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Abstract

Shared Autonomy in the traditional sense focuses on the de-
gree of user intervention in the control of artificial systems.
We propose to broaden this notion to allow for more inter-
active scenarios. This requires a shift away from the single
system perspective towards the interaction, the participating
agents and the cooperation as such. Such a view on the in-
teraction of autonomous agents has to be based on a more
fine-grained understanding. Therefore, we extend a differen-
tiation of autonomy into three different levels to interactive
tasks as a starting point for a multidimensional perspective
on shared autonomy. In particular, we want to point out how
this allows for flexible interaction patterns and the negotiation
of changing roles in ongoing cooperation.

Introduction

Autonomous systems are capable of organizing the way they
behave by themselves, ranging from action execution, over
strategic planning to goal selection. To do so, they have to
exceed automatic and predefined behaviors and shape their
interaction with the dynamic environment by striving for sat-
isficing rather than optimal solutions. Full autonomy still
poses a problem for artificial systems that shall deal with
difficult and complex tasks. Therefore, in shared autonomy
a system is supposed to cope autonomously with the task
as good as possible (Kanda and Ishiguro 2012). In such set-
tings, usually, the system deals with the low level details of
the execution of action, while, on a higher level and when-
ever the system is not able to deal with the current complex-
ity or unforeseen events, the control of the system is trans-
ferred to a user. In this classical view, shared autonomy is
understood as a case in between fully autonomous behavior
and teleoperation. The term shared refers to the aspect that
the actions of the system are controlled either by the system
or transferred to the user.

From our point of view this leaves out many forms of col-
laboration. We rather think that the notion of shared auton-
omy should be understood in a richer sense that allows for
cooperation and interaction. Cooperative scenarios provide
multifaceted interaction possibilities between participating
agents with a large number of degrees of freedom on differ-
ent levels of abstraction to achieve a goal. Autonomy for a
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single system is to organize its behavior given these degrees
of freedom, but of course also respecting the constraints as
given through the scenario or situation. In shared autonomy
this process of shaping behavior has additional degrees of
freedom and constraints induced by the cooperation with an-
other autonomous agent and is mediated through communi-
cation. Shared autonomy becomes a joint process: the par-
ticipating agents introduce further constraints for each other
and have to respect the constraints introduced by the other
agents while at the same time attaining additional degrees of
freedom through additional competences and options.

Therefore, shared autonomy requires—in our
understanding—always that every participant has to
concede some degrees of freedom in order to allow others
some autonomy. But at the same time every participant also
gains in autonomy in the sense that s/he gets more choices
for action and more goals s/he can achieve. Importantly,
such scenarios are usually so rich that it is not feasible to
reason about or control all possibilities. However, from
the perspective of shared autonomy this complexity is
actually an asset that can be exploited when multiple agents
(technical systems or humans), that are capable of shared
autonomy, are introduced and can take over and deal with
parts of the complexity. Shared autonomy is thus the setting
in which constraints are mediated between agents for
achieving their goals.

In this article, we want to briefly discuss the currently
used notions of semi-autonomous systems and shared con-
trol. Second, we want to review the different levels of au-
tonomy as proposed by Gransche et al. (2014) and we want
to extend this perspective to cooperative scenarios involving
multiple actors. Further, we want to discuss the adaptivity
of shared autonomy and how it emerges as well as evolves
throughout interactions. Last, we will provide evaluation cri-
teria and will briefly point out exemplary scenarios as bench-
marks.

Classical View of Shared Autonomy

Autonomy of artificial systems is a graded quality. This
leads naturally to a degree of autonomy which can be traced
back to Sheridan’s (Sheridan and Verplank 1978) ten lev-
els of automation (a detailed summary is given in (Hertkorn
2016, chapter 2)). In this view, there are different degrees of
autonomy given along a single dimension ranging from di-

The 2016 AAAI Fall Symposium Series: 
Shared Autonomy in Research and Practice 

Technical Report FS-16-05

338

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211826388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


direct control

tele
op

era
tio

n

med
iate

d te
leo

pera
tio

n

sup
erv

iso
ry 

co
ntr

ol

co
llab

ora
tive

 co
ntr

ol

peer
-to

-peer
 co

llab
ora

tio
n

dynamic autonomy

sha
red

 co
ntr

ol

tra
ded

 co
ntr

ol

Figure 1: Different degrees of autonomy ranging from tele-
operation to autonomy (after (Goodrich and Schultz 2007,
Fig. 4.2); added have been additional notions following
(Goodrich, Crandall, and Barakova 2013) shown in italics).

rectly operated systems towards fully autonomous systems
(shown in Fig. 1 following (Goodrich and Schultz 2007)
and (Goodrich, Crandall, and Barakova 2013, Table 5.2)).
Shared autonomy is the general notion which takes a human-
centered perspective. The focus is on the degree of control
and supervision of the system through a human (Hertkorn
2016). While the artificial system tries to cope autonomously
with the task as good as possible (Kanda and Ishiguro 2012,
chapter 6), it usually deals with the low level details of the
execution of action. But, on a higher level—and whenever
the system is not able to deal with the current complexity or
unforeseen events—the control of the system is transferred
to a user. Shared autonomy is mostly used as the general
term. There are multiple different more fine-grained notions
of semi autonomous systems which are used more often than
the more general term. In the following, we want to give a
brief overview of these notions.

Shared/Guided Control puts the focus on the control orig-
inating from the user towards the system which has its own
control loop and is autonomously reacting to the environ-
ment and executes the specified action (Goodrich, Crandall,
and Barakova 2013). Still, user and robot work concurrently
(in contrast to traded control in which they take turns).
In Collaborative Control user and system share a task and
work as a team collaboratively in the same space and at the
same time ((Goodrich, Crandall, and Barakova 2013) call
this Mixed-Initiative Control in which the focus is more on
the flexible interaction strategy.). In contrast, in Supervisory
Control (Endsley and Kaber 1999) the user only monitors
the execution of the autonomously working system.

In general, in the perspective of shared autonomy a system
is not recognized as a partner in a task, but is more seen as
an intelligent tool with the advantage that the system can act
autonomously to a certain degree and the user can be freed
from many (distant) details of the action. As shared auton-
omy involves a form of interaction with a user or teleoper-
ation, it requires input and output to the user. Feedback has
to be provided to the user in the same way this is required
in a teleoperated system. The user should be immersed in
the task in order to allow for proper control. Interaction be-
tween user and system therefore usually takes place only on
a higher level of abstraction (in contrast to teleoperation).

To summarize, shared autonomy is understood as re-
ferring to a semi-autonomous system (Vernon 2014) and
such a system is, first of all, teleoperated. But, secondly,

Autonomy (3) – 
Selection of Means, Operative Control

Autonomy (2) – 
Plans, Strategic Control

Autonomy (1) – 
Intentions, Normative Control

Level of Autonomy
(following Gransche et al., 2014)

Human-Technology-Relation
(following Gransche et al., 2014)

Interaction –
Negotiation Intentions, Delegation

Operation –
Selection of Strategy, Delegate Control

Use –
Control of Means and Application

Figure 2: On the left, the three dimensions of autonomy are
shown as proposed by Gransche et al. (2014). The filled
rounded rectangles visualize the space of possible selections
following Bradshaw et al. (2003). On the right, the view of
Gransche et al. (2014) on the human relation towards the
technical system is summarized.

it is carrying out given actions autonomously (or semi-
autonomously). From our point of view this is where the
current notion of shared autonomy is lacking. Viewing au-
tonomy as a one dimensional quality is leaving out the fine
grained structure of underlying interactions and involved
representations. We think it is important to incorporate a
rich notion of interaction into the concept of shared auton-
omy. From our point of view, in an interaction different roles
are negotiated and can change over time. The degree of au-
tonomy is therefore also not fixed (comparable to the sub-
notions adaptive, sliding (Fong, Thorpe, and Baur 2003) or
adjustable autonomy (Goodrich et al. 2001)). A multidimen-
sional perspective is required which sees autonomy as a pro-
cess operating on multiple levels and relying on comple-
menting representations on the different levels (there is al-
ready work that relates shared autonomy to representations
on different levels, as goals and intentions). Interaction be-
tween autonomous systems necessitates to mediate on these
different levels of autonomy. We propose that such a detailed
view on autonomy can help to refine the concept of shared
autonomy for rich interactive scenarios.

Beyond the Single-Dimensional View

We strongly argue that the single-dimensional view on
shared autonomy should be extended to better embrace the
richness of phenomena that can emerge when autonomous
agents engage in interaction. In our view, this requires to
open the narrow focus on handling the passing and regaining
of control towards a more multidimensional perspective that
tries to elucidate the space of interaction patterns that can
arise when two or more autonomous agents come together.

An interesting attempt along this line has been put for-
ward by Gransche et al. (2014). They propose a stratification
of autonomy into three levels: The first type of autonomy
(freedom of intentions) allows choosing ones own particu-
lar purpose in a current situation. Autonomy of the second
type determines a strategy in order to fulfill certain purposes
(freedom of decision). On the lowest level (their third type
of autonomy: freedom of acting), autonomy describes the
ideally optimal selection of a means to achieve an immedi-
ate goal. Conceptually, these levels characterize the freedom
of making choices arising at different levels of a hierarchy.
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Figure 3: Application of the multidimensional perspective
of autonomy on specific cases along the shared autonomy
spectrum. Shown is the interaction between user and system
(only for cases involving two participants). In a) teleopera-
tion is shown and in b) collaborative control.

The three different levels are shown in Fig. 2. The spaces of
possible selections are visualized as rounded rectangles fol-
lowing Bradshaw et al. (2003) who applied such a kind of
representation, but only towards the lowest level of poten-
tial actions. Importantly, the presented view is simplified as
it does not distinguish between capabilities (which actions
can be performed) and freedom (which actions are allowed)
(Bradshaw et al. 2003). Instead, the simplified figure shall
give a rough idea on the possibilities on that level given a
current set of constraints (We also exclude the feedback of
the system and the shared perception.).

We propose to extend this multi-level notion of autonomy
towards interactive settings and scenarios. Our perspective
will be that these levels stratify the shared autonomy space
and that a more comprehensive characterization of how the
autonomy spaces of the agents merge into this shared space
calls for additional dimensions for which which we will pro-
vide some examples. This perspective allows to further dif-
ferentiate types of interaction and to differentiate changing
contributions from different partners of the interaction. As
one example, Fig. 3 a) shows a conceptualization for the
case of a fully teleoperated system. Importantly, the differ-
ent levels of autonomy are shown for the human user and the
system as well as the interaction between those. In the case

of a teleoperated system, there is no autonomy on the sys-
tem side. Instead, the intentions of the user are substantiated
into a plan and even the means are selected autonomously
(but constrained through the higher levels) by the human.
The system is under direct control. Moving towards more
semi-autonomous operation—as discussed in the previous
section—the hand-over between human and system would
be moved to the intermediate level and the user would be
freed of the details of the action. The system would be au-
tonomous on the lower level and select its means by itself.
This might be moved even further towards a form of inter-
action in which the system is laying out its own plans.

The single dimensional view on the interaction of auton-
omy and control becomes problematic for cases like collab-
orative control. But in a multidimensional view this can be
conceptualized as depicted in Fig. 3 b). In that case, human
and system both work collaboratively in the same space and
at the same time. While the user’s intentions should guide
the system, the system at least requires some autonomy on
the lower level in order to free the user enough, so that s/he
has free resources allowing her/him to act autonomously.
Additionally, communication is required to coordinate the
behavior. Ideally, this is not done on a fully-detailed level,
but on an intermediate level which requires a form of com-
mon representation accessible to both.

In natural interaction fusing of autonomy spaces brings
into view a rich set of important dimensions, most of which
cut across the aforementioned levels. These dimension in-
clude, for example:
• Shared resources, such as space, e.g. avoiding collisions

or creating functional contacts, time, e.g. for catching up
in a cooperation, or information, e.g. about goals and
plans.

• Efforts: how does fusing of autonomy spaces impact on
processing load, memory load, or physical forces that
need to be exerted?

• Performance measures: these are task-specific monitor-
ing dimensions, but they include also generic measures
such as throughput or failure rates.

• Action entropy/predictability: a limited predictability
is intrinsic to autonomy. Thus, to facilitate coordination,
sharing autonomy requires agents to include in their pol-
icy the control of their action entropy, either through ex-
plicit communication or in the form of commitments that
are transparent to others.

• Interaction strength distinguishes between
loosely/tightly coupled agents and can, e.g., be monitored
through mutual information or correlation measures.

• Directionality sharing may occur symmetric or in a di-
rectional leader-follower pattern, with correspondingly
richer structures for more agents.

• Adaptivity characterizes the capability of the interaction
to change in history-dependent ways (and will be taken
up again in the next section in the context of shared au-
tonomy and emergence).

This list covers a number of dimensions which we believe to
be of major importance, but it is not exhaustive.
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It reflects that real world scenarios provide a rich and
multitude of interaction possibilities between participating
agents which offers a large number of degrees of freedom
on different levels of abstraction to achieve a goal. An au-
tonomous system behaves inside a set of constraints given
by the current situational context. Extended to shared au-
tonomy the organization of behavior is not only constrained
by the current situation, but also by the other agents sharing
this situation. And, most importantly, the available degrees
of freedom that can be chosen by all the agents is shared.
The decisions of each individual agent for those degrees of
freedom are influencing all the other agents. The possibili-
ties for each system depend on how the others shape their
behavior. As a consequence, in a shared autonomy setting
autonomy should not be seen with respect to a single sys-
tem, but always in the context of the whole situation and
the other interacting systems. Shared autonomy requires to
leave open choices to the other participating agents—and
possibly therefore to constrain oneself. As an advantage,
the multi-level notion of autonomy offers here a differen-
tiated view on the interaction between systems. It provides
different forms of interaction and the agents take up differ-
ent roles in these interactions. Importantly, first, these roles
might change over time and get more complex with multi-
ple agents taking part in an interaction. Secondly, those ex-
changes are not always unidirectional. This perspective is
from its outset devoid of any subordinative hierarchy be-
tween the agent (e.g. robot vs. human). Any such relation
is an additional structure and such structure can be added in
multiple ways. For instance, a rigid subordinative hierarchy,
a context-specific leader-follower pattern (e.g. according to
experience), or a potentially complex role dynamics (“social
dynamics”, with or without learning).

Tightly connected to the three levels of autonomy are
representations of different levels of abstraction. Here,
Gransche et al. (2014) do not provide details on the kinds
of representation and we think that this is one of the impor-
tant research questions to complement the different levels
of autonomy with rich representations capturing the infor-
mation on that level of abstraction. While the lower level
deals with detailed representation of actions and their execu-
tion, an intermediate level will deal with plans, sequences or
strategies as combinations of those and on the highest level
intentions should be represented. This leads to the question
how patterns of shared autonomy might be designed so that
they are both beneficial and implementable. In the ideal case,
this might again be based on some specifiable optimization
criterion. However, the optimization of clearly specifiable
criteria might be too difficult to implement in practice, and
satisficing or heuristic approaches might be needed instead.
This shifts the focus from optimization to a direct imple-
mentation of coordination patterns, such as “complementar-
ity of X”. Depending on X, this can cover a wide range of
situations: coordination by available resources (e.g. informa-
tion), skills (e.g. experience), or interests (interference min-
imization). A different (and more “positive”) pattern would
be “synergy for X” where X is only enabled as a result of a
suitable cooperation. This is a more complex pattern, instead
of interference minimization here the goal is to “create more

than the sum of its parts”.
The proposed levels (Gransche et al. 2014)—proper ac-

tions, strategies, and intentions for goals—appear to us as
an excellent example of how to “cut” interaction space in a
principled fashion. And we believe that there are further im-
portant and similarly principled “cuts” that all provide rele-
vant perspectives for a deeper understanding of the fabric of
shared autonomy. We propose to broaden the classical con-
cept of shared autonomy to embrace a richer set of phenom-
ena for a deeper understanding of how autonomous agents
may interact.

Shared Autonomy and Emergence

Autonomous agents very often are capable of adaptivity
and learning. This may allow to gradually establish shared
autonomy when it is not available at the outset: we then
see shared autonomy emerge as a consequence of adaptive
changes. This might enlarge the space of possible selections
on the different levels. If agents are cooperating then they
might achieve more than simply adding up their single au-
tonomous abilities, exceeding their original possibilities (see
Fig. 4).

Imagine two agents passing each other every morning on
a narrow lane. The agents cannot sense each other, and they
can only pass each other without a bump when they choose
opposite sides of the lane on their walk. Initially, they act
very uncorrelated (e.g. choosing sides of the lane at ran-
dom). After a particularly painful bump, one of the agent
decides to switch to a deterministic choice and stick to the
lane side that is opposite to the bump. Unfortunately, the
other agent has the same idea after the event and the situa-
tion gets worse. But then, one (or both) agents might include
some randomness into their deterministic strategy and, after
the first bump-free passage, both agents can stick determin-
istically to the “discovered pattern”.

In the previously discussed approaches, the successful co-
ordination pattern had to be implemented into the agents by
a suitable a-priori design, requiring an analysis of the struc-
ture of their interaction. The tiny example illustrates, that in
the absence of such an analysis, suitable rules for changing
the behavior adaptively can make successful coordination
patterns emerge. This could, for instance, also have been
achieved by some reinforcement learning approach (with
bump-free passage as the obvious reward) or other forms of
stochastic search. Already much more elaborate examples
have been considered, for example, in biology, e.g. when
ants lay down odor traces to share successful navigation
patterns. The example already illustrates that there can be
rules that converge (on average) much faster than purely sta-
tistical unsupervised learning. Discovering such rules is of
paramount importance in robotics, where abundant interac-
tions are simply too costly to be practical.

Of course, for straightforward situations like the exam-
ple, any learning approach seems like “overkill”. But imag-
ine adding further context, for example, one agent uncon-
ditionally chooses the lane on the shadow side when the
sun is burning, while the other agent doesn’t care about the
sun. This would make the successful coordination pattern
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Figure 4: Shared Autonomy for a complex interactive sce-
nario: On the highest level intentions are given to the sys-
tem. In addition, there is explicit and implicit communica-
tion between the human and the system (red arrows) also
on the lower levels. The blue space of possibilities signifies
the resultant action space in cooperation. On the one hand,
this can grow larger, for example as seen on the interme-
diate level there are more possibilities, even though many
of those probably require coordination. On the other hand,
this might become shifted, for example as is the case for the
lowest level: in a cooperation other means become possi-
ble, but also other might not be possible anymore. A simple
example might be redecorating a room with large furniture.
While a single agent can not move a huge table around, two
agents in cooperation might be able to. With respect to the
weight, their overall capabilities (indicated by the blue area)
might be increased to the sum of what each agent individ-
ually is able to carry. But even if one of the agents could
lift the weight of the table by himself, only together it might
become feasible to maneuver the bulky furniture in a goal-
directed way.

context-dependent and increase the adaptivity of the behav-
ior.

Fields such as game theory (“coordination games”), co-
operative planning, or reinforcement learning, offer useful
tools to craft forms of adaptivity that can lead to emergent
shared autonomy. However, in complex tasks contexts and
agent value functions (“attention”, “interest”, “mood”), as
well as agent roles, can shift, switch or interact in a mul-
titude of ways, depending on the given task and situation,
but also on the interaction partner or what is known about
him and possible cooperation. Since most real world inter-
actions have to converge within a very limited number of in-
teractions, pure observation based identification or learning
needs to be complemented with additional strategies for fast
coordination, such as some form of implicit or explicit nego-
tiation. This involves communication and should be continu-
ous to allow tracking of role changes and to make it possible
that all participants can contribute according to their capa-
bilities. For example, when tidying up, a child and a robot

might engage in placing objects in different boxes to stow
those away, with the child leading the activity and the robot
falling into the role of the follower, just selecting the means
for the strategy given by the child. Along with the emerg-
ing role pattern, the need for communication becomes more
and more reduced. But after some time the robot might sug-
gest a different order or different placements. This breaks
the established role pattern, brings back communication and
a level change: the robot now proposes a strategy (interme-
diate level of autonomy) which might be adopted or further
discussed and refined between both. The overall coordinated
behavior emerges out of the interaction of actions as well
as the shared autonomy. Moreover, during the process the
agents discover each others capabilities which additionally
impacts on the fusing of their autonomy spaces.

Real world situations abound with such complexities
(most of them much harder to describe than in the example),
making adaptivity and emergence important for maintain-
ing or establishing shared autonomy in dynamical contexts
and between agents whose policies vary in time. Due to this
richness, we expect emergent shared autonomy to become
an exciting research direction where methods from differ-
ent areas have to be combined in interesting and challenging
ways to create new levels of adaptivity enabling real world
agents with sophisticated autonomy to achieve coordination
within a very short time span.

Evaluating Shared Autonomy
An obvious key question is: how can we measure the degree
of “successfulness” of shared autonomy?

Clearly, the multidimensional perspective on shared au-
tonomy can also provide guidance to this question: once
we pick a number of dimensions along which we charac-
terize the fusing of the agents’ autonomy spaces, measur-
ing shared autonomy becomes transformed into a multicri-
terial optimization problem and we might apply the toolset
that is available in this established framework. For instance,
we might consider “engineering type” dimensions such as
amount of task achievement, required communication, fail-
ure rates, throughput, negotiation time, mutual anticipation
success and many more. Already more challenging are mea-
sures that require human judgement, such as user accep-
tance, ease of interaction, user satisfaction or fatigue. Even
more challenging is to measure effects such as the emer-
gence of new capabilities, or individual influences, such as
the dependence on agent-individual skills and biases.

We also would like to point out that benchmarking shared
autonomy is in an interesting way connected with robust-
ness of policies to disturbances: by utilizing their autonomy
spaces, both agents create a degree of unpredictability for
each other, and this can only work when the unpredictability
is “shaped” in such a way that it does not hit any “sensitive
spots” of the policies of the other agent(s). Therefore, high
robustness benchmarks for policies should be indicative of a
good capability of fusing one’s autonomy space with others.

But there is also little doubt that the biggest challenge is
to implement any of the “conceptual” measures for interac-
tion scenarios of real world agents, and obtaining meaning-
ful results within the restricted number of interaction turns
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feasable under such constraints. This may require to relax
the aspiration of quantitative benchmarking to evaluating
success in tournaments. Fortunately, the situation of shared
autonomy is very suggestive of a generic tournament de-
sign that measures whether the “whole” (the fusing of auton-
omy spaces in a particular implementation) is “more than its
parts”. Such “team gain” can be measured by a simple tour-
nament between two agents that act in parallel and isolation,
versus a team of agents acting under identical conditions,
but being allowed to fuse their autonomy spaces. However,
we should expect that there exist task-dimension pairings
for which an optimal team solution might require to sacri-
fice autonomy in favor of performance, while for others the
optimal solution is characterized by an optimal, intermedi-
ate level of autonomy of each agent. The characterization of
task-dimension combinations with regard to these outcomes
appears to be another exciting research question pertaining
to a deeper understanding of shared autonomy, which should
be approached from both an empirical and a theoretical side.

Conclusion
The fine grained view on autonomy (Gransche et al. 2014)
helps to extend the current (classical) view on shared au-
tonomy which mainly considers shared autonomy as a dif-
ferentiation in between manual execution, automation and
autonomy itself. Originally, this view focused on the sin-
gle artificial system as such and the system is seen as a tool
that on some (low) level relieves the user from details of the
actual execution of a behavior while leaving the high level
autonomy to the user. However, this is a massive limitation
of the capabilities that a team of a user and an autonomous
system can achieve. Our multidimensional perspective on
shared autonomy extends this to interactive scenarios. This
allows all agents to contribute on different levels which—
in our opinion—is an important requirement for cooperation
and communication: as soon as the cooperative behavior be-
comes a little more complex it is required that all partici-
pants are able to understand on different levels and also have
a certain degree of freedom on that level. These different
levels of understanding and decision are complementing the
types of autonomy as proposed by (Gransche et al. 2014): an
autonomous system should not only be able to realize cur-
rently carried out actions (the means), but also should have
a broader understanding of the current intention and the cur-
rently followed strategy, including the partner’s intentions as
well as the consequences of action selection on the partner’s
state of autonomy.

As a goal for our future research such systems should not
be restricted to jump in and take only over a certain means,
but should rather be able to propose alternative strategies
and offer their complementing abilities on all levels, thus
shaping the joint behavior autonomously. We want to apply
this in different interactive robotic scenarios, for example
tidying a room which relies on manipulation (Li, Haschke,
and Ritter 2015), perception (Oliveira et al. 2016; Eitel et al.
2015) and interaction capabilities (Twardon and Ritter 2015;
Kopp et al. 2014; Renner, Pfeiffer, and Wachsmuth 2014).
This requires differentiated underlying rich representations
(Nomikou et al. 2016; Schilling and Narayanan 2013), in

particular for communication like the use of ‘Pragmatic
Frames’ (Rohlfing et al. 2016) which humans use in their
everyday interactions and which are emergent interaction
patterns where pragmatic meaning emerges within the inter-
action situation. It further involves adaptation and learning
(Kuderer, Gulati, and Burgard 2015; Boedecker et al. 2014)
on those different levels of representation from few trials in
complex scenarios.
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