
Bielefeld University

Master Thesis

Concept, design and initial
implementation of the de.NBI Cloud

Portal

Author:

Maximilian Wiens

Supervisors:

Dr. Alexander Sczyrba

Dipl-Inform. Björn Fischer

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science

in the Informatics in the Natural Sciences (NWI)

Faculty of Technology,

AG Computational Metagenomics

and

Center for Biotechnology (CeBiTec),

Bioinformatics Resource Facility (BRF)

October 30, 2017

http://www.uni-bielefeld.de
Department or School Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)

Declaration of Authorship / Erklärung

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit selbständig verfasst und

gelieferte Datensätze, Zeichnungen, Skizzen und graphische Darstellungen selbständig

erstellt habe. Ich habe keine anderen Quellen als die angegebenen benutzt und habe die

Stellen der Arbeit, die anderen Werken entnommen sind - einschl. verwendeter Tabellen

und Abbildungen - in jedem einzelnen Fall unter Angabe der Quelle als Entlehnung

kenntlich gemacht.

Bielefeld, den

Unterschrift:

Printed on non-aging, wood-free, and acid-free paper.

i

“It is unworthy of excellent men to lose hours like slaves in the labor of calculation which

could be relegated to anyone else if machines were used.”

Gottfried Wilhelm von Leibnitz

BIELEFELD UNIVERSITY

Abstract

Faculty of Technology,

AG Computational Metagenomics

and

Center for Biotechnology (CeBiTec),

Bioinformatics Resource Facility (BRF)

Master of Science

Concept, design and initial implementation of the de.NBI Cloud Portal

by Maximilian Wiens

The amount of data produced in life sciences is continuously rising and is impossible

to analyze on local computers. For that reason the German network for bioinformatics

de.NBI is establishing a cloud computing environment called de.NBI Cloud with the

prospect to be integrated into the European life sciences network Elixir. For that process

and for the interconnection of compute centers a novel cloud platform “de.NBI Cloud

Portal” was developed. It utilizes Elixir’s authentication and authorization infrastructure

and connects five OpenStack-driven compute centers together in an abstract manner.

This thesis deals with requirements, design and initial implementation of the de.NBI

Cloud Portal.

http://www.uni-bielefeld.de
Research Group Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)
Research Group Web Site URL Here (include http://)

Acknowledgements

I would like to thank...

Dr. Alexander Sczyrba and Björn Fischer for the suggestion to write this the-

sis and for showing me the right direction, Peter Belmann for providing me with useful

information, discussion and helpful advice, navigating me through the challenging parts

of this work, Dr. Michal Procházka for explaining how Perun works, and providing

bugfixes, Tatyana Polle for proofreading this thesis, Xenia Wiens for being patient

with me and Theodor for sweetening my everyday life.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

Abbreviations ix

1 Introduction 1

1.1 Motivation . 1

1.2 Structure of this work . 2

2 Cloud computing and IAAS fundamentals 3

2.1 Definition of the “cloud” term . 3

2.1.1 Services provided by the cloud . 4

2.1.2 Difference between IAAS and bare-metal deployment 5

2.2 Authentication with single sign-on . 6

2.2.1 SSO authentication mechanisms 6

2.2.2 Benefits and risks of single sign-on 7

2.3 Accounting and supervision . 7

2.3.1 The purpose of accounting and resource allocation 8

2.3.2 Calculation of resource costs . 8

2.3.3 Amazon Elastic Compute Cloud Accounting example 9

2.4 Cloud provider overview . 10

2.5 OpenStack - an IAAS provider . 10

2.5.1 Structure of OpenStack . 10

2.5.2 Sample Horizon use case . 11

2.5.3 Keystone in detail . 12

2.5.4 OpenStack API usage example with Python 14

3 Related work 17

3.1 Federated OpenStack . 17

v

Contents vi

3.2 CLIMB – Bryn . 18

4 Analysis of the de.NBI project 20

4.1 General purpose and core functionality . 20

4.2 Use cases and studies . 21

4.2.1 Basic role categories . 21

4.2.2 User stories . 23

5 Project setup and design 26

5.1 Development workflow of de.NBI Portal 26

5.1.1 Versioning . 26

5.1.2 Documentation . 28

5.1.3 Process mapping . 29

5.2 Component design . 29

5.2.1 Components architecture overview 29

5.3 Shibboleth and Elixir AAI . 30

5.3.1 Single Sign-On with Shibboleth . 30

5.3.2 Elixir AAI . 31

5.3.3 Elixir Authentication . 32

5.4 Elixir’s Perun . 34

5.4.1 Propagation service . 35

5.4.2 Web API and Service User . 36

5.5 Portal core . 36

5.5.1 Purpose . 36

5.5.2 Basic components . 36

5.5.3 API design . 36

5.5.4 Session handling with Shibboleth 37

5.5.5 Perun communication . 37

5.5.6 Compute Center Connection . 38

5.6 Portal webapplication . 38

5.6.1 Purpose . 38

5.6.2 Schematic overview . 38

5.6.3 Interactions with Perun and Portal core 38

5.7 Portal client . 39

5.7.1 Purpose . 39

5.7.2 Perun endpoint . 40

5.8 Cloud center VM provisioning . 40

5.8.1 Overview provisioning techniques 40

5.8.2 Port Mapping . 42

5.9 Portal infopages . 42

5.9.1 Purpose . 42

5.10 Isolation and component communication 43

5.10.1 Microservice architecture . 43

5.10.2 URL mapping and SSL offloading 44

5.10.3 Developement environment . 44

5.10.4 Production environment and deployment 45

Contents vii

6 Basic implementation of the Project 46

6.1 Basic implementation of the de.NBI Portal 46

6.2 Shibboleth configuration . 46

6.3 Portal core . 49

6.3.1 REST API framework comparison 49

6.3.2 Django components and Django REST Framework 50

6.3.3 Shibboleth authentication method 51

6.3.4 Data modelling . 52

6.3.5 Deployment . 53

6.4 Portal Webapplication . 53

6.4.1 Angular components . 53

6.4.2 Data modeling . 54

6.4.3 Perun connection service . 54

6.4.4 Portal core service . 54

6.4.5 Frontend components . 55

6.5 Portal client . 55

6.5.1 JSON-RPC benefits over REST . 55

6.5.2 Flask framework . 56

6.6 Portal infopages . 57

6.7 Deployment . 58

6.7.1 Automatic container build . 58

6.7.2 reverse Proxy . 58

6.7.3 Docker encapsulating with LXC containers 59

6.7.4 Deplyoment without containers. 59

7 Discussion 61

7.1 Look back, conclusion . 61

7.2 Outlook . 62

A Appendix A 63

Bibliography 66

List of Figures

1.1 Scope of this work . 2

2.1 Cloud layers . 5

2.2 OpenStack structure . 11

2.3 OpenStack dataflow . 13

3.1 CLIMB overview . 18

5.1 Shibboleth authentication flow . 31

5.2 Elixir AAI structure . 32

5.3 Elixir AAI authentication . 33

5.4 de.NBI Portal schematic . 39

5.5 Microservices of the de.NBI Portal . 43

6.1 Django information flow . 51

6.2 Project application model . 52

A.1 eduGAIN memberships . 63

A.2 Simple Horizon use case . 64

A.3 Portal screenshot . 65

viii

Abbreviations

ACL Access Control List

API Application Programming Interface

AWS Amazon Web Services

BMBF German Federal Ministry of Education and Research

BPMN Business Process Modelling and Notation

CLI Command Line Interface

CMS Content Management System

CSRF Cross Site Request Forgery

DFN German Research Network

EC2 Elasic Compute Cloud

GUI Graphic User Interface

GPU Graphic Processing Unit

HRZ University Computer Center

HTTP Hypertext Transfer Protocol

IAAS Infrastructure As A Service

IdP Identity Provider

IP Internet Protocol

NIST National Institute of Standards and Technology

OMG Object Modeling Group

OS Operating System

PAAS Platform As A Service

REST Representational State Transfer

RIPE NCC Réseaux IP Européens Network Coordination Centre

SAAS Software As A Service

SQL Structured Query Language

ix

Abbreviations x

SSH Secure Shell

SSL Secure Sockets Layer

SSO Single Sign-On

VM Virtual Machine

XAAS X (anything) as a Service

Chapter 1

Introduction

1.1 Motivation

The amount of data produced in life sciences is constantly rising. Scientists produce

terabytes of sequences, spectrometric images, and similar data. For example, the

“Illumina NovaSeq 6000” high throughput sequencing platform generates over 6 terabyte

(TB) of sequence data in just two days1. The analysis of enormous amount of data on

scientists’ local computers take a long time or is impossible. However, only a small part

of workgroups in Germany have access to large compute clusters for data processing. For

that reason, the Federal Ministry of Education and Research (BMBF) started a project

to tackle the resource problem in life sciences.

The project named de.NBI (German network for bioinformatics) was founded in 2013.

de.NBI should provide training courses and conferences, initiate collaborations and

establish the computational cloud for scientists. In 2016 additional funding for the

establishment of a cloud computing environment (de.NBI cloud) was approved.

Five data centers (Figure 1.1) will provide compute power for life science workgroups

in Germany [11][3]. The compute power should be aggregated to the de.NBI cloud.

Scientists will be able to upload, store and process their data. Nevertheless, to efficiently

utilize the cloud resources, advanced knowledge in informatics and experience in cloud

computing is necessary. For easier access, a central portal with an easy to use interface

should be developed.

1See https://www.illumina.com/systems/sequencing-platforms.html

1

https://www.illumina.com/systems/sequencing-platforms.html

Chapter 1. Introduction 2

Figure 1.1: The data centers in the de.NBI Cloud landscape. The scope of this master thesis
is shown with the red oval2.

The de.NBI Portal will allow scientists with less knowledge in informatics to use

resources in an easy way. Furthermore, the portal will offer the possibility for easy cloud

administration as well. Additionally, the portal should be integrated into the European

life sciences network “Elixir” to support collaborations between scientists across the

Europe.

1.2 Structure of this work

This work is divided into seven chapters. Besides this motivational chapter (1), next

chapters (2-3) provide an overview over cloud computing, authentication mechanisms,

and related work. Chapters 4-5 describe the analysis, organization, and design of the

de.NBI Portal. The 6th chapter provides a brief overview of the implementation of this

project. The last chapter (7), represents a short discussion section and outlook.

Chapter 2

Cloud computing and IAAS

fundamentals

2.1 Definition of the “cloud” term

There are a lot of different definitions of the “cloud” term regarding the specific context.

Within the media, the “cloud” is widely provided as a form of service or an internet

site/portal which enables the user to solve everyday problems. Those definitions are

not always correct and the meaning of the “cloud” is often misused as a buzzword for

marketing purposes. The National Institute of Standards and Technology (NIST) defines

essential characteristics of the “cloud computing”, which comply with the definition of

the “cloud” as well [10]:

• The cloud is an on-demand and self-service construct. The user of the cloud can

decide for himself when to use the service and how many compute resources to use.

There is no human interaction from the cloud provider needed.

• The cloud has a broad network access so it is able to access the services over

standard mechanisms such as a computer or a smartphone.

• The cloud is using resource pooling, so the service is delivered by multiple physical

and virtual resources (e.g., machines, data centers), which are dynamically assigned

to the user. The user, on this occasion, has no control or knowledge about the

underlying hardware is used.

3

Chapter 2. Cloud computing and SSO overview 4

• The cloud is elastic and scalable on demand. The computational capabilities can

be dynamically increased or decreased by adding or removing additional resources.

• The cloud service is measurable. Cloud resources can be separated into different

parts (e.g., storage, compute-power and per-user usage), reported and accounted

transparently for the user and the provider.

Moreover, the cloud can imply different deployment models and provide different services

[10]: one of the common known deployment models is a Public Cloud, which is open for

everyone to use and is operated by a business or academic organization. In the business

sector, the Private Cloud, which can be used exclusively by a single organization, is

prevalent. The Community Cloud is similar to the private cloud except that it is used

by a community of consumers that share similar interests. The combination of two or

more cloud deployment models is called Hybrid Cloud, so the cloud infrastructure has its

own, self-operated units which are bound together and can provide, e.g., load balancing

between services.

2.1.1 Services provided by the cloud

In addition to the cloud computing definition and different deployment models, NIST

distinguishes between the following services that can be provided by the cloud [10]:

• SAAS – Software-as-a-service is an application which runs on the cloud infrastruc-

ture. The application is accessible through the web browser or a separate client.

The cloud infrastructure itself is not visible to the user and can not be controlled

by the user.

• PAAS – Is a platform-as-a-service which allows the user to deploy his own appli-

cation which uses the interfaces, frameworks, and tools given by the provider. The

management of used software and interfaces is neither visible nor controllable by

the user. Nonetheless, the user is able to manage and control his own application

and the deployment configuration.

• IAAS – Infrastructure-as-a-Service provides fundamental cloud components such

as storage, compute resources and networks. The user has no control over the

Chapter 2. Cloud computing and SSO overview 5

Figure 2.1: The abstraction layers of the cloud.

underlying infrastructure such as hardware components but builds upon provided

resources his own platform and is able to control all applications, networks, and

storage used.

The three service types provide different degrees of cloud abstraction (Figure 2.1) from

the bare-metal server to the user. The most common variant in the consumer world is

SAAS for private data storage such as “Dropbox” or “OneDrive”.

In the scientific area, many different applications and tools exist which are not able to

serve as SAAS or be deployed upon PAAS infrastructure, since they provide mostly a

command line interface (CLI). So there is a need for the possibility to integrate tools

into the cloud infrastructure with as least effort as possible. Since the scientific tools

mostly require a complicated installation process and have many dependencies [2], one

way to bring that software into the cloud is to containerize the software and deploy it

directly on the IAAS platform. From the user’s point of view, there are some differences

starting the software on bare-metal machines or in the cloud.

2.1.2 Difference between IAAS and bare-metal deployment

One of the significant differences between IAAS and bare-metal is the abstraction of

computing resources. The user of the IAAS is using virtual resources such as virtual

machines, virtual networks, and virtual storage. The actual physical provision of resources

is not evident for the user. It may happen, that in case of server maintenance the cloud

administrator migrates all virtual machines from the server A to a server B. Since

Chapter 2. Cloud computing and SSO overview 6

resources are virtual, the user will not notice the migration to another server. From a

user’s perspective, the virtual machine will run without any interruption. However, the

case looks entirely different if the user uses a bare-metal server. Using bare-metal server

implies the tight coupling to the resources of that specific server. For example, a memory

upgrade is only possible with hardware changes and implies the shutdown of the server.

The migration of the operating system and the software to another bare-metal server is

a non-trivial task. Finally, by server maintenance, the downtime is unavoidable.

2.2 Authentication with single sign-on

In any application a sign-on is used to allow access only for specific members, to manage

access rights and to protect contents of users. With the growing number of new software,

there is a growing number of accounts and consequently a high number of credentials per

user. To provide fast and easy access to the application without complex registration and

additional accounts, the idea of single sign-on (SSO) was developed. SSO accelerates the

user access to resources across different providers and outsources the user management

to one central identity provider (IdP).

2.2.1 SSO authentication mechanisms

There are several different SSO technologies available which take different technological

approaches.

• Microsoft Passport – It was developed and launched in 1999 and serves as the

SSO for Microsoft services. Therefore Microsoft Passport is used as a login for MSN

Hotmail, X-box Live or Zune. Microsoft Passport system is centralized and the

authentication is done by the passport-server which provides the so-called PUID

(passport user ID) of the user to the accessed service. Nevertheless, this system is

rarely used in non-Microsoft services [12].

• Shibboleth – Is a technology which provides SSO on different websites across

different Identity Providers (IdPs) and represents a distributed authentication

system. To authenticate, the user has to login into the home-IdP which then gains

user-data access for the service, that the user tries to access. Its infrastructure

Chapter 2. Cloud computing and SSO overview 7

consists of different services like IdP, service provider and the helper service (to

identify users home organization) called “where-are-you-from” (WAYF) or discovery

service (DS). [12].

• OpenID – Similar to Shibboleth it allows cross-site authentication. It generates

like Shibboleth a digital identity which is provided to the user’s requested service.

It is entirely open source and reuses open source methods and tools like hypertext

transfer protocol (HTTP), secure sockets layer (SSL), also known as transport layer

security (TLS), and Diffie-Hellman key exchange [12].

2.2.2 Benefits and risks of single sign-on

The benefits and risks of single sign-on are more or less evenly balanced. The main

advantage is that the user can log in once per session and reuses the session for all kind

of services he accesses. On the other hand, it can be a dangerous if the account gets

compromised and the attacker gains access to a significant amount of resources and

information. Therefore, the login server is a bottleneck since the possibility to login

depends directly on the accessibility of the identity service, which is out of control of the

service provider [12].

Nevertheless, the chance of the password leakage decreases as the password is transferred

only once per session. In addition, single password transfer decreases the probability

of the phishing-attack because the user logs in on the different site than the service is

located.

2.3 Accounting and supervision

The cloud allows the usage of many resources, which scale on demand. As described in

2.2.2, if the account gets compromised the offender would be able to access a significant

amount of compute resources. The offender could use the exposed resources for instance

to send spam messages, to perform distributed denial-of-service attacks (DDoS) or for

Bitcoin mining among others. To prevent adverse exploitation, there is a high need for

supervision and accounting mechanisms.

Chapter 2. Cloud computing and SSO overview 8

2.3.1 The purpose of accounting and resource allocation

In addition to detecting unfair resource usage, accounting allows to control the shared

resources in the scope of the time course. The user or project of the cloud is holding

an account and can buy or request credits. The credits can be used for any resources,

and the user is billed in short time frames according to his resource consumption. The

user alone decides which resources to use and when to use them. With the exceeding

use of resources the user gets a negative balance. This can be prevented quickly after

billing (e.g., by suspending user’s VMs) or can be tolerated according to an automated

procedure which follows a defined policy created by the cloud owner. An additional

feature of accounting is the possibility of detailed reports about resource consumption,

which can help a lot to improve the cloud service by adapting the provided service to

the needs of the user. For example, by adding additional high memory resources to the

cloud, if a lot of users need them.

2.3.2 Calculation of resource costs

Since the credits are closely linked to the resources and resource types, it is necessary to

define the unit price per resource type for proper accounting. There are different models

possible to calculate the unit price of a specific resource type. The price can be either

static (same price all the time) or dynamic and can depend on the following factors:

• service – Amount of provided resources, e.g., 16 cores or 64 cores.

• location – Physical location of the hardware, e.g., Europe or North America.

• personal – Special prices and discounts, e.g., student price or educational discount.

• time – Time period of the actual consumption, e.g., night prices or day prices.

• quantitative – Set-up fee, e.g., for ready-to-go “Mesos” cluster.

• price bundling – Combined prices for special instances e.g., “Extra High-Memory

32xlarge” or “High I/O Extra Large” machines.

Chapter 2. Cloud computing and SSO overview 9

The very basic price calculation for compute instances in the cloud could be the price

for one core provided; omitting the random access memory (RAM), disk space, network

bandwidth and other factors. Exemplary for the 24 hours (Htotal) of cloud usage with

32 cores (Ptotal) and (exemplary) 2 credits for one core per hour (Funit) the total used

amount of credits (Ctotal) results to:

Ctotal = Htotal · Ptotal · Funit = 24 · 32 · 2 = 1536 credits

Since the cost is only tied to the number of the central processing units (CPU), it is

likely that the user would claim all available RAM and additional resources which would

probably lead to the occupancy of all resources.

2.3.3 Amazon Elastic Compute Cloud Accounting example

Amazon is alongside Google, Microsoft, and IBM one of the world’s leading cloud

providers. One outstanding product is the Amazon Web Services Elastic Compute Cloud

(AWS EC2). The configuration of custom instance types is not possible in EC2 but

there are approx. 80 different instance types 1 available that define different virtual

machine (VM) configurations, in particular, the number of cores, size of RAM, storage,

and network bandwidth. Each instance type has its on-demand bundle price which varies

from the region (15 regions available2). The user is charged hourly depending on the

used resources. Additionally, to the on-demand prices there is an option to reserve the

instances for the long term and to pay for the resources upfront. The prices for reserved

instances are lower than on-demand and vary depending on the reservation time: longer

reservations result in lower prices. Besides the on-demand and reserved instances AWS

offers a cheaper on-demand alternative called “spot instance”. Spot instances use the

reserve capacity of EC2 and get immediately shut down when they are needed elsewhere.

Therefore, spot instances are only available for specific instance types and are suitable

for applications with flexible start and end times.

1See https://aws.amazon.com/de/ec2/instance-types/
2See http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

using-regions-availability-zones.html

https://aws.amazon.com/de/ec2/instance-types/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Chapter 2. Cloud computing and SSO overview 10

2.4 Cloud provider overview

There are various cloud providers on the market, as described in 2.3.3. All engines

provide simple compute instances as well as storage. Each engine provides its own specific

components like data analysis pipelines, neuronal networks, and graphics processing

unit (GPU) instances. While the most cloud engines are a closed source and the engine

holders act as cloud providers as well there is software available which is open source

and enables the opportunity to create its own cloud based on its own hardware.

2.5 OpenStack - an IAAS provider

OpenStack is an open source software project consisting of different subsystems which

allow to set up and to maintain an IAAS cloud infrastructure on its own hardware. The

installations of OpenStack can vary and e.g., may be extended on demand using available

components [9].

2.5.1 Structure of OpenStack

OpenStack consists of different subsystems (Figure 2.2) that can be connected together or

used in another software. Communication between each subsystem is managed inter alia

over representational state transfer (REST) application programming interface (API),

but there are command line interface (CLI) commands and Python libraries available as

well. From the beginning of OpenStack project, the number of components has increased

and existing subsystems sometimes are split into two separate subsystems in future

releases. The following list is a brief overview of some OpenStack components [9]:

• Nova – is one of the fundamental services in OpenStack and must be installed

on all cluster compute nodes. It abstracts from the hardware components (CPU,

RAM, storage, etc.) and provides the control over the virtual machines.

• Neutron – represents a networking subsystem of OpenStack, handles the network-

ing between VMs. Neutron allows users to add their own virtual networks, attach

floating internet protocol (IP) addresses and offers similar functionality.

Chapter 2. Cloud computing and SSO overview 11

Figure 2.2: The components of OpenStack [9].

• Keystone – acts as an identification service, represents a centralized user directory

and handles user authentication tokens and access control lists (ACL).

• Glance – operates as an image storage and runs a catalog of operating system

(OS) images, VM snapshots and delivers backup functionality.

• Cinder and Swift – manage different storage types and allow users to create

their own volumes, objects etc.

• Ceilometer – allows to collect, store, and monitor the cloud metrics. Additionally,

Ceilometer has an option for billing the user.

• Heat – enables provisioning of the application lifecycle and automatically creates

the cloud infrastructure based on templates.

• Horizon – provides a web graphical user interface (GUI) for user interaction with

other OpenStack components and allows comprehensive administration as well.

• Manila – provides functionality for shared file systems.

• Oslo – delivers common libraries to the OpenStack components.

2.5.2 Sample Horizon use case

If the user intends to build his own PAAS or SAAS it is obligatory for him to use the

OpenStack APIs.

Chapter 2. Cloud computing and SSO overview 12

The alternative way, which is especially used by inexperienced users to start the VMs

over the Horizon web interface. Consider the following use case:

The user aims to start a VM with a Linux OS and to access it through the secure

shell (SSH). The user needs 16 cores, 32 gigabytes (GB) of RAM and 100 GB of

disk space. First of all the user has to login into Horizon, navigate to the “Instances”

menu and select “Start Instance”. In the appearing pop-up the user configures the

details (like RAM size etc.) of the instance. Usually it is enough to fill out the

necessary information and click “Start Instance” (Appendix, Figure A.2). After the

instance is scheduled, it is necessary to attach a “floating IP” to the running VM.

Floating IP is an IP address from the open, public IP pool, that can be attached to

VMs for e.g. external SSH access.

Besides the basic settings, an inexperienced user could accidentally change advanced

settings of the VM configuration and the settings of Horizon Project as well. That could

lead to the broken Horizon project environment and may affect VMs deployed by other

project participants. Since users are able to start as many VMs in Horizon as the project

allows, and projects are not monitored, there could be the tendency for unused, idling

VMs over the time. Resources of the cloud would stay reserved and inaccessible for other

projects. Such allocation of unused resources and other possible unintentional mistakes

in Horizon lead to the need for additional user roles and implicit the need of proper user

access control in the cloud environment.

2.5.3 Keystone in detail

As described in 2.5.1, OpenStack includes a subsystem for the user identity management

called Keystone. Almost every action in the OpenStack ecosystem requires authentication

(Figure 2.3).

Keystone is usually the first component which is installed when creating OpenStack

cloud. It allows users to authenticate with several authentication types such as username

and password or token-based authentication types [9]. There are various components in

the Keystone database which can be configured to regulate access [9]:

• Service – OpenStack component like Nova or Glance

Chapter 2. Cloud computing and SSO overview 13

Figure 2.3: The dataflow in OpenStack. The most components require Keystone
authentication[13].

• Endpoint – Access URL for the API e.g.,

https://cloud.example.com:9292.

• Project – The base unit of resource ownership, it contains VMs, networks, users,

etc.

• Domain – Collection of projects which subdivide administrative permissions

between domain administrators across the OpenStack.

• Region – Different OpenStack environments that use one Keystone service.

• Token – Authentication string for e.g., API calls.

• User – The user of the cloud / API. A user has a role and affiliates in one or more

projects.

• Role – A set of allowed operations that can be assigned to a particular user.

On the technical side, Keystone uses a “MariaDB” / “MySQL” database [9]. Technically

it is possible to mechanize the supervision of the Keystone by using the Keystone API

components or simple database calls for data changing and thus automate and outsource

the user configuration elsewhere.

Chapter 2. Cloud computing and SSO overview 14

2.5.4 OpenStack API usage example with Python

A user, who is familiar with the OpenStack API could set up his own cluster or just

a single VM with a few lines of code. For that purpose, OpenStack provides language

bindings and CLI tools that use OpenStack API in the backend. The commonly used

bindings are Python bindings.

Chapter 2. Cloud computing and SSO overview 15

The first step is the import of the OpenStack library and adding the login information:

from openstack import connection

keystone_url = "https://openstack.example.org:5000/v3/"

user_domain = "Default"

project_domain = "ProjectDomain"

project_name = "Testproject"

username = "sample-user"

password = "sample-password"

Listing 2.1: Setting up Python library to use OpenStack API.

The next step is the establishment of the connection via the connection object of

the openstack library. The returned object is the actual OpenStack connection which

allows access to further services like compute:

try:

os = connection.Connection(keystone_url, user_domain,

project_domain, project_name,

username, password)

except Exception as e:

print("Error: ", str(e))

exit(1)

Listing 2.2: Establishing connection to the OpenStack API

After establishing the connection, it is possible to access all OpenStack services through

it. Consider the user wants to start a small VM; the flavor (machine configuration

regarding CPU, RAM and disk space) and image are already known. The user generates

a new key pair and adds metadata as key-value pairs to the VM object as well as the

additional information for himself or other users.

vm_name = "Test VM"

image = c.compute.find_image("Ubuntu 16.04")

flavor = c.compute.find_flavor("general.small")

key_pair = c.compute.create_keypair(name="MyNewKey")

metadata = {"purpose": "Litte VM for the \ostack{} API test",

"contact_email": "john.doe@example.org"}

try:

Chapter 2. Cloud computing and SSO overview 16

vm = os.compute.create_server(image_id=image, flavor_id=flavor,

name=vm_name, key_name=key_pair.name metadata=metadata)

except Exception as e:

print("Error: ", str(e))

exit(1)

Listing 2.3: Scheduling a small VM to OpenStack Nova

By calling os.compute.create server the connection object requests from the

Keystone the endpoint of the compute subsystem of OpenStack and schedules the VM.

The response object is a server object of the OpenStack library, that provides a set of

methods for further configuration (e.g., pause the VM) or attaching a floating IP. After

the VM is created, it is possible to determine the IP address of the VM:

if (not server):

print("Error: ", "VM not created!")

exit(1)

else:

print("VM id: ", str(vm.id))

print("VM IP: ", str(vm.access_ipv4))

Listing 2.4: Retrieving VM IP address for SSH connection

Knowledge of the IP address allows to establish a SSH connection with the new key

pair for the (default) user (here: “ubuntu”). Furthermore, OpenStack Python bindings

contain a lot of different methods that facilitate the detailed configuration of the VM,

different networks, and storage to build custom cluster environment from scratch.

Chapter 3

Related work

3.1 Federated OpenStack

If all compute centers use OpenStack there is a the possibility to use federated keystone

authentication [1] between the compute centers. Consequently one keystone instance

would store and manage endpoints of all compute centers and hold all user accounts. The

main benefit of this approach is the centralized management of all users. Each compute

center would appear as a region [1], and the user would be able to decide to which region

the VM should be scheduled to. This approach involves many disadvantages as well; the

main disadvantages are:

• Own IdP – Prerequisite for using federated Keystone is the need of its own IdP.

Since de.NBI Cloud should be integrated into Elixir and be accessible for scientific

users, the usage of (inter)federated educational identity providers like eduGAIN,

which is university-related, should be aimed for.

• No Abstraction – Using only the centralized authentication mechanism is not

enough to simplify the usage of the cloud, because the user faces with a com-

plex front-end, which is unsuitable for inexperienced users. Furthermore, the

project management is either done by the domain administrators or OpenStack

administrators.

17

Chapter 3. Related work 18

Figure 3.1: Bryn is the layer which provides abstract OpenStack access to the user [7].

Moreover, the federated OpenStack plugin is maintained by the community and can

implicate lack of proper maintenance and bug fixes. Integration of Elixir IdP is prob-

lematic and would present difficulties. Additionally, tight coupling to OpenStack and

maintaining similar version and configuration is impossible for autonomous compute

centers. Therefore a platform which abstracts from OpenStack is of high interest.

3.2 CLIMB – Bryn

Four UK universities founded a joint project called “CLIMB” (Cloud Infrastructure

for Microbial Bioinformatics) in 2014 [5] in order to provide computational resources

to the microbiologists. CLIMB utilizes OpenStack as a cloud engine. Three of four

universities run the cloud hardware (Birmingham, Warwick, Cardiff)1 and maintain the

same hardware and software configuration [5]. Currently, the CLIMB cloud contains

7680 vCPU Cores and 78 TB total RAM.

To access the web panel and configure VMs, the user must register using UK academic

credentials [6]. After that, the user can start a generic pre-configured VM or access “a

dashboard, similar to that provided by Amazon Web Services”[7]. The latter option is

reserved to expert bioinformaticians [6]. The layer between OpenStack and the user is

called “Bryn” (Figure 3.1). For fair usage of the resources, to every user a quota limit

is assigned. Otherwise, the compute cloud is free of charge for academic UK users [6].

This approach for providing cloud computing resources to the biologist is entirely new

1See the source code of Bryn https://github.com/MRC-CLIMB/bryn/tree/master/brynweb

https://github.com/MRC-CLIMB/bryn/tree/master/brynweb

Chapter 3. Related work 19

(CLIMB launched 2016 [5]) but using Bryn for the de.NBI cloud brings some constraints

and limitations.

• No external IdP – The user registration in Bryn is tied to the local user database2.

Bryn uses Django framework as a back-end, and the registration is restricted to the

principal investigators of the UK academia. That obviously excludes the application

of Bryn besides the UK. Even if Bryn were adopted for de.NBI , the handling, and

updating of software would take additional time. For example members which left

the institution must be removed by the CLIMB administrators.

• OpenStack is a “must” – Bryn works only with OpenStack. The codebase of

Bryn3 utilizes its own tenant model and OpenStack-client in a very interwoven

manner. To use Bryn with another cloud provider besides OpenStack would result

in massive code changes.

• Hardcoded regions – the compute centers are hardcoded in the Bryn source

code. Adding new regions would entail code changes.

• Storing of unencrypted passords – the passwords for the compute centers are

stored without any hashing or encryption.

However, the most significant limitation of Bryn is the fact that the whole system is tied

to the OpenStack API v2, which is partially deprecated. CLIMB itself uses OpenStack

release Kilo which is five releases behind the current version (Pike). In the case of CLIMB,

where the count of the compute centers and compute resources is quite manageable,

Bryn may be the right choice; but for the de.NBI infrastructure with currently five

compute centers (with the prospect to serve in the next future over 15.000 cores), the

use of Bryn is inappropriate. For that purpose a new modular and abstract platform

should be developed.

2See https://raw.githubusercontent.com/MRC-CLIMB/bryn/master/brynweb/
brynweb/settings.py for Bryn configuration

3See https://github.com/MRC-CLIMB/bryn/tree/master/brynweb for complete source code

https://raw.githubusercontent.com/MRC-CLIMB/bryn/master/brynweb/brynweb/settings.py
https://raw.githubusercontent.com/MRC-CLIMB/bryn/master/brynweb/brynweb/settings.py
https://github.com/MRC-CLIMB/bryn/tree/master/brynweb

Chapter 4

Analysis of the de.NBI project

4.1 General purpose and core functionality

Every compute center in the de.NBI Cloud runs its own OpenStack installation. Sepa-

rated OpenStack installations allow registered members to use the cloud resources only

of a specific compute center. Due to the separation there should be a possibility to

create global compute projects and schedule them to one or multiple compute centers.

Furthermore, there is a need for different roles with different access and administrative

rights. Every user in the de.NBI network should be able to start VMs, perform computa-

tions, and be a member of different compute projects. There is a necessity for a compute

project manager who has the authority over the group and its members. On the other

hand, the administrator of the compute center should have control over the project and

compute resources which are assigned to the specific compute center, to prevent misuse

or to solve resource conflicts. The administration unit or cloud government is mandatory

as well since it has the decision-making powers for project application acceptance and

compute center assignment for existing projects.

20

Chapter 4. Analysis of the de.NBI project 21

4.2 Use cases and studies

4.2.1 Basic role categories

We distinguish between four basic roles that are present in the entire federated de.NBI cloud:

• Administration Office (AO) – The administration office is based in Bielefeld

and consists of a few persons. AO internally has different coordinators such as the

cloud governance. Administration office is responsible for managing the resources

and credit allocation to the de.NBI projects. Members of the AO have information

about every compute center in the cloud and over distinctive features of each

compute center.

• Compute Center Responsible (CCR) – Each compute center has its own

support team which monitors and administrates the local cloud installation and

moreover maintains the cloud infrastructure of the respective compute center. CCRs

are familiar with the cloud technology and especially with the unique features

of their compute center. Additionally, the CCRs may use compute resources

exclusively for the workgroup of the institution the compute center is located in.

Another task, is the compute center supervision and controlling to prevent unfair

resource usage.

• Principal Investigator (PI) – A PI is the manager of the compute project

in de.NBI . New projects and additional credits are handled by the principal

investigator. PI is responsible for assignment of new users and for utilizing resources

of the projects as well.

• User – It is the most common person type in the de.NBI cloud. In most basic

cases the user would like to start and stop VMs, configure and execute software

that the user is familiar with and experiment with new software. The user relies

on the knowledge of the tools he is using and additionally on advises of colleagues;

possibly on rd party tutorials and How-To’s from elsewhere. The user will access

the site mostly form a PC and is familiar with the internet and typical control

elements of the web page. Besides the normal user there exist special user groups

which differ in knowledge and in computational tasks they want to perform.

Chapter 4. Analysis of the de.NBI project 22

– Course Participant – A course participant is a person who is not registered

in de.NBI and whose usage of the cloud is reduced to the scope of the course.

The technical knowledge of the participants may vary and not every user

is familiar with the command line or Linux systems in general. To use the

de.NBI cloud the user needs an Elixir account and the registration in the

de.NBI . For registration, a web browser access is required. After the contact

with the de.NBI , the course participant, may use the cloud for further projects

besides the course.

– Experienced User – This user type has advanced knowledge in bioinformat-

ics and has experience with Linux systems and with command line operation

as well. Besides the calculations with existing tools, an experienced user tries

to write his own tools or combine tools into a pipeline. Furthermore, this type

of user is actively experimenting with new software, tools, and packages. Using

the de.NBI cloud the user could configure its own VMs and environments

and use powerful and long run VMs as well. The browser of the user can vary

widely and contain such browsers as Vivaldi or Midori.

– Power user – This type of user is most commonly a biologist or informatician

which uses a massive amount of bioinformatic tools and produces own software.

This user is experienced and very familiar with Linux, networking and cloud

computing. The general task of the user is to try out new software or to

perform calculations. Furthermore, the user may want to automate the data

analysis and would like to create a custom cluster over API with custom

scripts or build upon existing PAAS. Since the user is experimenting with new

software, he is massively using tutorials, How-To’s and may need specialized

hardware or technology for calculations. This user will use OpenStack Horizon

or OpenStack API most of the time.

However not every user can be associated with a single user type. Sometimes the user is

a combination of one or more types and pursues different computational targets. For

example for the tool A for genomics the user would act as a course participant, but while

developing tool B for metabolomics the user acts as an experienced user.

Chapter 4. Analysis of the de.NBI project 23

4.2.2 User stories

Since user is someone who consumes cloud resources, the primary task of the user is

the reservation and usage of compute resources. In addition, the user should be able to

manage own data storage, create and deploy his own compute cluster and manage his

own project memberships.

The following user stories capture the functionality that needs to be implemented. User

stories can also help to develop a process and answer questions like “Which type of

actions should be a user able to do?”, “What kind of permissions does the person have?”,

“What is the default workflow?”, and “Are there any special workflows?”.

Administration Office user stories

User stories of the administration office (AO) primarily relate to tasks of the cloud

governance and management. The AO

• determines who is allowed to use the cluster.

• determines who is allowed to add further users to the cloud.

• must have an overview over all centers, used and free resources.

• should know which centers are operational.

• should know who is using the de.NBI cloud and how.

• should be able to remove users and also restrict resources.

• is able to approve, assign projects to a PI, remove, change them (in case of assigned

compute center), add additional credits and users that belong to a project.

Chapter 4. Analysis of the de.NBI project 24

Compute Center Responsible user stories

The user stories of the compute center responsible (CCR) describe in particular the

management and controlling of the local compute center and using his resources for his

own projects as well. The CCR

• should be able to monitor the resource consumption of any machine in the entire

de.NBI cloud allocated by a person related to the compute center.

• should be able to allow other persons to use the de.NBI cloud and allocate resources

and determine new users.

• should be able to upgrade the system independent of the administration office.

• should be able to restrict the part of the cloud which used as part of the de.NBI cloud

at any time.

• should be able to add and remove users.

• should be able to start and stop all machines in the compute center.

• wants as much as possible introspection of his own system. (e.g. “Who is consuming

the resources?”, “How much is used?”)

Principal Investigator user stories

User stories of the principal investigator (PI) are basically about the user management

of projects, application submissions, and project management. Furthermore PI can

consume the resources as well. The PI

• maintains multiple projects that need a different kind of resources.

• should be able to add users to his projects.

• should not use or delegate more resources that are assigned to his project.

• should be able to ask for more resources that can be increased.

• should be able to start and stop all machines administered by the members of his

project.

Chapter 4. Analysis of the de.NBI project 25

• should be able to monitor the current resource consumption.

• should be notified if no more free resources or credits are available.

Chapter 5

Project setup and design

5.1 Development workflow of de.NBI Portal

The project organization is significant in every stage of the project lifecycle since it helps to

keep the quality level high and avoid mistakes before the production release. Moreover, the

proper setup helps to find the source of mistakes and eliminate them quickly. Additionally,

with the right documentation and deployment process, the novice contributors become

acquainted with the project faster. The basic organizational mechanisms are project

versioning, project documentation and process modeling of software interactions.

5.1.1 Versioning

While writing code it is necessary to make changes and test out different techniques or

possibilities until a feature of a software gets done. When collaborating with multiple

contributors, there is a need for code organization, which help to split the software into

parts so that each developer works independently.

There are different versioning systems available. This project utilizes git1 as the

versioning system. Each part of the project is developed independently as a feature

branch. The branching structure should consist of the following branches (inspired by

the “Successful git branching model2”):

1See https://github.com/deNBI/ for repositories
2See http://nvie.com/posts/a-successful-git-branching-model/ for more information.

26

https://github.com/deNBI/
http://nvie.com/posts/a-successful-git-branching-model/

Chapter 5. de.NBI Portal design 27

• master – the master branch represents the current production-ready branch which

instantly can be deployed.

• dev – the development branch consists of the development code which is not ready

for release. Ready feature branches are merged into it.

• feature/(feature name) – the branch in which new features are developed.

After the feature is ready and tested, it should be integrated after code review via

the merge request.

• hotfix – this branch allows fixing bugs found after the feature branch is already

merged.

Each commit (saving of the current state as a version) must have a message which

describes changes. There are different styles and possibilities how to write down messages.

The easiest way is to write every message as a small text describing the changes made.

However, this approach can get chaotic and complicated over the project lifetime, so it

gets hard to find a specific change. A more clear and structured approach is to use a

convention of commit messages. Structured commit messages make it is easy to find

changes or impacted software parts in the future. Another advantage of this approach is

the ability to automatically generate a summary of the changes made. The development

workflow of de.NBI cloud portal uses commit message convention similar to the one of

the AngularJS convention.3. The convention contains different commit types which can

be written in the same message. The commit message format has the following structure:

commit-type(impacted-software-part) changes made

Let’s consider the following example: the user branched a new feature branch, added

a new logo in the HTML template and fixed an issue with the database model. The

resulting commit message would be:

feat(template) added new logo to the template.html

fix(model) fixed name issue #42 in the user.model.py

3See https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md#
commit for more information.

https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md#commit
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md#commit

Chapter 5. de.NBI Portal design 28

Additionally, the issue number of the issue tracker can be provided as well as in the

example above (#42).

Each release and patch must have its own version number. For that purpose there is a

semantic versioning model4 used. The information that the version number provides is

which kind of changes are made with every new release. The composition of the version

number is MAJOR.MINOR.PATCH. Besides the specification of each component there are

three uncomplicated, but essential change types, which are stored in the version number:

• MAJOR – the change in this number points at changes which are not compatible

with fewer releases.

• MINOR – the change in this number points at new functionality which is backward

compatible.

• PATCH – the change in this number points at backward-compatible bug fixes in

the software.

For example when the API software gets an additional model, which does not affect other

functions of the software, it would be the change in the minor number. In opposition,

the switch from one technology to another, which breaks all previous functionality in

API calls, would be a major change.

5.1.2 Documentation

The project has to be documented in order to allow the reproducibility of code deployment

and for understanding the code. The benefit of the current git repository hoster – GitHub5

– is the possibility to show markdown (a lightweight markup language) rendered directly

in the web browser. So the documentation for the deployment is stored in the code

repository as markdown files as well. This kind of documentation provides the benefit of

the versioned documentation in every release. No matter major or minor release, it will

include the proper supplying documentation. The other features of markdown are the

possibility to add code listings and automatic generation of a website containing project

documentation using special conversion software.

4See http://semver.org/ for more information.
5See https://github.com/deNBI/

http://semver.org/
https://github.com/deNBI/

Chapter 5. de.NBI Portal design 29

5.1.3 Process mapping

The process is derived from the use cases and possible communication events between user-

user, user-software, and software-software (machine-to machine (M2M) communication).

While planning the software architecture it is important to keep the procedures abstract

without implementation characteristics as otherwise the overview of the designed processes

can get lost. For implementation-specific process modeling there is for example unified

modeling language (UML) available which can help to specify, construct, visualize, and

document models of object-oriented software systems [4]. The UML specification is

developed and maintained by the Object Modeling Group (OMG). This group developed

other formats for modeling as well, like the BPMN (Business Process Modeling and

Notation). BPMN is a standard for graphical (flowchart) process representation which is

defined by the collection of rules and specific components. This standard has different

types of diagrams, one of the most common is the process and collaboration diagram,

where the process is built on activities, interrupts, and parallel flows between the process-

participants. The main benefit of using BPMN in this project is for easier communication

between all stakeholders of the project including non-developers. The core processes are

modeled in BPMN and the process modeling should be used for new components in the

future as well.

5.2 Component design

5.2.1 Components architecture overview

Analysis of the related work (Section 3) suggests that the components, as well as the

code structure should be modular. A major advantage of this that the development of

each module can proceed independently. As for the deployment, many components have

to be installed and set up. During the lifecycle of the project, updates are necessary. In

that case, all dependencies must be reviewed before the production software gets replaced

by the newer one. To satisfy that requirement all components should be split up into

separate modules (cf. Section 2.5.1 - OpenStack subsystems) and run independently as

far as possible to provide sufficient options for better development.

Chapter 5. de.NBI Portal design 30

5.3 Shibboleth and Elixir AAI

5.3.1 Single Sign-On with Shibboleth

Shibboleth is among other systems (see Section 2.2) a software solution which can provide

single sign-on (SSO) and allows (besides the federated authentication of the user) the

implementation of authorization constrains as well6. Shibboleth is based on the security

assertion markup language (SAML) and consists of multiple, loosely coupled components.

The basic components of Shibboleth are:

• Service provider (SP) – that software runs on the site of the server operator,

which wants to offer SSO to the users of the service.

• Discovery service (DS) – allows the user to choose the federation for the

authentication. This can be a home institution for example.

• Identity Provider (IdP) – is a service which runs in each federation and main-

tains user lists and attributes. IdP can use for example “LDAP”, “ActiveDirectory”

or similar technology as a kind of user list.

The SP must be configured to use the proper DS and IdP. The configuration exchange

happens through metadata files which are unrestricted and available. When the user

tries to access any resource, which requires authentication (Figure 5.1 - (1)), the SP

detects missing SHIBSESSION cookie and redirects the user to the discovery service

(2) of the federation. This service allows the user to choose his home institution where

the user holds an account. After the user selects the proper institution the DS redirects

the user back to the proper IdP login page (3). On the institution login page the user

provides the correct credentials and the IdP authenticates the user (4) utilizing the user

database (e.g., LDAP or AD) and redirects to the site of the service the user tried to

access with an additional token as a parameter (5). This token allows the SP to request

the attributes of a specific user directly by the IdP (6). After the attributes are provided

to the SP (7), and the user is authenticated, the service can check the authorization of

the user optionally to access the content (commonly with attributes from the IdP) and

then deliver the requested content to the user (8).

6See https://wiki.shibboleth.net/confluence/display/SHIB2/Home

https://wiki.shibboleth.net/confluence/display/SHIB2/Home

Chapter 5. de.NBI Portal design 31

Figure 5.1: Shibboleth authentication flow. (1) Unauthenticated content request, (2) Redirect
to the DS and IdP choise, (3) redirect to the IdP, (4) Authentication in IdP, (5) Redirect with
the token, (6) attribute request with the token, (7) attributes provision, (8) content delivery to
the authenticated user. [8], (adopted by the author)

This kind of authentication allows also detailed permission handling since the IdP provides

different attributes to the user like member status, user role, affiliation. Academic

universities and research institutions can be aggregated into a federation and thus

Shibboleth offers appropriate authentication mechanism for that purpose.

Excursus – eduGAIN

eduGAIN 7 is an interfederation service for research and education, which consists of

many institutions and countries across the world. To take advantage of the eduGAIN

interfederation service, university must provide a SAML based authentication mechanism

and sign a policy which is universal for all eduGAIN members. The current membership

status is shown in Appendix A, Figure A.1

5.3.2 Elixir AAI

Elixir provides an infrastructure for the authentication and authorization of users in

the life science context. This infrastructure (Elixir AAI) is using eduGAIN IdPs as

an authentication service but also offers the login with Google, Linked In and ORCID

(Organization, that provides a persistent digital identifier for every researcher8).

7See https://www.geant.org/Services/Trust_identity_and_security/eduGAIN
8See https://orcid.org/ for details

https://www.geant.org/Services/Trust_identity_and_security/eduGAIN
https://orcid.org/

Chapter 5. de.NBI Portal design 32

Figure 5.2: Elixir AAI structure. Components, which are already in production are shown
in green. Borrowed from https://indico.cern.ch/event/605369/contributions/
2440443/attachments/1414958/2165898/ELIXIR_AAI_udpate_-_FIM4R_2017.
pdf

To combine all authentication methods into one and extend the functionality, Elixir AAI

uses a so-called IdP proxy (Figure 5.4). Internally Elixir contains additional components

for user account database (Elixir Directory) and Users Role management (Perun). For

the service providers, Elixir AAI acts as a single IdP service.

5.3.3 Elixir Authentication

The authentication process of Elixir is slightly different from the usual federation login

with Shibboleth, shown in Section 5.3.1, in the way Elixir acts as a proxy and still

holds its own user information in the Elixir directory together with a role and group

management system. The steps of the login with Elixir are the following (Figure 5.3):

• 1 – The user requests the site content

• 2 – SP detects missing SHIBSESSION cookie and redirects the user to the where-

are-you-from (WAYF) discovery service. In that case, Elixir offers options for

eduGAIN, Google, Linked In and ORCID.

• 3 – The user chooses the IdP to log in

• 4 – After the user made a choice, he is redirected to the IdP of the organization

through the IdP proxy to log in for the Elixir AAI.

• 5 – The IdP requests login credentials from the user.

https://indico.cern.ch/event/605369/contributions/2440443/attachments/1414958/2165898/ELIXIR_AAI_udpate_-_FIM4R_2017.pdf
https://indico.cern.ch/event/605369/contributions/2440443/attachments/1414958/2165898/ELIXIR_AAI_udpate_-_FIM4R_2017.pdf
https://indico.cern.ch/event/605369/contributions/2440443/attachments/1414958/2165898/ELIXIR_AAI_udpate_-_FIM4R_2017.pdf

Chapter 5. de.NBI Portal design 33

Figure 5.3: Elixir AAI authentication flow. The user authenticates first against Elixir (1-7).
Elixir authenticates user for the service and delivers additional attributes (8). See Section 5.3.3
for detailed explanation. 9

• 6 – User logs in using the credentials of his account

• 7 – IdP authenticates the user against the Elixir AAI and redirects him back to

the Elixir AAI proxy.

• 8 – After successful authentication, Elixir authenticates the user for the service

that the user tries to access. Additionally, Elixir gathers attributes like affiliation

or group membership from its own Perun database and provides the access token

to the SP.

• 9 – After SP received the attributes, authenticated and authorizes the user, it

delivers the desired content to the user.

Chapter 5. de.NBI Portal design 34

5.4 Elixir’s Perun

Perun is the management software for user roles and groups inside the Elixir AAI. Perun

distinguishes between two roles: manager and member that can be applied to different

organizational units:

• Virtual Organization (VO) – the primary organizational unit that holds groups

and members. A member can participate in different group memberships or remain

without a group but then the user is still a member of the VO and the default group

members. The manager of the VO can add new VO members, create, modify and

delete groups, appoint group managers and configure VO settings and attributes.

• Group – this is an organizational unit of the VO. Group members can only see

the members of the certain group but not all members of the VO. Group manager

is able to add/remove members of the group and edit group memberships as well.

Finally, a user can be a group manager in different groups at the same time.

• Facility – this unit is on the same level as the group, but does not belong to the

VO. The facility is a stand-alone organizational unit, which manages resources and

services that can be used by different VO groups. For that purpose facility contains

multiple VO-related resources which, in turn, contain a set of assigned groups and

a set of assigned services. Each resource is able to propagate resource attributes

by using so called propagation endpoints to which changes of the Perun database

according to the services can be pushed. The facility is able to have managers, but

no regular members.

Furthermore, the service mentioned above has a set of attributes (key-value pairs) that

either depend on the VO / Group / Member or remain independent. Attributes can be

declared as numbers, strings, arrays etc. These keys and values are distributed to the

propagation endpoints of Perun.

In order for de.NBI users to be able to use the authentication mechanism and for the

portal to be able to use Elixir components or Perun, users must be part of the de.NBI VO.

Manager roles of the VO are reserved for the administration office. Each compute project

is represented as a VO group and the group manager represents the principal investigator

of the workgroup. Every facility should represent a compute center and the provided

Chapter 5. de.NBI Portal design 35

services are compute services of each center. The manager of the facility is the CCR of

the compute center and can manage groups which are assigned to them.

For storing restrictions, quotas and future credits, we created additional attributes. These

attributes relate to VO / Groups and Facilities. Some of them are:

• denbiCreditsCurrent – (Integer) represents current credit amount of the Project.

This attribute is group related, facility independent and is propagated to all

endpoints (compute centers).

• denbiDirectAccess – (Boolean) shows if the group has access to Horizon and the

OpenStack API of each compute center. This attribute is group-related, is facility

dependent and is propagated to each compute center individually.

• denbiCreditsHistory – (Map) stores credit usage history of each user for docu-

mentation purposes. This attribute is user related, facility independent and not

propagated since it is accessed over Perun API (see Section 5.4.2).

5.4.1 Propagation service

The propagation service of Perun allows adding subscribers to the Perun system, which

get notified when the subscribed services have changed. Currently, data transport

is realized by an SSH login from the Perun system to the endpoint with public key

authentication (PKA). This service transfers a JSON object of the actual state in the

“System Cross-domain Identity Management” (SCIM10) format to the target system.

After that, the endpoint client triggers a set of Shell scripts, which represent the updating

mechanism of the local database or service. In the future, propagation over HTTPS and

Email is planned. The propagation service, which can be hooked to group memberships

and attributes should be used to update the information regarding projects, users, and

permissions inside the de.NBI compute centers. The propagation endpoint at the site of

the compute center should be represented as a Portal client.

10See http://www.simplecloud.info/

http://www.simplecloud.info/

Chapter 5. de.NBI Portal design 36

5.4.2 Web API and Service User

Although Perun provides a web GUI, it is complex and provides many possibilities for

configuration. On the back-end side, Perun GUI uses a JSON RPC API which can be

reused for the implementation of the de.NBI Portal. For that purpose, the JSON RPC

endpoint allows CORS requests from the specific de.NBI domains only.

In some cases it is necessary to perform automatic requests with the rights of a VO

manager role. For example to update the credit balance of a project.Because of this use

case a service user in the Perun system was created. This user is affiliated with managers

of the de.NBI VO, but does not need a federated login and can access the API without a

browser (e.g., from a script) using the “BasicAuth” authentication mechanism.

5.5 Portal core

5.5.1 Purpose

The primary task of the Portal core is to tie all components together by providing its own

API and to build an abstraction layer of all components. Moreover, the core component

is managing incoming project applications and user authentication using SSO.

5.5.2 Basic components

The main component is the API engine which handles and stores requests regarding

project applications. Additionally, it sends a request to Perun when the project has been

approved.

5.5.3 API design

The API for creating and updating Project applications should be able to manage the

following objects:

• project applications – a suitable model for projects submissions should be

designed. The model should be user-related and contain at least values for requested

Chapter 5. de.NBI Portal design 37

RAM size, number of cores, disk space and status of application (approved or

declined).

• application status – This small model should store different statuses of project

applications (e.g., approved, declined etc.) and be dynamically adaptive regarding

the status name or status ID if the application process changes.

• special hardware – This model should store names of the particular hardware

types (e.g., GPUs) which can be additionally requested. The name or ID should

be dynamically adoptable when the hardware of compute center changes.

5.5.4 Session handling with Shibboleth

To manage users and permissions, the Shibboleth service provider, that works with Elixir

AAI should be configured. The minimum requirement for authorization in portal is the

unique user ID. This user ID should be automatically provided by the IdP when the user

logs in. Furthermore, access to the content of the portal should only be possible with a

valid Shibboleth user session.

5.5.5 Perun communication

Since Perun offers a set of attributes and an API (see section Section 5.4), a connector

for the proper Perun communication should be developed. This connector should be able

to perform JSON RPC requests and process the answers accordingly. A further task of

the connector is to authorize certain users for requests, which otherwise only stand for

VO or group managers.

For example requesting the current credit balance of a group’s account is possible by

group managers and VO managers only. If the request is called by the group member,

connector must first check the group affiliation of the user. When affiliation check is

passed, balance is requested from Perun by the connector (with the help of the machine

user which acts as a VO manager). Afterwards the credit balance of the group is received

it is forwarded to the user.

Chapter 5. de.NBI Portal design 38

5.5.6 Compute Center Connection

Besides the communication with Perun, the Portal core handles user requests addressed

at the compute centers. This is the case when the user wants to start a virtual machine

or to attach a volume. The primary task of the Portal core is to verify the request, to

forward it to the corresponding compute center and to notify the user about the result.

Additionally, Portal core should be able to generate SSH key pairs for users, which do

not provide a public key when requesting a new VM.

5.6 Portal webapplication

5.6.1 Purpose

The user interaction with Portal components should be as easy and intuitive as possible

and run on all platforms. To keep it as simple as possible a web browser can be used

to render the view. Web browser specific technologies like HTML5 and CSS3 allow a

flexible and adaptive design, which run on mobile devices and tablets.

5.6.2 Schematic overview

Besides the Portal code, the web application should provide additional interactions

directly with Perun and Portal core (Figure 5.4).

5.6.3 Interactions with Perun and Portal core

Another essential task of the web application is the communication with Perun using the

web API. To handle both, Portal core and Perun, there is a need for custom connectors.

Portal webapplication will reuse already established SSO session and the calls to the

API and Perun are always authenticated with the current user. This reduces the risk

of unauthorized access. Furthermore, the web application should use the CSRF -token

(cross-site request forgery) mechanism for the all requests in order to prevent possible

cross-site attacks.

Chapter 5. de.NBI Portal design 39

Figure 5.4: The Portal web application should be able to communicate to Portal (1) and to
Perun (2) as well. The Portal core (server) should be able to communicate to the Portal clients
(4) and to Perun (3). Additionally Portal client is acting as an endpoint of the Perun propagation
service (5)

5.7 Portal client

5.7.1 Purpose

On the server side of compute centers, there is a need for a connector which can

handle virtual machine scheduling, volume handling and offers an API for the M2M

communication with the Portal. For now, all compute centers use OpenStack (see

Section 2.5) as the cloud software. Unfortunately, this type of software tends to experience

some changes over time, whereas an additional abstraction layer to the Portal core over

the Portal client would ensure that API calls are stable and functional. An additional

advantage of the abstraction is the specification of the API. The defined API interface

does not determine the concrete implementation of the Portal client. For that reason the

implementation can vary from compute center to compute center. This approach makes

different VM handling techniques on the back-end possible. For example, a ticket system

notifies the compute center administrator to start the VM manually. As long as the API

Chapter 5. de.NBI Portal design 40

is implemented correctly, the rest of the Portal will be able to communicate with the

compute center, no matter how the back-end of the Portal client is implemented.

There is also a need for an API that abstracts from the cloud provider and provides

an interface for the Portal core. The interface should be implemented by each compute

center, to fulfill every compute center’s special features and VM scheduling flows. For

that purpose, there is a need for a proper specification (endpoints, incoming and outgoing

data types and structures) of the API design and a reference implementation of the

interface.

5.7.2 Perun endpoint

Another important task of the Portal client is the provision of the Perun propagation

endpoint. The Perun system is able to aggregate pre-defined data sets as soon as their

values change and to automatically propagate them to a list of endpoints. In that case, it

is possible to propagate any relevant changes in Perun (which are made via Portal client

or Portal core) to the according endpoints. In this way, the member lists of all groups can

be kept up to date at all compute centers. Therefore, when a user becomes a member of

the project, which has permission to direct access to the compute center “A”, Perun will

automatically notify this compute center and send the new user list for that project. The

Portal client receives the information and updates the internal database of the allowed

direct-access users (or notifies the administrator - depending on the implementation).

After that, the user will be able to access the compute center “A” directly. Currently, the

Perun propagation service implements the push mechanism utilizing remote command

execution via SSH, but in later releases, an update over HTTPS and Email should be

possible.

5.8 Cloud center VM provisioning

5.8.1 Overview provisioning techniques

When the compute center starts a Virtual Machine for the user, the user should have

access to the VM over SSH. The provisioning of the VM to the user can be done in

different ways. Some of the main techniques for doing this are:

Chapter 5. de.NBI Portal design 41

• Public IP – The assignment of public IP addresses allowing a simple and easy way

of providing access to the VM for users. However, when hundreds of users start

multiple independent (non-cluster) machines with public IPs, the public IP pool of

the compute center can get exhausted very quickly. To get more IPv4 addresses

each compute center has to request a new block by the corresponding authority

(e.g., HRZ or DFN). compute centers which are registered as LIRs (local internet

registry) can request new blocks by RIRs (regional internet registry), such as RIPE

NCC in Europe, directly. In both cases, the new IP block assignment request is

quite a time-consuming task.

• Jump host – a jump host represents a server or a set of servers that connect an

internal network, which uses RFC 1918 addresses, with the internet. This technique

is usually used when the server in the internal network should not have access to

the internet, but the user should have the possibility to access the network from the

internet. The benefit of a jump host is that only one public IP address is needed

to give the user the possibility to access all machines in the network. For that case,

the user logs onto the jump host machine and from there connects via SSH to the

machine of interest. One main problem occurs when data transfer is needed or

some machines should provide an open port to the internet. Nevertheless, those

problems can be solved using SSH tunnels.

• Port forwarding / NAT – NAT is similar to the jump host in the way that an

additional server with connections to the internal network and internet is needed.

However, the server acts as a D-NAT (destination network address translation)

server which forwards its own port to a port of a specific machine in the internal

network. The benefits of using NAT are the IP address savings and the possibility

of the direct access to the machine. The drawback is that the ports the user has

access to, must be defined. Consequently the user is not able to access any port

on the machine until there is a NAT rule for it. In addition, no standardized

“well-known” ports can be taken and the user must be notified which port number

to use.

Chapter 5. de.NBI Portal design 42

5.8.2 Port Mapping

According to the defined user roles (Section 4.2.1), the main use of the single virtual

machines is to test new software or to perform small to intermediate computational

tasks. Therefore the main requirement for the VM will be the possibility to upload data

directly to the VM and to access the virtual machine over SSH or via web browser. The

requirement points out that the user will only need a small number of ports and thus

provision over NAT would be the most appropriate type.

The private internet address ranges are specified in the RFC1918 [14] and can contain up

to 224 addresses. The most common type is the 192.168.0.0/16 address range, which

contains 216 addresses. The address range can be reduced using subnetting. In the case

of the /24 network it would allow up to 254 hosts, and the /22 network can contain up

to 1022 hosts. The NAT host would use either the dynamic port range (49152–65535) or,

additionally, the registered ports range (1024-49151) for mapping ports. In theory up to

64512 ports would be available for mapping purposes. Even when the number of hosts

grows over the number of free ports, there is a possibility to create an additional NAT

host which will expand the port mapping even further. In both cases, this way is more

suitable for the provision of Portal related VMs. To make it easier to map hosts a type

of “port-coding” scheme should be used. For example, in the /24 network the ports

of the NAT host nat.example.com would map like nat.example.com:50211 ⇒

192.168.0.211:22 and nat.example.com:51211 ⇒ 192.168.0.211:80. So

the first two digits determine the destination port (here: 50 is SSH, 51 is HTTP) and

the last three digits determine the last value of the IPv4 address (here 211 maps to

192.168.0.211).

5.9 Portal infopages

5.9.1 Purpose

Portal infopages represent the landing page of the Portal domain. On this page, which

should build upon a content management system (CMS), the general information about

the Portal should be presented. Moreover, this site should contain actual information

from compute centers like maintenance, new features, or similar notifications. This

Chapter 5. de.NBI Portal design 43

Figure 5.5: Microservices of the de.NBI Portal. Every Service is accesible over HAProxy with
URL mapping.

service should be accessible without any authentication required. The design of the

landing page should conform to the de.NBI corporate design. The maintenance of the

content and news should be made over extra accounts for that purpose and is reserved

strictly to the administration office and eventually CCRs.

5.10 Isolation and component communication

5.10.1 Microservice architecture

To solve the requirement of independent deployment, as mentioned in Section 5.2.1 and

make the deployment process as easy as possible, each component should become its

own individual service, which runs isolated and independently (Figure 5.5). To solve the

installation issues, all microservices should get containerized, run in isolated environments,

and communicate over the network. For the containerization and environment setup,

the docker engine is used. Docker automatically allows the user to generate image with

installed and configured software and manage ports and volumes mounted in the container.

Since the containers communicate with each other via HTTP, a private network must be

set up. Automatic network establishment, set-up and configuration of docker containers

can be achieved with the tool docker-compose. This tool needs a configuration file with

settings and guidelines (e.g. auto-relaunch when a container crashes) for each docker

container.

Chapter 5. de.NBI Portal design 44

5.10.2 URL mapping and SSL offloading

The services must be available under the same domain, so it is necessary to map the paths

of the Portal URL to the corresponding service. For example when the user navigates to

the URL https://portal.example.com/wiki the documentation service should

be accessed. For this purpose, an extra service should exist, which acts as a proxy for

the internal network. This kind of a proxy gateway connects the internal service-network

with the outer world. Neither the Portal core nor any other service can be accessed

directly from outside of the private network.

Furthermore using central “gateway” for all services makes it possible to make use of SSL

offloading as an additional benefit. If SSL offloading is used, the proxy-service handles the

SSL handshake and HTTPS communication with the clients. Communication between

containers in the internal, isolated Network uses unencrypted HTTP and thus brings

an internal speedup. An additional advantage of SSL offloading is reduced certificate

maintenance overhead, because proxy-service is the only place to configure the certificates.

5.10.3 Developement environment

When the project is developed by several developers, it is advantageous to keep the

software modular. It is also important to keep the test environment as simple as possible

for the developers. The microservice architecture allows to start only those components

that are needed for the current development and thus recreate a part of the production

environment. Additionally, the docker based containers have the possibility to integrate

local (development) directories into the container. This feature allows the software

changes to be tested immediately without rebuilding and restarting the container. For

the development workflow of this project there is a need for a set of services which mount

the directory and allow a fast reload of the developed instance.

Another possibility for creating a development environment is a pre-configured virtual

machine, which runs all services without isolation and contains the correct environment

in a single image. That approach would allow accessing all services without switching

containers.

Chapter 5. de.NBI Portal design 45

5.10.4 Production environment and deployment

Disposing the software for public access requires an production environment. The

production environment only needs to contain the components needed to run the software.

In this project the production environment contains all microservices which run as

production docker containers. The difference to the development containers is that

they configured to contain only production-related components (e.g. lightweight web

server), and all development-related components (e.g. debugging tools) are omitted. This

configuration also allows automatic deployment of the components, so that automatic

tests and updates will be possible in the future.

Chapter 6

Basic implementation of the

Project

6.1 Basic implementation of the de.NBI Portal

In this thesis, a part of the requirements was also implemented. The implemented

functionality concerns project management and group management. In addition, pre-

tests for the implementation of the portal client were done. Since authentication is an

important component for the further implementation of the project, integration in Elixir

AAI with Shibboleth was made as the first implementation step.

6.2 Shibboleth configuration

As already described in Section 5.3.1, Shibboleth authentication mechanism consists

of different components. The component that has to be installed and set up by the

de.NBI cloud portal operator is the SP. The installation of the Shibboleth software on

debian linux is done via command line. For the configuration of the SP there are several

files in the directory /etc/shibboleth/. Among other files there are two files which

are significant in the configuration of the SP: Metadata.xml and shibboleth2.xml.

46

Chapter 6. Basic implementation of the Project 47

The latter file contains the IdP configuration section:

<SSO entityID="https://login.elixir-czech.org/idp/">

SAML2

</SSO>

Listing 6.1: Shibboleth IdP configuration: The URL of the provider is used here as entityID

(unique identifier) of the IdP, the value between the tags is the used protocol.

The rest of the configuration file consists of the attribute extractor, which points to

an XML file, containing all configuration for attribute mapping. Each attribute is a

key-value pair and contains attributes which should be queried from the IdP. Therefore,

additional attribute configuration and a pointer to the SSL certificates are present in

Metadata.xml as well.

<AttributeExtractor type="XML" validate="true" reloadChanges="false"

path="attribute-map.xml"/>

<AttributeResolver type="Query" subjectMatch="true"/>

<!-- Default filtering policy for recognized attributes, lets other

data pass. -->

<AttributeFilter type="XML" validate="true" path="attribute-policy.

xml"/>

<!-- Simple file-based resolver for using a single keypair. (the cert

and keys that are have generated)-->

<CredentialResolver type="File" key="sp-key.pem" certificate="sp-cert

.pem"/>

Listing 6.2: Shibboleth IdP configuration: The attribute and certificate configuration

One of the essential configuration parts is the definition of the metadata provider of

the IdP. The metadata URL returns an entity descriptor of the IdP which contains all

information about the configuration of this IdP:

<MetadataProvider type="XML" uri="https://login.elixir-czech.org/

proxy/saml2/idp/metadata.php"

backingFilePath="elixir-idp-metadata.xml" reloadInterval="1800" >

</MetadataProvider>

Listing 6.3: Shibboleth IdP configuration: IdP Metadata configuration

Chapter 6. Basic implementation of the Project 48

Another important file for the configuration is the Metadata.xml which provides the

configuration details of the service provider for the IdP. The XML file contains an object

which defines available signing algorithms, encryption methods, shibboleth endpoints,

and the descriptor of the service.

The complete configuration assumes a registration of the SP by the IdP as well. For

this purpose, the SP operator sends the public key used in the SP configuration (and

possibly additional information about the service) to the IdP operator. After the identity

provider verified the SP and added it to the allowed service providers on his own site, the

Shibboleth service on the SP site can be started. If the service has started successfully,

it can accept login requests. To allow Shibboleth to protect specific content, there is an

additional configuration of the web service needed. The most basic case is to protect a

web directory using .htaccess file and mod-shibboleth in the Apache web server:

<Location /portal/ >

AuthType shibboleth

Require shibboleth

ShibRequestSetting requireSession 1

require shib-session

</Location>

Listing 6.4: Directory protection with shibboleth: In order to access the directory /portal/

a valid shibboleth session is required.

Additionally, there is a possibility to filter the user by providing Shibboleth attributes,

which are automatically submitted to the service provider after user login:

<Location /portal/ >

AuthType shibboleth

ShibRequestSetting requireSession true

Require shib-attr unscoped-affiliation staff

</Location>

Listing 6.5: Directory protection with shibboleth: In order to access the directory /portal/

a valid shibboleth session and staff affilitation in SAML attributes is required.

Besides the directory protection with Apache web server, Shibboleth is also able to

communicate directly with the web application via the ”mod shibboleth” module.

Thus the web application authenticates the user, it also allows software-side authorization

of the user and enables a more detailed access control of the web application. For example,

Chapter 6. Basic implementation of the Project 49

the web application could use additional complex access policies depending on SAML

attributes.

6.3 Portal core

The Portal core is the central node for communication between Portal web application,

Perun and Portal clients. It processes requests from the web application, submits requests

to Perun and communicates with the compute centers via portal client instances. Portal

provides an API interface and can only be accessed after authentication through the web

application.

6.3.1 REST API framework comparison

There are different platforms for the REST interface implementation available. The main

criteria for comparison are:

• Shibboleth compatibility – the framework should be able to integrate the

Shibboleth SP as the authentication method as easy as possible.

• Modularity – the framework should be modular and easy to extend.

• Open Source – the framework project should be an open source software and be

free of charge

In addition, the programming language should be widely used and have a good commu-

nity support. The good community support is especially important for inexperienced

developers, because they would quickly familiarize themselves with the software by

reading programming language tutorials and How-Tos. Additionally, the programming

language should be able to execute system calls in a simple way.

There are some REST API frameworks with different programming languages available.

The four most often used languages of the web application development are JavaScript,

Python, Java and PHP1. Since the de.NBI Portal core should be able to make system

calls besides serving the web application, JavaScript is not applicable.

1See https://spectrum.ieee.org/computing/software/ the-2017-top-programming-languages

Chapter 6. Basic implementation of the Project 50

For development in Java, the Spring framework would be one of the choices for the

de.NBI Portal. And for development in PHP a Yii framework would be a good choice. To

develop in Python a Django framework, which is used to create RESTful services, could

be used. All three frameworks provide similar functions and are well-known. The syntax

of Python is clearer than PHP and deployment of Python is less resources intensive than

Java. In addition Portal client will be developed in Python, since OpenStack provides

excellent Python bindings. For resource-sparing deployment, clearly arranged source

code and to keep the variety of used languages at the minimum, the Django framework

was chosen.

6.3.2 Django components and Django REST Framework

The Django Framework consists of different apps, modules, and classes which can be

used while building an application. To use the apps and modules, they must be listed

in the framework settings file called settings.py. This file is an essential part of

every Django project and is located in the project folder. Newly developed software

components must also appear in the list in order to become active:

INSTALLED_APPS = [

’django.contrib.admin’,

’django.contrib.auth’,

’django.contrib.contenttypes’,

’django.contrib.sessions’,

’django.contrib.messages’,

’django.contrib.staticfiles’,

’main’,

’rest_framework’,

’api_v0’,

’projects’,

’shibboleth’,

]

Listing 6.6: Used apps of the project.

The Listing 6.7 shows all apps which are installed/used in the Django project. Along

with the Django apps for administration, sessions, and static files provider, Portal apps

are listed as well, such as the main application and api v0 – the API provider for

Chapter 6. Basic implementation of the Project 51

Figure 6.1: Django information flow: The table fields of the database (a) are mapped with
Django’s field models (b) and are aggregated to user-defined models (c) (represented as tables in
the database). On any interaction the requested model is mapped according to user-defined rules
over the serializer (d) into JSON objects and then displayed using viewset (e). The serialization
or update of objects works in the reverse direction.

project applications. Additional components like rest framework or shibboleth

must appear in the list as well, in order to get activated by the framework.

Django Rest Framework (DRF) is an additional module which implements a lot of very

useful classes for creating REST API endpoints. For example, different serializers to

convert Python Models from and to JSON, to deal with field mapping of models to the

corresponding JSON keys and verifying the data using constraints. The serializer can get

extended and modified by adding overwrite methods. The other important structure type

of the DRF is the ViewSet, a class for correct API query handling. It can handle different

HTML methods and references different serializers to render JSON output (Figure 6.1).

6.3.3 Shibboleth authentication method

For the realization of the Shibboleth authentication, an external Django plugin is used

which is developed and maintained by the library of Brown university2. This plugin allows

to integrate Shibboleth seamlessly into the Django environment, acts as an authentication

provider for the Django back-end, and utilizes the Django user model with the local

database. The configuration implies an installed and configured Shibboleth service

provider, Apache web server, and enabled mod shibboleth.

2See https://github.com/Brown-University-Library/django-shibboleth-remoteuser
for more information

https://github.com/Brown-University-Library/django-shibboleth-remoteuser

Chapter 6. Basic implementation of the Project 52

Figure 6.2: Additional models “SpecialHardware” and “ApplicationStatus” allow to extend the
application process without model update.

6.3.4 Data modelling

The Django rest framework brings additional tools for the serializing objects for building

API endpoints. Since the local DB is only used for the handling of new project applica-

tions, the model is relatively small (Figure 6.2). A project application has significant

relationship to the special hardware model, which describes additional non-default hard-

ware requirements for the project and two foreign key fields (one for the user and one for

application status, which determines the actual step in the application process).

The primary model of the Portal is outsourced by Perun using additional attributes,

and the project application is the only model which is not covered by the Perun system

and is hosted locally. Only accepted applications become actual projects in the Perun

environment, so the state of Perun represents the current working state with projects

that have been approved.

Chapter 6. Basic implementation of the Project 53

6.3.5 Deployment

The deployment of the Django application can be done in different ways. Django provides

a small web server out of the box, making it suitable for development purposes not to

be used in production. For production deployment, the Apache server is used since the

Shibboleth plugin of Django requires mod shibboleth to communicate with the Shibboleth

service provider daemon shibd.

6.4 Portal Webapplication

While Portal core offers an API, there is a need for a web GUI which connects to the

Perun system and the Portal API as well. The web application confronts with many

challenges on the client side. Modern web browsers feature different technologies; the

application should support different web browser types, operating systems and browser

configurations. The application should have a clear design for mobile devices and desktops

as well. Furthermore, it should be easy to maintain the application, as to modify, add and

exchange functionality of the application. Writing a modular application from scratch

which fulfills these requirements is a time-intensive task. For that purpose, a browser-

based Angular4 framework was chosen, which compiles TypeScript to standardized

JavaScript (ISO/IEC 16262:2011 – ECMAScript) and fulfills requirements of most web

browsers. The Angular4 framework consists of different modules and follows the modular

architecture pattern. Modularization enables easy extension and maintenance of the

application.

6.4.1 Angular components

Angular consists of different modules, ranging from services, components, functions or

just values. The services can be used in multiple components over dependency injection

and thus allow to produce reusable software parts. Furthermore Angular also provides

tags for data/property binding and event binding in HTML templates. Angular utilizes

TypeScript such as a programming language for logic, HTML for templating and SASS

(Syntactically Awesome Stylesheets) for style markup. For production, all components

Chapter 6. Basic implementation of the Project 54

are translated into JavaSctipt (e.g., ECMAScript 6), CSS, and corresponding templates.

All components get compressed and minimized by the Angular command line build tool.

6.4.2 Data modeling

For easy handling of the APIs and internal markup logic, all types of API responses

are mapped to the internal models in a precise and accurate manner, with getters and

setters written in TypeScript.

6.4.3 Perun connection service

One of the core parts of the web application is the Perun connector. This connector,

which is added over dependency injection to the Angular component can perform Perun

API calls to different endpoints of Perun’s JSON RPC endpoints. The API calls have a

simple structure:

Listing 6.7: Example call of a function in the Perun system using JSON RPC.

6.4.4 Portal core service

As well as the Perun connection service consumes Perun’s JSON RPC API, there is

also a service for the Portal API. This service works in a similar way and performs

calls which deal with new project applications. On the Django-side a valid Shibboleth

session is needed as well. Since the Django application already requires authorization, no

additional authentication tokens are sent to the portal core when submitting requests.

The only token that is sent (together with write requests) is CSRF token. The CSRF

token is not used for authentication and provides additional protection of the application

against cross-site request attacks.

Chapter 6. Basic implementation of the Project 55

6.4.5 Frontend components

To display HTML components in a browser, the additional template “Core UI” was chosen.

This template is built with Angular components and utilizes the Twitter’s Bootstrap

HTML5 framework, which provides components with mobile-adapted functionality and

wide spectrum of classes and patterns for GUI design.

6.5 Portal client

After the user has sent a request to start a virtual machine, Portal core forwards the

request to the portal client (See Section 5.7.1). Since the processes for starting a virtual

machine differ between the locations, Portal client should represent an abstraction layer

for these tasks. Abstraction will be made possible by an API that unifies all requests to

manage VMs for all compute centers. As part of this work, an API testimplementation

for REST and for JSON RPC has been done. It has been shown that JSON RPC API,

compared to REST, meets the requirements of the interface definition of Portal client.

This knowledge gained from the test implementation should be used in the future for the

reference implementation of the Portal client.

6.5.1 JSON-RPC benefits over REST

For the test implementation of the REST based Portal client, the API was specified using

the OpenAPI design rules. After that Swagger, an online OpenAPI specification editor

generated the complete python REST server, which utilizes the API specification file

(called swagger.yml) directly via the connexion library and provides an REST API

interface with request verification out of the box. Unfortunately, the REST interface

comes to its limits, when more complex functionality over the interface is required such

as attaching floating IP’s to VM. Those cases can hardly fit into the set of Create

Remove Update Delete (CRUD) actions (those map to the HTTP Methods3) of REST

and therefore another technology for the API was tested – JSON RPC. It takes another

approach and offers only one endpoint for all requests while REST has multiple endpoints,

at least one for each object.

3HTTP Methods are e.g. GET, POST, PATCH

Chapter 6. Basic implementation of the Project 56

To perform the correct JSON RPC request, the application must know the name of the

method to call and which data/parameters to send. For example, a correct JSON RPC

call according to the specification4 would look like:

{"jsonrpc": "2.0",

"method": "vm.create",

"params": {"name": "test",

"number": 42},

"id": 3}

Listing 6.8: Example of the JSON RPC request object.

In this case, the method vm.create would be called with parameters name = test

and number = 42. It is also possible to call the methods without any parameter (omit

"params") or send batch requests. The required parameters are "jsonrpc" which

provides the version of the protocol, "method" the called method on the server side.

An optional, but highly useful parameter is the "id", which usually contains a unique

number, and ensures that answers, especially those from the batch queries, can be

distinguished from each other and correctly assigned to the requests.

6.5.2 Flask framework

As mentioned in Section 2.5, OpenStack consists of tools which are written in Python and

provides python bindings as well. Since the test application should remain lightweight, a

web framework called Flask is used. With Flask it is possible to set up a simple JSON

RPC server using the flask jsonrpc module. Since function names from JSON objects

may differ from actual function names in Flask, they can be mapped via “@”-annotation:

@jsonrpc.method(’vm.create(vm_definition=dict) -> object’, validate=

True)

def vm_create(vm_definition):

#do stuff

return "Response"

Listing 6.9: Sample JSON RPC method with Flask

Unfortunately, JSON RPC for Flask can not deeply verify the incoming data.

4http://www.jsonrpc.org/specification

http://www.jsonrpc.org/specification

Chapter 6. Basic implementation of the Project 57

The only form of verification that can be done is one of the parameter types of the

request (e.g. if it is a dict or string). For explicit semantic verification of the dict,

the developer must provide his own code. This issue is automatically solved in the REST

API through providing the correct API definition file. Nonetheless, JSON RPC was

chosen as the communication technology between Portal client and Portal core.

6.6 Portal infopages

Portal infopages provide current news and general information about the de.NBI cloud

portal to the user. For that purpose, a small and lightweight CMS – WordPress (WP) is

used. It is the standard, well-known engine for blogging and creating small websites and

is available as an official Docker container as well. For the correct container set up the

following steps have to be completed:

• Connect the database – the DB is a standalone container which runs the official

MariaDB container. Database content is stored permanently outside of the container

and is mounted as an external volume. WP connects to this DB using the internal

network.

• Adding template – to design the Portal infopages similar to the de.NBI home-

page5 a small template was used and adopted in the way to resemble the de.NBI

page.

• Content and Menus – finally, the top menu structure was added and some basic

content about the de.NBI cloud was added.

The main advantage of this container configuration is a simple and effortless update

of the WordPress engine. In order to upgrade Portal infopages to a newer WordPress

version, the new WP container version needs to be pulled, the old container stopped,

removed and finally the new container should be deployed.

5See https://denbi.de

https://denbi.de

Chapter 6. Basic implementation of the Project 58

Since all information regarding the content and the template is stored outside of the

container, there is no further configuration required:

$> docker pull wordpress:latest

$> docker-compose stop portal-infopages

$> docker-compose rm portal-infopages

$> docker-compose start portal-infopages

Listing 6.10: WordPress update in Portal infopages

6.7 Deployment

6.7.1 Automatic container build

Currently the containers are built and deployed manually, but since the source code of

the software and container configurations (Dockerfiles) are stored in the repositories, it

is possible to create an automatic environment for building and testing of containers for

production deployment.

6.7.2 reverse Proxy

The main component of the deployment of the microservices is the reverse proxy, whose

functional requirements are described in Section 5.10.2. HAproxy runs in its own

container, which consists of the configuration file and SSL certificates for the production

domain. The configuration is divided into the frontend and the backend section6. In

the sections it is defined which incoming requests are accepted, and to which containers

the content should be forwarded. The rules for the accepted URL patterns are defined in

the frondend section and the corresponding servers are listed in the backend section.

Furthermore, the frontend section contains settings for SSL encryption.

6See https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy
-and-load-balancing-concepts

Chapter 6. Basic implementation of the Project 59

In the following example the frontend leads to the SSL port, distinguishes requests by

the incoming URL pattern and transfers the request to the corresponding server in the

backend:

frontend www-https

mode http

reqadd X-Forwarded-Proto:\ https

bind *:443 ssl crt /etc/haproxy/ssl/portal-dev.denbi.de.pem

redirect scheme https if !{ ssl_fc }

acl is_media path_beg -i /media

use_backend portal if is_media

[...]

backend portal

server p1 portal:443 check ssl verify

Listing 6.11: Sample HAProxy configuration

6.7.3 Docker encapsulating with LXC containers

In addition to the deployment via Docker on a bare-metal server or in a virtual machine,

the docker containers can be deployed in the LXC containers 7. LXC container lets

the developer create a close environment similar to the standalone Linux installation,

but without a need for a separate kernel. LXC allows the operation of unprivileged

containers with other user identifiers (UID) aside of root. The production containers

therefore run in an LXC metacontainer. This type of deployment provides additional

security (unprivilidged LXC container) while maintaining the flexibility (Docker based

microservices).

6.7.4 Deplyoment without containers.

Another deployment approach is to install software directly on one bare metal host

or to set up multiple VMs instead of containers. Automatic deployment can also be

achieved with this approach using special software “Puppet” with scripts for example,

7See https://linuxcontainers.org/lxc/introduction/

https://linuxcontainers.org/lxc/introduction/

Chapter 6. Basic implementation of the Project 60

or “Ansible” with playbooks. However, among all deployment techniques, the most

lightweight and low-maintenance solution is still provided by the use of Docker containers,

since they combine a good level of abstraction with the simplicity of automation using

docker-compose.

Chapter 7

Discussion

7.1 Look back, conclusion

Good project development flow requires a lot of organizational and planning tasks. A

good development of the software also requires a well structured software design. In

view of the project’s longevity, the project was kept as modular as possible so that

the individual software components could be replaced by new ones in the course of

time. Furthermore an important part of the project development was the periodic

exchange of knowledge between the project participants. This project started with the

the international Elixir AAI kick-off workshop in Freiburg. The aim of the workshop

was to get to know Elixir and in particular the infrastructure for authentication and

authorization. The further exchange of knowledge regarding project development and

integration into the Elixir AAI took place in over 10 online conferences, among others

with Elixir AAI representatives. Additionally partial results of the design and planning of

de.NBI cloud portal were discussed in the offline conferences of so-called “special interest

group for the de.NBI cloud (SIG6)” and other de.NBI meetings.

The newly collected ideas were discussed, tested, presented and documented. Finally,

the technologies that met the requirements were selected and tested. Despite various

bugs in some systems and partly undocumented software, the basic implementation of

the deNBI portal could be created. An important success is the extensive use of the

Elixir AAI for the authentication and storage of user and group information.

61

Chapter 7. Discussion and Outlook 62

7.2 Outlook

The provision of computing resources for life scientists is an honourable and demanding

task for the de.NBI project. The further task is to extend the portal’s functionality.

For example, alternative SSO technologies should be integrated, since Elixir offers

openID registration in addition to Shibboleth.An important feature is the reference

implementation of the portal client and the corresponding module in the portal core,

as well as the integration of the functionality to start virtual machines in the portal

web application. During this work new Perun attributes were defined and already

implemented in Perun. These can store information about the compute center and also

the credits of the computing projects.

The further tasks to allow users deploy own VMs and mount volumes will be not less

challenging than amount of this work. The enhancement of the Portal and extending

with new features will provide an excellent platform for German scientist, support them

with the compute power and help them to get better results faster, without loosing hours

in the labor of calculation.

Appendix A

Appendix A

Figure A.1: eduGAIN memberships. Full members of eduGAIN are shown in dark blue.
Borrowed from https://technical.edugain.org/status.php

63

https://technical.edugain.org/status.php

Appendix A 64

Figure A.2: The process of starting a single VM with floating IP in horizon

Appendix A 65

Figure A.3: The page, where user can projects he is involved in.

Bibliography

[1] (2017). Federated keystone (OpenStack Documentation). OpenStack.

https://docs.openstack.org/security-guide/identity/federated-keystone.html.

[2] Belmann, P., Dröge, J., Bremges, A., McHardy, A. C., Sczyrba, A., and Barton, M. D.

(2015). Bioboxes: standardised containers for interchangeable bioinformatics software.

Gigascience, 4(1):47.

[3] BMBF-Internetredaktion (2015). Bekanntmachung des bundesministeriums für bil-

dung und forschung zu förderrichtlinien für ein ”deutsches netzwerk für bioinformatik-

infrastruktur”.

[4] Chonoles, M. J. (2017). OCUP 2 Certification Guide: Preparing for the OMG

Certified UML 2.5 Professional 2 Foundation Exam. Morgan Kaufmann.

[5] CLIMB (2017). Climb - the project; http://www.climb.ac.uk/overview/project/.

[6] Connor, T. R., Loman, N. J., Thompson, S., Smith, A., Southgate, J., Poplawski,

R., Bull, M. J., Richardson, E., Ismail, M., Elwood-Thompson, S., et al. (2016a).

Climb (the cloud infrastructure for microbial bioinformatics): an online resource for

the medical microbiology community. Microbial Genomics, 2(9).

[7] Connor, T. R., Loman, N. J., Thompson, S., Smith, A., Southgate, J., Poplawski,

R., Bull, M. J., Richardson, E., Ismail, M., Elwood-Thompson, S., et al. (2016b).

Climb (the cloud infrastructure for microbial bioinformatics): an online resource for

the medical microbiology community. Microbial Genomics, 2(9).

[8] Hetze, S. (2012). Single sign-on für webanwendungen mit shibboleth. Heise ix,

(5):119–123.

[9] Markelov, A. (2016). Certified OpenStack Administrator Study Guide. Springer.

66

Bibliography 67

[10] Mell, P., Grance, T., et al. (2011). The nist definition of cloud computing.

[11] Pühler, A. (2017). de.nbi – ein deutsches netzwerk für bioinformatik-infrastruktur.

BIOspektrum, (1):103–103.

[12] Tsolkas, A. and Schmidt, K. (2017). Single sign on. In Rollen und Berechti-

gungskonzepte, pages 189–224. Springer.

[13] Vyas, U. (2016). Applied OpenStack Design Patterns: Design solutions for

production-ready infrastructure with OpenStack components. Apress.

[14] Yakov Rekhter, Robert G Moskowitz, D. K. G. J. d. G. E. L. (1996). Address

Allocation for Private Internets. RFC 1918, RFC Editor.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Structure of this work

	2 Cloud computing and IAAS fundamentals
	2.1 Definition of the "cloud" term
	2.1.1 Services provided by the cloud
	2.1.2 Difference between IAAS and bare-metal deployment

	2.2 Authentication with single sign-on
	2.2.1 SSO authentication mechanisms
	2.2.2 Benefits and risks of single sign-on

	2.3 Accounting and supervision
	2.3.1 The purpose of accounting and resource allocation
	2.3.2 Calculation of resource costs
	2.3.3 Amazon Elastic Compute Cloud Accounting example

	2.4 Cloud provider overview
	2.5 OpenStack - an IAAS provider
	2.5.1 Structure of OpenStack
	2.5.2 Sample Horizon use case
	2.5.3 Keystone in detail
	2.5.4 OpenStack API usage example with Python

	3 Related work
	3.1 Federated OpenStack
	3.2 CLIMB – Bryn

	4 Analysis of the de.NBI project
	4.1 General purpose and core functionality
	4.2 Use cases and studies
	4.2.1 Basic role categories
	4.2.2 User stories

	5 Project setup and design
	5.1 Development workflow of de.NBI Portal
	5.1.1 Versioning
	5.1.2 Documentation
	5.1.3 Process mapping

	5.2 Component design
	5.2.1 Components architecture overview

	5.3 Shibboleth and Elixir AAI
	5.3.1 Single Sign-On with Shibboleth
	5.3.2 Elixir AAI
	5.3.3 Elixir Authentication

	5.4 Elixir's Perun
	5.4.1 Propagation service
	5.4.2 Web API and Service User

	5.5 Portal core
	5.5.1 Purpose
	5.5.2 Basic components
	5.5.3 API design
	5.5.4 Session handling with Shibboleth
	5.5.5 Perun communication
	5.5.6 Compute Center Connection

	5.6 Portal webapplication
	5.6.1 Purpose
	5.6.2 Schematic overview
	5.6.3 Interactions with Perun and Portal core

	5.7 Portal client
	5.7.1 Purpose
	5.7.2 Perun endpoint

	5.8 Cloud center VM provisioning
	5.8.1 Overview provisioning techniques
	5.8.2 Port Mapping

	5.9 Portal infopages
	5.9.1 Purpose

	5.10 Isolation and component communication
	5.10.1 Microservice architecture
	5.10.2 URL mapping and SSL offloading
	5.10.3 Developement environment
	5.10.4 Production environment and deployment

	6 Basic implementation of the Project
	6.1 Basic implementation of the de.NBI Portal
	6.2 Shibboleth configuration
	6.3 Portal core
	6.3.1 REST API framework comparison
	6.3.2 Django components and Django REST Framework
	6.3.3 Shibboleth authentication method
	6.3.4 Data modelling
	6.3.5 Deployment

	6.4 Portal Webapplication
	6.4.1 Angular components
	6.4.2 Data modeling
	6.4.3 Perun connection service
	6.4.4 Portal core service
	6.4.5 Frontend components

	6.5 Portal client
	6.5.1 JSON-RPC benefits over REST
	6.5.2 Flask framework

	6.6 Portal infopages
	6.7 Deployment
	6.7.1 Automatic container build
	6.7.2 reverse Proxy
	6.7.3 Docker encapsulating with LXC containers
	6.7.4 Deplyoment without containers.

	7 Discussion
	7.1 Look back, conclusion
	7.2 Outlook

	A Appendix A
	Bibliography

