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RESEARCH NOTE

Consideration of non‑canonical 
splice sites improves gene prediction on the 
Arabidopsis thaliana Niederzenz‑1 genome 
sequence
Boas Pucker  , Daniela Holtgräwe   and Bernd Weisshaar* 

Abstract 

Objective:  The Arabidopsis thaliana Niederzenz-1 genome sequence was recently published with an ab initio gene 
prediction. In depth analysis of the predicted gene set revealed some errors involving genes with non-canonical 
splice sites in their introns. Since non-canonical splice sites are difficult to predict ab initio, we checked for options 
to improve the annotation by transferring annotation information from the recently released Columbia-0 reference 
genome sequence annotation Araport11.

Results:  Incorporation of hints generated from Araport11 enabled the precise prediction of non-canonical splice 
sites. Manual inspection of RNA-Seq read mapping and RT-PCR were applied to validate the structural annotations 
of non-canonical splice sites. Predictions of untranslated regions were also updated by harnessing the potential of 
Araport11’s information, which was generated by using high coverage RNA-Seq data. The improved gene set of the 
Nd-1 genome assembly (GeneSet_Nd-1_v1.1) was evaluated via comparison to the initial gene prediction (Gen-
eSet_Nd-1_v1.0) as well as against Araport11 for the Col-0 reference genome sequence. GeneSet_Nd-1_v1.1 contains 
previously missed non-canonical splice sites in 1256 genes. Reciprocal best hits for 24,527 (89.4%) of all nuclear Col-0 
genes against the GeneSet_Nd-1_v1.1 indicate a high gene prediction quality.
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Introduction
Eukaryotic genes are transcribed as a primary tran-
script that is subsequently converted to a mature mRNA 
through several processing steps including splicing. Dur-
ing splicing, introns [1–3] are removed from the primary 
transcript while exons are retained. The process is cata-
lyzed by a RNA protein complex called a spliceosome, 
which exists in several variants. Based on the spliceosome 
variant that acts on a given intron, eukaryotic introns are 
classified as U2-type introns [4] that appear very fre-
quently, or rare U12-type introns [5], respectively [6]. The 
highly conserved sequences at the termini of introns are 

not sufficient to distinguish between both types, since the 
U12-spliceosome can remove AT-AC introns, some other 
non-canonical intron variants, as well as some introns 
of the canonical GT-AG type [6–9]. Canonical GT-AG 
and non-canonical intron variants including AT-AC 
introns can coexist within the same gene, potentially with 
an effect on gene expression due to the slow removal of 
U12-type introns [10]. Several extremely rare terminal 
intron sequences were discovered and often discussed 
as potential artifacts, e.g. introns with GT-GG or TT-AG 
termini [11–14]. Further details regarding exceptional 
splicing events have recently been reviewed [15, 16].

Splicing processes were investigated intensively in 
the plant model system Arabidopsis thaliana [17–22], 
resulting in very well annotated splice sites throughout 
the reference genome sequence [23]. Despite attempts 

Open Access

BMC Research Notes

*Correspondence:  bernd.weisshaar@uni‑bielefeld.de 
Faculty of Biology & Center for Biotechnology, Bielefeld University, 
Bielefeld, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211826842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-3321-7471
http://orcid.org/0000-0002-1062-4576
http://orcid.org/0000-0002-7635-3473
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-017-2985-y&domain=pdf


Page 2 of 6Pucker et al. BMC Res Notes  (2017) 10:667 

to annotate non-canonical splice sites automatically [24, 
25], ab initio gene prediction without experimental sup-
port from e.g. RNA-Seq data (“external hints”) does not 
support the detection and annotation of non-canonical 
splice sites on genome sequence assemblies at a satisfying 
level [26–28]. By generating high quality gene prediction 
hints based on the recently released Araport11 annota-
tion of the Col-0 sequence [29, 30], we improved the gene 
set generated by ab initio gene prediction based on the A. 
thaliana Niederzenz-1 (Nd-1) sequence [31].

To correlate and compare gene structures from related 
genomes, the first step is to define “orthologous” gene 
couples. Such couples can efficiently be determined by 
evaluating reciprocal best BLAST hits (RBHs) [32–35]. 
Each RBH couple consists of two genes, one from each 
of the two genome sequences (or genomes) to compare, 
which display the highest scoring hit in the other data set 
in a reciprocal manner [36]. RBH couples are the basis for 
gene-centric comparative genomics [32–35] and can also 
be used for synteny analysis or as guidance in a genome 
assembly [31].

Main text
Methods
Analysis of candidate genes
In total, 45 randomly selected Col-0 genes with non-
canonical splice sites were manually inspected in a 
RNA-Seq read mapping produced with STAR [37] 
based on Araport11 data sets (listed in [30]). Reads 
were required to map with at least 90% of their length 
and 95% similarity. The number of selected cases was 
a compromise between the required accuracy of the 
results and a manageable amount for individual manual 
inspection. Corresponding loci in the Nd-1 sequence 
were identified via tblastn [38]. Gene structures 
around non-canonical splice sites in the Nd-1 assembly 

sequence [31] were annotated manually for further 
investigation.

Primer combinations for RT-PCR included one primer 
bridging an exon–exon junction with 100–500  nt dis-
tance to the other primer (Table  1). Oligonucleotides 
were purchased from Metabion (http://www.metabion.
com/). Total RNA was isolated as described before [39]. 
DNAse I (M0303L, New England Biolabs) digestion was 
performed according to the suppliers’ protocol. cDNA 
synthesis was carried out using 1  µg of total RNA and 
ProtoScript II Reverse Transcriptase (M0368L, New 
England Biolabs) based on the suppliers’ protocol. Q5 
High-Fidelity DNA polymerase (M0491L, New England 
Biolabs) was employed according to the suppliers’ rec-
ommendations (including PCR cycling conditions) for 
generation of amplicons. The size of the amplicons was 
checked by agarose gel electrophoresis. Samples were 
purified for sequencing by ExoSAP-IT (78201.1.ML 
ThermoFisher Scientific) treatment as described [40]. 
Sanger sequencing on ABI3730XL was applied to reveal 
the entire sequences as described [41]. Finally, the correct 
annotation of the non-canonical splice sites in the candi-
date genes was inspected via sequence alignments gener-
ated with MAFFT [42].

Hint‑based gene prediction
All representative transcript sequences of protein coding 
genes in the Col-0 nucleome within the Araport11 anno-
tation, as well as the first transcripts of At4g01800 and 
At3g10350, were mapped to the Nd-1 genome sequence 
via BLAT [43]. Perl scripts provided in the AUGUSTUS 
package filterPSL.pl and blat2hints.pl (http://bioinf.uni-
greifswald.de/augustus/binaries/scripts/) were used to 
convert the BLAT output into valid hints. AUGUSTUS 
3.2.1 [44, 45] was run on the Nd-1 genome sequence 
incorporating these hints.

Table 1  The oligonucleotides listed were applied in  RT-PCRs to  validate non-canonical splice sites selected candidate 
genes in Nd-1

Name Gene Sequence Length Orientation Recommended annealing temperature [°C]

S015 At1g79350 (FGT1) GCTTCCCTGGAGTGCTGATCG 21 Forward 61

S016 At1g79350 (FGT1) TCGGGTTCATCAATCGAGCATCC 23 Reverse 61

S017 At1g79350 (FGT1) AAGAACAGGTAGTTTCTCCTGCTCC 25 Reverse 60

S003 At4g01800 (AGY1) ACTGGTGAAGGGAAAACGCTTG 22 Forward 59

S004 At4g01800 (AGY1) AATGTATATCCCGCTCAAAGGCTG 24 Reverse 59

S005 At4g01800 (AGY1) TCTTCTGCTTTTCATCAACAGTGTAATG 28 Reverse 58

S018 At4g27500 (PPI1) AGCCGCAGAAGGAAGAAAAGC 21 Forward 59

S019 At4g27500 (PPI1) ACGCGATGAGACGAATTCCGAG 22 Forward 61

S020 At4g27500 (PPI1) CTCTTGGGATCGTTTCTGGTCC 22 Reverse 59

http://www.metabion.com/
http://www.metabion.com/
http://bioinf.uni-greifswald.de/augustus/binaries/scripts/
http://bioinf.uni-greifswald.de/augustus/binaries/scripts/
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Comparison of gene predictions
Calculation of gene prediction statistics as well as com-
parison to the Col-0 annotation via identification of 
RBHs was carried out by custom Python scripts as previ-
ously described [31]. ParsEval [46] was applied to com-
pare the GeneSet_Nd1_v1.0 and GeneSet_Nd1_v1.1 in 
more detail.

Results and discussion
When analyzing the protein coding genes predicted 
in the recently released A. thaliana Nd-1 genome 
sequence [31], we observed complete absence of introns 
with non-canonical splice sites in the initially predicted 
gene set (GeneSet_Nd-1_v1.0). The structural annota-
tion was performed ab initio using AUGUSTUS 3.2. By 
comparing the GeneSet_Nd-1_v1.0 with the Araport11 
gene set for the Col-0 reference genome sequence [23, 
29, 30], we identified several loci with gene structures 
showing mis-annotated introns or even a lack of gene 
prediction for the Nd-1 case. For the present study, 
we focused on protein encoding genes in the nuclear 
genome sequence since this gene set was previously 
predicted ab inito. The annotation update provided here 
will further support A. thaliana pan-genomic research 
by redefining the gene set for the accession Nd-1. More-
over, researchers interested in single genes and their 
Nd-1 alleles will be able to access a high quality anno-
tation for comparison to Araport11 for the Col-0 refer-
ence sequence.

In total, the Araport11 gene set contains 1267 genes 
which display non-canonical splice sites to generate the 
respective representative transcript. This ‘representative 
transcript’ has been defined as the transcript isoform 
containing the longest protein coding sequence (CDS) 
[30]. We established a set of well investigated genes con-
sisting of At1g79350 (FGT1) [47–49], At4g01800 (AGY1) 
[47, 50–52] and At4g27500 (PPI1) [53–57] as examples 

for genes containing confirmed introns with non-canon-
ical slice sites in their main transcript isoform. Despite 
high sequence conservation between Col-0 and Nd-1, the 
gene structures predicted at these loci in GeneSet_Nd-1_
v1.0 did not match the Araport11 annotation [29, 30], 
indicating that bona fide genes were missed by ab  initio 
annotation of the Nd-1 genome sequence because they 
contain introns with non-canonical splice sites (Fig. 1).

When analyzing the Araport11 data set of Col-0 pro-
tein coding nuclear genes, which is based on very high 
coverage RNA-Seq information, we identified 39 different 
pairs of splice donor and splice acceptor sites (i.e. intron 
types) that need removal in order to generate the rep-
resentative transcript isoforms. In total, the Araport11 
structural annotation dataset contains 119,097 splice 
site pairs (introns) in nuclear protein coding genes that 
are spliced out of the primary transcript to produce the 
representative transcript. Of these, 117,732 (98.9%) were 
canonical GT-AG splice site pairs, while 1196 (1.0%) were 
GC-AG pairs and 81 (0.1%) were AT-AC pairs. In addi-
tion, diverse and less frequent splice site pairs sum up to 
88 (0.1%) cases. These less frequent splice site pairs occur 
with very low frequencies and case numbers between one 
and nine.

When considering all transcript isoforms of all genes 
annotated in Araport11, 125 different splice site pairs 
are annotated. Obviously, non-protein coding genes con-
tribute a huge proportion to splice site variation. Despite 
the very high quality of the A. thaliana Col-0 reference 
sequence, sequencing errors or collapsed gene sequences 
[58] could explain at least a fraction of the very rare splice 
site pairs [11].

Representative structures of protein encoding genes 
from Araport11 were used to produce gene predic-
tion hints for the Nd-1 genome sequence (see "Meth-
ods"). This information transfer was done to harness 
the improvement potential of 1267 annotated protein 

Fig. 1  Representative gene structure of missed non-canonical splice sites in ab initio gene prediction on the Nd-1 genome sequence. Gene 
structures of At1g79350.1 and the corresponding reciprocal best BLAST hit (RBH) of the ab initio gene prediction in Nd-1 (GeneSet_Nd-1_v1.0) 
are displayed. The non-canonical splice sites were missed leading to a difference at exon 20 (blue arrows). Despite this deviation, the structure of 
At1g79350Nd−1 was predicted very well by AUGUSTUS [44, 45]
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encoding genes in the Col-0 reference sequence contain-
ing various non-canonical splice sites in their representa-
tive transcript. Gene prediction on the Nd-1 genome 
sequence using these hints revealed 30,834 genes (Gen-
eSet_Nd-1_v1.1, Additional file 1) exceeding the number 
of predicted genes in the GeneSet_Nd-1_v1.0 by 2164. 
Detailed comparison revealed a match of 91.2% in respect 
to predicted CDS features and a match of 50.2% concern-
ing UTR features, respectively. Vast changes in the UTR 
prediction could be explained by the incorporated hints, 
since the ab  initio prediction of these regions is error-
prone. A slight reduction in the average CDS length from 
1086  bp (median) in the GeneSet_Nd-1_v1.0 compared 
to an average length of 1041 bp (median) in the GeneSet_
Nd-1_v1.1 was observed. There are 135,356 introns with 
30 different pairs of donor and acceptor splice sites in the 
GeneSet_Nd-1_v1.1 (Additional file  2), supporting the 
assumption that some minor splice sites in the Araport11 
annotation might be due to sequencing errors [11]. Splice 
site pairs were distinguished into 134,004 (99.0%) GT-AG 
splice site pairs, 1080 (0.8%) GC-AG splice site pairs, 66 
(0.05%) AT-AC splice site pairs and 206 (0.15%) diverse 
and less frequent splice site pairs. In total, 1256 genes 
within the GeneSet_Nd-1_v1.1 contain introns with non-
canonical splice sites. Their average transcript length is 
2003  bp (median) consisting on average of ten protein 
encoding exons. Compared to the average number of 
four annotated exons in all genes of GeneSet_Nd-1_v1.1, 
we see a clear accumulation of non-canonical splice sites 
in exon-rich transcripts. This overrepresentation of exon-
rich transcripts among the non-canonically spliced tran-
scripts is supported by the Araport11 annotation where 
the average exon number of protein encoding tran-
scripts with non-canonical splice sites is also ten. Manual 
inspection identified At4g01800 and At3g10350 as genes 
where the representative transcript in Araport11 does 
not require processing of non-canonical splice site pair, 
but another strongly expressed isoform does. Therefore, 
we expect the number of genes with non-canonical splice 

sites in Col-0 to be slightly higher than 1267 as deduced 
from the representative transcript data set.

Reciprocal best BLAST hit (RBH)-based comparison of 
the new GeneSet_Nd1_v1.1 and the Araport11 annota-
tion revealed 24,527 gene couples (Additional file 3). The 
number of RBHs within the hint-based GeneSet_Nd1_
v1.1 is strongly increased compared to the ab initio pre-
dicted GeneSet_Nd1_v1.0. We expect a further increase 
in prediction accuracy if the underlying sequence would 
be available with enhanced continuity, as for example 
possible if generated by SMRT sequencing, and if incor-
poration of additional hints from RNA-Seq data would 
be possible. High sensitivity mapping of Col-0 exon 
sequences to the Nd-1 genome sequence might discover 
small matches leading to further prediction improve-
ments. Gene duplications are a special challenge in this 
process, because exon sequences might map to only one 
copy in the Nd-1 genome sequence. This might explain 
a part of the observed difference between the Col-0 
annotation and the Nd-1 gene prediction concerning the 
number of transcripts with non-canonical splice sites.

Non-canonical splice sites in the reciprocal best hits 
(RBHs) of the three candidate genes FGT1, AGY1 and 
PPI1 in the GeneSet_Nd1_v1.1 were confirmed by Sanger 
sequencing of amplicons generated from cDNA. FGT1 
contained 31 exons and displayed a GC-CT splice site 
pair in intron 20 (Fig. 2). AGY1 contained 20 exons and 
displayed a GA-AG splice site pair in intron 4. PPI1 con-
tained 7 exons and displayed a GA-AG splice site pair in 
intron 6.

Limitations
Allowing an increased number of alternative splicing 
possibilities deviating from the GT-AG rule would render 
ab initio prediction of gene structures almost impossible. 
Since the number of non-canonical splice sites is low, the 
ratio of false positive predictions would strongly increase. 
Incorporation of evidence from RNA-Seq experiments 
or high quality annotations of related genome sequences 

Fig. 2  Representative gene structure of missed non-canonical splice sites in ab initio gene prediction in Nd-1. Gene structure of the At1g79350 
RBH in the hint-based gene prediction (GeneSet_Nd-1_v1.1) on the Nd-1 genome sequence is displayed (a). The non-canonical splice sites were 
missed in the ab initio gene prediction leading to a skipping of exon 20 (highlighted in yellow) (b)
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into a gene prediction process with AUGUSTUS [44, 45] 
or a combination of AUGUSTUS and GeneMark [59] 
within BRAKER1 [60] is most probably the best way to 
achieve high quality gene predictions. Annotating new 
genome sequences via transfer of annotations from 
model species and adding additional expression data 
derived hints was successfully carried out several times 
before and has recovered many non-canonical splice sites 
[61–65]. Other promising approaches are completely 
based on homology to predict gene structures [66]. Nev-
ertheless, the accurate prediction of non-canonical splice 
sites remains a challenge. Anyway, it will be a general 
contribution to accuracy to pay attention to non-canon-
ical splice sites when applying ab initio gene prediction.
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