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Abstract

Within this paper we are treating a version of the Shapley value (see [11] ) for
countably many players. However, our approach is in marked difference to the
one favored by most authors, in particular by Shapley [12] and Artstein [2], who
attacked the problem of constructing a Shapley value on a suitable class of games
by a basically measure-theoretic approach ( see also [1], [13], [7]). The basis to our
version is rather provided by group-theoretical considerations, more precisely, we use
the structure of the symmetric group of IV. This group, viewed as a subset of the
orderings of IV, has measure 0. However, if we introduce a suitable metric, it admits
nevertheless a normalized, nonatomic additive measure, which, on a sufficiently large
subalgebra of the clopen subsets is invariant under left and right multiplication (and
a fortiori on all group automorphisms). Integration of the marginal worth of a player
with respect to this measure yields the Shapley value.
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1 Introduction, Notation

The Shapley value is by now one of the most widespread concepts in Game Theory and
Mathematical Economics. In his seminal paper [11] L. S. Shapley introduced the value for
finite sets of players, providing various equivalent characterizations. For a continuum of
players, the Shapley value is also well established and widely used, the first comprehensive
treatment was of course provided by Aumann and Shapley [1]; there is an abundance of
literature concerning this subject.



defined on the set of all subsets of IV (the coalitions) and satisfying v(l}) = 0 is called a
game. (Analogously for I instead of IV.)

The Shapley value is a mapping attaching a (signed, o—additive) measure to any game
(within a certain class - say games with bounded total variation). For the sake of com-
pleteness, let as shortly review the relevant definition within finite context.

To this end, let T := {1,...,n} denote the set of players, and let
v:PI)— IR

be a game. For any player 1 € I the Shapley value is defined as:

1
G, (v) := =i z (v(S7w) — v(Sma-1))-

*mED,

Here, the sum is taken over all permutations 7 of the symmetric group £, and for 7 € £,
we define

SE s (e #G) £k = w80
and thus '

my =i € 1| #(j) < (i)}

From the probabilistic point of view, the above formula for the Shapley value can be
considered as an "expected value of a random variable - the marginal worth of i”, which
is defined on the symetric group of {1,...,n}, the expectation beeing taken with respect
to the "uniform distribution”. More formally:

Let ¥, denote the permutation group of the set {1,...,n}. Given I := {1,...,n}, and
v:P(l)— IR,

define for any player ¢ € I a random variable:

E iy =0
fi(m) == U{S:{q} 7y “[5:[:'}—1]-

Next consider "uniform distribution” given by:

1
p({r}]1= 717 fﬂr ?TEE'I‘I '



Theorem 2.2
{a) The group ¥ is not countable
(b) The group £* is a normal subgroup of ¥.

(¢) The function I

d:ExX—-|[0,1]
given by:

=1 |n(k) —a(k)| |7~ (k) — o~ (k)|
4r.5) '_; % | T+ |n(k) — o(E)| T4 [7=1(k) —o-1(k)]|°

constitutes a metric on ¥ such that (X,d) is a separable complete metric space with
the dense subset L*.

(d) The pair (Z,d) is a topological group and the mapping
¥ —E with . T~ x~!

is an tsometry.

Proof: We will first show part a):

Assume that ¥ is countable and let (m;);en be a enumeration of the elements of .

Then we arrange them as an infinite matrix of the following type:

Ty © Mya s M2 W13 Mdy eees g Mg,y -e-
e o Mgy, Mgz, Ma3 , Mgy ceeee g 5y »oe
W3 + Ma1, Mgz , N3z . N34, -ovee 5 M35, -
WD MYy T2, ME s Mgy ey TG,

Now we construct a permutation # € ¥ in the following way:

Put #(1) := ny; and let us assume that for ¢ € {1,,,,,,k} #(i) € IV is already defined.
Then we define:

fl'l:.{‘ -+ 1} = Nt
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Proof: We will first show part a):

By definition of the metric

d:ZxE —[0,1]

with:

= 1] |m(k)—o(k]) |z=1(k) — o= (k)|
d(r,a) := Z'g'k'[lﬂn(k]—a{k}l 1+ |x-1(k) — o-1 (k)] |

k=1

we have for any two elements 7,0 € I, with = # o that d(x,0) > 5.

This can be seen as follows: Since 7 # o there exists an element ky € {1,...,n} such that
m(ko) # o(ko). Hence

s |7 (ko) — alko)| = 1

2k |14 |w(ko) — o(ko)|| = 2ko#1’

from which d(w,e) = a-;lﬂ- follows.

This means that X, is a scattered subset in the metric space (X, d).

Now to part b):

First of all, observe that for an element = € B(mp,2™') we have by definition of the metric,
that for all i € {1,...,1 —1} =(i) = mo(i). For, assume that for some iy € {1,...,] —1} we
have m(ig) # mo(ip). Then:

& 1 [ In(k) = molh) e=1(k) — 75 (R)]
dmmo) = 2. 5 ll k) -7l T T4 [ri(R) — mgi(R)]

5 L |Wiia]_| - “':JHD}! g _1 ‘
= 20 |1+ |n{ig) = malig)]] T 2et!
sl et S g &
=2 %% T 3n =

Hence at most (n — [ + 1) elements can be permutated, and this give:

#(B(70,27) N E,) < (n =14+ 1)L.

forl>1andn>142. m]

Given any permutation # € ¥ let us introduce the following ordering induced by = on IV
via the following convention:

for i,j € IN wewritei <,j «— w(i) < 7(j)



(a) a sequence (7i)rew, Tk € T converges to an element #* € I if and only if for
every m € IN there exists an index /(m) € IV, such that for all ¥ > [{m) and all
n < m : #(n) = 7"(n) holds. This implies, that for every z,7 € IV the set
871(j) is closed.

(b) similar as in the proof of part a) of theorem 2.3 it follows, that with every
70 € 6;""(j) the open ball

B(mo,r) := {r € Z | d(mo,7) < 7}

with center mg and radius r = &% is contained in &7 (j).

Combining and completing our remarks we now have:

Lemma 2.4
Let B(E) be the Boolean o-algebra of Borel subsets of £. Then the follwing holds true:

(a) for every r-tupel (i,...,1,) the block
Fiyonipgt={m € £ | i) <y i3 <y f3.... <y i} € B(L)
is open and closed, hence B-measurable.

(b) The blocks
Fijswomei=dr € B i1 2e fa=ainl.. <sir} € B(E)

generate B(E).

Proof: As to part (a), this is a direct consequence of our above remark concerning the
type of convergence that takes place with respect to the metric d.

Concerning part (b), we proceed as follows: - :

Let Br tentatively denote the ( 'Boolean’ ) o— field generated by the blocks; given o € I,
and £ > 0 we show that the closed £¢— sphere B(z,2) is an element of Bp. To this end,
define for any K € IV

1[Itk =a(k)]. |7 1(k) = o (k)]
|1+ (R —o(B)] T T+l (k) — o (k)]

I
B;{!={T€E|z {E};
k=1

then clearly B(e,c) = iz, Bk, thus it suffices to show that By € Br. First of all it is
zeen at once that for ¢,k € IN we have

e

Fletzdl="- 1] {r)di=eoss i et}

Jaendk=1=1

More generally we realize that sets of the type
iz | 'wli) =% . Solli=]
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(b) For any = € L the field F, is R,— invariant while G, is L.~ invariant.

(¢) For any m € ¥ the automorphisms L, and R, are measurable with respect to the
Borelian field B(X).

Proof: The first statement is directly veryfied and the others follow immediately. o

It is now our aim to construct a nonatomic finetely additive measure on the o-algebra
B(X) of Borel subsets of I,i.e.,
w: B(E) —[0,1],

with u({E}) = 1, which is invariant under left and right multiplication (as well as under
automorphisms of the group) on a suitable 'sufficiently large’ field of clopen subsets of X.

To be more precise let us formulate

Definition 2.7
Let B, be the field generated by

{L.IF}| FeFf., ceE lulBiC) |Gccd., aexs ).

That is, B, is the smallest algebra containing the algebra F,, the algbra G, as well as all
left and right transforms of blocks of both the generating algebras.

Theorem 2.8
There exists a finitely additive measure

i B(E) — [0,1],
which enjoys the following properties:

(a) ({E}) = 1,

(b} pt 1z nonatomic.

(e) p restricted te B, is invariant under left and right multiplication, i.e.,
Lopplg, = nlg, = Baplg,.

(d) p restricted to B, is invariant under all automorphisms of ifl;e group.

Proof: We embed the metric space (¥, d) into its Stone-Cech compactification §(I).

This is possible, since every uniformizable space is a dense subset of a compact space (see
[10], Theorem 14.1.2, p.240).
Now we consider the Banach space

Co(B(X)) := {2 | z: B(E) - IR}

11



Now
1
TR

m z il

" mEEm

fm(2™) =

z"(w)
" x€EmMB(mg,2=")

<~ #(B(r0,2") N Sy)
1.
< (m=t41)!

!

and this quotient tends to 0 for fixed | € IN and m — cc.

Hence we see, that for every ¢ > 0 there exists an k € IV
such that

0 < u(B(r0,27) <,

which means,that the measure is nonatomic.
Next we have to prove the invariance property of u as claimed in our theorem.

To this end, observe that invariance on the (Boolean) fields F, with respect to right
multiplication and on G, with respect to left multiplication is rather straightforward. For,
choose # € ¥ and any F;, _; € F,. We know that, if m is such that 4,...,7; < m, the
measure fi., satisfies um(F) = —S#FNX,,. Using the definition of ., and specifying m
such that #y,...,4x < m as well as 7='(;), ..., #¥(i) £ m we find therefore that

1

1
pm(Fipy i) = —#({p | P € Fipsovnsiy p € Em} =

1
= E#({ﬁ | pPE F =1y Jpeura® A (i )2 P = Em} = #‘m(Rfr[-F:'“---:.ikJn
This procedure is easy to perform for F € F, and = acting from the right.A similar con-
sideration with respect to G, and 7 acting from the left is obvious.
However, when = is acting from the left on Fj, _;, the procedure turns out to require a
little bit more effort. We are going to construct for suitable large m :
¢ an injective mapping
i NEy, — L:r(FE]....,z'*} N X

which will imply that
#‘m{-Ft'].....ak} = #m{-'r-'fr[E}.,.,,fr;]
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with £ = m, -7 € E,.. Since we assume that i;,....¢; € {1,...,m}, a permutation & € £~
can be defined as follows:

(1-{1) SR e L L e e f(m])
(1) o TR 5 s amlE et N T Rl i o P T sow[m !

where the indices j;, ...., j& are chosen such that

To(T(1)) < ml7(j2)) < oo < Wol7(im))

and
{Bicceictet = Jlijosalig
Therefore
'Fu'H-*TEF.'],.,,._,'k
since
To(T(11)) = mo- K-t )y s Wo(T(Jr)) = 7o & 7(ik).

In addition we have
Mo K TE X

since 7oT € Sy and & {r(1),...,7(m)} = {7(1),....,7(m)}. Now, this means
To AT E S B i

and
Wy, Sk E B

Hence )
£ i '"'{i'*'i"-“]:-_‘Il £

constitutes the second injective mapping. Following our above reasoning we have now
established that

ﬁm[Fi:l,...,t'kj == #M{Lﬂﬂthj.--wih}
holds true.

This is the slightly more difficult version; the same formula for R, was easy as we have
seen above.

It remains to carry the procedure through the limit.

To this end let ¢ > 0 and n € IN be given (n sufficiently large). Then there exists an
mé€ IN, m > nsuch that

l#{Ft'j.....l'J.-:l i ﬁ*m{mh....ik}! £

(Note that the indicator function of F' € F, is continuous). Now for the same index m
we have in view of our above formula

i#‘{Ft'h---.'k} = #m{L“a[}:}i.---:’lk]| e
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It is nice to observe that the group ¥ allows for (at least) two further representations.
Thus our construction of an invariant measure may also be regarded in a different context.

Proposition 2.11

(a) The group ¥ is homeomorphic to the group

aut{BIN) :={p | ¢: BIN — BIN, ¢ is a homeomorphism }

(b) The group ¥ is homeomorphic to the group

hom(I*):={T | T:1* = 1, T 1isa Banach-algebra isomorphism }

Proof: To prove part (a) let us first observe, that every permutation = : IN — IV can
be extended to a continuous map ¢, : SIN — FIV by definition of the Stone-Cech com-
pactification. Namely, we embed IV into IV and consider 7 : IV — IN C #IN. Then by
the commutative diagram in [10], part 14.1.1, there exists a continuous extension of 7 to

e BIN — BIN, ie.
B ﬁjn
T
\ ¥
BIN

Since IV C SIN is dense in IV and @.|IN = =, it follows, that @, : BIN — BIN is
bijective, and by the theorem of Hausdorff a homeomorphism (see [10], corollary 7.1.7).

Now let us consider a homeomorphism ¢ : AIN — BIN. Since every homeomorphism
transforms isolated points into isolated point, and the subset IN C IV is isolated, we see
1_;hat w|IN = = is a permutation. Hence part (a) is proved.

To prove part (b) we observe that the Banach-algebra
I :={z | z:=(2,),.p is a bounded real sequence }

endowed with the supremum-norm

gl = 1 ;

lell = max e,
is isomorphic as a Banach-algebra to Cy(#1IV), 1.e. the Banach-algebra of the real-valued
continuous functions defined on FIN, and that every Banach-algebra isomorphisms of

Co(FIN) is induced by a uniquely determined homeomorphism ¢ : FIN — GIN (see [10]

17



for a suitable ; which is ordered according to <. As F, N Fy = 0(x € J), we conclude that
F; = Nies Fi and B = |y Fi have a void intersection; hence £ — B 2 F; holds true,
meaning that ¥ — B € l{. D

Let us furthermore remark, that the structure of the groups ¥ and £/X* has been ex-
tensively studied in the literature. In especially it turns out, that both groups are the
product of four resp. three conjugation classes of a permutation r € £\ £*, which is deno-
ted by the notation groups with small covering numbers. For details we refer to [4] and [5].

3 The Definition of the Shapley value

Our previous results provide us with a possibility to extend the Shapley value to ga-
mes with countably infinitely many players, using the invariant measure approach. Of
course this approach is similar to the procedure employede by Shapley and Shapiro (see
[11]),however our measure space is a much smaller one. In addition, we are able to show,
that the value constructed this way coincides with the one introduced by Artstein [2] on
a suitable Banach space of functions v with bounded variation.

Definition 3.1
Let
v:P(N)— IR

be a game and let i € IN be a player.

a) The marginal contribution of player i given v is the function
g
fi: =R
given by -

fim) = U(S:ﬁ]} o U[S:[ij—]} and 5:{.'] ={jel|n(j)<n(s)}.

(b) The Shapley value of v for player i is given by

Bifa) o fzﬁ’trr)d#[frh

provided the integral exists,

£



Proof: For i € IN we have

0o-v)i= [ frmudn) = [ fapllo - w)(dn)]

= L Frap(p)(dr) = ®,am(v) = (0 9),(v).

Here we have used the formula for transformation of the variable as well as the invariance
of p under permutations of £*. )

Lemma 3.3

Let
v:P(IN)—= R
be a game.
For every ¢ € IN the marginal contribution
fiiS—R

13 continuous.

Proof: Let 7 € L and % > & > 0 be given. Define k := «(i). Then for every ¢ € T
with d(e, ) < é we have by definition of the metric: :

wl{i) =i} and ") =0~ N1) forall le {1,... .k}
Hence it follows that
Sag = o2 {1,500 = {1, E))
= o {100k} = # {1, .m0 = 85y

Hence for every ¢ > 0, there is a & > 0 such that for all ¢ € £, with d(e,7) < §, it
follows that

Iff(e) — fi(m)] = 0 < ¢,

which means that f¥: ¥ — IR is continuous. O

Lemma 3.4
Let
v:PIN)—= IR

be a monotone game.
Then for every 1 € IN it follows that ®(v) > 0 and

Y ®iv) < u(IV).

e N
holds true.



mapping:

Proposition 3.5
The map
@ : BV(IV) — A,(IV)

defined by

O(v)(S5) =D Di(v)

ies
is linear and satisfies | ®| < 1.

Proof: By definition it is clear that for every v € BV(IV) the set function ®(v) : P(IV) —
IR is of bounded variation.

Moreover, it is obvious that the map @ : BV(IV) — A,(IV) is linear.

Hence, it remains to show that ||®| < 1 holds true.

Now, since every element v € BV(IV) has a Jordan decomposition, say v = v+ — v, it
follows that ®(v) = ®(v*) — @(v~) holds true. Moreover for every v € BV(IV) we have
lvl = v*(IN) + v=(IN). In view of lemma 3.4 we deduce for v € BV(IV)

2@l < @Il + 1o )l < ov™(IN) + v=(IN) = |Jo].

This means that |®|| < 1. O

Collecting the pieces we obtain the following result which links the present version of the
Shapley value to Artsteins version ( [2].) :

Theorem 3.6
Let E(IN) := {v € BV(IN) | ®(v)(IN) = w(IV) }

Then the mapping:
¢:E(N) - A (N)

defined by

B(v)(5) == 3 @i(v)

: i€5
satisfies the following conditions:



This follows from the work of Schreier and Ulam (see [9]) since all automorphisms of the
group ¥ are inner automorphisms . i.e: for every group automorphism x : £ — I there
exists an element p € ¥ such that

x(r) = plor-plorallm e &

holds true.

4 Weighted Majority Games

Weighted majority games are among the first that were treated by Shapiro and Shapley
in [12] and as frequently occurs in our context, the main problem is to establish Pareto
efficiency of the Shapley value. Since weighted majority games are of bounded variation
but not necessarily absolutely continuous, the general AC-theory does not apply. The
fact that "all games are regular” with respect to the Shapiro-Shapley measure as defined
on the orderings of IN has been established in all generality by Berbee ([3]). This result
rests on a theory about upcrossings of certain stochastic processes and is quite involved.

We would like to show that in our context Berbee's Theorem is not needed in order to
establish Pareto efficiency for weighted majority games. As on the other hand we can fol-
low some considerations employed by Artstein ([2]), parts of this section will only appear
as a sketch.

Let m = (mj,my,...) be a nonnegative sequence generating an (absolutely) converging
series which is normalized to
Z m; = 1.

eV

As usual m is tantamount to a probability measure on P(IN) via the convention

m(S) =3 m (S € P(IV)).

=

A game v is said to be representable or a wheigted majority game if there exists a proba-
bility m and a real number o € (0,1) such that v(5) =1 if m(S5) > a and v(5) = 0 if
m(S) < a. In this case we shall sometimes call (m, a) a representation of v and write
v := v]. Next we shall introduce the notion of pivoting. Given (m,a) we shall say that
player i € IN pivots = if

m(Spy — 1) < a<m(57,)

holds true. It is seen at once that the marginal contribution of player ¢ w.r.t. the game

v = v, at w, that is f’(x), equals 1 or 0 according to whether player i pivots = or
not. From this it follows at once that the Shapley value of v for player ¢ is given by the

probability that ¢ pivots, that is,

@;(v) = p({r | i pivots w}).
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Definition 4.4
Let

FO:= U Far;
(5 TIeF

Then the following corollary follows immediately.

Corollary 4.5

F) = {z | i pivets =}.
Proof: 3
F¥ C {r|i pivots =}.

is obvious and the equation follows at once from theorem 4.3 by taking the disjc-int union.
|

Remark 4.6
Let us tentatively denote by W the Shapley value as defined by Artstein ([2]) via the
approrimating procedure. It has been shown by this authoer that, for any weighted majority
game v = v™ and any i € IV, it follows that ¥ satisfies
' sl
Vi(v) = —_
() 2 (s4+t+1)!

(8.TeF: \8

moreover, U yields :
Z ¥ v)=1.
eV

Now we have finally

Theorem 4.7
Let m be a probability on P(IN) and let o be a real number with0 < a < 1. Then v] € E
holds true . :

Proof: In view of corollary 2.10 we know that we have

w(Fair) = m‘,

and by corollary 4.5 and the definition of ¢ as the probability that 1 pivots, it follows that

p(F9) = @;(v).

Now, on one hand we have

I Sl il M

el (5T)eF, iEN

while on the other hand it follows that

(b)IV) = 3 ®i(v)= D u({r|i pivots =}

el e

B}
=1
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