
Alignment- and reference-free phylogenomics

with colored de-Bruijn graphs

Roland Wittler

Genome Informatics, Faculty of Technology, Bielefeld University, Germany
Center for Biotechnology, Bielefeld University, Germany

roland.wittler@uni-bielefeld.de

May 15, 2019

Abstract

We present a new whole-genome based approach to infer large-scale phylogenies
that is alignment- and reference-free. In contrast to other methods, it does not rely
on pairwise comparisons to determine distances to infer edges in a tree. Instead, a
colored de-Bruijn graph is constructed, and information on common subsequences
is extracted to infer phylogenetic splits. Application to different datasets confirms
robustness of the approach. A comparison to other state-of-the-art whole-genome
based methods indicates comparable or higher accuracy and efficiency.

1 Introduction

A common task in comparative genomics is the reconstruction of the evolutionary re-
lationships of species or other taxonomic entities, their phylogeny. Today’s wealth of
available genome data enables large-scale comparative studies, where phylogenetics is
faced with the following problems: First, the sequencing procedure itself is becoming
cheaper and faster, but finishing a genome sequence remains a laborious step. Thus,
more and more genomes are published in an unfinished state, i.e., only assemblies (com-
posed of contigs), or raw sequencing data (composed of read sequences) are available.
Hence, traditional approaches for phylogenetic inference can often not be applied, be-
cause they are based on the identification and comparison of marker sequences, which
relies on computing multiple alignments, an NP-hard task. Second, the low sequencing
cost allow new large-scale studies of certain niches and/or aloof from model organisms,
where reference sequences would be too distant or not available at all.

Whole-genome approaches solve these problems as they are usually alignment- and
reference-free, see e.g. [4, 6, 11, 16, 17, 20]. However, the sheer number of genomes
to be analysed is still posing limits in large-scale scenarios as almost all whole-genome
approaches are based on a pairwise comparison of some characteristics of the genomes
(e.g. occurrences or frequencies of k-mers or other patterns) to define distances which
are then used to reconstruct a tree (e.g. by using neighbor joining [13]). This means, for
n genomes, O(n2) comparisons are performed in order to infer O(n) edges. To the best
of our knowledge, only MultiSpaM [3] follows a different approach by sampling small,
gap-free alignments involving four genomes each, which are used to infer a super tree
on quartets. According to our experiments, this method is not suitable for large-scale
settings (see Results), though.

Apart from computational issues, the actual objective of phylogenetic inference in
terms of how to represent a phylogeny is not obvious in the first place. Taking only

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211827185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

intra-genomic mutations into account, i.e., assuming a genome mutating independently
of others, genomes would have unique lines of ancestors and their phylogeny would
thus be a tree. Several reasons however conflict this simple tree model. Inter-genomic
exchange of genomic segments such as crossover in diploid or polyploid organisms, lateral
gene transfer in bacteria, or introgression in insects contradict the assumption of unique
ancestry. Furthermore, incomplete, ambiguous, or even misleading information can
hamper resolving a reliable phylogenetic tree.

Here, we propose a new methodology that is whole-genome based, alignment- and
reference-free, and does not rely on a pairwise comparison of the genomes or their char-
acteristics. An implementation called SANS (”Symmetric Alignment-free phylogeNomic
Splits“) is available at https://gitlab.ub.uni-bielefeld.de/roland.wittler/sans.
The k-mers of all genomic sequences (assemblies or reads) are stored in a colored de-
Bruijn graph, which is then traversed to extract phylogenetic signals. The reconstructed
phylogenies are not restricted to trees. Instead, the generalized model of phylogenetic
splits [2] is used to infer phylogenetic networks that can indicate a tree structure and
also point to ambiguity in the reconstruction.

In the following Section 2, we will first introduce two building blocks of our approach,
splits and colored de-Bruijn graphs. Then, we will describe and motivate our method in
Section 3. After an evaluation on several real data sets in Section 4, we will give a brief
summary and an outlook in Section 5.

2 Background

Before presenting our method in Section 3, we will introduce two basic concepts it builds
upon. Firstly, as motivated above, our phylogenies will be represented by sets of splits, a
generalization of trees. Secondly, to extract phylogenetic signals from the given genomes
at the first place, they are stored in a colored de-Bruijn graph.

2.1 Phylogenetic splits

In the following, we briefly recapitulate some notions and statements from the split
decomposition theory introduced by Bandelt and Dress [2], and put them into context.

Definition 1 (Unordered split) Given a set O, if for two subsets A,B ⊆ O, both
A∩B = ∅ and A∪B = O, then the unordered pair {A,B} is a bipartition or (unordered)
split of O. If either A or B is empty, a split is called trivial.

We extend the above commonly used terminology of (unordered) splits to ordered
splits—a central concept in our approach.

Definition 2 (Ordered split) If {A,B} is an unordered split of O, the ordered pairs
(A,B) and (B,A) are ordered splits. (B,A) is called the inverse (split) of (A,B) and
vice versa.

Note that one unordered split {A,B} = {B,A} corresponds to two ordered splits
(A,B) 6= (B,A). Our method will first infer ordered splits and their inverse, which will
then be combined to form unordered splits. If clear from the context, we may denote
an ordered split (A,B) by simply A.

A set of splits S may be supplemented with weights w : S −→ R, e.g., in [2],
splits are weighted by a so-called isolation index. Strong relations between metrics
and sets of weighted unordered splits have been shown. In particular, one can de-
rive a unique set of weighted splits Sd from any metric distance d such that d(a, b) =

2

∑
{A,B}∈S w({A,B}) δA(a, b) where δA(a, b) := 1 if either a or b in A, but not both,

and δA(a, b) := 0 otherwise, i.e., the weights of all splits which separate a from b are
accumulated. A set of splits S is of the form S = Sd for some metric d if and only if it
is weakly compatible in the following sense.

Definition 3 (Weak compatibility [2]) A set of unordered splits S on O is weakly
compatible if for any three splits {A1, B1}, {A2, B2}, {A3, B3} ∈ S, there are no ele-
ments a, a1, a2, a3 ∈ O with {a, a1, a2, a3} ∩Ai = {a, ai} for i = 1, 2, 3.

As a peculiarity of our approach is being not distance-based, we mention the above
relation of weakly compatible splits and distances only for the sake of completeness. We
will make use the above property to filter a general set of splits such that it can be
displayed as a—in most cases planar—network.

For a tree metric (also called additive metric) d, a set of splits S is of the form
S = Sd, if and only if it is compatible in the following sense.

Definition 4 (Compatibility [2]) A set of unordered splits S on O is compatible if
for any two splits {A,B} and {A′, B′}, one of the four intersections A ∩ A′, A ∩ B′,
B ∩A′, and B ∩B′ is empty.

We will make use of the implied one to one correspondence of edges in a tree and
compatible splits: an edge of length w whose removal separates a tree into two trees
with leaf sets A and B, respectively, corresponds to a split {A,B} of weight w.

2.2 Colored de-Bruijn graphs

A string s is a sequence of characters over a finite, non-empty set, called alphabet. Its
length is denoted by |s|, the character at position i by s[i], and the substring from
position i through j by s[i..j]. A substring of length k is called k-mer.

We consider a genome as a set of strings over the DNA-alphabet {A,C,G, T}. The
reverse complement of a string s is s := s[|s|] · · · s[1], where A := T,C := G,G :=
C, T := A.

An abstract data structure that is often used to efficiently store and process a col-
lection of genomes is the colored de-Bruijn graph (C-DGB) [9]. It is a node-labeled
graph (V,E, col) where each vertex v ∈ V represents a k-mer associated with a set
of colors col(v) representing the set of genomes the k-mer occurs in. A directed edge
from v to v′ exists if and only if for the corresponding k-mers x and x′, respectively,
x[2..k] = x′[1..k − 1]. We call a path p = v1, . . . , vl of length |p| = l in a C-DBG non-
branching if all contained vertices have an in- and outdegree of one with the possible
exception of v1 having an arbitrary indegree and vl having an arbitrary outdegree, and
it has the same set of colors assigned to all its vertices. A maximal non-branching path
is a unitig. In a compacted C-DBG, all unitigs are merged into single vertices.

In practice, since a genomic sequence can be read in both directions, and the actual
direction of a given sequence is usually unknown, a string and its reverse complement
are assumed equivalent. Thus, in many C-DBG implementations, both a k-mer and its
reverse complement are represented by the same vertex. In the following, we will assume
this being internally handled by the data structure.

3 Method

The basic idea of our new approach is that a sequence which is contained as substring in
a subset A of all genomes G but not contained in any of the other genomes is interpreted

3

Algorithm 1 SANS: Symmetric, Alignmet-free phylogeNomic Splits

INPUT: List of genomes G

OUTPUT: Weighted splits over G

T := empty trie // initialize T[S] := (0,0) on first access by S

C-DBG := colored de-Bruijn graph of G

foreach unitig U in C-DBG:

S := color list of U (sublist of G)

// add ordered split S or its inverse G\S to trie

if |S| < |G|/2 or (|S| == |G|/2 and S[0] == G[0]) then:

increase first element of T[S] by length of U

else:

increase second element of T[G\S] by length of U

foreach entry S in T with values (w,w’):

output unordered split {S,G\S} of weight sqrt(w*w’)

as a signal that A should be separated from G\A in the phylogeny. The more of those
sequences exist and the longer they are, the stronger is the signal for separation.

To efficiently extract common sequences, we first construct a C-DBG of all given
genomes. Then, we collect all separation signals as ordered splits, where any unitig u
contributes |u| to the weight of an ordered split col(u). Since both an ordered split (A,B)
and its inverse (B,A) indicate that A and B should be separated in the phylogeny, we
combine them to one unordered split {A,B} with an overall weight that is a combination
of the individual weights. The individual steps will be explained in more detail next.

C-DBG

Among several available implementations of C-DGBs (e.g. [1, 7, 9, 12]), we decided to use
Bifrost (Paul Melsted and Guillaume Holley, https://github.com/pmelsted/bifrost)
for the following reasons: it is easy to install and use; it is efficiently implemented; it can
process full genome sequences, assemblies, read data or even combinations of these; for
read data as input, it offers some basic assembly-like filtering of k-mers; and it realizes
a compacted C-DBG and provides a C++ API such that a traversal of the unitigs could
be easily and efficiently implemented—only unitigs with heterogeneous color sets had
to be split, because colors are not considered during compaction.

Accumulating split weights

Because many splits are overlapping, we use a trie data structure to store a split (as key)
as path from the root to a terminal vertex, along with its weight (as value) assigned
to the terminal vertex. We represent the set of genomes G as a list with some fixed
order, and any subset of G as sublist of G, i.e., with the same relative order. For a split
(A,B) and its inverse (B,A), we take as key the shorter of A and B, breaking ties by
selecting that split containing G[0], and as value the pair of weights (w,w′), where w is
the accumulated weight of the key, and w′ the accumulated weight of its inverse. When
the trie is accessed for a key the first time, the value is initialized with (0, 0).

The overall method SANS is shown in Algorithm 1, the very last step of which will
be motivated in the following.

4

Combining splits and their inverses

To combine an ordered split (A,B) of weight wA and its inverse (B,A) of weight wB , a
naive argument would be: both indicate the same separation, so they should be taken
into account equivalently, and thus take the sum wA + wB or arithmetic mean (wA +
wB)/2. However, in our evaluation, this weighting scheme often assigned higher weight
to wrong splits than to correct splits (compared to reliable reference trees; exemplified
in Section 4.1). Instead, we revert the above argument: consider a mutation on a
(true) phylogenetic branch separating the set of genomes into subgroups A and B. The
corresponding two variants of the affected segment will induce two unitigs with color
sets A and B, respectively. Under the infinite sites assumption, these unitigs would not
be affected by other events. So, each mutation on a branch in the phylogeny contributes
to both splits (A,B) and (B,A). We hence take the geometric mean

√
wA · wB such

that in case of asymmetric splits, the lower weight diminishes the total weight, and only
symmetric splits receive a high overall weight.

Considering different scenarios that would affect the observation of common sub-
strings in the C-DBG, some of which are illustrated in Figure 1, we observe beneficial
behavior of the weighting scheme in almost all cases: A single nucleotide variation
would cause a bubble in the C-DBG composed of two unitigs of similar length k each—a
symmetric scenario in accordance with the above weighting scheme. Both an insertion
or deletion of length l would cause an asymmetric bubble and thus asymmetric weights
k− 1 and l+ k− 1. Here, the geometric mean has the positive effect to weaken the im-
pact of the length of the event on the overall split weight. For both a transposition or
inversion of arbitrary length, the color set of the segment itself remains the same, and
only those k-mers spanning the breakpoint regions would be affected, inducing sym-
metric bubbles in accordance with the weighting scheme. Lateral gene transfer is
challenging phylogenetic reconstruction, because a subsequence of length l that is con-
tained in both the group A containing the donor genome as well as the target genome b
from the other genomes B := G\A can easily be misinterpreted as a signal to separate
A ∪ {b} from the remainder B\{b} instead of separating A from B, where the strength
of this erroneous signal grows with l. Our approach will be affected only little: On the
one hand, the unitig corresponding to the copied subsequence has color set A∪ {b} and
thus contributes to an ordered split (A ∪ {b}, B\{b}) of weight l − k + 1. On the other
hand, because the transfer does not remove any subsequence in the donor sequence,
only those k k-mers spanning the breakpoint region will be affected, inducing a unitig
with color set B\{b} whose length is independent of l. Missing or additional data
may arise from genomic segments that are difficult to sequence or assemble and might
thus be missing in some assemblies, due to the usage of different sequencing protocols,
assembly tools, or filter criteria, or simply because some input files contain plasmid or
mitochondrial sequences and others do not. This does not affect our approach, because
additional sequence induces unitigs and thus an ordered split, but the absence of se-
quence does not induce any split, not even due to breakpoint regions, because in such
cases usually whole reads, contigs or chromosomes are involved. Thus, the weight of
the additional ordered split would be multiplied by zero for the absent split, resulting
in a total weight of zero. Copy number changes can only be detected if the change
is from one to two or vice versa, adding or removing k-mers spanning the juncture of
the two copies. Beyond that, because the k-mer counts are not captured, our approach
is not sensible for copy number changes.

In practice, the structure of a C-DBG is much more complex than the simplified
picture we draw above. Nevertheless, using the geometric yields high accuracy of the
approach compared to other methods.

5

AAC
GTT

{a, b, c, d}

↗↙
↘↖

ACG
CGT
{a, b}

↔
CGC
GCG
{a, b}

↔
GCA
TGC
{a, b}

ACT
AGT
{c, d}

↔
CTC
GAG
{c, d}

↔
TCA
TGA
{c, d}

↘↖
↗↙

CAA
TTG

{a, b, c, d}

(a) Single nucleotide variation in genomes a = b = AACGCAA and c = d = AACTCAA. The
induced ordered split {a, b} and its inverse {c, d} of weight k = 3 each yield a corresponding
unordered split {{a, b}, {c, d}} of weight

√
k k = k = 3.

AAC
GTT

{a, b, c, d}

↗↙
↘↖

ACG
CGT
{a, b}

↔
CGG
CCG
{a, b}

↔
GG ·
·CC
{a, b}

↔ · · · ↔
·CA
TG ·
{a, b}

↔
CAC
GTG
{a, b}

↔
ACA
TGT
{a, b}

ACC
GGT
{c, d}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
CCA
TGG
{c, d}

↘↖
↗↙

CAA
TTG

{a, b, c, d}

(b) Insertion/deletion of length l = 4 (or longer, indicated by dots) in genomes a = b =
AACGG · · ·CACAA and c = d = AACCAA. The induced ordered split {a, b} of weight
l + k − 1 = l + 2 and its inverse {c, d} of constant weight k − 1 = 2 yield a corresponding
unordered split {{a, b}, {c, d}} of weight

√
(l + k − 1) (k − 1) =

√
2(l + 2).

AAC
GTT

{a, b, c, d}

↗↙
↘↖

ACG
CGT
{a, b}

↔
CGG
CCG
{a, b}

ACT
AGT
{c, d}

↔
CTG
CAG
{c, d}

←−−−−−−−−−−−−−−
−−−−−−−→

↘↖ GG ·
·CC

{a, b, c, d}
↔ · · · ↔

·CA
TG ·
{a, b, c, d}

↗↙

←−−−−−−−−−−−−−−−−−−−−−→

CAC
GTG
{a, b}

↔
ACA
TGT
{a, b}

CCC
GGG
{c, d}

↔
CCA
TGG
{c, d}

↘↖
↗↙

CAA
TTG

{a, b, c, d}

(c) Inversion of length l = 4 (or longer, indicated by dots) between genomes a = b =
AACGG · · ·CACAA and c = d = AACTG · · ·CCCAA. The induced ordered split {a, b}
and its inverse {c, d} of constant weight 2(k−1) = 4 each yield a corresponding unordered split
{{a, b}, {c, d}} of constant weight

√
2(k − 1) 2(k − 1) = 2(k − 1) = 4.

AGG
CCT
{a}

↔
GG ·
·CC
{a, b}

↔ · · · ↔
·CA
TG ·
{a, b}

↔
CAG
CTG
{a}

↗↙ ↘↖
ACG
CGT
{b}

↔
CGG
CCG
{b}

CAC
GTG
{b}

↔
ACA
TGT
{b}

AAC
GTT
{b, c, d}

←−−−−−−−−−−−−−−−−−−→
↗↙ ACC

GGT
{c, d}

←→
CCA
TGG
{c, d}

←−−−−−−−−−−−−−−−−−−→
↘↖ CAA

TTG
{b, c, d}

(d) Lateral gene transfer of length l = 4 (or longer, indicated by dots) from genome
a = AGG · · ·CAG to b = AACGG · · ·CACAA but not to c = d = AACCAA. Apart
from mutation-independent splits for the boundaries, and the trivial split {b} (without its in-
verse), the split {a, b} of weight l − k + 1 = l − 2 and its inverse {c, d} of constant length
k − 1 = 2 are induced, yielding a corresponding unordered split {{a, b}, {c, d}} of weight√

(l − k + 1) (k − 1) =
√

2(l − 2).

Figure 1: Toy examples for different mutations within four genomes a, b, c and d to
illustrate their effect on a C-DBG with k = 3. Each vertex of the C-DBG is labelled
with both its k-mer and the reverse complement (in arbitrary order), as well as its color
set. Due to the small value of k, the C-DBG contains edges corresponding to pairs
of overlapping k-mers that are not contained in the given strings. For the purpose of
clarity, these are not drawn. Mutations are highlighted in bold and/or italics.

6

Postprocessing

Even though the geometric mean filters out many asymmetric splits, the total number
of positively weighted splits can be many-fold higher than 2n− 3, the number of edges
in a fully resolved tree for n genomes. Unfortunately, the observed distribution of
split weights did not indicate any obvious threshold to separate high-weighted splits
from low-weighted noise. Nevertheless, a rough cutoff can safely be applied by keeping
only the t highest weighting splits, e.g., in our evaluation t = 10n has been used for
all datasets. Additionally, we evaluated two filtering approaches: greedy weakly, i.e.,
greedily approximating a maximum weight subset that is weakly compatible and can
thus be displayed as a network, and greedy tree, i.e., greedily approximating a maximum
weight subset that is compatible and thus corresponds to a tree. To this end, we used
the corresponding options of the software tool SplitsTree [8, 10]. As we will demonstrate
in the Results section, in particular the tree filter proved to be very effective in practice.

Run time complexity

Consider n genomes of length O(m) each. In Bifrost, the compacted C-DBG is built by
indexing a k-mer by its minimizer, i.e., a substring with the smallest hash value among
all substrings of length g in a k-mer. According to the developers of Bifrost (personal
communication), inserting a k-mer and its color takes O(4(k−g)log(n)) time in the worst
case. In practice, however, each of the O(mn) k-mers can be inserted in O(log(n)) time,
and hence, building the complete C-DGB takes O(mn log(n)) time. While iterating over
all positions in the graph, we verify whether a unitig has to be split due to a change in
the color set. Because each of the n genomes adds O(m) color assignments to the graph,
we have to do O(mn) color comparisons in total, which does not increase the overall
complexity.

Each genome contributes to at most O(m) ordered splits. So the sum of the cardi-
nality of all ordered splits, i.e., the total length of all splits in Algorithm 1, is O(mn).
Hence, the insertion and lookups of all S in trie T takes |S| time each and O(mn) in
total, and the number of terminal vertices of T, i.e., the final number of unordered
splits, is in O(mn), too. For ease of postprocessing, splits are ordered by decreasing
weight, increasing the run time for split extraction to O(mn log(mn)), or O(mn log(n))
to output only the t, t ∈ O(n), highest weighting splits, respectively.

4 Results

In this section, we present several use cases in order to exemplify robustness and different
other characteristics of our approach SANS. We compare to the following other whole-
genome based reconstruction tools.

MultiSpaM [3] samples a constant, high number of small, gap-free alignments of
four genomes. The implied quartet topologies are combined to an overall tree topology.
To the best of our knowledge, all other tools are distance-based and rely on pairwise
comparisons. Interestingly, although all methods are based on lengths or numbers of
common subsequences or patterns, their results differ considerably from those of SANS.
Co-phylog [16] analyses each genome in terms of certain patterns (C-grams, O-grams)
and compares their characteristics (context). In andi [6], enhanced suffix arrays are
used to detect pairs of maximal unique matches that are used to anchor ungapped local
alignments, based on which pairwise distances are computed. CVTree3 [20] corrects k-,
k−1, and k−2-mer counts by subtracting random background of neutral mutations using
a (k−2)-th Markov assumption. In FSWM [11], matches of patterns including match
and don’t-care position are scored and filtered to estimate evolutionary distances.

7

0 10 20 30 40 50

1e
+

04
1e

+
05

1e
+

06
1e

+
07

1e
+

08

rank

sp
lit

 w
ei

gh
t (

lo
g

sc
al

e)

●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

● ● ●
● ●

●
●

● ●

● ● ●

● ●

● ● ● ● ●
●

●

●

arithmetic mean, correct
arithmetic mean, false
geometric mean, correct
geometric mean, false

(a) Comparison of accuracy for using arith-
metic or geometric mean for combining
weights of splits and their inverse each. Splits
have been sorted by the combined weight and
the 50 highest weighting splits are shown.
Color indicates whether a split agrees with the
reference [15].

ana

mel

sec

sim
ereyakgri

vir

moj

wil per
pse

(b) Visualization of greedily extracted weakly
compatible subset of splits using SplitsTree [8,
10]. As by default, geometric mean has been
used for combining weights of splits and their
inverse each.

Figure 2: Reconstructed phylogenetic splits on the Drosophila dataset [15].

Unless stated otherwise, a k-mer length of 31 has been used for constructing the
C-DBG (Bifrost default) for SANS. Accuracy has been measured in terms of topological
Robinson-Foulds distance, i.e., a predicted edge or split is correct if and only if the
reference tree contains an edge that separates the same two sets of leaves. All tools have
been run on a single 2 GHz processor and times are given in CPU hours (user time).

4.1 Drosophila

This dataset comprises assemblies from 12 species of the genus drosophila obtained from
the database FlyBase (flybase.org, latest release before Feb. 2019 of all-chromosome-
files each) [15].

Although being “simple” in the sense that it contains only a small number of
genomes, its analysis exemplifies the following aspects: (i) The effectiveness of our
method for medium sized input files: for a total of more than 2 161 Mbp (180 Mbp
on average), SANS inferred the correct tree within 168 minutes and using up to 25 GB
of memory. We ran CVTree3 with various values of k. In the best cases (k = 12 and
13), 7 of 9 internal edges have been inferred correctly taking 95 and 162 minutes, and
up to 26 and 87 GB of memory, respectively. (For k = 11, only 4 internal edges were
correct, and for k > 13, the computation ran out of memory.) Both Co-phylog and
FSWM did not finish within 48 hours, and both MultiSpaM and andi could not pro-
cess this dataset successfully. (ii) As can be seen in Figure 2a, the tendency of correct
splits having a high weight is stronger when combining splits and their inverse using the
geometric mean than using the arithmetic mean. (iii) Even though the reconstruction
shown in Figure 2b contains 45 splits—in comparison to 21 edges in a binary tree—, the
visualization is close to a tree structure.

8

0 50 100 150 200

0
2

4
6

8
10

#assemblies

tim
e

(h
ou

rs
)

● ● ● ●

●

FSWM
Co−phylog
andi
SANS

(a) Running time for computing phylogenies
on random subsamples. Times for SANS in-
clude DBG construction with k = 31, split
extraction and agglomeration.

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

recall

pr
ec

is
io

n

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

●

● ● ●

●

● ● ● ● ●

● ● ● ●

● ●

● ●

● ● ● ● ●

●

●

●

● ●

●

●

● ● ●

●

● ● ● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

● ● ● ●

● ● ●

●

●

● ● ●

● ● ●

●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

● ●

● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●

● ●

● ● ● ● ● ●

● ●

● ●

●

●

● ●

● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ●

●

●

● ● ●

● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ●

●

● ●

●

●

● ●

●

● ● ●

● ●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

● ● ● ●

● ● ● ●

●

●

● ●

● ● ●

●

● ● ● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ●

● ● ● ●

●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

● ●

● ●

● ●

● ●

● ●

● ● ●

●

●

● ● ● ●

●

● ●

● ● ● ●

● ● ●

●

● ●

● ● ● ● ●

● ● ●

●

● ● ● ●

●

●

●

●

● ● ● ●

●

●

●

● ● ●

● ● ●

●

●

● ●

● ● ● ●

●

●

● ●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

●

● ●

●

● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

●

● ● ●

● ●

●

●

●

● ● ●

● ●

● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

● ●

●

● ● ● ● ● ●

●

● ●

● ●

● ●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

k=21
k=31
k=45
k=63
greedy tree
greedy weakly
Co−phylog
FSWM
andi

(b) For different values of k, weakly compat-
ible subsets (triangles) and a trees (bullets)
have been greedily extracted. For varying val-
ues of i, only the i highest weighting splits
have been considered as “positives” to deter-
mine precision and recall each (lines).

Figure 3: Comparison of running time and accuracy of different methods on the ParaC
dataset [18] comprising assemblies of n = 220 genomes.

4.2 Salmonella enterica Para C

This dataset is of special interest as the contained assemblies from 220 genomes of
different serovars within the Salmonella enterica Para C lineage include that of an
ancient Paratyphi C genome obtained from 800 year old DNA [18], the placement of
which is especially difficult due to missing data. As reference, we consider a maximum-
likelihood based tree on nonrecombinant SNP data [18, Figure 5a].

We studied the running time behaviour of the different methods for random subsam-
ples of increasing size. As shown in Figure 3a, for this high number of closely related
genomes, we observed a super-linear running time of up to 41 minutes for andi, about 5
hours for Co-phylog, and up to 43 hours for FSWM, whereas the reconstruction of SANS
shows a linear increase (Pearson correlation coefficient 0.9994) to about 10 minutes. The
memory requirement of both SANS and Co-phylog remained below 0.5 GB, whereas andi
required about 1 GB, and FSWM required up to about 17 GB. We ran CVTree3 with
ten values of k between 5 and 27, but none of the resulting trees contained more than
5 correct internal edges. For MultiSpaM, we increased the number of sampled quartets
from the default of 106 to up to 108, which increased the running time from about one
hour to about 66 hours. Both recall and precision improved but were still below 0.2 for
internal edges.

The accuracy of the reconstructions with respect to the reference is visualized in
Figure 3b. In particular, we observe: (i) the split reconstruction by SANS and the tree
inferred by Co-phylog are comparably accurate and both are more accurate than the
FSWM and andi tree, (ii) greedily extracting high weighting splits to filter for a tree
selects correct splits while discarding false splits with very high precision, (iii) greedily
extracting high weighting splits to filter for a weakly compatible subset also selects
correct splits, but, as expected, has a lower precision as the tree filter, because more
splits are kept than there are edges in a tree, and (iv) the results of SANS are robust
for a wide range of k from 21 to 63.

9

0 500 1000 1500

0
50

10
0

15
0

20
0

25
0

30
0

#assemblies

tim
e

(m
in

)

●

●

●

●

●

● ● ● ● ●

0
20

40
60

80

pe
ak

 m
em

or
y

(G
B

)

●

●

time
memory
time C−DBG
memory C−DBG

(a) Running time and peak memory usage of
SANS. Values including C-DBG construction,
split extraction and agglomeration, as well as C-
DBG construction only are given.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec

is
io

n

●

●

●

● ●

●

/
/
/
/
/
/
/

greedy tree, 250 assemblies
greedy tree, 500 assemblies
greedy tree, 1000 assemblies
greedy tree, 1500 assemblies
Co−phylog, 250 assemblies
FSWM, 250 assemblies
andi, 250 assemblies
(all edges / internal only)

(b) Accuracy with respect to the reference
phylogeny [19, Fig. 2A].

Figure 4: Efficiency and accuracy on the Salmonella enterica dataset [19]. Values have
been averaged over processing two random subsamples each.

4.3 Salmonella enterica subspecies enterica

In comparison to the ParaC dataset, the 2 964 genomes studied by Zhou et al. [19]
are not only a larger but also a more diverse selection of Salmonella enterica strains.
As reference, we consider a maximum-likelihood based tree on 3 002 concatenated core
genes [19, Figure 2A, supertree 3].

The probability to observe long k-mers that are conserved in such a high number
of more diverse genomes is lower than for the previous datasets. Hence, we selected a
smaller k-mer length of k = 21. To assess the efficiency and accuracy for increasing
number of genomes, we sampled subsets of up to 1 500 assemblies. To process the
smallest considered subsample of size 250, andi took about 110 minutes, whereas Co-
phylog and FSWM took already more than 9 and 50 hours, respectively, and MultiSpam
was not able to process this dataset at all. We ran CVTree3 with all values of k between
6 and 14, but in the best case (k = 8), the resulting tree contained only 33 (of 247)
correct internal edges such that we did not further consider CVTree3 in our evaluation.

The memory usage for split extraction and agglomeration clearly dominates those of
the C-DBG construction by Bifrost such that processing the complete dataset was not
possible with our current implementation of SANS. Figure 4a shows a slightly super-
linear runtime and memory consumption of up to about 300 minutes and 80 GB for
processing 1 500 assemblies. As can be seen in Figure 4b, both precision and recall vary
only slightly for this wide range of input size. Keeping in mind that a final split of high
weight strictly requires the observation of both unordered pairs, this is a quite promising
result for this first investigation of the methodology. In particular, whereas for distance-
based methods, all leaf-edges are inferred by construction and can never be false, a trivial
split separating a leaf from the remaining tree, requires not only some sequence unique
to the leaf but also sequence that is contained in all other n−1 genomes. Also note that
measuring accuracy by counting correct and false splits corresponding to the topological
Robinson-Foulds distance has to be interpreted with care. A single misplaced leaf breaks
all splits between its correct and actual location. However, this is a desired behaviour in
this context, because, in a phylogeny of several hundred genomes, each genome should
at least be located in the correct area, whereas the complete misplacement even of a
single genome can easily lead to wrong biological conclusions.

10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec

is
io

n
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●●●

● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●

●●●

●●

●

●

●

●

/
/
/
/
/
/

SANS
SANS, greedy tree
CVTree3 (k=8)
co−phylog
FSWM
MultiSpaM
(w.r.t. ref. 1 / ref. 2)

(a) Accuracy of different tools w.r.t. two
reference trees [5, Figures 3 and 4] shown
in blue and red, respectively. For SANS,
for varying values of i, only the i high-
est weighting splits have been considered
as “positives” to determine precision and
recall each.

AR158.fa

MpV-12T.fa

OlV1.fa

OtV2.fa
OtV1.fa

OtV5.fa

OtV6.fa

MpV1.fa

MpV-PL1.fa

MpV-SP1.fa

BpV2.fa
BpV1.fa

PBCV1.fa

(b) Visualization of greedily extracted weakly
compatible subset of splits using SplitsTree [8,
10].

Figure 5: Reconstruction results on the prasinovirus dataset [5].

4.4 Prasinoviruses

Viral genomes are short and highly diverse—posing the limits of phylogenetic recon-
struction based on sequence conservation. Here we consider complete genomes of 13
prasinoviruses, which are relatively large (213 Kbp on average) [5]. As references, we
consider two trees reported in the original study, one of which is based on the pres-
ence and absence of shared putative genes [5, Figure 3], and the other is a maximum
likelihood estimation based on a marker gene (DNA polymerase B) [5, Figure 4].

Due to the small size of the input, it could be processed by all tools, where time
and memory consumption were negligible. Only andi could not process this dataset
successfully (“very little homology was found”). Results are shown in Figure 5a. The
visualization of the predicted splits in Figure 5b exemplifies the explanatory power of
the split framework. While main separations supported by both reference trees are
recognizable as strong splits in the net, separations in which the two reference trees
disagree are also shown as weakly compatible splits.

4.5 Vibrio cholerae

The dataset comprises 22 genomes from the species Vibrio cholerae, 7 of which have
been sequenced from clinical samples and are labelled “pandemic genome” (PG), and
the remaining 15 have been sequenced from non-clinical samples and are labelled “en-
vironmental genome” (EG) [14, primary dataset]. As already observed in the original
study, for these genomes, it is difficult to reconstruct a reliable, fully resolved tree. Nev-
ertheless, representing the phylogeny in form of splits shows a strong separation of the
pandemic from the environmental group. The phylogeny presented by the authors of the
original study [14, Supplementary Figure 1a] is based on 126 099 sites extracted from
alignment blocks.

Comparing our reconstruction results to the reference, both shown in Figure 6, we
make two observations. (i) Our reconstruction also separates the pandemic from the
environmental group, and agrees to the reference in further sub-groups. (ii) When

11

N16961

O395

GBE0428

GBE1173

GBE1114

TMA21

62339

HE48

CT536993

HE09

VL426

RC385

GBE1068

GBE0658

12129

LMA38944

Bgd8

MQ1795
MJ1236

Bgd1
Bgd5

PGEG

(a) Visualization of greedily extracted weakly compat-
ible subset of splits. For taxa highlighted in bold, only
read data was available on NCBI (input option -s of
Bifrost has been used); for Taxon TM1107980, no data
was available on NCBI (February 2019).

PG

EG
12129

LMA38944

CT536993

GBE0658

GBE1068

RC385

albensisVL426

HE09

TM1107980

HE48

GBE1173GBE1114

TMA21

62339

GBE0428

Bgd1

MQ1795
MJ1236

O395

N16961
Bgd5

Bgd8

MQ1795
N16961
MJ1236

O395

Bgd1
Bgd5
Bgd8

12129

LMA38944

CT536993

GBE0658

GBE1068

RC385
albensisVL426

HE09

TM1107980

HE48

GBE1114
GBE1173

TMA21

62339

GBE0428

(b) Reference phylogeny. Figure
reprinted from Shapiro et al. [14,
Supplementary Figure 1a].

Figure 6: Splits reconstructed for the V. cholerae dataset [14] by SANS (left) and by
Shapiro et al. [14] (right) visualized with SplitsTree [8, 10].

collecting the sequence data, for some of the genomes, we found assemblies, whereas for
others, only read data was available. Because the used C-DBG implementation Bifrost
supports a combination of both types as input, we were able to reconstruct a joint
phylogeny without extra effort or obvious bias in the result.

5 Discussion and Outlook

We proposed a new k-mer based method for phylogenetic inference that neither relies
on alignments to a reference sequence nor on pairwise or multiple alignments to infer
markers. Prevailing whole-genome approaches perform pairwise comparisons to deter-
mine a quadratic number of distances to finally infer a linear number of tree edges. In
contrast, in our approach, the length of conserved sequences is extracted from a colored
de-Bruijn graph to first infer signals for phylogenetic sub-groups. These signals are then
combined with a symmetry assumption to weighted phylogenetic splits. Evaluations on
several real datasets have proven comparable or better efficiency and accuracy compared
to other whole-genome approaches. Our results indicate robustness in terms of k-mer
length, as well as the taxonomic order, size and number of the genomes. The analysis
of a dataset composed of both assembly and read data indicated also robustness in this
regard—an important feature, which we want to investigate further.

A distinctive feature of the proposed methodology is the direct association of a
phylogenetic split to the conserved subsequences it has been derived from, which is
not possible for distance-based methods. We plan to enrich our implementation with
this valuable possibility to allow the analysis of characteristic subsequences of identified
subgroups, or subsequences inducing phylogenetic splits off the main tree, e.g. horizontal
gene transfer. Here, the applied generalization of trees plays an important role, e.g.,
circular split systems are more strict than weakly compatible sets and might thus be a
promising alternative to be studied further.

Finally, we want to emphasize the simplicity of the new approach as presented here.

12

At its current state, apart from iterating a colored de-Bruijn graph and agglomerating
unitig lengths, the only elaborate ingredient so far is the symmetry assumption realized
by applying the geometric mean. We believe that the general approach still harbors much
potential to be further refined by, e.g., statistical models, advanced data structures, pre-
or postprocessing, to further increase its accuracy and efficiency.

Acknowledgements

I thank Guillaume Holley for support on Bifrost, Nina Luhmann for pointers to data
sets, and Andreas Rempel for programming assistance.

References

[1] Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. Rainbowfish: a succinct
colored de Bruijn graph representation. In International Workshop on Algorithms
in Bioinformatics (WABI 2017), volume 88, pages 18:1–18:15. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017.

[2] Hans-Jürgen Bandelt and Andreas WM Dress. Split decomposition: a new and
useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics
and Evolution, 1(3):242–252, 1992.

[3] Thomas Dencker, Chris-André Leimeister, Michael Gerth, Christoph Bleidorn, Sagi
Snir, and Burkhard Morgenstern. Multi-SpaM: a maximum-likelihood approach to
phylogeny reconstruction using multiple spaced-word matches and quartet trees. In
RECOMB Comparative Genomics, pages 227–241. Springer, 2018.

[4] Huan Fan, Anthony R Ives, Yann Surget-Groba, and Charles H Cannon. An assem-
bly and alignment-free method of phylogeny reconstruction from next-generation
sequencing data. BMC Genomics, 16(1):522, 2015.

[5] Jan Finke, Danielle Winget, Amy Chan, and Curtis Suttle. Variation in the genetic
repertoire of viruses infecting micromonas pusilla reflects horizontal gene transfer
and links to their environmental distribution. Viruses, 9(5):116, 2017.

[6] Bernhard Haubold, Fabian Klötzl, and Peter Pfaffelhuber. andi: Fast and accurate
estimation of evolutionary distances between closely related genomes. Bioinformat-
ics, 31(8):1169–1175, 2014.

[7] Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom filter trie: an alignment-
free and reference-free data structure for pan-genome storage. Algorithms for Molec-
ular Biology, 11(1):3, 2016.

[8] Daniel H Huson, Tobias Kloepper, and David Bryant. SplitsTree 4.0-computation
of phylogenetic trees and networks. Bioinformatics, 14:68–73, 2008.

[9] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De
novo assembly and genotyping of variants using colored de Bruijn graphs. Nature
Genetics, 44(2):226, 2012.

[10] Tobias H Kloepper and Daniel H Huson. Drawing explicit phylogenetic networks
and their integration into SplitsTree. BMC Evolutionary Biology, 8(1):22, 2008.

13

[11] Chris-André Leimeister, Salma Sohrabi-Jahromi, and Burkhard Morgenstern. Fast
and accurate phylogeny reconstruction using filtered spaced-word matches. Bioin-
formatics, 33(7):971–979, 2017.

[12] Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E Belk,
Robert Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher. Succinct
colored de Bruijn graphs. Bioinformatics, 33(20):3181–3187, 2017.

[13] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425,
1987.

[14] B Jesse Shapiro, Ines Levade, Gabriela Kovacikova, Ronald K Taylor, and Salvador
Almagro-Moreno. Origins of pandemic Vibrio cholerae from environmental gene
pools. Nature Microbiology, 2(3):16240, 2017.

[15] Jim Thurmond, Joshua L Goodman, Victor B Strelets, Helen Attrill, LSian Gra-
mates, Steven J Marygold, Beverley B Matthews, Gillian Millburn, Giulia Anton-
azzo, Vitor Trovisco, Thomas C Kaufman, Brian R Calvi, and the FlyBase Con-
sortium. FlyBase 2.0: the next generation. Nucleic Acids Research, 47(D1):D759–
D765, 2018.

[16] Huiguang Yi and Li Jin. Co-phylog: an assembly-free phylogenomic approach for
closely related organisms. Nucleic Acids Research, 41(7):e75–e75, 2013.

[17] Xiaoyu Yu and Oleg N Reva. SWPhylo–a novel tool for phylogenomic inferences
by comparison of oligonucleotide patterns and integration of genome-based and
gene-based phylogenetic trees. Evolutionary Bioinformatics, 14:1176934318759299,
2018.

[18] Zhemin Zhou, Nabil-Fareed Alikhan, Martin J Sergeant, Nina Luhmann, Cátia Vaz,
Alexandre P Francisco, João André Carriço, and Mark Achtman. GrapeTree: visu-
alization of core genomic relationships among 100,000 bacterial pathogens. Genome
Research, 28(9):1395–1404, 2018.

[19] Zhemin Zhou, Inge Lundstrøm, Alicia Tran-Dien, Sebastián Duchêne, Nabil-
Fareed Alikhan, Martin J Sergeant, Gemma Langridge, Anna K Fotakis, Satheesh
Nair, Hans K Stenøien, Stian S. Hamre, Sherwood Casjens, Axel Christophersen,
Christopher Quince, Nicholas R. Thomson, François-Xavier Weill, Simon Y.W. Ho,
M. Thomas P. Gilbert, and Mark Achtman. Pan-genome analysis of ancient and
modern Salmonella enterica demonstrates genomic stability of the invasive para c
lineage for millennia. Current Biology, 28(15):2420–2428, 2018.

[20] Guanghong Zuo and Bailin Hao. CVTree3 web server for whole-genome-based
and alignment-free prokaryotic phylogeny and taxonomy. Genomics, Proteomics &
Bioinformatics, 13(5):321–331, 2015.

14

