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Abstract

We present an adaptation of recent work
on probabilistic Type Theory with Records
(Cooper et al., 2014) for the purposes of
modelling the incremental semantic pro-

2 PreviousWork

Type Theory with Records (TTR) (Betarte and
Tasistro, 1998; Cooper, 2005) is a rich type the-
ory which has become widely used in dialogue
models, including information state models for

a variety of phenomena such as clarification re-
quests (Ginzburg, 2012; Cooper, 2012) and non-
sentential fragments (Fernandez, 2006). It has also
been shown to be useful for incremental semantic
parsing (Purver et al., 2011), incremental genera-
tion (Hough and Purver, 2012), and recently for
grammar induction (Eshghi et al., 2013).

While the technical details will be given in sec-
tion 3, the central judgement in type theary T
(that a given object is of type T) is extended

While classical type theory has been the predomi'—n TTR s0 thats can be a (potentially complex)
. i record andT’ can be aecord type— e.g. s could
nant mathematical framework in natural language

semantics for many years (Montague, 1974, inrepresent a dialogue gameboard state’Arduld

ter alia), it is only recently that probabilistic type be a dialogue gameboard state type (Ginzburg,

theory has been discussed for this purpose. Simz-c.)lz; Cpoper, 2012). As T.TR is highly flexible
. . . with a rich type system, variants have been con-
ilarly, type-theoretic representations have been

used within dialogue models (Ginzburg, 2012);Slderecj with types corresponding to real-number-
I L . "'valued perceptual judgements used in conjunction
and probabilistic modelling is common in dia-

. . with linguistic context, such as visual perceptual
Iogue systems .(W'."'ams and Young, 2907’ Interinformation (Larsson, 2011; Dobnik et al., 2012),
alia), but combinations of the two remain scarce.

Here. we attemot to make this connection. takin demonstrating its potential for embodied learning
' P i gsystems. The possibility of integration of per-

5&&022::5: dil(Tzfé;l); %Trbagglcsi“;wgi:;e;gceptron learning (Larsson, 2011) and naive Bayes
P palp classifiers (Cooper et al., 2014) into TTR show

rture, with the aim of modelling incremental in- LT .
parture, with the aim of modelling incrementa how linguistic processing and probabilistic con-

ference in dialogue. . . .
.ceptual inference can be treated in a uniform way
To our knowledge there has been no practi-

cal integration of probabilistic type-theoretic in- within the same representation system.
g ol b yp i . Probabilistic TTR as described by Cooper et al.
ference into a dialogue system so far; here we dis:

. 7 : (2014) replaces the categorical: T' judgement

cuss computationally efficient methods for imple-"".
L : . with the real number valuegd(s : T') = v where
mentation in an extant incremental dialogue sys-
) o .. v €[0,1]. The authors show how standard proba-
tem. This paper demonstrates their efficacy in sim- . . . . .
bility theoretic and Bayesian equations can be ap-

ple referential communication domains, but we ar-_. ) .
gue the methods could be extended to larger dq[—’"ed to TTR judgements and how an agent might

. L . . learn from experience in a simple classification
mains and additionally used for on-line learning . e
in future work. game. The agent is presented with instances of

cessing of dialogue participants. After
presenting the formalism and dialogue
framework, we show how probabilistic

TTR type judgements can be integrated
into the inference system of an incremen-
tal dialogue system, and discuss how this
could be used to guide parsing and dia-
logue management decisions.

1 Introduction
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a situation and it learns with each round by updatple will be addressed in section 5. First we will
ing its set of probabilistic type judgements to bestset out the framework in which we want to model
predict the type of object in focus — in this casesuch processing.

updating the probability judgement that something o _ _

is an apple given its observed colour and shapé Probabilistic TTR in an incremental

p(S : Tapple | S : TShpaS : TCol) where Shp € dlalogueframe/vork

{shpl, shp2} and Col € {coll,col2}. From a |, TTR (Cooper, 2005; Cooper, 2012), the princi-
cognitive modelling perspective, these Judgement%al logical form of interest is theecord type('RT’

can be viewed as probabilistic perceptual informas,q, here), consisting of sequencediefdsof the
tion derived from learning. We use similar meth- ¢, [1:T] containing a label and a typel’.:

ods in our toy domain, but show how prior judge- rTg can be witnessed (i.e. judged as inhabited)
ments could be constructed efficiently, and how,y yecordsof that type, where a record is a set of
classifications can be made without exhaustive itjgpal.yalue pair§/ = v]. The central type judge-

eration through individual type classifiers. ment in TTR that a record is of (record) type
There has also been significant experimental, ;o <. R can be made from the component

work on simple referential communication gamesy e judgements of individual fields; e.g. the one-
in psycholinguistics, computational and formal g g record[ [ = v]is of type[l : T']just in case

modelling. In terms of production and genera-, s of typeT. This is generalisable to records and
tion, Levelt (1989) discusses speaker strategiegrs with multiple fields: a record is of RT R if

for generating referring expressions in a simple, jqjdes fields with labels matching those occur-
object naming game. He showed how speakergng i, the fields ofR, such that all fields in? are
use informationally redundant features of the Ob'matched, and all matched fields srmust have a
jects, violating Grice’s Maxim of Quantity. In 46 helonging to the type of the corresponding
natural language generation (NLG), referring €x+ie|q in R, Thus it is possible fos to have more
pression generation (REG) has been widely stude|ys thanr and fors : R to still hold, but not

ied (see (Krahmer and Van Deemter, 2012) foRice versa:s : R cannot hold ifR has more fields
a comprehensive survey). The incremental algogn .

rithm (1A) (Dale and Reiter, 1995) is an iterative

feature selection procedure for descriptions of ob- i+ Lo T
jects based on computing the distractor set of ref- Ry : | o : 15 Ry : [ ll ) T1, } R3:[]
erents that each adjective in a referring expression Iy = Ts(lh) 202

could cause to be inferred. More recently Frank
and Goodman (2012) present a Bayesian model
of optimising referring expressions based on sur- Fields can have values representing predicate
prisal, the information-theoretic measure of howtypes ptype3, such asl; in Figure 1, and conse-
much descriptions reduce uncertainty about theijuently fields can beependenbn fields preced-
intended referent, a measure which they claim coring them (i.e. higher) in the RT, e.g. is bound in
relates strongly to human judgements. the predicate type fielt}, sol; depends oi.

The element of the referring expression do- o )
main we discuss here is incremental processingr;“btypes’ meets and joins A relation between
There is evidence from (Brennan and SchoberX'S We Wish to explore i€ (fis a subtype of’),
2001)'s experiments that people reason at an in\g\{mch can be defl_ned for RTs in terms of fields as
credibly time-critical level from linguistic infor- SIMPIY: i & R if for all fields [1 : T3] in Ry,
mation. They demonstratestlf-repair can speed 101 containsii : 7y ] whereT; £ 5. In Figure 1,
up semantic processing (or at least object refer20th 1 & 13 and R? E Rs; and R% = RQ, if ,
ence) in such games, where an incorrect ObjeCTQ E T». The transitive nature of this relation (if
being partly vocalized and then repaired in thelt1 & _R2 andR, & It thean_E Rs) can be used
instructions (e.g. “the yell-, uh, purple square”) effectively for type-theoretic inference.
yields quicker response times from the onset of *we only introduce the elements of TTR relevant to the
the target (“purple”) than in the case of the flu-phenomena discussed below. See (Cooper, 2012) for a de-
ent instructions (“the purple square”). This exam-21€d formal description.

Figure 1: Example TTR record types



We also assume the existencenadnifest(sin-  we use probabilistic TTR to model a common psy-
gleton) types, e.dgT,, the type of which onlyu is  cholinguistic experimental set up in section 5. We
a member. Here, we write manifest RT fields suchrepeat some of Cooper et al.’s calculations here
as[! : T, JwhereT, t T using the syntactic sugar for exposition, but demonstrate efficient graphical
[l : T']. The subtype relation effectively allows methods for generating and incrementally retriev-
progressive instantiation of fields (as addition ofing probabilities in section 4.
fields to R leads toR’' whereR' & R), which is Cooper et al. (2014) define the probability of the
practically useful for an incremental dialogue sys-meet and join types of two RTs as follows:
tem as we will explain.

We can also defineneetandjoin types of two  p(s: Ri A Ry) =p(s: Ri)p(s: Ry | s: Ry)
or more RTs. The representation of the meet type p(s: Bi Vv Ra) = p(s : Ry) +p(s : Rz) = p(s : Ri A Ry)
of two RTs R; and R; is the result of a merge @
operation (Larsson, 2010), which in simple terms It is practically useful, as we will describe be-
here can be seen as union of fields. A meet typéow, that the join probability can be computed in
is also equivalent to the extraction of a maxi-terms of the meet. Also, there are equivalences be-
mal common subtype, an operation we will calltween meets, joins and subtypes in terms of type
Ma:USub(Ri..Rn):z judgements as described above, in that assuming

if R{ E Rythenp(s: Ry | s: Ry) =1, we have:

it Ry = L T, andR, = ly T,
Iy : Ty I3 Ty —
L Ry AR,)=p(s: R
RiARy=| lp T} pls: Ry 2) =pls: Ri) @
13 : T3 p(81R1VR2)=p(5:R2)
= MazSub(Ry, Ry) p(s: Ry) < p(s: Ry)

The conditional probability of a record being of

R, and R, here are commoRupertypes of the ~YPER2 givenitis of typer, is:

resultingR; A Ry. On the other hand, the join of pls: Ry As:R,)
two RTsR; and R, the typeR; v R, cannot be p(s: Ry)
represented by field intersection. It is defined in \yie return to an explanation for these classical

terms of type checking, in that : R, v Ry iff  ropability equations holding within probabilistic
st Ryors: Ry Itfollows thatif Ry € Ry then  TTR in section 4.

st Ry ARyiff s: Ry,ands: Ry vV Ry iff s: Rs.

While technically the maximally common su- Learning and storing probabilistic judgements
pertype of R; and R, is the join typeR; vV Ry, When dealing with referring expression games, or
here we introduce the maximally commeimple ~ indeed any language game, we need a way of stor-
(non disjunctive) supertype of two RT% andR, NG perceptual experience. In probabilistic TTR

pls: Ry |s:Ry)= (3

as field intersection: this can be achieved by positing a judgementiset
L L ;T in which an agent stores probabilistic type judge-
if Ry ={ LT, ]andRz ={ LT ] ments> We refer to the sum of the value of proba-

bilistic judgements that a situation has been judged
to be of typeR; within J as||R;|| ; and the sum of

We will explore the usefulness of this new op- all probabilistic judgements id simply asP(J);
eration in terms of RT lattices in sec. 4. thus the prior probability that anythdng|| is of type
Rills

R; under the set of judgementtis SEUR The

3.1 Probabilistic TTR . o

, ~conditional probabilityp(s : Ry | s : Ry) un-
We follow Cooper et al. (2014)'s recent extensionger j can be reformulated in terms of these sets
of TTR to include probabilistic type judgements of ¢ judgements:

the formp(s : R) = v wherev € [0,1], i.e. the real il
valued judgement that a recosds of RT R. Here pi(s:Ry|s:Ry)= {W iff IRl #0 @)
T 0

MazSuper(Ry,Ry)=[ I + Ty ]

otherwise
’Here we concern ourselves with simple examples that———
avoid label-type clashes between two RTs (i.e. whereon- 3(Cooper etal., 2014) characterise a type judgement as an
tainsl, : T'1 and R, containgl, : T'2); in these cases the op- Austinian proposition that a situation is of a given typehwit
erations are more complex than field concatenation/sharing a given probability, encoded in a TTR record.



DS-TTR’s monotonicity, each maximal RT of the

where the sample spacg®; A Ry||; and||R . .
: pie sp .Hl ! 2|l 1721l tree’s root node is a subtype of the parser’s previ-
constitute the observations of the agent so far. .
ous maximal output.

can have new judgements added to it during learn- Following (Eshghi et al., 2013), DS-TTR tree

ing. We return to this after introducing the incre- nodes include a fieldead in all RTs which cor-

mental semantics needed to interface therewith.
responds to the DS tree node type. We also as-

3.2 DS-TTR and the DyL an dialogue system sume a neo-Davidsonian representation of predi-
In order to permit type-theoretic inference in acates, with fields co.rrespond.ing to an event. term
dialogue system, we need to provide suitableand to ga(_:h sema_ntlc role; this gl_low's all available
TTR representations for utterances and the Curg,emant!cmformat.lon o be-specmed mcr_er_nentally
rent pragmatic situation from a parser, dialogueIn a. str_|ct subtyping .relat|on (e.9. prowdlng the
manager and generator as instantaneously and a‘%@b] () field Whe’.‘ subject but not object has been
curately as possible. For this purpose we us@arsed_)—see Figure 2. ,

an incremental framework DS-TTR (Eshghi et We implement DS-TTR parsing and genera-

al., 2013; Purver et al.,, 2011) which integratestIon mechanisms in thByLan dialogue syste

TTR representations with the inherently incre—Within Jindigo (Skantze and Hjaimarsson, 2010),

mental grammar formalism Dynamic Syntax (DS)"Jl \_]tavlzlaJ-b?sed |mp:(e mfenstatr:?n of the ('jnglf m(tental
(Kempson et al., 2001). unit (IU) framework of (Schlangen an antze,

2009). In this framework, each module has input
Tojohn i€ and output 1Us which can bedded as edges be-

o, Ty(t),| Corrive © % tween vertices in module buffer graphs, and be-
Pesutstesn) * ¢ comeconmi t ted should the appropriate condi-

' tions be fulfilled, a notion which becomes im-

portant in light of hypothesis change and repair

Tyle - t), situations. Dependency relations between differ-
Tyle), Ar:[ head : e ]. ent graphs within and between modules can be
[ Tojohn * € porhead 2 E specified bygroundedinlinks (see (Schlangen and
head, : e Peonssions) © 1 Skantze, 2009) for details).
head, The DyLan interpreter module (Purver et al.,

Figure 2: DS-TTR tree 2011) uses Sato (2011)’s insight that the context of
DS parsing can be characterized in terms of a Di-
DS produces an incrementally specified, partiarected Acyclic Graph (DAG) with trees for nodes
logical tree as words are parsed/generated; followand DS actions for edges. The module’s state is
ing Purver et al. (2011), DS tree nodes are deccharacterized by three linked graphs as shown in
orated not with simple atomic formulae but with Figure 3:
RTs, and corresponding lambda abstracts repre- * input: a time-linear word graph posted by the

senting functions of typeRT - RT (e.g. \r: ASR module, consisting of word hypothesis
[l : Ty ] [lo=rs, : T1] wWherer.l; is a path ex- edge IUs between verticé§),
pression referring to the labé] in ) — see Fig- * processing: the internal DS parsing DAG,

ure 2. Using the idea of manifestness of fields ~ which adds parse state edge IUs between ver-
as mentioned above, we have a natural represen- ticesS,, groundedinthe corresponding word
tation for underspecification of leaf node content, hypothesis edge 1U

e.g. [z : e] is unmanifest wheredsr_ o, : e]4  output: a concept graph consisting of domain
is manifest and the latter is a subtype of the for- concept IUs (RTs) as edges between vertices
mer. Functional application can apply incremen-  C,,, groundedirthe corresponding path in the
tally, allowing a RT at the root node to be com- DS parsing DAG

piled for any partial tree, which is incrementally Here, our interest is principally in the parser out-

further specified as parsing proceeds (Hough anfut, to support incremental inference; a DS-TTR

Purver, 2012). Within a given parse path, due tqyenerator is also included which uses RTs as goal
“This is syntactic sugar fdfz : e;onn ] and the = sign is concepts (Hough and Purver, 2012) and uses the

not the same semantically as that in a record. .
y ®Available from http://dylan.sourceforge.net/



Ryyp0 =1[]=

same parse graph as the interpreter to allow self- \
monitoring and compound contributions, but we

. . R = N R = : R = H
omit the details here. 120 = 121 o= e:f]
“John” Y “arrives” ‘ >( >< ’
v () JL & JL () Ry = - :[ c:d ]
e: f

<John-subj> <arrives>

DS-TTR
PARSE/GENERATION
STATE GRAPH
<John-obj>

\
[55e] (el [y, i) Figure 4: Record Type lattice ordered by the sub-
COTSE:I;S:;\PH @ ipath s0-s1-s2 grounds CO-C1 @ type I’e|atl0n
[ o] join and in TTR terms is\/ axSuper(R,, R,) but
rrive(x) T

not necessarily their join typé, v R, as here
we concern ourselves with simple RTs. One el-
ementcoversanother if it is a direct successor to
it in the subtype ordering relation hierarchy
has a greatest element)and least elementL(),
with the atomsbeing the elements that cover,
in Figure 4 if R is viewed asl , the atoms are
RT lattices to encode domain knowledge To  Ryio,11,12)- An RT elementR, has acomple-
support efficient inference idyLan, we represent mentif there is a unique elememR, such that
dialogue domain concepts via partially orderedM azSuper(R,,-R,) = T andR, A =R, =
sets poset} of RT judgements, following similar (the lattice in Figure 4 isomplementedis this
insights used in inducing DS-TTR actions (Eshghiholds for every element).
et al., 2013). A poset has several advantages over Graphically, the join of two elements can be
an unordered list of un-decomposed record typedound by following the connecting edges upward
the possibility of incremental type-checking; in- until they first converge on a single RT, giving us
creased speed of type-checking, particularly forM axzSuper(Ryg, R12) = R1o1 in Figure 4, and the
pairs of/multiple type judgements; immediate usemeet can be found by following the lines down-
of type judgements to guide system decisions; inward until they connect to give their meet type,
ference from negation; and the inclusion of learn4.e. Rig A Ris = R;.
ing within a domain. We leave the final challenge If we considerR; to be a domain concept in
for future work, but discuss the others here. a dialogue system, we can see how its RT lattice
We can construct a poset of type judgement<> can be used for incremental inference. As in-
for any single RT by decomposing it into its con- crementally specified RTs become available from
stituent supertype judgements imegord type lat- the interpreter they are matched to thoseSiro
tice. Representationally, as per set-theoretic latdetermine how far down towards the final domain
tices, this can be visualised as a Hasse diagra@onceptR; our current state allows us to be. Dif-
such as Figure 4, however here the ordering arrowterent sequences of words/utterances lead to dif-
showE (‘subtype of’) relations from descendant to ferent paths. However, any practical dialogue sys-
ancestor nodes. tem must entertain more than one possible domain
To characterize an RT lattic& ordered bys, concept as an outcomé&; must therefore contain
we adapt Knuth (2005)’s description of lattices inmultiple possible final concepts, constituting its
line with standard order theory: for a pair of RT atoms, each with several possible dialogue move
elementsR, and R, their lower bound is the set sequences, which correspond to possible down-
ofall R, € G such thatk, E R, andR, £ R,. ward paths — e.g. see the structure of Figure 5.
In the event that a unique greatest lower bound exOur aim here is to associate each RTGnwith a
ists, this is their meet, which i happily corre- probabilistic judgement.

sponds to the TTR meet typ@, A Ry. Dually, if Initial lattice construction We define a simple
their unique least upper bound eX|sts this is thei It ottom- up procedure in Algorithm 1 to build a RT

Figure 3: Normal incremental parsing in Dylan

4 Order theoretic and graphical methods
for probabilistic TTR



lattice G of all possible simple domain RTs and the three disjunctive final situations. Each node
their prior probabilistic judgements, initialised by shows an RTR; on the left and the derivation of
the disjunction of possible final state judgementsts prior probability p;(R;) that any game situa-
(the priors)‘,5 along with the absurdityl, stipu- tion record will be of typeR; on the right, purely
lated a priori as the least element with probabilityin terms of the relevant priors and the global de-
0 and the meet type of the atomic priors. The alnominatorP(.J).
gorithm recursively removes one field fromthe RT G can be searched to make inferences in light
being processed at a time (except fields referenceaf partial information from an ongoing utterance.
in a remaining dependeptypefield), then orders We model inference as predicting the likelihood
the new supertype RT i&¥ appropriately. of relevant type judgement®, € G of a situa-
Each node inG contains its RTR; and a sum tion s, given the judgement : R, we have so far.
of probability judgement$||Rx||; + .- + ||R.||;}  To do this we use conditional probability judge-
corresponding to the probabilities of the priors itments following Knuth's work on distributive lat-
stands in a supertype relation to. These sums at&ces, using the relation to give a choice function:
propagated up from child to parent node as it is
constructed. It terminates when all simple maxi-
mal supertypeshave been processed, leaving the ”
maximally common supertype as (possibly the
empty type [ ]), associated with the entire proba- The third case is the degree of inclusion/ef
bility massP(.J), which constitutes the denomina- in R,, and can be calculated using the conditional

tor to all judgements- given this, only the numer-Probability calculation (4) in sec. 3. For nega-
||R s ht|ve RTs, a lattice generated from Algorithm 1 will

ator of equation*5~< needs to be stored at eac N
P(J) be distributive but not guaranteed to be comple-
node. : :
mented, however we can still deriyg(s : R, |
Algorithm 1 Probabilistic TTR record type lattice s : =R,;) by obtainingp (s : R,) in G modulo the

1 fR,ER,
pi(s:Ry|s:R;)=40 ifR, AR, =1 5)
p otherwise, wher@ <p <1

construction algorithm probability mass ofz, and that of its subtypes:
INPUT: priors D> use the initial prior judgements for G’s atoms
OUTPUT:G , 0 if R, ER
agendaprors P e e e ngonga. PI(8 1 By 832 Be) =4 pylshybpyeRantty) oo
while not agenda is emptgio py(sT)-py(s:Rs)
RT = agenda.pop() (6)
for field e RT do ) ) L.
if field € RT.pathsthen > Do not remove bound fields The subtype relations and atomic, join and meet
continue . .
SuperRT = RT - field o _ types’ probabilities required for (1) - (6) can be
if superRTe G then > not new? order w.r.t. RT and inherit RT’s priors .. .
| order(RT address, G, getNode(super), _ calculated efficiently through graphical search al-
se > new? . ..
superNode = G.newNode(superRT) [> create new node w. empty priors gOfItth by CharaCterISIng; as a DAG: the re-
for nodee G do > order superNode w.r.t. other nodes in G . . .
if superRT fields node fieldshen verse direction of the subtype ordering edges can

G.order(node,superNodg, D> superNode inherits node’s priors

agenda.append(superRT) 1> add to agenda for further superyping  0€ Viewed as reachability edges, makimgthe
source andL the sink. With this characterisation,
Direct inference from the lattice To explain if R, is reachable fronkz, thenR, E R,,.
how our approach models incremental inference, In DAG terms, the probability of the meet of
we assume Brennan and Schober (2001)'s expetiwo RTs R, and R,, can be found at their highest
mental referring game domain described in sectiogommon descendant node — e (R, A R5) in
2: three distinct domain situation R, R, and  Figure 5 can be found asdirectly atR;. Note if
R correspond to a purple square, a yellow squarg,, is reachable fronR,, i.e. R, t Ry, then due
and a yellow circle, respectively. to the equivalences listed in (2);(R, A R,) can

The RT latticeG' constructed initially upon ob- be found directly af?,. If the meet of two nodes
servation of the game (by instructor or instructee)s | (e.g. R, and R; in Figure 5), then their meet
shown in Figure 5 uses a uniform distribution for probability is 0 ag ;(L)=0.

®Although the priors’ disjunctive probability sums to 1 af- While the lattice does not have direct access to

ter G is constructed, i.e. in F,guregw -1, the join types of its elements, a join type prob-
the real values initially assigned to them need not sum tability p;(R, v R,) can be calculated in terms
unity, as they form the atoms ¢f (see (Knuth, 2005)). of pj(R, A R ) by the join equation in (1),

Note that it does not generate the join types but maximalyhich holds for all probabilistic distributive lat-
common supertypes defined by field intersection.
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Figure 5: Record type lattice with initial uniform prior grablities

tices (Knuth, 200553. As regards efficiency, worst ‘yell-’, the best partial word hypothesis is now
case complexity for finding the meet probability at“yellow”; Ythe interpreter therefore outputs an RT
the common descendant &, and R, is a linear  which matches the type judgement R (i.e. that
O(m +n) wherem andn are the number of edges the object is a yellow object). Taking this judge-
in the downward (possibly forked) patlis, - L  ment as the conditioning evidence using function
andR, » 1.° (5) we getpy(s : Ry | s : Rg) = 0 and us-
] o ) ing (4) we getpy(s : Ry | s : Rg) = 0.5 and
5 Smulatmgmcremental inference and pils t Rs | s : Rg) = 0.5 (see the schematic
self-repair processing probability distribution at stage T2 in Figure 6 for

Interpretation inDyLan and its interface to the the three objects). The meet type probabilities
RT latticeG follows evidence that dialogue agentsequired for the conditional probabilities can be
parse self-repairs efficiently and that repaired difound graphically as described above.

alogue content (reparanda) is given special sta- At T3:'uh purple’, low probability in the in-
tus but not removed from the discourse context!€rpreter output causes a self-repair to be recog-
To model Brennan and Schober (2001)'s findingdised, enforcing backtracking on the parse graph
of disfluent spoken instructions speeding up obWhich informally operates as follows (see Hough
ject recognition (see section 2), we demonstrat@nd Purver (2012)) :

a self-repair parse in Figure 6 for “The yeII-_, gh, Self-repair:

purp_le sq_uare_” in the simple game of_ predicting IF from parsing wordV the edgeSE,, is in-

the final situation fron{R,, Ry, R} continuously sufficiently likely to be constructed from ver-

given the type judgements made so far. We de- (o 5 OR IF there is no sufficiently likely
scribe the stages T1-T4 in terms of the current judgemenip(s : R,) for R, € G

word being processed- see Figure 6: THEN parse wordV from vertexS,_;. IF
At T1:'the’ the interpreter will not yield a sub- successfubdd a new edge to the top path

type checkable i so we can only condition on without removing anyconmi t ted edges be-

.. . . _ 1 . .

Rg (T), giving uspy(s = R; | s : Rg) = 3 for ginning atS,,_; ; ELSE seth=n~1 and repeat.

1 € {1,2,3}, equivalent to the priors. AT2:

— This algorithm is consistent with a local model

®The search for the meet probability is generalisable to

conjunctive types by searching for the conjuncts’ highest dor self-repair backtracking found in corpora
common descendant. The join probability is generalisable t (Shriberg and Stolcke, 1998; Hough and Purver,

the disjunctive probability of multiple types, used, ath@b- 2013) As regards inference ‘ﬁ’ upon detection
gramatically, in Algorithm 1 for calculating a node’s preba

bility from its child nodes. of a self-repair that revokes: Rg, the type judge-
*While we do not give details here, simple graphical Ments : =R, i.e. that this is not a yellow object,

search algorithms for conjunctive and disjunctive mugipl TN

types are linear in the number of conjuncts and disjuncts, sa  ~ In practice, ASR modules yielding partial results are less

ing considerable time in comparison to the algebraic caicul reliable than their non-incremental counterparts, bugpess

tions of the sum and product rules for distributive lattices  is being made here (Schlangen and Skantze, 2009).
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Figure 6: Incremental DS-TTR self-repair parsing. Intexgdh groundedInlinks go top to bottom.

is immediately available as conditioning evidenceLearning in a dialogue While not our focus
Using (6) our distribution of RT judgements now here, lattice G's probabilities can be updated
shifts: py(s : Ry | s : =Rg) =1, py(s : Ry | through observations after its initial construction.
st =aRg)=0andpy(s: Ry | s : =Rg) = 0 be- If areference game is played over several rounds,
fore “purple” has been parsed — thus providing ahe choice of referring expression can change
probabilistic explanation for increased subsequenbased on mutually salient functions from words
processing speed. Finally @a: ‘square given to situations- see e.g. (DeVault and Stone, 2009).
ps(s: Ry | s:Ry)=1andR;ARy, = RiAR3 =1, Our currently frequentist approach to learning is:
the distribution remains unchanged. given an observation of an existing B; is made
The system’s processing models how listenwith probabilityv, then||R;|| ;, the overall denom-
ers reason about the revocation itself rather thamator P(.J) , and the nodes in the upward path
predicting the outcome through positive evidenceérom R; to T are incremented by. The approach
alone, in line with (Brennan and Schober, 2001)'scould be converted to Bayesian update learning by

results. using the prior probabilities id- for calculatingw
] before it is added. Furthermore, observations can
6 Extensions be added ta7 that include novel RTs: due to the

Dialogue and self-repair in the wild To move DAG structure ofG, their subtype ordering and
towards domain-generality, generating the latticd®roPability effects can be integrated efficiently.

of all .pos.slble dlalogL_Je sﬂuapons for mterestl_ng7 Conclusion

domains is computationally intractable. We in-

tend instead to consider incrementally occurringVe have discussed efficient methods for construct-
issuesthat can be modelled as questions (Larsing probabilistic TTR domain concept lattices or-
son, 2002). Given one or more issues manifest imlered by the subtype relation and their use in
the dialogue at any time, it is plausible to gener-incremental dialogue frameworks, demonstrating
ate small lattices dynamically to estimate possiblgheir efficacy for realistic self-repair processing.
answers, and also assign a real-valued relevand®e wish to explore inclusion of join types, the
measure to questions that can be asked to resohgealability of RT lattices to other domains and
the issues. We are exploring how this could beheir learning capacity in future work.
implemented using the inquiry calculus (Knuth,

2005), which defines information theoretic rele-Acknowledgements

vance in terms of a probabilistic question lattice,\nje thank the two TTNLS reviewers for their com-
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the cause of self-repair as a time critical trade'OﬁCommunity's Seventh Framework Programme un-
between relevance and accuracy. der grant agreement no 611733 (ConCreTe).



References J. Hough and M. Purver. 2013. Modelling expectation
in the self-repair processing of annotat-, um, listen-
ers. InProceedings of the 17th SemDial Workshop
on the Semantics and Pragmatics of Dialogue (Di-
alDam).

G. Betarte and A. Tasistro. 1998. Extension of Martin-
Lof type theory with record types and subtyping. In
G. Sambin and J. Smith, editor35 Years of Con-
structive Type TheoryOxford University Press.

R. Kempson, W. Meyer-Viol, and D. Gabbay. 2001.

S. Brennan and M. Schober. 2001. How listeners pynamic Syntax: The Flow of Language Under-
compensate for disfluencies in spontaneous speech. standing Blackwell.

Journal of Memory and Languagé4(2):274—-296.
_ ) K. H. Knuth. 2005. Lattice duality: The origin of prob-
R. Cooper, S. Dobnik, S. Lappin, and S. Larsson. 2014. apility and entropyNeurocomputing67:245—274.
A probabilistic rich type theory for semantic inter-
pretation. InProceedings of the EACL Workshop E. Krahmer and K. Van Deemter. 2012. Computa-
on Type Theory and Natural Language Semantics tional generation of referring expressions: A survey.
(TTNLS) Computational Linguistics38(1):173-218.

R. Cooper. 2005. Records and record types in seS. Larsson. 2002ssue-based Dialogue Management

mantic theory. Journal of Logic and Computation ~ Ph.D. thesis, Goteborg University. Also published
15(2):99-112. as Gothenburg Monographs in Linguistics 21.

R. Cooper. 2012. Type theory and semantics in fluxS- Larsson. 2010. Accommodating innovative mean-
In R. Kempson, N. Asher, and T. Fernando, edi- ing in dialogue. Proc. of Londial, SemDial Work-
tors, Handbook of the Philosophy of Sciena®l- shop pages 83-90.
ume 14: Philosophy of Linguistics, pages 271—323S Larsson

North Holland. 2011. The TTR perceptron: Dynamic

perceptual meanings and semantic coordination. In
Proceedings of the 15th Workshop on the Semantics
and Pragmatics of Dialogue (SembDial 2011 - Los
Angelogue)

R. Dale and E. Reiter. 1995. Computational interpreta-
tions of the gricean maxims in the generation of re-
ferring expressionsCognitive Sciengel9(2):233—

263. W. Levelt. 1989.Speaking: From Intention to Articu-

D. DeVault and M. Stone. 2009. Learning to interpret lation. MIT Press.

utterances using dialogue history.Roceedings of R Montague. 1974Formal Philosophy: Selected Pa-
Association for Computational Linguistics (EACL)
M. Purver, A. Eshghi, and J. Hough. 2011. Incremen-
S. Dobnik, R. Cooper, and S. Larsson. 2012. Mod- tal semantic construction in a dialogue system. In
elling language, action, and perception in type the- J. Bos and S. Pulman, editof@roceedings of the
ory with records. InProceedings of the 7th Inter-  9th International Conference on Computational Se-
national Workshop on Constraint Solving and Lan- mantics

guage Processing (CSLP12) o
Y. Sato. 2011. Local ambiguity, search strate-

A. Eshghi, J. Hough, and M. Purver. 2013. Incre- gies and parsing in Dynamic Syntax. In E. Gre-
mental grammar induction from child-directed di-  goromichelaki, R. Kempson, and C. Howes, editors,
alogue utterances. IRroceedings of the 4th An-  The Dynamics of Lexical InterfaceSSLI Publica-
nual Workshop on Cognitive Modeling and Compu- tions.

tational Linguistics (CMCL,
J ( ) D. Schlangen and G. Skantze. 2009. A general, ab-

R. Fernandez. 2008\on-Sentential Utterances in Di-  stract model of incremental dialogue processing. In
alogue: Classification, Resolution and UsEh.D. Proceedings of the 12th Conference of the European
thesis, King's College London, University of Lon-  Chapter of the ACL (EACL 2009)

don.
E. Shriberg and A. Stolcke. 1998. How far do speakers

M. C. Frank and N. D. Goodman. 2012. Predicting back up in repairs? A quantitative model. Rmo-

pragmatic reasoning in language game3cience ceedings of the International Conference on Spoken
336(6084):998-998. Language Processing

J. Ginzburg. 2012The Interactive Stance: Meaning G- Skantze and A. Hjalmarsson. 2010. Towards incre-
for Conversation Oxford University Press. mental speech generation in dialogue systems. In

Proceedings of the SIGDIAL 2010 Conference
J. Hough and M. Purver. 2012. Processing self-repairs .
in an incremental type-theoretic dialogue system. I+ Williams and S. Young. 2007. Scaling POMDPs
Proceedings of the 16th SemDial Workshop on the for Spoken dialog management/EEE Transac-

Semantics and Pragmatics of Dialogue (SeineDial) ~ {0ns on Audio, Speech, and Language Processing
15(7):2116-2129.



