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ABSTRACT

In this paper, we present an approach to adaptive language
tutoring in child-robot interaction. The approach is based
on a dynamic probabilistic model that represents the inter-
relations between the learner’s skills, her observed behaviour
in tutoring interaction, and the tutoring action taken by the
system. Being implemented in a robot language tutor, the
model enables the robot tutor to trace the learner’s knowl-
edge and to decide which skill to teach next and how to
address it in a game-like tutoring interaction. Results of an
evaluation study are discussed demonstrating how partici-
pants in the adaptive tutoring condition successfully learned
foreign language words.
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eComputing methodologies — Probabilistic reason-
ing; Cognitive robotics; eApplied computing — In-
teractive learning environments; eHuman-centered
computing — Empirical studies in HCI;
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1. INTRODUCTION

The use of robots for educational purposes has increas-
ingly moved into focus in recent years. This is due to two
major developments. First, robots became cheaper and more
robust so that applications in everyday environments are
now conceivable. In particular, technology has matured up
to a point where intuitive interaction using natural language
or gesture has become feasible. Second, the need for second
language learning becomes increasingly important, and em-
pirical evidence has demonstrated that learning with and
from a physically present, interactive robot can be more ef-
fective than learning from classical on-screen media [14, 15,
20, 22]. In fact, recent research showed that performance
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can increase up to 50% [17]. It can, hence, be assumed that
tutoring using social robots is qualitatively different from
alternative digital tutoring technologies. Nowadays, first
practical applications can be found, e.g. in nursery where
toy robots teach the alphabet to kids in a very simple way.
More generally, findings from a variety of settings seem to
suggest that robots can help small children to develop in an
educational setting [10, 18, 24, 27].

In the L2TOR project!, we investigate in how far a social
robot can support children at pre-school age with respect
to second language learning. Learning a language is a very
complex task. It involves not only acquiring vocabulary,
but also learning prosodic features, syntactical structures,
semantic meanings as well as situation-dependent language
use. Yet, it has been argued that social robots can create the
interactive environment and motivational experience needed
to learn languages [19].

One of the most important aspects in tutoring is the robot’s
ability to keep track of the knowledge state, i.e. the learned
and not-yet-learned skills, of the child interacting with it.
This information is indispensable to enable a personalized
tutoring interaction and to optimize the learning experience
for the child [27]. The tutor has to structure the tutoring
interaction, choose the skills to be trained, adjust the diffi-
culty of the learning tasks appropriately and has to adapt
its verbal and non-verbal behaviour.

The importance of personalized adjustments in the robot’s
behaviour has been substantiated in recent research show-
ing that participants who received personalized lessons from
a robot (based on heuristic skill assessment) outperformed
others who received a non-personalized training [22]. Sub-
optimal robot behaviour (e.g. too much, too distracting,
mismatching or in other ways inappropriate) can even ham-
per learning [17]. In this paper we present an integrated
approach for tracing the knowledge of the learner during a
L2 learning interaction together with a strategic adaptation
of tutoring actions.

In the following, we discuss related work in Section 2.
In Section 3 an extension of Bayesian Knowledge Tracing
is presented as well as a model to select the next tutoring
actions based on the predicted effects they may have on the
learner’s knowledge state. This model has been implemented
in a robot that provides language tutoring in a game-like
fashion. Section 4 introduces the empirical basis for this
scenario and observational studies on language tutoring in
kindergarten. Section 5 presents an evaluation study carried
out with this robot and Section 6 discusses the results.
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2. RELATED WORK

Numerous studies have investigated the effects of social
robots in tutoring scenarios. Empirical evidence demon-
strates that learning with and from a physically present,
interactive robot can be more effective than learning from
classical on-screen media [14, 15, 20], and that robots can
help children to develop in educational settings [10, 18, 24,
27]. However, at the same time, it is found that suboptimal
behaviour of the robot can hamper learning [17]. Thus, a
crucial ingredient for successful robot tutoring is the ability
to provide personalized lessons [22] and to adapt in appro-
priate ways to the needs of the learner. The key question is
when and how to adapt robot tutoring, according to which
adaptation strategies, and based on what features of the
state of learner or the tutoring interaction.

2.1 Approaches to Adaptive Tutoring

In the realm of Intelligent Tutoring System (ITS), ded-
icated pedagogical modules are employed for planning an
optimal path through the curriculum by using an internal
model of the learner’s present knowledge state (cf. [8]). Cak-
mak and Lopes [3], for example, proposed a teaching algo-
rithm that selects the most informative demonstrations for
the learner. This learning agent makes use of Inverse Rein-
forcement Learning (IRL) to reduce the learner’s hypothesis
space of possible reward functions as fast as possible. In an
evaluation, the authors showed that a learner trained with
non-optimal selected expert demonstrations require signifi-
cantly more demonstrations to achieve a similar performance
as the optimally taught learner. This system, however, is de-
signed for a sequential decision task in which no uncertainty
about the learner’s knowledge/skill exists. This assump-
tion does not hold for the domain of L2 learning where the
learner’s current state of knowledge can, at best, be inferred
from observed behaviour. Another important limitation of
this approach is a lack of flexibility as no adaptation towards
students’ individual needs is considered.

Addressing especially the issue of adaptation towards stu-
dents’ individual needs, Partial Observable Markov Decision
Processes (POMDPs) have been employed as basis for the
pedagogical module of an ITS. Rafferty et al. [25], for in-
stance, proposed different algorithms for planning an action-
policy based on a POMDP and compared these against two
different random and a maximum information gain (MIG)
choice. They showed that even a simple action-policy based
on a POMDP can achieve a significant faster skill learning
than choosing actions randomly. But compared to the sim-
ple MIG algorithm, no significant difference was observed.
Only with increasing skill space the MIG algorithm seems
not to be sufficient anymore. A likely explanation for this
finding is that the knowledge tracing model is insufficient.
In addition, finding a good policy based on a POMDP is
often computational intractable.

Clement et al. [4] compared two algorithms choosing the
next skill and action in a tutoring interaction against a les-
son given by a human expert. Both algorithms based on
prior knowledge, e.g. the impact of actions on the learning
gain or the difficulty of different types of tasks, which had
been annotated by experts beforehand. The algorithms dif-
fered with regard to the adaptation method and the amount
of additional knowledge stored besides the prior. The au-
thors showed that even if the ITS does not make use of an
internal model to store beliefs about the child’s knowledge
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state regarding a specific skill, the use of their algorithm can
lead to a higher learning gain compared to an expert lesson.
Furthermore their second proposed algorithm, which addi-
tionally stores information about the knowledge state of the
child, performed even better. Clement et al. concluded that
extending their system with a more complex model for trac-
ing the knowledge state of a student might lead to a higher
learning.

An often criticized issue in this line of research is the lack
of an effective knowledge-tracing method in the pedagogical
module of an ITS that could be profitable for the learning
interaction, e.g. by increasing the students’ learning gain.
Hence, we review research on knowledge tracing methods in
the following.

2.2 Knowledge Tracing

Knowledge tracing aims to model learners’ mastery of
the knowledge being tutored. An often used approach is
Bayesian Knowledge Tracing (BKT). BKT is a specific type
of Dynamic Bayesian Networks (DBN), or more precisely,
of Hidden Markov Models consisting of observed and latent
variables. The latent variables represent the ‘skills’ and are
classically assumed to be binary. That is, a skill is repre-
sented to be mastered or not. Generally, separate BKT net-
works are used for each skill to be learned [5]. Belief update
is based on the observation of an answer to a given task test-
ing a specific skill. The observed answer is binary too. Fur-
ther, BKT models have two types of parameters: The emis-
sion probability and the transition probability. The emission
probabilities are given by the ‘guess probability’ p(guess),
the probability of answering correctly without knowing the
skill, and the ‘slip probability’ p(slip) of answering wrongly
although knowing the skill. In contrast, the transition prob-
abilities are given by p(t), the skill transition from unknown
to known, and p(f) the probability of forgetting a previously
known skill. Often p(f) is assumed to be zero.

Spaulding et al. [29] recently adopted BKT to trace the
language-reading skill of children in robot-based language
tutoring. They proposed the ‘Affective BKT model’, which
is characterized by two further observable variables called
‘smile’ and ‘engagement’ to take into account the affective
state of the child. This model structure allows emotions to
influence the belief-state of each skill as they are included in
every belief-update. The authors showed that the affective
state of the children can be successfully integrated into BK'T
and that this approach outperforms traditional models for
tracing the knowledge state in learning situations [29].

Another modification of BKT was published by Késer et
al. [16]. Instead of using a dedicated BKT for every skill,
they defined one comprehensive DBN to trace the knowledge
on all skills to be learned. This enables to trace the knowl-
edge on each skill individually and, in addition, to represent
and reason with skill inter-dependencies. This allows for
searching some kind of order in which skills may be learned
best. The authors could demonstrate that this more de-
tailed model outperforms other traditional models of knowl-
edge tracing, including the normal BKT, with regard to the
accuracy of the skill belief [16].

Finally, Gordon et al. [11] recently presented a so-called
‘active learner model’ to trace the word-reading skills of
small children. This model does not work on the basis of
BKT but employs a simple distance metric to approximate
the conditional probability p(ws2|w1) of whether the child



can read a word we if it already knows the word wi. Their
evaluation showed that their system is able to adapt to users
of different age and to trace their reading knowledge up to
a certain extent [11].

In this paper we present an expandable model based on
BKT for knowledge tracing that, in contrast to the systems
reviewed above [16, 29], allows for the simulation of actions
and decision-making in teaching interactions.

3. ADAPTIVE LANGUAGE TUTORING

As a basis for our approach to adaptive language tutoring,
we adopt the Bayesian Knowledge Tracing model [5] which
has been successfully employed in other work and was shown
to be easily extensible. However, we modify and extend the
BKT model in order to enable predictive decision-making
based on the represented beliefs about the learner’s knowl-
edge state. In this section, we first introduce our version of
BKT and then present the approach for decision-making.

3.1 Bayesian Knowledge Tracing

The traditional approach to BKT uses only one latent
variable S to represent the skill belief and one observable
variable O for the user’s answer. This suffices to represent if
a skill is mastered or not, and how probable it would be that
the user will answer correctly. Also, this information can be
used to choose the next skill to learn, e.g. the skill which has
the lowest belief probability of having been mastered. How-
ever, this model does not include information about how a
skill can be addressed for teaching. In consequence, there is
no possibility to take possible actions and their influence on
the update of skill beliefs into account. We thus add a deci-
sion node A for actions to the Bayesian network (see Figure
1). This node not only influences the possible observation
but also the belief update in the next time step. Further,
we use a latent variable S that can attain six discrete val-
ues for each skill, corresponding to six bins for the belief
state (0%, 20%, 40%, 60%, 80%, 100%). This allows for a
more detailed model of the impact of tutoring actions on
the possible observations and skills. Moreover, it becomes
possible to better quantify the robot’s uncertainty about the
learner’s skill.

With these changes, especially the conditional probabil-
ity table p(O*|S*) and the additional influence of the action
A" on the observable (now p(O*|S*, A*)), the classical BKT
update function, which was based on simple assumptions
about guessing p(guess) and slipping p(slip) during the an-
swer process, cannot be applied anymore. Instead, we apply
a normal Bayesian update rule for the conditioning of skill
beliefs including a transition probability p(Sit!|sg, OF, A*)
where s;, identifies a bin of the skill SI. As a simplification
we substitute this probability with p(S*!|s):

p(STHY) 1= p(SiHH|0", AY)
37 (S s, OF, AY) - p(si]OF, AY)]

skESf

~ 3 (O A p(A ) - plse)

(07, A7) p(SE* fsu)]

skES,E

3.2 Predictive Decision-Making

The extended BKT model is used to decide which tutor-
ing action the robot should take next. At first, the skill to
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Figure 1: Dynamic Bayesian Network for BKT: The
action node A’ predicts the observation O’ and influ-
ences the belief update of S* for the next time step
t+ 1.

address with the next tutoring action is chosen. For this,
the Kullback-Leibler divergence (KLD) between the current
skill belief and the desired skill belief is used, the latter be-
ing a maximally certain belief in a maximally high skill of
the learner:

next_skill = argmin[a(S}) - KLD(p(S?), p(Sopt))]
vstes

S represents the set of all skills that can be addressed, which
consists of all words to be taught to the user. p(Sopt) is the
desired belief for each skill, which means 99.999% of prob-
ability mass in the last bin (100%). The factor a(S}) has
been added for each skill to regulate the skill occurrence fre-
quency. It is decreased each time the skill is addressed, and
it is increased if another skill is being practised. In this way,
the skill-selection algorithm takes care of the maximization
of each skill belief as well as the balancing of all skills.

After the skill has been chosen, the next step is to decide
with which tutoring action this should be done. Here, we
consider abstract tasks as tutoring actions. These tasks will
have to be mapped onto concrete exercises or pedagogical
acts at a later stage in the robot control architecture (see
Section 4). For simplicity, we distinguish between tutoring
actions according to the difficulty (easy, medium or hard)
of the task that addresses the corresponding skill. Finding
the best action a; for a given skill S} is thus a minimization
problem of the following form:

next_action = argmin[a(a;) - KLD(p(Si™), p(Sopt))]
Vaj €At

where
p(SEH) = p(SEH i)
33T w8 og sk, ar) - plog, selar)

sp€SY 0; €01

3 plsela) S p(SE k) - ploslsi, ar)

skES,f 0;€01

%

with

p(oj, sk|ar)

p(0j|sk, ar) - p(sklar)

Here, p(ST1) could be seen as predicting the effect of ap-
plying the current action a; to the skill S;, where we again



substitute the transition probability p(Si™'|o;, sk, a;) with
p(S|sy) regarding simplicity. In addition, here again the
skill belief is compared with p(Sop¢) which represents the
desired tutor belief state for each skill. The factor a(a;)
provides a more detailed selection of the “best” action. This
way, the model will select an easy task if the skill is believed
to be low, a hard task if it is high, and medium in-between.
The goal of this strategy is to create a feeling of flow which
can lead to better learning results [2, 7, 12]. Thus, it strives
not to overburden the learner with too difficult tasks nor to
bore him with too easy tasks, both of which may lead to
frustration and thus hamper the learning [9, 13].

4. ROBOT LANGUAGE TUTORING

The adaptive model as described in the previous section
has been brought to application in a child-robot second lan-
guage (L2) tutoring game on the basis of empirical data from
adult-child language tutoring interactions.

4.1 Empirical Basis

To design a tutoring interaction that matches children’s
needs, we decided to design the interaction on an empirical
basis of language tutoring data. We collected video record-
ings of language tutoring games as they take place in kinder-
gartens. Given that 1:1 interactions of educator and child
can hardly be realized in kindergartens, the games typically
involve one educator and a small group of children. Data of
four language tutoring games have been collected: reading
a picture book together with children in an interactive man-
ner; card game “I spy with my little eye”; card game “I'm
giving you a present”; and a rhyming game. The children
were between four and six years of age. The data collected
comprises round about 681 min of video data. These video
data have been transcribed and annotated with regard to
the following categories:

e Dialogue acts: Utterances are classified due to the
underlying intention based on the DAMSL annotation
scheme [6].

e Children’s mistakes: Types of language errors the
children made, e.g. wrong plural form, missing articles,
wrong syntax, etc.

e Educator’s speech repair: Pedagogical acts used to
correct the errors, e.g. reformulation, corrected repe-
tition, etc.

e Nonverbal behaviour: Nods, smiles, gestures etc.
used by the educators.

On the basis of these annotations, we identified some over-
all patterns to inform the detailed design of the robot’s be-
haviour. These fall basically into two categories, (i) overall
interaction structure and (ii) feedback behaviour by the ed-
ucators.

4.1.1 Overall Interaction Structure

A common pattern in all language tutoring games under
investigation was the following basic course of actions:

1. Opening: Marks the beginning of the interaction and
should mitigate the children’s timidity as well as it
should motivate the child.
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2. Game Setup: This step is used to prepare the game
by explaining the task and clarify the necessary terms.

3. Test run: A test run of the game is conducted to test
whether the instructions have been understood and to
practice the game flow.

4. Game: Here, the main interaction game takes place.
Every move is accompanied by the educator’s feedback
and motivations to continue.

5. Closing: Marks the end of the learning interaction.
Additionally, it is used to ensure motivation for future
interactions by acknowledge the participation, joint
singing a goodbye song and an outlook on what’s going
to happen next time.

4.1.2 Educator’s Feedback Behaviour

In addition, we analysed the educators’ behaviour when
providing children with feedback. An important and com-
mon pattern is that language errors are almost never cor-
rected explicitly. Instead, feedback is always provided in a
positive way, falling into one of the following categories with
the percentage of their occurrence given in squared brack-
ets: (i) praising the child for a correct utterance whereby
praise is often combined with a repetition of the correct word
[13%] (ii) implicit correction in case of an error made by
the child: repetition of the word as if correct (e.g. correct
pronunciation, with article, plural form, etc.) [54%], (iii)
correct recasting of a sentence, e.g. after syntax errors
[32%)], (iv) moving on to next task, e.g. when the child’s
message is unclear due to incomprehensible pronunciation
[1%]. All kinds of educators’ feedback behaviour is typically
accompanied by looking at the child, smiling and nodding.

4.2 Game Setup

We have chosen the game “I spy with my little eye...” as a
paradigm for our child-robot language tutoring game. The
robot — in the role of a tutor, assisting the child in learning
novel L2 vocabularies — is acting as ‘the spy’. The child-
robot setting is further enriched with a tablet PC on which
objects are displayed (see Figure 2). In addition, the tablet’s
touch-screen displays three buttons to enable further user
input in terms of ‘yes’ and ‘no’ answers as well as the option
to let the robot repeat its previous statement.

A basic move of the game is structured as follows: It starts
with a set of objects being displayed on the tablet screen and
the robot saying “I spy with my little eye, something that
is ...”, followed by a foreign language word that refers to a
property of one of the items on the screen. The child’s task
is now to respond by selecting the object referred to via
touch input on the tablet. The robot’s feedback behaviour
in response to a correct or false answer is realized on the
basis of our empirical data (see Section 4.1.2). That is, the
robot responds to correct answers by praising the learner
as well as repeating the L2 word and the corresponding L1
translation. In case of a false guess by the child, the robot
explains the correct meaning of the to-be-learned word one
more time. In addition, the wrongly chosen object as well as
the actually correct object are both displayed on the tablet
screen and the child is asked to select the correct object.
The overall game structure is framed by the other elements
making up typical language tutoring games in adult-child
interaction (see Section 4.1.1).
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Figure 2: Experimental setup (left) with a participant sitting in front of a tablet displaying the graphical
user interface (right). The robot Nao stands next to the tablet slightly rotated towards the user.

4.3 Technical Realization

We employed the Nao robot? for our language tutoring
game. It is standing in a bit more than 90 degrees rotated,
to the right of the participant. In addition a Microsoft Sur-
face Pro 43 tablet PC is used to catch the user input and
to display the graphical user interface realized via a HTML
website. For the implementation of the interaction and di-
alogue structure, the state-chart based dialogue-manager
IrisTK has been used [28]. NAOgqi* has been applied as
middleware between the robot, the graphical user interface,
the dialogue manager, and our developed adaptive tutoring
model. NAQOqi is shipped with each Nao robot and allows
to communicate via a simple event system between various
programming-languages (Python, Java, C++, JScript).

5. EVALUATION STUDY

To assess the effects of our adaptive model on L2 word
learning, we set up an evaluation study based on the lan-
guage tutoring game described in the previous section. The
major objective behind this study was to evaluate the effects
of the adaptive model on learners’ performance. We used the
Nao robot to deliver all task information and direct feedback
to the learner. This enables us to test the model within the
desired final setting, including the effects of a robot’s pres-
ence in the tutoring interaction. Given that children show a
high degree of inter-individual variation and might further
need child-specific adaptations of, for instance, synthesized
speech to enable them to understand what the robot says,
we decided to conduct this first study with adult learners.

We employed a between-subjects design with a manipu-
lation of training type: Participants learned L2 vocabulary
items either with the fully adaptive model, or in a random
control condition. In the adaptive condition, the skill to be
taught and the action to address the skill were chosen by
the model as described in Section 3. In our language tu-
toring game, skill relates to the foreign language words and
action refers to the specific task used in the game (target
word, objects displayed). The difficulty of the actions/tasks
in this study were implemented by using less or more dis-
tractor objects that were shown together with the correct

Zhttps:/ /www.ald.softbankrobotics.com/en/cool-
robots/nao

3https://www.microsoft.com /surface/en-
gb/devices/surface-pro-4
“http://doc.aldebaran.com/2-1/naoqi/
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object on the screen. For instance, an easy task consisted
of two distractor objects, whereas a hard task had four dis-
tractors. Distractors were chosen with respect to the skill
beliefs of the user, with the set of objects mainly consisting
of items for which the L2 words were still/mostly unknown
by the learner.

As shown by Craig et al. [7], better learning performance
is to be expected when learners have to expend the right
amount of cognitive effort (i.e. not too hard or too easy
tasks). Accordingly, while learning with our model in the
adaptive condition, no hard tasks are shown until the system
believes the user to have basic knowledge on all skills. Then,
the system will increase task difficulty (as determined by
the adaptive tutoring model) by adding distractor objects.
Note, however, that at a certain point the user will know too
many skills/words so that finding a distractor set (i.e. task
difficulty) that cannot be sorted out by exclusion becomes
impossible. In the control condition, all skills are taught in
a random order and always with ‘medium’ task difficulty.

Participants’ performance was assessed with two measures:
(1) we tracked learners’ response behaviour over the course
of the training to investigate the progress of learning, (2) we
conducted a post-test on the taught vocabulary in the form
of both L1-to-L2 translations and L2-to-L1 translations to
assess participants’ state of knowledge subsequent to the in-
tervention.

5.1 Materials

The training materials for the study comprised German—
‘Vimmi’ word pairs. Vimmi is an artificial language created
for experimental purposes [23] that aims to avoid associa-
tions with other known words or languages. The Vimmi
items are created according to Italian phonotactic rules.
Ten items have been chosen: four colour terms, four shape-
encoding terms and two terms describing size (see Table 1).

5.2 Procedure

Upon entering the lab, participants were randomly as-
signed to one of the two experimental conditions. They
were informed that they take part in an experiment on for-
eign language learning and were asked to sign an informed
consent form. They also filled out a questionnaire that cov-
ered personal information like age and nationality as well as
a personal estimation of language learning skills in general
and memorization ability for L2 vocabulary.



N | German Vimmi English translation
1 blau bati blue

2 griin uteli green

3 gelb dirube yellow

4 | rot fesuti red

5 rund beropuga | round

6 dreieckig pewo triangular
7 | quadratisch | tanedila | square

8 | rechteckig paltra rectangular
9 klein kiale small

10 | grof ilado big

Table 1: The 10 words from Vimmi to be learned in
the evaluation study with its corresponding transla-
tion in German as well as English for comprehension
purposes.

Next, a list of the to-be-learned Vimmi items were pre-
sented to the participants for 30 seconds. This was to en-
able participants to practice the items right from the first
game interaction on. Then, the learning interaction with
the Nao robot began. After introducing itself, the robot ex-
plained the “I spy with my little eye”-game and started a
test-run with the participants. Once this test run was fin-
ished and the participants agreed that (s)he understood the
game, the main interaction consisting of a total of 30 trials
(game moves) began. Each trial addressed one vocabulary
item as described in Section 4.2. That is, the robot asked for
one of the objects displayed on the tablet screen, whereby
the question was in L1 (German) for the most part, except
for the referring, to-be-learned word in L2 (Vimmi). After
30 trials, the game was finished, the Nao robot thanked the
participants and said goodbye.

Subsequent to the interaction with the robot, participants’
learning performance was assessed with a post-test. In an
interview with the experimenter, they had to translate the
ten to-be-learned vocabulary items from German to Vimmi
and likewise from Vimmi to German (both in randomized
order). The whole interaction and the vocabulary-post-test
at the end of the study were recorded with an external cam-
era. Also the system decisions taken during the interaction
and the probability distributions for each updated skill belief
were logged.

5.3 Participants

A total of 40 participants (20 per condition) with an av-
erage age of 24.13 (SD = 3.82) took part in this study (16
males and 24 females). All participants had very good com-
mand of the German language and normal or corrected sight.
All of them were paid or received credits for their participa-
tion.

5.4 Results

5.4.1 Learning Progress During Training

In order to assess the learners’ progress during training,
we compared the number of correct responses addressing
the initial quarter of the tutoring game (first seven items)
against the final quarter (last seven items). When an item
occurred repeatedly within the initial quarter, the first oc-
currence has been taken into account. When an item oc-
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Adaptive (A) | Control (C) A, C

M SD M SD M SD
F7 3.75 1.37 4.00 1.17 3.88 1.27
L7 6.90 0.31 5.15 1.69 6.03 1.49
F7,L7 | 533 0.69 4.58 1.12

Table 2: Means (M) and standard deviations (SD)
of correct answers for the initial quarter of the train-
ing interaction (first seven items — F7) and the final
quarter (last seven items — L7) in each condition, as
well as the inter-model (A, C) and intra-model (F7,
L7) means and standard deviations.

Condition
—@— Adaptive
—@—Random

correct answer count

First. 7 answers Tast 7 answers

Figure 3: Mean numbers of correct answers at the
beginning (first 7) and end (last 7) of the interaction
in the different conditions.

curred repeatedly within the final quarter, the last occur-
rence has been considered.

A mixed-design ANOVA with training phase (initial, fi-
nal) as a within-subjects factor and training type (adaptive-
model-based, control) as between-subjects factor has been
conducted. Results are summarized in Table 2 and Figure
3. Not surprisingly, there was a main effect of training phase
at a significant level (F(1,38) = 66.85,p < .001,n> = .64):
Learners’ performance was significantly better in the final
phase as compared to the initial phase. In the first quarter of
training, participants achieved a mean of 3.88 (SD = 1.27)
correct responses, whereas in the final quarter, a mean of
6.03 (SD = 1.49) items was selected correctly. More in-
terestingly, there was also a main effect of training type
(F(1,38) = 6.52,p = .02, = .15) such that participants
who learned in the adaptive condition had a higher score of
correct answers (M = 5.33,SD = .69) as compared to learn-
ers in the control condition with an average of M = 4.58
(SD = 1.12) correct answers. Finally, the interaction be-
tween training phase and training type was also significant
(F(1,38) = 14.46,p = .001,1*> = .28) indicating that the
benefit of adaptive-model-based training develops over time
(see Figure 3). While participants’ response behaviour in
the first quarter of training was similar across conditions, a
benefit of training with the adaptive model became evident
in the final quarter. At this stage of training, participants in
the adaptive model condition achieved a mean of M = 6.9
(SD = .31) correct responses, whereas participants in the
control condition achieved a mean of M = 5.15 (SD = 1.69)
correct responses.



Adaptive (A) | Control (C)
M SD M SD
German-to-Vimmi | 3.95 2.56 3.35 1.98
Vimmi-to-German | 7.05 2.56 6.85 2.48

Table 3: Results of both post-tests (German-to-
Vimmi and Vimmi-to-German): Means (M) and
standard deviation (SD) of correct answers grouped
by the experimental conditions.

Correct anwer count

Adaptive-Model
Participants

Random

Figure 4: Participant-wise amount of correct an-
swers grouped by the different conditions for the
German-to-Vimmi post-test.

5.4.2 Post-Test

Participants’ learning performance subsequent to the in-
tervention has been measured with two translation tests
(L2-to-L1 and L1-to-L2). Results are summarized in Ta-
ble 3. Paired-samples t-tests were conducted to compare
the number of correctly recalled words after training with
the adaptive model as compared to training in the control
condition. For the German-to-Vimmi translation, there was
no significant main effect (7°(38) = .25,p = .80). Partici-
pants who trained with the adaptive-model recalled a mean
of 3.95 (SD = 2.56) out of ten words correctly, while partici-
pants in the control condition recalled a mean of 3.35 (SD =
1.98) words. Likewise, there was no significant main effect
(T'(38) = .83,p = .41) for the Vimmi-to-German transla-
tion task. Participants’ performance after learning with the
adaptive model amounted to a mean of 7.05 (SD = 2.56)
correct items, participants’ performance in the control con-
dition to a mean of 6.85 (SD = 2.48) correct items.

Although no main effect of training type emerged in the
post-test, some details might nevertheless be worth men-
tioning. In the German-to-Vimmi post-test, a maximum
of ten correct responses was achieved by participants in
the adaptive-model condition, whereas the maximum on the
control condition were six correct answers. Moreover, there
were two participants in the control condition who did not
manage to perform any German-to-Vimmi translation cor-
rectly. In the adaptive-model condition, all participants
achieved at least one correct response (see Figure 4).

6. CONCLUSION

In this paper we have presented a novel approach to per-
sonalize language tutoring in human-robot interaction. This
adaptive tutoring is enabled through a model of how tutors
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mentalize about learners — by keeping track of their knowl-
edge state and by selecting the next tutoring actions based
on their likely effects on the learner. This is realized via an
extended model that combines Bayesian Knowledge Tracing
(of the learned) with tutoring actions (of the tutor) in one
causal probabilistic model. This allows, for selecting skills
and actions based on notions of optimality — here the desired
learner’s knowledge state as well as optimal task difficulty —
to achieve this for a given skill. This model has been imple-
mented into a robot language tutoring game and tested in a
first evaluation study.

The analysis of participants’ response behaviour over the
course of training has clearly shown that participants learned
the L2 words during the human-robot interaction. Impor-
tantly, they learned more successfully with our adaptive
model as compared to a randomized training. That is, the
repeated trials addressing still unknown items as chosen by
the adaptive model (until the belief state about these words
equalled that of known items) outperformed the tutoring of
the same material (same number of trials and items) but in
randomized order. In the post-test, however, there was no
significant difference across experimental conditions, despite
a trend towards better performance in the adaptive model
conditions over the controls.

Different explanations may account for this inconsistent
finding. One potential explanation could be that the way
how responses were prompted was not identical in train-
ing sessions and post-test. In the training sessions, par-
ticipants saw pictures reflecting the meaning of the to-be-
learned words whereas in the post-test they just received
a linguistic cue in form of a word they had to translate.
It might be that repeated trials as they were particularly
supported for difficult-to-remember items by the adaptive
model, led to stronger associations between linguistic and
imagistic materials. This might have caused a stronger de-
cline of correct responses for participants who trained with
the adaptive model as opposed to those in the control con-
dition. An alternative explanation could be that test results
measured immediately after the training session are subject
to strong inter-individual differences among learners. This is
the reason why studies on vocabulary learning usually range
over repeated sessions spread over several days (cf. 1). A
typical pattern is that significant results emerge after two
or three sessions/days and/or in the long-term (measured
several weeks after training took place). So it might well be
that further training sessions or delayed tests might result
in a post-test performance that matches the picture of the
during-session performance.

One might argue that the performance of our adaptive
model is comparable to the vocabulary learning technique of
spaced repetition as implemented, for instance, in the Leitner
system [21]. In this system flashcards are sorted into groups
according to how well the learner knows each one. Learners
try to recall items written on a flashcard. If they succeed,
the card is sent to the next group. If they fail, the card is
sent back to the first group. Each succeeding group has a
longer period of time before the learner is required to revisit
the cards. This way all items, that are hard to remember for
the learner will be repeated more often. In contrast to such
spaced repetition systems, our model is more flexible as it
can vary the difficulty of the tasks by providing more or less
distractor items. In addition, we plan a more comprehensive
action space of the model to account for motivating actions



where necessary or adaptations in the robot’s verbal or non-
verbal behaviour.

Overall, results from the evaluation study are, at least, in
parts very promising: learners’ performance during training
was significantly improved by personalized robot tutoring
based on the adaptive model. Nevertheless, the fact that
this positive effect did not hold in the post-test, inter alia,
marks a starting point for further refinements of the model:
Training stimuli should be designed such that they match
the way language learners need to apply them best possible.
That is, when the aim is to enable people to translate words
from one language to another, training stimuli should pro-
vide cues for this process of mapping linguistic materials on
each other. Moreover, a further study with more learning
sessions (e.g. over several days as common in many vocab-
ulary studies) should be conducted. Regarding the model
itself, we plan to incorporate skill-interdependencies as well
as to take the affective user state into account, too. Both
kind of extensions have been shown to improve learning [16,
29]. Additionally, the model can (and is meant to) provide
a basis for exploiting the full potential of an embodied tu-
toring agent. Regarding this, we plan to advance the model
such that the robot’s verbal and non-verbal communicative
behaviour is adapted to the learner’s state of knowledge and
progress. Specifically, we aim to enable dynamic adaption
of (i) embodied behaviour such as iconic gesture use to be
known to support vocabulary acquisition as a function of in-
dividual differences across children (cf. [26]); (ii) the robot’s
synthetic voice to enhance comprehensibility and prosodic
focusing of content when needed; and (iii) the robot’s socio-
emotional behaviour depending on the learners’ current level
of motivation or engagement. Further, as the long-term goal
of our work is to enable robot-supported language learning
for pre-school children, another important goal is to make
children-specific adaptations to the language game and test
it in child-robot interaction studies.

7. ACKNOWLEDGEMENTS

This work was supported by the L2TOR (www.12tor.eu)
project supported by the EU Horizon 2020 Program, grant
number: 688014, and by the Cluster of Excellence Cognitive
Interaction Technology ‘CITEC’ (EXC 277) at Bielefeld Uni-
versity, funded by the German Research Foundation (DFG).

8. REFERENCES

[1] K. Bergmann and M. Macedonia. A Virtual Agent as
Vocabulary Trainer: Iconic Gestures Help to Improve
Learners’ Memory Performance, pages 139-148.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
D. E. Berlyne. Conflict, arousal, and curiosity. 1960.
M. Cakmak and M. Lopes. Algorithmic and human
teaching of sequential decision tasks. In AAAT
Conference on Artificial Intelligence (AAAI-12), 2012.
B. Clement, D. Roy, P.-Y. Oudeyer, and M. Lopes.
Multi-armed bandits for intelligent tutoring systems.
arXiw preprint arXiv:1310.3174, 2013.

A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253-278, 1994.

M. G. Core and J. Allen. Coding dialogs with the
damsl annotation scheme. In AAAI fall symposium on

135

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

communicative action in humans and machines,
volume 56. Boston, MA, 1997.

S. Craig, A. Graesser, J. Sullins, and B. Gholson.
Affect and learning: An exploratory look into the role
of affect in learning with autotutor. Journal of
Educational Media, 29(3):241-250, 2004.

C. Dede. A review and synthesis of recent research in
intelligent computer-assisted instruction. International
Journal of Man-Machine Studies, 24(4):329-353, 1986.
S. Engeser and F. Rheinberg. Flow, performance and
moderators of challenge-skill balance. Motivation and
Emotion, 32(3):158-172, 2008.

M. Fridin. Storytelling by a kindergarten social
assistive robot: A tool for constructive learning in
preschool education. Comput. Educ., 70:53-64, Jan
2014.

G. Gordon and C. Breazeal. Bayesian active
learning-based robot tutor for children’s word-reading
skills. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAT’15, pages
1343-1349. AAAT Press, 2015.

J. Gottlieb, P.-Y. Oudeyer, M. Lopes, and A. Baranes.
Information-seeking, curiosity, and attention:
computational and neural mechanisms. Trends in
cognitive sciences, 17(11):585-593, 2013.

M. J. Habgood and S. E. Ainsworth. Motivating
children to learn effectively: Exploring the value of
intrinsic integration in educational games. The
Journal of the Learning Sciences, 20(2):169-206, 2011.
J. Han, M. Jo, S. Park, and S. Kim. The educational
use of home robots for children. In ROMAN 2005.
IEEE International Workshop on Robot and Human
Interactive Communication, 2005., pages 378-383,
Aug 2005.

E. ja Hyun, S. yeon Kim, S. Jang, and S. Park.
Comparative study of effects of language instruction
program using intelligence robot and multimedia on
linguistic ability of young children. In RO-MAN 2008
- The 17th IEEFE International Symposium on Robot
and Human Interactive Communication, pages
187-192, Aug 2008.

T. Kaser, S. Klingler, A. G. Schwing, and M. Gross.
Beyond Knowledge Tracing: Modeling Skill Topologies
with Bayesian Networks, pages 188—198. Springer
International Publishing, Cham, 2014.

J. Kennedy, P. Baxter, and T. Belpaeme. The robot
who tried too hard: Social behaviour of a robot tutor
can negatively affect child learning. In Proceedings of
the Tenth Annual ACM/IEEE International
Conference on Human-Robot Interaction, HRI 15,
pages 67-74, New York, NY, USA, 2015. ACM.

J. Kory and C. Breazeal. Storytelling with robots:
Learning companions for preschool children’s language
development. In The 23rd IEEE International
Symposium on Robot and Human Interactive
Communication, pages 643-648, Aug 2014.

J. Kory Westlund, G. Gordon, S. Spaulding, J. Lee,
L. Plummer, M. Martinez, M. Das, and C. Breazeal.
Learning a second language with a socially assistive
robot. In The 1st International Conference on Social
Robots in Therapy and Education, 2015.



[20]

[21]

[22]

[23]

[24]

H. Kose-Bagci, E. Ferrari, K. Dautenhahn, D. S.
Syrdal, and C. L. Nehaniv. Effects of embodiment and
gestures on social interaction in drumming games with
a humanoid robot. Advanced Robotics,
23(14):1951-1996, 2009.

S. Leitner. So lernt man lernen: Der weg zum erfolg
[learning to learn: The road to success|. Freiburg:
Herder, 1972.

D. Leyzberg, S. Spaulding, M. Toneva, and

B. Scassellati. The physical presence of a robot tutor
increases cognitive learning gains. In CogSci. Citeseer,
2012.

M. Macedonia, K. Miiller, and A. D. Friederici. Neural
correlates of high performance in foreign language
vocabulary learning. Mind, Brain, and Education,
4(3):125-134, 2010.

J. R. Movellan, M. Eckhardt, M. Virnes, and

A. Rodriguez. Sociable robot improves toddler
vocabulary skills. In Human-Robot Interaction (HRI),
2009 4th ACM/IEEE International Conference on,
pages 307-308, March 2009.

A. N. Rafferty, E. Brunskill, T. L. Griffiths, and

P. Shafto. Faster teaching via pomdp planning.
Cognitive Science, 2015.

136

(26]

27]

(28]

29]

M. L. Rowe, R. D. Silverman, and B. E. Mullan. The
role of pictures and gestures as nonverbal aids in
preschoolers’ word learning in a novel language.
Contemporary Educational Psychology, 38(2):109-117,
2013.

M. Saerbeck, T. Schut, C. Bartneck, and M. D. Janse.
Expressive robots in education: Varying the degree of
social supportive behavior of a robotic tutor. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, pages
1613-1622, New York, NY, USA, 2010. ACM.

G. Skantze and S. Al Moubayed. Iristk: A
statechart-based toolkit for multi-party face-to-face
interaction. In Proceedings of the 14th ACM
International Conference on Multimodal Interaction,
ICMI ’12, pages 69-76, New York, NY, USA, 2012.
ACM.

S. Spaulding, G. Gordon, and C. Breazeal.
Affect-aware student models for robot tutors. In
Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, AAMAS
’16, pages 864—872, Richland, SC, 2016. International
Foundation for Autonomous Agents and Multiagent
Systems.





