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ABSTRACT: Templated assembly of organic molecules constitutes a promising
approach for fabricating functional nanostructures at surfaces with molecular-scale
control. Using the substrate template for steering the adsorbate growth enables creating
a rich variety of molecular structures by tuning the subtle balance of intermolecular and
molecule−surface interactions. On insulating surfaces, however, surface templating is
largely absent due to the comparatively weak molecule−surface interactions compared
to metallic substrates. Here, we demonstrate the activation of substrate templating in
molecular self-assembly on a bulk insulator by controlled deprotonation of the
adsorbed molecules upon annealing. Upon deposition of 4-iodobenzoic acid onto the
natural cleavage plane of calcite held at room temperature, high molecular mobility is
observed, indicating a small diffusion barrier. Molecular islands only nucleate at step
edges. These islands show no commensurability with the underlying substrate, clearly
indicating the absence of surface templating. Upon annealing the substrate, the
molecules undergo a transition from the protonated to the deprotonated state. In the deprotonated state, the molecules adopt a
well-defined adsorption position, resulting in a distinctly different, substrate-templated molecular structure that is stable at room
temperature. Our work, thus, demonstrates the controlled activation of substrate templating by changing the molecule−surface
interaction upon annealing.

Supramolecular assembly based on reversible interactions is
known as an extremely versatile synthesis tool for creating

complex functional structures from molecular building blocks.1

Molecular self-assembly at surfaces benefits from the templating
effect of the underlying substrate, which greatly enriches the
structural variety by controlling the balance between inter-
molecular and molecule−surface interactions.2 In the past
decades, an impressive variety of self-assembled molecular
structures have been obtained upon adsorption of organic
molecules onto metallic substrates under vacuum condi-
tions,3−7 and to less extent onto semiconducting surfaces.8−11

However, from an application point of view, it is highly
important to extend the range of substrates to dielectric
materials in order to benefit from a larger materials basis. In
particular, emerging nanotechnology applications such as
molecular electronics require electrical decoupling of the
molecular structures from the supporting surface. Pivotal
experiments investigating molecular self-assembly on dielectric
surfaces or thin films have, however, disclosed fundamental
challenges, which are related to the weak molecule−surface
binding.12−14 Furthermore, due to the absence of sufficient
substrate templating, the resulting molecular structures are
frequently governed by intermolecular interactions alone. This
often results in molecular bulk crystal formation12 without the
possibility to deliberately steer structural variety.

Thus, to transfer the full potential of molecular self-assembly
to insulating substrates, strategies to induce substrate
templating have to be explored.15 Recently, the electrostatic
anchoring of polar molecules onto ionic crystal surfaces such as
CaF2(111)

16 and KBr(001)17 has been explored to increase
substrate templating. Moreover, the natural cleavage plane of
calcite, CaCO3(10.4), has been identified as a suitable substrate
surface for molecular self-assembly at room temperature due to
its comparatively high surface energy.18 In particular, carboxylic
acid moieties have been exploited for creating substrate-
templated structures that deviate substantially from the
respective bulk structure.19 An interesting situation is obtained
in the case of biphenyl-4,4′-dicarboxylic acid on CaCO3(10.4),
which shows the coexistence of two distinctly different
molecular structures. One phase is governed by the underlying
substrate periodicity and can be readily explained by the
excellent size match of the molecular COOH−COOH spacing
and the calcite carbonate distance along the [01.0] surface
direction. The second phase, in contrast, closely resembles the
packing motif of the molecular bulk structure.20

When anchoring carboxylic acid moieties onto the (10.4)
surface of calcite, the charge state of the acid group plays a
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crucial role: In the protonated state, the molecules can form
intermolecular hydrogen bonds as well as hydrogen bonds
toward the calcite carbonate group. Protonated molecules are
observed to lie flat on the surface to accommodate
intermolecular hydrogen bonding. In the deprotonated state,
on the other hand, the negatively charged carboxylate group
anchors toward the surface calcium cations, and the molecules
are observed to often stand upright on the surface.22,23 In a
recent study, carboxylic acids with a low pKa value have been
found to deprotonate already at room temperature while
carboxylic acids with a pKa value higher than ≈3 stay intact on
calcite.22 In the latter case, deprotonation can be induced by
annealing the calcite substrate.23 Because the deprotonation of
the molecule on calcite constitutes an acid−base reaction, we
expect the proton to be linked to a surface carbonate group,
forming hydrogen carbonate.
Here, we benefit from the distinct change in the molecule−

surface interaction by controlled deprotonation of 4-iodoben-
zoic acid (4IBA). When deposited onto calcite held at room
temperature, intermolecular interactions clearly dominate over
the molecule−surface interaction, resulting in the formation of
an ordered structure that exhibits no epitaxial relationship to
the underlying calcite lattice. Interestingly, substrate templating
can be activated by changing the molecule−surface interaction
when annealing the substrate. Upon annealing, two different
molecular phases coexist that are both governed by the
molecule−surface interaction. This work illustrates that
substrate templating can be activated deliberately by inducing
deprotonation.

■ RESULTS AND DISCUSSION

Upon deposition of 4IBA onto calcite(10.4) held at room
temperature (see Figure 1), large areas of the surface are found
to remain unchanged except for a somewhat higher defect
density. Molecules are exclusively found in troughs formed by
step edges, nucleating into extended, highly ordered islands
with an apparent height of approximately 0.5 nm. Noncontact
atomic force microscopy (NC-AFM) images of such islands are
given in Figure 2a,b, showing two straight step edges running
from the upper to the lower part of the images (marked by
dashed lines). The troughs formed by the step edges are filled
by molecular islands (bright area). From consideration of the
molecular bulk structure and on the basis of our previous
findings,20,23 a dimerization of the molecules via the carboxylic
acid groups might be expected. However, the hexagonal
structure observed here suggests molecular trimers rather

than dimers. Our density functional theory (DFT) calculations
show that a 4IBA trimer in the gas phase is only 0.06 eV/
molecule less stable than the dimer (see Methods for
methodology details on calculations). This is different on the
surface as our force field calculations indicate that although
dimers are more stable when the molecules are isolated, the
presence of the surface favors trimers instead of dimers. The
existence of extended islands readily indicates that individual
molecules, dimers, or trimers are mobile on calcite held at room
temperature. The calculated potential energy surface for a
trimer is shown in Figure 3. It reveals that the maximum
diffusion barrier is about 0.3 eV. Similar calculations for the
dimer structure resulted in a barrier of 0.4 eV, which indicates
that the molecules can diffuse at room temperature (RT) in
both dimeric and trimeric forms. This is in perfect agreement
with the experimental finding of extended islands at room
temperature. A zoom into the molecular island is given in the
drift-corrected images shown in Figure 2c,d. In these images,
the molecular structure imaged on two different islands is
displayed. The molecules self-assemble into a hexagonal
structure with only few lattice defects. Interestingly, the
molecular pattern lacks an epitaxial relationship to the
underlying calcite(10.4) surface, but the molecular structure
seems to follow the step edge orientation as demonstrated in
Figure 2c,d by the dashed lines. Moreover, the overlayer lattice
periodicity of 1.30 ± 0.05 nm is incommensurate with the
calcite lattice along the respective directions. These findings
clearly indicate that the molecular layer is largely unperturbed
by the calcite lattice, although the surface induces trimerization
instead of dimerization. However, due to the missing epitaxial
relationship and based on the lattice incommensurability, we
expect the intermolecular interaction to govern the structure
formation.
Provided that the interaction with the surface is small, we can

evaluate the structure of the monolayer by running the
molecular mechanics simulations in two dimensions and in
the absence of the substrate. We consider a two-dimensional
crystal structure of molecular trimers with the positions of the
terminal hydrogen and oxygen atoms of the COOH groups
constrained in the plane, while the remaining atoms are free to
move. To represent the periodicity of the molecular structure,
we apply periodic boundary conditions. The lowest energy
structure is calculated with constant pressure minimization. The
obtained molecular structure exhibits a hexagonal symmetry
with a lattice parameter of 1.31 nm (Figure 2e), which is very
close to the average distance between the bright features

Figure 1. Model of the (a) 4-iodobenzoic acid (4IBA) molecule and (b) the CaCO3(10.4) surface. The scale bar applies to both panels. The
CaCO3(10.4) surface has a rectangular unit cell of size 0.50 × 0.81 nm2 consisting of two carbonate groups and two calcium ions. The carbonate
groups are rotated such that one oxygen atom lies above, one in, and one below the plane spanned by the calcium ions. The different orientation of
the two carbonate groups leads to a characteristic zigzag pattern of the topmost oxygen atoms.21
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obtained in the experimental image. In this configuration, the
carboxylic acid groups point to each other, allowing for
hydrogen bond formation in a three-membered ring. The
iodine atoms protrude by 0.22 nm out of the initial plane (see
Figure 2f). Such a structure is in very good agreement with the
experimental results, assuming that the bright features in the
images originate from the centers of the trimers.
When annealing the 4IBA-covered calcite substrate to 495 K,

the molecular structure changes significantly. After annealing,
the entire surface is covered by two perpendicular striped
structures (referred to as A and B) with an apparent height of
approximately 0.8 nm (Figure 4a). The increased apparent
height suggests that the molecules now arrange in a more
upright fashion as compared to the room-temperature islands.24

The change in coverage can be understood from the fact that
weakly bound molecules that are not trapped in troughs diffuse
rapidly on the surface. Rapidly diffusing molecules are known to
be difficult to detect by NC-AFM. Thus, we propose that we do
not image the diffusing molecules before annealing.
By making use of the Kelvin probe force microscopy

(KPFM) technique,25 we can detect changes in the local
contact potential difference. The voltage applied to the tip
differs by approximately −2 V above the striped structures in
comparison to the bare calcite surface. This shift can be readily
understood by considering the change in the charge state upon
deprotonation. After deprotonation, the molecules are neg-
atively charged. On the basis of this and our previous findings,
we ascribe this structural change to a deprotonation step, which

Figure 2.Molecular structures of 4IBA after deposition onto the natural cleavage plane of calcite held at room temperature. (a and b) Overview NC-
AFM images, revealing a surface that is largely free of molecules. Molecular islands only exist within surface troughs formed by two step edges (one
of each is marked by dashed lines in each image). (c and d) High-resolution images taken on the two different islands (shown in panels a and b),
illustrating the same internal order which lacks a fixed epitaxial relationship to the underlying substrate lattice. The respective step edge direction is
again indicated by dashed lines. (e) Structural model for the alignment within the island in panel c, composed of the 4IBA trimers, calculated by two-
dimensional lattice minimization. (f) Geometry of the trimeric building unit in top and side views.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp408664n | J. Phys. Chem. C 2013, 117, 23868−2387423870



requires annealing in the case of 4IBA due to its comparatively
high pKa value of 4.02.22,23 In the A phase, the stripes are
oriented along the [4 ̅2 ̅1] direction, while in the B phase, the
stripes are running along the [01.0] direction. A zoom into the
A phase (Figure 4b) discloses a dotted pattern, where each dot
fits in size with an upright-standing molecule. The zoom in
Figure 4b indicates that the stripes originate from a moire ́
pattern. Drift-corrected high-resolution images of the A and B
phases are shown in Figure 4c,d, respectively.
Phase A is composed of protrusions with a repeat distance of

approximately ax = 0.58 ± 0.05 nm in the [01.0] direction and
ay = 0.79 ± 0.05 nm in the [4̅2 ̅1] direction. In the [4 ̅2̅1]
direction, the molecules adopt the substrate periodicity of 0.81
nm. Along the [01.0] direction, however, seven molecules are
spaced atop eight calcite repeat distances, resulting in a (8 × 1)
superstructure (7 × 0.58 nm = 4.06 nm equals 8 × 0.50 nm =
4.00 nm; see Figure 4e). The difference in lattice spacing along
the [01.0] direction readily explains a moire ́ pattern with stripes
running perpendicular to the [01.0] direction as evident in
Figure 4b.
Phase B is formed by dots with a periodicity of approximately

bx = 1.01 ± 0.05 nm along the [01.0] direction, which equals
two times the calcite unit cell dimension in this direction. Along
the [4 ̅2 ̅1] direction, however, the molecular pattern shows a
distance of approximately by = 0.57 ± 0.05 nm, which is
different from the substrate periodicity. Along this direction,
seven molecules are spaced along five calcite unit cell repeat
distances (7 × 0.57 nm = 3.99 nm equals 5 × 0.81 nm = 4.05
nm), resulting in a (2 × 5) superstructure (Figure 4e). Again,
the different periodicity of the substrate and the molecular
pattern gives rise to a moire ́ pattern, which is for phase B
perpendicular to the [4 ̅2 ̅1] direction.
The existence of the moire ́ pattern clearly indicates that the

molecular structures are steered by the underlying substrate in
one direction (the [4 ̅2 ̅1] direction for phase A and the [01.0]
direction for phase B), while the distance in the other direction
is influenced by the intermolecular interaction. Interestingly,
the spacing of phase A along the [01.0] direction is similar to
the spacing of phase B along the [4 ̅2 ̅1] direction, suggesting
that this spacing is dominated by the intermolecular interaction.
This can be understood by considering a tilted arrangement of
the molecules as given in Figure 4f,g, in which the iodine atoms
are placed above the center of the aromatic ring of the

neighboring molecule.26 This configuration is in accordance
with upright standing deprotonated molecules anchoring
toward the surface with the negatively charged carboxylate
groups that bind to the surface calcium cations. Thus, by
deprotonating the molecules, the molecule−surface interaction
is greatly increased and substrate-templated structures emerge.

■ CONCLUSION
In conclusion, the controlled activation of substrate templating
is demonstrated by inducing a deprotonation reaction of 4IBA
on the natural cleavage plane of calcite. When depositing 4IBA
onto calcite held at room temperature, the molecules are found
to be highly mobile on the surface. The molecules exclusively
nucleate at step edges and arrange themselves into an ordered
array of trimers with hydrogen bond formation between the
carboxylic acid groups. The latter finding gives strong evidence
for the fact that the molecules remain protonated in this
structure. Most interestingly, these islands lack an epitaxial
relationship to the underlying calcite lattice, clearly demon-
strating the absence of substrate templating. This situation is
changed reproducibly upon annealing the substrate to 495 K,
which results in molecule deprotonation. After deprotonation,
two different phases are formed that are distinctly different
from the former hydrogen-bonded structure. Now, the
molecules stand upright on the surface, with the negatively
charged carboxylate groups anchoring toward the surface
calcium cations. This substrate templating effect is clearly
reflected in the molecular ordering that now follows the
substrate periodicity in one direction (the [4̅2 ̅1] direction for
phase A and the [01.0] direction for B, respectively).
Perpendicular to this direction, a moire ́ pattern is observed,
which is governed by the optimum packing of the aromatic
rings. This study demonstrates that molecular deprotonation
can be successfully exploited to deliberately activate substrate
templating in molecular self-assembly.

■ METHODS
Sample preparation and noncontact atomic force microscopy
(NC-AFM) experiments were carried out under ultrahigh-
vacuum (UHV) conditions. Calcite crystals of optical quality
were purchased from Korth Kristalle GmbH (Altenholz,
Germany) and cut mechanically to fit into the sample holder.
After introduction into the UHV system, each crystal was

Figure 3. Calculated potential energy surface for a 4IBA trimer on the calcite(10.4) surface. (a) Calculations for one unit cell reveal four minima
separated by barriers of about 0.4 eV, which indicates that trimer molecules diffuse on the surface at room temperature. (b) Superimposing the
substrate structure on the energy surface shows that two of the lowest energy sites are between carbonate ions while the other two are between a pair
of calcium ions and a carbonate ion.
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freshly cleaved27 and annealed for about 1.5 h to a maximum
temperature of about 450 K to remove surface charges. A
pristine crystal was used for each molecule deposition. The
surface orientation was determined for each crystal by
measuring the unit cell dimensions in images that were
carefully corrected for thermal drift.28 The NC-AFM experi-
ments were performed with an atomic force microscope (VT
AFM 25 from Omicron, Taunusstein, Germany) operated in
the frequency modulated (FM) mode.29 In this mode, the
change Δf of the cantilever’s resonance frequency upon tip−
sample interaction is the main measurement signal. This signal
is related to the tip−sample interaction force.30,31 The

frequency shift Δf was measured using a phase-locked loop
controller (easyPLL plus from Nanosurf, Liestal, Switzerland).
FM-KPFM measurements are performed by applying an
alternating current (AC) voltage to the tip (frequency, 1
kHz; amplitude, 2.0 V) and compensating for the resulting
electrostatic force with an offset direct current (DC) voltage
applied to the tip (Kelvin signal) using a digital lock-in amplifier
with built-in feedback loop (HF2 from Zurich Instruments,
Zurich, Switzerland). All NC-AFM data were analyzed and
processed using the open source software Gwyddion.32

Standard Si cantilevers (type PPP-NCH from Nanosensors,
Neuchat̂el, Switzerland) with resonance frequencies around 300

Figure 4. Molecular structures after annealing the substrate to 495 K. (a) Overview NC-AFM image revealing two striped phases named A and B.
(b) Zoom into the A phase, indicating that the stripes originate from a moire ́ pattern. (c) Drift-corrected high-resolution NC-AFM image of the A
phase, showing a centered rectangular packing that corresponds to a (8 × 1) superstructure. The black area arises from the drift correction
procedure. (d) Drift-corrected high-resolution NC-AFM image of the B phase, showing a centered rectangular packing that corresponds to a (2 × 5)
superstructure. (e) Top-view model illustrating the arrangement of the molecules within the two structures. (f) Side view along the [01.0] direction
of the A phase, illustrating the tilted orientation of the molecules and the resulting alignment of the iodine atoms and the aromatic rings. The
optimum molecular packing results in a moire ́ pattern with seven molecules arranged along a distance of eight lattice repeat units. (g) Corresponding
view of the B phase along the [4 ̅2̅1] direction. In this direction, seven molecules are spaced along five lattice repeat units.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp408664n | J. Phys. Chem. C 2013, 117, 23868−2387423872



kHz were excited to amplitudes around 10 nm. All tips were
initially bombarded with Ar+ ions to remove contaminants and
the oxide layer. The image channel as well as fast and slow scan
directions are given in the upper right corner of each image.
4IBA molecules were purchased from Sigma Aldrich (98%
purity). The deposition was performed from a heated glass
crucible. Prior to the experiments shown here, the deposition
rate was determined with a quartz crystal microbalance. A
temperature of 365 K corresponds to a sublimation rate of
about 0.04 ML/min.
The modeled surface was prepared and minimized with

METADISE code,33 while DLPOLY34 was used to study the
interface between the molecules and the surface. We employed
the force field parameters developed by Pavese et al.35 for
calcite and Freeman et al.36 for interactions between the 4IBA
molecules and the surface. The intra- and intermolecular
interactions in 4IBA were described by the DREIDING
model,37 and parameters for the COOH group were based
on the model of Roszak et al.38 The parameters were verified by
running DFT calculations using SIESTA code39 with PBE
functional,40 double-ζ polarized basis set (DZP), and norm
conserving Troullier−Martins pseudopotentials.41 The 3p
electrons for Ca were explicitly included in the valence. The
partial charges for 4IBA molecule were obtained by RESP
method42 using Quickstep/CP2K code.43 The potential energy
surface for a dimer and trimer translation was calculated by
running a series of constrained minimizations, where the center
of mass of the cluster was fixed in the XY plane but allowed to
relax in the Z direction, and by allowing a rotation. The barriers
were refined using the nudged elastic band (NEB) method.44

To obtain a better agreement between the force field and the
DFT structures, the parameters ε and r0, describing the
hydrogen bonds between 4IBA molecules, were adjusted to ε =
0.08 eV and r0 = 1.7 Å. The hydrogen bond between the 4IBA
monomer and the surface was described by the Lennard-Jones
9−6 potential with parameters ε = 0.05 eV and r0 = 1.9 Å.
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(32) Neucǎs, D.; Klapetek, P. Gwyddion: an Open-Source Software
for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181−188.
(33) Watson, G. W.; Kelsey, E. T.; de Leeuw, N. H.; Harris, D. J.;
Parker, S. C. Atomistic Simulation of Dislocations, Surfaces and
Interfaces in MgO. J. Chem. Soc., Faraday Trans. 1996, 92, 433−438.
(34) Smith, W.; Forester, T. R. DL_POLY_2: A General-Purpose
Parallel Molecular Dynamics Simulation Package. J. Mol. Graph. 1996,
14 (3), 136−141.
(35) Pavese, A.; Catti, M.; Parker, S. C.; Wall, A. Modelling of the
Thermal Dependence of Structural and Elastic Properties of Calcite,
CaCO3. Phys. Chem. Miner. 1996, 23, 89−93.
(36) Freeman, C. L.; Harding, J. H.; Cooke, D. J.; Elliott, J. A.;
Lardge, J. S.; Duffy, D. M. New Forcefields for Modeling
Biomineralization Processes. J. Phys. Chem. C 2007, 111, 11943−
11951.
(37) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A
Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990,
94, 8897−8909.
(38) Roszak, S.; Gee, R. H.; Balasubramanian, K.; Fried, L. E. New
Theoretical Insight into the Interactions and Properties of Formic
Acid: Development of a Quantum-Based Pair Potential for Formic
Acid. J. Chem. Phys. 2005, 123, No. 144702.
(39) Jose,́ M. S.; Emilio, A.; Julian, D. G.; Alberto, G.; Javier, J.;
Pablo, O.; Daniel, S.-P. The SIESTA Method for ab Initio Order-N
Materials Simulation. J. Phys.: Condens. Matter 2002, 14, 2745.
(40) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865−
3868.
(41) Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane
Wave Calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 1991, 43
(3), 1993−2006.
(42) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-
Behaved Electrostatic Potential Based Method Using Charge

Restraints for Deriving Atomic Charges: The RESP Model. J. Phys.
Chem. 1993, 97, 10269−10280.
(43) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.;
Chassaing, T.; Hutter, J. Quickstep: Fast and Accurate Density
Functional Calculations Using a Mixed Gaussian and Plane Waves
Approach. Comput. Phys. Commun. 2005, 167, 103−128.
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