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Abstract: Outdoor environments pose multiple challenges for the visual navigation of robots,
like changing illumination conditions, seasonal changes, dynamic environments and non-planar
terrain. Illumination changes are mostly caused by the movement of the Sun and by changing
cloud cover. Moving clouds themselves also are a dynamic aspect of a visual scene. For visual
homing algorithms, which compute the direction to a previously visited place by comparing the
current view with a snapshot taken at that place, in particular, the changing cloud cover poses a
problem, since cloud movements do not correspond to movements of the camera and thus constitute
misleading information. We propose an edge-filtering method operating on linearly-transformed
RGB channels, which reliably detects edges in the ground region of the image while suppressing
edges in the sky region. To fulfill this criterion, the factors for the linear transformation of the RGB
channels are optimized systematically concerning this special requirement. Furthermore, we test
the proposed linear transformation on an existing visual homing algorithm (MinWarping) and show
that the performance of the visual homing method is significantly improved compared to the use of
edge-filtering methods on alternative color information.

Keywords: visual navigation; outdoor; visual homing; warping; edge detection; sky segmentation;
color transformation

1. Introduction

Navigation is a fundamental task for outdoor robots, as it allows the robot to operate
autonomously in an unknown environment. The applications for autonomous outdoor robots
range from consumer-oriented products like lawn mowers to search-and-rescue robots [1,2].
Advanced sensors, e.g., differential GPS and LIDAR, exist to allow autonomous navigation of robots.
Differential GPS provides the robot with adequate measurements, but it is expensive and not applicable
in all environments, as for example in urban canyons [3]. LIDAR devices contain moving mechanical
parts, have a limited life-time and pose technological challenges in production. With these limitations
in mind, cameras are attractive sensors, as they are low-cost products without moving parts and
can be used for several different tasks, such as navigation, terrain classification [4,5] and obstacle
avoidance. Thus, visual navigation based solely on camera information is a reasonable choice for
consumer-oriented products. Here, we use a fisheye lens to capture panoramic images. Panoramic
images allow for separation of rotational and translational motion components [6] and simplify visual
navigation methods as the visible image content is independent of the robot’s orientation.

One approach to visual navigation is local visual homing, which can be used for navigation
based on topological maps. Local visual homing compares the current view with a snapshot
taken at a previously visited place and computes a home direction pointing to the place at which
the snapshot was taken. Visual homing algorithms can be divided mainly into two branches:
holistic and feature-based methods [7,8]. Feature-based methods extract salient features in the
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environment and match these features between images [9–11], whereas holistic methods operate on
the whole image [7,12,13]. Recently, methods were proposed that combine holistic and feature-based
approaches [14]; a comparison of both branches can be found in [15].

All visual homing methods have to cope with misleading information in the sky, resulting from
moving clouds. Edge filtering is an important preprocessing step for visual homing to improve
the illumination invariance [16,17]. Therefore, we propose a linear transformation of RGB input as
a preprocessing step for edge filtering, which preserves edges in the ground region of the image
while suppressing edges in the sky. Especially holistic visual homing methods, which use all pixels
of an image, are affected by these sky edges. Our experiments show that a transformation of the
color information before the edge-filtering step improves the homing performance for the holistic
MinWarping visual homing method. However, also feature-based approaches may benefit from the
proposed method by suppressing visual features in the sky. Even though features detected in the sky
portion will ultimately be rejected by the outlier elimination, a decreased outlier portion decreases the
computational effort. According to [18], an outlier rejection like RANSAC (random sample consensus)
can often find the right solution even for a high amount of outliers. However, the number of required
samples increases exponentially, and the increase in the computational cost is substantial. In particular,
the proposed method could be beneficial for all visual homing methods which operate on color images,
especially edge-filtered color images, in outdoor environments.

In this paper, we focus on the use of warping, more precisely the refined MinWarping [7,16],
a holistic visual homing method that has successfully been applied in indoor environments [19,20].
As many holistic methods, MinWarping considers all pixels of an image by computing a pixel-wise
distance measure and is therefore affected by scene changes not caused by camera movements.
In practical applications, a human or animal moving through the image only affects a relatively small
part of the image, but moving clouds can affect a substantial portion of the image. In this paper,
we focus on this issue by proposing an edge-detection method, which implicitly suppresses misleading
information in the sky region caused by clouds by applying an optimized linear transformation on
the RGB input. A straightforward exclusion of the sky region by restricting the vertical opening angle
for the camera images is not feasible, because the area of the image that is covered by sky strongly
depends on the environment.

RGBmax

RGBw

Figure 1. Example of the proposed edge-detection method. (Left) Input HDR color image from a
panoramic camera mapped to a rectangular view (chosen from the database Garden 1). (Upper right)
Prewitt-filtered image computed by applying the standard Prewitt filter on each RGB channel
independently, followed by a maximum operation. (Lower right) Edge-filtered image using the
proposed linear color transformation followed by a standard Prewitt filter on the transformed channel
RGBw (RGB weighted). For better visualization, the edge-filtered images are shown with inverted
colors. In the Prewitt-filtered image applied to the standard RGB channels, the clouds show distinct
edge responses, whereas these edges are noticeably less prominent in the transformed RGBw image.

Previous studies [16] showed that MinWarping performs best on edge-filtered images with respect
to illumination tolerance; however, standard edge detection algorithms lead to prominent edges in the
sky caused by clouds. The proposed method is illustrated in Figure 1: As can be seen, the Prewitt filter
applied to standard RGB channels followed by a maximum operation produces an edge image with
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distinct edges in the sky, whereby the proposed method (denoted as RGBw) leads to an edge-filtered
image in which the edges in the sky are substantially fainter.

The paper is organized as follows: In Section 2, we give an overview of the state of the art of
algorithms for edge suppression in the sky region of an image. We proceed in Section 3 by describing
the proposed linear transformation for RGB input channels and the image preprocessing pipeline
used for all the performed experiments. This is followed by the description of the analysis methods
in Section 4, which include the definition of application-oriented performance criteria in Section 4.1,
a concise recapitulation of the MinWarping method used for homing experiments throughout this
paper in Section 4.2 and a short description of alternative methods in Section 4.3. Section 5 describes the
experimental setup and the databases. The results are presented and discussed in Section 6. The paper
is completed by a short conclusion in Section 7 and an outlook toward future works (Section 8).

2. Related Work: Edge Suppression

In this section, we review approaches that provide edge suppression in the sky, while preserving
edges in the ground region of an image. The aim is to compute reliable edges for visual navigation
in outdoor environments. In this context, edges resulting from moving clouds in the sky represent
misleading information and are therefore considered as unreliable.

In the last few decades, comprehensive research on color edge detection has been performed.
Most of the proposed methods for edge detection in color images pursue the detection of all salient
edges in an image. Edge-detecting procedures operating on color images can be divided into two
groups: monochromatic-based and vector-valued techniques. Monochromatic-based techniques use
classical edge-detection techniques on each color channel separately and then combine the individual
results in a specific manner [21–29]. On the contrary, vector-valued techniques regard the color
information as vectors [30–36]. Furthermore, biologically-inspired edge-detection techniques exist
(e.g., [37]), which are based on the concept of color-opponency and use color differences as the basis for
edge detection. None of these methods distinguish between edges in the sky and edges in the ground
region of an image and are therefore not relevant for our problem formulation; for further reading,
we refer to available reviews [38–41]. Moreover, the particular type of edge filter is not relevant for
our application, as MinWarping uses detected edges in a strongly low-pass-filtered image, and the
detected edges are not needed for demanding subsequent steps like object segmentation.

Another approach to distinguish sky from ground regions is to use additional sensors to capture
images with a larger optical spectrum. For example, UV light itself or in combination with green can be
used to reliably separate sky from ground in images [42–45]. Infrared light also allows the separation of
sky and ground, as [46] show by solving an energy maximization problem. However, these approaches
need additional sensors and are therefore not suitable for applications relying on standard color
cameras. In [47], an algorithm based on energy function optimization is proposed, which separates sky
and ground by only using a standard color camera. This algorithm successfully separates the ground
and sky region in the presence of relatively simple and smooth sky region borders. For complex sky
borders that are present in natural environments, the authors mention that only a rough outline of the
border can be computed. The work in [48] proposes a segmentation of ground and sky regions based
solely on RGB input. They perform a linear transform on the RGB input to enhance the sky/ground
contrast. On the contrast-enhanced channel, a thresholding operation separates sky and ground.
This method is used for visual navigation in [49,50] as a preprocessing step to blacken the sky region
before the images are compared. Note that all these approaches require an additional computation step,
as the sky and ground regions have to be separated before an edge-filtering method can be applied on
the thresholded image.

Other approaches focus on classifying detected edges by their physical properties. The work
in [38] describes a method to classify edges, based on their physical origin, into the following classes:
object edges, reflectance edges, shadow edges, specular edges and occlusion edges. The classification is
based on the dichromatic reflection model [51]; therefore, certain knowledge of the material properties is
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required to apply this method. The work in [52] also classifies edges based on their physical properties.
They propose a parameter-free edge classifier for the following classes: shadow-geometry, highlight edges
and material edges. In both approaches, the proposed classification is not suitable for edges caused by
clouds, which cannot be regarded as solid objects, as they do not fit into any of these classes.

More sophisticated approaches focus on boundary detection instead of classical edge detection.
According to [53], a boundary is a contour that represents a change in pixel ownership from
one object or surface to another, whereas an edge corresponds to an abrupt change in low-level
features. An overview of boundary detection algorithms is presented by [54]. The approach of [53]
combines different cues of local image measurements to learn the occurrence of boundaries within
a supervised learning model. The ground truth for evaluating classified edges are human-labeled
color images. The work in [55] performs boundary detection based on the method by [53] and
adds image segmentation as a further step. Moreover, [56] propose to use Laplacian eigenvectors to
extract globally-significant boundaries from color images. None of these approaches is relevant for our
research, as they do not allow the discrimination of edges in sky or ground regions. Furthermore, in the
ground region, structure inside of objects might hold important information for visual homing methods
(e.g., MinWarping) and, thus, should not be suppressed.

We propose an edge-detection method based on a linear transformation of the RGB channels for
detecting reliable edges in the ground region of the image while simultaneously suppressing edges in
the sky region. Our approach is similar to the linear transformation by [48] described above, but we
optimize the factors of the linear transformation regarding the ratio between edge responses in the
sky region and edge responses in the ground region of an image. The analysis allows us to select one
specific set of factors that show the desired properties: edges in the ground region are reliably detected,
while edges in the sky regions are suppressed. We perform the edge filtering on the transformed RGB
input without a thresholding step to segment the sky and ground regions. We show that this approach
markedly improves the performance of a subsequent homing step using MinWarping.

3. Suggested Cloud-Edge Suppression Method

In this section, we describe the proposed cloud-edge suppression method including the image
preprocessing pipeline, which provides the input for the linear transformation on RGB channels.

3.1. Image Preprocessing

For the proposed method, the raw camera images are passed through a preprocessing pipeline,
which is sketched in Figure 2. The original images have a size of 1280 × 1024 pixels and are captured
with seven or eight different exposure times (0.12 ms, 0.25 ms, 0.5 ms, 1.0 ms, 2.0 ms, 4.0 ms, 8.0 ms,
16 ms (16 ms is only used for the databases (a)–(c), and (e))). First, the low dynamic range images are
combined into a high dynamic range image using the HDR procedure described in [57]. We use the
modified version from [43] and compute the HDR images for each RGB channel separately. This step
is included to avoid problems with over- and under-exposure of the images. The resulting HDR image
is low-pass filtered by applying a standard two-dimensional Gaussian filter:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

The Gaussian filtered images are then used as the input of an edge-detection method, which
is implemented as a simple Prewitt operator. For comparison, we tested different inputs for the
edge-filtering step: the proposed linear transformation on RGB channels (described in detail in
Section 3.2), all RGB channels independently followed by a combination of the edge-filtered channels
by a maximum operation and the linear transformation described in [48].

Further preprocessing steps are applied to use the images for a visual homing method
(here: MinWarping). The grey-scale edge-filtered image is aligned using the measurements from the
attached IMU, such that the optical axis of the camera corresponds to the gravity vector. In the next step,
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the rotated image is mapped to a rectangular panoramic view using the mapping from the OCamCalib
toolbox [58]. Finally, the image is subsampled such that the final image has a size of 288 × 72 pixels.

(1)

(2)

(3)

Figure 2. Preprocessing pipeline: (1) An HDR image of size 1280 × 1024 is computed from a set of
seven or eight low dynamic range images captured with different exposure times. (2) Gaussian filtering
and edge detection are performed on the HDR image using a specific edge detection method. (3) The
edge-filtered image is aligned to the gravity axis, mapped to a rectangular view and subsampled to
a size of 288 × 72 pixels. The exemplary image is taken from the database Finnbahn, and as edge
detection, the RGBw method is used.

3.2. Linear Transformation on RGB Channels

To achieve our goal of detecting reliable edges in the ground region of the image while suppressing
edges in the sky region, we propose a linear transformation of the RGB input as a preprocessing step
of a simple edge detection which is similar to the approach in [48]. The approaches differ in the goal of
the optimization: in [48], the authors search for a good parameter combination to segment the sky from
the ground region, whereas we try to maximize the so-called sky-to-ground ratio, which is described
in detail in Section 4.1. We show that the sky-to-ground ratio is a suitable criterion as it results in a
good homing performance using MinWarping.
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As a simple edge-detection method, we use the Prewitt kernels as defined in Equation (2) to
compute image gradients and combine the gradients to obtain the edge magnitude (see, e.g., [59]).

Px =

 −1 0 +1
−1 0 +1
−1 0 +1

 Py =

 −1 −1 −1
0 0 0
+1 +1 +1

 (2)

The linear transformation of the RGB input is described as:

RGBw = wR · R + wG · G + wB · B (3)

where wR, wG and wB denote the weights for the R, G and B channels, respectively. The range for wR
is [0,1], and wG and wB are in [−1,1]. Without loss of generality, all sets of weights have to fulfill the
condition ‖(wR, wG, wB)

T‖2 = 1.

φ

wG

wB

wR

θ

(a)

wG

wB

d
φ

x

y

(b)

Figure 3. (a) Parameter space for the linear combination of RGB channels. The factors wR, wG

and wB of the linear combination define the axes of a spherical coordinate system. The relevant
linear combinations lie on the surface of the upper hemisphere. The lower hemisphere is not relevant,
because only absolute values of the edge detection are considered. (b) Visualization of the parameter
space, which enables us to visualize the characteristic variables of the methods depending on the
selected weight factors in a 2D plot.

This parameterization spans a parameter space formed by the surface of a hemisphere with radius
one. In Figure 3a, this parameter space is sketched. The angle θ controls the weight for the red channel
in the linear combination; θ = π/2 results in wR = 0 in the linear combination; and θ = 0 results in
wR = 1. The choice of the angle ϕ controls the ratio of the green and blue channels. Note that the other
hemisphere is a center-symmetrical copy, as only the edge sign changes (which is eliminated by the
edge magnitude computation using the Prewitt operator).

In Figure 3b, the selection of the parameter combinations and the visualization step is sketched.
We sampled the parameter space in n = 21 steps in [−1,1] for wG and wB. For each square of which
the center lies within the circle, the corresponding linear factors are computed by transforming the
square coordinates (x, y) to spherical coordinates using a linear relationship between d and θ:

θ = d · θn with d =
√

x2 + y2 and θn =
π

n− 1
(4)

ϕ = arctan
y
x

(5)
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The corresponding linear factors are computed by transforming the point on the hemisphere back
to Cartesian coordinates:

wB = sin(θ) · sin(ϕ) wG = sin(θ) · cos(ϕ) wR = cos(θ) (6)

To include parameter combinations with wR = 0, we set θ = π
2 for all cropped blocks on

the circumference.

4. Performance Analysis

As previously mentioned, visual navigation in outdoor environments requires reliable edges
in the ground region of the image, while edges in the sky region should be suppressed. Therefore,
we analyze the response of a standard Prewitt filter on linearly-transformed RGB channels and define
suitable criteria. Furthermore, we describe the performance criterion used to analyze the results of
subsequent homing experiments, as well as the visual homing method MinWarping applied in these
experiments. Moreover, three alternative methods are introduced, which are used for comparison in
homing experiments.

4.1. Analysis of Edge Response: Sky-To-Ground Ratio and Edge Intensity

For each image, we manually created a mask using an image editing software, which represents
the ground truth for the sky and ground regions in the image. These masks are only used for the
analysis of the sky-to-ground ratio and for tests with MinWarping to show the effect of sky information
on the homing performance. An example of an input color image, a corresponding edge response
and the associated mask image is shown in Figure 4.

We search for a linear transformation of RGB channels that maximizes the edge response in the
ground region, while minimizing the edge response in the sky region. Crucial are the factors of the
linear transformation, not the edge filtering method, as MinWarping operates on first Gaussian-filtered
and then edge-filtered input. Thus, only a rough form of the edges is used, and the difference of
specific edge-filtering approaches is not relevant. As a consequence, we decided to use the simple
Prewitt filter for the edge-filtering step.

(a) (b) (c)

Figure 4. Example image for analysis of the sky-to-ground ratio: (a) input color HDR image;
(b) edge-filtered image; (c) mask image: the ground region is shown in black, and white represents the
sky region. The image is taken from the database Finnbahn and edge-filtered using the RGBw method.

To find the best linear transformation of RGB channels to the RGB weighted channel (called RGBw

in the following), the parameter space described in Section 3.2 is sampled on a grid basis. We then
analyze the edge responses on the transformed channels in two regions of the image: ground region
and sky region (see Figure 4c). As a performance measure, we define the following sky-to-ground
ratio criterion (SGR):
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SGRi =
EGi − ESi

Ei
(7)

SGR = avg
i
{SGRi} (8)

where EGi and ESi are the total edge response within the ground and sky region, respectively, and Ei is
the total edge response throughout all regions in one image i. The total edge response is calculated by
summing up all pixel values in the edge-filtered image inside the considered region.

A potential drawback of the SGR criterion is that the criterion may yield a high value when the
overall edge response is weak. In this case, no meaningful conclusion about the ratio between ground
and sky edges can be drawn. An overall weak response of the edge detection filter goes along with a
weak response in the ground region in the image. This conflicts with our aim to detect reliable edges
in the ground region. To overcome this drawback, we include a further criterion, which measures the
edge intensity within the ground region of the image. This so-called edge intensity criterion (EI) is
computed as:

ẼI = avg
i

{
EGi

}
(9)

EI =
ẼI

max
w

(ẼI)
(10)

where EGi is the summed edge response in the ground region of one image. The criterion is computed
for each image separately, averaged over all images i. The resulting values are then normalized to
a maximal value of one by dividing through the maximal value reached throughout the parameter
combinations w = (wR, wG, wB).

4.2. Analysis of Homing Performance: MinWarping

To show the applicability of the previously described linear transformation and the defined criteria,
we analyze them in realistic visual homing experiments. We selected MinWarping [7] as a holistic
visual homing method, which was tested exhaustively in indoor environments, and use the SIMD
-implementation (Single Instruction Multiple Data) as published in [60] (available from www.ti.uni-
bielefeld.de/html/people/moeller/tsimd_warpingsimd.html). The implementation was extended to
allow for ignoring invalid pixel values in the images, which occur due to the alignment of the images
to the gravity vector. In image columns, invalid regions only exist at the bottom; thus, we use an
adapted version of the normalized sum of absolute differences (NSAD) to calculate the difference
between two image columns x and y:

dNSAD =

p
∑

i=0
|xi − yi|

p
∑

i=0
(xi + yi)

with p = min(k, l) (11)

where k and l are the highest indices of the valid pixels in the columns x and y, respectively. The row
index is zero at the upper image border. As we use a fisheye lens, only the index of the highest valid
pixels are needed; for other omni-directional camera setups, the index of the lowest valid pixels might
also be needed. In the denominator in Equation (11), we can omit the computation of the absolute
values of the terms, in contrast to the standard NSAD measure, because the applied edge-detection
methods only compute positive responses.

The parameters for MinWarping are set according to Table 1 and remain constant through all
tests. For the computation of the column-wise NSAD measure, we ignore the topmost image rows in

www.ti.uni-bielefeld.de/html/people/moeller/tsimd_warpingsimd.html
www.ti.uni-bielefeld.de/html/people/moeller/tsimd_warpingsimd.html
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the unfolded images and thus prevent the use of strongly distorted image regions. The ignored rows
correspond to 20° of the elevation angle as listed in Table 1.

Table 1. Parameters for MinWarping. NSAD, normalized sum of absolute differences.

Image width 288
Image height 72

Vertical resolution of images 0.022 (radians per pixel)
Number of scale planes 9

Number of search steps in α direction 96
Number of search steps in ψ direction 96

Maximal scale factor 2.0
Maximal threshold value 2.5

Distance measure adapted NSAD
Elevation range 0° to 70 °

As a performance criterion, the average angular error (AAE) between the real homing angle
and the computed homing angle is used. The AAE is calculated for each database separately and
additionally averaged over all databases. In Figure 5, the design of the experiments is illustrated.
One image of the database is selected as the snapshot, and all other images are used as current views.
Then, home vectors are computed from each current view to the selected snapshot. This is repeated for
all available snapshots.

Figure 5. Example of MinWarping experiments: One image (location marked in purple) is selected
as the snapshot, and all other images are used as current views (blue). The computed home vectors
are shown as green arrows. This example shows the setup of the Finnbahn database with images
preprocessed using the RGBw method (σ = 5.0). The edge-filtered images are shown with inverted
colors for better visualization.

4.3. Alternative Methods

To compare our proposed method with alternative methods, we selected the following
three methods:

• RGBmax: Prewitt filter applied on each RGB channel separately and afterwards combined by a
maximum operation.



Robotics 2017, 6, 38 10 of 23

• C̃: Prewitt filter on the contrast-enhanced channel proposed in [48] as C = −1.16 · R + 0.363 · G +

1.43 · B− 82.3. This can be normalized and inverted to fit into our parameter space and results in
C̃ = 0.62 · R− 0.19 · G− 0.76 · B. The nearest parameter combination to C̃ in our sampled space
is indicated by a marker “x” in the plots.

• RGB− C̃: Prewitt filter as in RGBmax, but followed by a sky blackening similar to the approach
in [48,49], but using the widespread thresholding method proposed in [61]. The adaptive
thresholding was customized to handle panoramic images by weighting the pixels within a
column to reduce errors from contortions (the details are given in the Appendix).

5. Experimental Setup

For image acquisition, a CMOS color sensor (IDS: UI-1240LE-C-HQ) with an extreme wide-angle
fisheye lens (Lensagon: CSF5M1414) was used. The fisheye lens has a viewing angle of 182°.
Attached to the camera is an inertial measurement unit (IMU) (Xsens: MTi-30 AHRS).

For evaluation of the experiments, the test fields were surrounded by four colored landmarks,
which were manually marked in the resulting images to extract their positional information. For each
image, additional orientational data provided by an IMU were used to compute a three-dimensional
ground-truth position of the image, which is especially important for databases collected on uneven
terrain, as is the case in three of the six databases. The colored landmarks are barely visible in the
panoramic images and probably have no effect on MinWarping.

Databases

The basis for our evaluations is a total set of 464 images, with multiple exposure times for each
image. For the databases (a)–(c) and (e), we use eight different exposure times, and for the databases
(d) and (f), we use seven exposure times. The images are organized into six databases, which can
be categorized into three classes: grid databases (a)–(d), daytime database (e) and route database
(f). Figure 6 shows the environments where the databases were collected, and Figure 7 shows one
panoramic example HDR image for each database. Additionally, we give a short description of
the databases:

(a) Finnbahn: We captured 36 images on a grid of 5 × 5 m, with approximately a 1-m distance
between the images. The environment is characterized by surrounding trees and bushes, as well
as distant buildings. Throughout the image-capturing process, the cloud cover changed only
slightly and remained heavily clouded. The maximal difference in height over the grid is 0.6 m.

(b) Garden 1: We acquired this database with 48 images in a garden on a grid of 7 × 5 m in
approximately 1-m steps. Here, small buildings are visible in most of the images, as well as
trees and bushes. The main challenge of this database is the occurrence of occlusions and
overhanging bushes, as well as the rapidly-moving clouds. The maximal difference in height
over the grid is 0.6 m.

(c) Garden 2: We captured 56 images on a 7 × 6 m grid in a garden in approximately 1-m steps.
The maximal difference in height is 0.25 m. The main differences to the Finnbahn database
are the existence of overhanging trees and a significant change in the cloud cover. Moreover,
objects like a compost heap and a shed are partially very close to the camera and dominate
some images.

(d) University: On a street next to the Bielefeld University main building, we collected a total of
84 images covering a grid of approximately 29 × 4.75 m with 1.44-m steps along the long side
and 1.58-m steps along the narrow side. The changes in roll and pitch angles between the
images are small, and no overhanging objects occur. Furthermore, this database was collected
under an almost cloudless sky. Dominant in the images is the nearby university building and a
line of almost indistinguishable trees in the distance. All images are captured approximately on
a plane.
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(e) Balcony: This dataset consists of 128 images captured throughout one day during a time span of
approximately ten hours in five-minute intervals at the same camera position. The cloud cover
changes permanently throughout the image capturing process. These images are only used to
evaluate the sky-to-ground ratio of the edge-filtered images (see Section 4.1).

(f) Route: For this database, we collected 109 images in approximately 5-m intervals along a route
near the main building of Bielefeld University. As for the balcony setup, no ground truth is
available for this database. About half of the images are captured under a completely overcast
sky with barely visible changes in the cloud cover. The other half of the images are captured
under a slightly overcast sky, which changes only slowly. The images are only used to evaluate
the ground-to-sky ratio described in Section 4.1.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Database environments: The images show the different environments in which the six
databases were collected. The databases cover diverse environments under a wide range of dry
weather conditions. (a) Finnbahn; (b) Garden 1; (c) Garden 2; (d) university; (e) balcony; (f) route.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Exemplary panoramic HDR images for each database. (a) Finnbahn; (b) Garden 1; (c) Garden 2;
(d) university; (e) balcony; (f) route.

6. Results and Discussion

On the basis of the described databases, we performed systematic tests. These tests focus on three
aspects: (1) analysis of the SGR criterion across the whole parameter space, (2) investigation of the
relationship between the SGR criterion and the MinWarping performance and (3) comparison of the
proposed method to alternative methods.

6.1. Analysis of the Sky-To-Ground Ratio

In this section, we describe and discuss the results of different linear combinations regarding the SGR
criterion (see Section 4.1) based on the databases described in Section 5. In Figure 8a, the SGR criterion is
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shown for the chosen gridded samples of linear factors averaged over all 464 images (Equation (8)). The
diagram reveals a maximum of the SGR criterion near the circumference, which corresponds to a small
weight for the red channel. The optimal weights are wR = 0.122 for the red channel, wG = −0.646 for the
green channel and wB = 0.754 for the blue channel (marked by a ◦ in the figures).

Additionally, in Figure 8b, the EI-criterion is plotted for the sampled linear combinations. Based on
this plot, the above choice of wR = 0.122, wG = −0.646 and wB = 0.754 is justified by the fact that the
EI-criterion indicates a strong edge response in the related region. Altogether, high SGR values do not
co-occur with low EI values, but low values of EI coincide with low values of SGR. This is additionally
illustrated in Figure 9 in the form of a bivariate histogram of SGR and EI values. This diagram is
based on the SGR and EI values for the sampled parameter combinations (wR, wG, wB) averaged
over all databases. Most common is the co-occurrence of average EI values with average SGR values.
Important is the upper left part, which shows that high SGR values do not co-occur with low EI values.
Moreover, the highest SGR values co-occur with average or high EI values.

Based on these criteria, we propose the following linear transformation:

RGBw = 0.122 · R− 0.646 · G + 0.754 · B (12)
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Figure 8. Sky-to-ground ratio (SGR) and edge intensity (EI) of edge responses for different linear
combinations of RGB channels. The color values show the SGR and EI criterion for a given linear
combination. The surface of the hemisphere is projected onto a circle (see Figure 3b, and the description
in Section 3.2). The selected RGBw parameter combination is marked by a circle, and the parameter
combination closest to C̃ is marked by a cross.
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Figure 9. Bivariate histogram of SGR and EI values: high SGR values do coincide with the average or
high EI values and are thus a reasonable choice.
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6.2. Analysis of Homing Performance

The previous section showed that a pronounced maximum of the SGR criterion can be found in the
parameter space. Here, we describe and discuss the results in an application-oriented context using the
MinWarping method and relate the SGR criterion with the MinWarping performance (for MinWarping
details, see Section 4.2).

To investigate this relationship, we performed homing tests on the same sampled linear
combinations as used for the computation of the SGR criterion. The results are shown in Figure 10
in the center. On the left, the corresponding plot of the SGR values is shown again for better
comparison. Note that the color map for the AAE is flipped, such that red colors indicate good
results (low angular errors). The plots show a strong correlation between the SGR criterion and
the MinWarping performance, which is underlined by the scatter plot shown in Figure 10c on the
right. This plot suggests a strong, non-linear correlation between the two variables. We validate
this presumption by using Spearman’s correlation coefficient taking into account the non-linearity
of the relationship. The Spearman’s correlation test shows a strong, negative monotonic correlation
between AAE and SGR (rs = −0.94, p < 0.001 with n = 373). This corroborates the assumption
that the SGR criterion is a good criterion for the search of a linear transformation that improves the
performance of homing in outdoor environments. High SGR values and low AAE results could also
occur if the sky regions in the images are small and thus barely influence the homing performance.
In Section 6.3, we address this issue by using masks to eliminate the sky region and show that the sky
region has a strong influence on the homing performance. According to Figure 10, the factors of the
linear transformation have a strong effect on the MinWarping performance, resulting in AAE values
reaching from approximately 12° for the best up to 47° for unsuitable factors.
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Figure 10. Relationship of sky-to-ground ratio and MinWarping performance averaged over all databases:
(a) Sky-to-ground ratio for transformed RGB channels. (b) MinWarping performance in average angular
errors (AAE) for transformed RGB channels. The color map for the AAE values is flipped to allow for
a better comparison, since the goal is to reach low angular errors. The parameter combination with
the highest SGR value is indicated by a circle, and the parameter combination closest to C̃ is marked
by a cross. Additionally, the asterisk marks the parameter combination that reached the minimal AAE.
(c) Scatter plot illustrating the strong, negative monotonic correlation between AAE and SGR values.

To further analyze the relationship between the SGR criterion and the MinWarping performance,
we show results for the different databases separately. This enables deeper insights, as the databases
differ significantly regarding the cloud cover. The database Finnbahn is characterized by a strong cloud
cover, but changes in the cloud cover are almost unnoticeable throughout the database. The results for
this database are shown in Figure 11 in the first row. The values for the SGR criterion show comparable
properties to the values averaged over all databases. However, the average angular errors do not show
the previously mentioned strong correlation with the SGR criterion. The region of linear combinations
that reach a good homing performance is markedly larger compared to the results averaged over all
databases. This can be explained by the characteristics of the database, which was captured under an
overcast sky with barely visible changes in the cloud cover. Under these conditions, edges in the sky region
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do not disturb the image comparison, as they stay almost constant throughout the images. This effect is
due to the limited duration of the image capturing process and the stable weather conditions. Nevertheless,
the linear transformation with the best SGR value is a good choice as it results in low homing errors.
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Figure 11. Relationship of sky-to-ground ratio and MinWarping performance for different databases.
(Left) sky-to-ground ratio for transformed RGB channels. (Right) MinWarping performance in average
angular errors (AAE) for transformed RGB channels. The markers indicate the maximal SGR value
(circle), the parameter combination closest to C̃ (cross) and the minimal AAE value (asterisk) averaged
over all databases (see Figure 10).
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The databases Garden 1 and Garden 2 share similar characteristics: fast changing cloud cover
throughout the image capturing processes. The results are shown in Figure 11 in the second and
third row. Both databases show similar results to the effect that the best MinWarping performance
coincides with the best SGR values. This reflects the assumption that variable cloud edges in the
sky corrupt the homing performance. Both databases share a rapidly-changing, strong cloud cover,
which results in high homing errors if the SGR criterion is low. In contrast, a high SGR value ensures a
good homing performance.

The database university constitutes a special case, as the images captured are largely free of tilt and
the sky is nearly cloudless. This leads to the results shown in Figure 11 in the last row. Here, the best
values for SGR do not coincide with the best results of MinWarping. However, it has to be noticed
that the differences in AAE values are comparably small (maximal 1.5°). Anyway, strong SGR values
co-occur with moderately good home angle errors. The performance in the university database is similar
to the Finnbahn database, but the conditions are different. In the university database, the sky was almost
cloudless throughout the whole image capturing process. Thus, no misleading information in the sky is
present, regardless of the factors of the linear transformation. Again, the choice of factors that result in
a high SGR value still reaches a good homing performance. It is important to notice that the proposed
linear transformation does not worsen the results if no misleading information in the sky is present.

So far, all images were used as a basis for studying the relationship between the SGR criterion
and the MinWarping performance. To show the generalization ability of the proposed method,
we performed tests based on the principle of cross-validation. Our data are atypical for standard
cross-validation, as they are organized in databases that each contain dependent images due to the
spatial layout of the databases. We take this dependency of the data into account by performing
a group-based cross-validation. This is separated into two experiments: (1) cross-validation of the
SGR criterion; (2) cross-validation of the AAE based on the SGR criterion. The results for the SGR
criterion are shown in Figure 12a. For this analysis, we split the data into a training and a test set
in the following way: one database is retained as test set, and all other databases form the training
set. This is repeated in such a way that each database is selected as the test set once. The label of
each boxplot denotes the database used as the test set, and the data visualized as the boxplot is the
set of SGR values reached by computing the SGR criterion for each parameter combination within
this database (sampled as described in Section 3.2). For each test database, the circle marks the SGR
value that is reached within this database by using the best parameter combination resulting from the
training set. The graph shows that a high SGR criterion in the training set generalizes to a high SGR
criterion in the test set. In other words, the selection of the best parameter combination based on the
SGR criterion in a training set is an adequate choice for an unfamiliar environment.

In Figure 12b, the same cross-validation method is visualized with regard to homing results.
Here, the parameter combination reaching the highest SGR value in the training set is used for
computing the associated AAE in the test set (marked by a circle). The boxplot for each database
visualizes the range of all possible AAE values throughout all parameter combinations. It is clearly
visible that the selection based on the training set results in a nearly optimal performance regarding
the homing performance in an unfamiliar environment.

These experiments support the proposed method in which the search for an optimal SGR value is
used to find a linear color transformation that improves the homing performance. For all databases,
the plot shows that a specific set of weights selected by optimizing the SGR criterion on a training
set results in a nearly optimal AAE value in the test set. As the databases cover substantially
different environments, the results demonstrate the generalization ability of the proposed method to
unfamiliar environments.
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Figure 12. Group-based cross-validation: The data are divided into a test and a training set in such a
way that the labeled database is selected as the test set and all other databases are used as the training
set. (a) The boxplots show the range of the SGR criterion for each database as the test set with the edges
of the box indicating the 25th (q1) and 75th (q3) percentiles, respectively. Values are defined as outliers
if they fall below q1 − 1.5 · IQR or above q3 + 1.5 · IQR, where IQRdenotes the interquartile range,
and the whiskers expand to the highest and lowest occurring values within these limits. The circle
marks the SGR value in this database for the best parameter combination selected from the training
set. (b) The boxplots show the range of the AAE-results for each database analogous to the boxplot
parameters in (a). The circle indicates the AAE when the optimal parameter set from the training is
used for the test database.

6.3. Comparison with Alternative Methods

In this section, we describe visual homing experiments based on the proposed linear transformation
(RGBw = 0.122 · R − 0.646 · G + 0.754 · B), which achieved the best sky-to-ground ratio in the
experiments in Section 6.1 and compare it with three alternative approaches (described in Section 4.3).

To analyze the effect of misleading information in the sky region, we use manually-created
mask images, which indicate the sky and ground region of the images. These mask images are
used in additional experiments to remove the information in the sky region after the edge-filtering
step. Applying MinWarping on these edge-filtered images allows us to investigate the effect of the
information in the sky region.

Figure 13. Performance of MinWarping on differently-filtered input displayed averaged over all
databases and for each database separately. The annotation “No Sky” means that the sky was blackened
by using the manually-created masks for the methods RGBw, RGBmax and C̃, whereas the annotation
“Sky” indicates that the images where used without further manipulation of the sky region. RGB− C̃
denotes the use of Otsu’s thresholding on the C̃ channel to blacken the sky in RGBmax.
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The results of MinWarping experiments on differently-filtered input are shown in more detail in
Figure 13 averaged over all databases and additionally for each database separately in terms of AAE
values in degrees. For these experiments, the value σ was set to 5.0 (see Section 6.4 for details). As a
consequence, the left part of the figure (labeled “all databases”) illustrates the same results as Figure 14
for σ = 5.0.

Averaged over all databases, the proposed RGBw transformation reaches the lowest errors,
followed by the C̃ channel. The worst results are reached by using the RGBmax method without taking
into account the edges in the sky. Blackening of the sky in the RGBmax method by using manually-
created masks leads to a marked reduction of the errors. This sky blackening results in comparable
results for all three methods, which supports the assumption that the specific kind of edge detection
is not important for MinWarping; crucial is the elimination of misleading information in the sky.
For the proposed RGBw method and the C̃ method, additional blackening of the sky region even
worsens the results. This effect is probably caused by the design of the experiments, where changes in
cloud cover are not present in all pairs of snapshots and current views. In some cases, the remaining
information in the sky region using the RGBw and C̃ method could support the homing method.
However, for the RGBmax method, the misleading information obviously outweighs the supportive
information. This effect should disappear in cross-database tests, where the sky never holds supportive
information. Moreover, this effect is purely theoretical, because no manually-created masks for the sky
blackening are available in real scenarios.

Instead of using manually-created masks, we additionally display the results obtained by using
the contrast enhanced channel C̃ to compute a sky-ground mask and use this sky-ground mask to
blacken the sky in the RGBmax method (denoted as RGB− C̃). This approach is similar to the one
used in [49,50], but differs to the extent that a different thresholding method is used. The results
show that this approach improves the overall error compared to the RGBmax method for the databases,
but reaches worse results than the proposed RGBw method or C̃. This effect occurs due to errors in the
sky-ground separation, which could be identified in multiple images. We did not further investigate
this effect, as the blackening of the sky with a correct mask (created manually) showed no improvement
compared to the RGBw or C̃ methods. Therefore, it is not conducive to improve the thresholding,
but preferable to use the proposed RGBw or C̃ channel without thresholding. In Figures 10 and 11,
the sampled linear factors closest to the C̃-factors are marked by a cross. This explains the good homing
performance of the C̃-channel, as the C̃-factors produce a high SGR value; however, other factors reach
even higher values.

Differentiated consideration of the results in the individual databases allows for a deeper
understanding of the analyzed methods. In particular, the results of the database university stand
out as they differ from the other databases. In this database, the performance of all methods
except the thresholded RGBmax channel using Otsu’s thresholding show comparable results.
Manual blackening of the sky does not show a noticeable effect on the homing performance, which can
be explained by the characteristic of this database, which was collected under an almost cloudless sky.
However, even under these conditions, the RGBw channel is a good choice. The large errors for the
RGB− C̃ method are due to errors in the thresholding, which occurred when the white university
building was visible against the bright sky. In this constellation, the university building was mistakenly
classified as sky. This kind of error also occurred in the database Finnbahn when the Sun was shining
through foliage. Overall, the applied Otsu’s thresholding tends to misclassify ground regions as sky,
which is critical for the databases Finnbahn and university, but at the same time improves the homing
performance in the databases Garden 1 and Garden 2, where overhanging bushes and trees complicate
the homing process. In this context, misclassifying these overhanging ground regions as sky improves
the homing performance compared to manual sky blackening. In contrast to Otsu’s thresholding,
we decided to classify ambiguous regions in the manually-created masks as ground, e.g., canopy in
front of bright sunshine. As a consequence, all regions containing ground elements are preserved
when applying these masks, but also sky regions may still be present.
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6.4. Influence of Low-Pass Parameter σ on Homing Performance

For the above comparison of the proposed method to alternative methods, the low-pass parameter
was fixed to σ = 5.0. This choice was made based on tests of the MinWarping performance on
edge-filtered images using all above-mentioned alternative edge-filtering methods with different
values for σ. The average angular errors (AAE) shown in Figure 14 are computed as averaged values
over all grid databases. As can be seen, increasing of σ, which results in stronger low-pass filtered edge
images, increases the MinWarping performance for all but one method. For the images filtered with
the RGBmax method, the homing performance gets worse up to σ = 2.5 and improves again for further
increasing values. For σ ≥ 4.5, the MinWarping performance remains on approximately the same level
for all methods, except RGBmax. Based on these results, we choose σ = 5.0 as an appropriate value.

In Figure 14, the annotation “no sky” means that the sky region was removed from the
edge-filtered images by using the manually-created masks.

Figure 14. Effect of the parameter σ used for Gaussian filtering on MinWarping performance.
The results in average angular errors are averaged over all databases.

7. Conclusions

That misleading information in the sky region deteriorating the performance of MinWarping is
clearly visible in the results of the experiments using RGBmax as the input. In a typical application of
homing, no mask for deleting the sky region is available. Therefore, the proposed linear transformation
shows promising properties for applications in outdoor environments. On the one hand, in the presence
of changing cloud cover in the sky region, the homing procedure based on RGBw edge-filtered images
performs significantly better than MinWarping on alternative input. On the other hand, when no
misleading information in the sky is present, the homing procedure on RGBw edge-filtered images
reaches comparable results to the homing procedure on alternative inputs. The method C̃ reaches
comparable results to RGBw regarding the homing performance. This is in agreement with the
assumption that high SGR values result in good homing performance and the fact that C̃ lies within
the region of high SGR values (see Figure 10 where the region approximately corresponding to C̃ is
marked by a cross).

Taken all together, we could show that a linear transformation of RGB input, which reaches a high
SGR value used as input for MinWarping, significantly improves the homing performance. On the
basis of the currently available databases, the highest SGR value does not result in the best homing
performance, rather high SGR values form a region of potentially suitable parameter combinations.
A broader data pool might possibly further restrict the suitable parameter combinations.

Based on the comparison of the results from RGBw with artificially-masked alternatives, we draw
the conclusion that the suppression of edges within the sky region is a superior approach to
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thresholding using an optimized channel for thresholding (e.g., C̃). Even though we used nearly
perfect masks (created manually), the masked alternatives reached worse performance than the
suppression approach in the proposed method RGBw. Therefore, it is not conducive to improve the
thresholding step within this context, but to use the proposed RGBw method directly and make the
thresholding step redundant.

8. Future Work

As a part of future work, the factors of the linear transformation could be further optimized by
including additional images in the SGR evaluation. Images captured with other cameras could stabilize
the result and are planned in the future. Furthermore, the analysis of MinWarping performance in
outdoor environments needs to be extended by cross-database tests, which we plan to collect in
the short term. Therefore, databases will be acquired in the same places under different conditions,
e.g., morning, noon and evening, or even on different days.

We analyzed the performance using MinWarping as the holistic homing method. The promising
properties of the linearly-transformed RGBw channel might also improve other homing methods,
for example feature-based approaches. In feature-based approaches, the proposed method might
prevent the detection of features in the sky, which would otherwise result in outliers that have to be
rejected in a subsequent outlier rejection step and thus increases the computation time.

To improve the overall performance of MinWarping in outdoor images, further research is in
progress: problems occur when objects are located directly above the camera, which leads to strong
distortions in the mapping to a rectangular view and additionally violates the assumptions of the
MinWarping method. Furthermore, a deeper analysis of the effect of occlusions and change in altitude
has to be performed. Additional research is needed to investigate the effect of the proposed linear
transformation in the context of feature-based approaches.
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Appendix A. Customized Otsu’s Thresholding

We use the adaptive thresholding method from [61] to segment the sky from the ground region.
Computing the histogram, which is the first step in this adaptive thresholding method, directly
on the fisheye image would result in a distorted histogram due to distortions of the fisheye image.
Starting from a panoramic image, mapped using the calibration in [58], we consider the area that one
pixel in the mapped image represents in the fisheye image. Therefore, we modified the histogram
computation by introducing weights depending on the elevation angle in the mapped image. The sine
relationship of elevation angle to weights in fisheye images is a consequence of the coordinate transform
from spherical to Cartesian coordinates. This weighting reduces the influence of the upper image rows,
which are strongly distorted due to the mapping function.

Each pixel in the image is defined by an azimuth angle ϕ and an altitude angle ϑ. The weight w
depends on the altitude angle ϑ and is computed by w = sin ϑ. In this way, pixels at the top of the
image are weakly weighted, whereas pixels at the bottom are strongly weighted (as we use ϑ ∈ [0, π

2 ]).
This modified histogram is then used as input for the thresholding described in [61].
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