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ABSTRACT
In this paper, we present our humanoid robot Meka, partici-
pating in a multi party human robot dialogue scenario. Active
arbitration of the robot’s attention based on multi-modal stim-
uli is utilised to observe persons which are outside of the
robots field of view. We investigate the impact of this atten-
tion management and addressee recognition on the robot’s
capability to distinguish utterances directed at it from com-
munication between humans. Based on the results of a user
study, we show that mutual gaze at the end of an utterance, as
a means of yielding a turn, is a substantial cue for addressee
recognition. Verification of a speaker through the detection
of lip movements can be used to further increase precision.
Furthermore, we show that even a rather simplistic fusion of
gaze and lip movement cues allows a considerable enhance-
ment in addressee estimation, and can be altered to adapt to
the requirements of a particular scenario.
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INTRODUCTION
In the context of Human Robot Interaction (HRI), it has be-
come increasingly apparent that social and interactive skills
are indispensable in order to build an intuitive, natural commu-
nication via speech, gestures, and facial expressions [4][10].
Moreover, socially correct interaction is desired. Therefore,
Dautenhahn [8] already proposed a “robotiquette”, a set of
“social rules for robot behaviour that is comfortable and ac-
ceptable to humans” in 2007. In a series of HRI studies [33],
it was classified as socially interactive, in contrast to socially
ignorant, that the robot took an interest in the humans activ-
ity and that it was actively looking at the human. Dautenhan
further argues, that “a robot that serves as a companion in the
home [...] needs to possess a wide range of social skills which
will make it acceptable for humans. Without these skills, such
robots might not be ’used’ and thus fail in their role as an
assistant.” This finding is also confirmed in [9][12][15] – to
only mention a few. To this end, the robotics community puts
considerable effort into the development of “attentive systems”
capable of interactively directing the robot’s attention towards
the human and vice versa [22][5][8][13].

While it is already a complex task to correctly direct the robot’s
attention in a 1:1 interaction between a human and a robot,
this complexity significantly increases in a 1:N scenario where
a robot needs to participate in a mixed interaction with, and
between, multiple persons at the same time. Hence, single user
HRI allows for multiple design simplifications for a situated
robot. To give an example, it is sufficient to direct the robot’s
attention, via gaze for instance, towards its sole interaction
partner or a potential focus of discourse. Moreover, the conver-
sational roles in a single user interaction are limited to speaker
and addressee [32]. Thus, usually all dialogue acts produced
by the human interaction partner are targeted at the robot and
therefore do not need to be verified or tested.

In contrast, in case of a multi user interaction, these simplifi-
cations may become a hindrance to the interaction dynamic.
Additional conversational roles, like ratified (intended to lis-
ten) by the speaker or side participant (not part of the present
dialogue act) emerge [32]. These additional roles will have
a negative impact on the human-robot interaction dynamic if
not considered and designed correctly in the robot’s behaviour
capabilities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211825865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. The Meka M1 Mobile Manipulator robotic-platform.
Image ©Johannes Wienke

The assumption that all dialogue acts are directed towards
the robot does not hold in a multi user scenario. Users may
also direct their gaze and/or speech towards another human
instead of the robot. Thus, in the worst case scenario, the robot
will react to every speech recognition result – even if it is not
addressed. This may lead to refusal or even exclusion of the
robot from the interaction. Subsequently, due to the fact that
users recognize and negotiate conversational roles among each
other, a robot will negatively influence the interaction whether
or not this is intended. Moreover, Mutlu et al. [24] already
showed that the gaze behaviour of a robot has a significant
impact on conversational roles and participation of people in
a multi person interaction. This effect was also confirmed in
[31]. Therefore, if a robot is not capable of distinguishing mul-
tiple conversation partners and also exhibits this distinction,
via directed attention for example, the human-robot interaction
will become less natural, unintuitive and in the worst case –
unacceptable. Finally, in case of a mobile robot, it is not safe
to assume that all interaction partners are always located in
front of the robot or any other “visible” location. It is also
not safe to expect that a human interaction partner is always
willing to move to the area where the robot is able to recognize
them. Therefore, a robot must possess capabilities that allow
for spacial localization and recognition of potential interaction
partners in a dynamic environment, not only using vision but
also other modalities. Moreover it needs to recognize if this
potential partner is expressing an intention to communicate.

In this contribution we present our humanoid Meka (Figure
1), participating in a multi party human robot dialogue sce-
nario. We investigate the impact of attention management and
addressee recognition on the robot’s performance to distin-
guish utterances directed at it from communication between
humans. Taking into consideration the aforementioned issues
and requirements, we formulate the following hypotheses:

1. Mutual gaze, as a means of yielding a turn to someone, can
be used to facilitate the decision to whom an utterance was
directed.

2. Recognition of lip movements can be used to validate an
interaction partner as producer of perceived speech, and thus
further increases the accuracy of addressee recognition.

3. Mutual gaze and lip movement recognition complement
each other, and therefore can be combined in a simple,
logical manner to further enhance the addressee recognition
performance.

To test our hypotheses we conducted a proof of concept evalua-
tion where the robot participated in a multi party human-robot
interaction. During the interaction the robot was occasionally
addressed, e.g., to provide information or execute a simple
command. In this scenario the robot is required to direct its
attention towards spatially distributed interaction partners. At
the same time it needs to be able to react to robot-directed
speech (addressee recognition) while ignoring interpersonal
dialogue. To this end, we evaluate approaches to addressee
recognition utilizing different types of visual cues, i.e. mutual
gaze at the end of utterances, detection of lip movements, and
logical combinations of these.

RELATED WORK
With respect to control of a robot’s attention Ruesch [28] et al.
presented a bottom up approach using the iCub robot based on
audio-visual saliency. However, in their work face recognition
as a social cue was not considered. Moreover, the evaluation
was not carried out in the context of an human robot interac-
tion (HRI) scenario. Breazeal [5] et al. introduced an attention
system using the Kismet robot which implements bottom-up
saliency and top-down habituation capabilities only using vi-
sual features. By changing weights between features, they
generated different behaviours of their robot with respect to
gaze preferences in the scene. Lang [21] et al. introduced a
person tracking and anchoring system using the mobile robot
BIRON. The presented system allowed the robot to identify
and follow speakers based on the fusion of face detection re-
sults, sound source localization and laser scan data. However,
the system is not able to instantly switch its communication
partner due to a fixed interaction decay period and was only
evaluated for speaker localization but not addressee recogni-
tion.

A further important question for our work is the effect of a
robot’s behaviour on the participants of an ongoing interac-
tion. Bruce [6] et al. showed that actively turning to human
interaction partners significantly increases their willingness to
interact. Moreover, Mutlu [24] showed that shifting a robot’s
attention via looking behaviour during an interaction, can
impose a conversational role on participants.

With regard to addressee recognition, Li [23] et al. fused fea-
tures from upper body posture, face, gaze and lip-movement
detection and emotion recognitions to calculate which person
would most likely want to interact with their system. The
calculated results were used to interact with the presumably
most attentive person in the systems field of view. However,
they do not take into consideration towards which participant
an utterance was directed. In [3], Bohus et al. use a virtual
avatar on a screen. They evaluate their system’s turn taking
performance in multi party interaction and observe that errors
in addressee recognition have a negative impact on the quality
of their turn taking model. [2] further elaborate on this model.
They use sound source localization for speaker detection and
classify the speaker’e visual focus of attention (vfoa) (based



Figure 2. Overview of the robot’s components for speaker/addressee
recognition, gaze arbitration and dialogue management.
©Sebastian Meyer zu Borgsen

on head poses) as addressee of the speech. The work by [31]
eliminates the problem of speaker recognition by utilizing
close talking microphones. Their robotic head Furhat consid-
ers itself addressee, when a speaker looked at it at some time
during speech production. They further evaluate different turn
taking cues produced by the robot in multi party interaction.
Using the resulting data [17] creates a data driven classifi-
cation after which utterance the robot should take the turn,
utilizing voice activity, syntax, prosody, head pose of both
persons, movement of cards, and dialogue context. Another
data driven approach is realized in [16] where proportions of
time a speaker/partner is looking at the robot/partner during
utterances and contextual features are used to classify whether
a Nao was addressed.

The presented work above assumes that all participants are
visible throughout the whole interaction. Additionally, [3] and
[31] (and therefore [17] too) used an external static camera not
affected by the agent’s actions. [23] and [16] implicitly require
all participants of the interaction to reside within the robots
field of view. Thus, while there exists a large body of research
on robot attention modelling and addressee recognition, we
go beyond these approaches by (1) taking into account more
realistic settings (i.e. that it is not always possible to see all
present interaction partners at once) and (2) by providing an
evaluation of turn taking cues within a multi party setting
with respect to correct attention management and addressee
recognition.

SYSTEM DESCRIPTION
The humanoid robot platform Meka is part of the Cognitive
Service Robotics Apartment (CSRA)1 research project. It is
used to explore research questions related to human-robot-
interaction in smart-home environments. It’s core software
system (Figure 2) running on the robot consists of a speaker/ad-
dressee recognition, a gaze arbitration component and a dia-
logue system. These components include further sub-modules
to process camera and stereo microphone input streams. The
system controls the robot and is capable of producing speech
output and triggering external actuators in the apartment, such
as switching the light on/off.

1https://www.cit-ec.de/de/content/
cognitive-service-robotics-apartment-ambient-host
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Figure 3. Overview of the attention management system. ©Florian Lier

Robot Platform
Amongst many other sensors, the M1 Mobile Manipula-
tor robotic-platform Meka (Figure 1) features a PrimeSense
Carmine RGBD camera to receive RGB images. Furthermore,
a laser range finder allows to gather spacial information about
the environment. Two microphones allow to retrieve audio in
stereo. A real-time-enabled computer controls the robot hard-
ware. With the compliant force controlled actuators including
four-fingered hands the robot can grasp objects and execute
human-interpretable gestures. An omni-directional base and
lift-controlled torso enables navigating in complex environ-
ments. In total, the robot is equipped with 37 motor-powered
joints. It has 7 per arm, 5 per hand, 2 in the head, 2 in the torso
and 9 joints actuate the base including the z-lift. The motors
in the arms and hands are Series Elastic Actuators (SEAs)[26],
which enable fine force sensing.

Attention Management
The robot’s attention management system is based on hierar-
chical prioritization of multi-modal sensor input streams. We
realized this subsystem, which is openly available on github2,
as follows (Figure 3).

In general, the attention management system is sensor- and
robot-independent. This is achieved by a) abstracting multi-
modal sensor input via middleware data streams and b) an
easily exchangeable robot control interface. Supported middle-
ware implementations are Robot Operating System (ROS)[27]
and Robotics Service Bus (RSB)[34].

Input data streams are a series of typed sensor messages con-
sisting of a global target position [x,y,z] and a time stamp (t).
Usually, these streams contain the position of a face detection
result, a sound source or an interesting location in the robot’s
environment. The arbitration component is set up using a
global configuration file (C). In this file topic names of N de-
sired input streams, e.g., /robot/facedetection, their associated
data type, priority, timeout, control strategy, control mode, and
override values are defined. Based on this configuration, the
arbitration component continuously reads sensor messages –
starting with the stream that has the highest configured priority.
If the time stamp of the current message is not older than its

2https://github.com/CentralLabFacilities/simple_robot_gaze

https://www.cit-ec.de/de/content/cognitive-service-robotics-apartment-ambient-host
https://www.cit-ec.de/de/content/cognitive-service-robotics-apartment-ambient-host
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pre-defined maximum timeout value (100 milliseconds for
example), the current position is transformed from the global
target position into the robot’s field of view. If the time stamp
is “too old” or if there is no new message at all, the next prior-
ity (stream) is evaluated. Besides the arbitration component,
the attention management system implements a so-called gaze
controller per configured input stream. A gaze controller holds
a reference to the robot driver (RD) and an activation flag.

Essentially, the robot driver implements the interface to the
robot’s hardware, its hardware abstraction layer or control API.
The robot driver can be easily exchanged for a desired target
platform, e.g., for NAO or iCub. However, after the current
input message has been verified and the position has been
transformed, the corresponding gaze controller is activated
by toggling its activation flag and a movement command is
sent to the robot. The control strategy of a gaze controller can
be either configured to open- or closed loop. In case of an
open control strategy, the command is issued and no further
processing is required. In case of a closed-loop strategy, the
command is issued and the arbitration component is locked
until the desired position is reached. Moreover, the control
mode can be set to relative or absolute positioning. These
modes are required for sensors that move along with the robot
(relative), a camera in the robot’s head for instance, or fixed
sensor setups (absolute). The attention management compo-
nent features an override mode. If a preconfigured threshold is
exceeded, the default hierarchy is temporarily disabled and the
highest priority is instantly shifted to the input stream which
triggered the override. In our setup we configured the attention
management system as follows.

The highest priority were face detection results, the second
highest priority were sound source localization results and
the third highest priority were results produced by the visual
saliency component. We activated the override feature for all
three input streams which enabled the robot to initially look at
a person and instantly shift it’s attention towards another loca-
tion where a loud sound or a visually salient spot was detected.
This made it possible to dynamically and spontaneously shift
the attention of the robot towards potential communication
partners, even if they where not in the robot’s field of view.

Addressee Recognition
To assess the gaze direction of currently observable persons
the gaze detector from Schillingmann et al. [29] is used. The
implementation was extended to be able to receive video data
via ROS and publish its results, containing relative gaze di-
rections and face landmarks [19] for all observed persons via
RSB for further processing.

Based on this data, the addressee recognition component clas-
sifies its current speaking state for each person observed and
whether the person maintains mutual gaze with the robot or
not. Mutual gaze is assumed when a person keeps its gazing
direction within a range of α around the robots head. To clas-
sify a person’s speaking state we inspect its facial landmarks
over a predetermined time period. When the variance of the
distance between the horizontally centred points of the inner
lips exceeds a threshold, the person is classified as currently

Figure 4. The experimental set up as used in a pre-study.

speaking:

Speaking(pn) =

{
yes when Var(Xn)> d
no else

where pn is the n-th observed person and Xn is the set of its
inner lip distances during the last ∆t . The constants ∆t =
600ms, α = 12° and d = 1.5 were estimated in advance to
produce reasonable results. Finally, the robot is classified as
addressee if the person is speaking while maintaining mutual
gaze with it.

Dialogue Management
For verbal communication we use a combination of the incre-
mental natural language processing toolkit InproTK[1] and
the human-robot dialogue manager Pamini[25] that have been
integrated in [7]. MaryTTS[30] is used for speech synthesis
and Sphinx[20] for speech recognition. A simple dialogue act
generation module produces human dialogue acts based on
keyword-spotting on the incremental ASR results, e.g., action
requests such as “turn on/off the light”, information requests
such as “What time is it?” or confirmations/negations. The
dialogue manager receives these results and processes them in
sequence based on the current state of the interaction and the
results of the addressee recognition.

STUDY SETUP & METHOD
In this section, the study setup and applied evaluation methods
will be described in detail by elaborating on the experimental
setup and the data recording and annotation.

Experimental set up
Figure 4 depicts the experimental set up. Three participants are
sitting around the table in the CSRA, one participant is sitting
on the sofa and two in the armchairs. On the table are 15 small
slips of paper available with the following set of possible tasks
or questions for the robot: (i) turn on/off the light, (ii) ask for
the current time, (iii) whether a call or (iv) delivery has been
missed, (v) request about possible experiments or (vi) which
data is getting recorded, and (vii) ask for more information
about the Zen-garden in the apartment.

The multi party interaction consists of two parts: interpersonal
communication and human robot interaction. In the first phase
a participant picks one of the tasks from the table, chooses an-
other member of the group and tell him/her to issue the current
task/question to the robot. In the second part of the interaction
the chosen participant has to gain the attention of the robot
and repeat the request addresing the robot. The participants



were told to repeat their utterance a maximum of three times
if the robot did not react. During the experiment, results of
the speech recognition were evaluated and – if possible – ex-
ecuted, only if the robot was recognized as addressee of the
utterance. This was only the case if mutual gaze at the end of
the utterance and lip movements were detected, and allows us
to evaluate other, more permissive, strategies later on (using
the recorded interactions). The grammar chosen for speech
recognition was relatively small because it was not subject of
the evaluation.

Data Recording and Annotation
All interactions were recorded via two network-enabled Basler
cameras and one Rode NT55 omni-directional microphone
mounted at the ceiling of the apartment to cover the whole
interaction area. Additionally, the robot’s internal PrimeSense
camera video stream has been recorded. Moreover, we col-
lected various system events such as speech recognition re-
sults, generated dialogue acts and detailed information of the
addressee recognition component. These consist of facial land-
marks, gaze recognition results, and classification results for
mouth movement, mutual gaze , and addressee.

For annotation purposes, the two top-down videos, the audio
track and system events were merged into one ELAN[35] file
(for further information about this process cf. [14]).

The study has been carried out with German native speakers.
In total, we recorded approximately 53 minutes of interaction
in 5 trials with 2 female and 13 male participants in total. A
typical trial takes approximately 10 minutes. Altogether the di-
alogue system detected 874 human dialogue acts, 152 of these
would have triggered a verbal response or a corresponding
system action (light on/off). In order to evaluate the means of
different approaches to addressee recognition, a ground truth
annotation was carried out for each dialogue act.

RESULTS
To assess the performance of different approaches to addressee
recognition, task specific utterances are extracted and classi-
fied into “robot is addressee” (positive condition) and “robot
is not addressee” (negative condition). Comparing the clas-
sification results of the different approaches yields the corre-
sponding 2x2 confusion matrix, which can be used to calculate
accuracy, recall and precision (cf. Figure 5).

As baseline approach we accepted all results from the speech
recognition (C0). This approach does not reject tasks, thus
its recall is 100% and the accuracy equals the prevalence
of the dataset for the robot being addressed (84%, for an
interpretation of this rather high amount of tasks addressed
towards the robot see section: DISCUSSION).

We compare the results of the baseline test with the following
approaches:

• (Cl) lip movement Accept tasks only when movement of the
lips was detected.

• (Cg) mutual gaze Accept tasks only when mutual gaze with
the robot was detected.

accuracy recall precision
0.7

0.8

0.9

1

speechrec lip movement mutual gaze

addressee lips or gaze

Figure 5. Accuracy, recall and precision of different addressee recogni-
tion approaches.

• (Ca) addressee Accept tasks only when the robot was rec-
ognized as addressee. This requires both mutual gaze and
lip movement, and is the condition that was actually used
throughout the trials.

• (Cx) lips or gaze Accept tasks when either lip movement or
mutual gaze (inclusive disjunction) were detected.

As depicted in Figure 5 it is evident that mutual gaze can
preserve a high recall (93%) compared to the baseline. The
detection of lip movements does not perform as well (82%) as
the baseline, and the conjunction of lip movement and mutual
gaze detection Ca achieves only 76% recall. The accuracy
of Cl and Ca is lower than the baseline’s accuracy too. In
contrast, the accuracy of Cg (89%) and Cx (91%) is higher
than the baseline’s accuracy. All non-baseline conditions show
a precision of > 90%, with a maximum of 95% for Ca in
contrast to the baseline precision of 84%.

Many interactions between the participants in our scenario
were not recognized as tasks by the robot. The resulting recog-
nitions of short statements were out of context and therefore
could be automatically rejected by the dialogue system (see
section: Data Recording and Annotation). This results in the
relatively unbalanced prevalence of the dataset, with 84% of
the tasks actually addressed at the robot. The ratio between
statements directed at the robot and statements exchanged be-
tween the participants is rather specific to our scenario. We
therefore calculated the diagnostic odds ratio (DOR) for all
conditions. This measure is an indicator of test quality, like
accuracy, but decoupled from the prevalence of the test set. A
DOR of x can be interpreted as: The odds of being correctly
classified as addressee are x times higher than the odds of
being falsely classified as addressee. [11].

Considering the DOR, all conditions perform better than the
baseline C0 with Cx indicating the best performance (cf. Figure
6). In contrast to the accuracy results, the conjunction of mu-
tual gaze and lip movement detection has a higher DOR than
lip movement detection only. This shows that the addressee
recognition is, in general, more reliable than Cl .

We looked into the ten cases in which the robot was addressed
but failed to look at the respective speaker. While in 3 of
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Figure 6. Diagnostic odds ratio of different addressee recognition ap-
proaches.

these cases none of the approaches’ (Cl , Cg, Ca, Cx) cues were
identified, mutual gaze with the chosen attendee was involved
in 6 of the other cases. Mouth movements were misclassified
twice, once because an attendee had to laugh.

DISCUSSION
There are multiple reasons for the relatively high amount of
tasks directed towards the robot (84%) in contrast to tasks
recognized from interpersonal speech (16%). First, partici-
pants used a much more variable wording and lower voice in
interpersonal speech, decreasing the probability of the robot
recognising a task. Additionally, in one trial, the participants
resorted to showing the task descriptions to each other instead
of stating the tasks. Finally, the addressee recognition – need-
ing the highest certainty for acceptance – often rejected tasks,
forcing the participants to repeat their assignment.

Nonetheless, the results show that detection of mutual gaze
at the end of an utterance improves the accuracy and preci-
sion when recognizing whether or not a robot was verbally
addressed. This confirms our first hypothesis.

Detection of lip movements does not perform that well in
our scenario. When used as a single feature for addressee
recognition in our scenario it has a much lower accuracy than
the baseline, which means that our second hypothesis could
not be confirmed. Additionally, it results in low accuracy and
recall in the addressee condition where we require both mutual
gaze and lip movements.

However, this does not eliminate lip movements as a feature
per se. When mutual gaze and lip movement detection is
used in conjunction, the system shows a high precision of
95%, which makes it more suitable for scenarios where the
robot is rarely addressed. The result produced by lips or gaze
reach the highest accuracy and DOR of all tested approaches,
showing that a simple logical combination of mutual gaze
and lip movement information increases the performance of
addressee recognition, and thus confirms our third hypothesis.

Furthermore, we observed that in multiple cases the robot was
addressed but did not detect mutual gaze or lip movements.
One explanation for this is that either of these features could
not be recognized at the relevant moment due to movements of
the robots head and the resulting motion blur. Another expla-
nation is that the robot sometimes did not look at the speaker
when the task was stated and executed. While in such cases the
focused person did not speak, there are multiple reasons for

other persons to establish mutual gaze, which allows the robot
to recognize itself as addressee although it is not looking at the
speaker. For instance: in multi party interaction people do not
only look at the speaker but also at the addressee [18]. This is
especially valid while a turn is transferred from one agent to
another, where the attention is typically directed towards the
agent most probable to take the turn [32]. However, the exact
reasons for this apparent supplementing of the two features
are subject to further investigation.

Considering that it was impossible to see all participants of
the interaction at once in our scenario ,it is evident that the
generic attention management, combining bottom-up and top-
down saliency features, provides a considerably good basis for
addressee recognition using only visual features. This results
in the observation that already a simple addressee recogni-
tion can increase the performance of an agent in a multi party
interaction. Nevertheless another consequence is that the at-
tention module has a direct impact on the quality of addressee
recognition.

LESSONS LEARNED & FUTURE WORK
The first observation is that the attention module sometimes
triggers unintended behaviour of the robot. In only a few cases
the participants had difficulties to acquire the robot’s attention
while it looked at another person. This is based on the fact
that face detection results have the highest priority. Although
it is possible to override this attention cue, e.g., verbally, this
becomes difficult in the case of multiple persons speaking
simultaneously (habituation).

A second observation is that people do not always wait until
the robot looks at them. Occasionally they are already talking
while the robot is still turning around. Often, in this case
it is not possible to align visual features, such as gaze, and
speech recognition results. In addition, an addressee recogni-
tion based solely on visual features is very challenging during
head movements due to motion blur. Based on these obser-
vations other modalities or arbitration mechanisms should be
considered.

We believe that the proportion of recognized dialogue acts
may be different in long term multi party interaction. In our
scenario most of the recognized dialogue acts were actually
addressed towards the robot. We expect that in long term multi
party interactions the dialogue acts not addressed to the robot
will increase. In such cases addressee recognition becomes
even more important. Therefore we additionally should con-
sider scenarios with more interpersonal communication for
evaluation.

However, with the recorded dataset we are able to tackle some
of these issues. We will now be able to train and test different
classifiers for lip movement detection to improve the accuracy
of the classification of this visual feature. Furthermore, we
will investigate different approaches for data fusion. On the
one hand, a more sophisticated model for late feature fusion
could be used. On the other hand, it is possible to explore
various techniques for early fusion based on the raw data.

In addition, our observations show that the integration of other
modalities is required. For instance, information from the



attention management could be used in addressee recognition
and vice versa. Apart from these low level features, we want to
investigate the inclusion of high level features. One example
are the speech recognition results. The verbal addressing of
the robot by either using its name or the word “robot” should
be exploited in order to improve the results of the addressee
recognition.

We are also interested in the evaluation of the influence of
such an attentive system on the subjective ratings of the robot
by the participants. Therefore, we will carry out further ex-
periments to measure different key concepts in HRI such as
anthropomorphism and likeability of the robot.

CONCLUSIONS
In this work we investigated the impact of attention manage-
ment and addressee recognition on a robot’s capability to
distinguish utterances directed at it from communication be-
tween humans. A multi party interaction study was carried out
and the recordings annotated with ground truth information.
Based on the evaluated results, we can show that attention
management facilitates addressee recognition, especially in
situations where it is not possible for the robot to see all par-
ticipants of the interaction at the same time. It can further
be verified that mutual gaze at the end of an utterance, is a
meaningful signal for turn yielding. Verification of a speaker
through the observation of lip movements decreases false pos-
itive addressee recognitions. Furthermore, already simple
logical combinations of gaze and lip movement classifications
yield good performance when it comes to finding out who is
being addressed. However, more work is required to create
a fusion model that performs well in all situations or can be
tuned for a specified precision or accuracy in a continuous way.
Extra effort is needed to enhance the interoperation between
attention management and addressee recognition in order to
be able to cope with some of the observed corner cases.
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