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Abstract— We present a novel hierarchical control frame-
work that unifies our previous work on tactile-servoing with
visual-servoing approaches to allow for robust manipulation
and exploration of unknown objects, including – but not
limited to – robust grasping, online grasp optimization, in-hand
manipulation, and exploration of object surfaces.

The framework is divided into three layers: a joint-level
layer, a tactile servoing layer, and a visual servoing layer. While
the middle layer provides “blind” surface exploration skills,
maintaining desired contact patterns, the visual layer monitors
and controls the actual object pose providing high-level finger-
tip motion commands that are merged with the tactile-servoing
control commands.

We illustrate the efficiency of the proposed framework using
a series of manipulation actions performed with two KUKA
LWR arms equipped with a tactile sensor array as a “sensitive
fingertip”. The two considered objects are unknown to the
robot, i.e. neither shape nor friction properties are available.

I. INTRODUCTION

Flexible interaction with objects, including grasping, ex-
ploration and manipulation, as we observe it in humans,
is still a major challenge for today’s robots. A key factor
for these skills is the highly developed integration of the
visual, tactile, and force sensing channels when carrying out
an action: this integration plays a major role to compensate
for the numerous uncertainties involved in the mechanical
interaction with an object when its properties (such as pose,
shape, mass and friction) are not or only approximately
known [3], [20], [8]. While the restricted availability of
good tactile sensors has been for a long time a major
impediment for a broader development of similar capabilities
for robots, the accelerating progress in tactile sensing and
its availability for robot manipulators is now increasingly
opening up exciting possibilities for integrating touch and
vision to enhance dexterous manipulation skills of robots.

The present contribution is focused on the augmentation of
a purely tactile-driven servoing control loop in a previously
developed system [13] by a second, visually driven control
loop such that both modalities complement each other in a
context-specific and suitably prioritized way. We exploit the
capabilities of a previously developed sensor [18] and focus
on two interaction phases which are at the core of many daily
actions:

1) align, approach and establish contact with an object
using touch and vision
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2) adjustment and maintenance of the created contact for
controlling the object (e.g. grasping, manipulation, and
exploration)

Our approach follows the idea to shape the contributions
of the participating control loops through suitably specified
projection matrices, which are switched between phases.
We investigate this as a main integration mechanism, along
with suitably prioritized controllers, to unify the control of
specialized interaction phases that are sequenced when ma-
nipulating an object: contact creation, contact maintenance,
contact optimization w.r.t. a specific objective, grasping,
manipulation, and finally object release. The present work
is part of a larger endeavor towards obtaining a general
framework for multimodal control of object manipulation.

Integrating vision and force feedback to improve robot
skills has been in the focus of a number of previous authors.
Two particularly important frameworks are the stack-of-tasks
framework [14], and the iTaSC framework [4], which allow
to specify tasks as constraints in different spaces which
facilitates the combination of different sensor-based control
modalities. Our work follows ideas of the control basis
framework [7], which allowed the specification of basic
control tasks and their subsequent prioritized combination.

Although there is a large body of work on force/torque-
based robot control for manipulation and exploration of
objects, these results cannot directly be applied to tactile-
feedback based control because tactile sensors typically do
not provide 6D wrench measurements, but instead an array of
1D normal force measurements. Depending on their spatial
resolution, these tactile sensor arrays could be considered
to provide “tactile images” of spatially distributed force
interaction patterns [18], [6]. Tactile sensor arrays have been
previously employed e.g. for object identification [22] and
exploration [2], [19].

Prats et. al [15] point out that force control should be
augmented with the tactile modality providing evidence
from experiments that tactile information provides valuable
information about local contact geometry (in addition to
force alone) and that this may help considerably to improve
the contact quality. They, however, only improve contact
quality by sliding/twisting the fingertip on the object, thereby
only exploiting three of the full six DOFs of the interaction.
The tactile-servoing control framework [10] and a similar
work [9] propose exploration of unknown object surfaces by
fusing tactile proprioceptive feedback to estimate the contact
position and contact force. Both works develop their control
framework in a rather problem-specific way, either focusing
on grasping and manipulation or on unknown environment
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Fig. 1. Hierarchical controllers structure

exploration. The present paper attempts to present framework
that allows to represent all these task in a unified fashion.

The paper is organized as follows: In the next section
we introduce the three-layered control architecture composed
from a joint-based controller, the tactile-servoing layer, and
a visual-servoing layer. Next, we evaluate the framework
on various bimanual manipulation tasks performed with
two KUKA LWR robots, each equipped with a 16×16
tactile sensor array serving as “large fingertips” [18]. Finally,
section V provides a conclusion.

II. HIERARCHICAL CONTROLLER STRUCTURE

The proposed approach augments our previous tactile-
servoing control framework [13] that aimed at realizing
sliding and rolling motions about the contact point while
maintaining a specified normal contact force during manip-
ulation. This was achieved by directly mapping errors in
the tactile feature vector (contact position and force) to a
suitable, error-reducing Cartesian velocity twist Vs of the
sensor frame. Subsequently the inverse velocity kinematics
(using our implementation of the control basis framework
CBF [17]) yields the appropriate joint velocities for the
desired sensor frame motion. The present work extends this
framework by complementing the tactile feedback loop with
a visual-servoing layer that provides high-level fingertip mo-
tion commands that then become merged into the lower-level
control flow. The overall controller structure is illustrated in
Fig. 1 and will be explained in the following subsections, first
summarizing our previous work on tactile servoing in Sec. II-
A and subsequently focusing on the new visual-servoing
branch in Sec. II-B. Fig. 2 depicts all involved coordinate
frames (subscripts denoting the global world frame (w), the
end-effector frame (e), the tactile sensor frame (s), and the
object frame (o), along with l and r to distinguish the left
and right hand when referencing the end-effector or sensor
frames).

A. Tactile-servoing Controller

The tactile servoing control cycle (in the bottom part of
Fig. 1) computes a vector ∆f(t) = [∆xs,∆ys,∆f,∆α]
of tactile-feature errors (position errors of the contact blob
centroid, force error, and angular error ∆α of the desired
contact blob orientation) from the raw sensor “tactile image”.
They are fed into a PID-type controller to obtain a control
vector u. The key idea to utilize all 6 control DOF is achieved
through computing a 6D velocity twist Vtact

s specifying an
error-reducing motion twist expressed in the sensor frame.
In its barest form, this can be computed by applying a fixed,
task-independent, inverted sensor Jacobian J−1s :

Vtact
s = J−1s ·∆f =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 ·


∆xs
∆ys
∆f
∆α

 (1)

The particular form of J−1s arises from the contact ge-
ometry: positional deviations are compensated by sliding

Fig. 2. Coordinate frames: Ow ,Oel,Oer ,Osl,Osr ,Oo. The sensor frames
are slightly displaced and turned by 90◦ relative to the end-effector frames.
The world frame is located on the table, but rendered above the image.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE-RAS International Conference on Humanoid Robots.
Received July 8, 2015.



motions along the same axes in the tangential (x-y) plane
of the sensor (1st and 2nd row); however, a deviation along
the x-axis can also be compensated by a rotation about the
y-axis through the contact point, and vice versa (4th and 5th

row). The orientation of a contact edge on the sensor can be
adjusted by rotation about the z axis of the sensor frame (6th

row). Normal force errors are corrected by a translational
motion along the z-axis (3rd row), which is normal to the
sensor plane, pointing towards the object.

This basic scheme is augmented with a task-dependent
projector matrix Ptact that selects task-relevant motion com-
ponents. Usually, Ptact is a simple 6×6 diagonal matrix,
where ones and zeros are used to toggle individual twist com-
ponents on and off. For example, if contact position control is
desired, one will choose Ptact = diag(1, 1, 0, 0, 0, 0). When
additionally force control is required, the third diagonal entry
should be set to one too. The 4th and 5th entries will enable
rolling, and the 6th entry will enable twisting.

Preprocessing the vector of tactile feature deviations with
a PID-type controller (with diagonal gain matrices KP,D,I ),
Eq.1 finally becomes:

Vtact
s = Ptac · J−1s ·

(
KP ·∆f(t) +KI ·

∫
∆f(t)dt

+KD · (∆f(t)−∆f(t− 1))
)
.

(2)

Finally, the twists from the tactile feedback loop are fed
into the low-level inverse kinematics module of the control
basis framework. To this end, the twist Vs expressed in terms
of the sensor frame Os will be transformed into the world
frame Ow employing the adjoint matrix derived from the
current forward kinematics Tw

s = Tw
e · T e

s = (Rw
s ,p

w
s ):

AdTws
=

(
Rw

s p̂w
s R

w
s

0 Rw
s

)
(3)

For a more detailed account of the tactile-servoing control
loop, we refer to [13].

B. Visual-servoing controller

The tactile-servoing control framework [13] already al-
lowed for an external motion component Vext

s to be fed
in and merged with the tactile-based motion component
Vtact

s . Previously we used this input to generate a fixed
forward motion to slide along an edge or to explore a
two-dimensional surface. Here we use it to feed in a high-
level motion component computed from visual object-pose
feedback to realize object manipulation and grasping.

To this end we adapted and integrated our previous work
on vision-based manipulation [10]. In that work we used a
fiducial marker to track the object pose w.r.t. the world frame
(assuming a calibrated, monocular, BW-camera). From the
difference between the current and the desired object pose,
we compute a desired object motion twist Vobj

w of the object
relative to the world. The world frame representation Vobj

w

can easily be transformed into the sensor frame to yield Vobj
s

assuming non-slipping contacts.
For unification of both control frameworks we assume

that a visual-servoing controller can always transform a
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Fig. 3. Align and approach phase: The sensor normal is aligned to the
approach vector towards the center of the object.

desired object motion twist into corresponding contact twists
expressed in the sensor frame. As we will see in the
following, for certain tasks, we can also compute the sensor
frame motion directly in the sensor frame. The obtained
contact twist, now expressed in the same coordinates as Vtact

s ,
can be masked (again using a task-specific projector matrix
Pvis) and finally added to the tactile motion component
to yield an overall twist Vs. The projector matrix Pvis

typically selects motion components orthogonal to the ones
of Vtact

s in order to allow for proper hybrid control. However,
we will also consider parallel tactile and visual control,
where contributions from both controllers are simultaneously
employed along the same motion directions.

C. Visuo-tactile-servoing control scheme

In the subsequent subsections we will outline four exem-
plary visual-servoing control schemes that are representative
examples of the two interaction phases described in the
introduction section:

1) Align and Approach the fingertips to the object center
and approach the object to establish proper contact,

2) Maintain and Adjust sliding fingers across the object
surface in order to reach desired contact points or to
improve grasp stability as demonstrated before [11],

3) In-Hand Manipulation of the object
4) Exploration of the object’s surface and acquiring a

tactile point cloud.
These actions are also shown in the accompanying video.
In all cases we assume, that no knowledge about the

object is available: neither detailed shape models nor friction
coefficients are known, such that we can deal with arbitrary
unknown objects. We only assume, that the pose of the object
can be tracked (in our case using a fiducial marker) and that
we might extract coarse shape information, e.g. using a depth
camera.

1) Align and approach: This phase aims at coarsely
aligning the two tactile sensors towards the object center
(which can be easily estimated from vision) and subsequently
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Fig. 4. Contact maintenance/adjustment phase: Slide fingers across the
object’s surface to reach optimal contact points.

approaching the object as illustrated in Fig. 3. Obviously,
the required motion twist is most easily represented in
world frame. The linear velocity component is given by the
direction vector “sensor → object origin” multiplied by a
gain kp:

vw = kp · (pw
o − pw

s ) (4)

The angular velocity ωw is computed using quaternion
slerp to move the sensor normal Rw

s · (0, 0, 1)t towards the
approach direction.

Projection matrices Ptact = 0 and Pvis = 1 ensure that
only the visual-servoing controller will be active.

2) Maintain and Adjust: As soon as contacts are detected,
the approach phase is finished and we switch from visual
servoing to tactile servoing by setting the projection matrices
Pvis = 0 and Ptact = diag(0, 0, 1, 1, 1, 0). This choice
allows to maintain a specified, small contact force and will
actively roll the tactile sensor to improve the alignment
with the object surface. Then we aim to stabilize the grasp
by sliding the fingers across the object’s surface reaching
better contact points. We have shown previously, that we
can autonomously find and follow the gradient direction of
an arbitrarily chosen cost function, e.g. maximizing grasp
stability and manipulability [11]. Here, we assume that the
desired contact points are available on the object which we
should servo to. Hence, in this phase, the tactile servoing
controller will be in charge of maintaining the contact,
reactively rolling on the surface of the object and maintaining
the contact force. Hence the corresponding task projector
equals Ptact = diag(0, 0, 1, 1, 1, 0). On the other hand, the
visual-servoing controller will generate the sliding motion on
the object surface employing the complementary projector
Pvis = diag(1, 1, 0, 0, 0, 0). The linear sensor velocity is
computed as follows:

vs = Rs
w · (Rw

o · po
c −Rw

s · ps
c) , (5)

where po
c is the desired contact position described in the

object frame, ps
c is the current contact position in the sensor

sx

sy

Fig. 5. Point cloud acquisition by superimposing an S-shaped motion
trajectory with tactile-servoing commands to maintain optimal contact.

frame, and Rw
s and Rw

o are the sensor and object frames
respectively, both given w.r.t. the world frame.

3) In-Hand Manipulation: If friction properties and joint
torques are not available, we cannot actively control rolling
and slipping, because internal forces cannot be designed.
However, as we have shown, short-range object manipulation
is possible without explicitly designing all details of the
physical hand-object interaction [10]. In order to calculate
finger tip motions to realize a desired object motion T o

o′

without knowledge about the exact object-finger geometry,
we made the assumption that contact positions po

c do not
move relative to the object during a control cycle. Under
this essential assumption, we could calculate the new contact
positions pw

c
′ in the world frame as follows:

pw
c
′ = Tw

o · T o
o′ · po

c . (6)

Of course, the assumption that there is no relative motion
between the fingertips and the object is only an approxi-
mation. Because the exact contact geometry as well as grasp
stability measures are not explicitly taken into account, some
slipping and rolling will probably occur. However, the sensor
feedback available in the next control cycle will allow us to
recognize and correct this undesired contact motion.

Having the tactile-servoing framework available, we can
replace the complex contact-force planning approach of [10]
with simple tactile control primitives to maintain contact
position and force as described in the previous subsection, i.e.
employing the task projector Ptact = diag(0, 0, 1, 1, 1, 0).
To allow full 6-DoF object control, the visual projector
equals the identity, Pvis = 1. With this choice, the projectors
are not complementary anymore but overlap. Hence, in this
case we use parallel position and force control, superimpos-
ing velocity control commands from both tactile and visual
servoing. This is necessary to allow object motion along the
contact normal direction as well as to compensate drift due
to poorly calibrated force sensors.

4) Exploration for Tactile Point Cloud Acquisition: In our
previous work [13] we used the tactile servoing controller to
explore an unknown object surface along a one-dimensional
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manifold by superimposing the tactile-servoing commands
with a fixed forward motion command. Here we extend
this work to palpate the complete two-dimensional object
surface and collect acquired contact points within a single
registered point cloud. To this end, we generate an S-shaped
motion profile as shown in Fig. 5 to be superimposed on the
tactile-based motion command. This motion profile generates
a tangential sliding motion of the sensor, while the tactile-
servoing controller is again maintaining contact using the
well-known projector matrix Ptact = diag(0, 0, 1, 1, 1, 0).
Visual-servoing is replaced by the hard-coded motion profile.
In order to register all acquired contact points within a single
point cloud, we transform all contact points ps

c initially
acquired with respect to the sensor frame to the object frame
utilizing the known forward kinematics of the robot and the
visually observed object pose Tw

o :

po
c = Tw

o · T s
w · ps

c . (7)

III. EXPERIMENTAL EVALUATION

The experimental setup comprises two KUKA LWR arms,
each equipped with a 16×16 tactile sensor array providing
up to 1.9 kHz frame rate and a nominal spatial resolution
of 5mm. Averaging the contact position over several taxels,
the spatial accuracy can be improved by a magnitude [13].
The tactile sensor is only coarsely force-calibrated using the
method proposed in [13], because the sensor characteristics
is highly taxel-specific and changes over time due to wear
as well as temperature fluctuations. However, as we show
in the following, the parallel position and force controller
employed during manipulation can successfully compensate
poor force measurements that typically would induce drift,
i.e. pushing the object into a certain direction.

The monocular camera was calibrated applying standard
calibration methods using a known 3D calibration object [5].
The BCH-code-based marker provides four highly reliable
and efficiently detectable key-points (at the corners) with
known coordinates with respect to the object frame. From
these we can calculate the object’s pose employing standard
pose detection from planar targets [23]. The fiducial marker
estimation accuracy can be found in [10]. A monocular
camera observes the scene from the top, estimating the object
pose from the fiducial marker at a maximal frame rate of 30
Hz. The robot control cycle is fixed to 250 Hz (using the
KUKA FRI interface) and in sync with the reduced tactile
feedback rate. Individually, tactile and visual feedback are
smoothed over time using a windowed averaging filter of
20 frames width. We point out that we use only the joint
encoder feedback, but not the torque feedback provided by
the KUKA arms. PID controller gains are manually tuned to
guarantee the stability of controllers in all experiments.

The accompanying video shows the same action sequence
of approaching, grasping and manipulating, performed on
two different objects, a straight cylinder and a tapered prism.
Both objects have different, un-modeled friction properties.
While the cylinder yields a smooth surface, the prism exhibits
flat surfaces with sharp edges.
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Fig. 6. Contact error evolution (in object frame) while establishing contact
and sliding towards the final contact point of the right hand.

1) Vision-guided contact creation: In the first phase we
establish contact with the object according to the strategy
outlined in Sec. II-C.1: The robot aligns and moves its finger
tips / tactile sensors towards the object center, which we
assume to be located 20cm below the recognized marker
position. This approaching motion is stopped as soon as
contact to the object is detected by the tactile sensor. Then
the visual-servoing controller will be switched to the tactile-
servoing controller that attempts to increase contact area by
a rolling motion while maintaining a small contact force to
not kick off the object.

2) Grasping and in-hand manipulation: Because the ob-
ject shape is unknown a-priori, the initial contact can be
anywhere on the object surface. Before we attempt to in-
crease the contact force to perform a stable grasp, the contact
location will be optimized using the sliding strategy outlined
in Sec. II-C.2. Error convergence towards the final grasp
points on the cylinder is shown for the two initial phases
in Fig. 6. The graphs start as soon as contact is established
with the object. During about the first 5secs, the robot aligns
the sensor surface with the object surface. Afterwards the
sliding motion towards the final grasp point begins – showing
smooth convergence.

In order to finally grasp and lift the object, we increase
the contact forces. Subsequently the object is moved about
10cm along the world’s z, x, and y axes in sequence. The
resulting trajectories for force and positional errors are shown
in Fig. 7. As can be seen from the deflections in the bottom
subfigure (positional errors), a new target pose was set after
8, 12, and 17 seconds. In all cases the positional error quickly
decays to the noise level. The two top subfigures show
the fingers’ contact force evolution and the desired contact
force. As can be seen from the force graphs, the left-hand
sensor underestimates the contact force while the right-hand
sensor overestimates. As there is no object drift (enforced by
the visual-servoing controller) both contact forces actually
balance out. Further, we notice that contact forces suddenly
change as soon as a new object pose is commanded.

Fig. 8 shows similar force and error tracking trajectories
when rotating the object about the world’s z and y-axes.
Again, positional and rotational errors quickly decay after
setting a new target pose. However, rotational errors are
corrected more slowly due to a more conservative choice
of controller gains. Combining the demonstrated in-hand
manipulation skills with repeated regrasping, we can also
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realize large-scale object manipulation as shown in the
accompanying video.

3) Object Exploration Acquiring a Tactile Point Cloud:
For the acquisition of a tactile point cloud, the robot fingers
palpate the object with the S-shaped motion trajectory shown
in Fig. 5. To record a complete surface model of the object,
the object needs to be rotated (due to the limited workspace
of the robot). This action is performed manually in the video
(rotating the cylindric object around its axis) to speedup the
whole process. Alternatively we could – of course – have
applied the large-scale manipulation action alternating to the
palpation process to fully automate the process.

The palpation of the tapered prism requires some manual
intervention to stabilize the rather light object on the table.
This is necessary because the transition between object
faces across the sharp edge creates rather large interaction

forces. Nevertheless the control algorithm can handle the
discontinuous transition between the discrete faces.

IV. DISCUSSION

As we pointed out in the discussion of the grasping and
manipulation experiments, the force calibration of the piezo-
resistive sensor is too coarse to allow force-only feedback
control for grasping. Deviations in measured force magni-
tudes at opposing contacts will lead to a drift of the object.
However, as we have seen from our experimental results,
it is not necessary to improve on the force measurement
accuracy of the hardware. Rather, we can compensate for
this weakness using intelligent control strategies.

In the present work, we relied on object pose feedback
from vision to solve the drifting issue, employing a parallel
position and force controller. However, even if visual object
pose feedback is not available (e.g. due to occlusion), we
can compensate for drifts using proprioceptive feedback: In
this case the object position would be estimated as the center
of gravity of estimated contact or end-effector locations that
should not drift either when we aim to stably hold the object.

As detailed in [12], the composite controller computes the
final control signal by superimposing the control signals from
both sub controllers, position and force. Naturally, linear
superposition may lead to destructive interference, i.e. non-
zero control inputs from sub controllers may add up to
zero. To circumvent this effect, we exploit the fact, that
PI-type controllers can compensate for systematic errors,
thus realizing higher priority control. That is, the more
important control variable will be controlled using a PI-type
controller, while the sub-ordinated one employs a P-type
controller. In our scenario, controlling the pose of the object
is more important, which therefore uses a PI-type controller.
In contrast, force control is using a P-controller. This, on
the other hand contributes to the poor force tracking results
visible in Figs 8. Although we cannot completely eliminate
the static force error, it is possible to reduce and control this
deviation by tuning the P-controller parameters. In this paper,
we demonstrated and quantitatively verified that the proposed
controller framework can realize accurate manipulation of
the object pose while stably holding the object using the
manually tuned parameters.

As a matter of fact, PID controllers are sensitive to proper
parameter tuning. We obeyed general rules for PID gain
tuning: Firstly Kp parameters are regulated until the system
begins to oscillate. Then the derivative gain Kd is employed
to reduce oscillations. Finally, the integration component Ki

is added to eliminate steady state errors. We used the same
parameter sets for both arms.

V. CONCLUSION

In this paper, we proposed a visuo-tactile servoing control
framework to realize a comprehensive set of visuo-tactile
interaction primitives on unknown objects, ranging from
aligned approach to grasping, optimal object contact and in-
hand manipulation to finally surface exploration. Common to
all actions is a tight feedback loop maintaining optimal object
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contact using tactile-servoing controllers. On top of that,
higher-level motion commands are fed in to realize visual-
servoing or surface exploration. Utilizing two task-dependent
projection matrices we can flexibly adapt the control system
to individual task requirements. The accompanying video
illustrates typical control capabilities that can be realized by
this simple yet powerful approach.
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