232 348 2/0 0

RGB-HSV-Col.Mask 180 236 354 0/0 4
Sobel Filter 375 259 388 2/0 6
Scale Down 25 29 43 0/0 0

CHT 392 397 595 0/33 0/0
CSW 230 209 313 12/0 0

Graph Cluster 3027 1286 1929 4/0 0
Total with 4334 2439 3657 20/33 10

CHT 0.50% 0.56% 0.56% 0.27/2.24% 0.28%
Total with 4172 2251 3375 20/0 10

CSW 0.48% 0.52% 0.52% 0.68/0% 0.28%

In addition to obtaining a faster maximum clock frequency, using the newer FPGA
technology also means that more logic resources can be utilized. As shown in Table 4.6
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and Table 4.7, the Xilinx Virtex-6 XC6SX475T-2 and Xilinx Virtex-7 VX690T-2 devices
provide much higher numbers of logic resources compared to the Virtex-4 FX100.
Therefore, in these tables, the numbers of used logic resources (e.g., FFs, LUTs, BRAMs,
and DSP) are relatively very small compared to the maximum numbers of logic resources
in the FPGA devices. Accordingly, greater parallelism and scalability can be supported
using these newer FPGA devices.

4.5 Post Processing in Host PC

While previous sections presented the FPGA design for the implemented algorithms to
detect the robots’ locations, this section shows how the post-processing algorithm is
implemented in the CPU. As previously described in section 3.3.3, the post-processing
algorithm is performed on sub-images (cropped images). The output of the FPGA
(robot markers’ locations) is used to obtain all of the sub-images. Cropping operations
are performed on a robot’s marker coordinates, 40× 40 pixels each, using an input
image that is downloaded from the FPGA’s external memory. Sequentially, all of the
cropped images are stored in the CPU’s memory. Finally, all of the sub-images are
processed by the quad-core CPU in a multi-thread manner. The algorithm is used to
process images at the frame rate of the cameras. Therefore, to obtain a frame rate of
30 fps, the processing time should be no more than 33 ms.

Figure 4.24 depicts the CPU’s approach for handling the post-processing algorithm. A
multi-thread method is applied to maximize the advantage of the multi-core architecture
in the CPU. Four threads perform similar tasks to define the robots’ orientations and
IDs, executing the post-processing algorithms. The post-processing algorithm in the
CPU utilizes the same method that is used in Teleworkbench [103], a vision-based
multi-robot tracking system infrastructure that was developed by Congnitronic and
Sensoric Research Group, CITEC, Bielefeld University.

Because it uses four threads for the computation of the robots’ orientations and IDs,
the CPU can simultaneously process four sub-images. Based on our experiment, a
processing time of approximately 12 ms can be reached for 64 robots, while for one
robot it takes only about 0.72 ms. This means that when working on a small image
(40× 40), the algorithm can be effectively performed in the CPU. Furthermore, this
performance can potentially be increased when more threads are utilized for the post
processing.
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Figure 4.24: Top-level block diagram of multi-threads operation in CPU.

4.6 Summary

This chapter described the implementation of the FPGA-accelerated computing system
for vision-based multi-robot tracking using multiple cameras. The system architecture
and implementation of the video processing modules in the FPGA were presented. The
customized design and high parallelism of the FPGA were used to provide various
configurations that differed in the number of streaming hardware accelerators and
thus in the parallelism of the implementation. This approach potentially increases the
parallel processing when utilizing the video inputs from multiple cameras. Additionally,
this chapter also presented two unique architectures for FPGA-based circle detection for
multi-robot tracking, using the CHT-graph cluster algorithm and CSW technique-graph
cluster algorithm combinations. Both designs support streaming operations, which
are essential for multi-camera video processing in an FPGA. According to the resource
utilization evaluation, the proposed design requires fewer logic resources and can be
implemented in a single Virtex-4 FPGA. The design with the CSW module is preferable
compared to the same design with the CHT because the CSW design requires fewer
logic resources.

More details on the accuracy, performance, and efficiency of the proposed design can
be found in chapter 6. Meanwhile, the same approach using a GPU as the hardware
accelerator is presented in chapter 5.
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Heterogeneous Computing System

This chapter discusses the implementation of GPU-accelerated heterogeneous comput-
ing systems for vision-based multi-robot tracking. The proposed system is designed
to improve the computation performance by utilizing the benefits of the GPU, particu-
larly its massively parallel architecture and thousands of lightweight programmable
cores. The discussion begins with descriptions of the proposed GPU-CPU hardware
architectures, followed by a presentation of the algorithm and its implementation on a
GPU using CUDA kernels. The implementation includes object segmentation (debayer,
RGB to HSV color conversion, and color masking operations), edge filtering, and circle
detection.

Figure 5.1 illustrates the architecture of the proposed vision-based multi-robot track-
ing platform using the GPU-CPU heterogeneous computing system. Improving the
computational performance becomes the main aim of the proposed architecture. This
design is the second alternative for a heterogeneous computing system for a multi-robot
tracking platform, following the FPGA-CPU system that was presented in chapter 4.
The GPU-based system basically uses a configuration similar to the FPGA-CPU design.
For example, four GigE Vision cameras are used to cover the entire robot arena, robot
markers are used to identify individual mobile robots, and a CPU is used for post-
processing operations. The main difference compared to the FPGA-based system is
the GPU-based system’s use of an additional multi-gigabit Ethernet port PCIe card to
access the cameras. In this design, most of the vision processing algorithm chains used
to detect the locations of the robot markers are performed in the GPU. Three main
video processing algorithms are implemented as GPU kernels, including the object
segmentation, edge filtering, and object localization algorithms, as shown in Figure 5.1.

The following sections in this chapter further delineate the GPU implementation for
vision-based robot tracking. It includes the GPU-CPU hardware environment description
and algorithm implementation (GPU kernel).
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Figure 5.1: Top-level block diagram of GPU-CPU computing system for vision-based
multi-robot tracking.

5.1 GPU-CPU Hardware Environment Description

Figure 5.2 depicts the complete scheme of the hardware environment of the proposed
design. The peripheral component interconnect express (PCIe) works as the system bus
and serves as the interconnection between the GPU and CPU, as well as the connection
to the multi-gigabit Ethernet ports. Using the PCIe technology, the system has a high-
speed serial computer expansion bus standard. This is essential because the data
transfer speeds between the GPU, CPU, and multi-gigabit Ethernet ports rely on the
expansion bus throughput. Additionally, an extra GPU device can easily be added to
the system utilizing the PCIe-expansion slot.

The design utilizes an Intel i7 quad-core CPU as the processor in the host PC and two
different GPUs as the hardware accelerators. Two GPUs with distinct architectures and
fabrication process technologies are selected: the NVIDIA GTX 580 and GTX 780 GPUs.
The GTX 780 GPU has a more up-to-date hardware architecture and fabrication process
technology compared to the GTX 580. The GTX 780 GPU architecture is based on the

102



5.1 GPU-CPU Hardware Environment Description

Gigabit Ethernet 

PCIe Card

GPU

(NVIDIA GTX 580 

or GTX 780)

CPU

(Intel i7 

Quad Core)

GPU Memory

(GDDR-5)

System Memory

(DDR-3)

PCI Express bus

Camera

Figure 5.2: GPU-CPU hardware environtment block diagram.

NVIDIA’s Kepler architecture and manufactured using the 28 nm fabrication process,
while the GTX 580 GPU is designed based on NVIDIA’s Fermi architecture and fabricated
using the 40 nm fabrication process. Therefore, they are employed and evaluated
individually to examine the characteristics of GPUs with different architectures and
fabrication technologies.

Table 5.1 illustrates further differences between the GTX 580 GPU and GTX 780
GPU. The former comprises up to 512 CUDA cores, whereas the later consists of 2304
CUDA cores. Furthermore, the GTX 780 GPU has better specifications than the GTX
580 GPU. For example, the GTX-780 supports a higher clock rate, larger number of
registers, larger memory bandwidth, and lower total power dissipation per CUDA core,
as well as being furnished with a newer bus interface. The performance comparison
between the two GPUs for vision-based robot tracking is examined in section 6.2.
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Table 5.1: Comparison of GTX 580 and GTX 780 GPU.

GPU GTX 580 GTX 780

Transistors 3 B 7.1 B

CUDA cores 512 2304

Streaming multiprocessor (SM) 16 12

Max warps per SM 48 64

Max threads per SM 1536 2048

Max register per Threads 63 255

Clock rate 772 MHz 863 MHz

Memory bandwidth 192 GB/s 288 GB/s

Bus interface PCIe 2.0 × 16 PCIe 3.0 × 16

TDP 244 Watt 250 Watt

Figure 5.3 shows that the CPU and GPU have individual external memories, and both
use their embedded on-chip memory controllers to access these memories. Accordingly,
the system does not support the direct sharing of data between the GPU and CPU. The
data must be copied from the GPU’s external memory to the CPU’s external memory or
vice versa to enable data sharing, which means additional time is required to complete
this procedure. Therefore, the data communication between the GPU and CPU should
be minimized.

GPU
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CPU

(Intel i7 

Quad Core)

GPU Memory

(GDDR-5)

System Memory

(DDR-3)

PCI Express bus
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Figure 5.3: Data sharing between CPU and GPU.
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5.2 Algorithm Implementation

Figure 5.4 shows the top-level block diagram of the algorithm for the vision-based
multi-robot tracking application using the GPU-CPU heterogeneous computing systems.
The GPU is used to execute computationally intensive tasks and huge data rates, while
the CPU is utilized to perform complex and control operations with low data rates. It
comprises four main steps, which are distributed between the GPU and CPU:

• Video frame grabber and image merging operations are performed in the CPU.

• Object localization, which consists of segmentation, Sobel edge filtering, and
circle detection algorithms, are conducted on the GPU. These algorithms are
performed on a video with a resolution of 2048× 2048 pixels.

• A graph clustering algorithm is executed on the CPU.

• Post-processing operations, which consist of robot orientation and ID decoding
algorithms, are completed on the CPU. These are performed on images with a
resolution of 40× 40.

In the first step, the CPU uses the multiple Gigabit Ethernet PCIe card to handle all
the cameras. All of the captured video frames from the four cameras are buffered and
merged into a single large frame. This is done using some OpenCV library functions.
Afterward, this merged frame is copied from the host PC memory to the GPU memory
for the next step.

In the GPU, the object segmentation, edge filtering, and circle detection algorithms
are applied to the merged video frame. Two different algorithms are used to obtain
the circle center candidates from the robot markers. These are the CHT algorithm and
CSW technique. Furthermore, as shown in Figure 5.4, two different vision processing
chains exist in the GPU. The first processes the original size of the input video frame
(segmented image), and the other uses the Resize function to downscale the frame
size. This downscaling approach aims to reduce the execution time. A factor of two in
the x and y directions is chosen because this reduction size can still maintain a good
recognition of the circle. An examination of the trade-off between the accuracy and the
computation performance (execution time) will be performed for the above different
configurations (CHT, CSW, downscaling).

The output data from the object localization algorithm are no longer image based,
but the location candidates of the robots. To obtain the true circle centers, the CPU uses
the following processes. In this regard, the host PC copies the GPU output to complete
the object localization process. A graph clustering algorithm is applied to define the
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Figure 5.4: Algorithm of vision-based robot tracking in GPU-CPU.

true circle centers, which represent the locations of the robots. In this implementation,
the graph clustering algorithm is performed outside the GPU because of its limited
data parallelism. Yet, it requires more branch and control operations. Therefore, this
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algorithm is implemented in the CPU. Finally, after obtaining the coordinates of the
robots, additional information related to each robot, including its orientation and ID, is
calculated in the post-processing step. To minimize the computational requirements in
the CPU, the calculations of the robot orientations and IDs are performed based on a
40× 40 pixel image of each robot marker.

5.3 CUDA Kernels Implementation

This section describes the detailed implementations of the proposed algorithms in the
GPU step. As illustrated in Figure 5.5, the algorithm implementation consists of three
main processes: object segmentation, which includes the debayer, RGB to HSV color
conversion, and color mask algorithms; edge detection filtering with the Sobel filter
algorithm; and object localization using the circle detection algorithm. Because some
of the algorithms are not available in the OpenCV GPU (e.g., the debayer, color mask,
and CSW), all of the algorithm implementations are fully written as specific GPU kernel
codes. This approach will also make the data transfer among kernels straightforward
and easily defined. The following subsections explore the algorithm implementations
in the GPU kernels in more detail.

Object LocalizationObject Segmentation

Debayer
RGB to HSV 

Conversion

Color 

Mask
Edge

Detection
CHT / CSW

Figure 5.5: Top level block diagram of GPU algorithm implementation.

5.3.1 Object Segmentation

In the CUDA-supported GPU, an SIMT execution model is used to handle and execute
many threads. From the hardware perspective, each thread is executed in a CUDA core.
Meanwhile, a thread block is performed in a stream multiprocessor (SM). When a kernel
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is launched, a grid consisting of numerous thread blocks is scheduled to implement
an algorithm. Figure 5.6 illustrates the implementation of the object segmentation
algorithm from a hardware perspective. A kernel grid consisting of numerous thread
blocks is used to implement the object segmentation algorithm, which extracts the
circles of all the robot markers using a color segmentation method. The algorithm
includes the debayer, RGB to HSV color conversion, and color mask.
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Figure 5.6: Top-level block diagram of GPU object segmentation implementation.

Furthermore, Figure 5.6 shows that the object segmentation algorithm is executed
at the pixel level. The pixel processing operations run sequentially from the debayer
algorithm to the RGB to HSV color conversion algorithm, and finally to the color mask
algorithm. In the GPU, these operations can be efficiently processed by employing
its hundreds or even thousands of cores. This is thanks to the SIMT approach, which
simultaneously executes the operations using its many cores. Additionally, the CUDA
platform manages the scheduling of all the threads to be executed in a concurrent
processing manner.

Listing 5.1 shows the pseudocode of the CUDA kernel for the object segmentation
algorithm. The debayer algorithm produces a full RGB color image out of a Bayer-
encoded image. In this work, a bilinear interpolation is implemented to interpolate the
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missing color components to retrieve an RGB value for each pixel. It generates the values
of the missing color’s components by calculating the average of eight neighborhood
pixels. The RGB to HSV algorithm is designed based on the algorithm of Foley et al.
[41], which has been previously described in section 3.3.1.2. This color conversion
attempts to utilize the robustness of the HSV color space in terms of illumination or
lighting changes, as has been proven in some previous experiments [6; 78]. Finally,
a color mask algorithm is used to mask off all the colors except a specific color range
based on the values of the HSV color image. In this case, it will be the HSV equivalent
values for the red color in the robot marker.

Listing 5.1: Pseudocode for object segmentation CUDA kernel
__g loba l__ void bayerGR_to_rgb_to_hsv_to_colourmask (
unsigned char BayerIn , gpu : : Pt rStepb MaskOut ,
in t Width , in t Height )
{
// G1 R
// B G2

in t xIndex = 2 (( b lockIdx . x blockDim . x ) + threadIdx . x ) ;
in t yIndex = 2 (( b lockIdx . y blockDim . y ) + threadIdx . y ) ;

i f (( yIndex < Height ) && ( xIndex < Width ))
{

Calculate_Debayer_G1 ( BayerIn , rgb_G1 ) ;
Calculate_RGB_to_HSV ( rgb_G1 , hsv_G1 ) ;
Calculate_HSV_to_ColorMask ( hsv_G1 , MaskOut ) ;

Calculate_Debayer_R ( BayerIn , rgb_R ) ;
Calculate_RGB_to_HSV ( rgb_R , hsv_R ) ;
Calculate_HSV_to_ColorMask ( hsv_R , MaskOut ) ;

Calculate_Debayer_B ( BayerIn , rgb_B ) ;
Calculate_RGB_to_HSV ( rgb_B , hsv_B ) ;
Calculate_HSV_to_ColorMask ( hsv_B , MaskOut ) ;

Calculate_Debayer_G2 ( BayerIn , rgb_G2 ) ;
Calculate_RGB_to_HSV ( rgb_G2 , hsv_G2 ) ;
Calculate_HSV_to_ColorMask ( hsv_G2 , MaskOut ) ;

}
}

5.3.2 Edge Filter

Figure 5.7 illustrates the implementation of the Sobel filter in the GPU, and its pseu-
docode is depicted in Listing 5.2. An edge detection filter is implemented to pass only
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the edges of HSV color masked objects. It is based on the Sobel filter algorithm. The
Sobel filter operation is running sequentially at each thread level, while the CUDA
platform schedules the operation for all the threads at the GPU device level. The shared
memory is utilized as a buffer for the color masked input image, which can reduce
the latency between the threads and global memory, as well as to increase the data
transfer speed of the computing operations. The edge filtered image is taken from the
gradient magnitude at each pixel in the image in both the horizontal (Gx) and vertical
(Gy) directions. This involves a 3× 3 kernel matrix convolution operation with the
input image to compute the approximations of the gradients. The Gx and Gy gradients
are combined to acquire the total gradient (G). Finally, the gradient G is compared to a
threshold value to define the output image.
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Figure 5.7: Top-level block diagram of GPU Sobel filter implementation.

In this GPU kernel, two different approaches are applied to obtain the total gradient
(G). They are a standard approach that uses Pythagoras’ theorem G = 2

p

Gx2 + G y2 and
an approximate approach, which utilizes an absolute add operation G = |Gx |+ |G y|.
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However, only the latter approach is used in the FPGA implementation, as previously
presented in chapter 4.

Listing 5.2: Pseudocode for Sobel edge filter CUDA kernel.
__g loba l__ void Sobe l_kerne l (
gpu : : PtrStepSz<unsigned char> MaskImgInput , cv : : gpu : : PtrStepb Output ,
const in t Width , const in t Height , const s i z e _ t Threshold )

__shared__ unsigned char shared_mem [ Size_Y ] [ Size_X ] ;

in t xIndex = blockIdx . x blockDim . x + threadIdx . x ;
in t yIndex = blockIdx . y blockDim . y + threadIdx . y ;

i f (( yIndex < Height ) && ( xIndex < Width ))
{
// copy input to shared memory
shared_mem = MaskImgInput . p t r ( yIndex ) [ xIndex ]

//wait f o r a l l t h r ead s to f i n i s h read
__syncthreads ( ) ;

// C a l c u l a t e grad i en us ing matr ix c o n v o l u t i o n
Calculate_Gx (shared_mem , Gx ) ;
Calculate_Gy (shared_mem , Gy ) ;

// Combine Grad ient
Calculate_G (Gx , Gy ) ;

// Thre sho ld ope ra t i on
I f G > Threshold Output = 255 else Output = 0;

}
}

5.3.3 Object Localization

In the GPU-accelerated computing system, similar to the FPGA implementation in
chapter 4, the circular HT-graph cluster algorithm and scanning window-graph cluster
algorithm are implemented to detect the circles of the robot markers, which represent
the locations of the robots. The GPU uses the circular HT and scanning window
algorithms to generate the circle center candidates, while CPU processes the graph
clustering algorithm to define the true circle centers. In this implementation, the
graph clustering algorithm is performed outside the GPU because of its limited data
parallelism, yet its requirement of more branch and control operations. Therefore, this
algorithm is implemented in the CPU.
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5.3.3.1 Circular Hough transform in GPU

Figures 5.8 and 5.9 show the block diagram of the CHT algorithm implementation in the
GPU, whereas Listing 5.3 represents the algorithm’s pseudocode. The algorithm is based
on Equation 3.12, which is also used in the FPGA implementation. The CHT algorithm
implementation consists of two steps. First, the algorithm generates votes from every
active pixel and accumulates the voting values. Second, the process continuous by
thresholding the accumulated result and storing the circle center candidates. These
two steps are illustrated in Figures 5.8 and 5.9.
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Figure 5.8: Top level block diagram of GPU circular HT implementation.

In the first step of this GPU implementation, two different sampling value numbers
(16 and 32) for α-degree (in Equation 3.12) are used to sweep the full 360◦. This
sampling represents the CHT votes that are generated by the GPU’s core from every
active pixel (value = 255). Because these pixels are mostly extracted from the circles
of the robot markers, they indicate that the number of robot markers likely influences
the execution time in the GPU. Sequentially, all of the generated votes are accumulated.

112



5.3 CUDA Kernels Implementation

Thread Block

Thread

(0,0)

Thread

(1,0)

Thread

(X,0)

Thread

(0,1)

Thread

(1,1)

Thread

(X,1)

Thread

(0,Y)

Thread

(1,Y)

Thread

(X,Y)

… … … …

…

…

…

Circular HT Step-2 (at pixel level)

𝐼𝑓𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝐼𝑚𝑔_𝑖𝑛𝑝𝑢𝑡 𝑥, 𝑦
>  𝑇ℎ𝑒𝑟𝑠ℎ𝑜𝑙𝑑 𝑡ℎ𝑒𝑛

𝐴𝑡𝑜𝑚𝑖𝑐𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + +
𝐶𝑖𝑟𝑐𝑙𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑠_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑥, 𝑦

Figure 5.9: GPU circular HT implementation (step-2).

The voting accumulations emerge based on the repetition of the generated vote values
(in coordinate (CenterX , centerY ) format). In the second step, the accumulation
results are being processed. If an accumulation value AccVote(CenterX , centerY )
is higher than the selected threshold value, the coordinates (CenterX , centerY ) are
defined and counted as a circle center candidate. Based on empirical experiments, the
threshold value for generating the circle center candidates is within at least 62.5% of
the vote-sampling value (e.g., if the CHT vote sampling = 16, the threshold = 10).
Finally, all of the circle center candidates and their number are sent to the CPU.

In contrast with the FPGA implementation, where increasing the sampling number
implies an increase in the required logic resources, the GPU implementation is relatively
flexible, which means that it is free to determine the sampling number in the GPU.
However, the sampling number will affect the execution time in the GPU. In this regard,
a GPU core needs more iterations to produce a higher sampling number, which results in
a longer execution time. Section 6.2.2 further delineates the computation performance
evaluation.
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Listing 5.3: Pseudocode for circular HT CUDA kernel.
__g loba l__ void CHT_kernel_step1 (
gpu : : PtrStepb Edge_input , unsigned in t AccVote ,
in t Width , in t Height , in t VoteTheshold )
{

in t xIndex = blockIdx . x blockDim . x + threadIdx . x ;
in t yIndex = blockIdx . y blockDim . y + threadIdx . y ;

i f (( yIndex < Height ) && ( xIndex < Width ))
{

i f (( Edge_input ( xIndex , yIndex ) == 255)
{

for ( f l o a t alpha = 0; alpha < 360; alpha += 360/ sampling )
{
// Generate v o t i n g

CenterX = xIndex − r cos ( alpha ) ;
CenterY = yIndex − r s i n ( alpha ) ;

// Accumulate v o t i n g
atomicAdd(&AccVote [CenterX+CenterY width ] , 1 ) ;

}
}

}
}

__g loba l__ void CHT_kernel_step2 (
unsigned in t acc_input , gpu : : PtrStepb Ci rc leCenter s_Candida tes ,
unsigned in t counter , in t Width , in t Height )
{
in t xIndex = blockIdx . x blockDim . x + threadIdx . x ;
in t yIndex = blockIdx . y blockDim . y + threadIdx . y ;
long in t xy_index = yIndex width + xIndex ;

i f (( yIndex < Height ) && ( xIndex < Width ))
{

// r e s e t atomic coun t e r
i f (( xIndex == 0) && ( yIndex == 0) ) atomicAnd ( counter , 0 ) ; ;

i f (( acc_ input ( xIndex , yIndex ) == 255)
{
// inc rement coun t e r

AtomicCounter = atomicAdd ( counter , 1) ;

// Save C i r c l e Center Candidate s
Ci r c l eCente r s_Cand ida te s [AtomicCounter ] . centerX = xIndex ;
C i r c l eCente r s_Cand ida te s [AtomicCounter ] . centerY = yIndex ;

}
}

}
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5.3.3.2 Circle scanning window in GPU

The main concept of implementing the scanning window technique in the GPU is similar
to the approach utilized in the FPGA implementation, as shown in Figure 4.17 (in the
previous chapter). The CSW technique follows the many-to-one approach. To find the
circle center candidates, it maps many pixels of the binary image space into one point.
Compared to the CHT method, which takes the voting values from the points in the
transformed space, the CSW method directly obtains the voting values from the binary
image (edge filtered image).

In the context of the relationship between the execution time, which is analogous to
the number of iterations, and the number of robot markers, the CHT and CSW kernels
represent different characteristics. Unlike in the former, where the execution time
depends on the number of robot markers and samplings, the latter shows that the
number of robots markers (active pixels) does not affect the execution time. Yet, the
size of the input image and samplings determine the duration of the process. More
detailed explanations of the performance evaluations of the CHT and CSW kernels are
presented in section 6.2.2.

The implementation of the CSW technique in the FPGA uses numerous line buffers,
controllers, and logic resources, whereas the GPU relies on the program execution,
employing hundreds or even thousands of threads, which run in a concurrent manner.
The CSW implementation uses a circle pattern with a predefined radius. It moves in the
raster scan mode, scanning the entire image frame to find the circle center candidates.

Figure 5.10 illustrates the implementation of the scanning window technique in the
GPU, and Listing 5.4 represents its pseudo code. In the GPU implementation, the circle
pattern emerges by storing two arrays of coordinate numbers in the GPU’s registers
(shown as Xc and Yc arrays in Listing 5.4). These are calculated based on Equation 3.13.
The voting accumulation is performed in the cores of many GPUs and executed in the
SIMT style for all the pixels of the binary image (active and inactive pixels). Each
thread requires N sampling number (e.g., 16, or 32) iterations to point out pixels. The
voting accumulation is incremented by one (1) if the pointed pixel’s value is an active
edge pixel. A coordinate is considered to be a circle center candidate when the voting
value for this coordinate is higher than the selected threshold value. The threshold
value has been selected based on empirical experiments, and at least represents 62.5%
of the vote-sampling value.

115



5 Implementation in GPU-accelerated Heterogeneous Computing System

CUDA 

Program

kernel

GPU

Grid

Block

(0,0)

Block

(1,0)

Block

(N,0)

Block

(0,1)

Block

(1,1)

Block

(N,1)

Block (1,1)

Thread

(0,0)

Thread

(1,0)

Thread

(X,0)

Thread

(0,1)

Thread

(1,1)

Thread

(X,1)

Thread

(0,Y)

Thread

(1,Y)

Thread

(X,Y)

… … … …

…

…

Block

(N, M)

Block

(0, M)

Block

(1, M)
…

… … … …

…

…

…

Scanning Window (in pixel level)

𝐹𝑜𝑟 (𝑖 = 0; 𝑖 < 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔; 𝑖 + +)
{ 𝐼𝑓 (𝐸𝑑𝑔𝑒_𝑖𝑛𝑝𝑢𝑡(𝑥𝐼𝑛𝑑𝑒𝑥 − 𝑋𝑐[𝑖],

𝑦𝐼𝑛𝑑𝑒𝑥 − 𝑌𝑐[𝑖]) = 255 𝑡ℎ𝑒𝑛
𝐴𝑐𝑐𝑉𝑜𝑡𝑒 + + }

𝐼𝑓𝐴𝑐𝑐𝑉𝑜𝑡𝑒 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡ℎ𝑒𝑛
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝐼𝑚𝑔_𝑂𝑢𝑡𝑝𝑢𝑡 = 255;

Else
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝐼𝑚𝑔_𝑂𝑢𝑡𝑝𝑢𝑡 = 0;

Figure 5.10: Top-level block diagram of scanning window implementation in GPU.

Listing 5.4: Pseudocode for scanning window CUDA kernel.
__g loba l__ void ScanningWindow_kernel (
gpu : : PtrStepb Edge_input , gpu : : PtrStepb Candidates_Img_Output ,
in t Width , in t Height , in t VoteTheshold )
{

//// 16 Sampling C i r c l e Pa t t e rn
in t Xc [16] = { 12 , 9 , 5 , 0 , −5, −9, −12, −13, −12, −9, −5, 0 , 5 , 9 , 12 , 13 } ;
in t Yc [16] = { 5 , 9 , 12 , 13 , 12 , 9 , 5 , 0 , −5, −9, −12, −13, −12, −9, −5, 0 } ;

in t xIndex = blockIdx . x blockDim . x + threadIdx . x ;
in t yIndex = blockIdx . y blockDim . y + threadIdx . y ;

i f (( yIndex < Height ) && ( xIndex < Width ))
{

// Accumulate v o t i n g
for ( in t i = 0; i < sampling ; i++)
{

i f (( Edge_input ( xIndex − Xc , yIndex − Yc ) == 255) then
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{
// Accumulate v o t i n g

AccVote ( CenterX , CenterY ) ++;
}

}

// Mark C i c r c l e Center Candidate s
i f ( VotingValue > VoteTheshold )
{

Candidates_Img_Output ( CenterX , CenterY )=255;
}
else
{

Candidates_Img_Output ( CenterX , CenterY )=0;
}

}

Finally, the circle center candidates are sent to the graph clustering module to obtain
the true circle centers, which represent the robots’ locations. To obtain the true circle
centers, the host PC copies the GPU output to complete the object localization process
by applying the graph cluster algorithm.

5.4 Achieved Occupancy

As previously described in section 2.3.2.1 and section 2.3.2.2, a kernel program is
executed using the SIMT method and processed in a group fashion. The SM of the GPU
determines the threads in groups of 32 parallel threads called warps. The SM resources
such as registers and shared memories are limited and shared among warps and blocks.
Therefore, not all of the warps are active on an SM. The ratio of active warps to the
total number of available warps is called the occupancy. Theoretical occupancy reveals
the upper bound active warps on an SM while achieved occupancy shows the true
number of active warps varies over the duration of the kernel, as warps begin and
end [85]. A higher warp occupancy means a better utilization of a GPU’s computation
resources [28]. Of course, this occupancy metric is not the only method to measure
the effectiveness of a kernel that can be implemented in a GPU. However, it is the one
that is provided by the NVIDIA CUDA tool for examining a kernel’s resource occupancy.

This section provides an evaluation of the occupancy profiling report for the video
processing kernels, which have been explained in the previous sections. Table 5.2 and
Table 5.3 detail the achieved occupancy for each kernel running on the GTX-580 and
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GTX-780 GPUs, respectively. Table 5.2 shows that the achieved occupancies on the
GTX-580, particularly for the object segmentation, Sobel filter, and CHT kernels, are
limited by the number of registers in its SMs. However, for the GTX-780 GPU, most
of the kernels (e.g., object segmentation, Sobel filter, resize (downscaling), and CSW)
have a high occupancy. Only the CHT kernel has a low occupancy, which is limited
by the number of registers. The GTX-780 GPU has better occupancy results than the
GTX-580 because it has a larger number of registers, as previously shown in Table 5.1.

Table 5.2: Occupancy of kernels on GPU GTX-580.

Kernel Achieved Theoretical Limiter

Object Segmentation 49.8% 50% Registers

Resize (Downscaling) 82.6% 83.3% -

Edge Filter (Sobel) 49.7% 50% Registers

CHT 31.7% 33.3% Registers

CSW 83.1% 83.3% -

Table 5.3: Occupancy of kernels on GPU GTX-780.

Kernel Achieved Theoretical Limiter

Object Segmentation 74.3% 75% -

Resize (Downscaling) 98.6% 100% -

Edge Filter (Sobel) 74.1% 75% -

CHT 47.9% 50% Registers

CSW 99.1% 100% -

5.5 Post Processing in Host PC

In the context of the heterogeneous computing system, the implementations of video
processing algorithms in the GPU have been discussed in detail in the previous sec-
tions. Therefore, this section presents the implementation of the post-processing
algorithm in the CPU. While the GPU performs the computationally intensive tasks
on the full-resolution image, the CPU executes the post-processing algorithm on sub-
images (cropped images). The output of the GPU (robot markers’ location candidates)
is used to obtain all of these sub-images.
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Figure 5.11 depicts the block diagram of the CPU’s implementation for the post-
processing algorithm. As previously described in section 5.3.3, the graph clustering
operation used to obtain the robots’ locations is performed in the CPU. The host PC
copies the robot markers’ location candidates in the GPU’s memory and sequentially
processes these data using the graph cluster algorithm to obtain the robots’ locations.
These locations are used to obtain all of the sub-images. This is done by applying
a cropping operation at every location of the robot. Sequentially, all of the cropped
images (40× 40 pixels) are buffered in the CPU’s memory for further processing.

Crop 

Image

Thread-1: Find Robots’ Orientation and ID 

Thread-2: Find Robots’ Orientation and ID 

Thread-3: Find Robots’ Orientation and ID 

Thread-4: Find Robots’ Orientation and ID 

Robots’

Locations

Orientations

IDs

Robots’
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Candidates

From

GPU

Graph

Clustering

Figure 5.11: Top-level block diagram of multi-threads operation in CPU.

To obtain the robots’ orientations and IDs, the same approach used in the FPGA-
CPU heterogeneous system is applied in the GPU-based system. The advantage of the
multi-core architecture in the CPU is employed for processing all the sub-images in a
multi-thread approach. All of the images are distributed into four threads, where every
thread executes the same algorithm. Finally, the CPU simultaneously processes the Find
Robot’s Orientation and ID algorithm. This algorithm is used to process images at the
frame rate of the cameras. Therefore, to obtain a frame rate of 30 fps, the processing
time should be not more than 33 ms. Based on our experiment, including the graph
clustering operation, a processing time of approximately 14 ms can be reached for 64
robots, while for one robot it takes only about 0.74 ms.

5.6 Summary

The implementation of a GPU-accelerated computing system for vision-based multi-
robot tracking has been presented in this chapter. The GPU is used to process computa-
tionally intensive tasks in the algorithms used for detecting the robot marker locations,
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while the CPU is used for the post processing. Using the SIMT approach, three main
video processing algorithms are implemented as GPU kernels, including object segmen-
tation (debayer, RGB to HSV color conversion, and color masking operations), edge
filtering, and object localization.

More details on the accuracy, performance, and efficiency of the proposed design,
as well as a comparison between the FPGA-and GPU-based systems, are presented in
chapter 6.
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The previous chapters comprehensively presented the architecture and implementation
of the FPGA- and GPU-accelerated heterogeneous computing systems for vision-based
multi-robot tracking. Our method aims to off-load the computation-intensive tasks
from the host computer utilizing an FPGA-based or a GPU-based hardware accelerator.
Meanwhile, tasks with less data parallelism and more branch-control operations are
completed in the CPU. The main objectives of these proposed designs are improving
the computation performance.

Therefore, this chapter discusses the experimental results and analysis of the im-
plemented FPGA- and GPU-accelerated computing systems. It aims to find the most
advantageous design because the experiments and examinations focus on the detec-
tion performance, computing performance, and power consumption. Based on the
examinations and analysis, this thesis proposes a preferable design for a vision-based
multi-robot tracking computing system.

6.1 Detection Performance

In the context of a vision-based multi-robot tracking computing system, the detection
performance refers to the ability of the system to accurately detect the locations of
all the robots. In this regard, a detection test is essential in the implementation of
FPGA-CPU- and GPU-CPU-based computing systems, in order to verify the functionality
of the proposed algorithm and the architecture implementation.

In this work, precision and recall metrics [44] are used to investigate the detection
performance. They are calculated according to the correctly detected circles (true
positive) of the robot markers in all of the processed frames of our recorded video data
sets. The precision and recall results are obtained by calculating the average value over
all the images in the data sets (NF rame). Each data set contains about 5000 frames, and
the total number of mobile robots with their markers varies from 4 to 64.
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Basically, the same metrics presented in Equation 4.4 are used to obtain the detection
performance. Equations 6.1 and 6.2 show the formulas for calculating the precision
and recall, respectively. The precision metric is obtained based on the ratio between
the number of correctly detected robots (TP) and the total number of detected robots
(correctly detected (TP) and incorrectly detected (FP)), as shown in Equation 6.1. In
other words, the precision represents the portion of the detected robots that are correct.
A high precision value means that almost all of the robots detected by the hardware
accelerator (e.g., FPGA or GPU) are correct.

In contrast to the precision, the recall value, also known as the detection rate, is
calculated based on the ratio between correctly detected robots (TP) and the total
number of robots that should have been detected (TP and FN), i.e., the total number
of real robots (NR). A high recall value means a high number of true robot markers can
be detected from the total number of real robots.

In this evaluation, the number of correctly detected robots (TP) is acquired by
verifying all of the detected robots. The verification is applied to all of coordinates
of the detected robots by discovering the pentagon shape in the robot marker. If the
pentagon is detected in the coordinates of the detected robot, these coordinates are
considered to refer to a correctly detected robot (TP). Otherwise, it is not counted as a
robot’s location (FP). The algorithm in Teleworkbench [103] is applied to verify the
robots’ coordinates. It has a detection rate of approximately 99.99%.

Precision=
1

NF rame
×

NF rame
∑

i=1

T Pi

T Pi + F Pi
× 100 % (6.1)

Recal l =
1

NF rame
×

NF rame
∑

i=1

T Pi

T Pi + FNi
× 100 %

=
1

NF rame
×

NF rame
∑

i=1

T Pi

NR
× 100 %

(6.2)

Where:

• NF rame = Total number of frames.

• NR = Total number of robot markers. NR = 4,8, 16,32, 64

• T Pi = True positives in the current frame, which represents the number of robot
markers that are correctly detected.
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• F Pi = False positives in the current frame, which represents the number of robot
markers that are incorrectly detected.

• FNi = False negatives in the current frame, which represents the number of robot
markers that are not detected, also called the detection failure.

The proposed design is targeted to have 99% of the detection performance for both
the precision and recall metrics. Additionally, the post-processing algorithm in the
host PC is also used to improve the output from the hardware accelerators (FPGA
or GPU), by detecting the center of the pentagon in the robot marker, as previously
described in section 3.3.3. With this detection performance, the design will be able to
correctly detect almost all of the robots in the video frames. In this work, the detection
performance does not include a scenario where some robots are crossing between two
cameras. This is because the current detection test targets the ability of the algorithm
and proposed hardware accelerator architectures to detect the locations of robots.

According to the experiments, both the FPGA-based and GPU-based designs show
high detection performances for multiple robot localizations. The following sub-sections
provide more details on the detection metric evaluations for both the FPGA- and GPU-
accelerated computing systems.

6.1.1 FPGA implementation

Another basic requirement for verifying the functionality of the proposed design is
implementing and integrating all of the developed video processing modules into the
test system using the Virtex-4 FPGA, as depicted in Figure 6.1. This system supports
the debugging and verification of the implementation using recorded videos from our
Teleworkbench as the input datasets. The video is sent to the FPGA to detect the
locations of the robot markers. Finally, these locations are delivered to the host PC for
further analysis and display.

A verification is performed based on cropping an image of the region of interest,
which is directed by the coordinates output from the FPGA hardware environment.
The software environment system (host PC) verifies each cropped image (in 40× 40
pixels) by detecting the pentagon shape and extracting the ID of the robot marker. If
the pentagon and ID are detected, the coordinates are counted as valid coordinates.
Otherwise, they are rejected as valid coordinates. This hardware-in-the-loop approach
makes debugging and verification easier because the output of the FPGA design can be
directly analyzed.
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Figure 6.1: Developed test system for debugging and detection evaluation FPGA accel-
erated vision-based multi-robot tracking.

Precision and recall evaluations have been performed to investigate the detection
performance of the proposed design. The system completes the precision and recall
tests by continuously processing the robots’ locations (the output of the FPGA) in all of
the processed frames of our recorded video data sets. The radius (r) parameter is set
to r = 6. Based on our empirical experiments, the threshold value for generating the
circle center candidates in CHT or CSW is set to at least 62.5% of the vote-sampling
value (e.g., if the CHT or CSW vote sampling = 16, the threshold = 10).

According to our experiments, the proposed design can handle multi-robot localiza-
tion with a typical precision and recall of 99 % under well-defined lighting conditions.
In other words, the design and its algorithm can provide a high performance for detect-
ing the robot locations. The precision and recall for different circle detection methods
(CHT-graph cluster and CSW-graph cluster) and a various number of robots markers
are shown in Table 6.1 and Table 6.2. It is shown that the detection performance of
our system using the CHT-graph cluster method with 32-votes is slightly higher than
the same system with 16-votes for up to 8 robots. The CHT is more robust when two
or more robots are collided as reported previously in Table 4.1. However, the 32-votes
implementation is not capable of handling more than 8 robots in real-time due to the
requirements discussed in Section 4.3.4.1. For the 16-votes implementation as well as
for the CSW implementation, 64 robots can be detected with high precision and recall,
as detailed in in Table 6.1 and Table 6.2. Commonly, the precision and recall values are
increased when using a higher number of robots. It is because their values are related
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to the ratio between the true positive (TP) and the total number of detected robots.
However, in some conditions, the collision between robots could slightly reduce the
precision and recall performances.

Table 6.1: Precision and recall results of proposed system on FPGA, which were devel-
oped based on CHT-graph clustering algorithm.

NR
Precision (%) Recall (%)

S16 S32 S16 S32

4 99.48 99.57 99.40 99.44

8 99.69 99.69 99.19 99.25

16 99.56 N/A 99.47 N/A

32 99.86 N/A 99.71 N/A

64 99.81 N/A 99.72 N/A

Table 6.2: Precision and recall results of proposed system on FPGA, which were devel-
oped based on CSW-graph clustering algorithm.

NR
Precision (%) Recall (%)

S16 S32 S16 S32

4 99.66 99.67 99.43 99.47

8 99.64 99.68 99.28 99.42

16 99.57 99.71 99.59 99.73

32 99.86 99.93 99.72 99.84

64 99.80 99.81 99.75 99.78
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Using the CSW-graph cluster method, our system has a higher precision and recall
value than the CHT-graph cluster method for most of the test cases. This higher
performance is achieved because the CSW-graph cluster method is more robust with
respect to robot collisions. Additionally, the CSW-based method does not have the FIFO
overflow and clock cycle limitation issues discussed in section 4.3.4.1. Therefore, and
because it also requires less hardware resources as shown in Figure 6.2, the CSW-graph
cluster method is the preferred solution for our implementation.
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Figure 6.2: Comparison of CHT and CSW logic resources utilization in FPGA Virtex-4.
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6.1.2 GPU implementation

Figure 6.3 illustrates a system that was built for debugging and testing the functionality
of the proposed GPU-accelerated computing system.

To evaluate the functionality of the proposed GPU-accelerated computing system,
all of the CUDA kernel and host PC codes are integrated into the test system. The
testing system utilizes the same video datasets used for the debugging and verification
of the FPGA-based system implementation. The GPU receives the video and continu-
ously executes all of the CUDA kernels (segmentation, edge filter, and circle detection
algorithms) to obtain the circle center candidates, which represent the coordinate
candidates of the robots’ locations. Sequentially, all of the coordinate candidates are
loaded into the CPU’s memory. Then, the host PC uses the graph clustering algorithm
to obtain the true robot marker coordinates. Finally, the system verifies the detection
performance of these results (coordinates) and displays the output in the host PC.

GPU Hardware Environment

GPU device

CUDA Video Processing Kernels

Object Segmentation Edge Filter Circle Detection

Software Environment (Host PC)

Video Data Set

Display and Verification

P
C

Ie

NVIDIA CUDA

OpenCV

Figure 6.3: Testing system for debugging and detection evaluation of GPU accelerated
vision-based multi-robot tracking.

In line with the algorithms and implemented GPU kernels that were previously
described in section 5.2, the experiments for evaluating the detection performance
of the proposed design considered three main aspects: the circle detection method,
which used either the circular Hough transform (CHT) or circle scanning window
(CSW); the utilization of a downscaling method; and a method for combining the
gradient magnitude in the Sobel kernel, which applied either Pythagoras’ theorem or
an approximation technique. Accordingly, this work examined eight configurations to
study the detection performance.
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Here are the four configurations that were built based on the CHT:

• CHT-Full-Pyth configuration: the proposed design uses the CHT with the full
video frame size and Pythagoras’ theorem.

• CHT-Full-Approx configuration: the proposed design uses the CHT with the full
video frame size and an approximation technique.

• CHT-Resize-Pyth configuration: the proposed design uses the CHT with a resized
video frame and Pythagoras’ theorem.

• CHT-Resize-Approx configuration: the proposed design uses the CHT with the
full video frame size and an approximation technique.

In addition, four configurations were developed based on the CSW:

• CSW-Full-Pyth configuration: the proposed design uses the CSW with the full
video frame size and Pythagoras’ theorem.

• CSW-Full-Approx configuration: the proposed design uses the CSW with the full
video frame size and an approximation technique.

• CSW-Resize-Pyth configuration: the proposed design uses the CSW with a resized
video frame and Pythagoras’ theorem.

• CSW-Resize-Approx configuration: the proposed design uses the CSW with the
full video frame size and an approximation technique.

A detection performance evaluation was performed to investigate the precision and
recall of the proposed design. The radius (r) parameter values for the full and resized
(downscaled) methods were set to r = 13 and r = 6, respectively. The threshold value
parameter for generating the circle center candidates in the CHT or CSW was set to at
least 62.5% of the vote-sampling value.

Table 6.3 lists the detection rates and accuracies of the proposed system based on the
CHT algorithm with different numbers of robots and CHT vote samples S (16 and 32).
Based on the experiments, the proposed design can handle multi-robot localization
with a typical precision and recall of 99%. This means that the design and its algorithm
can provide an excellent performance for detecting the robots’ locations.

When using a higher number of vote samples (S), the system produces a higher
precision and recall. A configuration that uses the full video frame size has a slightly
higher detection performance than one that works on resized video frames. This is
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Table 6.3: Precision and recall values of proposed system developed based on CHT
algorithm.

NR
Precision (%) Recall (%)

S16 S32 S16 S32

CHT-Full-Pyth configuration

4 99.70 99.78 99.57 99.76

8 99.70 99.85 99.57 99.83

16 99.60 99.85 99.37 99.82

32 99.72 99.93 99.63 99.92

64 99.61 99.62 99.24 99.61

CHT-Full-Approx configuration

4 99.66 99.79 99.56 99.77

8 99.72 99.85 99.59 99.84

16 99.61 99.84 99.36 99.81

32 99.72 99.92 99.59 99.91

64 99.61 99.62 99.25 99.62

CHT-Resize-Pyth configuration

4 98.88 99.39 99.40 99.53

8 99.44 99.77 99.48 99.65

16 99.45 99.39 99.58 99.72

32 99.51 99.75 99.38 99.50

64 99.05 99.59 99.19 99.52

CHT-Resize-Approx configuration

4 98.83 99.40 99.33 99.55

8 99.43 99.80 99.49 99.66

16 99.44 99.40 99.56 99.73

32 99.51 99.74 99.38 99.49

64 99.05 99.59 99.18 99.53
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probably because the downscaling process for the image frame affects the circle shape.
However, the detection performance difference between them (full and resized image
configurations) is relatively small. Configurations that use Pythagoras’ theorem or an
approximation technique to calculate the gradient magnitude in the Sobel kernel have
an almost similar detection result. In other words, the proposed design can simply
select the method based on the processing time. The processing time evaluations are
presented in section 6.2.2.

Table 6.4 lists the precision and recall values of the proposed system using the CSW
technique. Typically, the proposed design using the CSW algorithm provides a detection
performance similar to that obtained by a system with the CHT algorithm. When using
a higher number of vote samples (S), the system produces a higher precision and recall.
A configuration that utilizes the full video frame size has a slightly higher detection
performance than one that works on resized video frames. The design and its algorithm
can provide an excellent precision and recall of about 99% for detecting the robots’
locations.

The CSW technique with the full frame size configuration provides almost the same
detection performance as the CHT algorithm with a similar configuration. For the
resized (downscaling) image configuration, the CSW technique is able to obtain a
slightly higher detection than the CHT approach with the same configuration. This is
probably because the CSW algorithm is more robust than the CHT, when considering
robot collisions.

Both the CHT and CSW configurations utilizing 16 and 32 vote samples (S16 and
S32) provide high detection performances for different numbers of robots (4, 8, 16, 32,
and 64). This means that the proposed design and its algorithm are sufficiently robust
for multiple robot tracking. As a result, the computing performances (or processing
times) for executing the CHT and CSW algorithms in the GPU are the main factors
when deciding on the best method. Section 6.2.2 presents a detail evaluation of the
computing performance of the proposed design.
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Table 6.4: Precision and recall values of proposed system developed based on CSW
algorithm.

NR
Precision (%) Recall (%)

S16 S32 S16 S32

CSW-Full-Pyth configuration

4 99.76 99.79 99.67 99.42

8 99.83 99.87 99.77 99.82

16 99.79 99.88 99.73 99.81

32 99.91 99.94 99.89 99.94

64 99.57 99.63 99.55 99.62

CSW-Full-Approx configuration

4 99.73 99.79 99.66 99.43

8 99.83 99.86 99.80 99.82

16 99.78 99.88 99.76 99.81

32 99.91 99.95 99.90 99.93

64 99.56 99.64 99.55 99.63

CSW-Resize-Pyth configuration

4 99.23 99.57 99.28 99.68

8 99.66 99.75 99.69 99.75

16 99.16 99.44 99.71 99.77

32 99.86 99.87 99.37 99.85

64 99.55 99.63 99.60 99.63

CSW-Resize-Approx configuration

4 99.22 99.57 99.30 99.68

8 99.65 99.77 99.67 99.77

16 99.09 99.47 99.72 99.78

32 99.83 99.88 99.35 99.86

64 99.53 99.63 99.60 99.63
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6.1.3 Comparisons

According to the detection test results for the FPGA- and GPU-accelerated computing
systems discussed in the previous sections, both designs were able to provide high
performances of about 99% for the multi-robot localization. This means that both
the hardware accelerators and implemented algorithms are capable of providing high
detection performances. Additionally, the post-processing in the host PC is also used to
improved the coordinates from the hardware accelerator (FPGA or GPU), by detecting
the pentagon located in the center of the circle in the robot marker.

The FPGA and GPU implementations have slightly different results. These differences
resulted because some image processing operations in the FPGA design are based on a
fixed point operation, while the GPU kernel uses floating point operations. For example,
in the object segmentation module, the debayer, RGB to HSV, and color mask algorithms
are designed to be efficiently mapped in the FPGA, as presented in section 4.3.2 while
the RGB to HSV algorithm in the GPU is implemented using floating point operation,
as shown in 3.4 and 3.5.

The implementation of the CHT algorithm in the FPGA-based design has to consider
clock cycle limitation issues, as discussed in section 4.3.4.1, especially for a high number
of CHT vote samples such as 32 (S32). However, there is a solution to deal with this
issue using a lower CHT vote sample. For the 16-vote implementation, 64 robots can
be detected with high precision and recall, as detailed in Table 6.1. Meanwhile, the
GPU-based implementation does not have any issue regarding the number of CHT
vote samples. The CHT can obtain a high detection performance with either 16 or 32
samples.

In contrast to the CHT algorithm, the CSW technique is more favorable for both
FPGA and GPU implementations because of its performance and robustness for robot
collision situations. Additionally, for the FPGA-based design, the CSW technique does
not have any FIFO overflow and clock cycle limitation issues. It also utilizes fewer
hardware resources than the CHT implementation.

Because both the FPGA- and GPU-based implementations can provide high detection
rates, the computing performance and power efficiencies will be the main factors in
deciding which approach is more favorable. The following sections present more details
regarding the computing performance and resource efficiency of the proposed design.
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6.2 Computing Performance

To find the most beneficial design, particularly in terms of the performance rate, com-
puting performance evaluations using various configurations were completed for both
the FPGA- and GPU-based hardware accelerators.

The design targeted multi-robot tracking for mini-robots such as AMiRo and Khepera.
According to their specifications, AMiro has a speed of 0–800 mm/s, while Khepera has
a speed of 0–1000 mm/s. Using a camera with a frame rate of 30 fps, the AMiRo robot
can move a maximum of 26.67 mm between two consecutive frames. This is equal to 7
pixels or approximately 25% of the robot marker’s size. Meanwhile, the Khepera robot
can move up to 9 pixels between two consecutive frames, which is approximately 33%
of the robot marker’s size. This means that using a camera with a frame rate of 30 fps
can provide sufficient speed to track the robots.

To obtain a frame rate of 30 fps, the processing time should not be more than 33
ms. The following sections provide further details on the computing performance
evaluations of both the FPGA and GPU hardware accelerator implementations.

6.2.1 FPGA implementation

The maximum performance of the proposed design on the FPGA is calculated using
Equation 6.3. It is shown that the performance mainly depends on the frame size
( f rsize) and number of video stream hardware accelerators (Npar) (e.g., one for con-
figuration A, two for configuration B, and four for configuration C). The maximum
number of hardware accelerators is equal to the number of cameras, whereas the
frame size is equal to the total frame size, merging the frames from all cameras. The
number 64 in Equation 6.3 refers to the maximum number of detected robots. Our
design is implemented on a Xilinx Virtex4-XC4VFX100 FPGA and a maximum clock
frequency ( fmax) of approximately 160 MHz is achieved for the CSW-based design,
while about 150 MHz is reached for the CHT-based design.

f rrate = fmax/(( f rsize/Npar) + 64) (6.3)

The maximum clock frequency fmax is slightly different for the configurations (A,
B, and C). For instance, the implementation of CSW based design on a Xilinx Virtex-4
XC4VFX100-11 FPGA can achieve a maximum clock frequency of 161 MHz for configu-
ration A. While fmax is 172 MHz for configuration B and 162 MHz for configuration
C.
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Figure 6.4 and Table 6.5 show the computing performances for different frame sizes
and numbers of hardware accelerators. For this evaluation, four cameras and three
different hardware accelerator configurations (as illustrated in Figure 4.7 of chapter 4)
were analyzed. As shown in Figure 6.4 and Table 6.5, the frame size and number
accelerators are the main factors that influence the system’s performance. This means
that a higher frame rate can be achieved when using a lower resolution. Additionally,
increasing the number of hardware accelerators significantly enhances the system’s
performance.
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Figure 6.4: Computing performance of proposed design on Virtex-4 FPGA, measured
in frames per second (fps).

Using configuration A, the maximum frame rate reaches 38 fps for a total image
size of 2048 × 2048 pixels, whereas the maximum frame rate reaches 82 fps using
configuration B. There is also an alternative to obtain the maximum performance using
configuration C. This is implementing one hardware accelerator for every video stream
from each camera, as illustrated in Figure 4.7-c. In this configuration, a maximum
frame rate of 154 fps can be achieved. The system’s performances with configurations B
and C exceed the Gigabit Ethernet bandwidth. As shown in Figure 6.4, the performance
of a design using four cameras and two Gigabit Ethernet interfaces is limited to 59 fps
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for a video frame with a total resolution of 2048× 2048 pixels; meanwhile, a similar
system with four Gigabit Ethernet interfaces achieves up to 119 fps.

Table 6.5: Computing performance of proposed design on Virtex-4 FPGA, measured in
frames per second (fps).

Frame Size
Configuration A Configuration B Configuration C

(pixels) CHT CSW CHT CSW CHT CSW

1280 × 960 122 131 223 279 N/A 527

1600 × 1200 78 83 142 179 N/A 337

2048 × 1200 61 65 111 140 N/A 263

2048 × 1536 47 51 87 109 N/A 206

2048 × 2048 35 38 65 82 N/A 154

Because of the VHDL-based design, the IP cores implemented in configurations A,
B, and C are also applicable to more recent FPGA technologies. For example, they
have been implemented on the Xilinx Virtex-6 SX475T-2 and Virtex-7 VX690T-2 to
estimate the computing performance of the proposed design in newer FPGA technology.
In contrast to the Virtex-4 FPGA, which is fabricated using 90 nm process technology,
the Virtex-6 and Virtex-7 FPGAs are built with newer process technology. The Virtex-6
FPGA is built based on 40 nm, while Virtex-7 is manufactured based on 28 nm process
technology.

For the implementation on Xilinx Virtex-6 SX475T-2 FPGA, a maximum clock fre-
quency ( fmax) of 222 MHz is achieved using configuration A, 217 MHz for configuration
B and 217 MHz for configuration C. With respect to implementation on Xilinx Virtex-
7 VX690T-2 FPGA, a maximum clock frequency of 250 MHz for configuration A is
achieved. While fmax is 237 MHz for configuration B and 232 MHz for configuration
C. These results are significantly higher than the maximum frequency achieved on
the Virtex-4 FPGA. Accordingly, the Virtex-6 and Virtex-7 FPGAs provide higher frame
rates compared to the Virtex-4 FPGA. Figure 6.5 shows the performances with different
frame sizes and different numbers of hardware accelerators on the Virtex-6 and 7.
Using configuration A, implementation on the Virtex-6 and Virtex-7 is able to reach
maximum frame rates of 52 fps and 59 fps, respectively. This performance is increased
significantly than that when using configuration B, which achieves frame rates of 103
fps on the Virtex-6 and 113 fps on the Virtex-7. Finally, configuration C produces the
maximum performance, with maximum frame rates of 206 fps on the Virtex-6 and 221
fps on the Virtex-7. The performance of the design is limited by the bandwidth of the
Gigabit Ethernet interface, as shown in Figure 6.5.
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Figure 6.5: Performances of proposed design on Virtex-6 and Virtex-7 FPGA, measured
in frames per second (fps).
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Table 6.6: Computing performances of proposed design on Virtex-6 and -7 FPGA, mea-
sured in frames per second (fps).

Virtex-6

Frame Size
Configuration A Configuration B Configuration C

(pixels) CHT CSW CHT CSW CHT CSW

1280 × 960 166 180 343 353 680 706

1600 × 1200 106 115 219 226 435 452

2048 × 1200 83 90 171 176 340 353

2048 × 1536 65 70 134 138 265 275

2048 × 2048 48 52 100 103 199 206

Virtex-7

Frame Size
Configuration A Configuration B Configuration C

(pixels) CHT CSW CHT CSW CHT CSW

1280 × 960 169 203 375 385 748 755

1600 × 1200 108 130 240 246 479 483

2048 × 1200 84 101 188 192 374 377

2048 × 1536 66 79 146 150 292 295

2048 × 2048 49 59 110 113 219 221
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To estimate the speed gain of the proposed design compared to the implementation on
a state-of-the-art workstation, we implemented multi-robot detection using the OpenCV
library on a 3.5 GHz Intel i7 quad core CPU (4770K, Haswell). The performance
comparison between the FPGA and CPU implementations for different numbers of
robots (1, 2, 4, 8, 16, 32, and 64) is depicted in Figure 6.6. The CPU implementation
with the CHT-based algorithm for detecting the robot marker has a higher performance
than the one with the CSW-based algorithm. The CSW-based algorithm is dependent
on the video frame size, and the operation is performed on every pixel. In contrast,
the CHT-based algorithm operation is performed only on active pixels. Therefore, the
CHT-based algorithm is more favorable for the CPU implementation.
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Figure 6.6: Performance comparison between FPGA and CPU implementations for
different numbers of robots running on video frames with total resolution
of 2048× 2048 pixels, measured in timing operation (ms).

As shown in Figure 6.6, the Virtex-4 design with a clock frequency of 160 MHz
achieves a speed-up of about 16–53 compared to the multi-threaded processor- based
implementation, while the use of a newer FPGA such as the Virtex-6 or Virtex-7 FPGA
causes a higher speed-up factor, as shown in Figure 6.7. For the CPU implementation,
the execution time increases with the number of robots; while the execution time does
not depend to the number of robots for the FPGA implementation.
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6.2.2 GPU implementation

To obtain the computational performance of the proposed design on the GPU, the
NVIDIA Visual Profiler software was used. This software is available as part of the
CUDA Toolkit, which was installed on the testing platform, as previously shown in
Figure 6.3.

Configuration with CHT-based algorithm

Figure 6.8 illustrates the execution times of the implemented kernels on the GTX-580
GPU for different numbers of robots (NRx) and CHT vote-samples (Sx), as well as
different configurations of the CHT-based method. As shown in the chart, all of the
configurations require the same execution time for the object segmentation kernel, but
they have different execution times for the Sobel and CHT kernels. An increase in the
vote-samples from 16 up to 32 significantly increases the execution time of the CHT
kernel. This is because more iterations are required to execute a higher number of
vote-samples. Because the voting procedure of the CHT algorithm is performed on
every edge pixel, the execution time also gradually rises when the number of robots
becomes higher.

The configurations that use the approximation method in the Sobel kernel have a
slightly faster computing performance than similar configurations with the Pythagoras
theorem. Both methods provide nearly the same detection performance, as previously
reported in section 6.1.2. Therefore, the approximation method for the Sobel kernel is
preferable because it has a faster processing time.

Downscaling the frame size of the segmented image successfully reduced the execu-
tion time in the Sobel and CHT kernels by up to 75%. Thus, the configurations that
apply the downscaling technique to reduce the frame size of the segmented image
have significantly faster execution times than the configurations with the full image.
Indeed, the downscaling approach provides a speed-up factor of approximately two
times. This produces only a slight reduction in the detection performance compared to
the full frame size approach, as shown in the Table 6.3. Therefore, the configuration
with downscaling for the frame size is more favorable for our application.
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Figure 6.8: GPU computing performances on GTX-580 for implemented kernels. The
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samples, and measured in processing time (ms).
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Figure 6.9 presents the execution time of the implemented kernel in the NVIDIA
GTX- 780 GPU. Basically, the characteristics of the experiment results in the GTX-780
GPU are similar to the previous results obtained in the GTX-580 GPU. However, using
the newer architecture and fabrication process technology, the GTX-780 GPU obtains
a faster timing processing. The GTX-780 GPU architecture is built based on NVIDIA’s
Kepler architecture and manufactured using the 28 nm fabrication process, whereas the
GTX-580 GPU is designed based on NVIDIA’s Fermi architecture and fabricated using
the 40 nm fabrication process.

Comparisons of the computing performances of the GTX-780 and GTX-580 GPUs for
implementations of configurations with the CHT algorithm are shown in Figure 6.10.
The GTX-780 implementations produce significantly faster execution times for all the
scenarios compared to the implementations on the GTX-580. Utilizing its 2304 CUDA
core processors, the GTX-780 GPU achieves up to a 30% faster execution time. The
proposed design with S16 and S32 CHT vote samples is the most favorable configuration
when considering the trade-off between computing performance (Figure 6.10) and
detection performance (Table 6.3). Using configurations with 16 and 32 CHT vote
samples (S16 and S32), the GTX-780 GPU is able to reach frame rates of 135 and 128
fps, respectively, whereas the GTX-580 obtains frame rates of 94 and 89 fps, respectively.
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Figure 6.9: GPU computing performances on GTX-780 for implemented kernels. The
experiments were performed using different numbers of robots and CHT
votes samples, and measured in processing time (ms).
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Configuration with CSW-based algorithm

Figure 6.11 shows the execution times of the implemented kernels on the GTX-580
and GTX-780 GPUs for CSW-based configurations with different numbers of CSW vote
samples (Sx). The CSW kernel performance was determined by the video frame size
and number of CSW vote samples. Additionally, increasing the CSW vote-samples from
16 to 32 significantly increased the execution time, particularly for configurations with
the full frame size approach. In contrast to the CHT kernel, the CSW kernel computing
performance does not depend on the number of robots (NRx). It supports a scalable
number of robots without affecting the execution time. A scenario with one robot
has the same execution time as a scenario with four, sixty-four (64), or even a higher
number of robots. Therefore, the CSW kernel is more favorable for an application that
uses a large number of robots.

Configurations with the resize (downscaling) technique have significantly higher com-
puting performances than those with the full frame approach, as shown in Figure 6.11.
Reducing the frame size of the segmented image contributes an improvement of up to
75% for the CSW and Sobel kernels operations. Overall, it provides a speed-up factor
of approximately two times for the GPU implementation compared to the full frame
size approach; yet, this technique only produces a small reduction in the detection
performance. This particularly refers to configurations where the number of CSW
sample votes are 16 and 32 (S16 and S32), as shown in the Table 6.4. Therefore, the
proposed designs with S16 and S32 CSW vote samples are the favorable configurations
considering the trade-off between the computing performance (Figure 6.11) and detec-
tion performance (Table 6.4). The fastest execution time is achieved when using 16
CSW vote samples (S16) combined with the downscaling technique.
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Computing performance comparison between CHT and CSW-based
configurations

Figure 6.12 presents the computing performances of the proposed design for the CHT-
and CSW-based configurations. For a similar number of vote sample and robots (up to
64), the CHT-based approach can achieve a faster execution time than the CSW-based
design. A small number of robots produces large differences in the execution times
between the CHT- and CSW-based configurations. However, this difference becomes
smaller with an increase in the number of robots. This is because the execution time
in the CSW-based design is constant for any number of robots, whereas the execution
time in the CHT-based design increases exponentially with an increase in the number
of robots, as shown in Figure 6.12 (top). Because the operation in the CHT algorithm
depends on the active edge pixels, its execution time could be higher than the CSW-
based design when the number of robots is significantly high (e.g., 100). Additionally, if
there are many objects (such as obstacles) in the robot arena with the same color as the
circle color of the robot marker (e.g., red), the execution time of the CHT-based design
could potentially increase and become higher than the outcome shown in Figure 6.10
and Figure 6.12.

In the GPU implementation, the CPU is used to process the graph clustering algorithm.
As depicted in Figure 6.12, its performance rate depends on the number of circle center
candidates output from the GPU. For a small number of robots (e.g., NR1 up to NR16),
the execution time is very short and insignificant compared to the execution time on the
GPU. However, it is essential for a high number of robots such as 32 (NR32) or above.
The execution time of the graph clustering operation could be decreased by increasing
the threshold value of the circle center candidates on the GPU, with a consequence that
this adjustment can reduce the detection performance.

Figure 6.13 depicts a comparison of the computing performances between the GPU-
CPU implementation and CPU-only implementation for multi-robot localization. The
GTX-580- and GTX-780-based designs achieve speed-ups of about 7 and 10, respectively,
as compared to the multithreaded processor-based implementation. This performance
is obtained using only a single GPU. However, a higher computing performance could
be achieved using the multiple GPU approach when necessary.
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Figure 6.12: Computing performances of proposed design on GTX-580 and GTX-780
GPUs for CHT- and CSW-based configurations. Top: without clustering in
CPU and Bottom: with clustering in CPU.
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6.2.3 Comparisons

Figure 6.14 presents a comparison of the computing performances of the FPGA- and
GPU-based designs. The execution time in the FPGA-based design is relatively indepen-
dent of the number of robots. Processing a small number of robots in the FPGA-based
system takes the same time as processing a larger number of robots. For the GPU-based
implementation, its execution time increases with the number of robots. As explained
in the previous section, related to the GPU-based computing performance, the execution
times of both the CHT-kernel in the GPU and graph-clustering algorithm in the CPU
gradually increase with the number of robots. According to this characteristic, the
FPGA-based design is more compatible than the GPU-based design with a system that
has the scalability requirement, particularly in terms of the number of robots.

Despite using only a single GPU, the GPU-based design produces a higher computa-
tion performance than the FPGA-based implementation that applies a single stream
hardware accelerator, as implemented in configuration A. The GPU-based design, which
runs on a higher frequency than the FPGA-based design, can process the robot marker
detection algorithm in a shorter time. However, if the amount of parallelism in the
FPGA is increased, by adding streaming hardware accelerators, the FPGA performance
surpasses the GPU performance.

As can be seen in Figure 6.14, if the number of hardware accelerators in the FPGA-
based design is doubled, as implemented in configuration C, the FPGA-based design
achieves a significantly higher computing performance than both the GTX-580 and GTX-
780 GPU-based implementations. However, it should be noted that in this comparison
the GPU-based design only uses the single GPU approach. When necessary, there is a
feasible way to considerably enhance the computing performance of the GPU-based
design using the multiple GPU approach by adding an extra GPU-card in the PCIe
slot. Of course, the use of more FPGAs is also a feasible approach for enhancing
the performance of the FPGA implementation, because it can increase the number of
streaming hardware accelerators. Yet, this dissertation does not include both topics.

150



6.2 Computing Performance

14.29

15.90

10.91

11.78

26.21

6.55

19.23

5.52

16.94

4.52

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

GTX580-CHT-Resize-Approx-S16 GTX580-CSW-Resize-Approx-S16

GTX780-CHT-Resize-Approx-S16 GTX780-CSW-Resize-Approx-S16

FPGA-V4-Configuration A FPGA -V4-Configuration C

FPGA-V6-Configuration A FPGA-V6-Configuration C

FPGA-V7-Configuration A FPGA-V7-Configuration C

Ti
m

e 
(m

s)

Number of robots

Figure 6.14: Comparison of computing performances between FPGA- and GPU-based
designs, measured in processing time (ms). The execution time in the
FPGA-based design is independent of the number of robots, whereas that
of the GPU-based design gradually increases with the number of robots.
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Figure 6.15 shows a computing performance comparison between the CPU, FPGA,
and GPU for detecting 64 robots using a total frame resolution of 2048 × 2048 pixels.
Both the FPGA- and GPU-based hardware accelerators have much higher computing
performances than the Intel i7 4770K quadcore CPU.

The GPU implementation has the highest frame rate compared to the Intel i7 4770K quad-
core CPU implementation and the Virtex-4 FPGA implementation with a single stream
hardware accelerator (configuration A). However, the FPGA design in configuration C,
which uses four stream hardware accelerators, surpasses the GTX-580 and GTX-780
GPU designs, which are implemented on a single GPU unit.
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Figure 6.15: Comparison of computing performances between CPU, FPGA, and GPU
for detecting 64 robot markers, measured in frames per second (fps).

The FPGA technology uses its flexibility, inherent parallel structure, and customized
design to increased the computing performance. The GPU performance can also be
increased by using multiple units, performing the algorithm on multiple GPUs. Because
both hardware accelerators are scalable, the power consumption and power efficiency
become important issues to determine which technology has greater benefits. Therefore,
in the following section, the power consumption and power efficiency values of the
CPU, FPGA, and GPU are evaluated.
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6.2.4 Power Efficiency Evaluation

The power efficiency metric refers to the ratio between the computing performance
and the required power for processing computations. The efficiency measurement is
calculated based on the number of performances per watt (power consumption), where
the computing performance here is equal to the achieved frame rate per second (fps).

Power consumption measurements were done to obtain the wattages for computing
the algorithm in the CPU, FPGA, and GPU. The CPU implementation was performed on
a host PC with an Intel i7 CPU (Haswell 4770K), running at 3.5 GHz with a multi-thread
approach. The FPGA-design was implemented on a RAPTOR development board using
a single Virtex-4 daughter board and an additional Ethernet board, while the GPU
implementation was performed in the GTX-580 and GTX-780 GPUs. The idle state,
as shown in Figure 6.16, was the condition where there was no computation. For
the host PC, the power consumption in the idle state included the power of all the
integrated devices (e.g., hard-disk, memory, etc). While for the FPGA, the idle state was
a condition where there was no programming file uploaded to the FPGA. The power
consumed (used) on the CPU, FPGA, and GPU was calculated by subtracting the power
in the idle state from that measured in the active state (the computation was running).
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Figure 6.16: Power consumption comparison between CPU, FPGA, and GPU for detect-
ing 64 robots on frame size of 2048 × 208 pixels.
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The power efficiency analyses in the CPU, FPGA, and GPU were done without in-
cluding the power consumption in the post-processing algorithm. This work focused
on the computationally intensive algorithm for detecting the robot marker locations.
Additionally, because all the platforms used the same algorithm for the post-processing
and computing this algorithm in the same host PC, the power consumption difference
between platforms for computing the post-processing algorithm will be very small,
particularly between the FPGA and GPU platforms. The power consumption and power
efficiency measurements are presented in Figure 6.16 and Figure 6.17, respectively.

Figure 6.16 shows the power consumption test results for the CPU, GPU, and FPGA.
The FPGA-based hardware accelerator has a significantly lower power consumption
than the other devices. It is approximately six to eight times lower. This means that
the FPGA implementation provides a lower power consumption when it is used as
an alternative hardware for accelerating the computation in vision-based multi-robot
tracking. The CPU implementation uses less power than the GPU implementation.
However, the GPU has a significantly higher computing performance than the CPU, as
previously shown in Figure 6.15. The GTX-580 implementation has a slightly lower
power consumption than the GTX-780, but it consumes significantly more power than
the GTX-780 in the idle state. This indicates that the newer GPU technology in the
GTX-780 offers less power consumption in the idle condition.
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Figure 6.17: Power efficiency comparison between CPU, FPGA, and GPU for vision-
based multi-robot tracking.
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Figure 6.17 presents the results of the power efficiency comparison between the CPU
(intel i7 4770K), Virtex-4 FPGA, and GPU for computing the algorithm to detect the
locations of multiple robots. The CPU has the lowest power efficiency compared to
the other devices. Although the CPU requires less power than the GPU, it has a much
slower computing performance than the GPU. Therefore, it has only a small power
efficiency. Additionally, the results in Figure 6.17 show that both hardware accelerator
devices (FPGA and GPU) can provide better performances per watt than the CPU. This
means that both the FPGA and GPU hardware accelerators can be used to enhance
the computing performance per watt when processing the vision-based multi-robot
tracking algorithm.

The GPU provides a higher power efficiency than the CPU. Additionally, the newer
generation of GPU (GTX-780) provides better performance than the older generation
of GPU (GTX-580). As shown in Figure 6.17, the Virtex-4 FPGA provides the highest
performance per watt compared to the other devices. This indicates that the FPGA is
very efficient and very suitable for systems that require less power consumption and
high computing performance.

6.3 Analysis

The previous sections have comprehensively presented the detection performance,
computing performance, and power efficiency evaluations of the proposed design.
The evaluations focused on the computationally intensive parts of the vision-based
multi-robot tracking algorithm, which are performed in the hardware accelerators
(FPGA and GPU).

According to the detection’s test results for the FPGA- and GPU-accelerated computing
systems discussed in the previous sections, both designs are able to provide detection
performances (precise and recall) of about 99% for multi-robot localization. This
means that the hardware accelerators and implemented algorithms are capable of
providing a high detection performance. Additionally, the post-processing in the host
PC is also used to improve the coordinates from the hardware accelerator (FPGA or
GPU), by detecting the pentagon located in the center of the circle in the robot marker.
In this work, the detection performance only focused on the ability of the algorithm
and hardware accelerators’ architectures to detect the robot locations. Scenarios where
some robots are crossing between two cameras were not taken into account. Therefore,
additional operations are needed in the CPU to handle this scenario.

Regarding the computing performance, both the FPGA- and GPU-based hardware
accelerators have significantly higher computing performances than the Intel i7 4770K
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quad-core CPU. This means that the inherent parallel structure of the FPGA and the
SIMT approach of the GPU hardware accelerators can be used to significantly enhance
the vision-based multi-robot tracking algorithm.

The FPGA-based hardware accelerator implementation can reach a frame rate of 154
fps with a total resolution of 2048×2048 pixels using a Xilinx Virtex-4 FX100-11 FPGA.
The achieved frame rate is optimized by utilizing four streaming hardware accelerators,
working in parallel. Furthermore, the computation performance can be increased
when using newer FPGA technology. For example, the designs were implemented on
the Xilinx Virtex-6 XC6SX475T-2 and Virtex-7 VX690T-2 to estimate the computing
performances of the proposed design in the more recent FPGA technology. The Virtex-
6 and Virtex-7 FPGAs are able to achieve maximum clock frequencies of 190 MHz
and 230 MHz, respectively. These results are significantly higher than the maximum
frequency achieved on the Virtex-4 FPGA. Accordingly, both newer generations of
FPGAs demonstrate higher frame rates compared to the Virtex-4 FPGA. In addition
to obtaining a faster maximum clock frequency, using the newer FPGA technology
also means that more logic resources can be utilized. Hence, greater parallelism and
scalability can be supported using these newer FPGA devices.

Meanwhile, the implementation of GPU-based hardware accelerator, using the GTX-
580 and GTX-780 GPUs, produces maximums of 70 fps and 91 fps, respectively, with
a total resolution of 2048 × 2048 pixels. This means that both GPUs reach higher
computation performances compared to the FPGA-based implementation that applies
a single stream hardware accelerator. However, these performances are still lower
than the implementation with four streaming hardware accelerators in the FPGA.
Nevertheless, in this comparison, the GPU-based design only used the single GPU
approach. If required, the GPU performance can also be increased using multiple units
and performing the algorithm on multiple GPUs.

Despite the fact that the FPGA and GPU are able to achieve very high computation
performances, the post processing in the CPU to some extent could limit the overall
performance. To acquire the robots’ orientations and IDs, the advantage of the multi-
core architecture in the CPU is employed, processing all the sub-images (where an
image consists of a robot marker) in a multi-thread approach. Because the size of the
sub-images is very small (40× 40 pixels), they can easily be processed by a typical host
PC in real time. To some extent, the scalability is limited when using a large number
of robots. For the targeted 64 robots, there is no problem with processing in the host
PC. It uses four threads for the computation of the robots’ orientations and IDs; hence,
the CPU can simultaneously process four sub-images. Based on the experiments, a
processing time of approximately 12 ms can be reached for 64 robots. Meanwhile, for
one robot, it takes only about 0.72 ms. This computation performance can be increased
when more threads are utilized, upgrading the CPU to the latest version with more
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cores. Another solution could involve using a many-core processor in the proposed
system. This is a special processor with an architecture containing dozens to hundreds
of lightweight CPU cores such as CoreVA [55; 97].

A comparison of the proposed design with other architectures discussed in litera-
ture is shown in Table 6.7. As can be seen, our design supports a higher resolution
(2048× 2048), more cameras (4), higher number of robots (64), larger robot arena
(6 m× 6 m), and faster execution time (6.55 ms) compared to other implementations.
The achieved frame rate in the FPGA design is optimized by utilizing four streaming
hardware accelerators, working in parallel. Meanwhile, the GPU implementation,
which operates on a high frequency and successfully employs its many cores, produces
a higher computation performance than the FPGA implementation, which applies a
single stream hardware accelerator.

Table 6.7: Comparison with existing architectures.

Arch. Tech. Resolution Exec. Arena Robots Cam.

(pixels) Time (ms) (meter2)

[92] Stratix II 640 × 480 8.6 - - 1

[42; 43] Virtex-5 640 × 480 30 - 1 1

[119; 120] Cyclone II 1280 × 1024 29.4 1.2 × 1.6 min. 3 1

[9; 34] Cyclone IV 640 × 480 7.8 1.5 × 1.3 6 to 22 1

Our design Virtex-4 2048 × 2048 6.55 to 6 × 6 64 4

26.2

Our design GPU 2048 × 2048 10.9 6 × 6 64 4

GTX780

Both the FPGA- and GPU-based designs are scalable to support higher computing per-
formance. Therefore, the power consumption and power efficiency become important
issues to determine which technology provides greater benefits. For instance, these
issues are essential when multiple hardware accelerators are used in the computing
systems.

The GTX-580 and GTX-780 GPU implementations have higher power consumptions
than the host PC (Intel i7 4770K, quadcore CPU) implementation. However, because
the GPU implementations have significantly higher computing performances than the
CPU, they also have higher power efficiencies (fps/watt). The power consumption
issue is the main drawback of the current GPU implementation. This issue can limit the
scalability of the GPU-accelerated computing systems. However,newer GPU technology
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always improves this power consumption issue, and the power of a GPU becomes lower
from generation to generation without reducing its computing performance.

Regarding the power consumption in the FPGA, the FPGA-based hardware accelerator
has a significantly lower power consumption than the CPU and GPU. It is approximately
six to eight times lower. Additionally, using its flexibility, inherent parallel structure, and
customized design, the FPGA design also has high computing performance. Therefore,
the FPGA-based hardware accelerator provides the highest efficiency or computing per-
formance per watt (fps/watt). This means that the FPGA-based hardware accelerators
are very efficient and very suitable for systems that require less power consumption
with high computing performance. The proposed FPGA-accelerated computing system
is limited by the interface to the CPU. Currently, it utilizes a PCI interface to transfer
the data from the FPGA to host PC and vice versa. The PCI interface is very slow
and is the bottleneck for the system. Therefore, this interface should be upgraded to
the PCI-express, which is already used in the GPU hardware accelerator. This issue
technically can be fixed because FPGAs are customizeable.

Determining the best technology for an application should be based not only on
some quantitative issues (e.g., computing performance, power consumption, and power
efficiency) but also on qualitative parameters such as the development process. This
development process is also related to the design complexity, development time, and
time to market issues. The development process in a GPU is relatively easier and
faster than in an FPGA, but more difficult than the CPU. This is because debugging
and interactive simulations, as the main factor in the development process, are fully
accommodated in a GPU development system, as described in chapter 3. Meanwhile,
the FPGA development process is more complicated and time-consuming than that of
the GPU. In the FPGA design, the image processing algorithm cannot be developed
directly on the targeted FPGA device. This is because the development cycles (e.g.,
synthesize, translate, map, place, and route) require too much time. Therefore, in the
FPGA design for image processing applications, it becomes impracticable to have an
interactive design.

6.4 Summary

This chapter has presented the results and analysis of the proposed design. In particular,
the detection performance, computation performance, power consumption, and power
efficiency for both the FPGA- and GPU-accelerated computing systems have been
considered. Regarding the detection performance, this chapter has shown that both the
FPGA- and GPU-based designs are able to provide detection performances (precision
and recall) of about 99% for multi-robot localizations. Comparisons between the
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CPU, FPGA, and GPU implementations for the computation of vision-based multi-robot
tracking algorithm were also presented in detail in this chapter.

In conclusion, the implementations of vision-based multi-robot tracking in different
technologies (CPU, FPGA, and GPU) are illustrated in Figure 6.18. The CPU technology
provides the fastest development time and easiness of programming, but its implemen-
tation has issues with the computing performance, power consumption, and power
efficiency. Meanwhile, the GPU technology is suitable for implementations that require
a high computing performance, good power efficiency, and adequate development time.
However, the implementation of the GPU technology in this application is limited by the
power consumption. Finally, the FPGA technology offers a high power efficiency, very
good (low) power consumption, and high computing performance. The development
time and complexity of the programming implementation are the main drawbacks of
the FPGA implementation.
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CPU, FPGA, and GPU comparison
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Figure 6.18: Comparison of CPU, FPGA, and GPU implementations for vision-based
multi-robot tracking application.
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In this thesis, FPGA- and GPU-accelerated computing systems for vision-based multi-
robot tracking were proposed. These designs refer to heterogeneous computing systems
that combine a CPU and hardware accelerator, either the FPGA or GPU. In many cases
of vision-based robot tracking systems, the computational requirements for extracting
the relevant information (e.g., locations, orientations, and identities (IDs) of robots)
from video data increase along with the number of tracked robots, the video frame size,
and the number of operated cameras. In contrast to the development of the previous
computing systems, which typically used several high-performance workstations for
the parallel processing of data from multiple cameras, the heterogeneous computing
system approach releases the host computer from the computation-intensive tasks by
utilizing the FPGA or GPU.

This thesis emphasizes the implementations of two distinct heterogeneous computing
systems for vision-based multi-robot tracking applications, encompassing the use of
the FPGA and GPU as hardware accelerators. The implementations on the FPGA- and
GPU-based heterogeneous computing systems have been demonstrated in chapter 4
and chapter 5, respectively. Based on the modular and parallel architecture of the
FPGA, a collection of video processing modules was developed, capable of detecting the
locations of multiple robots using individual markers. The video processing modules
involve two unique architectures for the circle detection of the robot’s marker. The first
one integrates a combination of the CHT and graph cluster algorithms, while the second
architecture combines the CSW technique with a graph cluster algorithm. Meanwhile,
the GPU implementation relies on a large number of lightweight programmable cores
that concurrently execute the vision processing algorithm.

Considering the differences between the FPGA and GPU, this work compared and
analyzed the FPGA- and GPU-based computing systems to find the optimal system
for multi-robot tracking applications. In particular, this thesis implemented FPGA-
and GPU-accelerated heterogeneous computing systems, compared the results, and
determined the advantages that could be achieved using both computing systems for
vision-based multi-robot tracking applications. In doing so, this thesis focused on
the system architecture, detection performance, computing performance, and power
efficiency. The examinations and analysis of the proposed systems were discussed in
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chapter 6 using different generations of FPGAs (e.g., Xilinx Virtex-4, Virtex-6, and
Virtex-7) and GPUs (e.g., GTX-580 and GTX-780).

7.1 Conclusions

This thesis has described details about the basic concept of a vision-based robot tracking
system and the related work. It has shown the need for a computing system that uses
the benefits of the CPU and hardware accelerators (e.g., FPGA and GPU) to enhance
the computing performance of a vision-based multi-robot tracking algorithm. The
architectures of heterogeneous computing systems for vision-based multi-robot tracking
and their design flows, both in the FPGA-and GPU-accelerated platforms, have been
presented in this thesis.

The result of this thesis show that the FPGA- and GPU-based hardware accelerators
strongly enhance the computational performance of the computing system for vision-
based multi-robot tracking. These hardware accelerators release the host computer
from the computationally intensive tasks, complementing the CPU’s function to perform
comprehensive vision-based multi-robot tracking applications. Furthermore, both the
FPGA- and GPU-based hardware accelerators can achieve high accuracy, computational
performance, and power efficiency.

According to the detection performance, this thesis have shown that the proposed de-
signs can handle multi-robot localization with a typical detection performance (precision
and recall) of 99% under well-defined lighting conditions, as reported in section 6.1.
This means that the proposed hardware accelerators and implemented algorithms
achieve a high detection performance for detecting the robot locations. Both the CHT-
graph cluster and CSW-graph cluster methods produce high detection performances for
detecting multiple robots. However, the CSW technique is more favorable than the CHT
for both the FPGA and GPU implementations, because of its detection performance and
robustness for robot collision situations.

This thesis shows that both the FPGA- and GPU-based hardware accelerators have
significantly higher computing performances than the Intel i7 4770K quad-core CPU.
Therefore, both hardware accelerators are very good alternatives to enhance the com-
putational performance of a computing system for vision-based multi-robot tracking
applications. The FPGA-based hardware accelerator can reach up to 154 fps with a total
resolution of 2048× 2048 pixels using a Xilinx Virtex-4 FX100-11. The achieved frame
rate is optimized by utilizing four streaming hardware accelerators, working in parallel.
Furthermore, the computational performance could be increased by using newer FPGA
technology. The GPU implementation, which operates on a higher frequency than the
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FPGA design and employs many cores using the SIMT approach, surpasses the compu-
tational performance of an FPGA single stream hardware accelerator implementation.
Additionally, the development process in a GPU is relatively easier and faster than in
an FPGA. This is because of the debugging and interactive simulations, which are the
main factors in the developing process.

Regarding the power consumption and power efficiency, this thesis has shown that
the FPGA-based hardware accelerator has a significantly lower power consumption
than the CPU and GPU, which is approximately six to eight times lower. Additionally, it
also has a high power efficiency because the FPGA implementation can achieve a high
computation performance per watt (fps/watt). Therefore, the FPGA-based designs are
very suitable for systems that require less power consumption with high computing
performance. Meanwhile, the GPU-based hardware accelerator (GTX-580 and GTX780)
implementations were better than the host PC (Intel i7 4770K, quadcore CPU) imple-
mentation. The power consumption issue was the main drawback for the GPU. However,
newer GPU technology always improves the power consumption issue and its power
consumption becomes lower from generation to generation. Fortunately, the GPU
implementations have higher power efficiencies than the CPU implementation because
they have significantly higher computation performances (fps). Therefore, the GPU
technology is suitable for implementations that require high computing performance,
good power efficiency, and adequate development time.

7.2 Outlook

Although the FPGA-based hardware accelerator implementation on the heterogeneous
system for vision-based multi-robot tracking shows the ability to enhance the computa-
tion performance, two issues should be considered. First, the interconnection between
the FPGA and CPU. Second, the complexity and time- consumption of the development
process. The interconnection between the FPGA and CPU has to support a high-speed
transfer such as PCIe. Therefore, the PCI interface in the RAPTOR development board
must be upgraded to a PCIe interface. Concerning the development process issue, the
implementation of the FPGA algorithm using a hardware description language (HDL)
requires deep knowledge and special skill related to the FPGA design. One of the
solutions regarding this issue could be using SystemC, which provides a fast FPGA
implementation with less knowledge of the target system. Unfortunately, this approach
currently generates higher resource usage in the FPGA and a lower performance regard-
ing the computation speed compared to a manual approach using hardware description
language (HDL) [107].
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In contrast to the FPGA-based heterogeneous computing system for vision-based
multi-robot tracking, the GPU-CPU interconnection and the development process of the
GPU are relatively small issues. This is because most GPUs are already equipped with
the PCIe interface and are supported by a steady development tool with an interactive
simulation. To increase the computational performance, an additional GPU card can
be attached in the PCIe slot of the host PC. The trend of GPU technology is not only
increasing the computation performance but also reducing the power consumption.
Therefore, the latest GPU technology could be a solution to increase the computational
performance with a reasonable power consumption.
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