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INTRODUCTION

Ecology is that branch of science that aims af explaining the relationships between
organisms and their physical and biotic environments. Model-building is generally used
in ecology as the first sfép towards meeting this goal. It is hoped that the model
developed is a simplified representation of reality, one that provides insight into the
structure and function of often complex systems (Jeuken 1969). Of the many

models applied to ecological problems, the principle of optimization, borrowed from
economics, has recei;fed considerable use {Rapport and Turner [977).
in optimization models, a goal variable (currency) is maximized using some cost-benefit
function. Our reliance on the optimality construct is related to the fact that its
structure is similar to the evolutionary biologist's view of the mechanics of evolutionary
processes—that natural selection operating on phenotypic variance drives populations
towards optimum or fine-tuned responses to environmental contexts. The currency here
is Darwinion fitness and the goal, its maximization. The methodology and problems
- associated with the application of optimality Theéry to ecological problems has received
extensive {reatment in several reviews (Cody !974; Maynard Smith 1978; Oster and
Wilson 1978; Oster and Rocklin 1979; Lewontin 1979). Despite some criticism of it
(see Rapport and Turner 1977), many workers feel that “optimization models have been,
and are . likely to remain, the principle conceptual framework for thinking about
evolutionary trends at the phenotypic level” (Oster et al. 1980).

\ The species optimization criteria most often used in ecology are best applied to
cases in which the performance of an individual is independent of (is not affected by
nor has an affect on) the performance of other members of the population to which
it belongs. If this condition does not hold, then one must apply the evolutionary game
theory approach in the modeling effort. This review is intended to provide ecologists
both with the necessary background and incentive to use the evolutionary game theory

construet in place of species optimization where aporonriate.
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The biological variant of game theory originated with Maynard Smith and Price
(1973) and the reader should consult Maynard Smith's recent (1982) book for a full
treatment of the subject. It is not our infent to critique Maynard Smith's book in this
review but rather to emphasize areas that are not detailed in his treatment: {} the
links between classical and evolutionary game theory; 2) the application of evolutionary
gorné theory to ecological problems; and 3) the degree to which the predictions of
optimization deviate from those of game theoretic models when selection is frequency
depénden'r. The links between classical game theory and its evolutionary biologic;'ol
interpretation are usually underestimated ond sometimes misunderstood. We attermpt
to clarify the relaﬂonships' herein. We then introduce a simple botanical paradigm to
demonstrate the ideas and methodoiogy associated with evolutionary games. This mode!
is extended from the simplest case involving pairwise interactions between neighboring
plants to a local population competitive phenomenon, Both within species and between
species competition are dealt with. As we develop this paradigm we compare the
predictions produced by considering the problem as one. simply of species-optimal re-
source allocation as opposed to one involving frequency dependent selection - the diffe~-
rence in the outcomes of these two methods of analysis are far from trivial. Finally

we consider other applications to which game theory has been or should be applied.

CLASSICAL AND EVOLUTIONARY GAME THEORY: A GENERAL DISCUSSION
Game theory is the study of conflicts of interest in which the value of a particuiar
set of actions exhibited by a "decision-maker" depends not only on his own choices but
also on Thosé of others. The terrn game theory is used because the mathematical form
of this type of conflict is similar to that of many parior games (e.g., chess, bridge,
poker, and tic-tac-toe). The implications of game theory, however, are much greater,
being of considerable importance to economics and business (e.g., Selten 1973; Marschak

and Selten 1974; Friedman 1977; McDonald |975; Schotter and Schwddiauer 1980), the
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social sciences and politics (e.g., Riker 1962; De Swaan 1973; Brams 1975), the military
(e.g., Aumann and Maschler 1966), social psychology (e.g., Bartos 1967; Goffman |969;
Rapoport et al. 1976), and most recently to evolutionary biology (e.g., Hamilton |967;
Trivers 1971; Maynard Smith and Price 1973; Maynard Smith 1982}, Nevertheless, the
terminology used in parlor games and the theory of games is similar. The decision-
makers are termed "players" and the objective function of ovtimization theory is the
"payoff function" which assigns a value or measure of success received from playing a
. particular "strategy" (specification of how 'a player will act in all potential situations).
The "game" then is a collection of rules known to all players which determines what
each player can possibly do and the outcome of the use of particular choices or strategies.

Game theory was originally developed by von Neumann and Morgenstern (1944) as
a mathematical too! for the social sciences. Its clossical aim was to provide insight
into the problem of rational (conscious) decision-making in interpersonal conflicts (See
Luce ond Raiffa (1957) for a discussion). This involved the mathematicaolly intricate
task of dealing simultaneously with the strategical planning of ot least two players,
each of them trying to obtain the best possible payoff for his personal interest. In
classical game theory, a player's payoff is measured subjectively and is defined by
personal value judgements of what success is. In contrast neo-Darwinian analysis of
this type of contest replaces the subjective notion of success with an objective criterion.
Here, the player's payoff is measured as its change in expected Darwinian fitness
resulting from playing a particular strategy in @ game. There is one other major
conceptual difference between classical game theory ond evolutionary game fheory'. In
most classical applications, game theory focuses on decisions made by humans using
cognitive choice. The evolutionary application of this construct focuses on decisions
made by the process of natural selection: individual plants and animals are merely the

performers of an inherited program. By decision we here refer fo the long term
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outcome of selection under a given set of environmental conditions. Interactions may
be direct or indirect and between two, a few or many individuals. .

The essential parallel between the ways in which neo-Darwinists and classical
game theorists analyze conflicts is in the attention given to individual success and rot
to the success of groups or aggregates of individuals. This criterion is of course,
especially important to biological applications of the theory, since the theory of naturai
selection emphasizes c:;nfribuﬁons to the reproductive success of individuals rather than
to pobulaﬁons or other higher categories. In both the neo-Darwinian and classical game
theory one cannot use simple optimization criteria in identifying a successful strategy:
the payoff maximum changes with the relative frequencies of use of different strategies
in the population or group of players. How then is a solution to a contest reached? In
the classical "non cooperative game," the Nash Equilibrium Point (Nash 1951) is used
as the basic soiution concept. Ewolutionary game theory is based on the structure of
non-cooperative game theory. This is because cooperative game theory does not
emphasize strategic solutions and often considers payoffs to groups of individuals,
whereas non-cooperative game 'l'heory-includes both cooperative and non cooperative
contexts in which the solution is based on benefits to individual players (See for exampie
Harsanyi and Selten 1980)). The Nash Equilibrium Point is defined as that combination
of strategies among players for which it would not pay for any one of them to deviate
from his strd‘tegy, given that ﬁobody else deviated from theirs ( There is often more
than one equilibrium point to the classical gamel). Within the context of Bayesian
decision theory, then, the quontity a player tries to optimize is his expec?led or average
payoff. In the early history of game theory, attention was drawn to other quantities-
—especially to the ;:oncept of the worst possible outcome. The so-called "maximin
philosophy™ {sometimes referred to as the minimax) was based on the idea that a player
should choose that strategy which maximizes among the worst possible outcomes. Since

the work of Nash (1951), the maximin principle has not been central to classical game
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theory, though some workers still apply it in limited contexts (e.g., Rapoport 1980).
This fact has not been recognized in some of the comparisons biologists make between
classical game theory and evolutionary game theory. Maynard Smith (1976), for example,
placed too much erﬁphasis on the differences between the minimax and the concept of
the "Evolutionarily Stable Strategy" (ESS), instead of emphasizing the close similarity
between the Nash Equilibrium concept and the evolutionary game soiution. The solution
used in the evolutionary game (ESS), in fact, rebresen?s a subset of the Nash Equilibrium
Points (Selten 1980; Hammerstein I9él). The Evolutionarily Stable Strategy as defined
by Moynard Smith and Price (1973) for pairwise animal conflicts has the pmpeﬁy that
a population of individuals adopting the strategy 1 is stable against invasion by initially
rare mutants adopting other strategies J. For I to be an ESS, the expected payoff in
fitness E of [ played against itself must either be greater than that of any other strategy
J played against I

ECD»>» E D
or if -

E D = E(LD
then the payoff received from piaying 1 against J must be greater than the payoff J
receives when played against itself:

E SN > E G
(This ESS-condition is based on the assumption of random pairing of conflict partners).
A successful strategy (trait) from the standpoint of Darwinian fitness must therefore,
not only be well adapted to its environment, but also must be adaptive with respect
to pofenf_ia] competition with conspecifics and perhaps even with heterospecifics. The
success of this trait depends critically on which traits or phenotypes are present in
the population and in what proportions. A given phenotype's fitness is thus frequency
dependent and would classically be considered within the Theory of Frequency Dependent

Selection as it has been particularly developed by Lewontin (1961), Lloyd (1977)
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and Slatkin (1979). Within this theoretical framework, one can look for population
states in a trait that are in a dynamically stable equilibrium under selection. The ESS
solution approximates such states.

It is unreasonable fo expect that ultimately ESS theory should be converted to
a branch of population genetics. [t has been developed to provide insight into the
evolution of phenotypes in the more cémplex ecological situations without detailed
knowiedge of the genetic system underlying the traits, One only assumes that enough
genetic variability exists fbr natural selection to work on. For computational simplicity,
in fact, E5S analyses are usually based on asexual inheritance. As such the ESS .is
defined as the phenotype toward which members of a species population would evoive
given parthenogenetic (haploid) inheritance, Where sexual inheritance (diploid) has been
incorporated into the ESS model, similar results have been obtained to those achieved
with the haoploid model for the two strategy gamne involving unselected players (Gadgill
et al, [980; Hines 1980; Maynard Smith 1981; Treisman [98!). There is a problem,
however, with polymorphic populations exhibiting more than two strategies. Gadgiil et
al. (1980) indicate that in these circumstances rhore genotypes meet stability criteria
than indicated by ESS analysis, Nevertheless, it appears os if the more complex the
genetic system, ‘H-ue greater is the probability that an ESS will be reached (Siatkin 1979;
B. Chariesworth in Lloyd l977). The ESS solution, then can be reliably applied to most

ecological contexts invelving frequency dependent selection.

THE NATURE OF A GAME: CLASSICAL GAME THEORY

Prisoner's Dilernma Game

There has been considerable confusion in the recent biological litergture about
what the central concepts of classical game theory are and how they relate to

evolutionary theory. While introducing the basic elements of strategic analysis, we
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still sketch the major goals and methodology of classical (non-cooperative) game theory.

Consider the famous classical paradigm about 'which more than 2000 papers have
been published within the social sciences. We shall introduce this game, known as "The
Prisoner's Dilemma" (Luce and Raiffa 1957), by first giving its most popuiar
interpretation and, then, defining its formal structure. The interpretation reads as
follows. Two persons are arrested b_ecouse they can be proven to have committed a
minor crime which is generally punished with a 1 year pr_ison sentence. However, they
are also suspected to be guilty of a major crime for which they would be chcrgéd an
additional 9 years. Insubstantial evidence exists for conviction on this Iatter offense
and a confession is essential to the prosecution's case. The district attorney offers
the following deal fo obtain the needed confession. If only one of the prisoners confesses
that both have committed the major crime, this witness will be free immediately (i.e.,
will serve no time in prison), whereas his partner in the crimes wili hcve' to pay the
penatty of a {0 year prison term. |If both confess, they will be forgiven the minor
crime but not the major ore so each will serve a 9 year term. Clearly, if neither
individual confesses, both will have to serve only the penalty for having committed ‘rh‘e
minor crime (i.e., a 1 year prison term). Note that both suspects are interrogated
simultaneously and in separate rooms.

Obviously, the attorney has created a situation in which both prisoners, although
former par‘rners,‘ﬁnd themselves in a conflict of interest: each would be best off if
he confessed and the other did not. It must be emphasized at this point that non-
cooperative game theory does not attempt to describe or predict actual human behaviour
in the game situation, since it assumes that the decisions are made by perfectly rational
players (something humans are not known to be). Game theory thus has a "normative"
aim=-—its solutions are based on how a fictitious individual provided with unlimited

calculation power and consistent preferences, should best pursuve his interests.
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To mode! the outlined dilemma and any such conflict as a game, one must

carefully specify the following:

1. Who are the player's and what are each player's interests? (How strongty
would each prefer one outcome over another in the comparison between
any two outcomes of the total conflict?)

2. What are the actions each player can choose from?

3. How do the actions of the players affect the outcome of the conflict?

The specifications used in the classical Prisoner's Dilemma Game are as follows:

1. There are two players, the prisoners (not the attorney), whose interests
are measured in terms of years saved from the maximum penaity.

2. Each prisoner has only two choices: to "confess" or to "deny".

3. The outcome in this case, degree of penalty, corresponds to the rules set
by the attorney.

The standard way of de;cribing these features mathematically is to write down

a payoff matrix as shown in Figure |. Each cell of this matrix corresponds to one of
the four ways in which the conflict can be resolved. The payoffs indicated in the
respective cells refer to years saved from completion of the mcximﬁm penalty, (By
convention, the payoff to player 1 is represented in the upper left corner of a given
cell and to player 2 in the lower right corner).

in order to analyze a game like Prisoner's Dilemma, it is useful o think in terms

of so called "best reply strategies". Suppose, for example, that it were given that player
2 chooses to "deny". One could then osk how piayer 1 would have fo oct in order to
maximize his payoff. According to the payoff matrix (Fig. 1), he would clearly have
to. "confess", since 10 is more than 9. To "confess" is therefore called player 1's best
reply strategy against deny. Furthermore, if it were given that the opponent chodses

to "confess", picyer 1's best reply strategy would also be to "confess". Since the game
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Figure 1. The Prisoner's Dilemma Game. In each cell, the upper left entry

denotes the payoff to player 1, the lower right entry denotes the
payoff to player 2. Payoffs here represent years saved from ser-
ving the maximum penalty of iQ years prison for the respective in- -

dividual playing the strategy indicated in the cell against the strate-

gy exhibited by the other player.
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is symmetrical (i.e., players are merely distinguished as 1 or 2 for our convenience)
the same argument holds for player 2. From this one can draw the following seemingly
trivial but important conclusion about Prisoner's Dilemma: whatever choice of strategy
the opponent maokes, it is always better for a player to "confess" than to 'deny".
Obviously, a rational solution of this game can, then, only be that both opponents
"confess", since otherwise they would receive lower payoffs (would not have chosen the
strategic means that best served 'rhei_r respec.ﬁve interests).

Generally, gomes have much less obvious solutions and it is often difficult to
define what rational behavior would be in the context of strategic inferac’rion.- It is
basically a conceptual question of "how can one optimize against an opponent's behavior
if one does- not know what the opponent will do?" Harsanyi and Selten (1980} have
recently provided a comprehensive approach to this problem. We will not deal here
with all of the intricacies they discuss in defining o rational soiution for the strategic
interaction. There is one fundamental property, however, that any game theory concept
of rationality must have, since it is based on the mcxiﬁizction of utility or payoffs. It
is that if each player expects his opponent to behave according to the rational solution,
neither should have the incentive to deviate from this solution by playing another
strategy. In mathematical terms for the two person game, the pair of strategies for
the two players must satisfy the following necessary condition: each of these two
strategies must be a best reply to the other. Such a pair of strafegies is called an
equilibrium pair or equilibrium point {Nash 1951}, Note that the Prisoner's Dilemma
Game shown in Fig. 1 is a symmetric gome ond as such only symmetric equilibrium points
in which lboth players piay the same strategy are rational solutions. In actuality, the
Prisoner's Dilemma Game has only one equilibrium pair, so the point is academic in
this case. Its significance will become apparent in our discussion of the Game of

Chicken which has three equilibrium pairs.
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Game of Chicken

The "Game of Chicken” (e.g., Brams 1975) is @ very simple mode! of a sport
that was especially fashionable among american teenagers in the fifties. In this game
{frequently played by Riechert), two persons steer THeir bicycles {or cars) towards one
another at top speeds. |f we ignore the more complex strategic features of "timing"
which might be incorporated into a proper model of this situation, each player's decision
is simply between "swerving" and "not swerving" at the last possibie instant. The loser
is defined as that individval who fifst swerves to avoid a head-on collisibn. Suppose
that the loser has to pay the winner $10 and that the overage cost of repairing a bike
following a collision is $100. The payoffs are as follows: if both players choose not
to swerve, they each suffer a $100 penalty {(a negative payoff of -100); if both swerve,
the payoff to each is zero since no money is lost or gained; if one player only swerves,
the one who does pays $10 (receives a negative payoff of -10) and the one who does
not receives $10 (a positive payoff of +10). |

The Game of Chicken is presented in matrix form in Fig.2. Player 1's best
reply sfrategies are indicated by arrows 1 and 3; player 2's by 2 and 4. The a;'rows are
a pictorial represenfction' of what is called the game's best reply structure. Each
arrow points in the direction of that decision which _yields‘ the highest payoff against
a given strategy of one's opponent. The points at which two arrows meet are necessarily
equilibrium points. In the Game of Chicken these are : A, "swerve" (player 1) - "not
swerve" (player 2} and B, "swerve" (player 1) - "not swerve" (player 2). Since the Game
of Chicken is symmetric (i.e., the players do not differ from one another but are
merely designated as | or 2 for our convenience), only a symmetric equilibrium point
can be a rational solution. This is so because the individuals would not know who should
act as player 1 or 2. The two equilibrium points identified by the arrow technigue
are not symmetric and hence cannot be rational solutions. Has the game of Chicken
really no symmetric equilibrium point and thus no rational solution? Classical game

theorists believe that there should
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Figure 2. Game of Chicken. The arrows indicate best reply strategies. Arrow 1

for example indicates that player 1's best reply to "not swerve" is
nswerve". Artow 4 indicates that player 2's best reply to "swerve" is
"not swerve". Equilibrium pairs of pure strategies correspond to points
at which arrows meet. There are two such points in this game:

A) player 1 "swerve" - player 2 "not swerve'';
p play

- B) player 2 "swerve" - layer 1 "not swerve".
P P
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STRATEGY J: PROBABILITIES
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Demonstration of the calculation of expected (average) payoff
associated with playing a mixed strategy | against a mixed strate-
gy ] in the Game of Chicken. Here, I is to play "not swerve" and
ngwerve" with probabilities 2/5 and 3/5 respectively. The opponent's
strategy ] is to play "not swerve" and "swerve" with probabilities
3/4 and 1/4 respectively. The expected payoff to I if played against
] is defined as the sum of all four entries. Therefore,

23 21 33

E(Ig j) = -100"5'2' + 10-§~z - 10.-5-71- =_33.5
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be a rational solution to most conflicts. They thus have developed the following
construct to overcome the kind of problem encountered in this game. Instead of dealing
only with the pure strategies, "swerve" and "not swerve", an eniarged strategy set of
"mixed strategies" is taken into consideration. A mixed strategy is a specification of
probabilities with which each pure strategy will be exhibited by a player in a particuiar
game, as for exampie: "swerve" with probability 0.2 and "do not swerve" with probability
0.8. Note here, that the original pure strategies are just special cases of mixed
strategies.

What then is the solution to the Game of Chicken? If an individual plays a
mixed strategy 1 against another mixed strategy J, we denote his expected payoff by
E1,D. Wifhrin the context of Bayesian decision theory, the picyer wishes to optimize
E(1,J). The expected payoff E(l,J) is defined as a probibility-weighted sum of the
payoffs a player would receive in ‘each cell of the matrix shown in Fig. 2:

T
(1 EQ, J) = i’_?_:lxijjaij '
where I; = the probability that an I-player exhibi‘rs the i-th pure strategy, Jj = the
probability that a J-player exhibits the j-th pure strategy, n = the number of pure
strategies, ond ajj = payoff of piaying i ogainst j (according to the payoff matrix).
Figure 3 gives an example of how E{,J} is calculated.

In the strategic context extended to mixed strategies, a strategy 1 is called a

best reply to another strategy J, if it satisfies the inequality
(2) ETJ) 2z EK,J))

for all strategies K. Furthermore, 1 is called an equilibrium strategy if I is a best reply

to I. The fundamental characterizing property of such an equilibrium strategy | is that
all those pure strategies to which I assigns a positive probability are also best replies fo

1. in the Game of Chicken this means that if T is an equilibrium strategy (rational
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solution), then the following two statements can be made:

a. "Not swerve" is also a best reply to L

b).  "Swerve" is also a best reply to L
Therefore, E(not swerve, I) = E(swerve, . Let p = the probability that an I-player
does not swerve. From Figure 2 then

E(not swerve, D = -100p + 10(1-p) |

E(swerve, I) = -10p + 0(1-p), ,
whicl'; implies p = 1/10 and 1-p = 2/10. The equilibrium strategy for the Game of
Chicken is thus to "swerve'" with a probability of $/10 and "not swerve" with a probability
of 1/10. The equilibrium payoff, E(I, T), of this equilibrium strategy is -1. (Note that
truly rational beings wouid not play this Game of Chicken at all since the egquilibrivm

payoff is negative).

EVOLUTIONARY GAME THEORY: THE ROOT GAME PARADIGM

Since its conception, evolutionary game theory has largely developed around a
simpie model of animal conflict, the Hawk-Dove Game of Maynard Smith and Price
(1973). The structure of this game is well known and a good review of the general
game and its modifications is available in Maynard Smith (1982). Our interest is in a
simple ecological example which though analysable as a ftwo individual or pairwise
contest might be extended to the n-person context characterisfic of most ecological
applications. We thus use as our example piant competition for water in desert plonts.
This is intended mainly as a didactical exampie. Arguments similar to the ones developed
here, however, might be applied to the analysis of ‘fmgmented phenotypes in clonal
plants discussed in Noble et al. (1979). Let's assume that desert plants compete for
water (something that is subject to some debate: Guimon et al. 1979). Three sources
of water are available to these plants: 0-20 cm, 20-100 cm and grecter than 100 cm
in depth (Soibrig et al 1977). The latera! root systems of piants utilize water at or

near the surface (i.e., for our purposes that available within 1 m of the surface), while
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underground sources of water are exploited by the elongated tap roots. The efficient
Utilization of one water source (surfoce or u.nderground) preciudes ‘use of the other in
the desert ecosystem (Solbrig et al. 1977). Hence desert plants tend to specialize on
one or the other of the two root systems. Succulents, for instance, specialize on the
iateral root system and the utilization of surface water, while other species are true
phreatophytes in that they tap only underground water (Robinson 1957). Ludwig, however,
in Solbrig et al. (1977) states that most perennial shrub species have the potential for
either extensive lateral or tap root development. 1t is this group of plants that we wish

to deal with in our example.

Pairwise Interactions

In our basic "Root Game", we are analysing the individual shrub's "decision" to
either emphasize development of the lateral or tap root component of its water (ond
nutrient) procurement system. Although admittedly, an individual plant usually c;::mpetes
with more fhcuj one neighboring individual, we mode! only the interaction be‘rween'
nearest neighbors in this simple case, making the game a pairwise intraspecific contest.
The two strategies available to our perennial shrub species are "lateral” and "tap". Our
payoffs are proximal ones—quantities of water obtained/unit tfime. We assume, however,
that lfhese payoffs show the foliowing reiationship to changes in Darwinian fitness:
quantities of water and dissolved nutrients taken up are proportional to reproductive
output. The average amount of water uptake/unit time by a lateral root system in
the absence of a competing necrest neighbor is defined as "S" for surface water (0-1
m dep'rh).. Likewise, "U" denotes the expected quantity of water obtained by the tap
root system from such underground water sources as depressions and washes. For the
two individual game we gssume that the competitive effect of nearest neighbor lateral
root systems is S/2—that two neighboring plants using the |ateral root system eucH

receive one half of the available surface water. No such competitive effect is included
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in the basic model for the tap root system, since it is assumed that this source of
water, once located, cun adeguately support the needs of two shrubs. Each root type
thus has a constraint. In the case of the lateral system, a little water is wusually
available, but in low enough quantities that the presence of neighbors exhibiting the
same lateral system limits the quantity each shrub can obtain. For the tap root, there
is no competition for water since once found, there is an adequate supply. We assume,
however, that the distribution of underground water is patchy and hence not as "spatially"
reliagble as surface water, For this initial analysis, we must also assume that both
players in the game make the decision as to which root system to emphasize at the
same time-—perhaps they are colonizers following a frost or fire kill in a local area.

Fig. 4 shows the Root Game and indicates the best reply strategies under the
assumption that U <S5/2 (i.e., underground water is very difficuit to locate), With this
assumption, the best reply structure of the Root Game (arrow configuration) fs that of
the Prisoner's Dilemma Gome already discussed. Indeed, if we add the best reply
arrows to Fig. 1, exactly the same picture emerges. If shrubs were rational
thinking beings, they would thus have to develop only lateral roots in this con.'rext. If,
however, U >5/2, the best reply strategies are different ones. The reader may easily
find how to change the arrows in Fig. 4. Arrow | no longer points upwards but
downwards and arrow 2 points now to the right. The best reply structure is now
identical to the Game of Chicken (Fig. 2). Games with this latter structure have two
asymmetric equilibrium points consisting of pure strategies. But as has already been
discussed, the rational solution of such o game is a mixed equilibrium strategy. Both
shrubs would play the same mixed equilibrium strategy L if they were rational, since ]

is by definition a best reply to itself.

EVOLUTIONARILY STABLE STRATEGIES It is clearly not of direct biological interest

to argue which root systems shrubs shouid develop as rational beings. In fact, however,
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Root Game. The arrows indicate best reply strategies when
U < S§/2, where U = supply of underground water and
S = quantity of surface water available to a lateral root. Note

similarity in best reply structure to Prisoner's Dilemma Game.
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the outcome of ffequency dependent selection operating on phenotypic traits corresponds
reasonably well to what rationality would suggest. Let's consider why this is the case,
since the heuristic value of ewolutionary game theory is based on this fact. Biological
game theory asks the following question: which strategies (phenotypes) should one expect
to find in a population as long-term outcomes of natural selection, given that game-
like conflict occurs among members of the population generation after generation.
When asking this question, the pure and mixed strategies of the Root Game are
considered as inheritable traits (i.e., they are subject to choice by selection and not
to choice by the individual plant). Now if a single strategy, I, is a long-term outcome
of selection and thus is permanentiy maintained under given environmental conditions,
it must have the following property: no mutant strategy, J, should have higher expected
fitness than ] in this population of I-playing shrubs. If all strategies of the Root Game
are considered as potential mutant strategies, this means that I must necessarily be a
best reply to T. The term best reply is here considered as in game theory: E(LD > E(J,D
for all strategies J. Remember’ that this is the central property of classical game
theory aiso. The strategy I must satisfy this criterion in order to be a rational solution
of the symmetric Root Game, since it means that the pair of strateges (I,D is a
symmetric (Nash) equilibrium point.

In many cases then, the sojution to the evolutionary game is identical to that of
the classical game. The ewolutionary gome deviates in that if another strategy J is
as successful as ] in the popuiation of I players, a second condition must be met: For I
to be on ewvolutionarily stable strategy, J must be at a selective disadvantage as it
increases in frequency. Such an alternative best reply to I can only have this selective
disadvantage if ETJ) > E(J,J), since EQD = E(J,D.

An "Evolutionarily Stable Strategy” (ESS) is, therefore, defined as a strategy, I,

which satisfies the following two conditions (i) and (ii).



(i) Equilibrium Property

1 is a best reply to 1: E(,D) = E(J,D for all strategies J.

(i) Stability Property

If Jis an alternative best reply to 1, then it is better to play I against J
than J against J. Formally this second condition is stated as: If E(JD) =
E(1,D, fheq ELJ) > E(U,J).

The definition of an ESS given here is equivalent to the original formulations
by Mc;ynurd Smith and Price (1973) and Maynard Smith (1974). The identification of
the two conditions as g game theoretic equilibrium and an additional stability property
respectively is attributed to Selten (1980) and Hammerstein (1983q, b) and is used in
Hammerstein (198(), Hammerstein and Parker (1982). This identification is an important
one since it reveals that the main property (i) of an ESS is equivalent to that which
characterizes a symmetrical Nash Equilibrium Point of classical game theory.

The calculations of an ESS for the Root Game with the poro.meter values of
U < §/2 is easy. We do not need any further aigebra, since the arrows in Fig. 4 tell us
that the strategy “latera!" is the only best reply to itself: Etiateral, lateral) > E(J,lateral)
for all other strategies J. In this case, we do not have to check condition (ii), since
there is no alternative best reply strategy. f U > $/2, there exists no pure strategy
which is a best reply to itself, since the arrows are arranged as in the Game of Chicken
(Fig. 2). However, as pointed out earlier, a 2 X 2 matrix game with this best reply
structure has a mixed equilibriur;w strategy., We calcuiate this strategy by using the
same method as we used in the Gome of Chicken. Suppose that 1 is an equilibrium
strategy which is to .build a lateral root system with Posiﬁve probability p and a tap
root system with positive probability 1-p. The characteristic property of I is then that
both "lateral™ and "tap" are best replies to I E(iateral, D = E(tap,]) = E(LD. From
E(lateral, D = p /2 + (1-p)S and E(tap,]) = U, it follows that p 5/2+ (1-p)S = U. Solving
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this equation for p yields the equilibrium probability:

(3) p =21 - U/Sh
This mixed strategy I defined by p is only an ESS if it can be demonstrated that I
satisfies the second ESS condition (ii). It is necessary to consider the second ESS
condifion in this case, because we know that "latera!" and ™ap", for exampie are aiso
best replies to L

In analysing the second ESS condition, Ief's suppose that J is an alternative best
reply to I and that J develops a lateral root system with probability g. From Fig. 4,
then, the expected payoff to I when played against J is: |

(4) E(LJ) = pq S/2 + p(1-9)5 + (1-pJ,
and the expected payoff to J of playing against itself:

(5)  E(,D) = g2 S/2 + ql1-g)S + (1-g)U.
After some calculations, one gets:

(6) EQ,) - £>U,J) = (5-g5/2 - U)p-g).
This expression is always positive, if p = 2(1-U/S), and q # p, since the bracketed items
on the right of the equality sign in equation (€) are either simultaneously negative or
positive. We have thus demonstrated for the case of U > §/2 that it is an evoiutionarily

stable strategy to build lateral root system with a probability of p = 2(1-U/S).

The Root G&me has thus one ESS for each choice of model parameters: if
U< 5/2, it is an ESS to expand the lateral system; and if U> 5/2 the £SS is a mixed one
to expand the lateral system with a probability of p = 2(1-U/S) and to emphasize the
tap system- with probability 1-p. This need not be the case in other evolutionary games.
In some coses there may be no ESS at oll and in others there may be several ESS's,
any one of which may be the outcome of selection reclized in a particular historical

context., Muitiple ESS's are more likely to be encountered in the larger strategy sets
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consisting of three or more phenotypes. The mathematics used in identifying ESS's for
larger games are beyond the scope of this general review, so we refer the reader to

Bishop and Cannings (1976) and Haig (1975) for examples of the treatment of the subject.

EVOLUTIONARY STABILITY VERSUS OPTIMAL RESOURCE EXPLOITATION A
commonly used way of analysing ecological problems is to assume that selection has
driven‘a population fo a state at which resources are optimally exploited. However,
if selection is frequency dependent, this approach may lead to inaccurate conclusions.
Let's examine our root problem in terms of simple optimal resource exploitation and
compare the estimates of the two methods of analysis.

The goal of a shrub population in the sense of the species optimum is to adopt
that strategy J which permits the maximum uptake of water per individual. The
following function £ is then to be maximized:

7 £ = EGD = U - qU + g5 ~a? 5/2,
where q denotes the probability with which J builds a lateral roct. ,We caiculate the
maximum by deriving E(J,J} with respect to q. This yields the expression

(8 deE(J,)/dg =S -g5-U
which is zero for g = 1 - U/S. The maximum water uptake per individual would thus
be achieved if the modelied shrub .population developed a lateral root with probability
1 - U/S. On the other hand, the ESS probability for emphasis on a lateral root system
would be 1 if U < 5/2 and 2(4-U/S) if U> S/2. This means that for a wide range of
parameter values, ESS cnalysis of the problem predicts that twice as many plants would
emphasize tap roots in a local population than predicted by optimization criteria (Fig. 5a).

The two methods of anaiysis also produce divergent predictions with respect to
the water uptake achieved by the two strategies. Let us compare the expected payoff

E(L,) for the ESS strategy 1 with payoff E(J,J) .predicted for the species
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optimal strategy J. If U< 5/2 then E(ID) = 5/2. Otherwise EQD = U, since we know
that E(LD = Eltap,]). After some calcuiation, one-also gets

9 EUD) = a2 $/2 + oi-a)5 + (1-9U = (5%, U?)/ z5.
The water .uptake predicted by the optimal solution is consistently higher than the ESS

solution to the problem (Fig. 5b). Depending on the values of the parameters used,

the differences may be as great as 25%.

ADDITIONAL EXAMPLES In the context of animal conflict, Maynard Smith and Price
(1973) proposed the Hawk-Dove Game as a standard paradigm for evolutionary game
theory. In the simplest version of this game cc.arresponding to our root game, contestants
may play either on aggressive strategy "escalate" or a non-aggressive strategy, "display™.
The ESS of the Hawk-Dove game is o mixed strategy, namely to “escalate” with a low
probability aond "display" with a high probability if fighting is costly and vice versa if it
is not. In exireme cases, the ESS may even be the pure sfrcl'tegy "escalate”,

The game becomes more complicated when the two players are dssigned distinct
roles, A and B, such as "owner" and "intruder" in territorial conflicts (Maynard Smith
1974, Maynard Smith and Parker [976). The ESS is then to "escalate" in one role and
to "display" in the other. Seiten (1980) has demonstrated mathematically that if there is
a role-difference which can be perceived by the players, then the ESS rﬁus‘r always be
a pure strategy in these asymmetric contests. Role asymmetries then are typically
used in the conventional (non fighting) determination of contest winners and losers.
There can be more than one asymmetry in a contest and as the complexity increases,
so does the task to locate the ESS's for the game. This is because in order to identify
an ESS, all of the roles an individual potentially finds itself in during its life must be
included in the analysis. The evolutionary game describing asymmetric contests is, in

principle, a symmetric game. However, Hammerstein (1981, 1983b) has developed a
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method in which models of asymmetric contests can be decomposed into subgames in
which asymmetric Nash equilibrium points become relevant to evolutionary game theory.
This has greatly simplified the analysis of this type of game.

Role differences are generally associated either with differences in fighting
ability or in rewards associated with winning (the so called "correlated asymmetries").
It is possible, however, that an ESS may "instruct" a player to be aggressive in a given
role (A) and non-aggressive in another role (B), despite the fact that roie does not
offe_é\e}iagtil-l\:reing ability or reward. These instances are called “"uncorrelated asymmetries”
and there has been considerable interest in trying fo understand under what conditions
correlated wversus uncorrelated asymmetries may szttle contests corfventé?nzl_l r']97f+,
Hammerstein [981, 1983b, Parker and Rubenstein [981, Hommerstein and Parker, 1982).
It appears as if in the more continuous strategy sets {e.g., finely tuned levels of
aggression), oniy "commonsense" or cc;rrelofed asymmetries .are possiblecuee.sg., owner
wins or stronger opponent wins). On the other hand, the discrete strategy sets may
lead to far less obvious conventions.of settiing disputes.

Being able to analyse the asymmetric contest is extremle!y important, since there
are numerous biological examples of this contest structure. A few are of the uncorrelated
type. Davies (1978) presents, for instance, evidence for an uncorrelated asymmetry
that settles territorial disputes among male speckled wood butterflies. . Males defend
sunspots which they occup& while waiting for females during mating periods. The
asymmetry is one of ownership versus non-ownership or firstcomer versus latecomer
status. Davies found that the ownership status of individugls con be reversed
experimentally with appropriate changes in the behavior of the contestants.
Manipulations producing two owners further led to prolonged fights not observed when

the ownership asymmetry was present. Note that there is sorme difference of opinion

as to whether this contest situation represents an uncorrelated asymmetry, since time
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in sunspots increases the body temperature of the occupants, which may give firstcomers
fighting advantages (Austad et al. 1979). Other examples of possible uncorreiated
asymmetries include competition for access to females in parasitic hymenoptera {Wilson,
1961), for funnel-retreats in a colonial spider (Burgess 1976), and for foraging sites in
the zebra spider {Jacques and Dill 1980). In the case of the social spiders, Burgess
(1976} octually observed an "intruder wins" rule for occupation of disputed funnel-
retreats in a colony. Owners withdraw from the retreats upon encroachment by
conspecifics and merely initiated encroochment towards nearby retreat hoiders, creating
a domino effect in changes of retreat ownership in the colony.

Mest of our observations of asymmetric contests, however, are of the common

sense or correiated type. One such case has been documented for the funnel web

spider, Agelenopsis aperta, which competes for web-sites and associated energy-based

territories (Riechert 1978a). The situation exhibited by Agelenopsis aperta represents

a particular chailenge to evolutionary game theory, since it has been possible to make
quantitative measurements of many features relevant ‘to ,functional ESS analyses.
Riechert's extensive field studies (1975, 1976, 1978a,b, 1979, 981, 1982) provide data
about both payoffs and strategic behavior. The quality of web-sites is known and varies
both within and between popuiations. Two asymmerrié exist in the terrritorial disputes
of this spider: reiative weight of the opponents and owernships status. These parameters
have been shown to be the major determinants of contest structure and outcome
(Riechert 1978b, 1979, 1982, in press). To date two kinds of games have been proposed
as first approximations to these agonistic interactions {Maynard Smith |982, Hammerstein
I98i,. 1983b). We have yet to deal with the complex sequential structure evident in
these contests though. At the beginning of a contest, for instance, only the territory
owner seems o "know" site quality. However, this information appears to have been

obtained by the intruding spider by the end of the first bout of the contest (first series
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of actions leading fo a retreat by one of the spiders). This information does not appear
to be overtly transmitted by the owner (Maynard Smith and Riechert, in press). The
available theoretic framework to deal with these complications would be an extensive
representation of the game's sequential and information structure similar to that
discussed for classical game theory in Selten (1975).

[t is not possible to deal with the many contest models that have been
developed along the lines of the Hawk-Dove game here. Rather we refer the reader
to Maynard Smith's reviews (1979, 1982) for both discussions of the models and additional
biological examples. (See also Dowkins [980). In the present paper, it seems more
important to emphasize the fact that there is a much wider range of applications of
evolutionary game theory than the field of agonistic behavior. For example, the pl;oblem
of parental investment in offspring can be conceived as a game in thich the parents
and often also the offspring are players (Maynard Smith 1977, Grafen and Sibly 1978,
Parker ond McNair 1978, McNair -and Parker 1978, Parker 1979, Parker and McNair
1979, McNair and Parker 1979, Schuster and Sigmund 1980).
| Another important application of evolutionary game theory is the problem of the
evolution of cooperative behavior. Consider an example given by Pulliom et al. (1982)

involving a winter feeding flock of yellow-eyed juncos (Junco phoeonotus), a subset of

a local population. Risk of predaton by hawks and other lorge vertebrates is a major
concern to these birds during foraging bouts. A solitary forager must therefore, take
time out from feeding to scan for predators. Within the foraging flock two alternatives
are gvailable to the birds: @) the non-cooperative alternation of scanning and feeding
by all individuals and b) scanning carried out by a few individuals while others
| continuously forage (cooperation). From empirical studies it was deduced that the
actual behavior of the juncos is rather of the cooperative type. Because;gc%ch individual

of the flock, it is more advantageous to "feed" and to let others "scan" than vice
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versa, we are confronted with a game-like situation.

Pulliam and his collaborators point out that the scanning game is not only played
once but many times in the flock. From classical game theory, it is well known that
repeated games between the same interacting individual (so cdlled supergames; Luce
and Raiffa 957} may have to be played cooperatively by rational players, though the
rational soilution to a single such game wouid be to behave in a non-cooperative fashion.
The pairwise Prisoner's Dilemma Game outlined earlier takes this form if the game is
played several times. The rational behavior in the repeated Prisoner's Dilémma Game is
to "deny" rather than to "confess". fhis is, however, only the case if there is sufficient
uncertainty as to the number of repetitions, The biological recognition of this
conseguence of repeated games was first recognized by Trivers in his work on reciprocal
altruism (1971). A number of workers have since contributed to our understanding of

the phenomenon (Axelrod and Hamilton 1981, Eshel and Cavalli - Sforza 19¢2).

Gcm_'ies With Many Players

in mony ecological contexts competitive effects are not limited to pairwise
interactions. The success of one individual in a local population, for instance may be
dependent on how much food other members of its population have consumed per unit
time. In this section, we show how the Root Model might be extended to permit
analysis of the context with many piayers.

As in the pairwise analysis there exist two pure strategies, "lateral" and "tap",
and the corresponding mixed strategies which assign p-robabilities to "lateral"
and "™ap". We make different assumptions about the levei of competition individuais
possessing tap versus lateral roots encounter: an individual shrub emphasizing the tap
root competes with all members of its local population for a portion of water available

in the local underground reservoir, while the individual with the expanded lateral sysfém
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competes with only its nearest neighbors-—-assuming that the spacing is regular as
indi'ca‘red for many desert plants (e.g., Beals [968; Barbour 1969; Woodell et al. 1969;
Waisel {971; Fonteyn and Mahall 1978; Moore and Bhadresa 1978).

Let us now reconsider the Root Game, adapting the model to non-pairwise
interactions. If our desert shrubs are spaced such that all individuals are equidistant
from one another, then every individual finds itself in the center of a hexagon with a
neighbor at each of the six corners. We propose that competition for surface water
is Ioca!-;—fhct each shrub competing for surface water does so with o maximum of six
other individuals. Let Sjn equal the minimum amount of water a shrub adopting the
"laterai root" strategy can obtain; a given "lateral root" player will receive S in
cases when all of its 6 neighbors also play "lateral". If one of this shrub's neighbors
plays "tap", however, its payoff increases to Smin + Smin/6- The general equation for
the amount of water ovdilqble to shrubs emphasizin.g the lateral root system is then
Smin(l + n/é), where n denotes the number of neighbors emphasizing tap roots.

At the level of the underground water reservoir, we assume’ that competition is
more giobal and that the quantities of water available to shrubs emphasizing the tap
root system depends on how many ™ap root" piayers are present in the population.
The availability of underground water is therefore represented as a linearly decreasing
function of the propor'ripn, g, of "tap root" players in the population. Water uptake
by shrubs utilizing the tap root system is expressed as Q(l—uq),where U denotes the
maximum quantity of water a shrub with a major tap root might obtain under extremeiy
low competition and u denotes the relationship between the number of competitors and
water availability in the underground reservoir. V |

Unlike the pairwise modeis we haQe dealt with in previous examples, we cannot
analyse the n-person game in payoff matrix form. Since neighbors interact with other

neighbors, it is impossible fo identify small groups of players that interact only among
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themselves. Hammerstein in Maynard Smith (1982) and (1983)% b has developed the
methodology for dealing with evolutionary games consisting of large numbers of players.
He replaces the payoff matrix with the payoff function W(J,]), which is expected change
in fitness received by an individual playing the strategy J in a population of I players.
As before, we consider two alternative pure strategies, "laterai" and "tap". Let's
assume that the mixed strategy I consists of building o lateral root with probability I3
and a tap root with probability I = 1 - I4. We define the game by first analysing
the payoff function associated with the two special cases: I; = 0 (the pure strategy
tap) and 1; = 1 (the pure strategy lateral). The payoff to a shrub producing a lateral
root in a I-playing population is W{lateral,D) = Srnin(l + n/6) with n equal to the ex-
pected number of tap root neighbours. Since I2 is the probability that a neighbor
emphasizes the tap system and there are 6 neighbors, we have n = 61, = 6(1-[1). Substi-
tuting this expression for n, and using ‘the parameter S.= 2 Smin for the maximaily pos-

sible water intake from the surface one gets:

(10) W(ateral,) = S(1 - 0.519).

We can obtain the expected payoff for the pure

strategy "tap" in a simiiar manner. According to our introductory statements, we have
W(tap,!) = U(1-uq),where q = the proportion of tap roots in the population. in an
I-playing population, this proportion is q = Iy, ond thus

(1) Wltap,D = U{1-ulp) .
From these derivations for the two extremes, we can define W(J,]) for the mixed
strategy J as

(12) WD = JqW(Ia’rerﬁl;I) +},Mtap,D = JSU-0.5I1) + J,{ U(i-ul)).

ESS CONDITIONS The mathematical notion of the ESS given in the previous section

applies only to pairwise interactions. We consider the generalization of the equilibrium
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condition (i) and the stability condition(ii) in turn here. An evolutionarily stable strategy
must be adaptive in a population of individuals playing this strategy. A strategy I has
this property if it is a best reply in the following sense:

{ Equilibrium Condition: WID 2 W(J,D for all strategies J.

The equilibrium condition is similar to that used in the pairwise interactions (i). 1t
differs in that the expected payoff W has a different meaning from the payoff E in
(i). According to the definitions made above, W(J,I) denotes the payoff for playing J in
a population of I players, whereas E(J,D denotes the payoff for playing J against a single
I-player.

The stability condition is more difficult to extend to the infinite population
game. Remember that an equilibrium strategy identified under conditon {j} may not
be the only odaptive strategy present in o population of I players: strategies J may
also exist such that W(J,I) = WLD. An I-playing population is only stable against
intrusion by an equally adaptive strategy J if the fitness of J is smaller thaon the fitness
of 1 in a "disturbed" T-population containing a small fraction € of J-players. Let us
denote this disturbed population by PL je ond let W(J, P jz) and WL, PLJz) denote
the fitness of J and I respectively in population P[ je. With these definitions, the
stability condifion can now be formulated. An equilibrium strategy 1 is said to be
stable against strategies which are also adaptive in the exact equilibrium population of
[-players, if it has the following property:

(i) For every strategy J # 1 such that W(JD = WD, the inequality

WavPI,J,E) > W(J’PI,J,E) holds for sufficiently small valves of e.

in calculating the ESS for the n-person or infinite population Root Game we
have to remember that the model assumes that there are upper and lower limits to

the amount of water an individual gains from developing lateral or tap roots. The
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water intake cannot be greater than maxjqt = S for a lateral root and MAXtgp = U for
a tap root. 'Conversely, the average water intake cannot be lower than minygs = $/2 at
the surface and minmp = U(l-u) at the underground water source. The pure strategy
"lateral™ is an ESS if minjgt > maxigp. In this case, no mixed ESS exists. Likewise,
the pure strategy tap is an ESS if mintgy > max|qt. For these two strategies the
inequality (j} holds in its strict form and condition (jj) need nmot be checked.

For the range of average payoffs in which minjgs < MaxXtgp and Mingap < Max|gt, |
however, a mixed ESS -exists. Suppose that T with O < Iy <1 is o mixed strategy such
that WD > W(LD for all J. According to Hammerstein (1983b), this is equivalent to
saying that I sctisfies the following equation:

(13) W(tap,D) = W(lateral,D),
the characteristic property of best reply strategies agein. Equation (13) simply implies
that

(14) S(1 - 0.514) = Ui« -

Solving this equation (l4) yvields the mixed equilibriurﬁ strategy 1 = (I1,Ip) with

(15) 14=8/M+v-1
v+ 05 S/U

Note that any other strategy J £I would be just as successful asI in a population playing
1 exclusively (i.e., W(J,I} = WLD for all strategies J). This forces us to check whether
the second ESS condition (ii) is satisfied. If we assume that there is ho difference
between the fitness of o strategy in a population playing the strategy {1 =)l € J, and in
a population consisting of a fraction, 4-¢ of I-players and a fraction € of J-players,
then the inequality expressed in the stability condition (jj) may be simplified as follows.
Let K = (1 - )] + ¢J be the strategy "build lateral roots with probability (1 -£)[{ +
eJ{". The inequality in {jj) then is equivalent to

(16)  WEK) > W(J,K).
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In order to show that the equilibrium strategy I satisfies (16) note that

17y WELK) - WU,K) = (04 - Jo(Wlat,K) - Wtap,K)).
Suppose first that It < J4. From this it follows that K4> It and thusw{lat,K) < W(tap,K).
The expression in (17) is then positive as required. Conversely, if 1> J4, the expression
(17) is also positive, since this impiiés that v/lat,K) > W(tap,K). Thus the strategy, I,
defined in (I5) is not only an equilibrium strategy, but also an ESS. Note that I has

properties similar to those obtained for the ESS in pairwise interactions.

ADDITIONAL EXAMPLES A classical problem to which evolutionary games with many
players can be applied is that of sex ratios. Fisher (1230) was the first to show that if
" the production of male ond female offspring is equally costly, then females should
produce both sexes at equal rates. His argument has received considerable attention
(e.g., Hamilton 1967, Trivers and Hare 1976, Charnov et al. 1978, Charnov 1981, Maynard
Smith 1980). Let us briefly show how sex ratio theory fits into the theoretical ESS
framework outlined in this section. (See Maynard Smith (1982) for on explicit
presentation). A strategy I is the relative proportion of males which the corresponding
phenotypes would on the average produce. There is a confinum of such strategies
ranging from 1= 0 to I = 1. For example, in T = 1/3 male and female offspring are
produced at a ratio of 1:3. Let's consider the payoffs. Because the main selective
effect involved in sex ratio does not show up in the Fq but in the F» generation, the
number of grandchiidren must be used as the fitness measure in this game. Let the
fitness function W(l,J} denote here the number of grandchildren an T-player has in a
population of J-players. The following equation for T is based on the assurﬁpﬁon that
every offspring has both a mother and a father (notable exception = haplodiplﬁid
Hymenoptera): W(,J) = N2@ - I + T4-J)/J), where N is the tofal number of offspring

a female con produce. In order to caiculate an equilibrium strategy I for this infinite
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set of strategies, we can use the following condition.

(18) Qew(E, 1) /38) ;_; = 0
It turns out that this condition is only sotisified for I = 0.5. This strategy I can also
be shown to satisfy the stability condition (jj). We thus get the classical answer to the
sex ratio problem: I = 0.5 is an ESS.

Hamilton and May (1977) discuss an interesting ecological problem using a similar
theoretical approach to that outlined in this many piayer section. They ask how
offspring dispersal is affected by intraspecific compeﬂfion_. They find that substantial
dispersal is expected to occur, even when the habitat is homogeneous, constant and
saturated and when seed mortality during disperal is thigh'. They also show from
inspection of various models that seed dispersal caonnot be understood in terms of
species-optimum uﬁlizaﬁgn of resources. This is onalogous to our result for the Root
Game namety that the predicted ESS-water coﬁsumpfion is signficantly iower than that
expected for species-optmial water consumption. Ellner and Shmida (1981) and Ellner
(1982) also submit the seed dispersal problem to ESS analyses. |

Another problem that is of a game theoretic nature concerns how animals
distribute themselves over habitat patches in a variable environment. Parker (1970)

considered this problem for male dungflies (Scatophaga stercoraria) seeking matings at

cow pats ranging from fresh to less fresh. Since female dung flies are more likely to
approach fresh cow pats than older cow pats, cow pats vary in quaiity fo the males.
According to the concept of the Ideal Free Distribution (Fretwell and Lucas 1970,
Fretwell 1972), in the ‘absence of active competition for sites, organisms should be
distributed in such a way that fitnessess in different habitat patches is equuiized.
Parker (1970, 1974) found the distribution of male dung flies on the set of cow pats
avaiiable to match the Ideal Free Distribution. A similar distribution of mallard ducks

in feeding patches was "noted by Harper (1982). The exhibition of an ideal Free
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in _particular
Distribution /"“_cons stent with game theoretic predictions if/ the following conditions
are met: |) the species lacks the strategic means to defend habitat patches against
occupation by conspecifics 2} that individuals can freely move between patches. Similar
comments can be made about some foraging problems {e.g., Milinsky 1979).
In a many-player context, the decision between "digging" a burrow or "entering"

an already existing burrw has been identified as a choice problem encountered by the

digger wasp, Sphex ichneumoneus (Brockmann et al. 1979, Brockman and Dawkins 1979,

Dawkins and Brockmann | 1980). The strategy "enter™ has associated with it a riék of
encounter with a burrow owner which leads to an agonistic bout. The ESS solution to
the problem of whether to "dig" or to "enter" is a mixed one. The example is especially
interesting because of the availability of data from two populations which indicate that
the mode! developed in Brockman et al. (1979) explains the data from only one population.
The other apparently is not at an ESS.

Other many-player confexts that have been analysed as evolutionary games include
M'arms races" in nature (Parker [979, Haig and Rose 1980, Maynard Smith 1982) and

the effect of intraspecific competition on plant growth (Mirmirani and Oster 1978).

Competition Involving Two Or More Species

The general kind of model introduced in the previous section can be extended
to cases involving simuitaneously both intra- and interspecific competition. We will
discuss the game-theoretic analysis of a two-species system along the conceptual lines
proposed by Hammerstein (19832), again using root competition in desert shrubs for

illustration.

Suppose that two shrub species compete for water, and that both are dable to
emphasize either the lateral or the tap root systems. This is not to say, howgver,thct
both species have the same set of strategies. Neither strategies nor payoffs (in fitness)

are considered comparable between species: each species is assumed to have a specific
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strategy set and measure of relative fitness. Therefore, the payoff in terms of fitness
to an individual in population 4 will be W4, and the payoff specific to an individual in
population 2 will be termed W2. Technically, the strategies "lateral” and "tap" should
aiso be indexed in order to ciarify to which population strategy set they belong. To
avoid excessive use of indices in this case, however, we assume that it will always be
clear from the context to which strategy set "tap" and "lateral”™ belong. The same
convention holds for mixed strategies I, J, ,etc.

Unlike the one-species case, the between species analysis must take into
consideration the relative numbers of individuals belonging to the respective species.
et x denote the relative abundance of species 1, and y that of species 2. The distribution

A = (x, y) with x + y = 4, will be referred to as the relative abundance distribution.

The model can now be outlined as follows. A strategy 1 for members of species 1
is a pair of probabilities I = (1,1 2) with which "lateral" and "tap" will be realized. A
strategy J = (J4,J9) for popuiation 2 is defined analogously. A particular combination

(I,J)) of single strategies for each populdation will be called an interspecific strategy

combination. The two species system is said to "play” this combination when population
1 consists of I-strategists and popuiation 2 consists of J-strategists. At this point
paycffs have to be introduced. In the present framework, allowance is made for the
simultaneous occurrence of intra- and interspecific frequency-dependent fitness effects.
The fitness of a given individual depends thus on the strategies being played in both
populations. Furthermore, fitness is assumed to depend on the relative abundance of
the species involved. As in the previous section, the notion of payoff can be precisely
defined as the Darwinian fitness of o single stategist in a communmity in which all
members of a particular - population exhibit the strategy typical to that population.

Then for a given distribution A = (x,y) of relative dbundances, let Wi(H, T J,

A) denote the payoff (change in fitness) to a single H-strategist in population 1 if the
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community plays the interspecific strategy combination ,J). Furthermore, let
Wz(K,I,J,A) denote the corresponding payoff to a single K strategist in the second
population, Using similar arguments to those used in the previous chapter, these payoffs
can be defined as followﬁ for the root game:

(19)  Willateral, T, J, A) = 5;{1-0.5031 +yJ)3,

(20) Wiltap, I, J, A) = Ui%.’!—u(xlg + sz)g,
for i = 1,2. In order to understand these definitions, remember that, for exampie, T4
and I represent an I-player's  probabilities of emphasizing lateral and tap roots
respectively. Therefore, the term x}]4 + yJ{ represents the probability that a randomly
chosen individual emphasizes the lateral root system. Correspondingly, the term x[> +
yJ2 stands for the compiementary probability that the tap root is emphasized. This
explains how the fii_'nesses of "lateral” and "tap" relate to those defined in the previous
section. Findlly the payoff to a mixed strategy H = (HeH9) is again defined as the

expected fitness associated with playing H:

2D)  wiH, 1, J, A) = HqWillateral, I, J. A) + HoW;(tap, [, J, A).

ESS COMBINATIONS. The mathematical conditions for evolutionary stability in n-
species models are detailed in Hammérsfein (19832). Reflected in the conditions is the
idea first proposed by Maynard Smith and Price (1973} that, within a species, a strategy
must be stable against invasion by' mutant strategies that are sequentially encountered
. (i.e, one at ﬁ time). Hammerstein proposes that we extend this idea to the n-species
context by assuming that only one mutant strategy is encountered at a given time in
a community and that strategies must be stable ogainst invasion by this single mutant.
(This extension of the Maynard Smith and Price stability assumption is implicit in the
coevolution arguments presented for competing species by Lawlor and Maynard Smith

(1976)).
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A conceptual remark concerning the distribution A = {x, y) of reiative species
abundances must also be made before we are able to state the ESS conditions for the
n-species games. "Complete" versus "partial” model analyses deal with "A" in different
ways. In the complete model, assumptions about how A depends on the strategies
played are inciuded in the analysis, whereas in the partial model no explicit assumptions
are made as to the relationship existing between A ond the strategies exhibited.
Corresponding fo these two types of models, there are two methods of analysing
interspecific competition.  Associated with the partial model is the “pragmc’ric."
caiculation of ESS's for all A's. Generalized conclusions about strategies independent -
of A must then be drawn from inspection of the list of ESS's obtained from the
calcutations. Note, however, that if a specific biclogical example is being investigated,
the species relative abundance distribution, A, can be specified for the partial model
and only one ESS calculation need be completed. Vln the complete model, one must
attempt to simultaneously predict both strategies and relative species abundances. It
is not sufficient to merely show w.hich strategies would be evolutionarily stable for
given species abundance distributions. In this "ambitious” method, one must also
determine whether A would be generated by the strotegies identified as stable. In
principle, the complete model approach will provide more information about a system
than the partial analysis method. In practice, however, we rarely will have the kind
of understanding of the dynamics of a particular system requisite to successful completion
of the full model analysis. _

We use the partial two species model in analysing the Root Game herein. As
such ESS's must be identified with respect to given A's. Note that if we fix o strategy
J for popuiafion 2, but consider the full set of strategies for population 1, we have
reduced the game for population 1 to a single-species gome which is "induced by J".

This manipuiation permits us to state the definition of on ESS combination (I, J)} by
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means of formal ESS conditions already introduced for the single species case,
' An interspecific strategy combination (I, J)} is called evoiutionarily stable (an

ESS combination) with respect to a given A if it satisfies the following two conditions:

a) Iis an ESS for the single species game induced by J.

b) J is an ESS for the single species game induced by 1

Note that in the complete model, one must identify that strategy combination (,
J) and associated abundance distribution A that satisfies a) and b) and the additional
condition | |

c) A is ecologically stable, given (I, J).

CHARACTER DIVERGENCE We are now equipped with the conceptual background
necessary to analysing the two-species Root Game introduced above. In this game we
assume that the two speéies in question differ siightly in the efficiency with which
they exploit the surface water source versus the underground water source: species 1
being the better of the two species. In terms of our model parameters, this means
that 54/Uq » 52/U2; We also assume that the difference in surface and underground
exploitation efficiencies of neither species is strong enough to favor a given root system,
regardless of the root composition of the community: 54 > Uj{1-u) and Uz > Sp/2.

The game can be analysed using techniques already presented in earlier sections.
For example, if 0, J) is an ESS-combination in which 1 is to play both "lateral" and
"tap" with positive probabilities, then the equation Wq(lateral, I, J, A) = Wqltap, L J,
A) must hold. Because we assume the two species}%iffer in their efficiencies of water
utilization at respective levels, however, the analogous equation for species 2 cannot
be satisfied simuitaneously. Either 1 or. J must, therefore, be a pure strategy which
emphasizes roots only at one resource level.

After some calculation we find that for given model parameters, there is exactly
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Table 1. Evolutionarily stable strategy combinations for the two-species root game™

Condition ' Probability of emphasizing lateral root system
Species 1 Species 2
1 - yu< Ryl - x/2) 1 Ro(1 = x/2) + vy - 1
y(u + R/2)
Ro(1 - x/2) <1-yu< R{(1 - x/2) 1 0
R1(1-x/2) < 1-yu Ry +uv-1
x(u + R1/2) 0

*Here, Rj = §;/U; denotes the relative value of the surface water resource to species
i. Furthermore, x and y are the relative abundances of species 1, 2 respectively, and u
is @ measure of the effect of tap root density on the underground water resource.
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one £5S-combination for each distribution of relative abundance. An ESS-combination
is of either of three types shown in Table 1. Note that all three types of ESS-
combination share the following features:

a) Species 1 emphasizes the lateral system with a higher probability than
species 2 (remember here that S54/Uq > S2/U3).

b) Species 1 plays lateral with a higher probability and species 2 plays lateral
with a lower probability than they would do in playing an ESS in the
absence of interspecific competition.

c) Both species do not simultaneously play mixed strategies.

We illustrate these points in Figure é which represents a numerical example of
the ‘cxnolyses showing how the ESS-combination varies with the distribution of relative
species abundances. In this example, both species are assumed to be more efficient
users of surface than of underground water, though T is slightly more efficient than
2. Note, therefore, that in the absence of inferspecific competition, each would evolve
to a similar ESS, one that .emphasiz&s lateral roots wi.‘l'h a moderately high probability
(i.e., dashed lines for respective species in Fig. 6). Intraspecific competition in this
case effects the exhibition of some degree of/r%‘gf emphasis in both populations. The
evolutionary outcome of interspecific frequency dependent effects is a strong divergence
in root system emphasis in the two species (Fig. 6). An ecological interpretation of
the outcome of the ESS analysis is that the character diver.gence induced oh | by species
2 is the result of release from intraspecific competition, whereas that of 2 is a result
of avoidance of between species competiton with L Slatkin (1979) emphasizes the
significance of relative species abundances iﬁ coevolution. The results of our analyses
also show that these abundonces have a strong gquantitative effect on the ESS-root

composition.
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Other Models of Coevolution

The first attempt to extend ESS theory to the coevolution of competing species
was undertoken by Lawlor and Maynard Smith (1976). As in the root game above, their
treatment also involved a two-species case and the partitioning of two distinct resources.
Hiowever, the definition of evolutionary stability used by Maynard Smith and Lawlor in
the paper is only proposed for a special type of model and does not refer explicitly to
a2 came. It seems to be desirable to base the analysis on explicit games with many

players.

Ausiander et al. (1978) also analyzed a coevoiution problem, in this case between
a host and its parasite. The host larvae were assumed to either dwell "shallow" or
"deep" in the ground, while developing; the parasite had identical choices. A pair of
mixed strm"egi&s was identified which waos evolutionarily stable in the gome-theoretic .
sense. The pair of mixed strategies was, however, not found to be stable when the
selection process was modeled as a dynamic system. This is because the authors used
the term ESS as symonymous with the "™Nash Equilibrium™; no reference to or test was
made for the additional second criterion (ji: the stability property). Their "game
theoretic solution” in fact, does not meet the second criterion and thus is not an ESS
(See Hines 1981 and Hammerstein 1983 a}.

The gregariousness of prey in the coevolution of predator-prey systems is another
area to which game theory has been applied. In his "geometry for the seifish herd",
Hamilton (1971) pointed out that a single prey individual may be more likely to be
captured alone than in a large herd if predators select prey randomiy from the first

group of prey they meet. Eshel (198]) extended Hamilton's ideas and emphasized their
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game-theoretic aspects.

CONCLUDING REMARKS

The population geneticist might be of the opinion that evolutionary game theory
is merely a reformulation of the Theory of Frequency Dependent Selection. It is true
that ESS-analyses lead to conclusions that could be reached through the framework of
population genetics (e.g., Maynard Smith 1981, Eshel 1981), albeit with much greater
effort. This is, in fact, the significant contribution ESS theory makes. It permits us
to investigate complex systems which would be difficult, if not impossible to delineate
through more classical genetic methods of analysis.

We would like to make one further comment, in this case concerning the

relationship between classical and evolutionary game theory. In a recent review of

Maynard Smith's (1982) book Ewolution and the Theory of Games, Lewontin (1982)
attributes the success of the book to its avoidance of game theoretic apparatus. In
this review,' however, we hcn;re shown that a very close relationship exists between the
solution concepts of the two theories. The apparatus of classical game theory is thus
very relevant to biology and is more evident in Maynard Smith's book than Lewontin

suggests.
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