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Abstract
Pairwise sequence alignment is ubiquitous in modern bioinformatics. It may be performed

either explicitly, e.g. to find the most similar sequences in a database, or implicitly as a hidden
building block of more complex methods, e.g. for reads mapping. The alignment algorithms
have been widely investigated over the last few years, mainly with respect to their speed.
However, no attention was given to their energy efficiency, which is becoming critical in
high performance computing and cloud environment. We compare the energy efficiency of
the most established software tools performing exact pairwise sequence alignment on various
computational architectures: CPU, GPU and Intel Xeon Phi. The results show that the energy
consumption may differ as much as nearly 5 times. Substantial differences are reported even
for different implementations running on the same hardware. Moreover, we present an FPGA
implementation of one of the tested tools – G-DNA, and show how it outperforms all the
others on the energy efficiency front. Finally, some details regarding the special RECS R©|Box
servers used in our study are outlined. This hardware is designed and manufactured within
the FiPS project by the Bielefeld University and Christmann Informationstechnik + Medien
with a special purpose to deliver highly heterogeneous computational environment supporting
energy efficiency and green ICT.

Key words: sequence alignment, energy efficiency, FiPS project, heterogeneous hardware,
bioinformatics, FPGA

1 Introduction
Sequence alignment is one of the most common and the most frequently applied operations in
computational biology. This statement becomes even more authorized if we realize that many
higher level algorithms, e.g. sequence mapping or phylogenetic tree construction, use this
simple operation as a building block. There are a number of algorithms performing the align-
ment procedure, both heuristic and exact. The former were often used in the past when limited
computational power was the main limiting factor. On the other hand, exact algorithms have
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become more popular in the recent years, mainly with the advent of high performance software
implementations. However, the exponential growth of the number of sequences in databases
and from individual experiments is still posing a real challenge, especially in the context of
Next Generation Sequencing (NGS). Moreover, the increase in the amount of data is faster
than the rate of improvement of microprocessors. Therefore, scientists are constantly work-
ing on ways to improve the existing software tools. This also includes the research associated
with different hardware architectures which was deeply explored in the recent years. The most
popular accelerating hardware in this area is probably GPU (graphics processing unit), with
multiple implementations of different alignment scenarios, e.g. [1, 2, 3, 4, 5]. Other hardware
architectures that were found useful include: FPGAs (field-programmable gate arrays) [6, 7],
IBM’s Cell BE [8, 9], Intel Xeon Phi [10] alongside with traditional CPUs (central processing
units) with their SIMD capabilities [11, 12].

One common goal of all the high-throughput implementations of sequence alignment is
obviously to maximize the performance. Therefore, scientists tend to compare their software
tools in this respect. However, from a data center or cloud provider perspective it is also cru-
cial to maximize the performance achieved per energy used, i.e. the energy efficiency of the
software. From this standpoint, sequence alignment is a prime example to look at. First, be-
cause it is ubiquitous in modern bioinformatics analysis, which nowadays is carried out more
frequently in high performance computing (HPC) centers. Second, as there are already mul-
tiple high quality implementations of this building block algorithm on multiple architectures.
In this paper we compare the energy efficiency of various state-of-the-art pairwise sequence
alignment tools alongside with their pure performance. The results may be of key importance
not only for those managing data centers, but also for scientists implementing complex pro-
cessing pipelines and programmers starting to consider their platform of choice. One of the
goals of this work is also to raise awareness within the community about the energy-efficiency
driven development and tools selection.

An important aspect is also the fact that this research was conducted as part of FiPS – an
EU-founded project entitled: ”Developing Hardware and Design Methodologies for Hetero-
geneous Low Power Field Programmable Servers”. The main goal of the project is to develop
highly heterogeneous low power servers (called RECS R©|Box) for HPC centers and cloud ap-
plications, with a special emphasis placed onto FPGA modules. Alongside with the hardware,
the project partners have developed tools helping the programmers to port their applications to
heterogeneous environment [13]. Interestingly, the hardware is developed in close collabora-
tion with application partners, who adapt their domain-specific software tools to achieve more
energy-efficient implementations. One of the applications that are considered in the project is
G-DNA [5] – a GPU-based software for pairwise sequence alignment. We investigate whether
any improvement in its energy efficiency is possible, given that the application was already
highly optimized for GPU. In particular, an FPGA implementation of this tool is proposed.
Since the comparative results are very promising, the article also presents some of the expe-
rience and results achieved in this context. Furthermore, details regarding the RECS R©|Box
hardware design and development are outlined too. This hardware deserves special attention
as it facilitates development of energy efficient applications due to its hardware configuration
and software monitoring solutions.

The rest of the paper is organized in the following way. Section 2 shortly outlines the basic
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idea behind sequence alignment algorithms. Section 3 first briefly presents the software tools
for pairwise sequence alignment that are compared in our study, and then refers to literature
related to energy efficiency. Section 4 presents the methodology and results of the comparative
study. The next section describes the FPGA implementation of G-DNA as well as details
regarding the architecture of energy efficient RECS R©|Box hardware. Finally, conclusions are
outlined in Section 6.

2 Dynamic programming algorithms
There are three basic sequence alignment methods based on the dynamic programming, namely:
the Needleman-Wunsch algorithm (NW) [14] for global alignment, its semi-global version,
and the Smith-Waterman algorithm (SW) [15] for local alignment. These algorithms work
in a similar way, and differ only with respect to the boundary conditions. Additionally, each
algorithm may compute only the so called alignment score, i.e. quantitative information about
the similarity of sequences, or the full alignment by performing the backtracking step. More-
over, the algorithms may use either linear or affine gap penalties. This section explains the
basic idea behind these methods on the example of NW with affine gap penalties. For more
detailed analysis of alignment algorithms see [3].

2.1 The Needleman-Wunsch algorithm

Let us first define the following notation:

• A – an alphabet, i.e. a set of characters (nucleotides or amino acids),
• si(k) ∈ A – k-th character of the i-th sequence,
• SM(si(k) ∈ A,s j(l) ∈ A) – substitution value for a given pair of characters,
• Gopen,Gext – gap opening and gap extension penalties,
• H – a matrix with partial alignment scores,
• E,F – auxiliary matrices with partial alignment scores indicating vertical and horizontal

gap continuation, respectively.

The Needleman-Wunsch algorithm fills the dynamic programming matrix H according to
a similarity function expressed in Formula 1. The matrix is of size n+ 1×m+ 1, where n
is the number of characters in the first sequence s1 and m – in the second sequence s2. The
similarity function is based on a score of substitution between any two characters which is
typically defined by a substitution matrix. Gap penalties, i.e. Gopen and Gext , are applied to
reflect the cost associated with insertion/deletion mutations.

Hi, j = max


Ei, j
Fi, j

Hi−1, j−1 +SM(s1(i),s2( j))

 (1)

Ei, j = max
{

Ei, j−1−Gext
Hi, j−1−Gopen

}
(2)
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Fi, j = max
{

Fi−1, j−Gext
Hi−1, j−Gopen

}
(3)

where i = 1..n and j = 1..m. Additionally, the first row and the first column of matrix H are
filled according to the following formulas:

H0,0 = 0 (4)

Hi,0 =−Gopen− (i−1) ·Gext (5)

H0, j =−Gopen− ( j−1) ·Gext (6)

where i = 1..n and j = 1..m. Moreover, the first rows and columns of matrices E and F are
initialized with −∞.

At this point the optimal alignment score is already known and can be found in cell
H(n,m). However, the actual alignment of the two sequences, i.e. the relative arrangement of
subsequent characters, is not known yet. This may be computed by the optional backtrack-
ing procedure which performs backward moves starting from H(n,m) until the first cell, i.e.
H(0,0), is reached. A single move is performed to the neighboring cell that contributed to
maximum value in Formula 1. If the algorithm moves diagonally, two characters are aligned.
If the move is performed to the upper cell, a gap character is inserted into sequence s1 in the
alignment. In a similar way a gap is added to sequence s2 every time the algorithm moves to
the left.

2.2 Performance analysis
The performance of the dynamic programming implementations, including NW and SW, is
usually defined in the number of cell updates per second (CUPS). It refers to the number of
cells in matrix H that can be calculated in one second, including the time needed to perform
all side operations like computation of matrices E and F or performing the backtracking pro-
cedure, if needed. The performance can be easily calculated if we divide the number of cells
computed in matrix H by the overall runtime of the algorithm:

n
∑

i=1
lengthai · lengthbi

t ·109 [GCUPS] (7)

where n is the number of pairwise alignments to perform, lengthai and lengthbi are the lengths
of the corresponding sequences to align, t represents the time in seconds and the result is given
in giga (109) CUPS.
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3 Related work

3.1 Sequence alignment tools
One of the main goals of this paper is to compare the energy efficiency of state-of-the-art
algorithms performing pairwise sequence alignment. In most cases this kind of software is
designed to perform a database scan, i.e. one query sequence is aligned to all the sequences
from a database in order to find the best scoring matches [4, 10, 11, 12]. Other scenarios
are possible as well, e.g. when all sequences are aligned with all the others [3, 16], or when
only selected pairs of sequences are aligned [5], or when the alignment concerns very long
sequences [17], etc. Although the underlying algorithm may always be the same, e.g. the
Smith-Waterman algorithm, the parallelization and optimization techniques as well as the re-
sulting performance may differ depending on the scenario. In order to provide a fair compari-
son, we decided to choose the widest class of tools currently used, i.e. those implementations
that compute the alignment score between relatively short sequences (possibly from NGS)
using the exact algorithm based on dynamic programming. These kind of tools are often
used for protein database scans, or constitute a common building block of more complex al-
gorithms, e.g. for DNA de novo assembly [18], reads mapping [19], or multiple sequence
alignment [20]. Furthermore, we chose to focus on the implementations based on the idea of
dynamic programming, as they may be fairly compared with respect to power consumption
and efficiency. Heuristics would obviously result in higher performance, but then there is the
question about quality of alignment, which is out of the scope of this work. The following
paragraphs summarize the key features of tools selected for our comparison. Note that all of
them are freely available and open source.

SSEARCH tool from the package FASTA version 36.3.7 implements the SSE2 acceler-
ated Smith-Waterman search developed by Michael Farrar in 2007 [11]. The algorithm is
parallelized using Single-Instruction Multiple-Data (SIMD) instructions. For this reason it
was long considered as the fastest tool when it comes to CPU implementations. SSEARCH
addresses the protein database search scenario in which the algorithm is further parallelized
to align multiple pairs of sequences using multiple CPU cores.

Another CPU-based implementation of Smith-Waterman algorithm is SWIPE developed
by Torbjørn Rognes in 2011 [12]. It also uses SIMD vector processing capabilities, but this
time requires the SSSE3 instruction set to be available in the processor. Depending on the
length of query sequence the software was reported to run up to six times faster than Farrar’s
approach.

CUDASW++ 3.0 [4] is a fast Smith-Waterman protein database search algorithm which
utilizes both CPU and GPU SIMD instructions to carry out the computations. On the GPU
side it makes use of CUDA PTX SIMD video instructions (available in the NVIDIA Kepler
architecture) to achieve more data parallelism as compared to the SIMT execution model. On
the CPU side the software uses the SWIPE implementation to boost the performance.

G-DNA [5] was designed to perform alignment of selected pairs of nucleotide sequences,
which is a common scenario in de novo assembly or reads mapping. The software imple-
ments a semi-global version of the Needleman-Wunsch algorithm and uses multiple GPUs to
compute the score and shift for each selected pair of sequences. This implementation was
analyzed by the FiPS consortium for further improvements in energy efficiency.
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Finally, SWAPHI [10] is a parallel algorithm accelerating the Smith-Waterman protein
database search on Intel Xeon Phi coprocessors. The high speed of pairwise alignment is
achieved by effective utilization of both coarse-grained and fine-grained parallelism coming
from many processing cores and from the 512-bit wide SIMD vectors, respectively.

All the above-mentioned implementations report exceptional performance using either
CPU, GPU or Intel Xeon Phi. Some of them are often used in research institutes and data
centers around the world. However, none of the authors has reported the energy efficiency
of their implementation. No such comparison was made in literature either. This certainly
requires investigation which is presented in this paper.

3.2 Work related to energy efficiency
A key part of this work is to present the energy efficiency aspect of the sequence alignment
problem, and how it may be further improved with the FPGA architecture. Interestingly,
attempts to accelerate the execution of sequence alignment with the use of FPGA devices
started earlier than any other optimization strategies involving GPUs or SIMD instructions
available in CPUs. There were also several papers published in this area. One example may
be [21], which presents an implementation of the Smith-Waterman algorithm on FPGA. The
authors were able to achieve up to 11 GCUPS (for a specific sequence length) back in 2004, at
the time when standard CPU implementations were running at around 50 MCUPS. However,
the energy efficiency aspect was not presented. Similar results were reported one year later
in [22], this time though on more realistic data sets. Another attempt was made in 2007 [6].
Although the authors claim they achieved 160-fold speedup, the actual performance of the
FPGA implementation was only around 25 MCUPS. In [23] in turn the authors implemented
an equivalent of SSEARCH in version 35 from the FASTA package using Intel Accelerator
Abstraction Layer achieving up to 9 GCUPS. More recently, in 2013, another promising re-
sult was presented [7] with an implementation on Xilinx Virtex-7 FPGA achieving 40-fold
speedup as compared to a base non-optimized CPU code. Unfortunately, no information was
provided about the performance expressed in the number of cell updates per second (CUPS).
Summing up, none of the above-mentioned papers addresses the problem of power consump-
tion, including the recent review article about sequence alignment on FPGA [24]. Instead,
what all those papers have in common is the recommendation for FPGA as an interesting
platform for sequence alignment.

One paper that focuses on the energy efficiency of an FPGA implementation of the Smith-
Waterman algorithm was published in 2012 [25]. The authors presented power consumption
and performance of their implementation depending on the utilization of processing elements
(PEs). This was achieved by scaling the linear systolic array design for various numbers
of PEs and measuring the dynamic power and performance values. The results demonstrate
that initially the performance per unit Watt increased with growing number of PEs, but sta-
bilized and finally decreased after further increasing of the number of PEs. The maximum
performance achieved per unit Watt was between 200 and 250 MCUPS/Watt and the total per-
formance within this power efficiency was around 7.6 GCUPS. Nevertheless, no comparison
was made to other state-of-the-art implementations.

However, a paper that deserves special attention was only recently published in 2015 [26].
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The authors compare their implementation of the Smith-Waterman algorithm on Zynq SoC
7100 FPGA to two other embedded processors, namely: ARM Cortex-A9 running Farrar’s
implementation [11] and application-specific processor (ASIP) running BioBlaze [7]. In ad-
dition, a desktop Intel Core i7 CPU also running Farrar’s implementation was used for refer-
ence. The energy efficiency was measured in Mega Cell Updates per Joule (MCUPJ). With
460 MCUPJ the described FPGA implementation achieved 3.18x and 1.25x better energy effi-
ciency than the ARM Cortex-A9 and the dedicated ASIP processor, respectively. Surprisingly,
the authors claim to achieve 6.95x better energy efficiency compared to the code running on
Intel i7, which is not consistent with our experiments (cf. Section 4). Furthermore, our tests
show that the state-of-the-art alignment algorithms are in most cases more energy efficient
than the implementation in question and are also more powerful when it comes to pure per-
formance.

Another interesting work in this area was published in 2012 [27]. The authors carried out
a comparative study between three different acceleration technologies: FPGAs, GPU as well
as IBM’s Cell BE, and compared them to a traditional CPU. Comparison criteria included
speed, energy consumption, and purchase and development costs. In order to compare the
development time the authors prepared their own implementations of the Smith-Waterman
algorithm on all these hardware architectures. However, judging by the performance achieved,
they were far from state-of-the-art. As a result, although the paper presents an interesting
glimpse into the costs associated with each type of hardware, the results may be misleading
due to the human factor (development time and poor performance achieved). On the contrary,
by presenting the performance and energy efficiency of the top-class implementations in this
article, we should eliminate this issue and make a more objective comparison. Finally, it is
worth noting that according to the study presented in [27], FPGAs outperform all the other
platforms on performance per watt criterion, which once again is a promising results in favor
of reconfigurable hardware. For this reason, we decided to investigate whether it is possible to
further improve the energy efficiency of G-DNA – one of our review implementations, using
the FPGA architecture and the RECS R©|Box hardware developed within FiPS.

4 Energy efficiency of sequence alignment tools

4.1 Testing methodology
All selected software tools for pairwise sequence alignment (cf. Section 3.1) were tested on
real-life and sufficiently large data sets. The implementations designed to perform protein
database scans were tested on the latest (as for June 2015) release of UniProt [28] which is
a comprehensive and freely accessible database of protein sequence and functional informa-
tion and often serves as a benchmark in this kind of tests. Several lengths of query sequence
were selected to provide an insight into possible impact on results. As for the software pro-
cessing the nucleotide sequences, NGS data sets from Illumina HiSeq 2000 (C. elegans N2,
DRA000967) and 454 GS FLX Titanium sequencers (E.coli H260, SRX079673) were used
for short and long sequence tests, respectively.

For each algorithm the performance and energy consumption results presented in this sec-
tion are averaged over approx. 100 measurements. In order to capture a sufficient number of
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measurements, each implementation was run several times. The performance is expressed in
Cell Updates per Second (CUPS) which is the most common measure for algorithms based
on dynamic programming. The energy efficiency is given in Cell Updates per Joule. The
measurements of energy were performed using hardware-specific tools. For Intel CPUs, this
was done with Intel Power Gadget using Runtime Average Power Limiting (RAPL) capabil-
ity of Intel CPUs, as it allows for precise measurements. The complete support is provided
only for Intel Xeon line, and therefore desktop CPUs could not be considered. To make a
reasonable comparison between different hardware architectures, the power consumption was
measured for the whole CPU socket as well as for memory (DRAM). The reason is that for
many architectures, e.g. GPU or Intel Xeon Phi, one cannot distinguish between energy used
by the processing unit and corresponding memory modules (which also use a considerable
amount of energy). On the other hand, the measurements of energy taken by the whole com-
puter system would count in the power used by devices that are not required by individual
software tools in our tests. Therefore, for algorithms running on accelerators, we measured
only the energy used by these devices. In the case of NVIDIA GPUs, this was achieved using
NVIDIA Management Library (NVML) and the nvidia-smi tool. The NVIDIA Tesla product
line was chosen due to its support for power measurement (GeForce gaming series are not
supported). For the Intel Xeon Phi the energy measurements were done with Intel Xeon Phi
Coprocessor Platform Status Panel, i.e. micsmc tool. As for FPGA, in our case it is integrated
in the RECS R©|Box system via a COM Express compute board that also holds DDR memory
and additional hardware needed to perform computations. This board includes monitoring
devices that were used to measure the power consumption of the integrated FPGA and pe-
ripheral devices. This is described in detail in Section 5.4. The measurement of the whole
compute board energy including its necessary peripheral hardware was done to measure the
whole alignment process on the platform.

One additional remark concerning the CUDASW++ 3.1 software is that by default apart
from GPU it also uses the CPU-based SWIPE implementation to boost the performance. As
SWIPE is tested as a separate application, we decided to run CUDASW++ 3.1 in its GPU
only mode to obtain more fine-grained results and thus clearly distinguish between these two
architectures.

The tests were run on the RECS R©|Box hardware as well as on the moss computational
cluster located at Poznań Supercomputing and Networking Center. The latter was chosen due
to the availability of specific hardware and software combination. A brief specification of the
hardware used to carry out the computational tests is given below:

• Intel Xeon E5-2670 2.60GHz, 8 × 32GB DDR3 at 1333MHz, with Hyper-Threading
disabled

• NVIDIA Tesla K20m and K40c

• Intel Xeon Phi 5110P

• Xilinx Zynq XC7Z045
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4.2 Comparative study
The main goal of this section is to compare the performance and energy efficiency of the
state-of-the-art implementations of pairwise sequence alignment described in Section 3.1.
Additionally, as the G-DNA implementation was analyzed by the FiPS consortium for fur-
ther improvements in energy efficiency, the results obtained in this area are presented as well.

Figure 1: Average performance (in GCUPS) for each implementation depending on the se-
quence length (in base pairs).

Figure 1 presents the average performance of each implementation depending on the se-
quence length. The results are expressed in Giga Cell Updates Per Second (GCUPS). It is
plain to see that the best performing implementations are the GPU ones, i.e. CUDASW++ 3.1
and G-DNA. Moreover, the performance of the former remains almost on the same level,
regardless of the length of the query sequence. In contrast, the general trend is that the per-
formance increases with growing sequence length. This is easy to explain, as the ratio of pure
computations to data initialization and transfer increases with longer sequences. On the CPU
front, SWIPE 2.0.5 clearly outperforms the implementation in SSEARCH 36, both utilizing
all 8 CPU cores. The latter, surprisingly, has a very similar performance to SWAPHI 1.0.5
running on Intel Xeon Phi. Finally, the FPGA implementation of G-DNA supports sequences
up to 112 bp only (cf. Section 5). Correspondingly, not all the sequence lengths could be
tested. Nevertheless, the short sequences (around 100 – 110 bp) constitute the most common
use case in many practical applications (e.g. mapping of NGS reads). When it comes to per-
formance, with slightly more than 7 GCUPS it certainly cannot compete with the other tools.
However, the comparison of pure performance is not the most important in this paper.

Figure 2 presents the average energy efficiency of each implementation depending on the
sequence length. The results are expressed in Giga Cell Updates Per Joule (GCUPJ). Likewise
in the case of performance, the energy efficiency of both GPU-based implementations is very
good. It varies between 0.614 and 0.687 GCUPJ, as measured on NVIDIA Tesla K40 GPU.
This time though G-DNA performs slightly better compared to CUDASW++ 3.1. The average
energy efficiency on NVIDIA Tesla K20 was somewhat lower, and for comparison purposes is
presented in Figure 3. The energy efficiency of the CPU implementations strongly correlates
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Figure 2: Average energy efficiency (in GCUPJ) for each implementation depending on the
sequence length (in base pairs).

with their performance. This is due to the fact that both applications need roughly the same
power to run. As a consequence SWIPE 2.0.5 is some 48 % - 110 % more energy efficient
than SSEARCH 36, depending on the query length. Surprisingly, SWAPHI 1.0.5 has the
lowest energy efficiency. The major contributing factor is the high power consumption of
the Intel Xeon Phi coprocessor, which makes it hard to achieve good efficiency results on
this platform. Interestingly, the FPGA implementation of G-DNA with its 0.827 GCUPJ
outperformed all the other implementations by a large margin. This is mainly due to a very low
power consumption of the board with FPGA module and a particular application to hardware
fit. This results justify the wide interest in FPGA that up to now was mainly attributed to its
speed (cf. Section 3.2).

Figure 3: Average energy efficiency of the GPU-based sequence alignment tools depending
on the GPU model.

Another interesting outcome of this comparison is that GPU-based implementations achieve
the highest energy efficiency for short sequences whereas CPU applications strongly prefer
longer sequences. Although this may be hard to explain without a deep analysis of the source
code of individual applications, our observation is that the CPU power remains almost on the
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same level regardless of the sequence length. In contrast, the power draw of GPUs is much
more sensitive with this respect and varies with sequence length.

Additionally, it is worth noting that in many cases, within a given hardware architecture,
the faster software we have, the more energy efficient it is. In other words, by comparing only
the performance we may usually order the software tools from the most to the least energy
efficient ones. This is particularly evident in the case of CPU, whose power draw primarily
depends on the number of running threads. This in general is also true for other architectures,
with some minor exceptions. However, such straightforward comparison does not work when
comparing implementations on different architectures. For example, a significantly faster im-
plementation may turn out to be much less power efficient, as exemplified above. In this case,
empirical comparison become indispensable. Even more difficult is a complete evaluation of
cost effectiveness of individual solutions, an attempt of which is presented later on.

Figure 4: Average power draw (in watts) for each implementation depending on the sequence
length (in base pairs).

For completeness, Figure 4 presents the average power draw of each implementation de-
pending on the sequence length. The highest power consumption was observed in the case
of Intel Xeon Phi, between 170 an 190 watts. In contrast, the board with FPGA module only
required 8.7 watts to run the pairwise alignment. Both GPU and CPU have a very similar
power consumption, however as pointed out, GPU is more sensitive to sequence length and
demonstrates more variation in power draw. Additionally, in the case of CPU, we may distin-
guish between the power used by the CPU socket and the power used by memory modules.
Figure 5 presents a more detailed insight into the power distribution between these two. It is
also worth noting that although SWIPE utilized slightly more power in total, both CPU-based
applications are comparable with respect to power consumption.

Finally, Table 1 presents the average power draw of individual processing units in their idle
state. It is plain to see that the Intel Xeon Phi has much higher idle power draw as compared
to the other architectures. This certainly should be considered by data centers that experience
uneven server load. In the case of CPUs, although the power consumed by the CPU socket
and memory may be measured separately, for the sake of justice, the total power was always
used to calculate the energy efficiency, as explained in Section 4.1. Furthermore, it should
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Figure 5: Average power consumed by the CPU socket and memory depending on application.

be stressed that the interpretation of the Thermal Design Power (TDP) values presented in
Table 1 differ depending on the manufacturer. For Intel processors, including Xeon Phi, TDP
represents the average power dissipated when operating at base frequency with all cores active
under an Intel-defined, high-complexity workload. In contrast, values presented for NVIDIA
GPUs refer to the actual power limits defined by the manufacturer, and are therefore less
likely to be achieved by a real life application. Likewise, in the case of Xilinx the TDP
value represents the maximum theoretical power of the whole board. This include the Zynq
processor itself (16 W), the DRAM (3 W), the crosspoint switches (5.5 W) and other necessary
hardware.

Table 1: The average power draw (in watts) of individual processing units measured in idle
state. Thermal Design Power (TDP) values are given for reference. The reference prices of
the hardware are as of 2015. ∗ price calculated for large quantities, including a RECS R©|Box
compute board.

total processor DRAM TDP price [e]
Intel Xeon E5-2670 7.8 4.2 3.5 115 1450

NVIDIA Tesla K20m 27.6 - - 225 2569
NVIDIA Tesla K40c 37.2 - - 235 2896
Intel Xeon Phi 5110P 96.5 - - 225 2277

Xilinx Zynq XC7Z045 8.2 - - 26 847∗

4.3 Global impact and costs comparison
It is extremely difficult to gather world-wide or even country-wide statistics regarding the
use of sequence alignment tools wrt. the total runtime or power used, not to mention the
hardware architecture. The same concerns HPC centers, even though different alignment
tools are becoming part of standard software installations. However, if we look at the map
of genomic centers1, we can easily spot over 330 genomic institutions capable of sequencing

1http://omicsmaps.com – Next Generation Genomics: World Map of High-throughput Sequencers
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human genomes, possessing over 5000 sequencers for this purpose, as of 2015 (note that these
numbers are growing rapidly). Therefore, in this section we attempt to provide cost estimates
from a single genomic center perspective, assuming 1000 human genome mapping operations
monthly. The number of alignments to perform was calculated on a real-life data (140 GB of
raw sequences, each 100 bp long). In order to calculate costs we used the data obtained from
our experiments and combined these with average electrical power cost in EU according to
Eurostat (0.202 e / kWh, as of 2014). The results are presented in Table 2. Note that this
comparison is intended only as an exemplary costs comparison, which can vary depending on
a number of criteria.

Table 2: Time, hardware quantities and costs associated with running each implementation.
Computational time and the number of kWh are presented for one month. For the GPU-based
software NVIDIA Tesla K40 was selected.

Implementation Computational # devices Running Idle power 5-year energy 5-year total
time [h] needed power [kWh] [kWh] cost [e] cost [e]

CUDASW++ 3.1 368.6 1 43.86 13.07 690.02 3586.02
G-DNA 410.6 1 42.46 11.51 654.04 3550.04

SWIPE 2.0.5 537.8 1 64.24 1.42 795.86 2245.86
SSEARCH 36 1243.3 2 130.21 1.53 1596.72 4496.72
SWAPHI 1.0.5 1227.0 2 208.33 20.55 2774.08 7328.08
G-DNA FPGA 4062.2 6 35.27 2.11 453.07 5535.07

There is no doubt that the largest fraction of costs comes from the hardware. The num-
ber of devices was calculated to keep up with a constant amount of computations per month.
Therefore, the faster the implementation the fewer processing units are required (e.g. compare
SWIPE with SSEARCH). Note that we count in only the price of processing units (plus com-
pute board in the case of FPGA), to avoid server configuration preferences. As for the energy
consumption, it is divided into this coming from the runtime and from the idle states. The
latter is also important as the hardware most often works in servers. As a matter of fact, we
can observe that the energy costs vary substantially, from 453.07 to 2774.08 e. Even though,
the FPGA is the most energy efficient implementation, it is not very fast. Hence, a lot needs
to be invested in the hardware. However, one needs to keep in mind that the price of electrical
power is constantly rising (in EU over 52 % between 2005 and 2014, according to Eurostat),
whereas the price of hardware tends to have the opposite tendency. In the comparison, all
implementations are compared in their current state of the development. The FPGA-based
implementation of G-DNA is based on high level synthesis, as discussed in Section 5, and
consequently still has a lot of potential for optimization, while all the other implementations
are mature implementations which are already quite optimized. Finally, although the most
cost effective implementation can vary depending on the defined workload, the winner in our
case is SWIPE running on a CPU.
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5 FPGA-based implementation and hardware platform
The Needleman-Wunsch and the Smith-Waterman algorithms benefit from effective pipelin-
ing structures, and parallel processing of individual cells. Therefore, general purpose proces-
sors are somewhat limited in the possible performance that can be achieved. On the contrary,
FPGAs offer flexible hardware, that can be shaped into minimal cell processing elements in a
pipeline of optimal length. This performance benefit requires a specialized development. The
typical workflow starts with the functional description of the algorithm, normally delivered as
high level source code. Then expert knowledge is needed to port the functional code into a
synthesizable implementation in a hardware description language. This leads to major trans-
formations of the algorithm. Subsequently, a synthesis tool performs several synthesis steps to
register transfer level (RTL) and down to gate level, resulting in a binary configuration file that
is loaded into the FPGA and defines the exact functionality of each logic cell. During every
step additional simulation is needed, to verify functionality through all abstraction layers, and
functional equivalence to the initial algorithmic description.

In the last few years, so called high level synthesis (HLS) tools have become popular in
hardware development. These tools rise the abstraction layer onto nearly algorithmic level.
They offer implementation of the hardware description in a high level language like C, C++
or SystemC. This enables the engineer to reuse initial functional descriptions and perform
minor refactoring resulting in synthesizable high level code. Nevertheless, expert knowledge
is needed as in fact most tools define a subset of the programming language only which can
be seen as domain specific language (DSL). Still, the opportunity to reduce porting effort and
reuse prototype source code is provided.

The FiPS project has developed the FiPS flow [13] which enables the developer to identify
kernel in a larger application that can be outsourced on different hardware architectures. The
FiPS workflow automatically extracted and characterized the main kernel in the CPU version
of the G-DNA application and additionally suggested FPGA as a possible and efficient archi-
tecture. In order to avoid manual reimplementation HLS tools were used to port the kernel to
the FPGA hardware.

5.1 Processing elements
The extracted G-DNA kernel is CPU-specific and synthesis of this code without intervention
results in poor FPGA area consumption and performance. Its imperative structure compli-
cates introduction of optimization techniques during synthesis process. Therefore, a careful
refactoring with respect to the given kernel structure is needed, in order to keep intervention
as small as possible, but enable the synthesis tool to use hardware optimization to reduce area
and improve performance.

G-DNA implements a division of the algorithm into subproblems. The alignment of nu-
cleotides is segmented into submatrices which are calculated on their own. An outer structure
organizes the submatrices calculation in order to reduce the memory effort from quadratic to
linear memory consumption. In our FPGA implementation this segmentation is utilized to
introduce an efficient pipelining, behaving as systolic array. Individual submatrices are im-
plemented as processing elements (PEs). Such pipelining idea has already been known in
literature for some time, except that a single PEe usually implements a single matrix cell, i.e.
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alignment of two nucleotides only. Therefore, in our approach individual PEs perform much
more calculations.

Contrary to previous implementations [29], [30], [31], G-DNA already implements a tech-
nique to reduce the number of memory accesses performed. This technique contributed to
derive the PE design for the FPGA implementation. A nucleotide is encoded as two or three
bit value, depending on the type of sequence used. These representations are chained into a
32-bit integer which assembles a subsequence of 10 to 16 nucleotides which can be fetched in
one memory call. On the downside of this separation, the last row and column of each subma-
trix have to be handed over as input for adjacent PEs, in order to provide correct alignment.
This is done by two internal arrays of 8-bit integers providing the output vectors.

5.2 Systolic array and pipelining
The outer structure integrating several PEs to align full sequences was optimized to provide
effective pipelining. This was achieved by transforming the original loop structure into a
systolic array. As usually, this is a matrix of homogeneous data processing units (DPUs),
in this case the PEs. Together they build a network where every DPU represents a pipeline
stage. The input data consist of two input streams, i.e. sequences, which are processed in
successive order by each stage of the two-dimensional pipeline. The result consist of two
output streams at the last PEs. FPGAs are well suited for systolic arrays as the structure of
individual programmable logic cells and flexible routing allows implementation of PEs and
coupling without architectural limitations.
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PE 2 PE 3 PE 4

TATCTAGTAATTATCTACGATTACGATCACAT TATCTAGTAATTATCTTATATAGGCGGAGCGA
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PE 2 PE 3 PE 4
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Step 1
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Step 3

Figure 6: An example presenting the pipeline stages with systolic array and the first three
alignment steps of two 64 nucleotide long sequences. In the first step only PE 1 is active. In
the second step part of the sequence is handed to PE 2, additionally with the output vector
from PE 1. Both PEs continue to work in parallel. This progresses until all submatrices have
been processed.

The systolic structure allows reuse of PEs at their position in the pipeline. An example
structure and the three initial processing steps for two 64 nucleotide long sequences are pre-
sented in Figure 6. In this particular case, the reuse of PEs reduces their number to four. In
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the first step only PE 1 is active and performs the alignment of the first 16 nucleotides. The
output column is handed over to PE 2, while the output row remains at PE 1 for reuse. This
is marked with arrows in the figure. These steps are repeated until the whole sequence is
processed within six additional steps.

Afterwards, the resulting output arrays are processed in order to provide the alignment
score and shift values, which are returned by the kernel. Both numbers are encoded in a single
32-bit unsigned integer and written to the output memory. Likewise in the previous step, the
encoding is done to reduce memory footprint.

5.3 System integration
The hardware structure of the Zynq SoC is described in Section 5.4. Due to the implementa-
tion decisions, the length of sequences needs to be a multiple of 16, or the sequence may be
filled up to this length. For the common case, a length of 112 nucleotides was chosen, which
results in 49 PEs. With these architecture, area requirements of the cores allows occupation of
95.9 % of the FPGAs programmable logic, by integrating 11 individual cores. Detailed logic
utilization is presented in Table 3. To provide functionality the cores require block RAM and
communication structure which are included. The communication is realized by an integrated
AXI bus, which connects every core to its sequence buffer and to the integrated ARM dual core
processor. This setup allows individual access to each core by a management software, run-
ning on one of the ARM cores, which can also handle communication within the RECS R©|Box
server. The efficiency of this implementation has been demonstrated in Section 4.2.

Table 3: Programmable logic utilization for Zynq XC7Z045

Used Available Utilization
Slice LUTs 209641 218600 95.90 %

LUT as Logic 208805 218600 95.51 %
LUT as Memory 836 70400 1.18 %

Slice Registers 171635 437200 39.25 %
Block RAM Tile 13 545 2.38 %

5.4 Hardware platform
The RECS R©|Box hardware is designed and manufactured by the Bielefeld University and
Christmann Informationstechnik + Medien company. Utilizing the RECS R©|Box platform
concept enables a seamless integration of general purpose processors, embedded processors,
FPGAs, GPUs, and multi/many-core processors into a single scalable and modular server
architecture. Since the platform focuses on high energy efficiency and on high resource effi-
ciency, a tight integration with FPGAs has been developed and is presented in detail within
this section. Importantly, the integrated monitoring and management functionalities of the
RECS R©|Box architecture are vital for the evaluation of energy efficiency of software tools. It
is implemented by distributed microcontrollers placed on every board inside a RECS R©|Box
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Figure 7: Structural overview of the
RECS R©|Box system

Figure 8: Example of a RECS R©|Box system
equipped with 72 ARM compute boards

system. All the controllers are connected via an I2C-based management bus. An ARM micro-
computer on the front panel runs the main management software and controls the distributed
microcontrollers. It also provides access to the management system for the user via Gigabit
Ethernet. In this paper, we used the integrated monitoring and management functionalities to
measure the energy consumption of sequence alignment software. The RECS R©|Box archi-
tecture is designed to provide a heterogeneous scale out approach (horizontal scaling). The
architecture as well as the monitoring and management tools are developed to allow provi-
sioning of the RECS R©|Box system at rack or data center level, while still maintaining a com-
prehensive management solution across the RECS R©|Box cluster. Compared to commercially
available scale out approaches like HP moonshot [32], the RECS R©|Box architecture offers a
higher integration density, allowing more servers per rack while still supporting heterogeneous
populations with compute boards of different architectures.

The RECS R©|Box integrates up to 18 compute boards, each equipped with up to four
microserver boards in one rack unit enclosure (cf. Figures 7 and 8). Microserver boards for
Intel and AMD x86/x64 CPUs, eCPUs as well as for FPGAs have been realized and can be
flexibly combined into a heterogeneous cluster server system. Communication between the
compute boards is facilitated via a central backplane that offers switched Gigabit Ethernet as
well as a dedicated, multi-standard interconnection infrastructure offering a bandwidth of up
to 40 Gbit/s per compute board. Details of the hardware architecture can be found in [33].
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17



To achieve high resource and energy efficiency, the FPGA modules have been tightly inte-
grated into the RECS R©|Box server architecture. The FPGA-based microservers are integrated
into the RECS R©|Box platform using the COM Express standard. The Xilinx Zynq-7000 SoC
(system on a chip) was chosen for integration. The Zynq-7000 family is based on the Xilinx
all Programmable SoC architecture which integrates a dual-core ARM Cortex-A9 process-
ing system and 28 nm Xilinx programmable logic in a single device. The Zynq-based COM
Express microserver consists of a wide variety of building blocks enabling tight integration
with the RECS R©|Box system as well as its utilization for embedded applications. For the
integration with the COM Express standard [34], the Zynq-7000 SoC was extended by ad-
ditional I/O components to provide all required interfaces. Figure 9 gives an overview of
the architecture of the module and its I/O structure. In addition to the interfaces defined in
the COM Express module standard, high-speed serial communication between the different
Zynq-based microservers is supported by utilizing the serial high-speed transceivers of the
Xilinx Zynq devices. Depending on the device, the bandwidth of these transceivers reaches
up to 12.5 Gbit/s per channel, where each lane consists of an RX and a TX channel allowing
full duplex communication. These are connected via asynchronous crosspoint switches to en-
able highly flexible communication topologies between the different modules. The use of the
serial high-speed transceivers enables a dedicated, high-speed (up to 100 GBit/s) low latency
(300 ns) communication infrastructure between the Zynq-based microservers.

6 Conclusions
In this paper we compared top-class implementations performing pairwise sequence align-
ment, namely: SWIPE 2.0.5, SSEARCH 36, CUDASW++ 3.1, G-DNA and SWAPHI 1.0.5.
The tools were selected in a way to allow for a fair comparison (algorithms based on dynamic
programming, optimized for short sequences) and to span multiple hardware architectures.
The results show that differences in energy efficiency are substantial. For example: CUD-
ASW++ 3.1 running on a GPU can perform the same database scan as SWAPHI 1.0.5 running
on Intel Xeon Phi, only using 4.75 times less energy. Significant differences were observed
also within the same architecture, e.g. SWIPE 2.0.5 was shown to be up to 110 % more en-
ergy efficient as compared to SSEARCH 36, both running on the same multi-core CPU. Such
information may be of great importance to those designing bioinformatic pipelines or com-
plex software that involves sequence alignment. HPC centers may benefit from these results
as well by giving higher priority or visibility to more energy efficient tools. The reduction in
power consumption may be noticeable, given that bioinformatic analysis has become a major
application for some of the high-performance installations.

The whole work has, however, a wider context. It was performed as part of the FiPS
project that focuses on RECS R©|Box hardware design and its evaluation. These energy effi-
cient servers provide the user with advanced monitoring infrastructure, allowing for detailed
power measurements and analysis. G-DNA was one of the applications selected to evaluate
the hardware and the software stack developed within the project. Although the G-DNA tool
was already highly optimized for a GPU, we were able to improve its energy efficiency by
20 % using the RECS R©|Box hardware with FPGA module. Even though, the current imple-
mentation has some limitations regarding the maximum sequence length, we have proved that
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the energy efficient hardware constitutes an interesting alternative to traditional servers. Yet
above all, by presenting this work we would like to encourage more researchers to design and
use the software in a more energy-oriented way.
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