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Figure 1: EyeSee3D analyses eye gaze on dynamic areas of interest in 3D environments. Objects and body parts can be tracked using a
variety of tracking systems. Data is fused in a common 3D situation model. The example shows tracked head, hands, and gaze, as well as
target stimuli of a LEGO toy kit. The user’s gaze (blue) currently fixates a part of the roof (highlighted in green on the left).

Abstract

With the launch of ultra-portable systems, mobile eye tracking fi-
nally has the potential to become mainstream. While eye move-
ments on their own can already be used to identify human activi-
ties, such as reading or walking, linking eye movements to objects
in the environment provides even deeper insights into human cog-
nitive processing.

We present a model-based approach for the identification of fix-
ated objects in three-dimensional environments. For evaluation, we
compare the automatic labelling of fixations with those performed
by human annotators. In addition to that, we show how the ap-
proach can be extended to support moving targets, such as indi-
vidual limbs or faces of human interaction partners. The approach
also scales to studies using multiple mobile eye-tracking systems in
parallel.

The developed system supports real-time attentive systems that
make use of eye tracking as means for indirect or direct human-
computer interaction as well as off-line analysis for basic research
purposes and usability studies.
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1 Introduction

Recent developments in mobile eye tracking, both in research
[Babcock and Pelz 2004; Li et al. 2006; Kassner and Patera 2012]
and industry (Tobii Glasses [Tobii AB 2015], SMI ETG [SensoMo-
toric Instruments GmbH 2015], ASL Mobile Eye [Applied Science
Laboratories 2015], etc.) have enabled researchers to study human
behavior in everyday environments. The analysis of eye-movement
data gathered under mobile conditions, however, is difficult and re-
quires large resource investments.

Currently, the analysis of eye movements can be differentiated into
three different levels: On the first, the context-free level, eye move-
ments are interpreted without visual contextualization, just by their
movement patterns [Bulling et al. 2011]. This approach enables re-
searchers to identify different types of actions with particular eye-
movement patterns, such as reading [Ishimaru et al. 2014]. While
the development of the classification algorithm will require con-
textualized data, the derived algorithms will later-on identify user
activities just based on the eye movements alone. Second, on the
immediate-context level, eye movements are directly linked to the
visual content the eyes are fixating on [Pelz 2011]. Such approaches
make use of computer-vision techniques to identify the object of in-
terest fixated by the user [Toyama et al. 2012; Brône et al. 2011].
They will typically extract the region of interest that is fixated by the
user from the image of the scene camera and try to identify the ob-
ject based on this information. Third, on the situation-model level,
an abstract representation of the current interaction context, called
situation model, is used. Such model-based approaches try to re-
construct the position and orientation of the eye-tracking device and
use a 3D model representation of the environment to determine the
object of interest [Hammer et al. 2013; Pfeiffer and Renner 2014].

With EyeSee3D we follow the situation-model based approach (see
Figure 2) allowing us to analyze mobile eye-tracking data in typi-
cal interaction scenarios, such as joint tasks of several humans or
interactions of humans with household appliances. With the opti-
mized workflow we have developed, eye-tracking experiments can
be set-up and analyzed as quickly as those for desktop-based sce-
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Figure 2: A 3D situation model is used to determine the objects of
interest the user is currently fixating on. In this example, printed
fiducial markers are used to create a common coordinate frame
in which the eye-tracking system and the target objects are repre-
sented.

narios. We thus broaden the range of interactions that are easily
accessible for eye-tracking studies while maintaining the comfort
of an automatic identification of fixated objects of interest.

After a short discussion of related work, we will present our ap-
proach and describe in particular the workflow we have designed to
allow researchers to easily use the approach in their own research.
We will provide two examples: for a study on human-human co-
operation using two mobile eye-tracking systems we will present
an in-depth analysis of the gained advantage in terms of annotation
speed compared to manual annotations. In a second example, we
demonstrate how even dynamic body movements of dialogue part-
ners can be taken into account and, how e.g., attention targeted at
the face or at gesturing hands during communication can be ana-
lyzed.

2 Related Work

2.1 Context-free Approaches

Basic eye movements can be measured using electrooculography,
which requires less efforts in terms of computational resources than
computer-vision based approaches. Several approaches for signal
detection and classification have been applied to eye movements
being detected using electrooculography, e.g. to classify context-
free activities, such as reading [Bulling et al. 2008b] or, later, to
differentiate between multiple context-free activities such as typ-
ing, reading, eating and talking [Ishimaru et al. 2014]. Advantages
of electrooculography consist of not being affected by lighting con-
ditions, a problem that persists in outdoor vision-based eye track-
ing, requiring less computational resources and as it does not try
to link eye movements to external coordinate frames, not suffering
so much from drifts. The detection of perceptual activities based
on eye movements can be used to provide data for context-aware
applications [Bulling et al. 2008a].

2.2 Immediate-context-based Approaches

Context-based approaches are typically tied to computer-vision
based eye tracking and require a scene camera for real-world set-
tings. Toyama et al. use an image region around a fixation mapped
to a scene-camera video to identify target objects from an object
database in their Museum Guide 2.0 [Toyama et al. 2012]. Har-
mening and Pfeiffer [Harmening and Pfeiffer 2013] extended this

approach by employing a hierarchically structured database exploit-
ing geographic relationships to improve processing speed and clas-
sification accuary. While these two approaches require a carefully
pre-designed database of target objects, Brône et al. [Brône et al.
2011] presented an approach in which the database was created by
the user in a training step.

2.3 Situation-Model-based Approaches

In the frame of the ARtSENSE Projekt, Hammer et al. [Hammer
et al. 2013] used a Dikablis Wireless monocular eye-tracking sys-
tem as an interaction device for a museum assistant. They recon-
structed depth information of the point of regard based on the 2D
marker-tracking capabilities of the Diablis software and cast a ray
into their static 3D situation model. The authors state that they
use this technique for offline visual analysis and for online implicit
interest detection, but do not provide more details on that, in partic-
ular not on performance data, such as latency or accuracy. In later
work, they showed follow up work on visualizing heatmaps on their
situation model [Maurus et al. 2014].

We introduced our marker-based EyeSee3D approach at ETRA
2014 [Pfeiffer and Renner 2014]. At that time, we were already
able to analyze the data for one interaction partner inspecting a set
of static objects and achieved a coverage of the scene camera videos
of about 92 percent. However, in comparison to a human rater this
initial version only achieved about 65 percent of agreement. The re-
maining 8 percent of video non-coverage was due to marker losses
(median of continuous marker loss at about 160 ms), in particular
when the participants made quick head movements. The system
was also not usable for interaction purposes, as it had a rather high
latency of about 380 ms. The updated approach presented in this
paper provides significant improvements regarding all these issues
and adds support for multiple interaction partners, all equipped with
eye-tracking systems, and body tracking.

The aforementioned approaches rely on manually created 3D sit-
uation models. A slightly different approach is taken by Pirri et
al. [Pirri et al. 2011], who create a 3D model of the environment
on-the-fly using an approach known as visual slam (simultaneous
localization and mapping [Smith et al. 1990]) from the fields of
computer-vision and robotics. This model, however, would have
to be semantically annotated before it would be useful for further
interpretation of the eye movements. In particular, relevant objects
would have to be identified. To this regards, their approach is sim-
ilar to that of Paletta et al. [Paletta et al. 2013], who create an even
more realistic static model of the interaction environment based on
similar techniques, but with high-quality equipment, and then use
this 3D model as means to localize the eye-tracking device relative
to this model.

3 Own Approach and Extensions to the Pre-
vious Version

The aim of our approach is to enable automatic analyses of ex-
periments in real-world scenarios where mobile eye-tracking is in-
volved. However, it is also applicable for pure virtual reality sce-
narios, when the position and orientation towards the visualized
content is known. The central idea is modeling the environment
as an abstract 3D situation model where the relevant stimuli are
represented (see Figure 3, right). Several alternative sensors can
be used during experiment recording to update the situation model
accordingly (sensor fusion, see Figure 3, middle). For a mobile
eye-tracking system this includes the head position and orientation
as well as the orientation of the eye(s). The head position and ori-
entation can be determined either by an external tracking system or



Figure 3: EyeSee3D process: left: real world figure identification task; middle: interaction is tracked using different sensors, such as eye
tracker or Microsoft Kinect; right: EyeSee3D fuses tracking data in a 3D situation model including areas of interest for all figures and the
heads of the interaction partners (boxes). The picture shows a screenshot from the EyeSee3D preview window for the situation at the left.

by our integrated fiducial marker tracking based approach (see Fig-
ure 3, left). For the integrated approach, markers have to be placed
in the environment in a way that at least one marker is visible in the
scene camera image of the eye-tracker when a stimulus is fixated.
Fiducial markers that are detected in the scene camera image can
be used to calculate the position and orientation of the camera and
thus the eye-tracking device. As this approach requires an instru-
mentation of the environment with markers, it cannot be applied to
every research scenario. However, this approach is easy to set-up
and cost-efficient, as it only adds the cost of printed markers. In our
experiments, we have observed that participants notice the marker
during the preparation, but as soon as they are occupied with the ex-
periment task, we did not observe noticeable numbers of fixations
on the markers.

Based on this updated situation model, we can cast a 3D gaze
ray into the situation model for each participant wearing an eye-
tracking system. In a second step, we can identify the objects of
interest being gazed at by intersecting these gaze rays with the 3D
models (see Figure 2).

Besides the information for the eye-tracking glasses, other sensor
information can be integrated to update the locations of relevant ob-
jects during the experiment. One example, which is described later
in the paper, is the integration of person tracking using a Microsoft
Kinect v2 [Microsoft 2015] to enable the detection of fixations on
body parts (hands, face, etc).

3.1 Architecture

The main issue in automatizing the analysis of mobile eye-tracking
using our approach is to integrate data recorded by multiple sen-
sors during an experiment session into a 3D situation model of the
environment (see Figure 3). For this EyeSee3D is not restricted to
eye-tracking data, but also supports other tracking systems, e.g. for
full-body tracking.

Currently, EyeSee3D supports SMI eye-tracking glasses, which
provide a software API to access the eye-tracking data in real-time.
However, in general any mobile eye tracker could be supported. As
not all eye trackers support their data in real-time, EyeSee3D also
supports offline analysis. Then, the data of the different sensors
is recorded during the experiment and the fusion into the situation
model is done after the experiment. This approach can also be used,
if the available hardware is not powerful enough to support the real-
time fusion.

For tracking body movements, we have tested the system with
ART optical tracking systems [Advanced Realtime Tracking GmbH
2015] and OptiTrack [NaturalPoint, Inc. 2015], as well as the Mi-
crosoft Kinect v2, but other solutions, such as VICON [Vicon Mo-
tion Systems Ltd. 2015], can be integrated similarly.

In one EyeSee3D session, several sensor connections can be used
in parallel (see Figure 4). For situations in which the different sen-
sors cannot be connected to the same machine, EyeSee3D supports
distributed sensor networks. The sensor data is fused in the 3D sit-
uation model. This includes head positions and orientations as well
as gaze directions for each connected eye-tracking system as well
as body data for each motion captured person.

The pre-created 3D model of the environment, containing the user-
defined areas of interest, is then augmented by the sensor data and
the result is shown live in EyeSee3D’s preview window. Based
on the fused information, EyeSee3D computes the currently fixated
areas of interest for each participant, including a 3D point of regard,
the ID of the current area of interest, angular distances to other areas
of interest and typical indices such as gaze durations.

A logging API provides support for a flexible output of the original
sensor data and the results of EyeSee3D’s analysis to a suitable file
format, e.g. CSV. A second gaze event API can be used to provide
gaze information for real-time interactive systems.

An example set-up for tracking the gaze of one participant
on static areas of interest as well as on body parts (see e.g.
Figure 1) consists of EyeSee3D running on a high-end consumer
notebook (Dell M4800, Core i7-4810MQ, 2.8 GHz, 16 GB RAM).
Connected are SMI eye-tracking glasses to track the gaze and one
Microsoft Kinect v2 to track bodies. Marker tracking is used to
fuse the coordinate frames of the eye tracker (30Hz) and the Kinect
(30Hz). The Kinect provides skeleton tracking of all interaction
partners. Based on these data, EyeSee3D will then provide gaze
events whenever the participant looks on relevant body parts of in-
teraction partners, such as faces, hands, legs, arms, or the torso.

4 Workflow for Designing Experiments using
our Approach

Using the presented approach in an experiment requires some
preparation steps, which are detailed in the following.



Figure 4: Data from multiple sensors is fused in a 3D situation
model and previewed in 3D. EyeSee3D’s APIs provide logging data
for experiments and gaze events for gaze-enabled applications.

Figure 5: Several coordinate-system templates of different sizes
have been designed to help the researcher to link coordinate frames
of different devices. The figure shows a larger DIN-A0 paper with
a millimeter grid depicting the exact coordinate system that is de-
fined by the augmented reality markers (dark-black patterns) also
printed on the paper. A yellow wooden block is used as target stim-
uli and placed on the template. The coordinates of the AOI can be
read from the millimeter coordinate system and transfered to a file
describing the 3D situation model for the experiment (right side).

4.1 Preparing the Tracking Area

Our approach requires precise knowledge about the head postures
of the eyetracked user. The first step is thus to make sure that the
target areas are covered by appropriate head-tracking systems. One
can use either external tracking solutions, we have worked with
VICON, OptiTrack or ART, or one can use the build-in internal
tracking solution based on marker-tracking. If the latter is used, the
relevant area has to be covered by enough markers to ensure that
for each relevant head posture at least one marker can be seen in
the scene camera video. The coverage of the areas can easily be
checked using the real-time preview of our software.

4.2 Modeling Areas of Interest

Three-dimensional areas of interest have to be modeled for all tar-
get stimuli. These models can be rather abstract, e.g. just boxes of
the maximum extensions of the target stimulus, or precisely mod-
eled digital replicas of the original physical object. Thus, for the
three-dimensional case basically the same choices for the design of
areas of interest have to be made as for desktop-based scenarios.
Everything that is relevant for the later analysis has to be modeled.
This also includes obstacles that could potentially occlude certain
target stimuli, e.g. pillars in the room.

Figure 5 shows how this modeling step could be done using the
marker-based approach: one of our pre-defined coordinate frames
in DIN A0 has been used for this example. It comes with a good
coverage of markers for table-top experiments (see Section 5) and
provides a millimeter grid for orientation. The yellow cube is one
of the target stimuli. It has been placed at the target location on the
printed coordinate frame so that its center location and its exten-
sions can be read. In this case, we used a box model to represent
the corresponding area of interest. The right side of the figure shows
the textual representation that is used to define this target stimuli in
our software. An important step is the naming of the areas of in-
terest, here “YellowBlock”. This ID is later used in the output file
generated by the software, whenever the area of interest has been
looked at.

Advanced users may also model complex areas of interest, such as
the house depicted in Figure 2 using a three-dimensional modeling
software. We use the opensource software Blender3D [The Blender
Foundation 2015] for this. This complex model may contain any
geometries, also such that are only used for getting potential occlu-
sions right. Multiple areas of interest can be marked in such models
by a naming convention. Our software will search for any geome-
tries having names with the prefix AOI and will include them in
the evaluation report. The house in Figure 2, for example, contains
areas of interest such as AOI Door, AOI Chimney, AOI Bed, etc.

4.3 Validating the Tracking

Once the environment has been set-up like this, the software can be
started. It will show the live video image from the scene camera and
whenever it is in a tracked range (within range of the tracking sys-
tem or while markers are being visible), then the three-dimensional
areas of interest will be overlayed over the scene camera image.
This way the experimenter can check whether all areas of interest
have been correctly placed.

4.4 Running the Experiment

After the set-up has been validated, the experiment is ready to be
started. Besides starting our software and some initial settings, such
as declaring the dominant eye or the target name for the logfiles,
only the standard-procedure for mobile eye-tracking studies needs
to be followed, most importantly the calibration of the eye-tracking
device for the particular user. For this calibration procedure, we rely
on the implementations provided by the vendor of the eye-tracking
systems.

During the experiment, the experimenter can observe the current
state of the system using the live preview. Here the gaze-rays are
shown being projected into the video of the scene camera view. The
view also shows the virtual areas of interest. Whenever the user fix-
ates on such an area of interest, the corresponding geometry is high-
lighted in the scene and the name of the area of interest is presented
in a status line (see Figure 6). This way the experimenter can moni-
tor the data quality achieved with the current tracking setup and the
gaze calibration.

4.5 Collecting the Results

The results of an experiment run is a logfile containing all relevant
information being provided by the eye-tracking system. In addi-
tion to that, our software stores the following information for every
frame of the scene camera video:

AOI One column contains the name of the first AOI that has been
directly hit by the gaze-ray, or NA if no AOI was hit.



Stacked AOI This column may contain a list of AOIs if multiple
AOIs being stacked in depth are hit by the gaze-ray.

Stacked AOI Distances If there are stacked AOIs, then this col-
umn contains a list in the same order containing the distances
of the AOIs to the observer.

Angular AOI Deviations This column holds the angular dis-
tances of the gaze ray to all AOIs defined in the scene.

Most commonly one would just use the AOI column to identify
the target stimulus that has been fixated. In more complex sce-
narios, the other columns will provide valuable information for a
more in-depth analysis. If the study, for example, is about stim-
ulus non-attendance, then the column of Angular AOI Deviations
can be checked using a threshold angle for the non-attendance of
particular target stimuli. If, for example, the angular distance to a
particular area of interest is always greater than 5◦ of visual angle,
the target can be considered as not being attended. The choice of
the particular threshold, however, depends on the overal setup of
the environment. Similar information are currently not provided by
any other software we are aware of.

Besides the logfile, which can be used to analyze the experiment
results in a statistical package such as R, SPSS, or even Microsoft
Excel, we also provide a small tool that will create annotation tiers
for the annotation software ELAN [Wittenburg et al. 2006] repre-
senting the relevant information (blinks, fixations, areas of interest).

4.6 Optional Step: Re-Running the Analysis

In our own research life, we every now and then encounter a situ-
ation where we want to re-analyze previously recorded studies, for
example with a refinement of the definition of some areas of inter-
est or with additional areas of interest. E.g. in one study, we started
by analyzing fixations on different product packages and later on
decided that we want to differentiate between different parts of the
packages (brand, type description/depiction, incredients, etc.). In
a standard video-based analysis, we would have had to manually
annotate all the recorded videos again.

This is much more convenient with the model-based approach: one
just has to update the area of interest definitions (see Section 4.2)
and use the offline-mode of our software to re-analyze the gaze data
in all the recorded video files once again. This will take some time
for larger studies, but can run unattended and in parallel on multiple
machines.

5 Example Study: Measuring Joint Attention
of Two Interaction Partners

We applied our approach in a study on joint attention between two
interaction partners in a cooperative search task. The participants
were facing each other sitting at a table where 26 different LEGO
Duplo figures were arranged in five rows. Each figure was facing
one of the participants, thus revealing necessary disambiguation in-
formation only to one of the participants. In each trial, the partic-
ipants’ were given a verbal specification of a figure to be found.
Speech and gestures were forbidden, only interaction by gaze was
allowed. The participants thus had to negotiate by gaze which fig-
ure was the correct one.

For analysing the interactions, a situation model was created in-
cluding the figures as stimuli. They were modeled using small
proxy boxes being sufficient for our analysis. Both participants
were equipped with mobile eye-tracking glasses from SMI. The po-
sitions and orientations of both devices were determined using the
internal marker-tracking approach of our software. The calculated

Figure 6: Study scenario from the view of one interaction partner.
The participant wearing the eye tracker is currently fixating on a
figure. On the left, the fixation is depicted in a still from a gaze
video generated by the SMI software: the interpretation of the fix-
ated figure is up to the human viewer. On the right, the 3D situation
model is aligned to the perspective of the eye tracker and the target
figure is determined and highlighted by our software.

head positions of the participants were then also integrated into the
situation model as proxy boxes in order to be able to analyze gaze
on the interaction partner as well. So alltogether the study featured
28 areas of interest: 26 figures and the heads of two participants.
Data from both mobile eye-tracking systems was integrated in the
same 3D situation model, which allowed us to asses mutual gaze on
areas of interest, which is at the essence of joint attention.

Figure 6 shows the scenario: On the left-hand side, the view from
the scene camera of one participant’s eye-tracking glasses is shown.
The participant’s fixation is depicted by the 2D gaze cursor as it is
normally generated by mobile eye-tracking software (here SMI’s
BeGaze). On the right, the same picture is overlaid with the 3D sit-
uation model matched to the perspective of the scene camera by our
software. The gaze cursor is now replaced by the 3D gaze rays. To
visualize that a fixation on a stimulus is ongoing, the fixated figure
is highlighted in green. The large green box in the upper part of the
image represents the area of interest for the interaction partner. Its
position and orientation is updated according to the tracking infor-
mation gathered from the corresponding participant’s scene camera.

The data recorded during our study on joint attention was utilized
for evaluating the automatic annotation approach. The evaluation
consists of two parts: first, we focus on the coverage of the tracking
in terms of frames, i.e. what percentage of the video footage can
be annotated automatically (quantity). Second, we compare the au-
tomatic approach to human annotators to assess the quality of the
automatic annotations.

5.1 Tracking Coverage

During the study, in 13 experiments we recorded 383.5 minutes of
interactions, and thus 767 minutes (or 12.8 hours) of gaze videos
for the two interaction partners. In total, 37134 relevant fixations
(which occured during the actual trials) were recorded.

For generating annotations automatically, using the integrated
marker-tracking approach it is crucial that markers are detected in
relevant frames. Our system detected markers in 477102 of 529575
relevant frames that occurred during the trials, which corresponds
to 90%. The missing frames also include those, where no marker
was visible at all in the scene camera image of the eye-tracker, e.g.
when participants did not look at the table, but sideways. Table 1
shows the percentage of detections for all experiment runs and in-
teraction partners. The median percentage of frames with marker
detections for one experiment and participant is 91.1% (sd=4.9).



Table 1: Coverage of the video frames with marker detections and coverage of fixations with at least one marker detection, such that an
annotation can be done automatically.

Experiment Number 1 2 3 4 5 6 7 8 9 10 11 12 13 Median Mean SD

Frame Coverage in % Participant 1 92 88 91 90 91 91 90 91 89 93 91 86 90 91 90 1.9
Participant 2 88 93 93 93 91 91 93 92 92 93 91 71 77 92 89 6.7

Fixation Coverage in % Participant 1 98 94 98 100 99 100 99 100 99 100 100 98 97 99 99 1.7
Participant 2 97 100 100 100 100 100 97 99 100 100 100 88 95 100 98 3.4

As the aim in our experiments (and most likely also in most mobile
eye-tracking experiments) was analyzing fixations on areas of inter-
est, it is crucial to cover the frames in which fixations occur. 98.5
percent of all marker losses during the study only lasted shorter than
70 ms, which corresponds to two frames in case of our 30Hz scene
camera video provided by the eye tracker. The average interval be-
tween two marker losses was 687 ms. Relevant fixations start from
a duration of about 100 ms, so there should be only few fixations
which cannot be automatically annotated at all. Indeed, 36557 of
37134 relevant fixations (or 98.4%) could be annotated, as there
was at least one frame during each fixation where markers were
detected. In table 1, the percentages of automatically annotated fix-
ations for each experiment run and trial are depicted. Obviously
in the last two experiment runs, quality dropped for one participant
(maybe because of lighting conditions). In median, 99.4% (sd=2.7)
of all fixations of an experiment could be annotated.

5.2 Interrater Agreement Check

We determined the interrater reliability for two human annotators
and our automatic annotation system. Their single task was to iden-
tify the most likely area of interest for each fixation. The start and
end time of the fixation was annotated automatically based on the
logfile of the eye-tracking system. Some note about the gaze video:
the size of the gaze cursor was left at the defaults of the BeGaze
software by SMI, which lead to a width of about 13 pixels. Dis-
tances between the centers of two areas of interest were as low as 10
pixels depending on the perspective of the eye-tracked participant.
The discrimination task was thus very difficult for the annotators,
as well as for the automatic annotation.

Annotator reliability of the human annotators was tested by
manually annotating the same 5 minutes of gaze videos of the pre-
sented study, which took them almost perfectly equal 1 h and 40 min
each. Manual annotation of our data thus had an annotation ratio
of 1:10; annotators needed ten time the recorded time to complete
the classification of fixations on areas of interest. Projecting this
on the total length of 767 minutes of collected videos, human an-
notators would at least have needed 7670 minutes to annotate the
study material, or 128 hours, or 16 days 8 hours a day. Not tak-
ing into account a decreasing annotation performance after longer
coding sessions or effects of fatigue. The annotation results for the
automatic approach were available right after the recording of each
study session, without any extra efforts.

The interrater reliability for these two human annotators was found
to be Kappa = 0.8314, which is considered to be almost per-
fect [Landis and Koch 1977]. The strongest disagreement between
the raters was when considering fixations that had only a small over-
lap with a certain area of interest. In about one third of the fixations
classified as being ‘out’ the raters disagreed.

Annotation reliability of our software was tested against both
human annotators. For annotator 1 Kappa was 0.7691, which is
considered to be a substantial agreement and it is quite close to 0.8,
from which on almost perfect agreement starts. It is also quite close

to the interrater agreement measured for the human annotators of
0.8314. For annotator 2 Kappa was 0.7343, which is still in the
range of substantial agreement.

The software’s perceptual advantage. Looking closer at those
annotations were the human annotator and the software disagree, it
turned out that in 39 of 1103 annotations of annotator 1 the soft-
ware was actually able to identify the correct target stimulus while
the gaze cursor was not visible in the scene camera video. These oc-
curances are emphasized by the design of our study, as it contained
two interesting major areas, the table with the target objects and the
face of the interaction partner. As the participants had to switch
their gaze back and forth between the two areas, some fixated at the
figures, then, while holding their heads still, made a short glimpse
towards the eyes of the interlocutor. These were the examples in
which the gaze ray we could reconstruct using our method was be-
yond the borders of the scene camera view, the latter only showing
the lower half of the head of the interlocutor or even less. As the
identification by the software is relying on the three-dimensional
model, it is not necessary that the fixation is visible in the restricted
view of the scene camera. In these cases, the scene camera is only
used for locating the eye-tracking device in space, while the gaze
direction determined by the eye-tracking cameras is sufficient to
reconstruct the three-dimensional gaze-ray to test for hits with the
areas of interest. Thus one source of disagreement between the au-
tomatic annotation and the human annotator was that the automatic
annotation had a knowledge advantage for fixations beyond the bor-
ders of the scene camera video.

Problematic cases were observed which we called “running fix-
ations”: in some cases the two human annotators and the algorithm
disagreed about the area of interest, with at least two different sug-
gestions. Investigating the movements of the gaze cursor closer
for these fixations brought up that the gaze cursor was not stable
on one figure during these instances, but ran from one figure to the
other figure. This only happened when the two figures were close to
each other, but then led to different choices depending on whether
the annotator or algorithm weighted the initial or the final position
stronger. However, we asked ourselves, how could it happen in the
first place, that the fixation classification provided by the BeGaze
software could have classified such running eye movements as a
fixation? At the time being, we have no explanation for that, but we
will investigate this issue further in a future study, because it seems
highly relevant to be thoroughly addressed.

Sometimes the contrary happened, participants gazed at a figure,
then started turning their heads upwards, as in preparation of a gaze
towards the interlocutor, and only after some milliseconds let their
gaze follow to jump to the eyes of the interlocutor. These were
situations of “smooth pursuit” (inverse, so to say) in which on the
2D surface of the scene camera video the gaze cursor was running,
while in fact the focus stayed on the same stationary object.

There are several other types of disagreement, for example when
the gaze cursor only touches an area of interest, or touches two at
the same time. We will investigate this issue in a dedicated analysis
of the study to learn more about these issues. Some of these prob-
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Figure 7: Agreement of one annotator with the automatic anno-
tations for the different stimulus figures. The arrows depict stimuli
that were prevalently confused.

lematic cases are due to the dense experimental setup used in the
study. This can be seen in figure 7: Stimuli in close neighbourhood
were likely to be confused. The same goes for stimuli that are more
distant to the interaction partner. When areas of interest are more
clear-cut and have larger spaces in-between, based on the described
results we expect that the agreement between automatic annotation
and human annotators should be almost perfect.

6 Annotating Gaze on Moving Human Bodies

In many research questions, e.g. regarding human-human interac-
tion, not only fixations on areas of interest in the environment, but
also fixations on the interaction partner are of relevance. Gaze on
the partner’s face can be determined by marker tracking if each par-
ticipant is wearing mobile eye-tracking glasses, as has been shown
in the study described above. For cases where other body parts are
relevant, we integrated body tracking of the Microsoft Kinect v2
into our system.

Figure 1 shows an assisstive scenario where a person is wearing an
eye tracker. He is supported in building a toy house out of LEGO
Duplo parts. The Kinect sensor’s depth camera is used to detect the
user’s body, providing a stick-figure skeleton. In order to establish
a link between the coordinate systems of the Kinect and the areas of
interest in the environment, markers are tracked on the RGB camera
images of the Kinect. This way, the skeleton representing the user
can be integrated in the 3D situation model for the gaze analysis. In
the figure, the tracked hands of the person are marked as relevant
3D areas of interest and thus self-fixations can be detected auto-
matically. Using augmented reality technology, all data can also be
overlaid on top of the scene camera image of the eye tracker.

The integration of moving bodies works in real-time, as does the
overall system. In comparison to tracking the body using an optical
tracking system (ART, OptiTrack, VICON), using Microsoft Kinect
v2 renders this approach low-cost and portable. The Kinect can also
be used during the preparation of the study to create 3D scans from
the stimuli to have the geometries of the areas of interest in the
situation model match the real-world objects more closely. This
approach, e.g., has been followed to create the 3D house structure
shown in Figure 2.

7 Conclusion

Starting with a distinction of three different ways to analyze eye
movements, we have presented EyeSee3D, a model-based ap-
proach, which allows us to identify fixated areas of interest auto-
matically. We have shown that the approach can be extended to
support more than one camera system by reporting on a study with
two eye-tracked participants and the description of a set-up in which
one participant’s gaze and body movements were tracked using a
Microsoft Kinect v2. Both examples also demonstrated that the
presented approach is capable of handling moving areas of interest
(head, hands). With regard to this aspect, EyeSee3D also surpasses
previous methods (see Section 2). The presented approach can be
applied using low-cost equipment: tracking can be achieved using
a marker-based approach which makes use of the already available
scene camera video and consumer devices like the Microsoft Kinect
v2 can be used to provide a tracking of interaction partners.

The presented approach requires that the position and orientation
of the camera, for mobile eye-tracking systems the scene camera,
is tracked. This can be done with a classic outside-in motion track-
ing system, which is supported by our software, but which is not
discussed in this paper. Alternatively, we have presented a system
based on an inside-out tracking of salient markers, which signifi-
cantly outperforms our previous version (see Section 2) in terms of
coverage and comparability to annotations of human raters.

While the automatic annotations are already very similar to those of
the human annotators, there are some important differences. First of
all, the automatic annotations can also cover areas that are not vis-
ible in the scene camera video. This is due to the fact that the eye
movements detectable by the eye-tracking cameras cover a larger
area than what the scene camera covers. This can be in particular
interesting for the analysis of actions close to the participants body,
an area which is typically not covered by the scene camera. Second,
there are ambiguous cases in which human raters use heuristics that
require a more systematic analysis. However, the target scenario
chosen in the experiment used as an example was very demanding
because of small areas of interest in close vicinity. Depending on
the perspective, there were cases in which the distance between the
centers of two neighboring areas of interest was smaller than the
size of the gaze cursor hovering over them. A more sparse distribu-
tion of the stimuli would have led to less ambiguities and we expect
an even better performance for those cases.

We have also described certain tasks that have to be added to the
workflow of designing and conducting an eye-tracking experiment
using the presented approach. This workflow and the developed
templates for marker-covered coordinate frames will be further re-
fined. All information regarding EyeSee3D can be found on the
accompanying website [Pfeiffer et al. 2016].

The setup of the markers and the definition of the 26 areas of inter-
est for the study on joint attention took about 2 hours. A time well
spend given that this not only saved us from over 128 hours of man-
ual annotations, but also ensured a repeatable systematic annotation
over all recorded sessions.

Overall, with EyeSee3D, studies on eye movements in life-sized
real-world and virtual scenarios can be conducted with similar con-
venience than in desktop-based set-ups. If the marker-based ap-
proach can be applied, then there are no additional costs except for
printing some paper. If markers cannot be applied, external tracking
technologies can be used instead, which, however, come at some
cost.
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BRÔNE, G., OBEN, B., AND GOEDEMÉ, T. 2011. Towards a more
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