
Modeling Human-Robot-Interaction Based
on Generic Interaction Patterns

Julia Peltason

Julia Peltason
Angewandte Informatik
Technische Fakultät
Universität Bielefeld
jpeltaso@techfak.uni-bielefeld.de

Abdruck der genehmigten Dissertation zur Erlangung
des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Der Technischen Fakultät der Universität Bielefeld
am 13.03.2012 vorgelegt von Julia Peltason
am 12.06.2013 verteidigt und genehmigt

Gutachter
Prof. Dr. Britta Wrede
Prof. Dr. David Schlangen

Prüfungsausschuss
Prof. Dr. Britta Wrede
Prof. Dr. David Schlangen
Prof. Dr. Philipp Cimiano
Dr. Robert Haschke

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

Acknowledgement

This thesis would not have been possible without the help and support of many people.
First I would like to thank my supervisor Britta Wrede. In spite of her tight schedule, she
always found time for me whenever I needed advice. I also thank my thesis committee for
their time in reviewing and evaluating my thesis. I am grateful to Gerhard Sagerer and
Franz Kummert for giving me the opportunity to graduate at the Applied Informatics
group and to participate in various interesting projects.

I would like to thank everyone I have collaborated with. Thanks to my colleagues from
the Home-Tour team (in particular to Marc Hanheide) and the Curious Robot team (in
particular to Ingo Lütkebohle and Robert Haschke) for fruitful collaboration and lots of
good ideas (sometimes more than we could put into practice). Thanks for collaboration
also to my (former) student workers Anja Phillipsen, Annika Rothert, Birte Carlmeyer,
Maikel Linke and Marian Pohling. I enjoyed working with you! I would also like to thank
the users of my software, especially Frederic Siepmann, for providing feedback and making
helpful suggestions for improvement. And thanks a lot to Nina Riether for helping with
the statistics.

Finally, I want to thank my colleagues and friends from the Applied Informatics group:
Agnes Swadzba, Angelika Dierker, Holger Dierker, Ingmar Berger, Lars Schillingmann,
Manja Lohse, and all the others who made my time there such an enjoyable time. Special
thanks is due to Ingo Lütkebohle who played such an important role for me, not just for
this thesis, but also in my real life.

i

Contents

I A Pattern-Based Approach to Human-Robot-Interaction 1

1 Introduction 3

2 Foundational Work in Dialog Modeling and Evaluation 7
2.1 Approaches to Dialog Modeling . 7

2.1.1 Categorization of Approaches . 7
2.1.2 Descriptive Approaches . 9
2.1.3 Mental-state Approaches . 11

2.2 Dialog Modeling for Human-Robot-Interaction 14
2.2.1 Characteristics of Human-Robot-Interaction 14
2.2.2 State-Of-the-Art . 15

2.3 Evaluation of Interactive Systems . 18
2.3.1 Evaluating Dialog Systems . 19
2.3.2 Evaluating Interactive Robot Systems 22

2.4 The Adopted Approach . 27
2.4.1 Dialog Modeling . 27
2.4.2 Evaluation . 28

3 Specifying the External Interface: The Task State Protocol 31
3.1 Motivation . 31
3.2 Foundational Work . 33
3.3 The Task State Protocol . 38
3.4 Advanced HRI Based on the Task State Protocol 41

3.4.1 Use Case 1: Realizing Mixed Task Initiative 42
3.4.2 Use Case 2: Integrating Action Execution and Interaction 43
3.4.3 Use Case 3: Multitasking . 44
3.4.4 Use case 4: Enabling Interactive Learning 45

3.5 Motivation . 46
3.6 Foundational Work . 48

3.6.1 The Internal View: Descriptive Dialog Models 48
3.6.2 Dialog System APIs . 50

3.7 Generic Interaction Patterns . 52

iii

iv Contents

3.8 Interaction Patterns as an Internal Dialog Model 59
3.8.1 The Dialog Management Process 59
3.8.2 Global Discourse Planning, Grounding and Other Aspects 62

3.9 Interaction Patterns as Building Blocks for Interaction 66
3.10 The Pattern Library and its Development 67

4 Developer-Centered Evaluation of the Proposed Approach 71
4.0.1 Case Study 1: Ravenclaw . 72
4.0.2 Case Study 2: Collagen/Disco . 76
4.0.3 Case Study 3: Dipper . 80
4.0.4 Case Study 4: PaMini . 83
4.0.5 Discussion . 88

4.1 A Usability Test . 90
4.1.1 Experimental Setup . 91
4.1.2 Results and Observations . 92
4.1.3 Discussion . 94

II Applications of the Proposed Approach 95

5 Scenario-Based Design 97
5.1 Development History of the PaMini framework 97
5.2 Overview of the Implemented Scenarios 99

6 Preliminary Scenarios 103
6.1 The Home-Tour: Jointly Building Up a Model of the Environment 103

6.1.1 Scenario Description . 103
6.1.2 System Overview . 105
6.1.3 Evaluation: Analyzing a Test Run 107

6.2 The Curious Robot: Exploring Salient Objects 108
6.2.1 Scenario Description . 108
6.2.2 System Overview . 109
6.2.3 Evaluation: A Video Study . 111

6.3 The CeBit Setup: A Stripped-Down Version of the Curious Robot 112
6.3.1 Scenario Description and System Overview 112
6.3.2 Evaluation: Analyzing Speech Understanding Performance 113

7 Curious Flobi: Admitting More User Initiative 117
7.1 Preparatory Activities: The Design Process 117

7.1.1 Lessons Learned from the CeBit Setup 117
7.1.2 Analysis of a WOz Study on Object Teaching 119
7.1.3 Design of the Speech Recognition Grammar 121

Contents v

7.2 Scenario Description . 123
7.3 System Overview . 127
7.4 Evaluation: A PARADISE-style User Study 128

7.4.1 User Study Setup . 128
7.4.2 Results . 132

7.5 Summary . 143

8 Further Scenarios 145
8.1 Receptionist Vince . 145
8.2 The RoboCup@Home Challenge . 146
8.3 A Multi-Party Quiz Game with Nao . 147
8.4 Art Exhibition Scenario . 149
8.5 PlaSta Scenario . 149
8.6 Sports Companion . 150
8.7 Playing Memory with Flobi . 151

9 Summary and Contributions of the Thesis 153

Bibliography 159

List of Figures 181

List of Tables 183

Appendix 183

A XML Schema Definition for the Pattern Configuration Language 185

B The Pattern Library 187

C Programming Tasks for the Usability Test 193

D Sentences for Evaluating the Concept Accuracy 195

E User Instruction for the Curious Flobi User Study 199

F User Questionnaire for the Curious Flobi User Study 201

Part I

A Pattern-Based Approach to
Human-Robot-Interaction

1

1 Introduction

Interaction provides many benefits for the control of robot systems, not only in domains
in which it is the primary function of the robot to interact socially with people, but also in
domains in which the robot requires peer-to-peer interaction skills for solving a specific task
in collaboration with the human [Fon03]. Speech is the most natural access to the robot’s
capabilities, and – in contrast to traditional teleoperation – Human-Robot-Interaction is
two-way [FTB01]: The user can specify tasks, on the execution of which the robot can
provide feedback, both participants can convey information and ask questions – and all
that while being busy with another task [CO95].

Nevertheless, dialog management is slightly neglected in robotics. Even the Human-Robot-
Interaction (HRI) community either focuses on single aspects of interaction, such as the
role of gaze or the robot’s external appearance, or uses very simple approaches for dialog
management that exhibit a number of shortcomings.
As an example, at the ACM/IEEE HRI 2011 conference, which is the one of the most
recognized and most selective conferences in the field, only four out of 13 contributions
presented systems that were autonomous. Of those four, only one system involved an
interaction with the robot at all [SWWB11], but it did not make use of a dedicated
dialog system. At the AAAI Dialog with Robots 2010 Symposium, which was explicitly
dedicated to dialog modeling on robots, 15 out of 21 interactive robots were autonomous.
From those, only seven relied on approaches that can be characterized as generaliz-
able [COB10, IST+10, NIN+10, PW10a, RS10, Ros10, SIKN10], while the others relied
on very specific or scripted solutions.
At the same time, existing approaches for dialog management in traditional domains, such
as information retrieval, do not fully take the special nature of Human-Robot-Interaction
into account. This position (which will be further detailed throughout this thesis) may
seem surprising, given the fact that approaches exist that consider phenomena like turn-
taking [RE09], incrementality [SS09], grounding [Tra94] or problem solving [FA98].

Compared to modeling those subtleties, modeling interaction through which a robot can
be taught or instructed appears almost trivial. But let us consider a simple fetch-and-carry
task in which a mobile robot companion is instructed to fetch an object from another
room, e.g. from the kitchen. Besides the skills directly related to the task, such as face
recognition, object recognition and navigation skills, this scenario requires interaction
skills that go beyond mere understanding of the human’s instruction. For example, if the
object the robot is supposed to find is not in its usual place, or if an obstacle is blocking

3

4 1 Introduction

the robot’s way, it needs to request clarification or assistance from the human. While the
robot is on its way in the kitchen, the human might ask for tomorrow’s weather forecast,
so the robot needs to perform two tasks at a time. The human might even change his or
her mind and instruct the robot not to bring coffee, but rather a glass of water, so the
robot needs to revise its task while it is being executed.
Further, in order to execute the given task, the robot needs to have a model of the spatial
layout of its environment and of the relevant objects within, and a model of where the
objects are typically located. As these models depend on the individual environment, they
can not be preprogrammed but need to be learnt – preferably through natural interaction.
This sets further requirements for the robot’s interaction capabilities, including requesting
and revising information in order to obtain models that are correct, consistent, and as
complete as possible.
But a robot that co-exists with humans in their daily environment needs to be not only
useful, but to a certain extent also enjoyable, or at least non-intrusive, i.e. they need to be
able to interact with people in a socially acceptable manner [Dau07]. This means that a
robot needs to possess also some basic social skills and an awareness of the social situation.
For example, in order not to disturb humans when they are interacting with each other, it
might make use of models of engagement, multi-party dialog or proxemics, all of which
are closely related to dialog management in general.
Altogether, this example illustrates well that it is not the interaction as such which makes
the fetch-and-carry task quite challenging, its complexity lies rather in combining the
diverse functionalities, and to integrate them with the robot’s interaction capabilities.
This is where the main difference between HRI and traditional domains lies, and the rea-
son why existing approaches to dialog modeling are not always well suited for modeling HRI.

This difference can be viewed from two perspectives. From an interaction perspective, it
is the difference between situated and non-situated interaction. The situatedness of inter-
action entails that the robot system is operating in changing and unpredictable real-world
environments, which involves issues such as autonomy, multimodality, multitasking or
learning. These characteristics of HRI and their technical implications for a dialog system
will be discussed later in this thesis.
From a system’s perspective, the difference lies in being an integrated rather than a
stand-alone1 dialog system. This means that, on the one hand, the dialog system has
to coordinate with other components of the system, e.g. for action or perception, and
that it needs to provide concepts how coordination can be done in a systematic man-
ner. On the other hand, this implies a number of non-functional requirements, most
importantly usability and easy reconfigurability, in order to enable new interaction sce-

1 Of course, traditional dialog systems are not completely stand-alone either, but have some sort of
application back-end as well. The back-end is, however, typically less autonomous than in robotics,
and communication is often based on a master-slave relationship.

5

narios to be implemented not only by specialists in dialog modeling, but also by roboticists.

Consequently, the general goal of the present work is to develop an approach to dialog
modeling that considers the specific requirements of HRI, that integrates well into complex
robotic architectures, and that at the same time is easy to use and easy to understand,
also for non-experts.

The suggested approach was not born out of theory, but developed in an iterative process.
Its underlying concepts and the resulting dialog framework evolved from experiences with
previously used dialog managers (and their shortcomings), and from experiences gained
through the implementation of several HRI scenarios. But the implemented scenarios
served not only as a means to gain insights into the domain, but – at a later stage – also
as a test bed and proof-of-concept for the developed approach. Scenario development
followed an iterative approach as well: several aspects (ranging from user behavior over
dialog strategies to speech understanding performance) were evaluated in different versions
of the scenarios and the findings were incorporated in the following iterations. Thus, the
development of the approach follows a complex implementation-evaluation cycle, which
includes both dialog modeling and scenario implementation, both of which in turn mutually
influence each other.
The approach aims to consider different perspectives. In particular, the proposed dialog
model considers both the dialog designer’s and the roboticist’s perspective, leading to an
integrated view of dialog and task management. During the development of the approach,
it was sometimes helpful to look at dialog modeling from a software engineering perspective,
which is reflected in the use of principles such as identifying patterns, generalizing from
concrete examples, or encapsulating what varies. Finally, the evaluations address both
the developer’s view, i.e. the usability of the framework, and the end user’s view, i.e. the
usability of the resulting systems.
Altogether, the contributions of the present work concern three areas: dialog modeling,
development of HRI scenarios, and the design process that combines the two. They are
listed in detail in section 9.

The present thesis consists of two parts. The first part (chapters 2 to 4) is dedicated
to the proposed approach itself, while the second part (chapters 5 to 8) addresses the
implemented scenarios. In detail, it is organized as follows:

Part 1: A Pattern-Based Approach to Human-Robot-Interaction

Chapter 2 discusses the foundational work on dialog modeling, both in general and in
robotics, and on evaluation of interactive systems. Based on this discussion, the adopted
approaches for dialog modeling and evaluation are outlined.

Chapter 3 motivates the benefits of a well-defined component interface and introduces the

6 1 Introduction

Task State Protocol, which establishes the external interface of the presented dialog frame-
work. Its benefits for implementing HRI scenarios are illustrated based on several use cases.

Chapter 3.4.4 presents the concept of Interaction Patterns, which serve both as internal
dialog model and as developer’s application programming interface (API). Details about
the dialog management process and aspects such as global discourse management, ground-
ing and multimodality, are provided.

Chapter 4 presents the developer-centered evaluation of the approach. Framework ef-
ficacy is addressed by discussing four case studies in which the approach is compared
with existing, well-established approaches. Framework usability is investigated through a
usability test.

Part 2: Applications of the Proposed Approach

Chapter 5 outlines the iterative development process of the novel approach to dialog
modeling and gives an overview of all scenarios that were implemented within the context
of this work, either with the suggested PaMini (Pattern-based Mixed Initiative) framework
or with its predecessors.

Chapter 6 describes two preliminary scenarios that the author contributed to, namely
the Home-Tour scenario and different iterations of the Curious Robot scenario. These
scenarios helped to establish a comprehensive understanding of the domain, and to identify
several overarching principles that influenced the development of the proposed approach.
Further, this chapter describes several evaluations that address different aspects of the
scenarios.

Chapter 7 gives a detailed account of the Curious Flobi scenario, which served as the
main test bed for the proposed approach, and of its development process. It is the
successor version of the Curious Robot scenario described in the previous chapter, and it
incorporates various results obtained through the evaluation of the preliminary scenarios.
This chapter also describes a large-scale user study based on the PARADISE approach
that was conducted with the system.

Chapter 8 gives a brief description of all further scenarios that were developed using
the PaMini framework, not by the author herself but by different developer teams. Their
diversity is illustrated by analyzing the Interaction Patterns they make use of.

Chapter 9 summarizes the present work and discusses its contributions.

2 Foundational Work in Dialog Modeling and
Evaluation

This chapter presents an overview of foundational work on dialog management, both
in spoken dialog systems and in HRI. Research in these disciplines has long developed
separately: while researchers in HRI have been focusing on nonverbal aspects of com-
munication, the spoken dialog systems community has been focusing on non-situated
systems, mostly in information-seeking domains. Approaches to dialog modeling in general
will be addressed in section 2.1, while the situation in HRI will be discussed separately
in section 2.2, considering also the special requirements of HRI. An issue that is an
essential part of the development process of interactive systems is evaluation. Section 2.3
discusses the state-of-the art of evaluation techniques, both for spoken dialog systems and
for interactive robot systems. Based on the previous discussions, the adopted approach
to dialog modeling and evaluation will be set into context of the research landscape in
section 2.4.

2.1 Approaches to Dialog Modeling
Concepts and methods for dialog modeling have been maturing for more than 30 years, both
in research and in industry. Accordingly, a wide range of approaches exists. Section 2.1.1
will present common categorizations of approaches and suggest a fundamental distinction
between descriptive and mental-state approaches. To analyze the specific strengths and
weaknesses of the approaches, some representatives of each will be discussed in detail in
sections 2.1.2 and 2.1.3. We will return to these examples systems at different locations of
this thesis in order to discuss more specific aspects, such as the general architecture or
their application to robotics.

2.1.1 Categorization of Approaches
A common categorization of approaches to dialog modeling has been made by McTear [McT04].
It distinguishes between finite state-based, frame-based and agent-based approaches. In
finite state-based systems, the dialog structure is modeled as a graph whose nodes
represent system actions, such as prompting or requesting information or performing
some actions (e.g. a database lookup). The transitions specify all possible dialogs. For
example, in a travel booking system, a node might represent a dialog state in which the
system asks for the destination and the user gives the city name, as sketched in figure 2.1.

7

8 2 Foundational Work in Dialog Modeling and Evaluation

This would trigger a transition to the next dialog state, in which the system asks for
confirmation of the destination. The major advantages of this approach are its simplicity
and its intuitiveness. Also, with this approach, speech recognition can be made very robust
by switching the speech recognition grammar depending on the current dialog state and
the user input it permits. However, the development process is less robust, at least for
more complex interactions, because a dialog graph may become unmanageable as it grows.
Also, the frame-based approach is suitable for interactions that are primarily guided by
the system. In principle, it would be possible to realize a mixed-initiative interaction
style with it, but considering all possible user actions at any state would bloat the graph
more and more. Altogether, the main disadvantage of the approach is that it is inflexible
in that it does not allow for deviations from the dialog paths that are specified in the
graph explicitly. On the other hand, this is what enables automated testing of all possible
dialogs, which is why the finite state-based approach is widely used in commercial systems.
In general, the finite state-based approach is suited for well-structured domains that rely
on system initiative, such as form-filling tasks in which the system gathers information
from the user in a fixed order.
Similar as finite state-based systems, frame-based systems are applied in classical
information-seeking domains. However, they allow for a greater degree of flexibility
by maintaining an explicit representation of the required information in form of a frame,
together with a control algorithm that determines the next system action, based on content
of the frame and the user’s input. If the user gives more information than the system asked
for, the control algorithm will fill the frame with additional information and proceed with
the appropriate state. Thus, the transitions between the dialog states are not hard-coded,
but determined flexibly by the control algorithm. With this procedure, the frame-based
approach can overcome some of the limitations finite state-based systems have: they enable
overanswering and allow information to be gathered in any order. On the other hand,
they require a less restricted (and thus more error-prone) speech recognition, and can not
be tested easily in an automated manner. Both are issues in particular for commercial
systems.
Both the finite state-based and the frame-based approach are not suitable for more complex
domains in which interaction is modeled as an interplay between two independent agents
that collaborate to solve a task or to negotiate information. In such agent-based systems,
both agents may introduce new topics or suggest actions. Often, the agents’ beliefs, desires
and intentions are modeled explicitly, and agents are capable of reasoning about them.
This is what drives the dialog. Also, generic mechanisms for information grounding or error
detection and recovery are implemented. In general, the dialog flow is not pre-structured
in these systems, but planned dynamically based on the present context. Utterances
tend to be more complex, and it is more important to capture their details. Accordingly,
speech recognition must be almost unrestricted, while sophisticated natural language
understanding is required. Most research in spoken dialog system has been dedicated to
the agent-based approach, but it has not been transferred to the commercial field.

2.1 Approaches to Dialog Modeling 9

Destination? Was that
$Destination? Day?

Was that
$Day?

London yes 15th yes

no no

Figure 2.1: A simple dialog graph for a finite state-based travel system (after [McT04]).

A similar, but finer categorization is made by [AFS01]. As a subgroup of the frame-based
approaches, he additionally mentions systems that can deal with and switch between
sets of contexts, each represented based on frames. Also, he distinguishes between
plan-based and agent-based models. In the plan-based approach, system and user col-
laboratively construct a plan, while the agent-based approach may involve a dynamically
changing world that the agent needs to account for.

However, both categorizations are not quite consistent and mix the distinguishing criteria.
While, in McTear’s categorization, the finite state-based and the frame-based model are
characterized by their implementation details, the agent-based model is characterized by
the system’s capabilities and the requirements of the domain. This applies, in a similar
way, to Allen’s categorization, too. Also, the categories are not general enough, as the
frame-based and set of context-based models applies per definition only to form-filling
domains.
Throughout this thesis, a more general categorization will be made. We will distinguish
between descriptive approaches on the one hand and mental-state approaches on
the other hand: descriptive approaches include all types of models that specify the dialog
flow explicitly (at least partially), while in mental-state approaches the dialog flow is created
dynamically, emerging from a model of the interaction goals or of the interaction partners’
mental state, or based on deduction and logics. This categorization reflects the situation
in linguistic dialog modeling, where two main traditions can be identified: approaches that
model the internal attitudes of the interaction partners and their underlying cognitive
state and, in contrast, approaches that describe the public and conventional aspects of
how interaction typically proceeds [FE07].

2.1.2 Descriptive Approaches
A typical representative of the descriptive approach is the CSLU toolkit [SNC+96, SCd+98].
Through a graphical editor, a finite-state based dialog graph can be created that is based on
dialog units that cover functions like answering the phone, speaking a prompt, recognizing
speech input and the like. The graphical dialog specification is automatically translated
into a script which can be executed by a special-purpose programming shell. Besides
the graphical editor, the toolkit provides an environment for integrating speech signal
analysis, speech synthesis, facial animation of a virtual character, and for training of
speech recognition.

10 2 Foundational Work in Dialog Modeling and Evaluation

To date, the VoiceXML dialog mark-up language [FDH+04] is widely used, particularly in
the commercial field. As VoiceXML has been designed for telephone-based applications, in
the automotive field proprietary solutions are common, most of them similar to VoiceXML
(e.g. [HWS+03]). VoiceXML has been recognized as a W3C standard since 2004 and is
supplemented by other standards for specification of speech recognition grammars (SRGS)
or speech synthesis output (SSML). Dialog scripts are interpreted by a browser which
communicates through a transport protocol such as HTTP with an application server
where the required knowledge sources (e.g. grammars or databases) reside. The basic
element of a dialog script are forms and menus. A form contains a number of fields to
be filled by the user, each associated with a prompt specifying the system output and a
grammar restricting the user input. A menu presents a number of options to the user and
thus provides a method for specifying the next dialog state, i.e. the next form to execute.
Additionally, frame-based dialog modeling can be realized with the built-in form filling
algorithm (FIA). This way of dialog modeling requires a specification of the forms only, as
the dialog flow is determined by the FIA. The FIA executes the form associated with the
next unfilled field. If the user overanswers, the respective field is filled, and the associated
form can be skipped.
The main drawback of VoiceXML is, however, that it lacks support for abstraction. For
example, the system prompts need to be specified on word-level. This makes it difficult to
model dialog at a more abstract level, or to define reusable patterns of subdialogs, and
is probably the reason why VoiceXML is rarely used in spoken dialog systems research.
In the commercial sector, dialog scripts are often generated automatically from graphical
specifications of the dialog state machine. The form-filling approach has not yet become
established, due to harder testability.

However, descriptive approaches are not only common in the industry, and they are not
limited to finite state-based dialog modeling, but also include more complex approaches,
such as the RavenClaw dialog manager which is being developed at Carnegie Mellon
University [BR09]. A large number of speech applications have been implemented with it,
spanning from a bus information system [RLB+05], to calendar applications [SMHS07], to
a support application for aircraft maintenance [BR05]. The RavenClaw dialog manager
is embedded into the Olympus framework for conversational interfaces. In addition to
RavenClaw, Olympus consists of components for speech recognition, semantic parsing,
language generation and speech synthesis. The components communicate via a centralized
message-passing infrastructure [BRH+07] (see section 3.2).
At the core of RavenClaw’s dialog model is the dialog task specification, which encapsulates
the domain-specific aspects of the control logic and forms a hierarchical plan for the inter-
action, executed by the domain-independent dialog engine. The dialog task specification
is represented by a tree of dialog agents, each handling a subtask of the interaction, such
as greeting the user or presenting the result of a database lookup. There are two types
of dialog agents: dialog agencies that represent tasks that are further decomposed and

2.1 Approaches to Dialog Modeling 11

fundamental dialog agents that are terminal nodes in the tree, implementing atomic actions.
The fundamental dialog agents further fall into four categories. An Inform agent produces
an output, a Request agent requests information from the user, an Expect agent expects
information from the user without explicitly requesting it, and an Execute agent performs
back-end calls, such as database access. During interaction, the dialog engine traverses the
tree in a depth-first manner, unless otherwise specified by pre- and postconditions or by
error handling and repair activities. Agents from the task tree are put on top of a dialog
stack in order to be executed and are eliminated when completed.
The RavenClaw framework will be discussed from a more hands-on perspective in sec-
tion 4, where a re-implementation of the Curious Robot scenario – one of the development
scenarios of the presented approach – with RavenClaw will be investigated in the scope of
a comparative case-study of different dialog system approaches. A possible task tree for
the Curious Robot is shown in figure 4.1.
RavenClaw has originally been categorized as an essentially plan-based dialog framework
by its authors [BR09] using Mc Tear’s categories, mainly because of the separation of
domain specific and domain independent dialog knowledge. However, based on our above
categorization, it clearly falls into the category of descriptive approaches, as it specifies the
dialog flow beforehand in a descriptive way, even though deviations are admitted under
specific conditions.

2.1.3 Mental-state Approaches
A well-known representative of the mental-state approaches is the TRIPS [FA98, AFS01]
system (and its predecessor TRAINS [FAM96]). The TRAINS/TRIPS systems were
developed at University of Rochester within a long-term project that lasted for almost a
decade. The goals of this project were to “undertake a serious study of human-human
spoken dialogue, [to] build a series of robust research prototypes untrained users could
interact with, [and to] use the prototypes as a platform for in-depth research in natural
language understanding, mixed-initiative planning, and reasoning about time, actions and
events” [Tri00].
The TRIPS architecture features distributed dialog management and decision making. It
does not include a central dialog manager as such, but relies on loosely coupled agents that
exchange information by passing messages. Figure 2.2 shows the architecture in detail. Its
main components are the interpretation manger, which is responsible for interpreting user
utterances and the underlying intentions, the behavioral agent, which drives the system
behavior with respect to problem solving, and the generation manager, which coordinates
planning and generation of speech and multimodal output. The three subsystems work
asynchronously.
In the TRIPS system, conversation is driven by a model of collaborative problem solv-
ing, together with a rich representation of the discourse context. The discourse context
maintains information needed to coordinate the system’s conversational behavior, i.e.
information to generate and interpret anaphora and ellipses, turn-taking information and

12 2 Foundational Work in Dialog Modeling and Evaluation

Interpretation
Manager

Generation
Manager

Behavioral
Agent

Speech

Parser Discourse
Context

Reference

Response
Planner

SpeechGraphics

Task
Manager

Planer Scheduler

Monitors Events

Exogenous Event Sources

Task-and Domain-specific
Knowledge Sources

GenerationInterpretation

Behavior

Problem-solving
Acts to Perform

Problem-solving
Acts recognized

from User

Task
Interpretation

Requests

Task Execution Requests

Figure 2.2: The TRIPS architecture (after [AFS01]).

information about outstanding discourse obligations. It assists the interpretation manager
and the generation manager in interpreting the user’s utterances and in generating speech
and multimodal responses, respectively. The problem solving model is maintained by
the task manager and describes the domain in terms of objectives, solutions, resources,
situations and a number of different actions that both user and system can contribute
to the collaborative task. On the one hand, it assists the interpretation manager in
recognition and interpretation of user actions. On the other hand, it executes the problem
solving steps selected by the behavioral agent.

Another approach that relies on a task model, together with a representation of the
collaborative discourse state, is the collaboration manager Collagen (for Collaborative
agent) [RS98]. However, Collagen is not an actual dialog system, but intended as a
plug-in for intelligent user interfaces. It takes a rather observational role, relying on the
collaborative interface paradigm, which is illustrated in figure 2.3. In this paradigm, a

2.1 Approaches to Dialog Modeling 13

Application

communicate

interact interact

observeobserve
User Agent

Figure 2.3: Collagen’s collaborative interface agent paradigm (after [RS98]).

software agent1 assists the user in operating an application, both communicating with
each other as well as with the application. They are informed about each others’ actions
either by a reporting communication (“I have done x”) or by direct observation.
Collagen maintains a task model for the specific application domain which defines the
typical domain goals and procedures for achieving them. The task model is a collection
of goal composition rules, called recipes. Collagen tracks the user’s progress with respect
to the task model and automatically generates system utterances and choices for user
utterances, based on the current discourse state. One component of the discourse state is
the focus stack, representing its attentional aspects. The focus stack contains hierarchical
discourse segments, each contributing to a specific shared plan. A shared plan corresponds
to the intentional aspects of the discourse and is represented as a(possibly still incomplete)
plan tree, specifying the actions to be performed, and by whom.
A large number of desktop applications have been developed based on Collagen, including
an assistant for air travel planning [RS98], for email [GSBR99], and for graphical user
interface development [RSL01], a video recorder [RSL01] and a programmable thermostat
[DKF01]. We will return to the Collagen approach in section 4 where the re-implementation
of the Curious Robot scenario with different approaches is described.

An approach that focuses on the aspect of information exchange is the information state
approach to dialog modeling [TL03]. The key idea is that the dialog is driven by the
relevant aspects of information (the information state), and how they are updated by
applying update rules, following a certain update strategy. The update rules regulate the
update of the information state, given the current information state and the performed or
observed dialog moves. The update strategy, then, decides which rules to apply if several

1 Notice that Collagen is not identical to the assisting software agent, which is treated as a “black box”.
Collagen is rather the mediator of the communication between the agent and the user (cf. figure 8 in
[RS98]).

14 2 Foundational Work in Dialog Modeling and Evaluation

ones are applicable.
The Information State approach is formulated very generic, and the term information state
is intentionally kept very abstract. One may choose to model the external aspects of the
dialog, such as variables to assign, or rather the internal state of the agents, such as goals,
intentions, beliefs and obligations, in order to realize a plan-based dialog management.
Also the other components of the approach may be implemented very differently. For
example, the update strategy can be as simple as to pick the first rule that applies, or it
can be based on game or utility theory. Thus, it is not a dialog system in the narrower
sense, but rather a toolkit to implement dialog systems and different theories of dialog
modeling. Several implementations of the information state approach have been presented,
including TrindiKit [TL03] and Dipper [BKLO03], and a number of dialog systems were
constructed based on it (e.g. GoDiS [LLC+00], Siridus [KKERK03], Godot [TBC+02a] or
WITAS [LBGP01]), some of them also on robots (see section 2.2.2). Section 4 will describe
the re-implementation of the Curious Robot based on the information state approach.

2.2 Dialog Modeling for Human-Robot-Interaction
Human-robot interaction differs in many aspects from traditional speech interfaces as
known from the information seeking or travel booking domain. These differences affect
not only the interaction design, but also have implications for the dialog management
approach itself. Section 2.2.1 discusses the characteristics of HRI compared to non-situated
domains. The considerations based on this domain analysis strongly influenced the
proposed approach and will be revisited at different locations of the thesis. Section 2.2.2
presents the state-of-the-art in dialog modeling on robots, which still reflects the historical
separation of the dialog systems community and the HRI community: On the one hand,
the traditional approaches to dialog modeling do not fully account for the characteristics of
HRI, and on the other hand, roboticists lack expertise in dialog management and discourse
modeling.

2.2.1 Characteristics of Human-Robot-Interaction
Robots are situated in their environment, which they can perceive and manipulate through
their actions, and they are supposed to communicate about what they see and do. Also,
the environment is dynamic, and the situation may change rapidly. A robot needs to
be able to react to situation changes quickly, and this may involve (perhaps urgent)
interaction activities. Interactions in such dynamic environments are not predictable
beforehand, and they have no clearly defined beginning or end. i.e. they are potentially
open-ended [LGBP02]. Also, interactions with multi-purpose service robots may span
several domains, and it must be possible to switch between domains.
Joint activities are coordinated within interaction, for which the human interaction partner
gives instructions and sets the goal. The activities may be temporally extended, and there
may be multiple such interactions at a time. Their progress needs to be monitored over

2.2 Dialog Modeling for Human-Robot-Interaction 15

time, and communicated to the human. Also, the human may wish to revise on-going
activities and re-specify their goal, or to cancel them. Problems need to be solved jointly
within interaction. In other situations, the robot might be supposed to act autonomously,
which requires that it is able to take actions on its own initiative, and to comment on
these.
Because of the mixed-initiative interaction style and, more importantly, because of its
physical embodiment, the robot is, to a limited extent, perceived as an equal interaction
partner. In addition, there is often no clearly defined role allocation such as expert and
asker. Instead, both interaction partners assist each other, exchange information and
learn from each other. In particular the latter – learning within interaction – is a feature
specifically relevant to robotics. With the perception of the robot as a partner, social
aspects of the interaction become more important. Humans might expect the robot to
respect social conventions and main forms of politeness, or they might attribute to it a
certain personality. Another implication of the robot’s embodiment is that the interaction
will involve not only verbal communication, but also non-verbal cues.

To sum up, in robotics we have to deal with situated interactions in dynamic environ-
ments, that are inherently unstructured and open ended. Within interaction, joint
activities need to be coordinated that may be temporally extended and executed
concurrently. Interaction follows a mixed-initiative style that enables learning
within interaction and social and multimodal behavior.

2.2.2 State-Of-the-Art
Research in spoken dialog systems and research in HRI have long developed separately.
While researchers in HRI have either been focusing on nonverbal aspects of communication,
the spoken dialog systems community has been focusing on non-situated systems, mostly in
information-seeking domains. As a consequence, the traditional approaches to dialog mod-
eling often do not fully account for the above discussed characteristics of HRI (discussed
further below and in section 4), while roboticists lack expertise in dialog management and
discourse modeling. Only recently has the spoken dialog systems community discovered
robotics as a new and challenging domain, and the communities have begun to converge.
However, the state-of-that-art in HRI still reflects the historical separation.

Many robot systems, especially in the field of service robotics, possess no dedicated
dialog manager. Interaction rather follows command-control style, based on simple
key-word spotting and command matching techniques, or by pressing buttons on a touch
screen. In such systems, the user gives instructions that trigger action execution, but
execution proceeds black box-like and is not well integrated with the speech interface.
Once execution has begun, the user can not intervene any more, nor can the robot request
clarification or assistance from the human. Examples for this interaction style include
the mobile service robots Perses [BWK+03] and Care-O-bot [PBRH07] and the museum

16 2 Foundational Work in Dialog Modeling and Evaluation

guide RHINO [BCF+98].

Figure 2.4: A finite state machine for HRI where dialog and task control are tightly cou-
pled (from [BWB09]).

Most robot systems apply a finite state-based approach for dialog modeling as de-
scribed in section 2.1.1. In contrast to the command-control approaches, where dialog
and task control is not integrated well, there is even the risk that dialog and task control
are too closely interwoven. As an example, figure 2.4 shows the finite state machine that
models interaction for the Autonomous City Explorer [BWB09], where the the system’s
navigation capabilities are well integrated into the interaction by admitting system signals
(marked gray) to trigger transitions. On the other hand, because of the tight coupling,
the depicted model represents a very specific solution that can not be transferred to a
new scenario easily. It will also be difficult to realized an unstructured interaction with
mixed-initiative interaction style with it, as typically required in HRI. Also, the dialog
graph is a monolithic control structure that will be difficult to expand and to maintain,
particularly as the robot functionalities get more complex. Other systems that employ
finite state-based dialog models are the Jijo-2 mobile robot for office services [MAF+99],
the hospital assistant Hygeiorobot [Spi01] and the service robot HERMES [BG02].

2.2 Dialog Modeling for Human-Robot-Interaction 17

Several robot systems adopt plan-based approaches to dialog modeling. In contrast
to plan-based dialog models in traditional dialog systems, interaction planning is not
performed by a dedicated dialog planner, but by a general action planning component.
This is why plan-based approaches to HRI can often be found in domains where the
robot explores its environment in order to perform tasks in it. For example, Dora The
Explorer [HHS+10] aims to derive spatial and categorical knowledge of its environment,
driven by ontology-based reasoning. Krujiff and colleagues have developed a robot that
learns about visual objects by further inquire about what it does not understand, build-
ing up a multi-agent belief model based on abductive reasoning [KJL10]. Dzifcak and
colleagues present a system for navigation in office environments that generates goal
representation in temporal and dynamic logic from natural language instructions and
produces an action sequence to achieve it [DSBS09].
Similar to the finite state-based approach, in plan-based systems the dialog behavior is
coupled closely with the system behavior. Since dialog emerges from reasoning about
the domain, this might result in non-intuitive and unpredictable dialog behavior that is
difficult to tune [PH05]. Also, interaction in plan-based systems is restricted to the task
at hand. Social utterances, small-talk or pleasantries, which may make up an integral
part of HRI in some scenarios, can not be modeled well with this approach because such
types of utterances can not be translated easily into some kind of logic or into a goal
representation.

Besides the general approaches discussed above, several dialog models that had originally
been developed for non-situated domains have been applied to HRI. One of them is the
collaboration manager Collagen, which has been described in section 2.1.3. It has been
applied to implement the interaction with the penguin robot Mel that engages human
visitors in a conversation in order to instruct them in a simple manipulation task [SLK+05].
The focus of this scenario lies in modeling engagement gestures such as head movements
and gaze, but it is not very sophisticated from a dialog modeling perspective. Basically,
the robot lists the necessary steps one after another, and the human acknowledges their
execution. The main reason for this is that Collagen is not intended as a dialog manager,
but rather as an observing collaboration manager. Hence, it is not well suitable for dialog
modeling as such, whether in classical domains or in HRI. The case-study described in
section 4 confirms this observation.

Also RavenClaw (cf. section 2.1.2) has been applied to a HRI scenario. In this scenario,
a multi-robot team performs a search task, guided by the instructions of a human operator.
The robots are not aware of each other, i.e. each uses its own instance of RavenClaw for
communication with the user. Instructions can either be addressed to a specific robot
directly, or be broadcasted so that the robots will bid on the task. Bids are not managed
through interaction, but through a central operator software. As a domain-independent
dialog framework, RavenClaw can well be applied to HRI. However, the case-study de-
scribed in section 4 suggests that the back-end integration does not meet all requirements

18 2 Foundational Work in Dialog Modeling and Evaluation

of robotics, in particular with respect to asynchronous coordination of back-end calls. This
might become an issue in HRI scenarios in which the robot acts less autonomous, but
requires more guidance and assistance during action execution.

The Information State approach (cf. section 2.1.3) has been used in robotics sev-
eral times. One of its application is the WITAS dialog system for multi-modal conver-
sations with an unmanned helicopter that has on-board planning and vision capabili-
ties [LGBP02, Lem03]. WITAS makes use of an Activity Model that describes the system’s
planned activities, current activities, and their execution state, and of a dialog move tree
that represents the current state of the conversation. Utterances are represented as logical
forms that may refer to activities in the Activity Model. Together with the current state
of the dialog move tree, they cause an update of the Information State (which in turn may
affect both the Activity Model and the dialog move tree). Other examples include the
mobile robots Godot [TBC+02b] and the one presented by Burke and colleagues [BHL02],
and the virtual agent Hassan [GDR+08].
Unlike the plan-based approaches to HRI, these systems posses a dedicated dialog planner,
based on the Information State approach. It is often combined with a general action
planning component, e.g. in form of a planner agent that communicates with the dialog
manager via the architectural framework. Thus, domain and dialog planning are kept
separate. However, a potential drawback in more open domains and dynamic environments
is the increasing amount of update rules, whose order may even effect the system behavior.
This becomes evident already in the toy example described in section 4.

Altogether, it can be stated that for dialog modeling on robots, either rather simple
approaches are common, or approaches that have originally been developed for other types
of domains. Both are not capable fully accounting for the special characteristics of HRI
as detailed in section 2.2.1. In particular, the descriptive approaches are not capable
to realize a flexible dialog flow that enables the robot to react quickly to its dynamic
environment. Mental-state approaches, in contrast, are often too information-oriented (i.e.
the Information State approach), or do not account for the social aspects of HRI (i.e. the
plan-based approaches). Another issue is the integration of dialog management and task
management. To put it simple: it is either too close, or not close enough. Surprisingly,
approaches that are specifically designed to model dialog with robots do not exist so far.

2.3 Evaluation of Interactive Systems
The spoken dialog systems community has long been focusing on evaluating interaction in
non-situated systems, such as telephone- and PC-based information access. Within the
HRI community, on the other hand, evaluation of interaction often has been neglected.
Instead, evaluation focuses on isolated aspects of the robot system, and often even only on
effects of physical appearance of the robot. Sections 2.3.1 and 2.3.2 describe the methods

2.3 Evaluation of Interactive Systems 19

and techniques that are common in each of the fields.

2.3.1 Evaluating Dialog Systems
Initially, a mainly system-centered view on evaluation predominated in the SDS community.
One of the first approaches to evaluating the performance of a dialog system was the concept
of reference answers [HDM+90], where the system’s performance is assessed through
the proportion of system answers that match pre-defined reference answers. This approach
can not account for different expedient dialog strategies, and it is mainly applicable within
the information retrieval domain (which has been the focus of research in SDS at that time).

Subsequently, various more refined objective measures for system performance have
been proposed, such as inappropriate utterance ratio, correction ratio, concept accuracy,
transaction success and number of turns (e.g. [HDM+90], [HP93], [SWP92], [DG95]).
With these metrics, that can be obtained automatically from interaction logs, interactions
become quantifiable and comparable with each other. Also different dialog strategies can
be compared based on the metrics. Consider a comparison of two railway information
systems [DG95], where system A uses an explicit confirmation strategy, whereas system
B uses an implicit confirmation strategy, as illustrated in table 2.1. Danieli and Gerbino
found that the explicit confirmation strategy had a higher transaction success rate and
produced less inappropriate utterances and repairs, but generated dialogs that were twice
as long as with the implicit confirmation strategy.

User: I want to go from Torino to Milano.
System A: Do you want to go from Trento to Milano? Yes or No?
User: No.

User: I want to go from Torino to Milano.
System B: At which time do you want to leave from Merano to Milano?
User: No, I want to leave from Torino in the evening.

Table 2.1: Explicit and implicit confirmation strategy for a railway information system
(after [DG95]).

However, one limitation of the objective metrics approach is that the user’s subjective
perception of the system is not included in the evaluation, i.e. they describe the behavior of
the system during an interaction, but do not necessarily reflect the perceived performance.
In the above example, Daniele and Gerbino concluded that the explicit confirmation was
more robust, but could not tell whether system A’s higher transaction success or system
B’s efficiency was preferred by the users. In general, making such interpreting statements
requires to identify the factors that affect user satisfaction. Moreover, once the relevant
factors for user satisfaction have been found, the results can be expected to generalize (to
a certain extent) to other (comparable) domains and tasks.

20 2 Foundational Work in Dialog Modeling and Evaluation

Maximize User Satisfaction

Maximize Task
Success

Minimize Costs

Kappa Efficiency
Measures

Qualitative
Measures

Agent Response Delay
Inappropriate Utterance Ratio

Repair Ratio
etc.

Dialog Time
Number Utterances

etc.

Figure 2.5: PARADISE’s structure of objectives for spoken dialog performance (af-
ter [WLKA98])

Against this background, Walker and colleagues introduced a more user-centered view on
evaluation. They proposed a general methodology for evaluating dialog systems called
PARADISE (PARAdigm for DIalogue System Evaluation) that combines objective and
subjective measures [WLKA98]. Its main idea is to estimate subjective judgments of
user satisfaction as a linear combination of several objective measures. For this purpose,
several assumptions are made. First of all, PARADISE assumes that system performance
(the target variable) is correlated with, and can be approximated by, user satisfaction.
User satisfaction is a subjective variable that can be assessed e.g. through a questionnaire.
The model further posits that there are two types of factors that are potentially relevant
for user satisfaction: task success and dialog costs, with the latter being comprised of
dialog efficiency and dialog quality. Using linear regression, the relative contribution of
the success and cost factors to user satisfaction are quantified. The described structure is
shown in figure 2.5.
For each of the categories, appropriate objective measures are proposed. Dialog efficiency
can be assessed for instance through the overall number of utterances and the time required
to achieve a given goal. As measures for dialog quality, the average system response delay,
inappropriate utterance and repair ratio are suggested. To calculate the task success, the
dialog task is represented as an attribute-value matrix (AVM). The AVM consists of the
information that must be exchanged between the system and the user during the dialog,
represented as a set of ordered pairs of attributes and their possible values. An individual
interaction is represented as an instantiation of the AVM, containing the information that
has actually been exchanged. Based on comparisons between the AVM for the task and
for the individual interactions, a confusion matrix is generated. Whenever information has
been transmitted correctly, i.e. the corresponding value in the interaction AVM matches
the task AVM, the appropriate diagonal entry of the confusion matrix is incremented by 1.

2.3 Evaluation of Interactive Systems 21

The off diagonal entries represent misunderstandings that remained uncorrected in the
dialog, whereas the corrected misunderstandings are not incorporated in the confusion
matrix (but their effect is reflected in the dialog costs). Task success is operationalized
using the Kappa coefficient

κ = P (A)− P (E)
1− P (E)

which is calculated from the confusion matrix. P(A) is the proportion of times that the
AVMs for the individual interactions agree with the task AVMs, and P(E) is the proportion
of times that they are expected to agree by chance. Originally, the Kappa coefficient has
been introduced for measuring inter-annotator reliability [Car96], but it can also be used
to express how well the transmitted information matches the intended information.

To sum up, the PARADISE evaluation framework enhances previous evaluation methodol-
ogy by identifying the objective factors that contribute to the subjective user satisfaction.
It is thus able to offer an explanatory model for user satisfaction. As the results obtained
are expected to generalize across domains, they can serve as predictive model for future
applications. Also, by using a task representation that abstracts from a specific dialog
strategy, the approach decouples what the system needs to achieve from how the system
carries out the task via dialogue, which supports comparisons among dialog strategies.

Several shortcomings of PARADISE have been reported. Robinson and colleagues criticized
the fundamental idea of the PARADISE approach: that the system performance should
only be determined by the users of the system (i.e. through the user satisfaction), without
including any objective rating [RRT10].
Möller and colleagues found that the generalizability of the results was significantly reduced
when extrapolating from one system to another: the variance in the data that could be
predicted with the model decreased from around 50-70% in the training data to 30-50% in
the unseen data [MES08]. They conclude that, while the predictive power of the model is
limited, it still does a good job in judging individual users and interactions, and can be
useful for system optimization.
Other points of criticisms concern the proposed measures. Both the objective measures
and the subjective user satisfaction rating are kept so general “as to be of questionable
usefulness” [RRT10]. For example, Kamm and colleagues identified as relevant factors
task success and dialog quality [KWL99], which is neither surprising nor helpful.
Further, it has often been reported that the speech recognizer performance is the major
predictor of a dialog system’s performance, and it has even been shown that with increasing
recognition performance the significance of the other predictors can change [WBK99].
Hajdinjak conclude that the influence of automatic speech recognition is so large as to
hinder the other factors from showing significance [HM06].
Hone and Graham criticized in particular the questionnaire that was proposed to assess

22 2 Foundational Work in Dialog Modeling and Evaluation

user satisfaction [WKL00], as being based “neither on theory nor on well-conducted em-
pirical research” [HG00]. Also, the items in the questionnaire are all summed up although
they refer to different aspects of user satisfaction. Hone and Graham argue that it would
be more appropriate to sum up only subcategories that measure the same aspect.
Finally, another issue is that the proposed task representation using attribute-value
pairs is appropriate only for information retrieval tasks. This means that for other, less
information-dominated domains such as robotics, different measures for task success have
to be found.

In parallel, the user-centered view has become even more important, leading to approaches
that are purely based on subjective measures, and with it to the development of valid
and reliable questionnaires. Several generic subjective usability questionnaires have been
proposed, and have been applied to speech applications also. The best known are the
Questionnaire for User Interaction Satisfaction (QUIS) [Shn86] and the Software Usability
Measurement Inventory (SUMI) [Kir96]. QUIS consists of five question categories, referring
to the overall reaction to the software, reactions to the display, to terminology and system
information, to learnability and to the system’s capabilities. QUIS was initially published
without empirical validation, which was however approved later [CDN88]. In contrast,
SUMI was validated in an iterative process, with the resulting main categories likeability,
efficiency, helpfulness, control and learnability.
Despite the development of generic questionnaires, ad-hoc techniques predominated in eval-
uation of speech systems until then (inlcuding the questionnaires used in PARADISE-style
evaluations). To address these shortcomings, Hone and Graham developed the Subjective
Assessment of Speech System Interfaces (SASSI) questionnaire [HG00]. The aim of SASSI
is to provide a tool that is widely applicable to all types of speech recognition interfaces.
SASSI was validated in an iterative process, from which result the six main categories
system response, accuracy, likeability, cognitive demand, annoyance, habitability and speed.

Despite the above mentioned criticism, the PARADISE approach has established as state-of-
the-art in dialog system evaluation, and has been employed extensively over the past twenty
years. Most of the points of criticism can be overcome by revising the measurements used,
and by combining the PARADISE approach with reliable and validated questionnaires.

2.3.2 Evaluating Interactive Robot Systems
Robotics is a highly diverse field, ranging from autonomous rescue robots to general-
purpose service robots or social toy robots. Accordingly, no standard methodology for
evaluation has matured, such as the PARADISE approach for evaluating dialog systems.
Much of the evaluation is done on component or algorithmic level of the (not neces-
sarily interactive) robot system. Often, evaluation is done by performing a given task in
the particular domain, measuring performance robustness and efficiency of the algorithm.
For example, in robot navigation and SLAM, possible tasks include traversing a door-

2.3 Evaluation of Interactive Systems 23

way [EAC00], navigating through an office environment [MEBF+10] or re-localizing after
being kidnapped to a random place [TFBD00]. Typical benchmarks for manipulation
tasks include grasping a set of everyday objects [RHSR07] or opening a jar [SEHR10].
In interactive object learning, recognition rates and required time per object are mea-
sured [KWK07], [RDO11].
The task is performed either in the real world, or in simulation (where parameters such
as the amount of sensor noise can easily be controlled and varied), or both. The specific
measures used depend on the purpose of the component or algorithm that is subject to
evaluation, and on the representations used.

In the area of social robots, evaluation has been focusing on single aspects of the sys-
tem, too. A large amount of research effort has been dedicated to the external appearance
of robots, addressing the question of how appearance influences the user’s expectations
of the system, and the interpretation of the system’s actions. For example, Hegel and
colleagues used neuroimaging data to investigate how a robot’s randomized actions in a
game setup are perceived by its human opponent and how their interpretation is influenced
by the appearance of the robot [HKK+08], using neuroimaging data. Also, the relation
between predictability and anthropomorphic inferences and acceptance of the robot was
investigated [EKB11], as well as the attributations made to a robot that is percieved as
uncanny [HMP08]. Lohse and colleagues have shown pictures of real robots to participants
and asked what kind of task they would expect the robot to perform [LHS+07], showing
that the system’s appearance and abilities strongly influence people’s expectations.
Most of the above studies did not involve real interaction with the system, but were based
on showing pictures or silent video clips. However, while the appearance of a system
undoubtly shapes the user’s expectations, the author believes that expectations are likely
to be accommodated quickly during interaction, depending on the actual system behavior.
Hence, the significance of the above studies for scenarios that involve an actual task is
limited.

Also evaluations that include real interactions with a system mainly concentrate on single
aspects of the system. Many of them concern the behavior of mobile robots in everyday
environments, like the preferred approaching behavior when the human is unaware of
the robot’s presence [SKG+09]. Spatial preferences during interaction were investigated
too [WDW+06], leading to a “robotic etiquette” for robot companions [WDWK07]. Per-
rin and colleagues have compared six different ways to convey navigational information
provided by a robot to a human: visual, auditory, and tactile feedback modalities, and
combination of these [PCR+08]. Using both objective measures (accuracy and rapidity
of the user’s reaction) and subjective measures (gathered through a questionnaire), they
assessed suitability of the information given by the robot.

Another aspect that has been addressed by numerous studies is nonverbal communication
and behavior. One of the most important communicative resources in human-human

24 2 Foundational Work in Dialog Modeling and Evaluation

communication is gaze: Seeing where the interaction partner looks at provides valuable
information about what is being talked about, and facilitates to establish joint attention,
mutual understanding and to show engagement in interaction. Accordingly, many studies
have addressed the role of gaze in human-robot interaction. For example, Staudte and
Crocker investigated the influence of both robot speech and gaze on the human gaze,
and on the human’s understanding of a robot utterance [SC09]. Similarly, Sidner and
colleagues investigated the impact of where a robot looks during conversation with regard
to objects of interest referred to within the conversation [SLK+05]. Mutlu and colleagues
modeled human-like gaze behavior in a story-telling setup and tested the influence of gaze
frequency on the subject’s task performance and on their perception of the robot [MHF06].
Apart from gaze behavior, other nonverbal signals concerning a robot’s mimics have been
investigated, including synchronized lip movements [Bre03] or the expression of basic
emotions such as happiness, fear, anger, disgust and sadness and surprise [HSW+06],
[KFS10].

Methods applied for evaluation can be classified into three groups: subjective measures,
objective measures and physiological measurements. Table 2.2 shows for the above men-
tioned studies the applied evaluation methods. The most frequently used evaluation
methods is collecting subjective measures, almost always in form of questionnaires
measuring the users’ attitudes. While this technique is quick to conduct, its conceptual
pitfalls and limitations are often underestimated [BCK08]: The development of a validated
questionnaire involves a considerable amount of work, but is indispensable in order to
achieve valid and comparable results. Also, users may assess their experience differently
afterwards, possibly tending to socially accepted answers.
A perhaps less influencable method is to gather objective measures. This can be done
by observing the user behavior, measuring parameters such as the time spent for the
interaction with the robot or the user’s response time. However, not each variable in a
study is reflected in observable behavior. Moreover, assessing the user’s behavior based
on video recordings manually is a tedious task. An alternative way to collect objective
measures is by logging system data (e.g. task success measures), which enables automated
data acquisition and analysis.
A third method is to rely on physiological measurements. They are taken not after,
but during interaction, and they provide a direct indication of the user’s state as they
can hardly be influenced deliberately. Unfortunately, the results are often not clearly
interpretable. For instance, skin conductivity and heart rate provide an indication of the
user’s arousal, but it is impossible to say whether the arousal is caused by anger or by
joy [BCK08].
Several measures can complement each other. Two recommendations have been given as
best practice for evaluation of interactive robot systems: First, studies should be conducted
with a large number of participants to gain a higher probability of obtaining statistically
significant results, and, second, several methods of evaluation should be combined to
achieve reliable results [BM10]. However, this view neglects that valuable observations

2.3 Evaluation of Interactive Systems 25

can be made also with a smaller number of participants through qualitative analysis.

Aspect Example study Evaluation method Interaction type
Appearance [HKK+08] Physiological

measurements
WOz

[EKB11] Questionnaire Video clip
[HMP08] Questionnaire Video clip
[LHS+07] Questionnaire Video clip

Spatial behavior and
navigation

[SKG+09] Questionnaire Real interaction

[WDW+06] Questionnaire WOz
Gaze behavior and
mimics

[SC09] Eye-tracking Video clip

[SLK+05] Questionnaire Real interaction
[MHF06] Questionnaire Real interaction
[Bre03] Questionnaire Video clip
[KFS10] Questionnaire Video clip

Table 2.2: A sample of aspects that have been investigated in interactive robots.

In the last decade, an effort to identify standardized metrics for human-robot interac-
tion has been observed. A common evaluation standard would make findings comparable,
and the notion of “system quality” would become measurable. The main challenge is the
diverse range of human-robot applications, which is the reason why metrics from other
fields (e.g. dialog system evaluation) can not directly be transferred to robotics.
An early suggestion has been made by Dautenhahn and Werry [DW02]. Inspired by
an existing technique in psychology, they determined so-called micro-behaviors that the
user displays during interaction with the robot, such as gaze, pointing or touch. These
micro-behaviors are coded manually on a second-by-second basis and can serve as a basis
for statistical analysis. However, they do not capture the actual task success of a scenario,
but rather the social aspects of the interaction.
Olsen and Goodrich have proposed six metrics for human-robot-interaction: task effective-
ness, neglect tolerance (i.e. how the robot’s task effectiveness declines over time when the
robot is neglected by the user), the robot’s attention demand (i.e. the fraction of total
task time that the user must attend to the robot) and its complement, the free time, fan
out (i.e. the number of robots that a user can effectively operate at once) and interaction
effort. The proposed metrics are kept rather generic, and no concrete suggestion is made
how they could be operationalized.
More concrete measures were proposed by Steinfeld and colleagues [SFK+06]. They pro-
posed five categories of metrics for task-oriented mobile robots: navigation, perception,
management, manipulation and social, and discuss example metrics for each categoriy.
Further, they propose that the quality of human-robot interaction can be analyzed in

26 2 Foundational Work in Dialog Modeling and Evaluation

terms of three aspects: operator performance, robot performance and system performance,
measuring how well the human and the robot perform as a team. For example, a measure
proposed for operator performance is the cognitive workload, indicated by physiological
data. A measure for robot performance could be the robot’s autonomy, indicated by
above mentioned neglect tolerance. As a metric for system performance, they suggested
for instance the appropriate use of mixed-initiative, measured through the percentage of
requests for assistance made by robot and user, respectively, and the number of interrup-
tions of the operator rated as non-critical. While several possible metrics are proposed, no
instruction is suggested how they could be offset against one another.
In general, most research on evaluation metrics has not concentrated on developing
generic metrics, but either with specific tasks in mind, such as imitation tasks [AND06],
motion planning [CC01] and logistics [EKL+11], or within specific settings, such as multi-
robot [SWK08] or teleoperated systems [Gat08]. It can be said that this is still an open,
and challenging, research issue.

Similar as in evaluation of dialog systems, standardized questionnaires have been
developed. Nomura and colleagues have developed the Negative Attitudes Towards Robots
Scale (NARS) [NKSK04], [NKS06], which they used to explain participants’ assessment
of robot behavior styles. Moreover, it was used to measure changes in attitudes towards
robots over time in a long-term interaction setting [NKSK08]. Its internal consistency and
validity could be confirmed in Japanese studies [NKSK04]. Bartneck and colleagues have
developed the Godspeed questionnaire that measures the anthropomorphism, animacy,
likeability, perceived intelligence, and perceived safety of robots, whose reliability and
validity were indicated by several empirical studies [BCK08].
Both questionnaires gauge users’ general attitude towards robots, or to a certain type
of robot, using questions such as “I would feel very nervous just standing in front of a
robot” or “I feel that in the future society will be dominated by robots.” Hence, they
are not designed to assess a real interaction with the robot, which reflects the above
mentioned deficiency in evaluation of robot systems: that a substantial part of the research
work is focusing on purely external aspects, not considering a real experience with the robot.

In contrast, benchmarks are a common means to measure success and quality of human-
robot interaction in an integrated approach. For the purpose of benchmarking human-
robot interaction, the RoboCup@Home league was founded in 2007 [LSR06]. In this
competition, robots perform tasks such as finding objects, following people, or detecting
faces in realistic everyday environments. The measurement is judged by a jury on the
basis of the competition rules. However, while such competitions are an appropriate means
for comparing the performance of different robot systems, they do not provide insights
into the underlying causes.
An integrated approach, analysing both system and interaction level in an integrated
manner has been proposed by Lohse and colleagues [LHS+07]. Their systemic interaction
analysis (SInA) approach draws from both multimodal interaction analysis, but considers

2.4 The Adopted Approach 27

not only the users’ behavior, but also what happens within the system. After a qualitative
analysis of the video material, cases are identified in which the interaction deviates from
the prototypical interaction, and their underlying system design problems. This enables
the development of possible solutions, such as redesigning system components, or affecting
the users’ behavior e.g. by giving more feedback.
With the PARADISE approach, which established itself as state-of-the-art in dialog sys-
tem evaluation, interaction and system level can be related in an even more systematic
manner, by identifying the relative contributions of the different system parameters to the
users’ perception of the system performance (cf section 2.3.1). For example, Foster and
colleagues have applied PARADISE in a construction task, where the user builds wooden
construction toys according to the robot’s instructions [FGK09]. Several success measures
for dialog quality, dialog efficiency, and task success are used. Dethlefs and colleagues
apply PARADISE to a wayfinding tasks, where the user requests a route description. As
a metrics for success they measured how well the user was able to find the target location
based on the robot’s instruction. However, in both scenarios, the user has relatively little
interaction choices. For instance, in the construction task, all the user can do is either
acknowledge the construction progress, or ask the robot to repeat the current step.

To sum up, no standard methodology for evaluation has matured in robotics so far.
Evaluation often focuses on single components, or on single aspects of the systems.
Accordingly, no standard set of metrics has been identified, which is due to the diversity
of applications. Standardized questionnaires typically address only external aspects of
the robot, or the user’s general attitude towards robots. Thus, they are not suitable for
evaluating real interaction scenarios. In contrast, the PARADISE approach would be
a viable approach for this purpose. Surprisingly, it is being used rarely in the robotics
community. The reason for that might be, first, that the integrated view to HRI is often
neglected, and, second, the historical separation of the communities, which is reflected
also by the methodologies used.

2.4 The Adopted Approach
Based on the previous discussions, the following section puts the adopted approach into
context of existing directions of research in dialog modeling and evaluation.

2.4.1 Dialog Modeling
In section 2.1.1, we proposed a general distinction between descriptive and mental-state
approaches to dialog modeling. Both have their benefits and drawbacks, as discussed
throughout the sections 2.1.2, 2.1.3 and 2.2.1. The main advantage of the descriptive
approaches is their simplicity and their robustness (at least for smaller systems). One
of their drawbacks is, however, that the dialog flow needs to be specified in advance.
This holds not only for finite state-based approaches, which allow no deviations at all,

28 2 Foundational Work in Dialog Modeling and Evaluation

but also for more sophistic descriptive approaches such as RavenClaw, whose dialog task
specification still requires a pre-structured dialog flow, but allows to specify conditions that
trigger deviations. While this is well suited for well-structured and predictable domains, it
is not feasible in robotics, where the dialog flow typically is open and depends on changes
in the dynamic environment.

The mental-state approaches, on the other hand, feature more flexibility with respect to
the dialog flow. Because their behavior is very complex, it requires intimate knowledge of
the dialog manager’s functioning to build an application. This stands in contrast to the
descriptive approaches, where tools to support the development process (e.g. graphical
editors) long exist. Also, because of their complexity, system behavior may become difficult
to predict and result in unintuitive dialogs that are hard to tweak. Further, testability
and robustness is an issue.

The information-oriented approaches to dialog modeling (i.e. both the frame-based and the
Information State approach) might not be appropriate for robot scenarios that focus not
so much on exchanging and negotiating information, but rather on learning, performing or
demonstrating actions. For this kind of scenarios an action state approach would be more
suitable.

The present work suggests a hybrid approach: Local dialog management is modeled in
a descriptive manner (in form of Interaction Patterns), whereas global dialog management,
i.e. the specification of the dialog flow, is not fixed beforehand but determined flexibly,
based on the state of system and environment. This achieves the flexibility of mental-state
approaches, while preserving the simplicity and robustness of a purely descriptive approach.
Moreover, the Interaction Pattern approach is based on an abstraction of dialog, which
enables reusability across scenarios – a feature that most descriptive approaches do not
implement. The integration of dialog and task modeling – an issue that is often neglected
– will be based on an abstract Task State Protocol.

2.4.2 Evaluation
The evaluations and analyses conducted within the scope of this thesis aimed to consider as
many aspects as possible. Therefore, not one single study was conducted, but several kinds
of studies and evaluation methods were combined. They can be divided into two groups:
developer-centered evaluations, i.e. the evaluation of the dialog framework, and
the end-user-centered evaluations, i.e. the evaluation of the HRI scenarios in which
the dialog framework was deployed. Table 2.3 lists the different aspects that were evaluated.

One aspect of the developer-centered evaluation is the usability of the framework.
This evaluation provides information about the ease with which developers can work with
the framework, by observing them performing a given task. It also gives information about

2.4 The Adopted Approach 29

Field Aspect Study type Method Chapter
Developer-
centered

Usability Usability test Descriptive
statistics,
observation

4.1

Efficacy Comparative case
study

Observation 4

End-user-centered Does robot
initiative facilitate
learning?

Explorative test
run

Video analysis 6.1.3

Does robot
initiative facilitate
interaction?

Explorative video
study

Descriptive
statistics

6.2.3

Speech
understanding
performance

Explorative user
study

Descriptive
statistics

6.3.2

User strategies in
object teaching

WOz study Qualitative
analysis

7.1.2

Speech recognition
performance

Explorative test
run

Descriptive
statistics

7.1.3

Factors relevant to
user satisfaction

User study PARADISE
approach

7.4, 7.4.2

Influence of robot
initiative

User study Descriptive
statistics

7.4, 7.4.2

Recurring
phenomena

User study Qualitative
analysis

7.4, 7.4.2

Table 2.3: Aspects of dialog modeling evaluated in this thesis.

possible drawbacks in the API. Another aspect is framework efficacy, i.e. the question
how well suited the framework is for its intended purpose. This question is investigated by
analyzing a comparative case study, wherein a given target scenario was reimplemented
by using different state-of-the-art dialog frameworks.

The end-user centered evaluation address different levels: (i) initially, new dialog
strategies were explored, (ii) concrete system parameters were optimized during an iterative
design process, and (iii) a user-study was conducted that promises generalizable results.
On the dialog strategy level, the focus was placed on exploring mixed-initiative interaction
strategies. Two facets of mixed initiative were investigated: can it facilitate learning, and
can it facilitate interaction? The first aspect was evaluated by analyzing an explorative
test run, the latter by analyzing a video study.
During the iterative design process of our main scenario, the Curious Flobi, several
parameters were optimized. First, the speech understanding performance of the
predecessor scenario was measured by means of a user study. This analysis helped to derive

30 2 Foundational Work in Dialog Modeling and Evaluation

strategies how to reduce speech understanding problems in future iterations. Second, a
Wizard-of-Oz (WOz) study on object teaching was analysed in order to gain an impression
of how users demonstrate objects to a robot and of the interaction strategies they use.
This analysis formed the basis for the design of the speech recognition grammar and the
dialog system configuration. To exclude that the resulting speech recognition grammar is
too complex, which would reduce recognition accuracy, a pre-test of speech recognition
performance was conducted.
With the result, a large-scale user study became possible. The study followed an integrated
approach, focusing not on single aspects of the system, but rather on the overall system. One
objective of the study was to identify the factors that contribute to user satisfaction.
This was evaluated by means of a PARADISE-style regression analysis. Further, the mixed-
initiative dialog strategy was evaluated in this scenario, too. As a three-level between-
subjects factor, the degree of robot initiative was varied. Moreover, a qualitative
analysis revealed interaction phenomena, whose causes were then traced back to the
responsible system components in order to identify possible solutions.

3 Specifying the External Interface: The Task State
Protocol

This chapter takes an external view on the suggested approach and focuses on the external
interface of the dialog framework and its role within the robot architecture. Section 3.1
states the importance of a well-defined component interface and identifies its requirements,
which partly result from the general requirements of HRI as discussed in section 2.2.1.
Architectures for dialog systems will be discussed in section 3.2, with particular focus
on their integration with the domain back-end. Section 3.3 presents an approach for
a component interface that relies on the concept of tasks and their states. Section 3.4
illustrates its benefit for HRI and describes how it supports crucial features of HRI, such
as mixed task initiative, tight integration of action execution and interaction, multitasking
and interactive learning.

3.1 Motivation
A dialog system for human-robot interaction is not a stand-alone component, but em-
bedded in the robot control architecture that consists of several diverse components and
may be highly complex. The components of the architecture have to communicate with
each other to cooperate. In this process, the dialog system plays a key role: it can be
seen as a mediator between the user and the robot’s functionalities. For instance, if the
human gives an instruction, the dialog system will ensure that it is translated into the
corresponding system command so that it can be handled by the responsible component.
Conversely, the dialog system will keep the human informed about the current system state.

Out of the characteristics of human-robot-interaction that were discussed in section 2.2.1,
several requirements for the communication between the dialog system and the robot
subsystem arise. First, because of the situatedness of human-robot interaction, on-going
activities and visible objects will be the topic of conversation. Thus, to achieve real-world
integration, the communication needs to support close collaboration between the dialog
system and the respective robot components to integrate their results into the interaction.
Second, human-robot interaction requires the coordination of joint activities, and there
may be several concurrent activities. Also, they may be longer running and need to be
monitored over time. On the other hand, due to the dynamics of the environment, situation
changes may happen at any time, and require human intervention, or at least notification.
This means that the coordination of the activities needs to be asynchronous, i.e. the dialog

31

32 3 Specifying the External Interface: The Task State Protocol

system does not wait until a specific activity is finished, but continues computation and still
remains responsive to status updates of ongoing activities. Third, human-robot interaction
involves a mixed-initiative interaction style. For the communication between components,
this means that the communication flow needs to be bidirectional. Interaction episodes
will be initiated not only by the dialog system, upon a human’s initiative, but also by
other system components, if human intervention or clarification is required. Accordingly,
in order to equip a robot with the ability to take task initiative autonomously, system
activities will not only be triggered by the dialog system, on the human’s instruction, but
may be triggered by other system components as well. As a consequence, the responsibility
for the interaction flow will not lie exclusively with the dialog system any more (cf. 3.8.2
for further discussion).

The way a component interacts with other components, i.e. its external interface, greatly
affects its degree of integration with the rest of the system, and the effort integration takes.
A design principle to achieve good interoperability is a contractually defined component
interface that specifies the structure and semantics of the information exchanged between
components, as well as an agreement how to use it [BS09]. This chapter will focus more
on the information that is exchanged, while the following chapter will detail how the
information is used, i.e. how the dialog manager internally takes decisions based on it.

This chapter will present the Task State protocol: an approach for a well-defined dialog
system interface that i) meets the above described requirements for communication between
the dialog system and the robotic subsystem and ii) allows the dialog system to treat all
components in a uniform manner, instead of relying on individual back-end interfaces to
the different components.

The Task State protocol, or Task State communication pattern, has been developed
and investigated within several projects, and several colleagues have contributed to it,
namely the Home-Tour team (consisting of Marc Hanheide, Frederic Siepmann, Torsten
Spexard and myself) and the Curious Robot team (consisting of Ingo Lütkebohle and
Robert Haschke and myself). A very first draft was used in the Home-Tour scenario
(see chapter 6.1), for the communication between the then used Sunshine Dialog system
(see section 5.1) and a room classification component. Later, within the Curious Robot
scenario (see chapter 6.2), more use cases were identified, and the communication pattern
was further refined. Lütkebohle investigated its role as a general coordination pattern and
provided a toolkit that supports request, monitoring and revision of tasks [LPP+11]. On
the way towards concepts for a reusable dialog framework, this motivated me to rely on
the Task State protocol as the exclusive interface to the dialog framework.

3.2 Foundational Work 33

3.2 Foundational Work
In traditional architectures for dialog systems, components are structured in a pipelined
manner. A speech recognizer recognizes the words the user said, a natural language
understanding component assigns a meaning to these words, the dialog manager then
determines how utterances fit into the dialog context so far and decides the next system
action (e.g. clarifying, confirming, asking for further information, or making a lookup in
an information source like a timetable or a flight schedule), and a language generation
component chooses the words and phrases used in the response, which is then verbalized
by the text-to-speech synthesis [McT04]. Pipeline architectures can typically be found in
information access domains, for example in the Ariadne system [Den02], in the LIMSI
system [LRGB99], or in the MALIN dialog system, which is shown in figure 3.1. In
such kinds of architectures, the dialog manager tends to be a monolithic component that
controls everything in the system [OM00]. This makes it hard to build modular systems
that comply with the requirements of robotics, such as real-world integration, concurrent
activities and mixed initiative. Also for building more advanced conversational systems
that approach human-like behavior and account for phenomena such as back-channeling,
turn-taking, grounding, interruptions and incremental processing, this type of architecture
is not flexible enough [All01].

Dialog
manager

Interpreter

Generator

Dialog
history

Domain
knowledge
manager

Domain task
model

Knowledge
module 1

Knowledge
module n

System task
model

Dialog
model

Figure 3.1: The MALIN dialog system architecture: a typical pipeline architecture (af-
ter [EJ00]).

Accordingly, research in the spoken dialog system community has been shifting towards
more modular, distributed architectures, where dialog management is divided into smaller
components. Nowadays, most architectures follow a client-server model with a central
component that regulates the interaction between the other components. The logical
information flow still mostly follows a strictly sequential pipeline, though. Frameworks
and infrastructures for distributed dialog system architectures have been developed, which

34 3 Specifying the External Interface: The Task State Protocol

entails the question of inter-component communication and component interfaces. In
the dialog community, this issue has been addressed in two different ways: components
communicate either through user-defined interfaces, or through standardized interfaces
based on agent communication languages.

HUB RAVENCLAW
Dialog Manager

ROSETTA
Language
Generation

KALLIOPE
Speech

Synthesis

TTYServer
Text I/O

SPHINX
Speech

Recognition

PHOENIX
Parsing

Application
Back-end

Figure 3.2: The RavenClaw dialog system architecture (after [BR09]), which relies on the
Galaxy-II infrastructure. The lines denote the communication connections, whereas the
dashed arrows denote the logical information flow. Some components (such as the Date-
Time server) have been skipped for the sake of clarity.

The most prominent example of the first approach is the Galaxy-II Communicator architec-
ture, a distributed hub-and-spoke infrastructure for constructing dialog systems [SHL+98].
The RavenClaw framework, which was introduced in section 2.1.2, is based on the Galaxy-II
infrastructure. Figure 3.2 shows the architecture of the RavenClaw dialog framework. In
this client-server architecture, components are connected via a central hub component and
communicate through frame-based messages. The hub component handles all communica-
tion between the components, based on sequential rules for routing messages, specifying
basically the operation to perform and the resulting input and output variables. Figure 3.3
shows a result frame from the Curious Robot case-study described in section 4, where the
Curious Robot scenario was re-implemented based different dialog frameworks, including

UserQuery:

{type: gripquery

label: apple

grip: power_grip

taskstate: completed

}

Figure 3.3: A Ravenclaw result frame from the Curious Robot case study, in which a grip
database answers a grip query from the dialog system (“How do you grasp the apple?”).

3.2 Foundational Work 35

RavenClaw, which relies on Galaxy-II.
From robotics point of view, the Galaxy-II architecture has two drawbacks. First, the
semantics of the frames is not specified, i.e. it needs to be defined by the respective
component developer. This means more freedom, but also more effort for the developers.
Particularly in robotics, where the application back-end consists not of a single database,
but of several cooperating components that are implemented by different developers, a
common standard would facilitate their integration with the dialog system. Second, the
Galaxy-II framework does provide both blocking and non-blocking function calls, but it
lacks provisions for monitoring the execution of non-blocking operations. This makes it
hard to implement concurrent activities with it. These drawbacks are not specifics of the
Galaxy-II framework, but are widely found in similar architectures for dialog systems,
e.g. in the CSLU toolkit [SCd+98], the WIT dialog framework [NMY+00], and the iHUB
integration framework [RS05].
The above problems were further investigated in the Curious Robot case study. Addi-
tionally, several other drawbacks were identified in this case study. For example, as the
logical information flow follows a pipeline (cf. figure 3.2) where the back-end actions are
triggered by the dialog system, it is hard to realize system task initiative and to integrate
real-world events. Also, RavenClaw does not support reusability of interaction episodes.
These drawbacks however are rather related to the RavenClaw dialog manager than to
the Galaxy-II architecture itself.

OAA2
Facilitator

Festival
TTS Agent

GUI
Interactive Map

Display

Robot
Control and Report

Interface
Dialog

Manager

Gemini
NL Agent

Nuance
SR Agent

WITAS UAV

Figure 3.4: The WITAS architecture (after [LBGP01]).

An example of the second approach, where communication between components is based
on agent communication languages, is the Open Agent Architecture [MCM99]. The
OAA has been designed for distributed agent systems in general, but provides several
agents specifically for the purpose of building dialog systems, e.g. for speech recognition,

36 3 Specifying the External Interface: The Task State Protocol

natural language parsing and generation, text-to-speech synthesis and database queries.
Several dialog frameworks rely on it, for instance TrindiKit [TL03], Dipper [BKLO03] and
WITAS [LBGP01], whose architecture is shown in figure 3.4.
The OAA is a framework for integrating software agents in a distributed environment. In
the context of the OAA, an agent is defined as a software process that provides services or,
in the OAA terminology, capabilities to other agents, registers these with the framework
and is able to “speak” the Interagent Communication Language (ICL). The ICL is a logic-
based language similar to Prolog, used to perform queries, execute actions, or exchange
information. ICL messages have the form solvable(Goal, Parameters, Permissions).
The solvable, which corresponds to an agent capability, specifies what action should
be performed. The facilitator forwards it to the agent which is able to solve it. The
responsible agent will then try to solve the given goal by unifying the variables contained
in the goal expression. For example, in the case study described in section 4, the goal
listObjects(Result) was used to request a list of all visible objects from a vision agent.
In its response, the vision agent binds the list of object names to the variable Result,
e.g. listObjects([apple, [banana, lemon]]). Besides the goal itself, a message may contain
additional control parameters (Parameters and Permissions) that specify how the task
should be routed, or which agent should perform it.
As for asynchronous processing, the OAA provides more flexibility than the Galaxy-II
architecture. All agents are independent processes that run asynchronously and may be
written in different programming languages. The OAA can handle asynchronous delivery
and triggers, which enables the dialog system to keep track of multiple parallel activities
and to react to real-world events. However, similar as with the Galaxy-II architecture, the
OAA does not provide a clearly defined component interface, but leaves specification of
component communication to the individual developers.

The influential TRIPS architecture, which was introduced in section 2.1.3, uses an alter-
native approach for communication between different agents. It makes use of the agent
communication language KQML, which is based on ideas from speech act theory [FFMM94].
KQML defines a fixed set of performatives, that correspond to the illocutionary force of a
speech act in natural language. For example, ask-all is a directive performative meaning
that “A wants to know all B’s responses that would make the content true of B”, and tell

tell :language Prolog

:ontology objects

:in-reply -to q1

:sender Vision

:receiver Dialog

:content ’’listObjects (([apple , [banana , lemon]]))’’)

Figure 3.5: Example KQML message from a vision component to the dialog component,
providing a list of the currently visible objects.

3.2 Foundational Work 37

is an assertive performative meaning that “A states to B that A believes the content to be
true” [LF94]. Figure 3.5 shows the above mentioned example message from a vision agent
that knows about present objects in the KQML message format.
Like other agent communication languages, KQML adopts a cognitive-state approach to
communication, which assumes that a conversation emerges from the agents’ beliefs and
intentions. Accordingly, while syntax and semantics of single performatives are detailed in
technical specifications, no explicit agreements have been formulated that regulate the
sequences in which messages may occur. The correct interpretation of a message, and
a meaningful reaction to it, is left to the individual agents. However, as the semantics
of the performatives is specified in natural language, the semantics may be interpreted
slightly different by different developers. Also, the semantics of a message may depend on
the context. For example, an inform performative should sometimes be interpreted as a
suggestion but in another context, as a command [EH99]. Thus, interoperability of agents
can not be guaranteed.
This shortcoming has long been recognized in the intelligent agent community. As a con-
sequence, conversation policies have been suggested that constrain the messages that are
sent by specifying shared conventions about what messages may follow each other1, either
in form of graphs (e.g. [LF94, Par96, Kön09]), or in form of constraints to the messages
(e.g. [MB95, EH99, HHB99]). There is no consensus on the appropriate form of conversa-
tional policies, let alone their semantics [HHB99], and they have not been included in the
specifications of the agent communication languages. Those dialog management approaches
that base communication on agent communication languages, such as TRIPS, have not
adopted the concept of conversation policies, but rely on more specific approaches for
the interpretation of agent messages, e.g. based on Allen’s problem solving model [ABF02].

To sum up, in robotics the issue of inter-component communication – and in particular the
communication with the back-end – is crucial for the integration of a dialog system with the
robotic subsystem, as detailed in section 3.1. In the spoken dialog community, on the other
hand, this issue has often been neglected. Asynchronous coordination is provided by some,
but not all, architectural frameworks for dialog systems. Dialog systems rarely provide
well-defined component interfaces, but often rely on component-specific solutions, e.g.
based on user-defined result frames. Alternatively, communication between components in
distributed dialog system architectures is often based on agent communication languages,
which do specify a message format but lack a definition of valid message sequences. Thus,
from robotics point of view, existing dialog systems lack concepts for clearly defined
interfaces to the domain level that allows for a detailed information exchange between the
dialog system and the robotic subsystem.

1 The concept of conversation policies has influenced my idea of Interaction Patterns (cf. Chapter 3.4.4)
that determine which dialog acts may follow each other.

38 3 Specifying the External Interface: The Task State Protocol

3.3 The Task State Protocol
Robots that are to assist humans in their real-world environments must be equipped with a
variety of capabilities, ranging from perceiving the environment, detecting and recognizing
humans, navigation in dynamic environments, to localizing and manipulating objects.
These activities are initiated, and can be supported by, interaction with the human, where
human and robot exchange information about their common environment and collaborate
on joint tasks in a mixed-initiative interaction that goes beyond command-control style.
From the human’s point of view, the dialog system provides a gateway to the robot’s
capabilities. It takes the human’s commands and forwards it to the components that carry
it out, keeps the human informed about the robot’s current state, and reports about execu-
tion success while – in more complex settings – the human can at any time stop or revise
the robot’s actions. On the other hand, it enables the robot to verify the given command,
or to ask for missing information. As argued before, from a software engineering point of
view, this requires a close collaboration between the dialog system and the components
that carry out the robot’s activities. To address this issue, a general communication model
is used: the Task State Protocol. It provides a fine-grained coordination mechanism for
robot activities and, at the same time, serves as a well-defined component interface to the
dialog system.

The basic concept is that components execute and request tasks, acting as servers and
clients respectively. A task consists of its specification (which is relevant for execution) and
the state (which is relevant for coordination) it is in. While the task specification depends
on the type of the task, the set of possible states are the same for all tasks. The task life
cycle can be described by the finite-state machine depicted in figure 3.6: Normally, a task
gets initiated, accepted and finally is completed. Alternatively, it might fail, or be rejected
right away. During execution, it might already deliver intermediate results, or be updated

update
requested

cancel
requested

runninginitiated

CANCELLED

DONE

failed

cancel accepted

accepted

rejected

update update accepted / failed

cancel cancel failed

initiated completed

intermediate
result

Figure 3.6: The task state machine that describes the general life cycle of tasks.

3.3 The Task State Protocol 39

or canceled (which again might fail). Table 3.1 lists the semantics of those task state
updates. The updates cause event notifications that are delivered to the participating
components, together with the current task specification. However, not every task must
support all state changes.
The concept of task-based coordination is not new: It has been identified as a common
design pattern for coordination in robotics, and variations of it are applied in several
robot architectures [LPP+11]. However, its application to, and benefit for, human-robot
interaction has not been investigated in the robotics community yet.
Technically, tasks are represented as XML document that contain a STATUS element,
indicating their current state (cf. figure 3.7). Events are delivered asynchronously through
an event bus provided by the middleware. The Task State Protocol has so far been
implemented based both on the robotic middlewares XCF [FW07] and RSB [WW11]
(but can in principle realized with any middleware that supports asynchronous commu-
nication). Lütkebohle has developed a toolkit that supports task management, both for
server’s and for client’s side [LPP+11]. It offers functionality for requesting tasks and
updating their states (and possibly their specification as well) via a task object that
encapsulates the detailed XML handling. Most importantly, the toolkit makes sure that
the update operations comply to the state machine shown in figure 3.6. It also takes on
error management, e.g. by detecting and recovering concurrent updates or delayed delivery.

The Task State Protocol in the form as described here evolved within the Home-Tour
scenario, where a mobile robot assistant has to become acquainted with human’s living
environment by interacting with a human during a guided tour (see Chapter 6.1). In
this context, a very first version of the Task State Protocol has been used for modeling
the communication between the dialog system and a room representation component.

Task state Update operation Semantics
initial initiated The client initiates the task.
initiated accepted The server begins execution.

rejected The task will not be executed.
running intermediate result The server has updated the task specification.

completed The server has completed the task.
failed The task could not be completed.
update The client has updated the task specification.
cancel The client requests termination of execution.

update requested update accepted The server conforms to the updated task specification.
update failed The server continues execution with the previous task specification.

cancel requested cancel accepted The server stops execution.
cancel failed The execution will be continued.

Table 3.1: The semantics of the task state updates.

40 3 Specifying the External Interface: The Task State Protocol

<GRASP >

<STATUS value=" initiated"/>

<Region varianceFirstMajorAxis ="434" varianceSecondMajorAxis ="433" pixelCount ="4384" >

<coord ref=" image" kind=" relative" x="158" y="67" width ="0.4" height ="0.8"/ >

<Object detectorLabel =" apple">

<Grip type=" TwoFingerSpecial "/>

</Object >

</Region >

</GRASP >

Figure 3.7: Example task specification for a grasp operation.

Representations were based on laser-range data. The robot has to turn by 360°to acquire
these. As this normally takes some time, it was desired that the robot acknowledges the
execution at the beginning of the learning process to provide feedback about its internal
action state (“I will have a look at it”). For this purpose, a basic version of the task life
cycle was used, comprising the events initiated, accepted (marking the execution begin) or
rejected (when the hardware was otherwise busy), and completed.

The concept was further refined within the Curious Robot scenario, an interactive object
learning and manipulation scenario where a humanoid robot learns labels of objects and
how to grasp them, assisted by a human tutor (see Chapter 6.2). In particular, the robot’s
grasping operation provided an interesting use case for coordinating more complex actions:
The human can intervene at any time, to stop or to correct an on-going grasping operation.
Moreover, during an on-going grasping action, the human can bring up new topics, e.g.
asking the system about information it has, which requires to coordinate multiple tasks
in parallel. To meet these demands, the Task State Protocol was iteratively extended.
The final version shown in figure 3.6 has proven to be detailed enough to support the
desired functionality and, at the same time, general enough to be applicable to a variety
of use cases in very diverse scenarios. Its role as a general coordination mechanism has
been investigated [LPP+11, Lüt11]. Accordingly, in the Curious Robot system not only
the communication between the dialog system and the back-end, but the interplay of all
components relies on the concept of task states.

Based on the experiences with the Home-Tour and the Curious Robot scenario, which
were both implemented with the then used Sunshine dialog system, concepts for the
reusable and customizable PaMini (Pattern-based Mixed Initiative) dialog framework were
developed. As a consequence thereof, the role of the Task State Protocol as a generic
interface became more important. From the dialog system point of view, it establishes a
uniform interface to the back-end – and in particular to action execution – which allows
the dialog system to treat all tasks in a uniform manner. From the back-end point of
view, the Task State Protocol represents a well-defined component interface to the dialog
system. It provides architectural guidelines for component developers, thus facilitating
integration. The architecture it entails is schematically shown in figure 3.8: The dialog

3.4 Advanced HRI Based on the Task State Protocol 41

manager exchanges information with the robot back-end – consisting of several task servers
and clients – based on the Task State Protocol vial an asynchronous event bus. Note that
the back-end components may (and often do) act as server and client at the same time.
Also, the back-end will typically include additional components that do not participate in
the task communication with the dialog system. They are not shown in the figure.

Robot Back-End

<<component>>

Task
Client n

<<component>>

Task
Client 1

<<component>>

Task
Server n

<<component>>

Task
Server 1

<<component>>

Event Bus

Speech subsystem

<<component>>

Text-To-Speech

<<component>>

PaMini
Dialog Manager

<<component>>

Speech
Recognition

<<task>>

<<task>> <<task>>

<<task>>

<<use>> <<use>>

Figure 3.8: Schematic architecture. The PaMini dialog manager exchanges information
with the robot back-end based on the Task State Protocol via an asynchronous event bus.

3.4 Advanced HRI Based on the Task State Protocol
In the following, several interaction examples from the Curious Robot scenario are described
which illustrate the interplay of the dialog system and the robot system. Each example
emphasizes a particular aspect crucial to human-robot-interaction: Mixed task initiative,
the integration of action execution and interaction, multitasking and interactive learning.
Examples are presented as UML sequence diagrams which show how components operate
with another and the sequence of messages they exchange. Please note that technically the
events are not sent directly to the individual components as the diagrams might suggest,
but delivered by an event bus to the components that are registered to the respective event
type. However, for the purpose of clarity, the event bus is not shown in the diagrams. Note
also that technically the communication with the speech recognition and text-to-speech
component is modeled as tasks as well, which for the purpose of clarity is not reflected in
the diagrams.

42 3 Specifying the External Interface: The Task State Protocol

Text-To-Speech Robot InitiativeSpeech
Recognition

Arm ControlDialog

[human initiative]

[robot initiative]

alt

InteractionGoal="Grasp"2:

receive
(Grasp the apple)

1:

Grasp accepted4:

Grasp completed6:

Grasp initiated3:

Say
(I begin to grasp the apple)

5:

Say
(Alright)

7:

Figure 3.9: Mixed task initiative: Grasping can be initiated either on the human’s or on
the robot’s initiative.

3.4.1 Use Case 1: Realizing Mixed Task Initiative
The first example illustrates a grasping action that can be proposed either by the human or
by the robot. The diagram shown in figure 3.9 distinguishes between these two alternatives.
In the first case, the grasp command is given by the human, whereas in the second case, the
robot is grasping on its own initiative. Having received the command, either by the speech
recognition in case of human initiative (1) or by an initiative planning component (2), the
dialog initiates the appropriate task (3). The arm control accepts (4) and completes (6) it,
which is verbalized by the dialog system (5 and 7).
The example serves to illustrate two aspects. First, the motor control server is agnostic
about how the task came about, i.e. whether it was initiated on the human’s or on the
robot’s initiative. The further process flow is the same. Second, the decision about the
robot’s actions (in this case, its grasping action) are not taken by the dialog system, as it
is the case with dialog systems for traditional domains (cf. the discussion in chapter 4).
Instead, the proposals for actions come from the back-end. Thus, robot task initiative can
be realized as a reaction to real-world events (e.g. that the apple was newly detected in
the scene), rather than following a prestructured dialog flow.
The diagram slightly simplifies component interaction. Unlike as depicted, the current
interaction goal Grasp was modeled not as a simple event message, but rather as a task
request which is either accepted or rejected by the dialog system, depending on whether
the current dialog situation allows for interjection from the robot or not.

3.4 Advanced HRI Based on the Task State Protocol 43

Text-To-SpeechSpeech
Recognition

Arm ControlDialog

Receive
(Grasp the apple)

1:

Receive
(Not apple, but lemon)

5:

Receive
(Stop)

9:

Grasp accepted3:

Grasp update_rejected,
target="apple"

7:

Grasp cancel_accepted11:

Grasp initiated,
target="apple"

2:

Say
(I begin to grasp the apple)

4:

Grasp update,
target="lemon"

6:

Say (I can not change
the target any more)

8:

Grasp cancel10:

Say (OK, I stop)12:

Figure 3.10: Integration of action execution and interaction: Grasping with user correc-
tions.

3.4.2 Use Case 2: Integrating Action Execution and Interaction
The second example addresses the interaction between the dialog system and the motor
control. Figure 3.10 describes an interaction sequence in which the human gives the order
to grasp the apple (1), whereupon the dialog initiates the appropriate task (2). The
arm control accepts (3) and begins execution, which is announced by the dialog system
(4). During grasping, the human attempts to correct the target of grasping (5). The
dialog system forwards the requested correction to the arm control by modifying the
task specification and setting the task state to update (6). However, the arm control is
not capable of updating the operation and rejects the update (7), causing a notification
generated by the dialog system (8). The human then gives the order to stop execution (9).
Again, the dialog system forwards the request to the arm control via the cancel state (10).
The arm control accepts canceling (11), and the dialog system generates the appropriate
verbalization (12).
This example emphasizes the tight integration of interaction and action execution. With
the update and cancel events, the Task State Protocol provides mechanisms to repeatedly
modify ongoing tasks. Conversely, the resulting state updates (such as cancel accepted)

44 3 Specifying the External Interface: The Task State Protocol

Text-To-Speech Environment
Representation

Arm ControlSpeech
recognition

Dialog

ObjectInfo completed8:

ObjectInfo accepted7:

Grasp accepted3:

Grasp completed10:

Receive
(Grasp the apple)

1:

Receive
(What objects
do you see?)

5:

Grasp initiated2:

Say
(I begin to grasp the apple)

4:

ObjectInfo initiated6:

Say
(One apple and two bananas)

9:

Say
(Alright, I finished grasping)

11:

Figure 3.11: Multitasking: User requests information during grasping.

cause event notifications that enable the dialog system to generate feedback on the internal
system state. This includes also the case where state updates can not be realized, which is
indicated by event notifications such as update rejected.

3.4.3 Use Case 3: Multitasking
In the third example, two tasks are executed in parallel. During an ongoing grasping
action (1-4), the human requests information about the objects in the scene (5). This
causes a task for the environment representation component to be initiated (5). The
environment representation accepts the task (6), adds the requested information to the
task specification and completes it (7). The information is verbalized by the dialog system
(8). Next, the grasp task is completed and acknowledged as well (9, 10).
The example demonstrates how asynchronous event delivery enables multitasking. Having
initiated the task for grasping, the dialog system remains responsive to new commands.
New tasks can be initiated, even though completion of running tasks is still pending. From
an interaction point of view, this enables to manage multiple open topics at a time within

3.4 Advanced HRI Based on the Task State Protocol 45

Text-To-Speech Robot Initiative Object
Recognition

Speech
Recognition

Dialog

LabelQuery initiated1:

LearnObject accepted12:

LearnObject completed14:

Receive
(This is a melon)

4:

Receive
(No, it´'s a lemon)

7:

Receive
(Yes, that´'s correct)

10:

LabelQuery accepted2:
Say
(What is that?)

3:

Say
(A melon, is that correct?)

6:

LabelQuery intermediate_result,
label="melon"

5:

LabelQuery intermediate_result,
label="lemon"

8:

Say
(A lemon, is that correct?)

9:

LearnObject initiated11:

Say
(I am going to learn the lemon)

13:

Say
(I have learned the lemon)

15:

LabelQuery completed16:

Figure 3.12: Interactive learning. Label learning with user corrections.

a conversation, and to switch between the topics.

3.4.4 Use case 4: Enabling Interactive Learning
The final example shows how the Task State Protocol can be applied to realized interactive
learning. More specifically, the robot asks the human for an object label that is unknown
to it. First, an initiative planning component requests a LabelQuery task from the dialog
system (1). The dialog system accepts the task (2) and, accordingly, verbalizes the
question about the object label (3). As the human answers the question (4), the dialog
system already publishes the received information (5) before asking the human for final
confirmation (6), which gives the human the opportunity to correct the misunderstood
label (7). Again, the dialog system already publishes the label (8) before asking for

46 3 Specifying the External Interface: The Task State Protocol

confirmation (9). This time, the human confirms the label (10), whereupon the dialog
system initiate a LearnObject task for the object recognizer (11). The LearnObject task is
accepted (12) and completed (14). Both state updates are verbalized by the dialog system
(13, 15). On notification that the LearnObject task has been completed, the dialog system
completes also the LabelQuery task.
Based on this example, several aspects can be discussed. First, the Task State Protocol
allows the dialog system to gather information from the human and to transfer it to
the responsible system components. With the corrected state, the information can be
revised and corrected repeatedly. Moreover, with the intermediate result transition the
information may be submitted incrementally, or preliminary information may be already
published although it is still under negotiation. Second, as in the previous example, two
interleaving tasks (LabelQuery and LearnObject) are executed. However, unlike before,
the tasks are logically related: the dialog system can not complete the LabelQuery task
until the LearnObject task has been completed. Third, note that in the present example,
the dialog system acts both as task server (for the LabelQuery task) and as task client
(for the LearnObject task) at the same time, which assigns it a coordinating role within
the overall system.
In the Curious Robot system, there was no component that actually did react to the
unconfirmed label. However, one could easily think of cases in which preliminary publication
of unconfirmed information would be useful. For example, slow-going actions such as
manipulation or navigation tasks could already be prepared even though the precise goal
specification is still preliminary.
The previous chapter has taken an external view on the proposed approach to dialog
modeling. In contrast, this chapter will provide insights into its internal functioning.
Section 3.5 establishes the link between the internal dialog model and the process of dialog
design, and it introduces the twofold function of the proposed Interaction Patterns, which
serve both as internal dialog model and as application programming interface (API) for
dialog designers. Section 3.6 reviews foundational work that has influenced the concept
of Interaction Patterns, both from the field of descriptive dialog modeling and from the
field of dialog system API design. Section 3.7 defines the Interaction Patterns and their
features. Their function as internal dialog model is discussed in section 3.8, and their
function as dialog system API is discussed in section 3.9. Section 3.10 gives an overview
of the existing Interaction Patterns and their development over time.

3.5 Motivation
The previous chapter described how the dialog system communicates with other compo-
nents and the role it takes within the overall architecture. However, it left open a number
of questions: How is the appropriate task operation determined from a user instruction?
How are incoming task events verbalized? How are modifications of a task specified? More
general, how does the dialog manager fulfill its two main responsibilities, which are (i) to

3.5 Motivation 47

determine how an utterance fits into the dialog context and (ii) to decide the system’s
next action [McT04]? These issues largely depend on the underlying dialog model. As
stated in section 2.4.1, the presented work favors a descriptive approach for local dialog
modeling.

An aspect that is strongly influenced by the chosen approach for dialog modeling is the
process of dialog design: Which steps are required to build a spoken dialog application,
and what amount of effort and expertise does this take? One reason why a descriptive
dialog model was favored is that it provides better understandability of the possible dialogs
than mental-state approaches, and thus has the potential to facilitate the design process,
even for non-experts. In this context, Bohus and Rudnicky point out several desirable
characteristics for dialog frameworks and their API [BR09]1:

• Task independence: The framework should establish a clear separation between
the domain-specific aspects of dialog logic and domain-independent dialog control
principles, so that dialog designers need to specify exclusively the domain-specific
aspects.

• Flexibility: The framework should support a wide range of application domains
and interaction styles.

• Modularity: The single functions (e.g. dialog planning, in- and output processing,
error handling) should be encapsulated in subcomponents with well-defined interfaces.

• Reusability: Solutions should be reusable across applications2.
• Scalability: The framework should support the development of practical real-world

spoken language applications. Since these are typically developed iteratively, this
means that the framework should support robust expansion of applications.

In summary, these desirable features may serve as design principles for the API of a dialog
framework. They have, amongst other considerations, guided the adopted approach. We
will return to these issues and check their realization in section 3.8.2.

The present chapter will introduce the concept of generic Interaction Patterns: a formaliza-
tion of recurring conversational structures and system actions at an abstract level. Their
purpose is twofold: From dialog management perspective they (i) provide context for input
interpretation and specify the system’s response. From dialog designer’s perspective they
(ii) provide configurable building blocks of interaction that can be combined in a flexible
manner. The link to the domain level is established through the previously described Task
State Protocol.

Like the Task State Protocol, the concept of Interaction Patterns has been developed

1 In addition, they mention open source and transparency with respect to logging.
2 However, the RavenClaw approach (which is the one proposed by Bohus and Rudnicky) does not

support reusability very efficiently itself. See section 4 for discussion.

48 3 Specifying the External Interface: The Task State Protocol

based on the experience with the Home-Tour scenario and the Curious Robot scenario
(cf. chapters 6.1 and 6.2), both of which were implemented with the then used Sunshine
dialog system (cf. section 5.1). They provided plenty of use cases for identifying recurring
patterns in human-robot interaction, both on conversational and on task level. The
observed recurring structures were then generalized and implemented as Interaction
Patterns in the PaMini framework. Since then, many further scenarios have been built
based on PaMini’s Interaction Patterns, most notably the Curious Flobi scenario, which
served as the main testbed and proof-of-concept for the approach (cf. chapter 7).

3.6 Foundational Work
This section reviews foundational work that has influenced the concept of Interaction
Patterns, both from the field of descriptive dialog modeling and from the field of dialog
system API design. As abstraction of dialog is a prerequisite for reusability, section 3.6.1
discusses formalisms that describe the typical course of conversation at a high level.
Section 3.6.2 identifies techniques to achieve an easy-to-use API based on a number of
example systems that explicitly address rapid-prototyping of dialog applications.

3.6.1 The Internal View: Descriptive Dialog Models
Linguistic approaches to dialog modeling can be divided into plan-based, or cognitive-state
approaches, and descriptive approaches[FE07]. While the approaches of the first type
model interaction partners’ beliefs, desires and intentions, the approaches of the latter type
focus on the interaction partners’ resulting behavior. Within the tradition of descriptive

1 2 3 4 5

6 7

8 9

A:Request B: Promise B: Promise A: Declare

A: Declare

A: Withdraw

B: RenegeB: Reject
A: Withdraw B: Counter

A: Counter

A: Accept

A: Reject
B: Withdraw A: Withdraw

Figure 3.13: Winograd’s conversation for action (after [Win86]).

3.6 Foundational Work 49

dialog modeling, there is in particular the notion of dialog games [LM77, Man88, Hul00].
The underlying assumption is that conversation is carried out towards a goal, and a
dialog game, then, describes conventions about typical conversations and how goals can
be achieved, specified in form of rules. For example, in their early work, Levin and Moore
have identified dialog games for helping, action-seeking, information-seeking, information-
probing, instructing and griping, based on a wide variety of dialogs including transcripts
of a lunar mission, radio talk shows and teaching interactions [LM77].
A related concept within the field of conversational analysis is the concept of adjacency
pairs [SS73, Lev83]. Adjacency pairs consist of two turns that are functionally related
such that the first turn restricts the type of the second turn, i.e. the first turn determines
its preferred, or expected, follow-up. For example, the resonse to a greeting is a greeting,
or an apology requires an acceptance or a rejection. Between the two turns of an adjacency
pair, other pairs may occur as insertion sequences to form larger segments. This concept
has inspired the design of dialog strategies in practical spoken dialog systems. Admissible
adjacency pairs and possible insertion sequences serve as a dialog model and are specified
in form of dialog grammars (e.g. [Bri02, KGK+09]), as attachment of a dialog move in
the WITAS system [LGBP02] (cf. section 2.2.2), or learned from annotated corpora
(e.g. [BPH+09]).
In the field of multiagent systems, the above mentioned cognitive-state approaches are pre-
dominant, but a number of researchers advocate for more explicit, descriptive approaches
of modeling conversations in form of conversation policies [LF94, MB95, Par96, EH99,
HHB99, Kön09]) (cf. also the discussion in the context of inter-component communication
in section 3.2). The basic idea dates back to Winograd’s work in the field of computer
supported collaborative work where the commitments that individuals take within their
daily activities and methods for coordinating them are modeled [Win86]. Figure 3.13 shows
a simple “conversation for action”, in which A makes a request to B. B can either accept,
decline or make a counter-offer with alternative conditions, and so on. The multiagent
community has adopted this concept for modeling conversations between software agents
rather than between human individuals. The software agents communicate through agent
communication languages (e.g. KQML [FFMM94] or FIPA [ON98]) which are typically
designed in the style of human language and include terms like asking or apologizing.
Conversations policies determine admissible sequences of agent communication messages,
often in the form of finite-state automata, similar as the one shown in figure 3.13. In
contrast to the above linguistic formalisms, conversation policies are intended to generate
conversations in technical systems rather than to analyze human-human conversations.
For this reason, and because they provide a comprehensible graphical representation, they
strongly influenced my concept of Interaction Patterns.

Common to the described approaches is that they take a functional view on language,
which is inspired by speech act theory [Aus62, Sea69]. Speech act theory has brought up
the view of utterances as actions: Utterances – or speech acts – can change the mental and
interactional state of interaction partners, in a similar way like physical actions change the

50 3 Specifying the External Interface: The Task State Protocol

state of the world. The described approaches focus on the illocutionary level of speech acts
and the separation between the illocutionary force (which specifies the type of action, e.g.
rejecting a request) and the propositional content (which specifies the details of the actions).
In spoken dialog systems, this distinction can be used to separate the interactional function
of an utterance from its specific wording and thus to make an abstraction over utterances.
In fact, most dialog systems make abstractions over utterances, which is however often
referred to as dialog acts. In the following, this term will be adopted when it is not the
speech act theory in the strict sense, but rather this separation in a more technical sense
which is referred to.

3.6.2 Dialog System APIs
Virtually all approaches to dialog systems claim to be easy configurable in some way or
another. One of the first approaches that explicitly addressed the issue of API usability
and rapid development of dialog applications was the CSLU toolkit [SNC+96, SCd+98]
which provides a graphical editor and a toolkit environment for creating finite-state based
dialog systems (cf. section 2.1.2).
Another toolkit approach represents the WIT toolkit for building spoken dialog sys-
tems [NMY+00]. Also the WIT toolkit pursues a whole systems approach and provides an
environment for integrating speech recognition, language understanding and generation,
and speech output. For each of the components, a domain-specific knowledge source needs
to be defined. Based on a user-defined semantic frame specification of the domain, an
integrated parsing and discourse processing method plans the output using a unification
grammar [NMH+99]. The WIT toolkit relies on a more sophisticated dialog model than the
CSLU toolkit, but will presumably requires more expertise from the application developer.

In a similar way, most approaches achieve easy reconfigurability by separation of domain-
specific and domain-independent knowledge. Some approaches emphasize the definition
of task models, while others focus of the identification on generic dialog strategies.
Examples for the first category are Collagen with its Recipes (cf. section 2.1.3) and WITAS
with its Activity Model (cf. section 2.2.2), while RavenClaw (cf. section2.1.2) focuses on
the identification of domain-independent dialog strategies for error handling and grounding.

Another approach that focuses on describing domain-independent dialog strategies has
been proposed in the context of the ARIADNE dialog system [Den02]. It relies on the
slot-filling approach and uses an explicit dialog state (similar as the information state
approach described in section 2.1.3). To develop a spoken dialog application with it, it
is required to specify a number of domain specific knowledge sources, most notably an
ontology and a set of service descriptions that specifies for each back-end application what
kind of information is necessary to invoke that service. During interaction, the dialog
state keeps track of the goals that are compatible with the information gathered so far.
To control the dialog, the system relies on generic dialog processing algorithms, which are

3.6 Foundational Work 51

also called Interaction Patterns. These are procedures that entail sequences of utterances.
Four types of Interaction Patterns are incorporated into the system: The Question pattern
requests information from the user, the Undo pattern removes information, the Correction
corrects an information, and the State pattern handles help requests. Denecke’s Interaction
Patterns are specified in a declarative way, and their execution is based on constraint
logics. Depending on the dialog state and the compatible goals, the system instantiates
the appropriate Interaction Patterns. Similar as the Interaction Patterns proposed in the
present work, the shape of the patterns – i.e. the specific sequence of utterances they
include – varies and is determined as the dialog develops. Another commonality between
the different concepts of Interaction Patterns is that they both model not only sequences
of utterances, but also system operations. However, while Denecke’s Interaction Patterns
operate purely at the information level by updating the dialog information state, the
Interaction Patterns proposed here operate additionally at the domain level by updating
back-end tasks through the Task State Protocol. Also, Denecke’s Interaction Patterns do
not serve as an API specification for dialog designers (which is one of the basic functions
they take up in the present approach), but can rather be seen as built-in system capabilities
that are triggered automatically as appropriate.

A similar approach has been proposed by Bui and colleagues [BRM04], also in the domain
of slot-filling applications. In their approach, the domain is modeled as a set of relational
database tables. The dialog model consists of a set of interconnected Generic Dialog
Nodes (GDN), each of which refers a column in the database. The GDN are configured by
the application developer with a grammar to interpret the user input and the prompts
the system will say. Based on this configuration, each GDN performs a simple interac-
tion with the purpose to obtain a value for the associated attribute from the user. The
local dialog flow management is handled by a single GDN. Each GDN can handle five
situations: OK, Repeat, Help Request, No Input and No Match. More general strategies
determine the global dialog flow management, e.g. how to deal with inconsistencies. The
proposed approach is embedded into a process model for developing spoken dialog applica-
tions, which includes conducting WOz studies, as well as internal and external field studies.

Gandhe and colleagues have introduced an approach to rapidly developing dialog capa-
bilities for virtual characters based on the Information State approach [GDR+08]. As
the ones described above, this approach operates on a domain specification describing
the objects and characters of the domain, as well as their attributes and possible values,
or their goals. This authoring process is supported by a graphical user interface. From
the domain description, the dialog acts that may occur during interaction are generated
automatically. For example, for a specification of an object with certain attributes and
possible values, an associated assert dialog act is generated. During interaction, the
dialog manager updates the information state according to the occurring dialog acts,
and generates the content of the response. The agent’s conversational obligations – i.e.,
the sequences of dialog acts – and the rules according to which the information state is

52 3 Specifying the External Interface: The Task State Protocol

offer not
elicited offer elicited offer given

hassan.elicit-offer player.offer

hassan.elicit-offer player.offer

player.offer

hassan.response-offer or
hassan.assert

Figure 3.14: Finite state machine modeling the agent Hassan’s conversational obligations
associated with an offer subdialog (after [GDR+08]). Not shown are the conditions and
updates to the information state.

updated1 are implemented as finite state machines. Figure 3.14 shows the finite state
machine for an offer subdialog. Thus, the final state machines model the local discourse
coherence, while the global coherence is determined by the system’s information state. In
this respect, they are similar to the Interaction Patterns proposed in the present work.
Also, both concepts are modeled as a kind of finite state machine. Gandhe’s obligation
descriptions, however, model exclusively the dialog act sequences, but not the associated
system actions (such as updates of the information state).

3.7 Generic Interaction Patterns
As outlined above, the proposed Interaction Patterns describe recurring subdialogs, such as
making a proposal, or requesting information. They mainly draw on ideas from conversation
policies in multiagent systems and from design patterns in software engineering. From
the first, they take up the idea of representing admissible sequences of dialog acts as a
finite-state machine. From the latter, they take up the idea of providing reusable solutions
for recurring problems to developers. The result is an executable graphical model that
considers both the conversation level and the system level and has a twofold function: it
serves both as internal dialog model and as API for developers. Interaction Patterns can
be defined as follows:

Interaction Pattern An Interaction Pattern is a sequence of human dialog acts, robot di-

1 In the original implementation of the Information State approach, the update rules are specified as
Prolog rules [TL03].

3.7 Generic Interaction Patterns 53

alog acts1 and system actions. It can be specified as an 8-tuple< H,R, T, S, s0, F,A,Σ,Λ, T >,
consisting of

• a set of human dialog acts H and a set of robot dialog acts R, e.g. H.request or
R.assert;

• a set of incoming task events T , e.g. accepted or failed;
• a set of states S representing the interaction state, e.g. await_confirmation;
• an initial state s0 ⊂ S;
• a set of final states F ⊂ S
• a set of system actions A the dialog manager performs, e.g. initiating or updating a

task or reset interaction;
• an input alphabet Σ ⊂ (H ∪ T);
• an output alphabet Λ ⊂ R;
• a transition function T : S ×Σ∗ −→ S ×A∗ × Λ∗.

In the following, Interaction Patterns will not be characterized by explicitly specify-
ing the tuple < H,R, T, S, s0, F,A,Σ,Λ, T >, but implicitly through their graphical
representation, as illustrated in figure 3.15. The graphical representation shows that
the structure of Interaction Patterns has been inspired by finite-state transducers with
in- and output [Mea55]: User input and incoming task events are modeled as input,
while robot dialog acts are modeled as output of a transition. Contrary to traditional
finite-state transducers, Interaction Patterns additionally perform actions within the states.

With the above definition, Interaction Patterns are specified at a generic level, based on
dialog acts. Thus, to describe a specific interaction, additional information needs to be
specified:

Interaction Pattern configuration An Interaction Pattern configuration is associated
with an Interaction Pattern and specifies the surface form of the dialog acts as well as
possibly required parameters for the system actions.

state name

action, when entered
H.dialog-act /

state name
H.dialog-act / R.dialog-act

state name
task event / R.dialog-act

 /

 /

Figure 3.15: Schematic graphical representation of an Interaction Pattern.

1 This does not mean that the application of the approach is exclusively restricted to robotics. It can
be (and has been) used to model interactions with all kinds of technical systems, for example virtual
agents or non-embodied systems. Similarly, the interaction partner denoted with human could also be
a technical system itself.

54 3 Specifying the External Interface: The Task State Protocol

Given the above definitions of an Interaction Pattern and its configuration, it makes sense
to distinguish between the generic pattern definition and its specific manifestation:

Interaction Pattern instance An Interaction Pattern instance1 is an Interaction Pat-
tern together with its Interaction Pattern configuration.

Finally, a specific dialog with specific instances of Interaction Patterns will require a
variable context where dynamic information is stored:

Variable context Associated with each Interaction Pattern instance is a variable context
that is defined through a set of variables and their values.

The intended function of Interaction Patterns as an instrument for dialog management
that, on the one hand, restricts the context to facilitate interpretation, but at the same
time allows for greatest possible flexibility, implies the following desirable properties.

Of course, a dialog may require several Interaction Patterns of the same type in dif-
ferent variations, for example different types of instructions or suggestions. Thus, it is
indispensable that multiple instances can be created from an Interaction Pattern:

1. Duplicability For a specific Interaction Pattern, multiple Interaction Pattern In-
stances with differing Interaction Pattern configurations may exist.

Another desirable feature is that the user should be enabled to cancel an Interaction
Pattern instance:

2. Cancelability Interaction Patterns may be cancelled externally.

A distinction must be made between cancellation and failure of an Interaction Pattern:
while failure cases, such as rejection of a system task, are considered in the structure of
Interaction Patterns and thus can be considered as normal termination, a cancellation
is triggered externally and constitutes an abnormal termination. A cancellation of an
Interaction Pattern may entail the cancellation of further Interaction Patterns, for example
if the user request a system restart.

Further, to enable topic shifts and multitasking, it is necessary to allow several Interaction
Patterns to be active at the same time.

3. Interleavability Interaction Patterns may be interleaved.

1 The term Interaction Pattern instance will hereafter also be referred to as configured Interaction Pattern,
or simply as Interaction Pattern if the distinction is not important or clear from the context.

3.7 Generic Interaction Patterns 55

Note that interleaving Interaction Patterns provides even more flexibility than nested
Interaction Patterns. As an example, consider Interaction Pattern P1 with states P1S1,
P1S2 and P1S3 and Interaction Pattern P2 with states P2S1, P2S2 and P2S3. A state
sequence admitted by interleaving, but not by nesting, would then be P1S1, P2S1, P1S2,
P2S2, P1S3, P2S3. Admitting such interleaving Interaction Patterns entails a tree structure
of discourse, where each branch can be expanded at any time1.
Together with duplicability follows in particular that interleaving of two Interaction Pattern
instances of the same type is possible. In contrast to cancelability, which enables the user
to cancel Interaction Patterns explicitly, interleaving enables the user to cancel implicitly,
e.g. by ignoring a question and going on with another topic.

To ensure that Interaction Patterns can be combined without side effects, and that new
patterns can be added safely, another desirable feature of Interaction Patterns is that they
should be connectible in series in a stateless manner:

4. Self-Containedness Interaction Patterns are completely self-contained.

This means in particular that Interaction Patterns do not require a specific dialog context
before they can be triggered: all necessary variables and parameters are either obtained
during execution of the Interaction Pattern, or specified by the Interaction Pattern Con-
figuration beforehand.

Finally, to ensure that the information obtained by an Interaction Pattern can be made
permanent, the variable context must be accessible to all Interaction Patterns:

5. Common context All Interaction Patterns operate at a common variable context,
and each Interaction Pattern can modify the variable context.

Together with interleavability, this implies in particular that inner Interaction Patterns can
alter the variable context of the outer Interaction Patterns, and that the update persists
even after the inner pattern has terminated, which allows e.g. for inserted corrections
(though corrections are mostly incorporated directly in the respective Interaction Pattern).

Figure 3.16 shows as an example of the Human Simple Action Request. It describes an
action request initiated by the human that, in contrast to the Human Cancellable Action
Request, cannot be canceled once execution has begun. The normal course of events is
that the human requests the action to be executed, the dialog manager initiates the system
task, the respective system component accepts execution whereupon the dialog manager
asserts execution. Finally, the task is completed, which is again acknowledged by the
dialog manager. Additionally, there are transitions for the cases in which the system task

1 However, to handle cases where this flexibility is not appropriate, the PaMini framework offers
possibilities to restrict interleaving.

56 3 Specifying the External Interface: The Task State Protocol

initiate
initiate-system-task

H.request /
asserted

accepted / R.assert

refused

rejected / R.refuse

failed

failed / R.apologize

terminated

completed / R.ack

 /

 /

 /

Figure 3.16: Human Simple Action Request.

asked
dlg-task(accepted)

 / R.question
await_confirmation
update-variable-context
update-dialog-task-spec
dlg-task(result_available)

H.answer / R.askForConf
H.negate / R.question

H.correct / R.askForConf

confirmed
dlg-task(completed)

H.conf / R.ack /

Figure 3.17: Robot Information Request With Explicit Confirmation.

is rejected or fails.
In contrast, the Robot Information Request with Explicit Confirmation is initiated by the
robot. Technically, this means that a dialog task is requested from the dialog manager.
Dialog situation permitting, the dialog manager will ask for the desired information and
accept the dialog task. Once the human has provided the answer, the robot will ask for
confirmation. Even if the information has not been confirmed yet, the dialog manager
already updates the variable context as well as the dialog task and its specification to
indicate that a first result is available. If the human confirms, the dialog manager ac-
knowledges and completes the dialog task. Alternatively, the human may negate that the
information to be confirmed is correct, or correct it directly.
It is noticeable that the Human Simple Action Request, which is initiated by the human,
is mainly driven by the incoming task events, while the Robot Information Request
with Explicit Confirmation, which is initiated by the robot, is driven by the human’s
utterances, which the dialog manager then translates into outgoing task operations. Also,
both patterns do not make use of the full Task State Protocol. For example, the Human
Cancellable Action Request does not allow cancellation of the on-going task, and it does
not allow to update the task specification during execution.

Table 3.2 lists all identified Interaction Patterns. They can be divided into six topics:
Patterns that deal with actions, patterns that deal with information negotiation, patterns
that refer to present objects, patterns that have an interactional functions, general-purpose
patterns and clarification patterns. For each topic a range of patterns is available, differing
e.g. in initiative (e.g. an action may be initiated either by the human or by the robot
itself), in the communication structure (e.g. information may be confirmed implicitly or
explicitly), or in the task communication (e.g. obtained information may be acknowledged
by the respective system component or not). Among these variations, developers can
choose among the pattern variations which fit best with their needs. A graphical represen-

3.7 Generic Interaction Patterns 57

tation and short description of all patterns can be found in Appendix B.

Technically, Interaction Patterns are implemented as statecharts [Har87] using the the
Apache Commons SCXML engine [Apa07]. The PaMini framework embeds them in a
dialog management process that triggers patterns, manages and interleaves them, and
makes meta-decisions, e.g. about closing and opening the interaction. These, rather
internal, aspects are detailed in section 3.8. Additionally, they are wrapped in a Java API
that allows developers to configure patterns and to assemble them into an interaction
scenarios. These external aspects will be discussed in section 3.9

58 3 Specifying the External Interface: The Task State Protocol

Interaction Pattern Abbreviation
Human Simple Action Request H Action Req
Human Simple Action Request

with Explicit Confirmation H Action Req Conf
Human Cancellable Action Request H Cancel-Action Req
Human Cancellable Action Request

with Explicit Confirmation H Cancel-Action Req Conf
Robot Self Initiated Simple Action R Action
Robot Self Initiated Cancellable Action R Cancel-Action
Robot Self Initiated Cancellable Action

with Explicit Confirmation R Cancel-Action Conf
Human Information Request H Inf Req
Robot Simple Information Request R Inf Req
Robot Correctable Information Request R Cor-Inf Req
Robot Information Request

with Explicit Confirmation R Inf Req Conf
Robot Information Request

with Explicit Confirmation and Task Acknowledgment R Inf Req Conf Task Ack
Robot Rejectable Information Request

with Explicit Confirmation R Rej-Inf Req Conf
Robot Rejectable Information Request
with Explicit Confirmation and Task Acknowledgement R Rej-Inf Req Conf Task Ack

Human Object Demonstration H Obj Demo
Human Object Demonstration
with Explicit Confirmation H Obj Demo Conf

Human Object Test H Obj Test
Human Interaction Opening H Int Open
Human Interaction Closing H Int Close
Human Interaction Reset H Int Reset
Human System Reset H Sys Reset
Robot Interaction Opening R Int Open
Human Simple Statement H Statement
Robot Notification R Notification
Robot Simple Statement R Statement
Robot Suggestion R Suggestion
Robot Ask Repeat R Ask Repeat
Robot Suggest Interaction Reset R Suggest Reset

Table 3.2: List of all Interaction Patterns and their abbreviations. Blocks are: (i) Action
patterns, (ii) information patterns, (iii) object patterns (iv) interactional patterns, (v)
general patterns and (vi) clarification patterns.

3.8 Interaction Patterns as an Internal Dialog Model 59

3.8 Interaction Patterns as an Internal Dialog Model

This section describes the internal view of the Interaction Patterns, i.e. their role as
an internal dialog model. Section 3.8.1 first details how dialog management is based on
Interaction Patterns. Section 3.8.2 discusses several implications of the approach with
respect to discourse planning, grounding, clarification and multimodality.

3.8.1 The Dialog Management Process
A rough schematic of the processing flow within the PaMini dialog manager is shown in
figure 3.18. Input is received either from the user, e.g. from a speech recognition or speech
understanding component, or task events from the robotic subsystem. In case of user input,
the dialog manager has to select the appropriate Interaction Pattern first. This includes
mapping the user input to a dialog act. The dialog act or task event, respectively, is then
fired as input event on the Interaction Pattern’s statechart. As a result, task operations
may be performed, and a robot dialog act is generated, which is configured with its concrete
manifestation according to the Interaction Pattern’s configuration. The configured dialog
act is then performed by an output source, e.g. a text-to-speech component.

Figures 3.19, 3.20 and 3.21 show this process in more detail. Figure 3.19 illustrates the
dialog manager’s activities when receiving user input. First, it is checked whether the
interaction is open already. If so, it is checked whether the current pattern to check is
interleavable with the one on top of the stack (if it is not the topmost one itself). If this is
the case, it is further checked whether the current Interaction Pattern matches the given
user input. The match criterion is whether the pattern is in a state from which a transition
can be triggered through a dialog act as which the given user input can be interpreted
according to the conditions specified by the pattern configuration. According to this
criterion, all patterns are checked in sequence, until a matching one is found. The default
search strategy is testing the active patterns (i.e. the patterns that have been initiated and

Input
Source

Interaction
Pattern

Selection
Interaction

Pattern
Statechart

Interaction
Pattern

Configurator

Output
Source

Domain
Task Interface

User Input

Abstract
User

Dialog Act

Abstract
Robot

Dialog Act

Configured
Robot

Dialog Act

Task Event

Task Operations

Figure 3.18: Schematic architecture of the PaMini dialog manager.

60 3 Specifying the External Interface: The Task State Protocol

Perform task
operation

Update variable
context

Perform internal
operations

Configure
abstract robot

dialog act

Produce abstract
robot dialog act

Produce robot
output

Update dialog
stack

Fire DA event
on IP statechart

Open
interaction

Select next IP

else

else

else

else

interaction open

else

IP opens
interaction

input matches next
user dialog act

IP active
or interleavable

IP left to check

Figure 3.19: UML activity diagram illustrating how user input is processed.

are not terminated yet) on the dialog stack1 first, beginning with the topmost one, then
testing the inactive patterns. If the pattern matches, the dialog act represented by the user
input is fired as an event onto the Interaction Patterns’s statechart. This will cause four
types of activities: (i) the production of a robot dialog act, which is represented in abstract
form first, then configured and performed, (ii) the execution of task operations, i.e. the
update of the task state and possibly the task specification as well, (iii) an update of the

1 Since the default search strategy considers not only the topmost, but also the patterns below, it is not
an actual stack, but rather a list of patterns. However, the strategy can be configured easily such that
the characteristics of a stack are established.

3.8 Interaction Patterns as an Internal Dialog Model 61

Select associated IP

Perform task
operation

Activate IP
statechart

Update variable
context

Configure
abstract robot

dialog act

Perform internal
operations

Produce abstract
robot dialog act

Produce robot
output

Open
interaction

Update dialog
stack

else

else

else

interaction open

IP active
or interleavable

IP opens
interaction

Figure 3.20: UML activity diagram illustrating how task requests are processed.

variable context and (iv) internal operations, such as opening or resetting the interaction.
While (i) will be executed for each user input, the activities (ii-iv) are optional. Also, (i) is
specified as an output of the Interaction Pattern, while (ii-iv) are specified as state action,
which means that (i) will be executed asynchronously while (ii-iv) are executed in blocking
mode. Finally, the dialog stack is updated, which includes putting the current pattern on
top of the stack or removing it if it is finished. In case that the interaction had not yet
been open on receiving the user input, the current Interaction Pattern is only processed
further if it is capable to open the interaction. By default, this applies only to the Human
Interaction Opening or Robot Interaction Opening. This restriction is intended to prevent
the robot from reacting to noise in its environment or to utterances that are not directed
at it.
Figure 3.20 shows the processing of dialog tasks that are requested from the dialog
system by other system components. This occurs whenever an Interaction Pattern should

62 3 Specifying the External Interface: The Task State Protocol

Select associated IP

Perform task
operation

Update variable
context

Produce abstract
robot dialog act

Perform internal
operations

Configure
abstract robot

dialog act

Produce robot
output

Fire Task event
on IP statechart

Update dialog
stack

Figure 3.21: UML activity diagram illustrating how task events are processed.

be triggered that is initiated by the robot. Processing of task requests is very similar to
processing of user input, except that the pattern associated with the task request is known
from the start. Thus, the search for the matching pattern can be omitted.
Processing is even simpler for incoming task events, shown in figure 3.21. The task
events pertain to tasks that were initiated by the dialog manager. Thus, as with processing
of task requests, the pattern they pertain to is known from the start. Additionally, the
interleaving check is omitted: even if the latest pattern does not allow interleaving with
the pattern the events refer to, the notifications about on-going tasks are still processed.
This makes sure that important system information is passed to the user in any case.

3.8.2 Global Discourse Planning, Grounding and Other Aspects
Looking back at figure 3.18 which shows the processing flow within the PaMini dialog
manger, the absence of a large-scale interaction model beyond the structures determined
by the Interaction Patterns is noticeable. In fact, the dialog manager does not employ a
model for global discourse planning, i.e. a model of how Interaction Patterns should
be combined during interaction, such as WITAS’ activity model or Collagen’s recipes.
Instead, the Interaction Patterns are triggered either through user input (e.g. the Human
Simple Information Request shown in figure 3.16), or through a task request (e.g. the

3.8 Interaction Patterns as an Internal Dialog Model 63

Robot Information Request with Explicit Confirmation shown in figure 3.17). Thus, while
local discourse planning is determined through the structure of Interaction Patterns, global
discourse planning is not handled within the dialog system.
This decision results from the specific requirements of the robotic domain and has been a
very conscious one. As discussed in section 2.2.1 and 3.1, the dialog flow can typically not
be pre-structured beforehand in robotics. It rather evolves dynamically during interaction,
as a reaction to changes in dynamic environment whose timing and order cannot be
predicted. The dialog system does not have sufficient information about the situation the
robot is in, and is therefore not qualified to take decisions about the system behavior.
From a software engineering point of view, this implements the principle of separation of
concerns: The dialog system’s responsibility is to provide a library of Interaction Patterns,
while their invocation is decided by an external handler. The external handler could
for instance be a central decision-making component (e.g. the component delivering the
current interaction goal in the Curious Robot scenario (cf. section 6.2)). Alternatively,
the events determining the dialog flow could come directly from the respective system
components (e.g. the environment representation component in the Home-Tour scenario
(cf. section 6.1)), which implements a more reactive manner of control. Thus, the proposed
approach to dialog management can be integrated with different architecture and control
styles (provided that they support the Task State Protocol).
This concept stands in contrast to dialog approaches for traditional, non-situated domains,
where the dialog system generally controls the functioning of the rest of the system. In
fact, the case study described in section 4 shows that – beside the lacking support for
asynchronous communication – one of the main difficulties in transferring approaches from
traditional dialog domains to robotics is that they require a pre-structured interaction
model (in case of RavenClaw) or task model (in case of Collagen).

Many dialog systems employ explicit models of grounding. The RavenClaw frame-
work, for example, supports different built-in grounding policies for the concepts that
are gathered during interaction (e.g. city_name, date etc.). The grounding policies
are decoupled from the actual dialog flow specification and include mainly implicit and
explicit confirmation [BR09]. A more sophisticated model of grounding has been proposed
by Traum [Tra94]. His model describes how mutual understanding is established in a
conversation by performing sequences of grounding acts within discourse units. A discourse
unit consists of an initial presentation, and of as many additional utterances a required to
ground the presentation. Grounding acts such as Repair, Acknowledge or Cancel describe
the level of functionality of an utterance that affects grounding. Figure 3.22 shows a
transition model that specifies admissible sequences of grounding acts. For example,
propositional content may first be presented by the initiator (Initiate(I)), who may request
acknowledgement (ReqAck(I)) for it. If the responder acknowledges (Ack(R), the discourse
unit is grounded. In addition to the transition network model shown here, he proposed
a simplified, but more efficient, finite-state model of grounding, which was implemented
within the scope of the TrindiKit dialog toolkit [LT00].

64 3 Specifying the External Interface: The Task State Protocol

The approach of Interaction Patterns does not model the grounding process explicitly.
Rather, grounding is incorporated implicitly within the Interaction Patterns by providing
variations with different confirmation strategies (implicit, explicit, none). In particular
the Interaction Patterns related to information negotiation resemble Traum’s transition
models of grounding. Both models consider confirmation, correction and rejection of
information. However, they differ in how they model utterances. While the Interaction
Pattern approach simply maps user input as a whole to dialog acts, Traum’s grounding
model differentiates the levels of functionality the utterance may have with respect to
turn-taking, grounding etc. Also, Traum’s model may serve as a cognitive model of an
agent’s mental state during a conversation, while the Interaction Patterns are intended as
a purely technical model.
From usability point of view, a generic grounding policy may be beneficial because it
ensures a consistent system behavior, both at different locations in the dialog and also
across scenarios [BR09]. This is a feature that the Interaction Patterns also exhibit.

Clarification of non-understood utterances is closely related to information grounding.
In contrast to misunderstandings, which can be resolved through corrections within the
respective patterns, in case of non-understandings, the speech recognition result is not
interpretable at all. For this purpose, there are clarification patterns that ask the user to
repeat the utterance, or suggest to start abandoning the current situation and to start
over again. Unlike the other patterns, the clarification patterns are built in, and they are
interleavable with all other patterns. Additionally, for each robot dialog act a rephrasing
may be defined in the Pattern Configuration, which is applied if the human’s reply to it is
non-interpretable. This generates dialog in the following style.
R What is that?
U [non-understandable]
F Pardon, what did you say that was?
U A banana.

Another crucial aspect in embodied and situated interaction is multimodality. Since
the presented approach operates at the dialog act level (as most dialog managers do),
the origin and modality of the in- and outputs is not specified. This allows PaMini to
manage multimodal interactions as well. Technically, additional in- and output sources
can be implemented and plugged into the framework. The scenarios that have been
implemented with PaMini so far (cf. chapter 8) make use of multimodal output primarily.
For example, in the Curious Robot scenario, the robot points at the object while asking for
its label. In the PlaSta scenario, the robot accentuates its utterances with bodily gestures.
Non-verbal input information has so far been used more often in form of system events
that initiate certain Interaction Patterns. In the multi-party quiz game, for example, a
Robot Interaction Opening is triggered if a human approaches the robot who seems willing
to interact with it. However, PaMini does not offer provisions for fusing or synchronizing
multiple modalities. This is expected to be done externally.

3.8 Interaction Patterns as an Internal Dialog Model 65

S 1 F

D

Initiate(I) Ack(R)

Ack(R), Ack(I)
REPAIR[R],
REQ_REPAI[R] Cancel(I)

Cancel(I)

Continue(I),
Repair(I),
ReqAck(I)

ReqAck(I), Repair(I), REPAIR[R],
REQ-REPAIR[I], REQ-REPAIR[R]

Figure 3.22: Traum’s recursive transition network for discourse units (after [Tra94]). Re-
cursive transitions to other networks are represented in capital letters. The actor is given
in brackets (I for initiator, R for Responder). The states S and F denote the start state
and final state, respectively, and the state D denotes a state in which the discourse unit has
been abandoned.

In the motivation of this chapter, desirable characteristics for dialog APIs have been
mentioned. Having provided the necessary details on the proposed approach, we can now
check whether they have been realized:

• Task independence: With the Task State Protocol as gateway to communication
between the dialog system and the domain subsystem, the dialog and the domain
level are kept separated, but by linking task events with dialog acts in the Interaction
Patterns, a fine-grained integration of dialog and domain is achieved.

• Flexibility: The approach is not tailored to a specific domain or interaction type,
but relies on general principles. Its flexibility is demonstrated by the variety of
applications that were implemented based on it, as detailed in chapter 8.

• Modularity: The PaMini API encapsulates, on the one hand, the details of dialog
management by providing default behavior that will be appropriate in most cases.
On the other hand, the default behavior (in particular the strategies for pattern inter-
leaving, pattern selection, interaction opening and clarification) is made configurable
or overridable to take into account special cases.

• Reusability: As the Interaction Patterns have emerged from identifying recurring
structures over different domains, they, by definition, enable reuse across scenarios.
This is demonstrated by the wide range of different scenarios they are used in, as
described in chapter 8, and by an analysis that investigate for each pattern its usage
in the different scenarios, shown in table 5.1.

• Scalability: The self-containedness of Interaction Patterns allows for an iterative
development process in which scenarios are gradually extended without breaking
existing functionality. The iterative development process of the Curious Flobi
scenario demonstrates that, with this approach, even the development of complex
HRI applications become manageable.

66 3 Specifying the External Interface: The Task State Protocol

3.9 Interaction Patterns as Building Blocks for Interaction
As pointed out above, Interaction Patterns serve not only as internal dialog model for the
dialog manager, but also as configurable building blocks of interaction for dialog designers.
The patterns themselves determine the general course of events, but do not specify what
the robot says or what kind of task is to be executed exactly. These specifics are defined
in the configuration that is associated with each pattern. Thus, to realize a concrete
scenario, a set of Interaction Patterns needs to be chosen and configured. In detail, it
needs to be specified what kind of (possibly multimodal) user input is interpreted as a
specific dialog act. For the robot’s dialog acts, their surface form needs to be specified,
which also may be multimodal.
Technically, the configuration of the dialog acts is written in a domain specific XML
configuration language. Figure 3.23 shows an excerpt from a pattern configuration
associated with the Robot Information Request with Explicit Confirmation shown in
figure 3.17. It specifies that the robot dialog act R.question in state initial is expressed by
asking “What is that?”, accompanied by a pointing gesture and mimics. Additionally, a
rephrasing for this dialog act is given that will be used if the user’s reply is not interpretable.
Further, it is specified that the XML representation of the user’s answer in state asked
will be interpreted as dialog act H.answer if it matches the given XPath expression.
Besides the dialog acts, also the task communication needs to be configured. This includes
the task specification itself as well as possible task specification updates. In addition, the
definition of context variables is customizable by the developer. Context variables can
be used for parameterizing the robot’s dialog acts, and to use them for task specification
updates. The task communication and the variable context is not configured within the
XML configuration file, but through PaMini’s Java API. Thus, the different configurational
aspects are kept separated. The basic dialog act configuration is specified in a clearly
laid out manner using the XML configuration language, while the more complex task
and variable configuration (which are not always necessary anyway) are configured in
Java, which provides more flexibility to the developers. Altogether, the following steps
are required to set up an Interaction Pattern through the Java API (not including the
implementation of the back-end):

1. Writing the dialog act configuration in XML.

2. Creating an Interaction Pattern object in Java, which requires as its arguments
• the dialog act configuration file,
• a task specification provider, if the pattern initiates a system task,
• a task updater, if the pattern modifies the task specification of a task,
• a triggering XPath expression, if the pattern represents a dialog task,
• a variable provider, if the pattern makes use of variables.

3. Registering the Interaction Pattern with the dialog manager.

3.10 The Pattern Library and its Development 67

4. Customizing further parameters of the interaction in Java, including
• the interleaving strategy,
• the pattern selection strategy,
• the clarification strategy,
• the interaction opening strategy.

5. Starting the dialog thread.

Step 2) covers the configuration of a single Interaction Pattern, including beside the dialog
act configuration the task and variable communication. While the dialog act configuration
is required for each pattern, the task configuration is only required for those Interaction
Patterns that involve tasks. In contrast, the variable communication is completely optional.
Also, step 4) is optionally and covers the customization of interaction in general. For
all configuration parameters that are specified through the Java API, default classes are
provided by the dialog framework. In addition to these, dialog designers may implement
their own classed as required.

<robotDialogAct state =" initial " type="R. question ">
<output >

<verbalization text="What is that?"/>
<point coordinatesXpath ="// Region "/>
<mimic name=" Curious " />

</ output >
<rephrasing >

<verbalization text="What did you say was that?"/>
<point coordinatesXpath ="// Region "/>
<mimic name=" Smile " />

</ rephrasing >
</ robotDialogAct >

<humanDialogAct state =" asked "
xpath ="/ utterance / semanticInfo [category =' description ']" type="H. answer "/>

Figure 3.23: Excerpt from an Interaction Pattern configuration.

3.10 The Pattern Library and its Development
Figure 3.24 shows the number of Interaction Patterns at a given time, and its increase
over time. Often, the implementation of new patterns was related to the development
of new scenarios and their requirements. To point out this relation, red dots mark the
scenarios that were crucial for the extension of the pattern library1. In the beginning, two

1 In addition to the marked scenarios, more scenarios have been implemented, but not all of them
required the implementation of new Interaction Patterns. See figure 5.2 for a complete overview of all
implemented scenarios.

68 3 Specifying the External Interface: The Task State Protocol

patterns were implemented as a proof of concept. Soon after, the re-implementation of the
(simulated) Curious Robot and Home Tour scenario caused a quick boost of growth up to
ten patterns. With the first release, the development of the Receptionist Vince scenario
began. Together with the beginning of development of the RoboCup and the Curious Flobi
scenario, this entailed a gradual growth up to 28 patterns within nine month. From 06/11
to the time of writing (02/12), the number of patterns has remained stable. However,
the need of an additional action pattern has arisen from two scenarios independently.
Both the Memory Game Scenario (cf. section 8 and an upcoming new scenario – a sports
companion for spinning – requires a pattern in which the robot gives an instruction to the
human, the completion of which is controlled by a vision component. A new Interaction
Pattern for this use case will be added soon.

Figure 3.25 shows in detail the creation date of each Interaction Pattern, in relation
to the main development scenarios. It is noticeable that for each pattern group, a few
representatives were available very early, such as the Human Cancellable Action Request
(belonging to the action patterns), the Robot Correctable Information Request (belonging
to the information patterns), the Human Interaction Opening (belonging to interactional
patterns), or the Human Simple Statement (belonging to the group of general patterns).
Variations of these patterns were added later. For example, the RoboCup required the
implementation of new action patterns where the robot’s action was to be confirmed
explicitly, in order to cope with the background noise. An exception to this are the
object-related patterns, which were only introduced in the course of the development
process of the RoboCup and the Curious Flobi scenario. For further discussion of different
usages of the patterns within the different scenarios, see also section 5 and particularly
figure 5.2.

Given the increasing number of Interaction Patterns, and the fact that many patterns
differ only slightly from each other, the question arises whether the pattern library has
come to a point at which it contains unnecessary redundancy. Closer examination of the
structure of the existing Interaction Patterns reveals that, again, recurring elements can
be found, for example dialog act sequences that deal with explicit confirmation of actions
and information, or with correction of information. Thus, an obvious approach to reduce
redundancy would be to provide not complete Interaction Patterns as a whole, but parts
of patterns that the dialog designers can assemble into individual Interaction Patterns on
their own. However, this approach has several drawbacks. It would be difficult to preserve
the self-containedness of Interaction Patterns as well as the conformance to the Task State
Protocol. Also, redundancy would probably only be shifted from the framework to the
individual scenarios, and the reusability potential would not fully be exploited. Last, it
would reduce usability and limit accessibility, especially for unexperienced developers,
because designing new Interaction Patterns – even from given components – requires
expertise both in dialog design and in system engineering. Hence, an alternative approach
would be to condense similar Interaction Patterns into a common core and making

3.10 The Pattern Library and its Development 69

 0

 5

 10

 15

 20

 25

 30

01/10 03/10 05/10 07/10 09/10 11/10 01/11 03/11 05/11 07/11 09/11 11/11

N
um

be
r

of
 In

te
ra

ct
io

n
P

at
te

rn
s

Date

Curious Robot/Home-Tour
re-implementation

Receptionist Vince

RoboCup

Curious Flobi

Figure 3.24: The number of Interaction Patterns over time. The points mark the be-
ginning of development of scenarios that entailed the implementation of new Interaction
Patterns.

the differences (i.e. the confirmation or correction strategy) configurable through the
framework’s API. A drawback of this approach would be the increased configuration
effort. Altogether, the question how redundancy over Interaction Patterns can be reduced
while preserving framework usability and the favorable properties of Interaction Patterns
deserves further research.

70 3 Specifying the External Interface: The Task State Protocol

01/10 07/10 01/11 07/11 12/11

H Cancel-Action Req

R Cancel-Action

H Action Req

H Action Req Conf

R Action

R Cancel-Action Conf

H Cancel-Action Req Conf

R Cor-Inf Req

H Inf Req

R Inf Req

R Inf Req Conf

R Rej-Inf Req Conf

R Inf Req Conf Task Ack

R Rej-Inf Req Conf Task

H Obj Demo

H Obj Demo Conf

H Obj Test

H Int Open

H Int Close

H Int Reset

H Sys Reset

R Int Open

H Statement

R Notification

R Statement

R Suggestion

R Ask Repeat

R Suggest Reset

first tests

C
urious R

obot and H
om

e-T
our re-im

plem
entation

V
ince R

eceptionist

R
oboC

up

C
urious F

lobi

Figure 3.25: Creation date of each Interaction Pattern. Blocks are: (i) Action patterns,
(ii) information patterns, (iii) object patterns (iv) interactional patterns, (v) general pat-
terns and (vi) clarification patterns. Within the blocks, patterns are sorted by creation
date. The lines mark the begin of development of scenarios that entailed the implementa-
tion of new Interaction Patterns.

4 Developer-Centered Evaluation of the Proposed
Approach

As outlined in section 2.4.2, an evaluation of the overall approach needs to include not
only the quality of the implemented dialog, but also evaluation of the framework itself.
While several aspects of interaction quality are discussed throughout the second part of
this thesis, this chapter describes two studies that focus on evaluation of the framework.
Section 4 describes four case studies that investigate the efficacy of the proposed PaMini
framework, i.e. the question how well the framework serves its purpose. Framework
usability, i.e. the ease of programming new scenarios, is evaluated in section 4.
This section describes four case-studies in which a typical robotic scenario is re-implemented
with different dialog frameworks, namely the RavenClaw framework, the Dipper implemen-
tation of the Information State Approach, the collaboration manager Collagen, and the
proposed PaMini framework. Besides demonstrating the efficacy of the PaMini framework
for implementing a typical robotics scenario, the aim of this comparison is twofold. On the
one hand, it is meant to give an overview of state-of-the-art dialog modeling techniques,
and to illustrate the differences between these. On the other hand, it attempts to illustrate
challenges specific to robotics, and why approaches from traditional domains often struggle
to meet them (being well aware that the investigated approaches originally had not been
intended for robotics).

A simplified version of the Curious Robot object learning and manipulation scenario
(which will be described in detail in chapter 6.2) was chosen as target scenario for our case
studies. Since it includes problems of perception and learning as well as action oriented
communication, it can be considered as a typical robotic application and is thus suitable
for the case studies. In detail, the target scenario for the case studies is determined as
follows. Interaction is carried out following a mixed-initiative style by letting the robot
ask for unknown objects and by allowing the user to initiate a teaching or a query episode
at any time. Thus, whenever the robot detects an unknown object, it asks for its label
(for the case studies, references through non-verbal gestures were not considered). Once
the label is given by the user, the robot asks how to grasp the object, which the human
is expected to answer by naming the grip type. Having acquired both label and grip, it
autonomously grasps the object, while reporting both start and completion or failure of
the action. Grasping may also be rejected by the back-end right away, or the user may
cancel the ongoing grasping action. Additionally, the user can at any time ask the robot
to enumerate the objects learnt so far or how to grasp a specific object. The interaction is

71

72 4 Developer-Centered Evaluation of the Proposed Approach

opened and closed by the user, by greeting and saying goodbye respectively.

Although the target scenario is kept simple, it presents a number of typical challenges that
dialog systems in robotics have to face, as discussed in section 2.2.1. First of all, the robot
must react dynamically to its environment. Timing and order of the robot’s questions
cannot be fixed beforehand since they depend on the robot’s perception of the world. The
action to select next therefore is supposed to come from a back-end component, in form
of an interaction goal which may be either label, grip or grasp. Second, the user’s test
questions require the dialog system to cope with focus shifts and, as they may be asked
during the robot’s grasping action, even with multitasking abilities. Finally, going on with
the interaction during grasping while still enabling feedback about the on-going action
and the possibility to cancel it requires some kind of asynchronous coordination between
dialog system and back-end.

As the focus of the case studies lies on dialog modeling, the goal was not to achieve a
fully fledged implementation running on a robotic platform. Therefore, speech recognition
and speech synthesis were replaced by text in- and output and all perception and motor
activities have been simulated. Also, subtle yet important aspects of the interaction were
ignored, such as nonverbal cues, social behavior or the engagement process that typically
precedes the interaction.

4.0.1 Case Study 1: Ravenclaw
The first case study investigates the RavenClaw dialog manager, which has already been
introduced as an example for a descriptive dialog model in section 2.1.2. A well-maintained
documentation including step-by-step tutorial helps getting started with the framework.
To realize a speech application with Ravenclaw, the developer has to create a context-free
grammar for the semantic parser, output templates for the natural language generation and
of course the dialog task specification, consisting of a tree of dialog agents, each capable to
handle a subtask of the interaction. There are different agent types: Agencies represent the
non-terminal nodes, i.e. the tasks that are further decomposed, Inform agents produces
system output, Request agents request information from the user, Expect agents expect
information from the user without explicitly requesting it, and Execute agents perform
back-end calls, such as a database query. A domain independent dialog engine executes
the tree in a depth-first manner using a stack. Through pre- and postconditions associated
with the agents a deviation from the processing flow can be achieved.

Figure 4.1 shows a possible dialog task specification for our test scenario. Its main part is
the PerformTask agency, which is divided into two agencies handling human and robot
initiative respectively. The SystemInitiative agency is reset after completion and executed
repeatedly unless the user initiative agency is triggered or the user ends the interaction. It
consists of an Execute agent fetching the current interaction goal from the back-end, and

73

CR

Greet GoodbyePerformTask

SystemInitiative UserInitiative

Get
Interaction

Goal

Save
Label

ObtainLabel Grasp ListObjects GripQuery

Ask
Label Announce

Inform
Completed

Inform
Rejected

Inform
Failed

Execute

Lookup
Objects

Prompt
Objects

ObtainGrip

Ask
Grip

Save
Grip

Lookup
Grip

Inform
Failed

Prompt
Grip

Inform
Failed

Agency
Inform Agent
Request Agent

Execute Agent

Figure 4.1: Ravenclaw’s task tree for the Curious Robot scenario.

the agencies ObtainLabel, ObtainGrip and Grasp. ObtainLabel and ObtainGrip request
label and grip respectively, and communicate it to the back-end where it gets stored. Grasp
first announces grasping, then executes it and finally reports success, rejection or failure.
The three agencies are not executed in succession, but alternatively, on conditions such as
the current interaction goal (not shown in the figure). The UserInitiative agency can be
activated by the user’s test questions at any time. This is achieved by adding a trigger
directive to its subagents, making ListObjects and GripQuery respectively the currently
focused agent, i.e. the topmost agent on the stack. Table 4.1 illustrates a typical dialog
example, including two focus shifts.

Technically, all dialog agents are defined as C++ macros that communicate with the
back-end by exchanging user-defined frame data structures. Figure 4.2 illustrates the
portion of the dialog task specification that defines the Grasp agency and its subagents
Announce, Execute, InformCompleted, InformRejected and InformFailed. Grasp is only
executed if the interaction goal has the value label (line 2), and it succeeds if the grasp
action has either been rejected, completed, or has failed (lines 12-14). Announce prompts
the speech output specified for this situation (line 17). Execute then calls the associated
back-end function (line 21-22) and stores its result (line 23). Depending on the result
(lines 26, 30, 34), the appropriate output is generated (lines 27, 31, 35).

Most requirements of the target scenarios could be realized with Ravenclaw. While the
installation of the Olympus framework required considerable effort, including adaptions in

74 4 Developer-Centered Evaluation of the Proposed Approach

Utterance Comment
U1 Hello.
R1 Hi, hello.
R2 What is that? Back-end returns interaction goal label
U2 This is an apple.
R3 How should I grasp the apple? Back-end returns interaction goal grip
U3 What objects do you know already? Focus shift: ListObject focused agent
R4 I know ’apple’.
R5 How should I grasp the apple? ObtainGrip focused agent again
U4 How do you grasp a banana? Focus shift: GripQuery focused agent
R6 Sorry, I don’t know.
R7 How should I grasp the apple? ObtainGrip focused agent again
U5 With the power grasp.
R8 I am going to grasp the apple now. Back-end returns interaction goal grasp

Back-end blocks during grasping
R9 Sorry, I failed to grasp the apple.
U6 Goodbye.
R10 Goodbye.

Table 4.1: Example dialog for the Curious Robot implementation with Ravenclaw.

the source code, writing the dialog agents could be done without difficulties. When it comes
to a real-world robotic scenario, a shortcoming might however be that the dialog task tree
largely pre-defines the interaction flow. As suggested in our target scenario, a robot needs
to react not only to the user’s utterance, but also to many kinds of events that occur in its
environment. With Ravenclaw, this can be achieved by controlling the navigation through
the task tree with pre- and postconditions. However, for highly unstructured scenarios
with many possible paths through the task tree, the dialog structure may thus become
unclear, up to unstructured spaghetti code at the worst. Already our toy scenario contains
a number of “jumps” in the control flow in order to react to the current interaction goal,
the user’s focus shifts and the back-end results.
Further, difficulties regarding the asynchronous coordination of back-end calls were encoun-
tered. While Ravenclaw does support asynchronous back-end calls, it does not provide
mechanisms that support further communication between dialog and back-end about a
running back-end action. In the target scenario, grasping was therefore implemented using
a blocking back-end call, which enables the robot to report success or failure when it is
done. With the blocking back-end call however, the interaction cannot be maintained
during action execution, and also the possibility to cancel the action could not be realized.
Another issue is reusability. Even for our basic test scenario, the dialog task specification
shown in figure 4.1 contains several agents that have a similar structure, e.g. ObtainLabel
and ObtainGrip, or ListObjects and GripQuery, and one can easily think of another agency
with the same structure as the Grasp agency, e.g. a following or navigation task. With

75

1 DEFINE_AGENCY(CGrasp ,

2 PRECONDITION ((int)C("result.interactiongoal") == 2

3)

4 DEFINE_SUBAGENTS(

5 SUBAGENT(Announce , CAnnounce , "")

6 SUBAGENT(Execute , CExecute , "")

7 SUBAGENT(InformCompleted , CInformCompleted , "")

8 SUBAGENT(InformRejected , CInformRejected , "")

9 SUBAGENT(InformFailed , CInformFailed , "")

10)

11 SUCCEEDS_WHEN(

12 (SUCCEEDED(InformCompleted) ||

13 SUCCEEDED(InformRejected) ||

14 SUCCEEDED(InformFailed)))

15
16 DEFINE_INFORM_AGENT(CAnnounce ,

17 PROMPT("inform grasping <result")

18)

19 DEFINE_EXECUTE_AGENT(CExecute ,

20 EXECUTE(

21 C("query_type") = NQ_GRASP;

22 pTrafficManager -> Call(this , "backend.query <query_type >new_result");

23 C("result") = C("new_result");)

24)

25 DEFINE_INFORM_AGENT(CInformCompleted ,

26 PRECONDITION ((int)C("result.taskstate") == RC_COMPLETED)

27 PROMPT("inform grasping_completed <result")

28)

29 DEFINE_INFORM_AGENT(CInformRejected ,

30 PRECONDITION ((int)C("result.taskstate") == RC_REJECTED)

31 PROMPT("inform grasping_rejected <result")

32)

33 DEFINE_INFORM_AGENT(CInformFailed ,

34 PRECONDITION ((int)C("result.taskstate") == RC_FAILED)

35 PROMPT("inform grasping_failed <result")

36)

Figure 4.2: Ravenclaw’s dialog task specification for the Grasp agency and its subagents.

the Inform, Expect and Execute agents as the only unit of pre-modeled conversational
capabilities, Ravenclaw does not account for such recurring structures, which are not
specific to robotics but will occur in any domain.
A new version of the Olympus dialog architecture (in which Ravenclaw is embedded) is
described briefly in [RE07]. This new version (which is not the one that has been used for
this case study) features a multi-layer architecture for event-driven dialog management.
It was originally designed to address the issue of reacting to conversational events in
real-time so as to enable flexible turn-taking and to react to barge-ins. With the proposed
architecture, also non-conversational events (e.g. perceptual events) can be handled. It
therefore seems probable that some of the above difficulties could be resolved with it. In
particular, with an event-based architecture, the dialog manager could react directly to a
change of the current interaction goal. Also, it could react to update events of a robot
action (such as grasping begins), while keeping the interaction going. However, it lacks an

76 4 Developer-Centered Evaluation of the Proposed Approach

overarching structure for temporally extended actions (such as the tasks in the PaMini
framework), and it lacks a generic mechanism for handling such events (such as the Task
State Protocol in PaMini). This means that the event processing, i.e. keeping track of the
events associated with the dialog moves, is still left to the developers.

Apart from the above difficulties, Ravenclaw has proven to support certain aspects of the
target scenario very efficiently. For one, speech understanding integrates naturally into
dialog modeling and output generation. The concepts of the semantic speech understanding
grammar designed by the scenario developer are available within the dialog specification
and within the output generation component. Dialog variables do not need not be specified
explicitly.
Further, Ravenclaw uses a generic grounding model that provides several strategies
for concept grounding, such as implicit and explicit confirmation strategies, and non-
understanding recovery strategies, such as repeating the original prompt, or asking the
user to repeat or rephrase [BR08]. The grounding policies are specified in a configuration
file, which is the reason why the dialog task specification in figure 4.1 does not contain
agents for confirming and correcting label and grip.
Finally, the fact that Ravenclaw does not provide pre-modeled conversational structures
can also be viewed as a benefit: the scenario developer does not have to stick to the
structures provided, but has full control over the dialog flow.

4.0.2 Case Study 2: Collagen/Disco
The second approach that was investigated is the collaboration manager Collagen (for
Collaborative agent) [RS98]. The Collagen approach has already been described as an
example for mental-state-based dialog modeling in section 2.1.3. Even though it is rather
a plug-in for intelligent user interfaces than a dialog system in the narrower sense (and
thus does not have provisions for speech in- and output), it was included in our case
studies because it addresses some aspects that are very relevant for robotics, such as agents
communicating about a task and coordinating their actions in order to work towards a
shared goal, while accounting for physical actions as well. At the core of Collagen is a task
model for the specific application domain. It defines the domain goals and specifies how
to achieve them based on goal composition rules, called recipes. The task model is used to
track the user’s task progress and to generate appropriate system utterances automatically.
The case study was however not conducted with the Collagen framework itself, but with
its open-source re-implementation Disco [HR10].

In order to implement the target scenario, only the collection of recipes for goal decompo-
sition needs to be specified. They are shown in figure 4.3. Originally, recipes are defined
using the XML-based task model description standard CE Task 1.0 [CET08]. However, a
tree representation is used here for the sake of better readability. The upper part of the
figure shows the top-level goals Greeting, ObjectQuery (i.e. the user asks to enumerate

77

Configured utterance Generated utterance Comment
U1 Hello. Let’s achieve Greeting. User selects goal Greeting
R1 Hello. Ok. Robot executes SayHello
U2 Let’s explore the objects Let’s achieve RobotInitiative. User selects goal RobotInitiative

on the table.
Back-end returns interaction goal label

R2 What is that? Please execute TellLabel. Robot asks user to perform TellLabel
U3 An apple. An apple. User asserts that TellLabel done
R3 Ok. Ok. Robot executes SaveLabel
U4 Let’s explore the objects Let’s achieve RobotInitiative. User selects goal RobotInitiative

on the table.
Back-end returns interaction goal grip

R4 How should I grasp it? Please execute TellGrip. Robot asks user to perform TellGrip
U5 What objects do you What objects do you Focus shift: User selects goal ObjectQuery

know already? know already?
R5 Ok. Ok. Robot executes ListObjects
R6 How should I grasp it? Please execute TellGrip. Back to TellGrip
U6 With the power grasp. With the power grasp. User asserts that TellGrip done
R7 Ok. Ok. Robot executes SaveGrip
U7 Let’s explore the objects Let’s achieve RobotInitiative. User selects goal RobotInitiative

on the table.
Back-end returns interaction goal grasp
Robot executes Grasp

R8 Ok. Ok. Grasp failed
U8 Goodbye. Let’s achieve Goodbye. User selects goal Goodbye
R9 Goodbye. Ok. Robot executes SayGoodbye

Table 4.2: Example dialog for the Curious Robot implementation with Collagen/Disco.

the objects learnt), GripQuery (i.e. the user queries the appropriate grip for a specific
object) and Goodbye, each of which can be achieved by a robot’s action. For instance, the
goal Greeting can be achieved by the robot’s SayHello action. It may seem somewhat
surprising that the mutual greeting can be achieved by the robot’s SayHello action alone,
but the user’s greeting has already been carried out with the user selecting the top-level
goal Greeting, as illustrated at beginning of table 4.2 (utterances U1, R1). The top-level
goal RobotInitiative, shown in the lower part of figure 4.3, covers the goals and actions
concerning the robot’s initiative. It is divided into the subgoals ObtainLabel, ObtainGrip
and Grasp, each with an applicability condition over the current interaction goal. The
subgoal ObtainLabel can be achieved with the user executing TellLabel and the robot
executing SaveLabel; likewise with ObtainGrip. Again, it might seem surprising that the
ObtainLabel subgoal does not imply a robot action such as AskLabel, but, similar as with
the greeting, the robot’s label query is expressed as a suggestion to the user to execute

78 4 Developer-Centered Evaluation of the Proposed Approach

RobotInitiative

ObtainLabel ObtainGrip Grasp

ObjectQuery GripQuery

TellLabel SaveLabel TellGrip SaveGrip ExecuteGrasping

interaction goal == "label" interaction goal == "grip" interaction goal == "grasp"

Greeting Goodbye

SayHello SayGoodbyeListObjects LookupGrip

who: user who: user

who: robot who: robot who: robot who: robot

who: robot who: robot who: robot

Figure 4.3: Collagen’s recipes for the Robot Initiative goal.

TellLabel (cf. table 4.2, utterances R2 and U3).

Listing 4.4 shows how the recipe for RobotInitiative is coded in the XML task specification
language. It is decomposed into its three subtasks (lines 3, 12 and 21), which again are
decomposed further (lines 5-6, 14-15 and 22). Lines 4, 13 and 22 encode the applicability
conditions for the respective subtask. The value of the built-in variable external indicates
whether it is the user or the system who is supposed to execute the subtask. For example,
TellLabel is assigned to the user (line 7), while SaveLabel is assigned to the system (line
8). Further, variables can be passed from one subtask to another, for instance the label
(line 9) or the grip name (line 18). A task model description may also contain JavaScript
fragments that connect the model with the underlying application or device, as required
for polling the current interaction goal (lines 5, 19, 33). The dialog fragment shown in
table 4.2 illustrates in detail how the dialog evolves from these recipes: the user selects the
top-level goals, and the robot either performs its part of the task, if possible, or suggests
an appropriate action to the user.

A fundamental difference to the implementation with Ravenclaw is that only the task
needs to be specified, not the dialog flow itself. The dialog is generated automatically
out of a generic rule framework [RLGR02] based on the current discourse state and the
recipes. Rules specify the system’s next action for a particular situation. For instance,
the Execute rule specifies that a primitive task that is assigned to the agent should be
executed directly, whereas the AskWho rule states that for a task whose executor is not
determined, the system should return an utterance of the form “Who should perform
goal?”. Collagen provides a collection of default rules, and further rules can be plugged in
to implement a different collaboration style.
The generated output can be customized as to how tasks can be referred to and how their
execution is confirmed. Table 4.2 contrasts the customized version of the output with the
automatically generated version, e.g. “Hello” versus “Let’s achieve Greeting” in utterance
U1. Additionally, the rules do not only generate the system’s next action but also the

79

1 <task id="RobotInitiative">

2
3 <subtasks id="ObtainLabel">

4 <applicable > getInteractionGoal () == "label" </applicable >

5 <step name="TellLabel" task="TellLabel"/>

6 <step name="SaveLabel" task="SaveLabel"/>

7 <binding slot="$TellLabel.external" value="true"/>

8 <binding slot="$SaveLabel.external" value="false"/>

9 <binding slot="$SaveLabel.label" value="$TellLabel.label"/>

10 </subtasks >

11
12 <subtasks id="ObtainGrip">

13 <applicable > getInteractionGoal () == "grip" </applicable >

14 <step name="TellGrip" task="TellGrip"/>

15 <step name="SaveGrip" task="SaveGrip"/>

16 <binding slot="$TellGrip.external" value="true"/>

17 <binding slot="$SaveGrip.external" value="false"/>

18 <binding slot="$SaveGrip.grip" value="$askGrip.grip"/>

19 </subtasks >

20
21 <subtasks id="Grasp">

22 <applicable > getInteractionGoal () == "grasp" </applicable >

23 <step name="ExecuteGrasping" task="ExecuteGrasping"/>

24 <binding slot="$ExecuteGrasping.external" value="false"/>

25 <binding slot="$this.success" value="$ExecuteGrasping.success"/>

26 </subtasks >

27
28 </task>

Figure 4.4: The RobotInitiative recipe, coded in Collagen’s task specification language.

agenda for the user, i.e. a list of candidate actions and utterances. The choices for the user
to say, or rather to type, are presented as a menu. For example, the customized choices
generated after the robot’s label query (R2 in table 4.2) include rejecting the proposed
action (“I’m not going to answer your question”), abandoning the top-level goal (“Let’s not
explore the objects on the table”) and focus shifts (“What objects do you know already?”,
“How do you grasp a banana?”).

Although our target scenario is not at all the type of scenario Collagen was intended for
originally, many requirements of the target scenario can be realized with it. Its model
of collaborative discourse, wherein two interaction partners collaborate on a task by
proposing and performing actions, aptly supports the focus shifts that were stipulated in
the specification.
In contrast, the robot’s task initiative that generates its query for label and grip could
not be implemented using the default agent that comes with the framework since it does
not suggest top-level goals on its own. It should however be easily possible to adapt the
default implementation such that it is able to propose ObtainLabel, ObtainGrip and Grasp

80 4 Developer-Centered Evaluation of the Proposed Approach

autonomously. For the case study, a work-around was applied by introducing the top-level
goal RobotInitiative, which the user is to select explicitly (“Let’s explore the objects on
the table.”), whereupon the robot chooses between ObtainLabel, ObtainGrip and Grasp,
depending on the current interaction goal.
Another problem that was encountered affects the communication of back-end results, such
as the success of grasping or the robot’s enumeration of the objects learnt so far. Collagen
does not support variable system utterances, e.g. by template-based output generation.
This is the reason why the robot simply answers Ok when the user asks to enumerate the
known objects (cf. R5 in table4.2), or why the robot does not communicate that grasping
has failed (cf. R8 in table 4.2). Admittedly, Collagen does not claim to be a complete
natural-language processing system, and within the collaborative interface-agent paradigm
it would probably be the underlying application that is responsible for representing the
application-specific results to the user.
The automatic generation of system utterances is a very powerful technique. However,
while the wording of the generated utterances can be configured, the developer can not
control when utterances are generated. This is the reason why the begin of grasping can
not be announced (cf. R8 in table 4.2). Also, generating utterances automatically leads to
asymmetry in the task model: while some of the user utterances are explicitly represented
as subtasks (e.g. TellLabel and TellGrip), the system utterances are not present in the
task model.
The most serious shortcoming pertains to error handling. The task model provides a
built-in success variable, indicating the success of a subtask. It is used to control replanning.
However, a binary value might not always provide sufficient information. Some applications
might want to discriminate between a failure and a rejection of the subtask, or between
different error causes. For instance, if a plan fails because the underlying application is
otherwise busy, it might be reasonable to re-execute the plan later, whereas retrying might
be pointless if the requested functionality is unavailable in general. This shortcoming is
particularly serious as the task specification language has been approved by the Consumer
Electronics Association (CEA) und the name CE Task 1.0 as a standard for task models
relevant to consumer electronic devices [CET08].
Finally, just as the Ravenclaw framework, Collagen does not provide mechanisms for
asynchronous coordination of task execution. Thus, neither the user’s monitoring questions
during grasping could be realized, nor could the grasping action be canceled.

4.0.3 Case Study 3: Dipper
The third case study explored the Information State (IS) approach to dialog modeling
[TL03], which has been introduced in section 2.1.3. The IS approach relies on a models of
the relevant aspects of information (the information state), which is updated by applying
update rules, based on a certain update strategy. The Prolog-based TrindiKit is known as
the original implementation of the IS approach [TL03]. Others followed, based on different
programming languages. For the case study, the stripped-down re-implementation Dipper

81

[BKLO03] was used.

Dipper is set on top of the Open Agent Architecture (OAA), a C++ framework for
integrating different software agents in a distributed system [MCM99]. OAA agents
provide services that other agents may request by submitting a high-level Interagent
Communication Language (ICL) expression (a solvable, which can be viewed as a service
request) to the facilitator agent that knows about all agents and mediates the interaction
between them. In addition to the facilitator and the Dipper agent, the implementation of
the target scenario includes a SpeechRecognitionAgent and a TTSAgent for (simulated)
speech in- and output, a MotorServer agent that simulates grasping, an ObjectDatabase
that stores object labels and the associated grip, and an ActionSelection agent that selects
the current interaction goal.

The upper part of listing 4.5 (lines 1-7) shows the information state for the Curious Robot
scenario, which is designed such that it models the most obvious information, namely the
current interaction goal (line 5), the current user utterance and its interpretation (line
2-3), and incoming events from the back-end task (line 4). Further, it contains control
flags that determine whether the system is ready to receive speech input (line 6) or task
events (line 7).
The lower part of listing 4.5 (lines 9-33) shows the update rules that are necessary to realize
the robot’s label query. Update rules are written in the Prolog-like Dipper update language,
specified by the triple 〈name, conditions, effects〉, with name a rule identifier, conditions
a set of tests on the current information state, and effects an ordered set of operations on
the information state. The first rule, getInteractionGoal, deals with the situation when
no interaction goal is set (line 10). In that case, an OAA solvable is sent that polls the
interaction goal (line 11) and updates the information state with the result (line 12). The
second rule, waitForUtterance, is applicable if the listening flag is set (line 15). It posts a
solvable for the SpeechRecognitionAgent (line 16), integrates the result into the information
state (lines 17-18) and resets the flag (line 19). The processLabel rule applies if the user
has given an object label (line 22-23). It posts solvables for acknowledging and storing the
label (lines 24-25) and resets the information state (lines 26-18). The last rule, LabelQuery,
posts a solvable that will trigger the label query and set the flag for receiving speech input
(lines 32-33), if the current interaction goal is label (line 31).

When implementing the target scenario, the idea of a central information state that
determines the next steps of the interaction appears to be very intuitive. Also, the division
of responsibilities between distributed agents enables a modular approach that roughly
resembles the distributed event-based architecture of the original system.
However, problems with respect to the update rules and the update strategy were en-
countered. While TrindiKit leaves it to the developer to implement the (possibly highly
complex) update strategy, Dipper provides a built-in update strategy that simply selects
the first rule that matches, applies its effects to the information state, and starts over

82 4 Developer-Centered Evaluation of the Proposed Approach

1 infostate(record ([is:record ([
2 utterance:atomic ,
3 interpretation:atomic ,
4 task_event:atomic ,
5 interaction_goal:atomic ,
6 listening:atomic ,
7 awaiting_event:atomic])])).
8
9 urule(getInteractionGoal ,

10 [eq(is:interaction_goal ,’’)],
11 [solve(getInteractionGoal(X),
12 [assign(is:interaction_goal ,X)]) ,]).
13
14 urule(waitForUtterance ,
15 [eq(is:listening ,yes)],
16 [solve(recognize(X, Y),
17 [assign(is:utterance , X),
18 assign(is:interpretation , Y),
19 assign(is:listening , no)])]).
20
21 urule(processLabel ,
22 [eq(is:interpretation ,label),
23 eq(is:interaction_goal , label)],
24 [solve(store(is:utterance)),
25 solve(say(is:utterance Okay)),
26 assign(is:interaction_goal , ’’),
27 assign(is:utterance , ’’),
28 assign(is:interpretation , ’’)]).
29
30 urule(LabelQuery ,
31 [eq(is:interaction_goal ,label)],
32 [solve(say(’What is that ’),
33 [assign(is:listening ,yes)])]).

Figure 4.5: Dipper’s information state definition and update rules for the label query.

with checking the first rule again. This means that rules are executed on a first-come,
first-served principle, where the order of the rules matters, resulting in a brittle system
behavior. In our case study, this is the reason why e.g. the processLabel rule is defined
before the LabelQuery rule. If it was the other way round, the system would loop over the
LabelQuery and never execute ProcessLabel. Of course, the problem could in principle be
overcome by introducing additional control flags, but this would make the information
state unnecessarily complex. As a result of this update strategy, some requirements of the
target scenario could not be realized.
Focus shifts could only partly be implemented. The problem was not to define the
appropriate update rules (e.g. processListObjects), but rather that user utterances are
processed only at specific points in time, that is, only if the listening flag (which were
adopted from the example in [BKLO03]) is set. Thus, a focus shift may be initiated only
when the robot expects the user to speak, e.g. after having asked the label query. If the
rule for speech recognition was applicable at any time, it might conflict with other rules.
Also, asynchronous coordination, which the OAA framework actually supports well,
could only partly be realized, due to the first-come, first-served update strategy that
enables speech input only at certain points. Thus, the robot’s feedback on the grasping
action could be realized by explicitly waiting for respective task events by virtue of the

83

waitForTaskEvent rule, whereas the possibility to cancel an on-going grasping action could
not be implemented because the waitForUtterance rule would have conflicted with the
waitForTaskEvent rule.
Another issue is that the update rules handle both organizational tasks (such as polling
different input sources or producing output) and dialog management tasks. A clear
separation of concerns could make the dialog strategy more obvious and prevent the
information state from being overloaded with control flags.
In a real-world application, testability and maintainability might become issues. As rule
systems get more complex, their behavior can become very hard to predict. Already in
our simplified Curious Robot implementation, which required about 15 rules, it was not
easy to identify the actual dialog flow.

4.0.4 Case Study 4: PaMini
Finally, the target scenario was re-implemented with the PaMini approach. PaMini is the
only one among the discussed frameworks that targets specifically human-robot interaction.
To realize the target scenario, a distributed system was set up with (simulated) compo-
nents that communicate via the Task State Protocol (cf. chapter 3). The system includes
components for speech in- and output, an action selection component, and a motor server.
This breakdown is similar to the one in the Dipper-based implementation.

When selecting the interaction patterns to use, in some cases more than one pattern
provided by PaMini was appropriate. For instance, there are a few patterns modeling a
robot information request, differing in the confirmation strategy (implicit or explicit). Also,
the system-initiated action may be cancelable or not, and the robot may ask for permission
before action execution or not. For the label query, an explicit confirmation strategy was
applied, whereas the grip name was confirmed implicitly because the grip names have
been proven to be recognized reliably by the speech recognizer. The robot’s grasping
action was modeled as non-acknowledged yet cancelable action execution. Altogether,
seven Interaction Patterns were required, one each for greeting, parting, the robot’s label
and grip query, the user’s test questions and the robot’s self-initiated grasping. They are
listed in table 4.3.

For instance, to realize the robot’s label query, the Robot Information Request with Explicit
Confirmation pattern was used (cf. Appendix B), in which the robot asks a question
(R.question), which the human answers (H.answer), whereupon the robot explicitly asks
for confirmation of the given answer (R.askForConfirmation). Once the human confirms
(H.confirm), the robot acknowledges (R.acknowledge). Additionally, the human has the
opportunity to correct the given information at certain points. As for task communication,
PaMini accepts the dialog task on the robot’s question, updates it with the available
information as soon as the human has answered the question, and completes it when the
human confirms.

84 4 Developer-Centered Evaluation of the Proposed Approach

Subdialog Interaction Pattern
Greeting Human Interaction Opening (H Int Open)
Obtain label Robot Information Request with Explicit Confirmation (R Inf Req Conf)
Obtain grip Robot Simple Information Request (R Inf Req)
Grasping Robot Self-Initiated Cancelable Action (R Cancel-Action)
List objects Human Information Request (H Inf Req)
Grip test Human Information Request (H Inf Req)
Parting Human Interaction Closing (H Int Closing)

Table 4.3: Interaction Patterns for the Curious Robot scenario with PaMini.

Listing 4.6 shows the associated dialog act configuration. It determines conditions for the
human dialog acts and how exactly the robot dialog acts should be expressed, both being
possibly multimodal. The dialog act R.question in state initial, for example, is specified
as the utterance What is that?, combined with a pointing gesture (lines 3-6). Similarly, in
order to be interpreted as H.answer, the XML representation of the user utterance has to
match the XPath expression1 /utterance/description (lines 8-9).
Apart from the dialog acts, the developer has to configure the task communication (i.e.
the task specification for tasks initiated by the dialog system, and possible task state
updates), as well as the definition of variables (used for parameterizing the robot’s dialog
acts and within the task specification). While the dialog act configuration is written in
the domain-specific XML configuration language, the latter two are specified by extending
Java base classes. Since not each Interaction Pattern involves task communication or
the use of variables (for example, simple patterns such as Human Interaction Opening
typically don’t), only the dialog act configuration is obligatory.
The definition of variables and the task communication often go hand in hand. For
instance, when the human answers the robot’s information request (R.question and
H.answer, respectively), the object label is extracted from the user utterance and assigned
to the variable label, which is then used to parameterize the robot’s confirmation request
R.askForConfirmation (e.g. ’Apple. Is that correct?’), and to augment the task specification
with the label so as to transfer it to the responsible system component.
Further, the developer has to configure which patterns may be interleaved with each other.
In order to model the focus shifts and multitasking capabilities demanded by the user’s
test questions, each pattern must be intereavable with the patterns for the subdialogs List
objects and Grip test. Technically, pattern interleavability is configured in an additional
configuration file.

1 The XPath expressions in the example are kept simple. In practice, more complex expressions are
common that combine several sub-expressions using negations, disjunctions or conjunctions. With such
kind of expressions, a mock speech understanding process can be achieved, as has been done in the
Curious Flobi scenario presented in chapter 7.

85

1.41.2
Utterance Comment Interaction Pattern

U1 Hello. H Int Open
R1 Hi, hello. H Int Open
R2 What is that? Back-end publishes interaction goal label R Inf Req Conf
U2 This is a lemon. R Inf Req Conf
R3 Melon. Is that correct? R Inf Req Conf
U3 No, it’s a lemon! R Inf Req Conf
R4 Lemon. Is that correct? R Inf Req Conf
U4 Yes, this is correct. R Inf Req Conf
R5 How should I grasp the lemon? Back-end publishes interaction goal grip R Inf Req
U5 With the power grasp. R Inf Req
R6 Alright. R Inf Req
R7 I am going to grasp the lemon. Back-end publishes interaction goal grasp R Cancel-Action

Grasp task initiated by PaMini R Cancel-Action
R8 I start grasping now. Grasp task accepted by back-end R Cancel-Action
U6 How do you grasp a banana? R Cancel-Action interleaved with H Inf Req H Inf Req
R9 Sorry, I don’t know. to realize focus shift and multi-tasking H Inf Req
U7 Stop! Cancel requested by PaMini R Cancel-Action
R10 Ok, I stop. Grasp task canceled by back-end R Cancel-Action
U8 Goodbye. H Int Closing
R11 Goodbye. H Int Closing

Table 4.4: An example dialog for the Curious Robot implementation with PaMini. For
each utterance, the associated Interaction Pattern is given; see table 4.3 for their abbrevi-
ations. The interaction features focus shifts, multitasking, and cancellation of an on-going
grasping action.

In addition to the necessary Interaction Patterns, a background process is required that
triggers the patterns initiated by the robot. For the case study, the background process
was implemented as a Java process that first sends the interaction goal label, then grip and
grasp to the dialog manager via the XML-based middleware XCF [WHBS04]. In contrast
to the implementations with Ravenclaw and Collagen, PaMini does not apply a polling
strategy to retrieve the interaction goal, but it is notified on the respective event.

As the Curious Robot has been one of the development scenarios for PaMini, it is not
surprising that all of the stipulated requirements could be met. With the Task State
Protocol, state updates of temporally extended back-end calls such as grasping are delivered
by event notification, enabling PaMini to give feedback on the on-going action, as illustrated

86 4 Developer-Centered Evaluation of the Proposed Approach

1 <patternConfiguration name="LabelQuery">

2
3 <robotDialogAct state="initial" type="R.question">

4 <verbalization text="What is that?"/>

5 <point coordinatesXpath="// Region"/>

6 </robotDialogAct >

7
8 <humanDialogAct state="asked" xpath="/utterance/description"

9 type="H.answer"/>

10
11 <robotDialogAct state="asked" type="R.askForConfirmation">

12 <verbalization text="%label%. Is that correct?"/>

13 </robotDialogAct >

14
15 <robotDialogAct state="awaitConfirmation" type="R.askForConfirmation">

16 <verbalization text="%label%. Is that correct?"/>

17 </robotDialogAct >

18
19 <humanDialogAct state="awaitConfirmation" xpath="/utterance/description"

20 type="H.correct"/>

21
22 <humanDialogAct state="awaitConfirmation" xpath="/utterance/negation"

23 type="H.negate"/>

24
25 <robotDialogAct state="awaitConfirmation" type="R.question">

26 <verbalization text="Ok , and what ’s correct?"/>

27 </robotDialogAct >

28
29 <humanDialogAct state="awaitConfirmation" xpath="/utterance/confirmation"

30 type="H.confirm"/>

31
32 <robotDialogAct state="awaitConfirmation" type="R.acknowledge">

33 <verbalization text="%label%. Alright. "/>

34 </robotDialogAct >

35
36 </patternConfiguration >

Figure 4.6: PaMini’s dialog act configuration for the Robot Information Request with
Explicit Confirmation, which was required to realize the robot’s label query.

in table 4.4 (R8, R10). Conversely, PaMini can update or cancel tasks on-line (U7-R10).
By admitting interleaving Interaction Patterns, the interaction can be maintained during
task execution. During the robot’s grasping action, for instance, the user initiates a focus
shift by asking a question (U6-R9), which is modeled by interleaving a Robot Self-Initiated
Action pattern with a Human Information Request.
Perhaps the most striking difference to the other dialog frameworks affects discourse
planning. While local discourse planning is determined by the Interaction Patterns, global
discourse planning – i.e., how the patterns are combined – is not done within the dialog
framework, but is decided by the back-end (or by what the user says, of course). This
enables the dialog system to respond to the dynamic environment in a flexible and reactive

87

way (cf. also section 3.8.2 for further discussion).
While the other frameworks discussed provide generic strategies for grounding or collabo-
ration, PaMini goes one step further in this respect by providing pre-modeled “building
blocks of interaction”, intended to encapsulate the subtleties of dialog management and
domain integration. Both a usability test (see section 4.1) and experiences within numerous
scenarios (see section 5) support that Interaction Patterns enable developers to rapidly
implement new interaction scenarios. Furthermore, as the Interaction Patterns are kept
self-contained, new features can be added without breaking existing functionality (of
which one is running the risk e.g. with Dipper’s update rules). This significantly eases
incremental system development.

In PaMini, the definition of variables is not as straightforward as e.g. with Ravenclaw,
where variables are derived directly from the semantic speech recognition grammar. PaMini,
in contrast, leaves variable handling to the developer. Variables can be extracted either
from user or system input using XPath expressions, and the developer has to write the
necessary code for this purpose, using base classes the framework provides. On the other
hand, with this approach, the dialog manager does not rely on a specific method for
speech recognition. In fact, PaMini is being used with several speech recognition and
understanding modules in different scenarios. The first iterations of the Curious Robot
scenario, for example, employed a speech understanding approach based on a frame-slot
semantics [HWS06], while in the Receptionist Vince scenario (cf. section 8.1), a different
speech understanding component is used, provided by a related working group. In contrast,
later iterations of the Curious Robot work directly on the speech recognizer result in order
to achieve robust keyword spotting.
Also, as PaMini outsources much of the responsibility for discourse planning to the
back-end, little support is provided for interactions whose structure is determined by
the current dialog state (or the current information state) rather than by an “intelligent
back-end”. This might be a hassle in information negotiating scenarios, in which the
back-end typically plays a more passive role. Related to that, as PaMini does not maintain
an explicit representation of the information that needs to be gathered during the dialog,
overanswering is not supported. This deficiency can be illustrated using the Sports
Companion scenario (cf. section 8.6). In this scenario, a robot is supposed to assist the
user in developing an exercise plan. The plan includes seven exercise units of different
types, which the user has to distribute over the week. For each unit, week day, time slot
and type has to be specified, while satisfying several constraints. For example, intensive
units are not allowed to be scheduled on two consecutive days. In order to allow the
user to specify more than one information item at a time (e.g. “On Monday, 7pm, I
would like to have an interval unit.”), each possible combination of information has to
be pre-programmed, i.e. for each combination, a pattern instance needs to be configured.
In contrast, using an explicit representation of the required information, together with a
meta-algorithm such as the VoiceXML Form Interpretation Algorithm (FIA) as discussed
in section 2.1.2, information gathering could be handled in a generic way. Overall, PaMini

88 4 Developer-Centered Evaluation of the Proposed Approach

can be referred to as an action-oriented, rather than as information-oriented approach,
relying on tasks rather than on information structures as the fundamental concept that
drives the interaction.

4.0.5 Discussion
These case studies were performed with the goal to contrast state-of-the art approaches to
dialog modeling, and to identify pitfalls and potential remedies for dialog modeling on
robots. Table 4.5 lists the distinctive features and summarizes the results of the case studies.

Four state-of-the art approaches were investigated. Ravenclaw and PaMini can be referred
to as descriptive approaches, whereas Collagen/Disco and Dipper fall into the category
of mental-state approaches. Consequently, only the latter two feature planning or plan
recognition capabilities. For the descriptive approaches, a visualization of the dialog flow
is feasible and would facilitate dialog design, but this feature is only supported by PaMini.
The descriptive approaches keep dialog and task structure well separated. To do so,
Ravenclaw employs a domain-independent dialog engine, together with a domain-specific
dialog description. PaMini relies on a fine-grained Task State Protocol as interface between
dialog and domain level. Collagen/Disco automatically generates the system utterances
based on a task model and the current discourse state. In this respect it is similar to
PaMini, which combines task states with robot dialog acts. However, PaMini operates
at a more abstract level than Collagen/Disco. Also, Collagen/Disco does not allow to
configure the dialog structure (except for, with limitations, the exact wording), which
PaMini allows through providing a large selection of different interaction patterns. Thus,
in the Collagen/Disco framework, the dialog structure emerges directly from the task
structure. In general, plan-based approaches inherently tend to keep dialog and domain
less separated as they often rely on the same mechanism both for task and dialog planning
(though the ones investigated in the case studies do not so).

The dialog configuration is written either in programming languages (such as C++ or
Java), or using a domain-specific language (often XML-based) that has been developed for
the specific purpose. Here, a trade-off between flexibility and complexity has to be found.
The same is true for the back-end specification, which plays a larger role in robotics as it
does in traditional domains.

Also, aspects regarding system integration are of particular importance of robotics, where
the dialog manager coordinates with the complex robotic system. The question of how to
model the interaction with the back-end tends to be solved individually by each framework.
Binary success variables, as used in the reasoning-based Collagen/Disco approach seem
to be somewhat underspecified for a satisfying information behavior of the robot. The
user-defined result frame allows for more freedom but also imposes much knowledge and
work on the developer. From this perspective, PaMini’s Task State Protocol appears to be

89

Ravenclaw Collagen/Disco Dipper PaMini
Type of approach Descriptive Plan-based Plan-based Descriptive
Plan recognition,
planning

No Yes Yes No

Visualization No No No Yes
Relationship
between dialog
and task
structure

Separated Dialog structure
emerges from task
structure

Separated Separated

Domain-specific
configuration

C++ Macros XML Prolog-like Dipper
update language

Java and XML

Back-end
specification

Arbitrary
components

JavaScript Arbitrary
components

Arbitrary
components

Discourse
planning

Task tree Recipes Information state
update rules

Locally:
Interaction
Patterns, globally:
Back-end

Communication
with Back-end

User-defined result
frame

Optional binary
success variable

Interagent
Communication
Language

Task State
Protocol

Asynchronous
Coordination

No;
Latest version: Yes

No Yes (polling-based) Yes (event-based)

Pre-modeled
conversational
skills

Grounding and
repair

Collaborative plan
execution

No Patterns for
various situations

Grounding model Explicit None None Implicit
Focus shifts Yes Yes With limitations Yes
Multimodality Yes No Yes Yes
Multi-party
interaction

Yes,
n systems:1 user

No No Yes,
1 system:n users

Table 4.5: Distinctive features of dialog modeling approaches.

a good compromise between both, allowing the developer an easy and standardized yet
flexible interaction with the back-end.
In robotics, the discourse planning is affected not only by the user’s utterances but also by
the perceptual context. Contrary to the other approaches discussed, PaMini outsources
global discourse planning to the back-end, allowing for a less restricted dialog structure.
Discourse planning can be executed either by a centralized back-end process (i.e. a planner)
or in a distributed way, resulting in a more reactive architecture.
Asynchronous coordination has been identified as crucial for integrating action execution
and interaction. Whether a dialog system is able to handle asynchronous action execution
depends largely on the middleware used and whether it supports event notifications or not.

90 4 Developer-Centered Evaluation of the Proposed Approach

Most dialog frameworks provide some kind of pre-modeled conversational skills, in form of
generic strategies for grounding and repair, or for collaborative plan execution, or else in
form of PaMini’s interaction patterns. Dipper does not provide any pre-modeled dialog
strategies. It could, thus, be referred to rather as a toolkit to build dialog frameworks
than as a complete dialog framework. Also, focus shifts are supported by most frameworks.
Internally, the discourse is typically represented as a stack, with the focused dialog element
being on top. With Dipper, which does not maintain such a built-in structure, focus shifts
could be implemented only with limitations, at the price of introducing several control
flags. Further, the only framework that provides a generic grounding strategy is Ravenclaw.
In PaMini, grounding is incorporated implicitly in the structure of the interaction patterns
(cf. also section 3.8.2 for further discussion), whereas neither Dipper nor Collagen/Disco
support grounding.

In order to keep our case studies simple, we have limited the target scenario to verbal
interaction. Nevertheless, nonverbal behaviors and multimodality are crucial aspects
in situated dialog. Except for Collagen/Disco, which relies on text in- and output,
multimodality could have been realized with all of the discussed dialog managers, as they
operate at the semantic level below which the in- and output sources may be exchanged.
The new version of Ravenclaw supports multimodal in- and output by providing agents for
modality integration and for the production of multimodal output [RE07]. Both Dipper
and PaMini rely on a distributed architecture with arbitrary sources for in- and output.
PaMini, for instance, provides a collection of available output modalities such as pointing
gestures or mimics (depending on the robot platform), that can be combined. However,
neither Dipper nor PaMini handles the issues of input fusion and output synchronization.
Moreover, human-robot interaction demands more than classical 1:1 interactions. Often,
the robot will be situated in environments where multiple possible interaction partners
are present, or a robot might even have to collaborate with other robots. Thus, the
capability of multi-party interaction is another crucial requirement. PaMini has recently
been extended to be able to manage multiple interactions (with multiple participants
each), and a multi-party engagement model [BH09] has been integrated in a Multi-Party
Quiz game (see section 8.3). Ravenclaw has provisions for the opposite case, in which
multiple robots collaborate, forming a team [DHB+06].

4.1 A Usability Test
This section reports on a usability test in which developers unfamiliar with the PaMini
framework were asked to build a human-robot interaction scenario with it. The usability
test combines two usability methods proposed by Nielsen [Nie94]. First, performance
measurement is applied to measure the efficiency of use and the learnability of the
framework. Efficiency is quantified by the time users take to complete a given task, by

4.1 A Usability Test 91

the number of tasks that can be completed within a given time limit, and by the number
of tasks that can be completed within a given time limit. Learnability is quantified by
comparing the measures for similar tasks at the first time and at a later stage. Second,
user observation and thinking aloud techniques reveal potential misconceptions of
the PaMini API and suggest new features.

4.1.1 Experimental Setup
Participants were classified either as roboticists or non-roboticists, each group consisting of
four individuals. Classification was based on the participants’ statements about previous
knowledge on robotic architectures, both in general and in-house, as well as the Task State
Protocol as described above. However, all participants were unfamiliar with the dialog
manager.
Having acquainted with the system by reading the documentation for 10-15 minutes,
participants were asked to solve a list of tasks with one hour given as time limit. The
tasks were given in abstract textual form and had to be broken down by the participants
into subtasks, such as selecting the appropriate Interaction Pattern, writing the dialog
act configuration using the XML configuration language, possibly writing additional
variable or task configuration in Java, registering the pattern with the dialog manager
and finally testing the produced code using a prepared simulation. Participants were
instructed to solve the tasks autonomously. The experimenter was available for specific
questions, though, and intervened if problems occurred that concerned general issues such
as Java, XML or the IDE rather than the Interaction Patterns itself. For each task, the
time was recoreded that the participant took for solving it completely or up to a certain
proportion. A task was considered to be solved 100% if the source code was completed and
tested successfully, 75% if it was untested or slightly incomplete, and 50% if it exhibited
substantial incompletenesses or if the participant gave a detailed oral description of a
possible solution.
In detail, five tasks with increasing complexity were given. Task 1 and 2 were designed to
be fairly simple and consisted of implementing interaction opening and end respectively,
using the Human Interaction Opening and Human Interaction Closing. Task 3 was to
realize a navigation command that might be rejected or fail and be canceled by the human
at any time. The appropriate pattern for this task is the Human Cancellable Action
Request. Task 4 required integration of a power management component that generated
notifications whenever the battery level falls below a critical value. The required Robot
Notification as such is very simple, but the complexity of this task lies in creating a context
variable, allocating it to the current charge level and using it to parametrize the robot’s
warning. Task 5 consisted of having the robot ask persons for their name using the Robot
Correctable Information Request. This required augmenting the task specification with
the person’s name in order to realize the information transfer to the responsible system
component. Table 4.6 shows an overview of the given tasks. The full task instruction can
be found in appendix C.

92 4 Developer-Centered Evaluation of the Proposed Approach

Task Interaction Pattern # DA Challenge
1) Greeting Human Interaction Opening 2
2) Parting Human Interaction Closing 2
3) Navigation instruction Human Cancellable Action Request 11 Task communication
4) Low battery warning Robot Notification 1 Task communication,

Variable definition,
Parametrized output

5) Acquire person name Robot Correctable Information Request 6 Task communication,
Variable definition,
Task specification update

Table 4.6: Overview of the tasks given in the usability test, including the required number
of dialog acts, the major challenge of the task, and the required Interaction Pattern.

4.1.2 Results and Observations
Performance Measurement

Within the one hour time limit, all participants were able to solve task 1 and 2, and none
proceeded up to task 5 as shown in table 4.7. Task 3 which exhibited a considerably higher
degree of difficulty than task 1 and 2 could be solved by seven out of eight participants.
Remarkably, all of the non-roboticists were able to solve it, even though the required
Human Cancellable Action Request involves complex domain integration using the Task
State Protocol. This result suggests that, first, the Task State Protocol abstracts from
integration details in an intuitive way and, second, that the graphical representation of
the interaction describes linking domain and dialog level in an understandable way.
As shown in table 4.8, task 2 could be solved considerably faster than task 1, with 26.75
minutes on average compared to 9 minutes, though possessing the same degree of difficulty.
This suggests that once participants got accustomed to the API, they use it fairly effectively,
taking 9 minutes at average for a simple pattern like Human Interaction End and 20.28
minutes for a more complex pattern like Human Cancellable Action Request.
In general, non-roboticists took slightly more time for each tasks. This applies to task 1
and task 2 as well, even though these tasks do not include any interfacing to the robotic
subsystem. This result cannot be explained with the roboticists group exhibiting better
programming skills in general: both groups rated their general programming skill with 3.5
on a scale from 1 to 5.

User Observation and Thinking Aloud

Apart from performance measurement, the participants were asked to continuously verbalize
their thoughts while using the system, which provided insights into the developers’ view of

4.1 A Usability Test 93

the dialog manager. For instance, it was interesting to observe the participants’ reaction
faced with the graphical representation of the Cancellable Action Request pattern required
for task 3, which is one of the most complex Interaction Patterns, consisting of 11 state
transitions. While most of the non-roboticists were at first overwhelmed by the complexity,
one of the roboticists (a very experienced scenario developer) became almost enthusiastic.
A possible interpretation for this might be that the robiticist are already aware of the
high integration complexity of a cancellable instruction, but that they feel it becomes well
manageable through the visualization and the Task State Protocol. However, in the end,
the non-roboticists were able to manage the task even more successful than the roboticists
(cf. table 4.7), though slightly slower (cf. table 4.8).
The Human Cancellable Action Request gave us the opportunity for another valuable
observation concerning the pattern visualization, because it has both system events as
input and robot dialog acts as the resulting output. It could be observed that the robotic
experts oriented themselves using the system event names, e.g. accepted, while the robotic
novices rather oriented by more the dialog act names, e.g. R.assert. It can be concluded
that using this combined notation supports both the robotic system engineer and the
interaction designer perspective.
Besides, the thinking-aloud method enabled us to identify potential deficiencies and
misconceptions. It lead to a number of API improvements, including more precise method
naming, clearer syntax for the configuration language and additional convenience methods.

Task Percentage All developers Roboticists Non-Roboticists
1) Greeting 100% 8 4 4
2) Parting 100% 8 4 4
3) Navigation instruction 75% 8 4 4

100% 7 3 4
4) Low battery warning 50% 4 3 1

75% 2 1 1
100% 1 1 0

5) Acquire person name 100% 0 0 0

Table 4.7: Number of subjects that solved the respective task up to the given percentage

Task Time in minutes Roboticists Non-Roboticists
1) Greeting 26.75 25.75 27.75
2) Parting 9 8.75 9.25
3) Navigation instruction 20.28 18.66 21.5
4) Low battery warning 12 12 na
5) Acquire person name na na na

Table 4.8: Average time (in minutes) needed to completely solve the respective task. Only
those participants were considered who solved the respective task 100%.

94 4 Developer-Centered Evaluation of the Proposed Approach

4.1.3 Discussion
The evaluation focused on the question of whether this approach enables developers to
whom the system is unknown to implement new interaction scenarios in short time. The
results from the performance measurement showed that both roboticists and non-roboticists
were able to complete 3 out of 5 dialog programming tasks of increasing complexity within
one hour. Although roboticists were slightly faster than novices, both groups showed a
steep learning curve in the second task, indicating that the concepts are easy to learn.
Results from the user observation support this interpretation: while roboticists tended to
rely on the concepts related to the system task protocol, that is the internal processing of
the robot, non-roboticists focused on the dialog acts, that is the surface structure of the
dialog.

Part II

Applications of the Proposed Approach

95

5 Scenario-Based Design

5.1 Development History of the PaMini framework
The approach that underlies the PaMini dialog framework has not been developed from
scratch. It rather evolved over time, based on experiences with previous approaches – and
their shortcomings. Essentially, there were two predecessor systems that influenced the
concepts of the suggested PaMini approach, carrying the working title Sunshine dialog
and Moonlight dialog. In order to illustrate the evolution of PaMini, and to contrast the
approaches, the previous approaches will be outlined in the following.

The Sunshine dialog system is based on a computational model of grounding that has
been presented by Li [Li07]. In Li’s grounding model, the grounding unit is an Exchange,
which is formed by two dialog acts. The first one plays the role of a Presentation, and the
second one represents the Acceptance of it. Between Exchanges, a grounding relation exists
that specified how the grounding of the present Exchange affects its mother Exchange. For
example, the Support relation indicates that the present Exchange facilitates the grounding
of the mother Exchange by providing more information, and that the grounding of the
mother Exchange should be retried, given the new Exchange.
Figure 5.1 illustrates how the robot’s label query was modeled based on Li’s grounding
model. By asking for the label, the robot makes a Presentation, which is accepted by the
human’s answer so that the Exchange (R1, H1) can be grounded. The robot’s confirmation
request and the human’s reply forms an Exchange (R2, H2) that is connected with its
mother Exchange via the Default grounding relation, likewise the robot’s request for the
correct label (R3, H3). Again, the robot asks for confirmation of the new label (R4), but
the human’s reply can not be interpreted (H4). Thus, the robot makes a new Presentation
by asking for clarification (R5), which stands in Support relation to its mother. The
human repeats the answer (H5), which grounds the clarification request (R5). As the
grounding relation to the previous Exchange is Support, it also assists in the grounding of
the robot’s original Presentation (R4). Finally, the robot makes a Presentation, stating
that it will learn the label (R6), and accepts it itself as learning succeeds (R7).
Li’s grounding model and the resulting Sunshine dialog system has several shortcomings,
in particular regarding usability. From a practical perspective, implementing new inter-
action scenarios with it is extremely tedious: for each possible Presentation and each
possible input, it needs to be specified which functionality the input has with respect
to grounding. This requires the interaction designer to have intimate knowledge of the
proposed grounding model. Even if this is the case, it is not a trivial task to map all

97

98 5 Scenario-Based Design

possible interactions onto the domain of the proposed model. For example, the grounding
model – whose basic units are pairs of dialog acts – does not serve well in describing dialog
act triples (e.g. “What’s that” – “An apple” – “Alright, an apple”). The basic problem
is that, unlike other computational models of grounding, such as the one proposed by
Traum [Tra94], Li’s model does not account for larger conversational structures that go
beyond pairs of Presentations and Acceptances.
Another basic problem is the chosen abstraction level: the only abstraction the approach
makes is in terms of admissible sequences of Presentations and Acceptances – an abstraction
that is too general to be useful for dialog management. In contrast, Traum’s grounding
actions, which are comparable to Li’s grounding relations, are more fine-grained and thus
more informative than these, and Traum’s model additional includes an intermediate
abstraction level that models speech acts, such as inform, suggest or accept.
Also, while the principle of grounding, i.e. the assumption that in an interaction both
partners attempt to ground open Exchange, is interpreted as the basic mechanism that
drives interaction, the grounding model does not account for what is grounded, i.e. it
provides no means to represent the newly acquired information.

The successor system, the Moonlight dialog system, has been developed by the present
author and can be viewed as an interim system which already incorporates some of PaMini’s
concepts. Technically, it is a refactored version of the Sunshine dialog. In this system,
the internal dialog management still relies on Li’s grounding model, but its external
interface, i.e. the domain integration (which was also a shortcoming of the Sunshine

R1 What is that? Pre
H1 An apple. Acc

Grounding relation: Default
R2 Banana. Is that correct? Pre
H2 No! Acc

Grounding relation: Default
R3 What’s correct? Pre
H3 Apple. Acc

Grounding relation: Default
R4 Apple. Is that correct? Pre
H4 non-understandable Unqualified

Grounding relation: Support
R5 Pardon? Pre
H5 Yes. Acc

Grounding relation: Default
R6 OK, I am going to learn the apple. Pre
R7 I have learnt the apple. Acc

Figure 5.1: Grounding-based dialog modeling in the Sunshine dialog

5.2 Overview of the Implemented Scenarios 99

system), was revised and addressed in a systematic manner for the first time. In particular,
the Moonlight system makes use of a first version of the Task State Protocol. Thus,
with the Moonlight dialog system, the new interface could already be applied and tested
in a number of scenarios, while new concepts for internal dialog management matured.
At the same time, a first generalization of the dialog flow was made by mapping task
states onto Presentations or Acceptances and the appropriate grounding relation. In the
example dialog shown in figure 5.1, for example, the robot’s confirmation of learning (R7)
is made when the associated task is completed. In the Moonlight system, the appropriate
grounding information was automatically determined from the task state.

Moonlight’s successor is the PaMini framework as described within this thesis. As already
in the Moonlight system, its external interface is specified through the Task State Protocol,
which in the meantime has been investigated more systematically and extended for several
new states. As for internal dialog modeling, the grounding-based model was replaced by
the concept of Interaction Patterns. Their development was essentially influenced by the
observation that conversations are composed of larger recurring structures that go beyond
Li’s grounding structures. As already prototyped in the Moonlight system, the Task State
Protocol links the conversation level and the domain level, but the mapping from task
states to grounding states was replaced by a mapping from task states to robot dialog
acts. Also, the PaMini framework explicitly accounts for information transfer to the robot
subsystem by making use of the new task states intermediate_result and update within
the Interaction Patterns that deal with information negotiation.

5.2 Overview of the Implemented Scenarios
Essential for the development of the concepts that underly the PaMini framework was not
only the iterative process described above, but also a number of accompanying scenarios
that provided a wide range of use cases – and pointed out the deficiencies of the existing
approaches. This is in line with the general guidelines for framework development, sug-
gesting that abstractions are developed by generalizing from concrete examples, and that
developing three applications in order to gain intimate knowledge of the domain will be
worthwhile1 [RJ96].

Figure 5.2 gives an overview of the scenarios that either have contributed to the devel-
opment of PaMini, or were implemented based on PaMini. As shown in the figure, two
scenarios have served as examples: the Home-Tour scenario2 and the Curious Robot

1 In fact, in addition to the Curious Robot and the Home-Tour scenario, a third example scenario has
been developed in which a robot acts as visitor guide, using a real map of the environment that is
shared with the user [BSL+08].

2 Different to what is suggested by figure 5.2, the beginning of the development of the Home-Tour scenario
was earlier than 2007, but this was the time when the author joined the developer team.

100 5 Scenario-Based Design

Sunshine Dialog
Moonlight Dialog

PaMini

01/07 01/08 01/09 01/10 01/11 12/11

Home-Tour

Curious Robot

CeBit Setup

CR/HT re-implementation

Vince Receptionist

RoboCup

Curious Flobi

Multiparty Quiz Game

Art Exhibition

PlaSta scenario

Sports Companion

Memory Scenario

Figure 5.2: Overview of the scenarios implemented with the PaMini dialog framework and
its predecessors.

scenario. Both were initially implemented with the Sunshine dialog system, but during
the development process of the Curious Robot scenario, the Sunshine system was replaced
by the Moonlight system. Also the CeBit setup, a stripped-down version of the Curious
Robot, was implemented with the Moonlight system. These preliminary scenarios, that
helped to form the proposed concepts, will be outlined in chapter 6.
As soon as the development of PaMini was finished, the Home-Tour and the Curious
Robot were re-implemented based on PaMini as a proof of concept. In addition to that, a
further iteration of the Curious Robot – the Curious Flobi – was realized with PaMini
and evaluated extensively. It is described in chapter 7.
The scenarios mentioned so far were implemented by the present author herself. Addi-
tionally, a number of further scenarios were implemented by different developers, either
by student assistants or in the scope of courses or bachelor’s and master’s theses. This
demonstrates the understandability and usability of the framework. Moreover, several of
these have been implemented in a very short time, notably the Art Exhibition scenario,
the PlaSta scenario and the Sports Companion, with at least the first two being being fully
integrated robot systems. This demonstrates that PaMini successfully supports rapid pro-
totyping of interaction scenarios. The additional scenarios are briefly described in chapter 8.

Table 5.1 lists for all scenarios implemented with PaMini the Interaction Patterns used.
This information describes not only the complexity, but also the characteristics of a
scenario. In this respect, interesting differences can be found between the individual sce-
narios. For example, the RoboCup@Home scenario makes extensive use of action-related
Interaction Patterns, while other scenarios, such as the Receptionist Vince, rely almost
exclusively on information-oriented patterns. This suggests that both types of interactions,

5.2 Overview of the Implemented Scenarios 101

action-oriented and information-oriented, can be realized with PaMini.
The pattern usage also allows to draw conclusions about the distribution of initiative in a
scenario. The (information-oriented) Curious Flobi and the (action-oriented) RoboCup
scenario can be characterized as mixed-initiative: actions and information requests, re-
spectively, can be initiated both by the human and by the robot. In the Receptionist
scenario, it is exclusively the human who asks for information, whereas both in the Sports
Companion and in the Quiz Game scenario, the robot is the one who requests information
from the human. Interaction is opened either by the human only (Curious Flobi, RoboCup,
Quiz Game), or by the robot only (Art Exhibition, Sports Companion, Memory Game),
or by both (Receptionist, PlaSta). Having the robot open the interaction often involves a
perception component that recognizes the presence of a potential interaction partner.
Object-related patterns have so far been used only in the Curious Flobi scenario. Even
though object learning is addressed in the RoboCup scenario as well, it does not feature
reference resolution. Thus, object learning is realized using general action patterns in the
RoboCup scenario.
From the general patterns, robot notifications are used most often. They are extensively
used in the PlaSta scenario and the Sports Companion scenario, mostly to give the users
feedback without expecting an answer, e.g. about their performance or about remaining
time in a time-critical task. Statements (on which a reply is expected) are also common.
Like notifications, they do not include task communication and are therefore used for
sub-interactions that are irrelevant for the overall system. In the Curious Flobi system,
for instance, they were used to model the Exchange of pleasantries.
All scenarios make use of the built-in clarification patterns. The default clarification
strategy, albeit simply, appears to be sufficient, as it is not extended or overwritten.

102 5 Scenario-Based Design

Interaction Pattern R
ec
ep
tio

ni
st

V
in
ce

R
ob

oC
up

@
H
om

e

C
ur
io
us

Fl
ob

i

M
ul
tip

ar
ty

Q
ui
z
G
am

e

A
rt

Ex
hi
bi
tio

n

P
la
St
a
Sc

en
ar
io

Sp
or
ts

C
om

pa
ni
on

M
em

or
y
G
am

e

H Cancel-Action Req 3
R Cancel-Action 3
H Action Req 2
H Action Req Conf 2 1
R Action 3
R Cancel-Action Conf 1
H Cancel-Action Req Con 4
Σ Action Patterns 0 18 1 0 0 0 0 0
R Cor-Inf Req
H Inf Req 5 1
R Inf Req 3 2
R Inf Req Conf 3 3
R Rej-Inf Req Conf
R Rej-Inf Req Conf Task
R Inf Req Conf Task Ack 1
Σ Information Patterns 5 3 2 3 0 0 5 0
H Obj Test
H Obj Demo Conf 1
H Obj Demo 1
Σ Object Patterns 0 0 2 0 0 0 0 0
H Int Open 1 1 1 1 1
H Int Close 1 1 1
H Int Reset 1 1 1
H Sys Reset 1
R Int Open 1 1 1 1 1
Σ Interactional Patterns 5 1 3 2 1 2 2 1
H Statement 6 5 9 1 1
R Notification 9 6 3 6 23 10 7
R Statement 1 7
R Suggestion 1 2 2 8 4 9
Σ General Patterns 17 12 12 2 8 32 21 5
R Ask Repeat 1 1 1 1 1 1 1 1
R Suggest Reset 1 1 1 1 1 1 1 1
Σ Clarification Patterns 2 2 2 2 2 2 2 2

Table 5.1: Overview on usage of the single Interaction Patterns in the different scenarios.

6 Preliminary Scenarios
This chapter describes the preliminary scenarios that have not yet been implemented
based on suggested approach, but with the previously used dialog system. However, they
provided plenty of use cases that assisted in gaining knowledge of the robotics domain,
and of its specific challenges. Of course, the scenarios described in this chapter, and
their underlying concepts, were not realized by myself alone, but in collaboration with
colleagues: The Home-Tour scenario was developed in collaboration with Marc Hanheide,
Frederic Siepmann, Elin Topp and Torsten Spexard, and the Curious Robot and the CeBit
scenario and was developed in collaboration with Christof Elbrechter, Robert Haschke,
Ingo Lütkebohle and Lars Schillingmann.
Although the scenarios and the hardware platforms they are running on are very different,
three overarching themes can be identified: First, both scenarios deal with learning through
interaction. Second, the scenarios have in common that they rely on a mixed-initiative
dialog strategy. In particular, two facets of the robot’s task initiative have been explored:
how it facilitates learning, and how it facilitates the interaction as such. Third, from
a technical point of view, they all rely on the Task State Protocol for communication
between the dialog system and the back-end.

6.1 The Home-Tour: Jointly Building Up a Model of the Environment
The first example scenario that influenced the development of the suggested approach
is the Home-Tour scenario. Two general concepts have emerged from it. First, it could
be studied how robot initiative can be realized, based on information provided by a
system component, and how interactive learning benefits from mixed initiative. Second,
it provided a use case for system integration based on a first version of the Task State
Protocol, which was used to give the user feedback during the robot’s slow-going room
exploration. The Home-Tour scenario is described in more detail in [PSS+09].

6.1.1 Scenario Description
In the Home-Tour scenario a mobile robot assistant has to become acquainted with its
working environment by interacting with a human during a guided tour. A basic re-
quirement for the robot is being able to learn a spatial model of the environment and to
integrate human and robotic representation. Previous iterations of the Home-Tour1 based

1 The author joined the development team at a later stage of the scenario.

103

104 6 Preliminary Scenarios

Figure 6.1: A scene from the Home-Tour scenario: The robot is taking the initiative in
order to verify its (incorrect) hypothesis which leads the human to correct it. This comic
was created by Florian Lier.

a lot on the human’s initiative in a rather command-style fashion [LKF+04, LHW+05]. In
particular, the human needed to show the robot around, explicitly demonstrating rooms
and objects one after another. Thus, the human fully controls what the robot learns. As
the scenario targets unexperienced users that only have very limited knowledge about the
system and its internal model, the model they intuitively teach by their own initiative
may be sparse and possibly erroneous.

Consequently, the main idea of the new iteration of the Home-Tour is to facilitate learning
by mixed-initiative interaction. In particular, it focuses on the question of how the learning
process can be improved by equipping the robot with abilities that enable active learning,
so that the robot is capable of actively provoking a situation that provides new information
instead of passively waiting until such a situation presents itself. This obviously has the
potential to speed up and optimize the learning process.
Accordingly, on the one hand, the user can still take the active role and teach the robot
rooms explicitly or check the learning process by asking monitoring questions. However,
the more crucial aspect is that the robot is able to take initiative on its own and to advance
the learning process by verifying existing information resolving uncertainty. This makes
learning an interactive process, in the course of which information can continuously be
refined. A typical scene from the Home-Tour in which an incorrect hypothesis is corrected
is shown in figure 6.1. Table 6.1 lists example dialogs for each of the mentioned use cases.

6.1 The Home-Tour: Jointly Building Up a Model of the Environment 105

Initiative Situation Example dialog
Human Room teaching H: This is the kitchen!

R: Kitchen. I will have a look at it.
R: (looking)
R: OK!

Human Test questions H: Where are we?
R: We are in the kitchen.

Robot Verifying hypothesis R: We just entered the hallway, right?
a) Human agrees
H: Yes.
R: OK!
b) Human corrects
H: No, this is the living room.
R: Living room. OK!
c) Human disagrees
without providing correction
H: No!
R: What room is it?
H: The living room
R: Living room. OK.

Robot Resolving uncertainty R: Are we still in the living room?
a) Human agrees
H: Yes.
R. OK.
b) Human corrects
H: No, this is the kitchen.
R: Kitchen. OK!
c) Human disagrees
without providing correction
H: No!
R: What room is it?
H: The kitchen.
R: Kitchen. OK.

Table 6.1: Example dialogs in the Home-Tour.

6.1.2 System Overview
The platform used in this scenario is the mobile robot BIRON (Bielefeld Robot Companion)
shown in figure 6.2. BIRON is equipped with several sensors that allow perception of the
current situation as a basis for interaction. In particular, it uses a pan-tilt camera for
perception of the human interaction partner, stereo microphones and speakers for speech
interaction, and a laser scanner that provides data for computing a representation of its
environment.

The two major software components of the system are the dialog system – the grounding-
based Sunshine Dialog described in section 5.1 – and a component for Human Augmented

106 6 Preliminary Scenarios

Pan-Tilt Camera
(Sony EVI)

Touchscreen

Stereo
Microphones

Gesture
Camera

Speaker

Laser-Scanner

Two Laptops
mounted backside
2.0 Ghz Core2duo

Figure 6.2: The BIRON platform Figure 6.3: Spurious detec-
tions in the Home-Tour scenario
(from [Top08]).

Mapping (HAM) which has been developed by Elin Topp [Top08] at KTH and integrated
with the BIRON system in the EU project Cogniron. The HAM component maintains
a representation of the robot’s spatial environment that integrates a robotic map with
human concepts that are communicated via the dialog system, such as a room1. The
representations are calculated based on laser range data gathered during a 360° exploration
turn. The HAM system continuously publishes hypotheses about the room the robot
currently is in. The dialog system reacts to the hypotheses, resulting in the robot taking
initiative. In case of human initiative, it is the dialog system that creates a room hypothesis,
and the HAM system reacts to that either by creating a new concept (which involves an
exploration turn), or by correcting an existing concept.

The coordination between the dialog system and the HAM component relies on a first
version of the Task State Protocol, with the admissible state sequence initiated, ac-
cepted/rejected, completed/failed. Its initial purpose was to give the user feedback before
the robot starts its slow-going exploration turn (“I will have a look at it”), triggered by
the accepted state, because it has been observed in previous user studies that some users
were irritated by the robot turning away. The usage of the task states, however, differ in
two major aspects from their later usages.
First, tasks were often accepted and completed by different components. For example,
when the human demonstrates a room, new room learning task is initiated by the dialog

1 Technically, the HAM system distinguishes between regions and locations. Regions can be roughly
defined as rooms, whereas locations can be defined as larger objects that are contained in the regions.
The described integration of dialog system and HAM applies only to region learning.

6.1 The Home-Tour: Jointly Building Up a Model of the Environment 107

system based on the human’s utterance. The task is accepted by the arbitration component
now, indicating that it allows the HAM system to take control of the robot’s driving
motors. This triggers HAM to start the exploration by turning the robot around. At the
same time, the dialog system is triggered to give verbal feedback about the processing state
(“I will have a look at it.”). As soon as the exploration is finished, it is the HAM system
that sets the state completed. In consequence, the hardware arbitration is reset, the robot
memorizes the new representation and the dialog system gives another verbal confirmation.
In contrast, the later usage of the Task State Protocol, in particular Lütkebohle’s toolkit
implementation [LPP+11], promoted a rather client-server based view, where a task is
initiated by the client, can be observed by an arbitrary number of components which may
react to state changes, but is executed by only one server. This is because knowing the
components that are entitled to modify a specific task facilitates detection and recovery of
race conditions. Considering this convention, the triadic interaction between HAM, dialog
system and arbitration would rather be split up in several subtasks.
The second difference pertains to the task state transitions. The HAM component contin-
uously updates the room hypothesis, which is tracked by the dialog system. If the current
hypothesis changes, or becomes uncertain, the dialog system addresses the human for
clarification. This requires the dialog system to maintain a history of hypotheses, and to
use it as a basis for decision making. With the explicit update and update accepted/failed
transitions, which were added later, the dialog system would be able to register directly
on hypothesis changes, without maintaining their history.

6.1.3 Evaluation: Analyzing a Test Run
The system has not been evaluated in a real user study, but a test run has been analyzed
as a proof of concept of the integration approach and the mixed-initiative interaction
strategy. The evaluation focuses primarily on the performance of the HAM component.
The data analysis has been carried out and published by Elin Topp [Top08], but it also
allows to draw conclusions regarding the interaction strategy.

The test run was conducted in an office environment at Bielefeld University that can be
compared to a part of an apartment, consisting of two adjacent rooms and a hallway. The
rooms were labeled as “living room”, “kitchen” and “hallway”, respectively. The kitchen
can be reached both from the hallway and the living room. This allows to do laps through
the rooms, so that the system behavior can be investigated also when a known room is
re-entered. Figure 6.3 shows the layout of the environment in which the test run was
conducted.
The test run starts in the living room (the lower one in figure 6.3), then human and robot
pass from the kitchen to the hallway, enter the living room again, and finally go from the
living room to the kitchen a second time, where the example tour is finished. The human
starts interaction by labeling the living room. Subsequently, when leaving the living room,
the robot takes over initiative and requests the new room label (“We just left the living

108 6 Preliminary Scenarios

room, right?”). The remaining interaction is driven mainly by the robot’s clarification
questions.
Overall the robot asked 12 times for a confirmation of a hypothesized transition. The
respective locations are marked gray in figure 6.3. Five of these actually occurred in a
situation where human and robot just left the room (4, 5, 7, 9, 12). Four more can be
explained by human and robot being close to door passages (1, 2, 6, 11). The locations
of the remaining three clarifications questions (3, 8, 10) are not plausible and due to a
spurious hypothesis. In case of question 3 and 10, the robot’s hypothesis has become
uncertain and needs to be confirmed by the human (e.g. “Are we still in the kitchen?”),
but in case of question 8, the robot has an incorrect hypothesis and assumes that they
had left the living room (“We just left the living room, right?”).

In general, this test run shows the systems’s ability to build up a model of the environment
through interaction with the human, and to continuously update and correct its internal
representation. More specifically, from an interaction point of view, it demonstrates that
a more correct model can be acquired when the robot attempts to fill information gaps on
its own initiative. In particular, the robot’s clarification requests at locations 3, 8 and 10
show that its internal model had become unstable and even incorrect and can actually be
improved through the robot’s capabilities to take initiative and to actively contribute to
the learning process.

6.2 The Curious Robot: Exploring Salient Objects
While the previously described Home-Tour focuses on the question how mixed initiative
facilitates learning, the Curious Robot scenario addresses the question how mixed initiative
facilitates the interaction itself. From a technical perspective, the scenario has advanced
the refinement of the Task State Protocol by providing new use cases. It can also be stated
that the Task State Protocol has been applied more systematically in this scenario, and
that it has been identified and investigated as a general coordination principle for the first
time [Lüt11].

6.2.1 Scenario Description
The second scenario is an interactive object learning and manipulation scenario with a hu-
manoid robot exploring objects that are interesting or salient for it, assisted by the human
tutor. Experiences with the original Home-Tour – which, in contrast to the above described
iteration, relied mainly on the human’s initiative – show that untrained users require a
significant amount of prior instruction to complete the task [LHRS09], because the robot’s
interaction model is not immediately obvious. Therefore, their behaviors and interac-
tion strategies vary enormously, which makes it almost impossible for a system to cope with.

6.2 The Curious Robot: Exploring Salient Objects 109

In the Curious Robot scenario, the interaction strategy consequently focuses on the question
how mixed-initiative allows to structure the interaction for the users and thus make their
behavior more predictable. In particular, the robot asks the user about object labels and
how to grasp them. By asking about objects at its own instead of leaving it to the user
to demonstrate them the robot provides guidance within interaction which in particular
unexperienced users can benefit from. It also communicates what is interesting for it,
which unexperienced users might not be aware of. Not least, with using robot initiative to
determine the objects to learn, the error-prone visual analysis of human demonstration
behavior can be bypassed. If for an object both the label and the appropriate grasping
technique is known, the robot grasps it at its own initiative and puts it away. On the other
hand, the user can trigger or abort a grasping action at any time. However, in contrast to
the Home-Tour scenario and the later Curious Flobi scenario, users cannot demonstrate
objects on their own initiative, but they can test the robot and check its knowledge by
asking test questions about learnt objects and the grip technique appropriate for a specific
object. An overview of the robot’s interaction capabilities is given in table 6.2.

Initiative Situation Example dialog
Robot Asking for label R: What is that? 〈pointing〉

H: This is a banana.
Asking for grip R: How can I grasp the banana?

H: With the power grasp.
Grasping R: I am going to grasp the banana.

R: I start grasping now.
R: 〈grasping〉
R: OK!

Human Grasping instruction H: Grasp the apple!
R: OK. I start grasping now.
R: 〈grasping〉
R: OK!

Interrupting system H: Stop!
R: OK, I’ll stop. 〈stops grasping〉
R: OK!

Test questions H: How would you grasp the apple?
R: With the power grasp.
H: What objects do you already know?
R: I know the apple and the banana.
H: What objects are present on the table?
R: Two apples and one lemon.

Table 6.2: Example dialogs in the Curious Robot scenario.

6.2.2 System Overview
The platform used for the Curious Robot scenario consists of two Mitsubishi robot arms
fixed to the ceiling, with a left and right Shadow robot hand attached, combined with an
anthropomorphic robot torso in the background that serves as interaction partner. The

110 6 Preliminary Scenarios

Figure 6.4: The Curious Robot setup.

setup is shown in figure 6.4. Sensors not visible in the figure are an overhead camera and
a headset microphone.

The software system is composed of three subsystems for speech and dialog management,
visual analysis, and motor activities. Initially, the Sunshine Dialog system was used for
dialog management, but in the course of the development process, it was transparently
exchanged by the Moonlight system, as already mentioned in section 5.2. The subsystem
for visual analysis generates the robot initiative, e.g. asking for objects, based on visual
bottom-up saliency. Based on a the saliency of a region an object is located in, and based
on the context information known about the object (i.e. label and appropriate grip type),
the vision subsystem proposes an interaction goal that the robot pursues: “acquire label”,
“acquire grip type”, or “grasp”. The interaction goals are initiated as a task executed by
the dialog system, if the dialog situation permits this.
The motor subsystem controls grasping and performs pick-and-place operations using
three basic grasp prototypes. Operations can be triggered via a task interface.
Thus, the coordination between the three subsystems relies exclusively on the Task State
Protocol. In the course of the scenario development, the task life-cycle was being ex-
tended for the states cancel,cancel accepted/failed, update, update accepted/failed and
intermediate_result, and a dedicated toolkit for requesting and monitoring tasks was
developed [LHS+10]. Regarding task coordination, the temporally extended grasping
action provided an interesting use case. For the first time, tasks were split into subtasks:
the interaction goal “grasp”, proposed as a dialog task by the visual analysis, is executed
by the dialog system, which initiates a grasp task for the action subsystem. Also, for the

6.2 The Curious Robot: Exploring Salient Objects 111

first time, interleaving subdialogs were realized by admitting the user to ask test questions
during an on-going grasping action. It also allowed to cancel an on-going action, based on
the newly introduced task states.

6.2.3 Evaluation: A Video Study
The scenario was evaluated by means of a video study. Ten participants who had no prior
experience with the system were asked to watch a video in which a person interacted
with the system. The video was stopped at preset times, and users were asked what they
would do in this situation. The questions were always asked after after the robot had
acted, but before the person in the video reacted to it, to guarantee an unbiased answer.
The evaluation originally aimed to explore several aspects: the expectation that is raised
through the robot’s appearance, how users interpret a faulty situation (where, for example,
the robot points at an empty spot), how they would recover such situations, and on the
effectiveness of the robot’s guidance. The below description will focus on the latter, but a
more detailed description of the study has been published in [LPS+09].

To investigate the effectiveness of the robot’s guidance, two contrasting situations were
compared, in which the robot’s behavior did or did not call for a specific user reaction. The
first situation was immediately after the robot’s label query (“What is that?”), while the
second one was after the grip query (“How should I grasp the ...?”). The first question can
be answered very intuitively, by simply naming the object label, but the second question
is somewhat confusing because it is not specified which aspect of grasping it refers to. This
difference is well reflected by the results of the study, shown in table 6.3. The participant’s
replies to the first question were very consistent. Only three constructions were used, and
they are all slight variations of each other. In contrast, the second question was much
more open and accordingly yielded more variation in the user behavior. Answers referred
to five fundamentally different aspects of grasping, and there were also many variations in
the specific wording. Moreover, in the guided situation, participants answered quicker (5
seconds vs. 19 seconds, measured from end of question to end of answer) and required less
clarification from the experimenter (1 vs. 5 participants) compared to the situation where
the robot provides less guidance.

As an aside, the robot’s grip query was intended to get results on how subjects intuitively
describe grasping. It was observed that 7 out of 10 participants, perhaps unconsciously,
complemented their verbal description of grasping with a gesture. This suggests that
demonstrating an action is more natural than describing it. Consequently, this feature
was added in a later iteration of the Curious Robot scenario, in which grasping may also
be demonstrated non-verbally using a data glove [LPH+10].

112 6 Preliminary Scenarios

Situation Answer or Aspect Described % of Participants
“What is that?” “That is a...” 70%

“a ...” 20%
“a yellow ...” 10%

“How should I grasp the ...?” Effector position relative to object 30%
Trajectory of effector 20%
Fingers to Use 40%
Force to Use 30%
Grasp point on object 20%

Table 6.3: Replies after System Initiative

6.3 The CeBit Setup: A Stripped-Down Version of the Curious Robot
The present section describes the CeBit setup, a reduced version of the Curious Robot
scenario. It was developed on the occasion the CeBit 2009 trade fair, where it proved its
robustness under real world conditions. The system also underwent a user study which
provided the opportunity for analyzing speech understanding performance, which has a
major influence on the system’s overall performance.

6.3.1 Scenario Description and System Overview

(a) Visitor interaction at CeBit 2009 (b) User study in the lab (from [Poh09])

Figure 6.5: The CeBit setup, a stripped-down version of the Curious Robot system.

A stripped-down version of the system has been developed to be exhibited at CeBit 2009,
one of the world’s largest IT fairs. The system was run there as an interactive live demo
over six days, demonstrating its robustness in long-term use. The “robot’ consisted of
a computer, with loudspeakers and a pan-tilt camera attached to it, and an overhead
camera as shown in figure 6.5. The overhead camera is used for perception of the table on
which the objects to learn are placed, whereas the pan-tilt camera has purely interactional
function, representing an “interaction partner”.

6.3 The CeBit Setup: A Stripped-Down Version of the Curious Robot 113

Due to the absence of the end effectors, interaction was reduced to its object learning
aspects. The interaction capabilities of the system included asking for an object label,
listing the objects that it has learnt so far, and listing objects that are present at the table.
All of them are initiated on the systems’s initiative: the label query is triggered when
there are objects left to learn, and the latter two are triggered at regular intervals once all
objects are known. When asking for an object label, the referred object is shown on the
screen. The pan-tilt camera provides both task-related and communicative feedback by
focusing either at the interaction partner, or at the objects on the table. The control of
the camera is based on the observation of the task communication and depends on what
tasks are currently being executed.

Altogether, the CeBit scenario features a very constrained interaction, relying on system
initiative only and providing only few capabilities. However, this enabled it to cope well
with the high background noise level at the trade fair. Despite its limited capabilities, the
system has been well received by the visitors. One reason for this may be the interactivity
of the system. In particular, induced by the system listing all visible objects, users
start testing the system by moving objects or putting them aside, or by presenting new
everyday objects (which luckily had been considered when designing the speech recognition
grammar).

6.3.2 Evaluation: Analyzing Speech Understanding Performance
As a part of a bachelor’s thesis, an explorative user study has been conducted with the
CeBit setup whose aim was to evaluate the system feedback provided by the movements
of the pan-tilt camera [Poh09]. Additionally, the data was re-analyzed by the author
of this thesis with regard to speech recognition performance, being known as a factor
that greatly affects the overall performance of the system. For instance, it has been
reported that the mean recognition score is the largest contributor to user satisfaction
[WLKA98] [WKL00]. It is thus worth having a closer look at the speech recognition
performance in the scenario at hand. Doing so will enable us to identify the different
sources of speech recognition errors. Moreover, as the effects of speech recognition errors
can be alleviated through appropriate recovery and repair policies within the dialog, we
aim to derive strategies how to deal with them, as a basis for future iterations of the system.

In the study, 10 participants (5 female, 5 male) interacted with the system without prior
instruction. The study setup did not define a specific goal that the participants had to
achieve. Instead they were informally told to interact with the system as long as they
wished to, and they were encouraged to play around with the system. For the re-analysis
of the study, the video recordings of the interactions were combined with the system logs
of the speech recognition and the speech understanding component. Each user utterance
was labeled manually according to the categories below.

114 6 Preliminary Scenarios

The interactions included 39.2 user utterances in average, i.e. the corpus collected contains
392 user utterances, 58 of which were false positive results from the speech recognizer.
The remaining 334 utterances were labeled according to whether they could be processed
(understood) correctly: A user utterance was labeled as understood correctly, if the ut-
terance could be processed correctly by the dialog system. Otherwise, it was labeled as
understanding error.
A common measure to evaluate understanding capabilities of a speech system is concept
accuracy [BEG+96], which will be further discussed, and applied, in section 7.1.3. However,
concept accuracy differs from the measure used here: While concept accuracy provides the
proportion of concepts of an utterance transmitted correctly, correctness of understanding
tells the proportion of utterances for which enough concepts were transmitted correctly
for the dialog system to act correctly. Correctness of understanding was selected as
measure here because it says something about how interaction is affected by understanding
problems, considering the whole processing chain of an utterance, up to the dialog system.

Understanding errors may have various sources. In general, they typically occur due to
mismatches between the expressed form of the user’s intent and the system’s modeling
abilities [BR08]. For example, novice users might not be fully aware of the system’s
functionalities and its limitations and might try to perform an operation that the system
cannot handle. Also, even if the system can handle the goal formulated by the user, it
might be the case that the system’s language model does not cover the specific formulation.
We refer to this sort of user utterances as invalid (although this term reflects a somewhat
system-centered view). Invalid utterances will result in understanding errors (unless
handled otherwise, e.g. by out-of-vocabulary models [BG00]). On the other hand, even
valid utterances may result in recognition errors if the user’s pronunciation does not match
the system’s acoustic model, or if they are made at unexpected times.

Based on these considerations, the understanding errors were further broken down into
misunderstandings and non-understandings. In a misunderstanding, the system operates
on an interpretable (but incorrect) representation of a valid user utterance. In contrast, in
a non-understanding, the system fails to construct an interpretable representation out of
a (valid or invalid) utterance. Detection of non-understandings is, by definition, trivial,
while reliable detection of misunderstandings has been identified as a key problem [LHS00].
The dialog system therefore needs to provide strategies to recover from misunderstandings,
such as the interruption of actions and correction of given information.

As shown in table 6.4, 27% of the user utterances were not understood correctly. Consider-
ing that the scenario at hand is rather restricted, with many utterances just consisting of
the object label, this number seems relatively high. A closer look at the non-understandings
revealed that many of them were in fact unparseable as a whole, but would still have
contained enough information for the dialog system to act upon. Hence, it was decided to
replace the speech understanding component by more robust key-word matching techniques

6.3 The CeBit Setup: A Stripped-Down Version of the Curious Robot 115

Speech understanding Subcategory Proportion
Understood correctly 73%

Understanding error 27%
Misunderstanding 27%
Non-understanding 73%

Table 6.4: Proportion of correctly and incorrectly understood utterances. The latter are
further broken down into misunderstandings and non-understandings.

in future iterations (as further detailed in section 7.1.1).

As we can see from table 6.4, the non-understandings represent a larger proportion of the
understanding errors than the misunderstandings (73% and 27% respectively). Thus, we
have taken a closer look at them and have broken down the invalid utterances among
these into the following error causes:

• Out-of-capability: The utterance is beyond the system capabilities, or even beyond
the system domain.

• Out-of-vocabulary: The utterance is within the system capabilities, but the specific
wording is not part of the speech recognizer vocabulary.

• Out-of-context: The utterance is within the system vocabulary, but cannot be
interpreted given the current dialog context.

• Meta-comments: The utterance is not directed to the system, but e.g. a question to
the experimenter.

As table 6.5 shows, 25% of the non-understandings result from valid utterances. These
represent the actual understanding errors, i.e. the user utterance is within the system’s
modeling capabilities and was made at the right time, but the system still fails to classify
it. However, the larger proportion (75%) of the non-understandings is caused by invalid
utterances.
Among these, the out-of-capability utterances (which are typically out-of-vocabulary as
well, but have not been counted as such) represent by far the largest portion (72%). They
are due to the fact that many participants attempted to teach more than one object (“here
are two lemons”) or to ask about a specific object (“show me the apple”). Also, half of
the users attempted to reverse the roles and to demonstrate novel objects to the system.
Other out-of-capability utterances were due to actual deficiencies in the dialog strategy
design. For example, whenever all objects had been learned, the system enumerated the
present objects. This encouraged the participants to correct the enumeration if it was
incorrect which unfortunately had not been forseen.

116 6 Preliminary Scenarios

Out-of-vocabulary utterances constitute another significant portion of the invalid utterances
(16%). Almost all of them occur when participants use a label that is not within the
speech recognition vocabulary. Most participants did not confine themselves to teaching
the available fruits, but started to teach everyday objects such as wallets, mobile phone or
keyrings. We had anticipated this and considered many object labels in the vocabulary,
but could not foresee all labels used. For example, we failed to include answers such as
“that’s me” or “that’s my sleeve”.
In general, both out-of-capability and out-of-vocabulary utterances occurred mainly in
the second half of the interaction. This suggests not so much the failure of the structur-
ing strategy, but rather that the participants had intentionally provoked theses errors
by experimenting with the system in order to explore its limits. This interpretation is
supported by the observations from the CeBit trade fair. Again, such experimentation
behavior often started in the second half of the interaction, when users had already taught
a few objects successfully.

Utterance Cause of Error Proportion
Valid utterance 25%
Invalid utterance 75%

Out-of-capability 72% (i.e. 15% of all utterances)
Out-of-vocabulary 16% (i.e. 3% of all utterances)
Out-of-context 8% (i.e. 2% of all utterances)
Meta commentary 4% (i.e. 1% of all utterances)

Table 6.5: Breakdown of non-understandings into valid and invalid utterances. The latter
are further broken down into the different error causes.

To sum up, the results of this analysis show that non-understandings constitute the major
part of understanding errors in the CeBit setup. Most of them were caused by so-called
invalid utterances. Among these, out-of-capability and out-of-vocabulary utterances play
a major role. When preparing the next iteration of the system – the Curious Flobi setup –
we therefore have to pay special attention to these error sources, without neglecting the
others. Possible strategies to mitigate the effects of the different understanding errors, or
even to reduce their number, will be discussed in section 7.1.1.

7 Curious Flobi: Admitting More User Initiative

This chapter describes the Curious Flobi scenario – the main test bed for the proposed
approach. Its design process is detailed in section 7.1. The resulting scenario and its
technical realization is described in sections 7.1 and 7.2. Section 7.4 presents a PARADISE-
style user study that evaluates the system.
The work described in this chapter has not been accomplished by the author alone: The
system was implemented in collaboration with Ingo Lütkebohle, and the evaluation was
conducted in collaboration with Ingo Lütkebohle and Nina Riether1.

7.1 Preparatory Activities: The Design Process
This section presents the design process of the Curious Flobi scenario and the preparatory
activities undertaken. Section 7.1.1 points out the consequences of the analysis of the
CeBit set up described in the previous chapter. Sections 7.1.2 and 7.1.3 describe how the
dialog strategy and the speech recognition grammar have been design based on a WOz
study on object teaching.

7.1.1 Lessons Learned from the CeBit Setup
Section 6.3.2 has given a detailed analysis of the different error causes for speech recog-
nition errors in the CeBit setup, especially for non-understandings. In this section, the
consequences for the interaction strategy of the current iteration are discussed. Strategies
are derived how to reduce their number, and how to cope with the inevitable ones.

As detailed in section 6.3.2, in contrast to non-understandings, misunderstandings
are by definition non-detectable. However, uncorrected misunderstandings may have
serious consequences, as they may result in the system performing erroneous operations,
or using faulty parameters. In the CeBit setup for instance, the system might learn
wrong labels. Representing more than a quarter of all recognition errors, the system must
provide interaction strategies to recover, and to repair them. The Curious Flobi scenario
was already implemented based on the PaMini framework, whose interaction patterns
incorporate a range of, and varieties of, recovery strategies, such as confirming an action

1 In detail: I have developed the study setup and proposed the subjective measures. The objective
measures were defined in collaboration with Ingo Lütkebohle, who also realized an automated calculation
of the objective measures. Nina Riether calculated the regression analysis of the data.

117

118 7 Curious Flobi: Admitting More User Initiative

before beginning it, canceling it, and explicit and implicit confirmation of information,
giving the user the possibility to correct it. Besides applying appropriate strategies within
interaction, recovery of information needs to be considered at the system level as well, i.e.
if a wrong label has been learnt, the responsible component (e.g. the object recognition)
must allow to overwrite it with the correct one later, or at least to merge the representations.

In order to reduce the number of non-understandings that are caused by valid user
utterances, the speech processing was revised. Both in the Curious Robot system and in
the CeBit setup, a speech understanding component was used that represented utterances
as hierarchical, linked frame-slot structures, each rated based on completeness of the
structures [HWS06]. Utterances for which the linking algorithm fails to construct a reliable
representation are rejected. However, many of the rejected utterances, though unparseable,
still provide the information required (e.g. an object label) and thus would be rejected
unnecessarily. In short, the fundamental deficiency of the approach is that it does not take
into account the dialog context when parsing the utterances.
As a consequence, it was decided not to employ the above speech understanding algorithm,
but to directly use the speech recognition result as input for the dialog system. This be-
comes possible as the HMM-based speech recognizer used in all of our scenarios integrates
a language model in form of an LR(1)-grammar [Fin99], providing not only the recognized
chain of words, but also the corresponding grammar tree. By matching conditions over
the nonterminal symbols of the grammar tree within the dialog system, robust key-word
matching can be achieved, driven by the dialog expectation. As it was to turn out during
the user study described in section 7.4, this approach worked surprisingly well and enabled
correct dialog decisions even if an utterance contains many incorrectly classified words.

Out-of-capability utterances have been identified as the largest error source. Considering
the somewhat restricted capabilities of the CeBit setup, this seems not surprising. A large
proportion of these errors were due to users’ attempts to demonstrate objects themselves,
which strongly suggests that they would prefer to take a more active role in the interaction.
As a consequence, the current iteration was extended as to allow for more user initiative.
In particular, users can demonstrate objects on their own initiative now, and they can ask
test questions about a specific object.
Moreover, a WOz study on object teaching (cf. section 7.1.2) served as foundation to
study typical demonstration behavior. The analysis revealed that not only the task-related
but also social elements are crucial in such interactions. Thus, the results of the WOz
study have fundamentally influenced the design of the interaction strategy.

Another significant cause of error were out-of-vocabulary utterances. Out-of-vocabulary
utterances decrease with grammar size, but so does in-grammar accuracy. Thus, a balance
between wide grammar coverage and good in-grammar accuracy had to be found. Again,
the analysis of the aforementioned WOz study served as a guide for the design of the
speech recognition grammar, giving insights into the verbal strategies users apply in

7.1 Preparatory Activities: The Design Process 119

demonstrating objects, as well as into their social interaction behavior. Additionally, the
resulting speech recognition grammar was evaluated and fine-tuned in a pre-test, enabling
iterative grammar improvements (cf. section 7.1.3).

Out-of-context utterances occurred rarely in the CeBit setup, which is probably due
to the rather restricted interaction capabilities. With increasing system capabilities, in
particular regarding user initiative, out-of-context utterances are expected to occur more
frequently if left unchecked. Fortunately, PaMini’s interleaving interaction patterns facili-
tate implementation of a non-restrictive interaction strategy that allows for interjections
and social feedback. However, unrestricted interleaving may not always be appropriate,
e.g. interleaving of two object demonstration patterns may confuse the user a little.

Finally, a minor problem in the evaluation of the CeBit study was meta commentary,
i.e. utterances that addressed the experimenter. They can easily be reduced in future
studies by making sure that the experimenter is not present during the interaction. Table
7.1 summarizes the strategies proposed in this section.

Cause of Error Breakdown into subcategories Strategy
Misunderstanding Dialog provides recovery strategies

Non-understanding
Valid utterances Expectation-based key-word matching
Out-of-capability Extension of system capabilities
Out-of-vocabulary Pre-evaluation of speech recognition grammar
Out-of-context Flexible interleaving of interaction patterns
Meta commentary Experimenter not present

Table 7.1: Strategies to deal with the different speech recognition error sources.

7.1.2 Analysis of a WOz Study on Object Teaching
In order to study typical demonstration behavior, the author re-analysed an earlier study
on object teaching conducted by her colleagues [LHL+09], which originally focused on
facial expressions in HRI. The 11 participants received the explicit instruction to teach
the names of several objects to the mobile robot BIRON. They were advised to check that
the robot had actually learned the objects. However, it was not specified how they should
present and check the objects. The study was completely based on the WOz paradigm,
with a wizard controlling all robot actions (i.e. view direction and utterances). To simulate
typical recognition performance, misunderstandings and misclassifications were randomly
induced by the operator.

Examining the interactional aspects of the study, we found that all interactions had a

120 7 Curious Flobi: Admitting More User Initiative

very similar structure, consisting of an opening part, a task-related part and a closing
part. 36% of the interactions additionally feature transitional phrases that introduce the
task-related part. In the opening phase, introducing each other (82%) and exchanging
pleasantries (18%) are frequent. Aside from object demonstrations, the task-related phase
consists of checking learned objects (45%) and transitional phrases between the objects
(36%). Praising the robot for correctly learned objects turned out to be universal (100%).
Sometimes the task-related part includes closing remarks (36%). Table 7.2 lists a sample
of utterances that participants used during the study.

Dialog segment Example utterances
Greeting Hello.

Hello, BIRON. Can you hear me?
Hi, I’m new here.

Introducing My name is X.
This is X Y from Bielefeld.
My name is X, as I said before.

Exchanging pleasantries How are you?
What’s up?

Task description We are going to work together today.
I am going to teach you a couple of things, one after another.
I would like to show you some household items.
There are many things. I would ask you to recognize them.

Attracting attention BIRON, look here.
Do you recognize this?

Object demonstration This is a bottle.
This is a ball, for playing.
This is a pen. You use it for writing. Pen.

Checking What is this?
What could this be?
Do you known what this is called?
Do you remember this one?

Praising That’s correct.
Fine, thank you.
Well done.

Transitional phrases Would you like to see more items?
A new word.
Let’s go on with the next one.

Closing task Okay, we have practiced enough for now.
I have showed you all objects. That’s it.

Parting Good bye!
I have to move on now. Bye!
Take care, BIRON.

Table 7.2: Example utterances from the WOz object teaching study. Blocks are: i) Open-
ing interaction, ii) transitional phase, iii) task-related phase and iv) closing interaction.

Based on the insights gained from this study, the interaction strategy of the present scenario
was designed. Not all of the observed strategies could be transferred directly. For example,
the object descriptions sometimes include rich functional or anecdotal descriptions that
are too complex for an automatic system to cope with, so they were simplified. In general,
however, most of the observed strategies were realized. Table 7.4 in section 7.2 lists the

7.1 Preparatory Activities: The Design Process 121

resulting interaction capabilities of the system.

7.1.3 Design of the Speech Recognition Grammar
When developing spoken language systems, system designers find themselves confronted
with the vocabulary problem: On the one hand, designers need to predict and consider the
words people use when operating the system while on the other hand larger vocabularies
lead to substantial decrease in recognition performance [BRRL98]. Hence, preparing the
Curious Flobi scenario, we need to ask the question whether recognition performance will
still be acceptable when adopting all of, or most of, the user utterances observed in the
WOz study.

In order to obtain a worst-case estimation, in a first step all user utterances from the WOz
study have directly been included in the ESMERALDA speech recognition grammar [Fin99],
with a resulting grammar size of 423 words1, and concept accuracy has been evaluated for
a random selection of sentences from the grammar. In contrast to word accuracy, which
considers the surface form of each single word of an utterance, concept accuracy indicates
how many of the semantic concepts of the utterance have been transmitted correctly. In a
whole-system setup, concept accuracy is a more expressive measure, as it allows variations
in the wording of a concept as long as it is does not affect selection of a system action (e.g.
“an apple” vs. “a apple” or “yes” vs. “yeah”). Concept accuracy (CA) can be calculated
using the formula

CA = 100(1− CS + CI + CD

C
)

where C, CS , CI and CD indicate the number of overall concepts, the number of substituted
concepts, the number of inserted concepts and the number of deleted concepts. [CR01]
further distinguish three categories of concepts:

• A non-concept slot “is a slot that contains information that, while captured in
the grammar is not considered relevant for selecting a system action. Politeness
expressions, such as ’please’, are an example.”’ [CR01].

• A value-insensitive slot “is a slot whose identity, rather than specific value, is sufficient
to drive system action” [CR01]. An example would be the slot “confirmation”.

• A value-sensitive slot “is a slot for which both the occurrence and the value of the
slot are important” [CR01], for example the slot “city_name”.

1 Note that the grammar provides additional constraints for the statistical modeling, and that the speech
recognizer is still capable to classify utterances that are not generated by the grammar (provided that
the words are included in the statistical model)

122 7 Curious Flobi: Admitting More User Initiative

While incorrectly classified non-concepts do not have an effect on system performance,
they were explicitly included in our evaluation in order to keep the results comparable
with results reported in literature. Word accuracy and concept accuracy typically do not
differ widely [CR01], [SW02], with a linear relation between them [BEG+96].

For the pre-evaluation of the speech recognition grammar, 75 sentences generated by the
above grammar have been selected randomly and were spoken by 6 volunteers (3 male, 3
female). Sentences contained 160in total concepts, 2.13 on average. A comprehensive list
of the selected sentences is given in appendix D. Concept accuracy has been determined
for each sentence according to the above formula.
Note that often more than one word is required to form a concept, e.g. the concept “task”
is specified through the words “showing objects”, or a distinction has to be made between
“a ball” and “not a ball” in order to capture corrections. Also, concept accuracy could
in theory take a negative value (e.g. if many additional concepts are inserted). In these
cases, which occurred only a few times, concept accuracy for the respective sentence has
been set to zero. As shown in table 7.3, a mean concept accuracy of 78.48% was achieved
(compared with 79.9% word accuracy measured for the same recognizer [Fin99]). Values
reported in literature vary considerably: While [BEG+96] and [SW02] achieve as much as
92% and 86% concept accuracy respectively, [BR08] and [Lem04] report 74% and 68.9%
concept accuracy respectively. However, the test sentences were not uttered spontaneously
but were read off from a prepared list. Thus, this value is only an upper bound for concept
accuracy in a real setup.

Mean 78.48%
Standard deviation 6.14%
Min 70.89%
Max 87.97%

Table 7.3: Concept accuracy achieved for the test grammar obtained from the WOz study.

Nevertheless, the achieved concept accuracy seems encouraging enough to suggest that
using the WOz study as a guideline for grammar design is a viable strategy. As a
consequence, the grammar obtained from the WOz study was transferred to the real
system, with minor adjustments. All utterances from the user study that occurred more
than once were adopted directly. The grammar was then adapted from the domain of
household items to our fruit-learning domain. By sticking with the fruit-learning domain
(like in the Curious Robot scenario) we hoped to prevent the rich functional descriptions
that we have observed in descriptions of the everyday objects (e.g. “Look here, and if you
need straight lines for handcrafting or want to cut straight, then you need a ruler”). Thus,
the resulting grammar could be reduced to 230 words (from 423 word for the original WOz
grammar), which leads to expect an increase of concept accuracy. However, compared
with the 119 words for the Home-Tour grammar and the only 37 words for the Curious

7.2 Scenario Description 123

Robot grammar, it still covers a relatively large vocabulary. While no formal evaluation of
word or concept accuracy has been conducted yet, accuracy appeared to be completely
satisfactory during testing the system, and also during its real-world application within
the user study described in section 7.4.

7.2 Scenario Description
A lot of preparatory work was done during the design process of the Curious Flobi scenario.
The most important decisions were (i) to admit more user initiative than in the Curious
Robot scenario, and (ii) to use robust keyword matching instead of the previously used
speech understanding component. Also, the both the interaction strategy and the speech
recognition grammar were optimized based on a WOz study. This section gives an overview
on the resulting scenario.

Figure 7.1 shows the hardware platform used and the scenario setup. Apart from basic
social talking skills (greeting, complimenting, etc.), the system has three main capabilities:
i) Learning objects the user demonstrates, ii) asking for an object on its own initiative,
and iii) answering requests regarding object labels and known objects. Table 7.4 lists the
interaction capabilities of the system. Most of them that have been adopted from the
utterances observed in the WOz study (see table 7.2).

Opening, closing and restarting the interaction was modeled using the Human Interaction
Opening, Closing and Restart patterns. For modeling the different (both task-related and
social) user remarks regarding feedback on system actions, complimenting and transitional
phrases that precede an object teaching episode, the Human Simple Statement pattern
was used. While a simple statement alone models only a small part of the interaction, they
may be chained together to form more coherent interaction segments. Table 7.2 shows an
example from the user study in which two simple statements are triggered in sequence,

(a) The Flobi head (b) Demonstrating a fruit

Figure 7.1: Scenario overview.

124 7 Curious Flobi: Admitting More User Initiative

with the first one modeling a user introduction, and the second one praising the robot.
The user’s reply is classified as a praise, due to the word ’nice’, which the robot again
replies to very generically by thanking the human. Thus, thanks to the keyword spotting
approach, the robot is able to react to a variety of utterances in a meaningful way, and
even to utterances that had not really been foreseen.

U My name is Anneliese.
F Hello Anneliese. Nice to meet you.
U Oh, nice to meet you too!
F Thank you.

Figure 7.2: Chaining together simple statements.

Also the user’s attempt to attract the robot’s attention (“Flobi, look here”) was modeled
as a simple statement which is always being replied to with “Yes, I’m looking”, without
including any task communication. This pattern still does not have a pure dummy function,
as the robot orients its gaze at the currently most visually salient point (or at the user,
as appropriate for the task state). Thus, if the point the user tries to attract the robot’s
attention to already lies in the robot’s field of view, it has a good chance to actually
become the most salient point (e.g. as a result of the user’s salient nonverbal gestures or
hand movements).

If the user demonstrates an object, the referred object, or rather the referred region, has
to be determined. Once the region has been identified, it can be associated with the given
label. Thus, an object demonstrating episode involves two consecutive tasks: the resolve
reference task and the learn object task, which can only be executed if the resolve reference
task succeeds. To model this process, the Human Object Demonstration pattern was
introduced. Since each of the two tasks may fail, the pattern has to consider the different
error conditions. Another pattern that includes reference resolution has been introduced
to model the user’s test questions to check if the robot is able to recognize a specific object:
the Human Object Test pattern. It is conceivable that, in the future, both patterns will be
applied in other learning tasks, such as learning and recognizing people’s faces or rooms.

Failure of learning has to be considered also in the reverse case, when it is the robot
who asks for an object on its own initiative. The existing Robot Information Request
with Explicit Information pattern was not sufficient for this purpose, as it transfers the
information to the responsible system component, but does not acknowledge its processing.
For this reason the Robot Information Request with Explicit Information and Task
Acknowledgment was introduced. In contrast, in the original Curious Robot scenario,
learning was not acknowledged, but assumed as a process that follows always. This was
changed for two reasons. First, breaking down learning to a task with clearly defined
states allows for more detailed feedback on the learning progress. Second, the restricted
but robust object learning setup from the Curious Robot scenario was exchanged for one

7.2 Scenario Description 125

that offers more possibilities but fails occasionally, which had to be accounted for by the
interaction strategy (cf. the description of the system components below).

126 7 Curious Flobi: Admitting More User Initiative

Dialog segment Example interaction Interaction pattern
Greeting User: Hello, Flobi Human Interaction Opening

Flobi: Hi, hello.
Introducing User: My name is Anneliese. Human Simple Statement

Flobi: Hello, Anneliese. Nice to meet you.
User: What is your name? Human Simple Statement
Flobi: My name is Flobi?
User: Nice to meet you, Flobi! Human Simple Statement
Flobi: Ditto.

Exchanging pleasantries User: How are you? Human Simple Statement
Flobi: Fine, thank you!

Task description User: I am here to show you some objects. Human Simple Statement
Flobi: Alright, let’s start!
Flobi: There are many objects on the table I don’t know yet. Robot Notification

(only C2 & C3)
Object query Flobi: What is that? Robot Rejectable

User: This is an apple. Information Request
Flobi: Alright, an apple, is that correct? with Explicit Confirmation
User: Yes. and Task Acknowledgement
Flobi: Okay, I am going to learn the apple. (only C2 & C3)
Flobi: I have learned the apple.

Yielding Initiative Flobi: You can show me something, too. Robot Notification
(only C2 & C3)

Attracting attention User: Flobi, look here! Human Simple Statement
Flobi: Yes, I’m looking.

Object demonstration User: This is a yellow lemon. Human Object
Flobi: Alright, a yellow melon. Is that correct? Demonstration
User: No, it’s a lemon. with Explicit Confirmation
Flobi: Alright, a lemon. Is that correct?
User: Yes, that’s correct.
Flobi: Okay, I am going to learn the lemon.
Flobi: I have learned the lemon.

Listing learned objects User: What have you learned so far? Human Information Request
Flobi: I have learned a lemon and an apple.
User: Okay, next one. Human Simple Statement
Flobi: Okay.

Checking User: Flobi, do you know this one? Human Object Test
Flobi: I will have a look at it.
Flobi: This is an apple.

Praising User: Well done, Flobi. Human Simple Statement
Flobi: Thank you.

Transitional phrases User: Would you like to learn another object? Human Simple Statement
Flobi: Yes, I want to learn them all.

Closing task User: Okay, that’s it. Human Simple Statement
Flobi: Are you leaving already?
User: Yes.
Flobi: What a pity! Good bye.

Parting User: Good bye, Flobi. Take care! Human Interaction Closing
Flobi: Bye, see you later.

Clarification User: Restart. Human Interaction Reset
Flobi: Okay, let’s start over again.
Flobi: Pardon me? Robot Repeat Request
Flobi: Should we better start over again? Robot Suggest Restart
User: Yes, let’s start over again.
Flobi: Okay.

Table 7.4: Interaction capabilities of the system and the employed interaction patterns.
Blocks are: i) Opening interaction, ii) transitional phase, iii) task-related phase and iv)
closing interaction. Note that in addition to the listed utterances, many variations in the
wording are possible.

7.3 System Overview 127

7.3 System Overview

Vision

<<component>>

Object Recognition
Task Interface

<<component>>

Reference
Resolution (WoZ)

<<component>>

Visual Salency
<<component>>

Object Recognition

<<component>>

ROI Selection
(WoZ)

<<component>>

Robot Initiative

Speech

<<component>>

Text To Speech

<<component>>

Dialog Manager

<<component>>

Speech
Recognition

Motion

<<component>>

Motion Control

<<component>>

Looking
Behavior

<<task>> <<task>><<task>>

<<task>>

Figure 7.3: Components of the Curious Flobi system. Dashed lines indicate general event
notifications, while lines labeled with task indicate task communication.

The scenario is implemented on the Flobi anthropomorphic robot head (shown in fig-
ure 7.1) [LHS+10]. Besides the wide-angle, high resolution stereo cameras that are built in
the head, the hardware includes a flat-screen display on which the referred object is shown
when the robot asks for a label. From a software perspective, the system consists of three
major parts for vision, speech and motion, as depicted in figure 7.3. As with the previous
scenarios, components communicate through event notifications via XCF [WHBS04], most
of them relying on task-based communication.

To realize object learning and testing, vision and speech part interact in a tightly integrated
manner through the above mentioned interaction patterns (Human Object Demonstra-
tion with Explicit Confirmation, Human Object Test and Robot Rejectable Information
Request with Explicit Confirmation and Task Acknowledgement). Components involved
are, besides the dialog manager, the reference resolution component, the object recog-
nition task interface (a proxy of the object recognition component [HLI+10]), and the
robot initiative component. The dialog manager initiates the resolve reference and learn
object tasks, handled by the reference resolution and the object recognition task interface,
respectively. Conversely, the ask for object tasks that makes the robot ask for an ob-
ject label, is initiated by the robot initiative component and handled by the dialog manager.

The system is not fully autonomous. As has been observed in the WOz study described

128 7 Curious Flobi: Admitting More User Initiative

above, and has been confirmed by the user study with the present system (cf. section 7.4,
in particular table 7.7), there are many different ways of referring an object, and we
did not want to restrict the user’s natural behavior. We rather intended to explore the
different strategies through an unrestricted study, and to provide thus some data regarding
the kind of tutoring behavior typically occurring in such situations. Hence, replacing the
reference resolution by a WOz component appeared necessary as a first step to approach
the problem of reference resolution. In addition, the region of interest (ROI) selection
also uses a WOz component because we felt that the autonomous component used in the
original Curious Robot scenario was not predictable enough for the purposes of a user
study. However, both WOz components were fully integrated into the overall system,
interacting with other components via the Task State Protocol.

Using WOz components for certain tasks does of course not mean that the system runs
completely error-free. Reference resolution may still fail if the wizard is not able to
recognize what object the user’s description refers to, or if it is not within the robot’s field
of vision. In fact, this occurs not all too rarely, (see section 7.4.2). For the ROI selection,
the wizard occasionally made the robot ask for an unexpected object (e.g. the edge of
the table or a part of the user’s body) in the user study, not following a fixed strategy,
but at least once per interaction. In addition, there are errors which the autonomous
system components produce, such as errors in speech recognition and object recognition.
Even learning an object may fail, for instance if the user puts the object aside before
learning has completed, or if the user occludes the objects during learning (cf. section 7.4.2).

7.4 Evaluation: A PARADISE-style User Study
This section presents the evaluation of the Curious Flobi system. The evaluation follows
the PARADISE approach (cf. section 2.3.1). By relating subjective and objective measures
through a regression analysis, the (objective) factors that contribute to different aspects
of (subjective) user satisfaction can be identified. Besides the PARADISE analysis, the
influence of the robot’s task initiative was investigated. A qualitative analysis of the
interactions completes the evaluation. Section 2.3.1 describes the setup of the study. The
results of the study are discussed in section 7.4.2.

7.4.1 User Study Setup
Participants

Out of 32 participants who took part, we used 28 recordings (14 male, 14 female), with
the remaining four excluded due to technical problems during their trial. Most of the
participants had been recruited at a university event for the general public and thus
represented a wide age range, with mean age at 33.5 years, minimum 21 and maximum 79.

7.4 Evaluation: A PARADISE-style User Study 129

On a scale from 1 (none) to 6 (lots of), the average rating for knowledge of computers was
at 5.07, of speech systems at 2.52, of robot systems at 1.96 and of programming experience
at 2.26. They were compensated for their participation in the experiment.

Instructions

In order to study natural demonstration behavior, participants received as little instruction
as possible. They received written instructions, specifying that they were to engage in
interaction with the robot Flobi, and that Flobi was supposed to learn object labels during
interaction. They were also advised to check that the robot had actually learned the
labels. It was, however, not specified how they were to present and check objects. They
were told that they should interact with the robot as long as they wished, with 5-10
minutes recommended as a guideline. Also, they were informed that they could begin the
interaction by greeting the robot, and end the interaction by saying goodbye. In addition,
participants were advised not to be discouraged by speech recognition problems, and that
they could repeat or rephrase their utterance in such cases. Last, an emergency phrase
(“Restart”) was provided. The interactions were in German. No other person was present
in the room during the interaction. A translated instruction hand-out can be found in
Appendix E.

Wizard control

As described in section 7.3, the system is not fully autonomous, but contains two WOz
components: reference resolution and ROI selection. In the study, the experimenter first
instructed the participants, then left the room and took the role of the wizard. The
wizard control station was located in an adjacent room, where the robot’s field of view
was displayed on a computer screen. The wizard’s tasks were to identify the objects
that were referred to and to mark them in a graphical user interface. Moreover, in
condition C2 and C2 (which will be described below) the wizard had to trigger robot
initiative by marking the objects the robot should ask for in the graphical user interface.
The participants were not told that the system was partially controlled by the experimenter.

Objective measures

A wide range of objective measures has been collected, most of which were derived from
system logs. For each component, the relevant event notifications were logged, such as
speech recognition results, text-to-speech output, dialog pattern state changes as well
as object recognition and reference resolution tasks. With these log data, a detailed
reconstruction of the interaction can be achieved. The data was also annotated manually
based on the video material to capture inappropriate robot utterances, or the correctness
of the robot’s answer on a test question. In total, we used 28 of these for evaluation
(see table 7.5). As proposed in the PARADISE framework [WLKA97], we divided them

130 7 Curious Flobi: Admitting More User Initiative

into the categories dialog efficiency, dialog quality and task success. Technically, the
interactional aspects of system performance (i.e. the dialog quality and dialog efficiency
measures) are calculated mainly based on information related to the Interaction Patterns,
whereas the Task State Protocol provides information at task level (i.e. the task success
measures).
The dialog efficiency measures capture the rapidity of the interaction and include for
example the duration of interaction, the number of user and robot utterances within a
certain time unit, the mean length of user utterances, or the number of objects learning
episodes within a certain time unit. The dialog quality measures address the smoothness
of the interaction. We considered for example gaps, overlaps, repairs and label corrections.
The task success measures concentrate on the outcome of the interaction with respect
to object learning. Among others, we measured the proportion of successful reference
resolution and object learning tasks, the proportion of correct robot answers to test
questions, and the user’s out-of-capability utterances.

Subjective measures

In addition to the objective measures described above, we collected subjective measures
based on a questionnaire the participants were asked to complete after the interaction
with Flobi had finished. We attempted to rely on standardized questionnaires as far as
possible. In this regard, a trade-off had to be found between validated but much generic,
and more informative but non-validated questions.
The questionnaire consisted of 50 items, that we aggregated into seven category mea-
sures. The first four categories, dialog efficiency, task success, cooperativeness and
usability, refer to the interaction itself. They contain questions to assess the participants’
impression of dialog efficiency and task success, on how cooperative they felt the robot
behaved during the interaction, and on how they rated the usability of the system. The
interaction-oriented items are roughly based on the evaluation of the COMIC dialog sys-
tem [WFOB05], which we adapted for our specific scenario. The remaining three categories,
likeability, perceived intelligence and animacy address the participants’ impression
of the robot. They were adopted from the standardized Godspeed questionnaire 1 [BCK08].
In addition, the questionnaire included five single (summarizing) questions, targeting the
overall impression of ease, efficiency, clarity, pleasantness and understandability
of the interaction. All replies to the questions had to be given using a six-point Likert-scale.
The complete questionnaire can be found in Appendix F.

1 However, we skipped the categories anthropomorphism and perceived safety, as we considered
them irrelevant for the scenario at hand.

7.4 Evaluation: A PARADISE-style User Study 131

Performance functions

The objective and subjective measures have been related to each other by means of
a PARADISE-style evaluation. This evaluation method uses stepwise multiple linear
regression to make predictions about subjective measures, like user satisfaction, based on
several objective performance dimensions, like task success, dialogue quality, or dialogue
efficiency (cf. chapter 2.3.1). The performance functions that result from this analysis
supply answers to questions like: Which are the relevant factors that contribute to user
satisfaction? Which components need to be optimized in future iterations of the system?
The results are, to a certain extent, generalizable to similar systems.
The PARADISE approach originally suggests the Kappa coefficient as a measure for task
success. The Kappa coefficient can be used to measure how many of the concepts were
transmitted correctly during an interaction (cf. chapter 2.3.1). It is suitable for classical
information seeking domains, but does not appropriately cover the complex task structure
of an action-oriented robotic scenario. Hence, the Kappa coefficient was replaced by the
above described objective measures for task success.
Moreover, in contrast to the original PARADISE method, user satisfaction was not assessed
by a single target variable, but broken down into the different subjective measures described
above, like ease or efficiency of the interaction. These rather abstract concepts were further
broken down into several items that are easier assessable by the users. For example,
the intuitiveness of interaction was assessed by questions like “I found the last object
easier to teach than the last one”, and the dialog quality was assessed by asking for the
appropriateness of the robot’s utterances regarding content and timings. Additionally, the
above summarizing items that ask for the users’ overall impression were directly used as
target variables.

Between-subjects factor

Moreover, we were interested in the influence of the robot taking initative. As a three-level
between-subjects factor, the degree of task initiative of the robot was varied:

• Condition C1 (User Initiative) allows for user initiative only.
• Condition C2 (Mixed Initiative) allows for both user and robot initiative.
• Condition C3 (Structured Initiative) is identical with C2, except that the robot

additionally yields initiative explicitly.
More specifically, in condition C1 the only way to teach the robot objects was to demon-
strate the objects one after another. In condition C2, learning is performed in mixed
initiative. The robot asks for an object label on its own initiative at interaction begin.
Also in later stages of the interaction the robot would ask for object labels, provided
that no other interaction episode is ongoing. In condition C3, the robot yields initiative
explicitly after having asked for two object labels at the start of the interaction (“You can
show me something, too”). By means of an analysis of variance (ANOVA) the differences
between the groups regarding subjective and objective measures were evaluated.

132 7 Curious Flobi: Admitting More User Initiative

7.4.2 Results
Objective measures

A sample of the objective measures is shown in table 7.5. Users interacted in average
11.07 minutes with the robot (Time), teaching 9.43 objects during interaction (Obj), 0.91
per minute (Obj/min). In 79% of all learning trials, the referred object could be resolved
(Ref), and 78% of these could be learned by the system successfully (Learn). Thus, 62% of
the demonstration episodes could be performed successfully (Learn). 53% of the objects
(of which not all had actually been taught before, though) could be recognized on the
user’s request (Check), 55% of these correctly (Checkcorrect). Thus, overall 29% of the
recognition requests could be performed successfully (Checkcorrect).
As described previously, an object demonstration consists of two tasks: reference resolution
and learning. The reference resolution fails if the referred object can not be identified by
the wizard, e.g. because it is out of the robot’s visual field (and thus out of the wizard’s
visual field, too), or because it is occluded. Learning typically fails if the object is put
away or occluded during the learning process. Similarly, an object recognition request
consists of reference resolution and object recognition.

Participants employ a variety of different referencing strategies. As shown in table 7.7,
27.86% of the learning episodes were initiated by the robot, 72.14% by the users. Among
these, the most frequent referencing strategy was lifting the object, followed by spatially
isolating it, pointing at it or touching it. Combinations of these were also observed. In
4.57% of all cases, participants did not use a visual reference strategy at all, but referred
to the object verbally. 10.81% of the object references were false positives due to speech
recognition misunderstandings. Figure 7.4 depicts examples for the different referencing
strategies. The variety of strategies would certainly present a tough challenge to an
autonomous reference resolution component. As a consequence, it might become necessary
to restrict interaction at this point, e.g. by opting for one common (yet automatically well
recognizable) strategy.

The most noticeable result regarding the objective measures is that considerable individual
differences exist between the single interactions (which coincides also with the observations
from the qualitative analysis). The differences can be found alike in the measures for dialog
efficiency, for dialog quality as well as for task success. Regarding dialog efficiency, for
instance, the system learned in average 9.43 objects during interaction, with a minimum of
2 and a maximum of 19 objects (Obj). Between 0.2 and 1.6 objects were taught (Obj/min)
per minute. Looking at the dialog quality measures, overlaps are a significant measure
for turn-taking problems and speech recognition performance in general: recognizer per-
formance is much lower for user utterances that overlap with robot utterances than for

7.4 Evaluation: A PARADISE-style User Study 133

Abbreviation Measure Min Max Mean Stdev
Time Duration of interaction (in minutes) 5.10 21.14 11.07 4.05
UU # User utterances 38 219 95.68 39.65
MLU Mean length of user utterances (in seconds) 0.70 1.39 1.01 0.02
UU/min User utterances per minute 3.16 7.90 3.55 2.20
RU/min Robot utterances per minute 5.44 15.19 10.91 2.50
Obj # Objects learned 2 19 9.43 3.92
Obj/min Objects learned per minute 0.2 1.6 0.91 0.39
ObjDemo # Object demonstrations 2 25 10.07 5.97
ObjDemo/min Object demonstrations per minute 0.22 2.54 0.93 0.58
Objcorr # Correctly learned objects 1 17 8.79 3.85
Objcorr/min Correctly learned objects per minute 0.14 1.56 0.79 0.31
ObjTest # Object tests 0 32 10.64 7.76
ObjTest/min Object tests per minute 0.00 2.07 0.92 0.59
StepsObjDemo Average interaction steps for object demo 4.23 6.80 5.80 0.60
StepsObjReq Average interaction steps for object request 0.00 4.00 3.41 1.21
Gaps Length of global pauses (in seconds) 0.53 3.32 1.50 0.62
Overlaps % of time UU and RU overlapping 0% 49% 20% 14%
UUdelay Average delay before UU (in seconds) 0.38 5.12 2.04 1.15
Repair % of RU dealing with repair 4% 38% 14% 8%
RUinapp % of inappropriate RU 1% 26% 6% 6%
NPattern # Completed interaction patterns 18 69 43.50 13.65
Interleave-Ratio Ratio of interleaving to NPattern 7% 79% 48% 15%
Ref Success rate of reference resolution 36% 100% 79% 15%
Learn Success rate of object learning 45|35.6% 100|79% 78|62% 20|15%
Check Success rate of object check 0% 100% 53% 29%
Checkcorrect Correctness rate of object check 0|0% 100|53% 55|29% 38|20%
UUooc Out-of-capability UU 0 28 7.64 6.80
UUooc % Percentage of out-of-capability UU 0% 21% 6% 5%

Table 7.5: Objective measures. Blocks are: i) dialog efficiency, ii) dialog quality, and iii)
task success.

Category Percentage Example
Correct object check 17% “no, it’s not an apple, its a lemon”
Meta object-organization 17% “i will put this there”
More than one object 13% “there are two lemons”
Gaze 12% “what are you looking at?”
Cancel learning 5% “no, stop”
Categories 5% “all these objects are fruits”
Repeat 3% “please repeat”
Next 3% “continue”
Color 3% “what color is the apple?”
Others (task-related) 20%
Others (non task-related) 2%

Table 7.6: Ratios for out-of-capability utterances.

134 7 Curious Flobi: Admitting More User Initiative

Referencing strategy Percentage
Robot 38%
Lifting 19%
Isolated object 14%
Pointing 13%
False positive 11%
Touching 10%
Non-visual 5%
Isolated object + pointing 1%
Isolated object + touching 1%

Table 7.7: Ratios for referencing strategies.

(a) Robot (b) Lifting (c) Isolated object (IO)

(d) Pointing (e) Pointing (two fingers) (f) Touching

(g) Non-visual (h) IO + pointing (i) IO + touching

Figure 7.4: The different object referencing strategies.

7.4 Evaluation: A PARADISE-style User Study 135

non-overlapping utterances. In some cases overlapping utterances (Overlaps) did not
occur at all (0%), whereas in other cases almost half of the utterances overlapped (49%).
As overlaps inevitably entail speech recognition problems, this is reflected also in the
proportion of repair utterances (Repair) and inappropriate robot utterances (RUinapp),
ranging between 4% and 8%, and 1% and 26% respectively. The ultimate task success
depends strongly on the demonstration strategy the user applies, even if the reference
resolution is a WOz component. However, the strategies applied vary enormously, which is
reflected in the large variance for success of reference resolution (Ref) and object learning
(Learn), ranging between 36% and 100%, and 45% and 100%. Even more striking is the
variance for object recognition (Check), which ranges between 0% and 100%.
A possible approach to address the individual differences between the users would be to
calculate the objective measures on-line, during interaction. Doing so would enable the
system to react to interaction problems right away, and to adapt its behavior accordingly,
e.g. by giving more guidance on the demonstration strategy, explicitly communicating its
capabilities, or increasing its own initiative.

Also the out-of-capability user utterances (UUooc) exhibit a large variance, but we were
pleased to see that they were rather few in number (6% in average). In contrast, in the
CeBit setup they accounted for 75% of all “invalid” user utterances, i.e. for 15% of all user
utterances (cf. table 6.5). This means that the preparatory activities, consisting of the
analysis of a WOz study and a pre-test of the speech recognition described in section 7.1.2
and 7.1.3, contributed to adapting the system capabilities to the users’ expectations.
Nevertheless, it is interesting to have a closer look at the out-of-capability utterances.
Table 7.6 lists the categories they belong to. Some reveal a deficit in the dialog strategy,
as for example the attempt to correct the robot’s reply to a recognition query (17%),
which was one of the most frequent out-of-capability utterances. Also the attempt to
cancel an ongoing learning task (5%), or to ask the robot to repeat its utterance (3%)
were common error causes. In future iterations of the system, these issues will be fixed
by adding the required functionality, or by adapting the interaction patterns used (e.g.
making the Human Object Demonstration pattern cancellable).
Others demand abilities on the task level that the current system cannot account for, such
as trying to demonstrate more than one object at a time (13%), teaching categories (5%)
or querying colors (3%). In the condition C2 (where the robot asks for object labels on its
own initiative, but does not yield initiative explicitly), some participants requested the
robot to ask for the next object (3%).
Other common causes for out-of-capability utterances were remarks on object organization
(17%) and on the robot’s gaze direction (12%). The latter reveals that the robot’s gaze is
an important cue for the human interaction partner, and that the gaze behavior was not
optimal at the time. As a consequence, a more natural gaze behavior is being developed
that will be coordinated more closely with the dialog state.

136 7 Curious Flobi: Admitting More User Initiative

Subjective measures

Table 7.8 shows the results for the subjective measures. All aspects were generally rated
positively, with ratings of more than 4 (on a scale from 1 to 6) for ease of use, clarity,
pleasantness, understandability, robustness, cooperativeness and likeability and more than
three for efficiency (both as single-item and as aggregated measure), usability, perceived
intelligence and animacy.
As with the objective measures, we can observe large individual differences between
participants: for all single-item measures, values range between 1 to 6, and also most
aggregated measures exhibit a large range of values.

Measure Min Max Mean Stdev
Ease of use 1 6 4.25 1.43
Efficiency 1 6 3.57 1.45
Clarity 1 6 4.29 1.12
Pleasantness 1 6 4.04 1.43
Understandability 1 6 4.50 1.43
Efficiency 1.20 5.20 3.30 0.96
Usability 1.60 5.00 3.52 0.87
Robustness 1.60 6.00 4.23 1.07
Cooperativeness 2.33 6.00 4.05 0.88
Likeability 3.00 6.00 4.80 0.93
Perceived Intelligence 2.50 6.00 3.83 0.85
Animacy 1.86 6.00 3.55 0.93

Table 7.8: Results of subjective measures. Blocks are: i) Single-item measures, ii) aggre-
gated measures.

Performance functions

Most of the performance functions resulting from the PARADISE evaluation (shown in
table 7.9) appear plausible, but some of them point out unexpected relationships between
measures that help to identify deficiencies of the system. The performance functions
generally exhibit high R2 values, indicating that they do explain much of the variance in
the data.
For instance, the number of objects learned per minute the interaction is a strong predic-
tor for the ease of use, together with the overall number of demonstrated objects and
the duration of interaction, suggesting that users who found interaction easy and were
successful in teaching objects tended to have longer interactions with the system.
In contrast, usability as an aggregated measure from questions on control, predictability,
concentration, clarity of when to speak is explained by a different function. Here, not only
the number of objects learned per minute has an impact, but also how many interaction
steps were required for learning, and the number of completed interaction patterns (which
can be interpreted as a measure for the general interaction success, taking into account
not only the task-related but also the social aspects). Somewhat surprisingly, the user

7.4 Evaluation: A PARADISE-style User Study 137

Measure Function R2 β Significance
Ease of use -0.30 + 4.33(Obj/min) + 1.15(ObjDemo) .471 Obj/min .792 p<.001

+ 0.12(Time) ObjDemo .466 p<.05
Time .399 p=.059

Efficiency No significant model
Clarity 4.63 - 6.92(Repair) + 1.39(Obj/min) .367 Repair -.467 p<.01

Obj/min .336 p<.05
Pleasantness 3.58 + 0.18(Learn) .184 Learn .465 p<.05
Understandability 3.78 + 0.14(Ref) .196 Ref .443 p<.05
Efficiency 1.42 - 5.09(Repair) + 0.61(StepsObjDemo) .441 Repair -.403 p<.05

- 0.06(UUooc) - 0.10(StepsObjReq) StepsObjDemo .394 p<.05
UUooc -.404 p<.05
StepsObjReq -.316 p=.081

Usability 4.03 - 0.22(StepsObjDemo) + 2.39(Obj/min) .553 StepsObjDemo -.747 p<.001
- 0.21(UU/min) + 0.03(NPattern) Obj/min .736 p<.001

UU/min -.521 p<.01
NPattern .391 p<.05

Robustness 5.07 - 6.08(Repair) .183 Repair -.428 p<.05
Cooperativeness 1.89 + 1.79(Objcorr) + 0.001(Gaps) .446 Objcorr .698 p<.001

Gaps .418 p<.05
Likeability No significant model
Perceived Intelligence 3.02 + 0.001(Gaps) .171 Gaps .171 p<.05
Animacy 3.67 + 1.09(Obj/min) - 0.118(UU/min) .281 Obj/min .443 p<.05

UU/min -.332 p=0.074

Table 7.9: Performance functions. Blocks are: i) Single-item measures, ii) aggregated
measures.

utterances per minute had a negative impact on usability, and also on the perceived
intelligence. Qualitative analysis revealed that for users who tend to talk rather fast and
keep talking even during the robot’s utterances, there is a risk of cumulating delays in the
robot responses, as the user utterances are simply queued and processed one after another.
This indicates the need for a more flexible turn-taking behavior that enables the robot to
suspend or abort its own utterances, or to ignore user utterances if there is a newer one
present.
Asking for efficiency directly did not yield a significant model. However, estimating
efficiency as an aggregated measure (from questions on time required for object learning,
clarity of referred objects, and general functionality of the system) suggests as predictors
the number of repair utterances, interaction steps required for object demonstrations and
object requests, as well as the out-of-capability utterances. The interaction steps for object
demonstrations contribute positively, which may seem surprising at first. Looking at the
interaction pattern used for object demonstrations, we realized that a high number of
steps indicates multiple object corrections, while a low number of steps indicates that
already the reference resolution fails. Thus, an explanation for the positive contribution of
interaction steps might be that failures of reference resolution have a stronger negative

138 7 Curious Flobi: Admitting More User Initiative

effect on efficiency than correcting a misunderstood label, and are even more frustrating.
The factors that influence clarity of interaction are the number of repair utterances and
the number of objects learned per minute, with the former being a major measure for
interaction success and the latter for task success. The pleasantness is predicted (not
very strongly, though) only by the number of objects learned per minute, but the measures
might miss some factors that are relevant for pleasantness.
Interestingly, we note a significant impact of reference resolution failures on the under-
standability score. This can be attributed to the fact that for such failures, the robot
only reports that it could not determine what the user referred to, not why. This provides
very little information toward good error recovery, leaving users guessing. Qualitative
analysis confirms this interpretation: several users explicitly asked the robot why it was
not able to determine the object referred to. This result points out again the frustrating
effect of reference resolution failures, and the importance of more informative feedback in
error conditions.
The robustness of the system as an aggregated measure (from questions on reliability
and robustness of the system) is predicted by the proportion of repair utterances, but not
by measures that specifically refer to object learning and recognition. This demonstrates
that a robust interaction can alleviate deficiencies at task level.
Cooperativeness (aggregated from questions on the robot’s readiness to interact, interest,
attentiveness and autonomy) is affected not only by correctly learned objects, but also
by gaps between utterances. While this may seem less obvious at first sight, it might be
further evidence for the crucial role of turn-taking: longer gaps between utterances indicate
a smooth turn-taking, and thus better speech recognition performance. It is probably for
the same reason that gaps contribute positively to perceived intelligence as well.

Between-subjects factor: impact of the robot’s task initiative

As mentioned above, the degree of the robot’s task initiative was varied as a three-level
between-subjects factor. Significant differences between the conditions were calculated
based on both an ANOVA (i.e. the overall test on differences) and a post-hoc analysis (i.e.
the pairwise comparison of the three groups). Many of the differences found are trivial,
e.g. that in the conditions C2 and C3, where that the robot was asking for object labels
on its own initiative, the associated Interaction Pattern occurred significantly more often.
The non-trivial results for the subjective measures are shown in table 7.10. It can be seen
that user initiative only requires a higher level of concentration than mixed or structured
initiative, and that structured initiative requires even less concentration than mixed initia-
tive. This indicates that the robot’s initiative – particularly when explicitly releasing it
–actually facilitates the interaction by providing guidance, thus reducing user’s uncertainty
what to do next. Similar results have been found for the tension the users felt during
interaction. However, unexpectedly, users felt more tense in the structured initiative
interactions than in the mixed initiative interactions.
In the robot initiative conditions C2 and C3, users found the robot more thorough than in

7.4 Evaluation: A PARADISE-style User Study 139

the user initiative condition C1. Perhaps the robot’s initiative gave the impression that it
specifically asks for those objects that it was not able to classify reliably yet, in order to
re-train them again. In fact, the objects it asked for were selected randomly.
Table 7.11 shows the non-trivial differences for the objective measures, indicating that in
interaction with user initiative only, user utterances tend to be significantly longer than
in interactions where the robot asks, too. As the user’s replies to the robot’s label query
were usually very short, this result is not surprising, but it points out that having the
robot ask for objects might be less error-prone. However, the repair utterances were not
significantly lower in the robot initiative conditions.
A result that is difficult to explain is that in the conditions C2 and C2, where the robot
actively asked for objects, users checked the robot’s knowledge more often (“Flobi, what
was this?”). Interestingly, the overall number of objects learned did not differ between the
conditions.
Another difference could be found in the ratio between the mean length of user utterances
and gaps. A high value indicates indicates shorter gaps in overall terms, while a low value
indicates longer gaps. As shown in the table, gaps were shortest in the user initiative
condition C1, and longest in the mixed-initiative condition C2. This result is supported by
the qualitative analysis described in the next section: it was observed that, in the mixed-
initiative condition, users often wait for the robot’s next question instead of demonstrating
something on their own. Obviously, this effect could be reduced in condition C3 by the
robot’s invitation to the user to demonstrate objects to it.

C1 C2 C3 ANOVA
Questionnaire item UserIni MixedIni StructuredIni Significance
"Interaction always required highest concentration" 4.56 4.00 3.18 p=.051
"During interaction I felt tense" 5.38 3.75 4.18 p=.070
"I found the robot (sloppy...thorough)" 3.65 4.95 4.74 p<.05

Table 7.10: Questionnaire items for which both the ANOVA and post-hoc tests showed
significant differences between the groups.

C1 C2 C3 ANOVA
Objective Measure UserIni MixedIni StructuredIni Significance
Mean length of utterance in seconds (MLU) 1.39 0.94 1.11 p<.001
Number of object tests (ObjTest) 4.11 17.50 11.00 p<.05
Ratio of user utterances and gaps (UU/gaps) .65 .49 .56 p<.05

Table 7.11: Objective measures for which both the ANOVA and post-hoc tests showed
significant differences between the groups.

Qualitative analysis

Replacing objects during learning: It could be observed frequently that users replace the
focused object with another one before learning had been completed. As the object

140 7 Curious Flobi: Admitting More User Initiative

recognizer completes the learning task only if the object to learn is successfully classified,
learning will fail if the object is not present any more. While a few users continue to do so
throughout the interaction, this particularly occurred at the first demonstration episode.
On the robot’s notification that it was beginning to learn most users returned the object
to its original place, like in the following interaction excerpt:

U Flobi, this is a banana.
F Alright, this is a banana, is that correct?
U Yes, that’s correct, Flobi. (putting banana away)
F Okay, I am going to learn the banana.
U Oh, then I will put it here again.

Also, some users proceed to the next object immediately before learning had been com-
pleted. In this case, demonstration of the next object will be interpreted as a label
correction of the previous one. Thus, the object recognizer will associate the view of the
first object with the label of the second one (which the user is not aware of, though):

U Flobi, this is a banana.
F Alright, this is a banana, is that correct?
U Yes, and this is an apple! (replacing banana with apple)
F Alright, an apple, is that correct?
U Yes.
F Okay, I am going to learn the apple.

Repairing incorrect object references: Most users were very cooperative during the inter-
action with the robot. They actively tried to adapt to the robot’s limitations, and to
compensate these. This effect can be observed well with incorrect object references, that
many users try to “repair” by replacing the object:

U This is an apple.
F Alright, this is a hand, is that correct?
U This is a hand! (puts up hand)
F Okay, I am going to learn the hand.

As above, the object recognizer will associate the first object with the second object’s label.
Similar repair effort can be observed in case of false-positive object references, i.e. when
an utterance is erroneously interpreted as an object demonstration, which also leads to
learning an incorrect label. From the user’s point of view, however, the incorrect reference
has been repaired:

U Okay, that was the apple, let’s learn the next object.
F Alright, this is an apple, is that correct?
U (puts apple in focus) Exactly, this is an apple.

7.4 Evaluation: A PARADISE-style User Study 141

Social utterances as fallback: As described previously, social utterances were widely used,
in particular praising the robot for correctly learned or recognized objects. In addition,
social utterances provide structure for the human as they are based on conventions well-
known to the users, whereas it is initially not known how to demonstrate objects to
the robot. Several interactions could be observed in which the users, for whom the first
demonstration attempt had failed, fall back to social utterances before trying again.

U Flobi, I am going to show you some objects today.
F Sorry, I cannot recognize which object you mean.
U Uhm...my name is Marc.
F Hello Marc, nice to meet you.
U How are you?
F Fine, thank you.

Back-channel utterances: Often, the robot was praised not only for correctly learned or
correctly recognized objects, but also for intermediate steps towards this goal, which had
the function of back-channel utterances. Unfortunately, the dialog configuration was not
prepared for that, i.e. interleaving the object demonstration or object test pattern with
the pattern used for praising was not permitted. As a consequence, the robot reacted
with clarification requests to these utterances. Nevertheless, users kept employing them
throughout the entire interaction.

U Flobi, this is an apple.
F Alright, this is an apple, is that correct?
U Yes, Flobi.
F Okay, I am going to learn the apple.
U Very good, Flobi.
F Pardon?
F I have learnt the apple.

Staccato phrases: Some users tend to speak particularly slow to the robot, stressing
the significant words, with noticeable pauses between the individual words. While this
facilitates understanding for humans, automatic speech recognition experiences problems
with it. Especially, due to the pauses between words, utterances are segmented into parts
that cannot be interpreted in isolation:
U Flobi
F Pardon?
U This...this one
F Pardon?
F ...is a green...
F Pardon?
U ...a green apple
F Alright, this is an apple, is that correct?

142 7 Curious Flobi: Admitting More User Initiative

Not accepting the robot’s limitations: Some users did not accept, or realize, the robot’s
limitations. For instance, one participant said “yes, you can” in reply to the robot’s
notification that it was not able to identify the referred object. Another participant used
to say “Flobi, you listen to me” in reaction to speech recognition errors or the robot’s
request to repeat the utterance. Also, the questionnaire results contained comments that
the robot had not listened well.

Semantically complex utterances: As a special case of not realizing the robot’s limitations,
some users form sentences that go beyond the dialog system’s current capabilities. For
instance, in the below interaction excerpt, the dialog system is able to respond correctly
to certain key words, but is not able to capture the entire meaning:

F Sorry, I cannot recognize which object you mean.
U I mean this object in my hand is a banana.
F Alright, this is a hand, is that correct?
U Yes, but in my hand I am holding a banana.
F Okay, I am going to learn the hand.
U The hand is not a banana.
F Alright, a hand, is that correct?
U My hand lies on the table.
F Alright, a hand, is that correct?
U Um, no, because you should learn what objects are lying on the table!
F Pardon?

Adhering to one single interaction strategy: Users of any system tend to adhere to strategies
that once have turned out to be successful. However, a few users strictly adhered to a
specific interaction strategy or to a specific wording – even if it was not successful. In
the below interaction excerpt, the user confirms the robot’s request for label confirmation
with a specific wording (“hast du richtig verstanden”), which unfortunately had not been
included in the speech recognition grammar. Even worse, the speech recognition repro-
ducibly interprets this utterances as the opposite, i.e. as a rejection (“das ist richtig falsch
dann”). Although the utterance would have been processed correctly with a little variation
in the wording, the participant keeps using this specific wording for each confirmation, up
to 5 times in sequence and 14 times in total:

F Alright, a banana, is that correct?
U Have correctly understood. [In German: Hast du richtig verstanden.]
F What’s correct?
U Banana was correct.
F Alright, a banana, is that correct
U Have correctly understood. [In German: Hast du richtig verstanden.]
F What’s correct?

7.5 Summary 143

Alignment effects: Repeatedly it could be observed that users tend to align their wording
to the robot’s utterances. For instance, users asked “will you have a look at it?”, as
a result of the robot announcing “I will have a look at it” before answering an object
recognition request. Similarly, a user replied “Sorry, I can not recognize which object you
mean” to the robot’s label request, which is exactly what the robot says in the reverse
case. Unfortunately, the system was not prepared to all of these utterances that users
adopted from the robot.

Problems with initiative shift: In condition C2 (MixedIni), where the robot takes initiative
at the begin of the interaction, but does not explicitly yield initiative later, problems with
shifting initiative could be observed. Several participants did not demonstrate any objects
on their own initiative, but waited for the robot to ask for the next object, even though
this results in fairly long gaps between the teaching episodes sometimes. For this condition,
we had the guideline that the time intervals between the robot’s label queries (which
were triggered by the WOz ROI selection) should vary, and that some of them should be
sufficiently long to allow the user to take over initiative. One participant tried to speed up
interaction by explicitly asking the robot to proceed to the next object. Unfortunately,
the robot interprets the request as an announcement that the user will now demonstrate
the next object, with the consequence that the interaction gets stuck:

F I have learnt the apple.
U Next.
F Okay.

[gap of 1:20 min]
F What is that?

7.5 Summary
This chapter has described the Curious Flobi system, which can be seen as a proof-
of-concept for the proposed approach to dialog modeling, and has in turn advanced
the approach by providing new use cases on object teaching. Besides the description
of the scenario and the system architecture, a detailed account of the design process
has been given: Based on experiences from the CeBit scenario, it has been decided to
extend the capabilities of the Curious Robot for more user initiative. The analysis of
the nonunderstandings in the CeBit scenario led to the decision to exchange the speech
understanding component with more robust keyword matching. A WOz study on object
teaching served as a guideline to design the interaction strategy for the Curious Flobi
scenario, including the configuration of the speech recognition.
A large-scale user study has been conducted, in which a wide range of both subjective and
objective measures have been calculated from the interactions. The evaluation addresses
(i) the relationship between the objective and subjective measures, (ii) the influence of the
robot’s task initiative and (iii) a qualitative analysis of the interactions.

144 7 Curious Flobi: Admitting More User Initiative

The relationship between objective and subjective measures has been investigated by
means of a PARADISE-style regression analysis. The resulting performance functions
have revealed some unexpected relations, e.g. the influence of turn-taking problems (as
indicated by short gaps between utterances) on how cooperative and intelligent users
perceived the robot. To a certain extent, the results are generalizable, e.g. the influence of
badly designed system feedback on general understandability of the system.
The investigation of the robot’s task initiative has shown differences between the conditions,
but some of them were not immediately understandable. Also, some presumed differences
could not be shown, e.g. differences in the number of learned objects. Thus, this issue
deserves to be addressed in a future study with more participants per condition.
The qualitative analysis explains and supports result from the PARADISE and the between-
subjects evaluation. Moreover, it points out several deficiencies of the system that future
iterations need to address, e.g. the system must cope with (or prevent) the user replacing
objects during the learning.

8 Further Scenarios

This chapter describes briefly a number of additional scenarios that have been implemented
with the proposed PaMini framework, but not by the author herself. A variety of platforms
and scenario types are represented, ranging from robots to virtual agents, from information-
oriented to rather action-oriented interactions, relying on diverse forms of system back-ends.
This demonstrates that (i) the suggested approach is comprehensible to developers, and
(ii) that it is not restricted to a certain interaction type, but that it is versatile enough to
be applied to very different scenarios.

8.1 Receptionist Vince
The Receptionist Vince scenario is a joint project which several working groups at CITEC
Bielefeld are contributing to. Main actor in the scenario is the virtual agent Vince, whose
task is to provide visitor information about the CITEC. Vince can generate synchronized
multimodal output, as specified based on a multi-modal mark-up language, for which
a new output source had to be added to PaMini. In the receptionist scenario, Vince
communicates not only with the visitor, but also with the mobile robot BIRON, whose
task is to show the visitors around. Figure 8.1 shows the interaction setup. An example
dialog is given in figure 8.3.
From a dialog modeling perspective, the implementation still has a couple of shortcomings.
Technically, the communication between Vince and BIRON has not (yet) been modeled as
an actual multi-party dialog, but BIRON’s part of the interaction is generated by a few of
pre-scripted outputs. Also, as can be seen from figure 8.3, Vince instructing BIRON has
not been modeled using an Action Request, but rather by combining several Notifications.
This implies that failure cases can not be accounted for in a systematic manner based on
the Task State Protocol, but are handled based on time-out conditions.
As listed in table 5.1, this scenario makes mainly use of Information Requests (modeling
the visitor’s questions), Statements (for modeling small-talk and exchange of pleasantries)
and Notifications (for Vince’s communication with BIRON).

145

146 8 Further Scenarios

Figure 8.1: The Receptionist Vince. Figure 8.2: ToBi at the 2011
RoboCup@Home, performing the
FollowMe task.

U Hello! H Interaction Opening
V Hi! I am Vince. How may I help you?
U Who are you? H Information Request 1
V My name is Vince. I’m a virtual agent and I contribute to the
V Dialog Demonstrator project. H Information Request 1
U And what can you do? H Information Request 2
V I can provide information about employees and working groups
V at the CITEC. H Information Request 2
U Oh, good. I am looking for Prof. Ritter. H Information Request 3
V You can find him in Q1-123. H Information Request 3
V Would you like BIRON, the mobile robot, to show you the way? R Suggestion
U Yes, please. R Suggestion
V Okay, please wait a moment. R Suggestion
B [is approaching]
B Hello Vince, my friend, what may I do for you?
V This is BIRON. He will take you to the lift. R Notification

BIRON, please take our guest to the lift. R Notification
B Alright, please follow me.
U Bye bye, Vince! H Interaction Closing
V Good bye. H Interaction Closing

Figure 8.3: An example dialog with the Receptionist Vince.

8.2 The RoboCup@Home Challenge
The RoboCup@Home league involves several benchmark tests for service robots that
measure their performance in realistic home environments, instructed through natural
language. For the 2011 challenge, the team of Bielefeld (ToBI) has integrated the PaMini
framework [WSZL11] for the first time. The example shown in figure 8.4 illustrates ToBi’s
interaction capabilities as demonstrated at the FollowMe task, shown in figure 8.2. Besides
the demonstration of the robot’s face recognition, person following and room classification

8.3 A Multi-Party Quiz Game with Nao 147

capabilities, the aim was to demonstrate the flexible interaction flow through interleaving
patterns: while the robot is performing the person following task, it can still continue
interaction – a feature that systems with a rather pre-structured dialog flow did not
exhibit.
As is evident in table 5.1, the RoboCup scenario makes heavy use of all sorts of action-
oriented Interaction Patterns, initiated both by the human and by the robot itself, often
including explicit confirmation of the instruction in order to cope with the high background
noise at the competition.

R Alright, let’s start the task! R Notification
R Hi! Please look into my eye while I tell you a bit about

myself. My name is ToBI and I’m from Bielefeld. R Self-Initiated Simple Action
R What I’m doing right now is trying to learn your face.

So please give me a few more seconds. R Self-Initiated Simple Action
R From now on I am able to recognize you! R Self-Initiated Simple Action
R Please tell me what to do! R Notification
H ToBi, follow me please! H Cancellable Action Request
R Alright, I will follow you now! H Cancellable Action Request
H What time is it? H Information Request
R It’s 4pm. H Information Request
H ToBi, stop! H Cancellable Action Request
R Okay, I will stop here. H Cancellable Action Request
H ToBi, this is the kitchen! H Simple Action Request with Expl. Conf.
R Do you want me to remember the kitchen? H Simple Action Request with Expl. Conf.
H Yes, please! H Simple Action Request with Expl. Conf.
R Alright. H Simple Action Request with Expl. Conf.

Figure 8.4: An example dialog from the 2011 RoboCup@Home challenge.

8.3 A Multi-Party Quiz Game with Nao
The Multi-Party Quiz Game has been developed within the scope of a master’s project that
addressed situated multi-party interaction [Klo10]. The work relies on Sidner’s definition
of engagement states and engagement actions [SKLL04], which has been extended by
Bohus for the concept of engagement intentions [BH09]. Within the scope of this project,
PaMini was extended so as to be able to manage multiple interactions at a time, each
with one ore more participants. An engagement component makes engagement decisions
based on the interaction partners’ actions, their presumed engagement intention (based on
cues such as distance or body posture), and the current dialog state.
A multi-party quiz game scenario with the robot Nao demonstrates the new interaction
capabilities. Figure 8.5 shows the scenario setup. An interaction example is given in

148 8 Further Scenarios

figure 8.7. In this example, the robot first engages in interaction with person H1 by begin-
ning a quiz game. As human H2 seems to have the intention of joining the interaction, the
robot invites him or her to join the quiz game. Later, H1 disengages, but the interaction
is continued with H2.
This scenario uses only few Interaction Patterns, mainly Information Requests for modeling
the various quiz questions.

Figure 8.5: Multi-party quiz game
with Nao

Figure 8.6: Nao explaining an ex-
hibit.

H1 Hello, Robot. H Interaction Opening
R Hi, I am Nao! H Interaction Opening
R Do you want to play a quiz game with me? R Suggestion 1
H1 Yes, I do. R Suggestion 1
R Fine. R Suggestion 1
R The question is: What is hypotension? R Simple Information Request 1
H1 Low blood pressure. R Simple Information Request 1
R That was right, congratulations! R Simple Information Request 1
R [to the newly arrived H2]
R Hey, over there, do you want to join this quiz game? R Suggestion 2
H2 Yes, sure. R Suggestion 2
R Fine. R Suggestion 2
R The question is:
R What is the founding year of Bielefeld University? R Simple Information Request 2
H2 Uh, 1965? R Simple Information Request 2
R That was wrong, sorry! R Simple Information Request 2
H1 I have to leave, bye! H Interaction Closing
R Good bye, have a nice day! H Interaction Closing

Figure 8.7: An example dialog from the multi-party quiz game with Nao.

8.4 Art Exhibition Scenario 149

8.4 Art Exhibition Scenario
In the Art Exhibition scenario, Nao acts as a museum guide, offering visitors to provide
background information about the exhibits. The robot’s speech is accentuated by bodily
gestures, as depicted in figure 8.6. Figure 8.8 shows an interaction excerpt, with the
communicative gestures put in parenthesis. With this scenario, a study has been conducted
that investigated whether the robot’s nodding influences the user’s decision on whether
the robot should proceed with its explanations or not. A previous, non-interactive version
of the scenario has been described in [PWSS11].
As table 5.1 illustrates, the scenario features a rather restricted interaction, relying mainly
on Notifications (for the background information about the exhibits) and on Suggestions
(for asking whether more information should be provided or not). On the other hand,
it had to cope with real world conditions, including interactions with real visitors who
were not prepared to interact with a robot, and perception under natural lighting conditions.

R Hello. R Interaction Opening
H Hello, robot. R Interaction Opening
R My name is Nao. May I [openArms] tell you [nodding] something about the R Suggestion
R exhibited pictures? R Suggestion
H Yes, sure. R Suggestion
R Okay [nodding], great. R Suggestion
R Behind me [armsBack] there are six pictures [...] R Notification
R Do you want me [nodding] to explain another one? R Suggestion
H Yes, please. R Suggestion
R Fine [nodding]. R Suggestion

Figure 8.8: An example dialog from the Art Exhibition Scenario.

8.5 PlaSta Scenario
The PlaSta (Planetary Station) scenario has been developed within the scope of a research
project which is supported by the German Aerospace Center (DLR). The scenario modeled
an experiment which was conducted in a five day isolation study, with the aim to investigate
which effects the robot’s presence has on the participants’ cognitive performance. In the
experiment, participants had to solve a cognitive test on spatial perception [PLL+95], with
an example task depicted in figure 8.9. Nao acts as experimenter, guiding the participants
through the individual steps, giving feedback and assistance.
As with the Art Exhibition scenario, Nao produces both speech and gestures. Also, the
interaction is similarly restricted, in this case to achieve controlled conditions for the
experiment. As above, the most frequently used patterns are Notifications (to introduce
the task and provide information about the state of the task, time left, and performance)

150 8 Further Scenarios

and Suggestions (to offer assistance).

Figure 8.9: Example task from the PlaSta experiment.

R [welcome] Hello and welcome to our study. R Interaction Opening
H Hello. R Interaction Opening
R Thanks for participating. [selfReference] My name is Nao.

I will guide you through the experiment and do my best to assist you.
Please touch the screen [showLeft] to start the experiment. R Notification 1

R Look at those [showLeft] four figures. All of them are show the same
object, rotated by a certain angle. Please try to imagine the rotation
of the objects by comparing the pictures. Please tell me when you are
finished. R Simple Statement

H I’m finished. R Simple Statement
R Great. Here are another five [showLeft] images, showing a new
R [showRight] object. Two of them are equal to the one on the left

side. Try to find them and mark the images by [push] touching the screen. Robot Notification 2
H [enters solution]
R You have answered the question correct right away, very [showRightUp] Robot Notification 3

good. Can we [pointForwardAdmonishment] proceed? Robot Suggestion
H Yes, let’s go on. Robot Suggestion
R Fine. Robot Suggestion

Figure 8.10: An example dialog from the PlaSta experiment.

8.6 Sports Companion
The Sports Companion scenario has been implemented withinin the scope of a student
project in very short time (two weeks only). It does not run on on a real robot, though,
but as a desktop application with simulated speech recognition. The main idea of the
scenario was to realize an adaptive system whose degree of guidance varies according to
the user’s behavior. Based on several basic cues that were calculated on-line (such as
number of different words per utterance, or gaps and overlaps between utterances), the
system classifies the user as being talkative or non-talkative. The students implemented
an example application for exercise planning. In this example application, non-talkative

8.7 Playing Memory with Flobi 151

users receive more guidance by the system than talkative users, based on the assumption
that talkative users provide more information on their own, and are in generally more
comfortable while interacting with the system.
Figure 8.11 shows an example interaction with the Sports Companion application. The
user type is categorized at interaction begin, based on the user’s reaction to the systems
attempt to engage in small-talk. The user’s reply to the system’s relatively open questions
(“Do you work out a lot?”) are not actually processed, but serve mainly as a basis for
calculating the measures required for user classification. In the example, the user is
classified as talkative. As a consequence, the system asks a more open question about
the users preferences (“What type of session would you like to begin with?”), instead of
suggesting a specific option (“Let’s begin with an endurance session.”).
As shown in table 5.1, the Sports Companion scenario relies, besides different types
of Information Requests (for gathering information about exercise preferences), mainly
on Notifications (to inform the user about constraints or number of remaining units),
Statements (for small-talk) and Suggestions (for suggesting possible unit types if the user
is non-talkative).

R Hi, my name is Flobi. I would like to develop your personal R Interaction Opening
exercise plan with you today.

H Hello, Flobi, nice to meet you. My name is Tom. R Interaction Opening
R How are you today? R Simple Statement 1
H Fine, thank you. R Simple Statement 1
R Do you work out a lot? R Simple Statement 2
H Yes, I jog every morning, and doing

yoga in the afternoon. R Simple Statement 1
R What type of session would you like to begin with? R Simple Information Request 1
H With an endurance session. R Simple Information Request 1
R Okay. R Simple Information Request 1
R On what day? R Simple Information Request 2
H Tuesday. R Simple Information Request 2
R Okay, Tuesday. R Simple Information Request 2

Figure 8.11: An example dialog between the Sports Companion and a talkative user.

8.7 Playing Memory with Flobi
In the Memory scenario, which is still under development, Flobi is supposed to invite people
to play a memory game, as shown in figure 8.12 and 8.13. At the current, preliminary
stage, a basic test on pairs has been realized to achieve a first integration. In general, the
challenge of the scenario lies in the integration of interaction, perception and the control
of game play.

152 8 Further Scenarios

Currently, the system makes mostly use of Notifications (for asking the user to arrange or
turn over cards), and Suggestions (for finding out whether the robot has recognized the
cards correctly or not). For asking the user to perform physical actions, a new Interaction
Pattern has been found to be necessary, modeling the robot giving an instruction to the
human, whose execution is monitored with the help of a perception component. Evidence
for its necessity has also been found in a cycling scenario for which the development will
start soon. In this scenario, the robot is supposed to accompany people during a cycling
session, and to monitor (and possibly to correct) certain aspects of the exercise.

Figure 8.12: Playing memory with Flobi.

H Hello, Flobi. H Interaction Opening
R Hi. I am ready to play with you. H Interaction Opening
R Do you want me to explain the rules first? R Suggestion 1
H Yes, please. R Suggestion 1
R Okay. Please turn over two cards,

and I will guess if it is a pair or not. Let’s begin! R Suggestion 1
H [Turns over cards]
R The cards are ’dog’ and ’cat’ – am I right? R Suggestion 2
H No, I’m afraid not. R Suggestion 2
R Oh, I was mistaken, then. R Suggestion 2
R Would you like to play once more? R Suggestion 3
H No, thanks. R Suggestion 3
R Okay, see you later. R Suggestion 3

Figure 8.13: An example dialog from the Memory scenario.

9 Summary and Contributions of the Thesis

The present thesis proposes a novel approach to dialog modeling on robots, which was
implemented in the PaMini (Pattern-based Mixed Initiative) dialog framework. Its under-
lying concepts were developed based on extensive studies of the domain, accomplished
through implementation of several preliminary scenarios, and were applied and evaluated
in a number of studies and scenarios. The present work makes contributions the fields of
i) dialog modeling, ii) human-robot interaction design, and iii) evaluation. In detail, the
research done within the scope of this thesis can be summarized as follows.

A Task State Protocol is proposed that allows the dialog manager to request, monitor
and revise tasks which are executed by the robotic subsystem. The protocol allows the
dialog manager to treat all tasks in a uniform manner, thus establishing a well-defined
component interface that facilitates system integration. It enables fine-grained yet stan-
dardized communication with the domain which, from interaction perspective, allows for
more informative feedback on, and better interactive control of, ongoing actions.

The internal dialog model relies on Interaction Patterns that model recurring conversa-
tional structures of HRI at an abstract level. By combining task events from the Task
State Protocol with dialog acts, they link dialog management and domain management.
Interaction Patterns serve also as configurable building blocks of interactions, establishing
the developer’s API of the proposed framework. They abstract from, and encapsulate, the
subtleties of dialog modeling and thus allow non-expert developers an easy access to tried
and tested dialog procedures. At run-time, Interaction Patterns can be combined and
interleaved in a flexible manner. Thus they provide the advantages of descriptive dialog
modeling (understandability), while overcoming their restrictions (inflexibility in dialog
flow).

The evaluation of the approach included a developer-centered evaluation. A case
study was conducted in which the implementation of a typical HRI scenario with PaMini
was compared to implementations with well-established dialog frameworks for non-situated
domains. The case study demonstrates not only the efficacy of the framework, but also
points out the differences between the investigated approaches and gives a review of
state-of-the art approaches to dialog modeling. The comparison with other frameworks
showed that the special focus on robotics – which has to the author’s knowledge been
addressed for the first time – indeed pays off, given the special nature of HRI. Moreover,
framework usability was demonstrated in a usability test in which developers unfamiliar

153

154 9 Summary and Contributions of the Thesis

with the framework were able to develop a small interaction scenario within one hour.
This shows that Interaction Patterns and the Task State Protocol are concepts that are
easy to understand for developers unexperienced with dialog modeling and robotics.

Several preliminary scenarios were implemented, either with a different dialog manager,
or with previous versions of PaMini. Most notably, the Home-Tour scenario, in which a
mobile robot acquires a spatial model of its environment, and the Curious Robot scenario,
an object learning and manipulation scenario with a humanoid robot. The preliminary
scenarios greatly helped both to establish a detailed understanding of the domain and
to identify essential use cases for HRI. Both scenarios feature a mixed-initiative dialog
strategy for interactive learning. Explorative evaluations demonstrate that mixed initiative
has the potential not only to facilitate the learning process (in case of the Home-Tour), but
also the interaction itself (in case of the Curious Robot). A user study with a variation of
the Curious Robot scenario was analyzed with respect to speech understanding problems.
It revealed i) problems with the then-used speech understanding approach and ii) that
users prefer a more active role, in particular at later stages of the interaction. Both issues
were addressed in the next iteration of the system, the Curious Flobi scenario.

The Curious Flobi scenario was implemented based on the novel approach. In an iterative
design process, several parameters were optimized: i) Based on the observations from the
previous evaluation, the system capabilities were extended for more user initiative, ii) a
WOz study on object teaching was analyzed with respect to the demonstration strategies
users apply and assisted in the design of the dialog strategy, and iii) the speech recognition
configuration underwent an informal test with respect to concept accuracy. The result of
this process is a complex mixed-initiative object learning scenario which features not only
task-related, but also social interaction. With this scenario, a large-scale user study based
on the PARADISE approach became possible. A wide range of objective and subjective
measures were related to each other in order to identify objective factors that are relevant
for different aspects of user satisfaction. The study is one of the first attempts to apply
the PARADISE approach to HRI, and by explaining up to 55% of variation in the data, it
demonstrates that the chosen method is promising for conducting system-level evaluations,
and that the chosen metrics were appropriate. Additionally, three different degrees of
mixed initiative were compared. This evaluation has been complemented with a qualitative
analysis which, on the one hand, helped to explain results from the PARADISE evaluation
and, on the other hand, helped to identify deficiencies of the dialog strategy and the
system in general.

A number of further scenarios have been implemented using the proposed approach.
They were implemented not by the author herself, but by different developers, which
demonstrates the usability and understandability of the approach. Some of them were
implemented in a very short time, which demonstrates that the approach supports rapid-
prototyping of interaction scenarios. Also, their high diversity demonstrates the versatility

155

of the approach.

From the author’s point of view, the three main contributions of the presented work are
as follows.

• Identifying issues crucial for HRI: Based on literature review, experiences from
example scenarios, and practical case-studies with different dialog frameworks, several
issues have been identified that are crucial for implementing advanced HRI. Most
notably, the necessity of a well-defined yet fine-grained interface between the dialog
manager and the domain subsystem has been recognized. Another issue is the
distribution of functionality between the dialog manager and the robotic back-end.
The present work suggests that the global dialog flow is not determined by the dialog
manager (as is often the case in traditional dialog modeling), but rather externally,
enabling better reactivity to the robot’s dynamic environment.

• Providing constraints for developers: Both the Task State Protocol and the
Interaction Patterns restrict the developer’s leeway for decisions. But as they were
distilled from experiences concerning both system integration and interaction design,
this does not represent a limitation, but a rather facilitation for the developers.
This is supported by the ease with which a variety of scenarios was implemented by
different developers.

• Comprehensive evaluation of the proposed concept: The proposed concepts
evolved from a sample of basic use cases identified in preliminary example scenarios,
and were then applied and tested in a wide range of new scenarios. The evaluation
process included also the developer-centered view, an aspect often neglected in dialog
modeling. The developed scenarios were integrated into a complex implementation-
evaluation cycle that addressed various aspects, ranging from speech understanding
performance to object teaching strategies, making use of various methods. Thus, not
only the developed concepts, but also the chosen methodology – which represents a
principled approach – are the contribution of the present work.

The concepts and results have been published as follows:

Journal articles

• J. Peltason, H. Rieser, S. Wachsmuth and B. Wrede. On Grounding Natural Kind
Terms in Human-Robot Communication. KI - Künstliche Intelligenz, 27(2):107–118,
2013 ([PRWW13])

• J. Peltason and B. Wrede. The Curious Robot as a Case-Study for Comparing
Dialog Systems. AI Magazine, 32(4):85–99, 2011. ([PW11])

156 9 Summary and Contributions of the Thesis

Book chapters

• J. Peltason, H. Rieser, S. Wachsmuth: The hand is no banana! On communicating
natural kind terms to a robot. In Alignment in Communication: Towards a New
Theory of Communication, 2013. ([PRW13])

• J. Peltason and B. Wrede: Structuring Human-Robot-Interaction in Tutoring Sce-
narios. In Towards Service Robots for Everyday Environments, 2012. ([PWb])

• I. Lütkebohle, J. Peltason, L. Schillingmann, C. Elbrechter, S. Wachsmuth, B. Wrede,
and R. Haschke: A Mixed-Initiative Approach to Interactive Robot Tutoring. In
Towards Service Robots for Everyday Environments, 2012. ([PWa])

Conference papers

• J. Peltason, N. Riether, B. Wrede and I. Lütkebhole: Talking with Robots about
Objects: A system-level evaluation in HRI. In 7th ACM/IEEE Conference on
Human-Robot-Interaction (HRI), 2012. ([PRWL12])

• D. Klotz, J. Wienke, J. Peltason, B. Wrede, S. Wrede, V. Khalidov and J.-M. Odobez:
Engagement-based Multi-party Dialog with a Humanoid Robot. In SIGDIAL 2011
Conference, Association for Computational Linguistics, 2011. ([KWP+11])

• J. Peltason, H. Rieser, S. Wachsmuth and B. Wrede. On Grounding Natural Kind
Terms in Human-Robot Communication. KI - Künstliche Intelligenz, 27(2):107–118,
2013

• J. Peltason and B. Wrede: PaMini: A Framework for Assembling Mixed-Initiative
Human-Robot Interaction from Generic Interaction Patterns. In SIGDIAL 2010
Conference, Association for Computational Linguistics, 2010. ([PW10b])

• J. Peltason and B. Wrede: Modeling Human-Robot Interaction Based on Generic
Interaction Patterns. In AAAI Fall Symposium: Dialog with Robots, 2010. ([PW10a])

• I. Lütkebohle, J. Peltason, L. Schillingmann, C. Elbrechter, B. Wrede, S. Wachsmuth
and R. Haschke: The Curious Robot - Structuring Interactive Robot Learning. In
IEEE International Conference on Robotics and Automation, 2009. ([LPS+09])

• J. Peltason, F. Siepmann, T. P. Spexard, B. Wrede, M. Hanheide and E. A. Topp:
Mixed-Initiative in Human Augmented Mapping. IEEE International Conference on
Robotics and Automation, 2009. ([PSS+09])

• O. Booij, B. Kröse, J. Peltason, T. Spexard and M. Hanheide: Moving from Aug-
mented to Interactive Mapping. In Robotics: Science and Systems Conference, 2008.
([BKP+08])

157

• N. Beuter, T. Spexard, I. Lütkebhole, J. Peltason, F. Kummert: Where is this?
Gesture Based Multimodal Interaction With An Anthropomorphic Robot. In IEEE-
RAS International Conference on Humanoid Robots, 2008. ([BSL+08])

Workshop papers

• J. Peltason, H. Rieser, S. Wachsmuth and B. Wrede: “The hand is not a banana”.
On Developing a Robot’s Grounding Facilities. In SemDial 2012 (SeineDial): The
16th Workshop on the Semantics and Pragmatics of Dialogue, 2012. ([PRWW12])

• I. Lütkebohle, J. Peltason, B. Wrede and S. Wachsmuth: The Task-State Coordina-
tion Pattern, with Applications in Human-Robot-Interaction. In Learning, Planning
and Sharing Robot Knowledge for Human-Robot Interaction, Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2011. ([LPWW11])

• I. Lütkebohle, J. Peltason, R. Haschke, B. Wrede and S. Wachsmuth: The Curious
Robot Learns Grasping in Multi-Modal Interaction. In Interactive Communication
for Autonomous Intelligent Robots, 2010. ([LPH+10])

• J. Peltason: Position Paper. In Young Reseachers’ Roundtable on Spoken Dialog
Systems, 2010. ([Pel10])

• J. Peltason, I. Lütkebohle, B. Wrede and M. Hanheide: Mixed Initiative in Interactive
Robotic Learning. In Workshop on Improving Human-Robot Communication with
Mixed-Initiative and Context-Awareness, 2009. ([PLWH09])

Bibliography

[ABF02] James Allen, Nate Blaylock, and George Ferguson. A problem solving
model for collaborative agents. In Proceedings of the first international joint
conference on Autonomous agents and multiagent systems: part 2, AAMAS
’02, pages 774–781, New York, NY, USA, 2002. ACM.

[AFS01] James Allen, George Ferguson, and Amanda Stent. An architecture for
more realistic conversational systems. In IUI ’01: Proceedings of the 6th
international conference on Intelligent user interfaces, pages 1–8, New York,
NY, USA, 2001. ACM.

[All01] Toward conversational human-computer interaction. AI Magazine, 22:27–37,
October 2001.

[AND06] Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dautenhahn. Action,
state and effect metrics for robot imitation. In The 15th IEEE International
Symposium on Robot and Human Interactive Communication, ROMAN,
pages 232 –237, sept. 2006.

[Apa07] Apache Commons. Commons scxml, 2007. [Online:
http://commons.apache.org/scxml; accessed 08-Feb-2012].

[Aus62] John L. Austin. How to do things with words. Harvard University Press,
Cambridge, 1962.

[BCF+98] Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hänel, Gerhard Lake-
meyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. The Interactive
Museum Tour-Guide Robot. In Fifteenth National Conference on Artificial
Intelligence (AAAI-98), 1998.

[BCK08] Christoph Bartneck, Elizabeth Croft, and Dana Kulic. Measuring the an-
thropomorphism, animacy, likeability, perceived intelligence and perceived
safety of robots. In Metrics for Human-Robot Interaction Workshop in affili-
ation with the 3rd ACM/IEEE International Conference on Human-Robot
Interaction (HRI 2008), 2008.

[BEG+96] Manuale Boros, Wieland Eckert, Florian Gallwitz, GÃ¼nther Goerz, Gerhard
Hanrieder, and Heinrich Niemann. Towards Understanding Spontaneous

159

160 Bibliography

Speech: Word Accuracy vs. Concept Accuracy. In Fourth International
Conference on Spoken Language Processing ICSLP 96. IEEE, 1996.

[BG00] Issam Bazzi and James R. Glass. Modeling out-of-vocabulary words for
robust speech recognition. In International Conference on Spoken Language
Processing, pages 401–404. ISCA, 2000.

[BG02] Rainer Bischoff and Volker Graefe. Dependable multimodal communication
and interaction with robotic assistants. In International Workshop on Robot
and Human Interactive Communication, pages 300–305. IEEE, December
2002.

[BH09] Dan Bohus and Eric Horvitz. Models for multiparty engagement in open-
world dialog. In SIGDIAL 2009 Conference, pages 225–234. Association for
Computational Linguistics, 2009.

[BHL02] Carl Burke, Lisa Harper, and Dan Loehr. A Flexible Architecture for a
Multimodal Robot Control Interface. In Intelligent Situation-Aware Media
and Presentations Workshop. AAAI, 2002.

[BKLO03] Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi Oka. DIPPER: De-
scription and Formalisation of an Information-State Update Dialogue System
Architecture. In 4th SIGdial Workshop on Discourse and Dialogue, pages
115–124, 2003.

[BKP+08] Olaf Booij, Ben Kröse, Julia Peltason, Thorsten Spexard, and Marc Hanheide.
Moving from augmented to interactive mapping. In Proceedings of the
Robotics: Science and Systems workshop Interactive Robot Learning, pages
21–23, June 2008.

[BM10] Cindy Bethel and Robin Murphy. Review of Human Studies Methods in HRI
and Recommendations. International Journal of Social Robotics, 2(4):347–
359, December 2010.

[BPH+09] Kristy Elizabeth Boyer, Robert Phillips, Eun Young Ha, Michael D. Wallis,
Mladen A. Vouk, and James C. Lester. Modeling dialogue structure with
adjacency pair analysis and hidden markov models. In Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, NAACL-Short ’09, pages 49–
52, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[BR05] Dan Bohus and Alexander Rudnicky. Larri: A language-based maintenance
and repair assistant. In Wolfgang Minker, Dirk Bühler, Laila Dybkjær, and
Nancy Ide, editors, Spoken Multimodal Human-Computer Dialogue in Mobile
Environments, volume 28 of Text, Speech and Language Technology, pages
203–218. Springer Netherlands, 2005.

Bibliography 161

[BR08] Dan Bohus and Alexander I. Rudnicky. Sorry, I Didn’t Catch That! In
Laila Dybkjær, Wolfgang Minker, and Nancy Ide, editors, Recent Trends in
Discourse and Dialogue, volume 39 of Text, Speech and Language Technology,
pages 123–154. Springer Netherlands, 2008.

[BR09] Dan Bohus and Alexander I. Rudnicky. The RavenClaw dialog manage-
ment framework: Architecture and systems. Computer Speech & Language,
23(3):332–361, July 2009.

[Bre03] Cynthia Breazeal. Emotive qualities in lip-synchronized robot speech. Ad-
vanced Robotics, pages 97–113, 2003.

[BRH+07] Dan Bohus, Antoine Raux, Thomas K. Harris, Maxine Eskenazi, and Alexan-
der I. Rudnicky. Olympus: an open-source framework fro conversational
spoken language interface research. In proceedings of HLT-NAACL 2007
workshop on Bridging the Gap: Academic and Industrial Research in Dialog
Technology, 2007.

[Bri02] Derek Bridge. Towards conversational recommender systems: A dialogue
grammar approach. In Workshop in Mixed-Initiative Case-Based Reasoning
at the Sixth European Conference in CaseBased Reasoning, ECCBR 02, pages
9—22, 2002.

[BRM04] Trung H. Bui, Martin Rajman, and Miroslav Melichar. Rapid dialogue
prototyping methodology. In P. Sojka, I. Kopecek, and K. Pala, editors,
Proceedings of the 7th International Conference on Text, Speech Dialogue
(TSD), volume 3206/2 of Lecture Notes in Computer Science, pages 579–586,
Berlin Heidelberg New York, September 2004. Springer Verlag.

[BRRL98] Susan E. Brennan, Pamela S. Ries, Claire Rubman, and Gregory Lee. The
vocabulary problem in spoken language systems. In S. Luperfoy, editor,
Automated Spoken Dialog Systems. MIT Press, 1998.

[BS09] Davide Brugali and Patrizia Scandurra. Component-based robotic engineering
(Part I) [Tutorial. IEEE Robotics & Automation Magazine, 16(4):84–96,
December 2009.

[BSL+08] Niklas Beuter, Thorsten Spexard, Ingo Lütkebohle, Julia Peltason, and Franz
Kummert. Where is this? - Gesture Based Multimodal Interaction With An
Anthropomorphic Robot. In International Conference on Humanoid Robots.
IEEE-RAS, 2008.

[BWB09] Andrea Bauer, Dirk Wollherr, and Martin Buss. Information retrieval system
for human-robot communication: asking for directions. In Proceedings of the
2009 IEEE international conference on Robotics and Automation, ICRA’09,
pages 1522–1527, Piscataway, NJ, USA, 2009. IEEE Press.

162 Bibliography

[BWK+03] Hans-Joachim Böhme, Torsten Wilhelm, Jürgen Key, Carsten Schauer,
Christof Schröter, Horst-Michael Groß, and Torsten Hempel. An approach
to multi-modal human-machine interaction for intelligent service robots.
Robotics and Autonomous Systems, 44(1), 2003.

[Car96] Jean Carletta. Assessing agreement on classification tasks: the kappa statistic.
Computational Linguistics, 22:249–254, June 1996.

[CC01] Chih-Jung Chiang and Gregory Chirikjian. Modular robot motion plan-
ning using similarity metrics. Autonomous Robots, 10:91–106, 2001.
10.1023/A:1026552720914.

[CDN88] John P. Chin, Virginia A. Diehl, and Kent L. Norman. Development of
an instrument measuring user satisfaction of the human-computer interface.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’88, pages 213–218, New York, NY, USA, 1988. ACM.

[CET08] Task Model Description (CE TASK 1.0), CEA-2018 (ANSI). 2008.

[CO95] Philip R Cohen and Sharon L Oviatt. The role of voice input for human-
machine communication. Proceedings of the National Academy of Sciences
of the United States of America, 92(22):9921–9927, 1995.

[COB10] Sonia Chernova, Jeff Orkin, and Cynthia Breazeal. Crowdsourcing HRI
through online multiplayer games. In AAAI Fall Symposium: Dialog with
Robots. AAAI, 2010.

[CR01] Ananlada Chotimongkol and Alexander I. Rudnicky. N-best speech hypothe-
ses reordering using linear regression. In INTERSPEECH, pages 1829–1832,
2001.

[Dau07] Kerstin Dautenhahn. Socially intelligent robots: dimensions of human–robot
interaction. Philosophical Transactions of the Royal Society B: Biological
Sciences, 362(1480):679–704, 2007.

[Den02] Matthias Denecke. Rapid prototyping for spoken dialogue systems. In
19th International Conference on Computational Linguistics, pages 1–7,
Morristown, NJ, USA, 2002. Association for Computational Linguistics.

[DG95] Morena Danieli and Elisabetta Gerbino. Metrics for evaluating dialogue
strategies in a spoken language system. In AAAI Spring Symposium on
Empirical Methods in Discourse Interpretation and Generation, volume 16.
AAAI, 1995.

Bibliography 163

[DHB+06] Mary B Dias, Thomas K. Harris, Brett Browning, Edward G. Jones, Brenna
Argall, Manuela Veloso, Anthony Stentz, and Alexander I. Rudnicky. Dy-
namically Formed Human-Robot Teams Performing Coordinated Tasks. In
AAAI Spring Symposium: To Boldly Go Where No Human-Robot Team Has
Gone, 2006.

[DKF01] Elyon DeKoven, David V. Keyson, and Adinda Freudenthal. Designing
collaboration in consumer products. In CHI ’01 extended abstracts on Human
factors in computing systems, CHI EA ’01, pages 195–196, New York, NY,
USA, 2001. ACM.

[DSBS09] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn.
What to do and how to do it: Translating natural language directives into
temporal and dynamic logic representation for goal management and action
execution. In Robotics and Automation, 2009. ICRA ’09. IEEE International
Conference on, pages 4163 –4168, may 2009.

[DW02] Kerstin Dautenhahn and Iain Werry. A quantitative technique for analysing
robot-human interactions. In IEEE/RSJ Intelligent Robots and Systems,
volume 2, 2002.

[EAC00] Christof Eberst, Magnus Andersson, and Henrik I. Christensen. Vision-based
door-traversal for autonomous mobile robots. In Intelligent Robots and
Systems, 2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International
Conference on, volume 1, pages 620 –625, 2000.

[EH99] Renée Elio and Afsaneh Haddadi. On abstract models and conversation
policies. Issues in Agent Communication, pages 301–314, 1999.

[EJ00] Annika F. Eriksson and Arne Jönsson. Dialogue and domain knowledge
management in dialogue systems. In Proceedings of the 1st SIGdial work-
shop on Discourse and dialogue - Volume 10, SIGDIAL ’00, pages 121–130,
Stroudsburg, PA, USA, 2000. Association for Computational Linguistics.

[EKB11] Friederike Eyssel, Dieta Kuchenbrandt, and Simon Bobinger. Effects of
anticipated human-robot interaction and predictability of robot behavior on
perceptions of anthropomorphism. In Proceedings of the 6th international
conference on Human-robot interaction, HRI ’11, pages 61–68, New York,
NY, USA, 2011. ACM.

[EKL+11] Wolfang Echelmeyer, Alice Kirchheim, Achim L. Lilienthal, Hülya Akbiyik,
and Marco Bonini. Performance indicators for robotics systems in logistics ap-
plications. In IROS Workshop on Metrics and Methodologies for Autonomous
Robot Teams in Logistics (MMART-LOG), 2011.

164 Bibliography

[FA98] George Ferguson and James F. Allen. TRIPs: an integrated intelligent
problem-solving assistant. In Proceedings of the Fifteenth National/Tenth
Conference on Artificial Intelligence/Innovative Applications of Artificial
Intelligence, AAAI ’98/IAAI ’98, pages 567–572, Menlo Park, CA, USA,
1998. AAAI.

[FAM96] George Ferguson, James F. Allen, and Bradford W. Miller. TRAINS-95:
Towards a mixed-initiative planning assistant. In Third Conference on
Artificial Intelligence Planning Systems (AIPS-96), pages 70–77, 1996.

[FDH+04] Jim Ferrans, Peter Danielsen, Andrew Hunt, Brad Porter, Bruce Lucas,
Scott Mcglashan, Steph Tryphonas, Ken Rehor, Daniel C. Burnett, and
Jerry Carter. Voice Extensible Markup Language (VoiceXML) Version 2.0.
Technical report, W3C, March 2004.

[FE07] Raquel Fernandez and Ulle Endriss. Abstract models for dialogue protocols.
Journal of Logic, Language and Information, 16(2):121–140, April 2007.

[FFMM94] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML as
an agent communication language. In CIKM ’94: Proceedings of the third
international conference on Information and knowledge management, pages
456–463, New York, NY, USA, 1994. ACM.

[FGK09] Mary E. Foster, Manuel Giuliani, and Alois Knoll. Comparing objective
and subjective measures of usability in a human-robot dialogue system. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2 - Volume 2, ACL ’09, pages 879–887, Stroudsburg,
PA, USA, 2009. Association for Computational Linguistics.

[Fin99] Gernot A. Fink. Developing HMM-based recognizers with ESMERALDA.
In Proceedings of the Second International Workshop on Text, Speech and
Dialogue, TSD ’99, pages 229–234, London, UK, UK, 1999. Springer-Verlag.

[Fon03] Terrence W. Fong. A survey of socially interactive robots. Robotics and
Autonomous Systems, 42(3-4):143–166, March 2003.

[FTB01] Terrence W. Fong, Charles Thorpe, and Charles Baur. Collaboration, Dia-
logue, and Human-Robot Interaction. In Proceedings of the 10th International
Symposium of Robotics Research, London, 2001. Springer Verlag.

[FW07] Jannik Fritsch and Sebastian Wrede. An Integration Framework for Develop-
ing Interactive Robots, volume 30 of Springer Tracts in Advanced Robotics,
pages 291–305. Springer, Berlin, 2007.

Bibliography 165

[Gat08] Ioannis Gatsoulis. Performance metrics and human-robot interaction for
teleoperated systems by. Mechanical Engineering, 2008.

[GDR+08] Sudeep Gandhe, David DeVault, Antonio Roque, Bilyana Martinovski, Ron
Artstein, Anton Leuski, Jillian Gerten, and David R. Traum. From domain
specification to virtual humans: An integrated approach to authoring tactical
questioning characters. In Proceedings of Interspeech, Brisbane, Australia,
2008. International Speech Communication Association (ISCA).

[GSBR99] Dan Gruen, Candy Sidner, Carolyn Boettner, and Charles Rich. A collabo-
rative assistant for email. In CHI ’99: CHI ’99 extended abstracts on Human
factors in computing systems, pages 196–197, New York, NY, USA, 1999.
ACM Press.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8:231–274, 1987.

[HDM+90] Lynette Hirschman, Deborah A. Dahl, Donald P. McKay, Lewis M. Norton,
and Marcia C. Linebarger. Beyond class A: a proposal for automatic eval-
uation of discourse. In Proceedings of the workshop on Speech and Natural
Language, HLT ’90, pages 109–113, Stroudsburg, PA, USA, 1990. Association
for Computational Linguistics.

[HG00] Kate S. Hone and Robert Graham. Towards a tool for the Subjective
Assessment of Speech System Interfaces (SASSI). Nat. Lang. Eng., 6(3-
4):287–303, 2000.

[HHB99] Mark G. Heather, Heather Holmback, and Jeffrey Bradshaw. What Is a Con-
versation Policy? In Workshop on Specifying and Implementing Conversation
Policies, Autonomous Agents ’99, pages 118–131, 1999.

[HHS+10] Nick Hawes, Marc Hanheide, Kristoffer Sjöö, Alper Aydemir, Patric Jensfelt,
Moritz Göbelbecker, Michael Brenner, Hendrik Zender, Pierre Lison, Ivana
Kruijff-Korbayov, Geert-Jan Kruijff, and Michael Zillich. Dora the explorer:
A motivated robot. In AAMAS ’10: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems, pages 1617–1618.
International Foundation for Autonomous Agents and Multiagent Systems,
May 2010.

[HKK+08] Frank Hegel, Soeren Krach, Tilo Kircher, Britta Wrede, and Gerhard Sagerer.
Theory of mind (ToM) on robots: a functional neuroimaging study. In
Proceedings of the 3rd ACM/IEEE international conference on Human robot
interaction, HRI ’08, pages 335–342, New York, NY, USA, 2008. ACM.

166 Bibliography

[HLI+10] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Pascal Fua, and Nassir
Navab. Dominant orientation templates for real-time detection of texture-less
objects. Computer Vision and Pattern Recognition, IEEE Computer Society
Conference on, 0:2257–2264, 2010.

[HM06] Melita Hajdinjak and France Mihelic. The PARADISE Evaluation Framework:
Issues and Findings. Computational Linguistics, 32(2):263–272, June 2006.

[HMP08] Chin C. Ho, Karl F. MacDorman, and Z. A. Dwi D. Pramono. Human
emotion and the uncanny valley: a GLM, MDS, and Isomap analysis of robot
video ratings. In Proceedings of the 3rd ACM/IEEE international conference
on Human robot interaction, HRI ’08, pages 169–176, New York, NY, USA,
2008. ACM.

[HP93] Lynette Hirschman and Christine Pao. The cost of errors in a spoken language
system. In EUROSPEECH’93, 1993.

[HR10] Philip Hanson and Charles Rich. A Non-Modal Approach to Integrating Dia-
logue and Action. In AIIDE 2010: AI and Interactive Digital Entertainment
Conference, 2010.

[HSW+06] Frank Hegel, Thorsten Spexard, Britta Wrede, Gernot Horstmann, and
Thurid Vogt. Playing a different imitation game: Interaction with an empathic
android robot. In Humanoid Robots, 2006 6th IEEE-RAS International
Conference on, pages 56 –61, 2006.

[Hul00] Joris Hulstijn. Dialogue Games are Recipes for Joint Action. In Proceedings
of Gotalog ’00, 4 th Workshop on the Semantics and Pragmatics of Dialogues,
Gothenburg, Sweden, pages 00–5, 2000.

[HWS+03] Stefan W. Hamerich, Yu-Fang H. Wang, Volker Schubert, Volker Schless,
and Stefan Igel. XML-based dialogue descriptions in the GEMINI project.
In Berliner XML Tage, pages 404–412, 2003.

[HWS06] Sonja Hüwel, Britta Wrede, and Gerhard Sagerer. Robust speech under-
standing for multi-modal human-robot communication. In 15th International
Symposium on Robot and Human Interactive Communication (RO-MAN),
pages 45–50. IEEE Press, IEEE Press, 2006.

[IST+10] Naoto Iwahashi, Komei Sugiura, Ryo Taguchi, Takayuki Nagai, and Tadahiro
Taniguchi. Robots that learn to communicate: A developmental approach to
personally and physically situated human-robot conversations. In AAAI Fall
Symposium: Dialog with Robots. AAAI, 2010.

[KFS10] Rachel Kirby, Jodi Forlizzi, and Reid Simmons. Affective social robots.
Robotics and Autonomous Systems, 58:322–332, March 2010.

Bibliography 167

[KGK+09] Mare Koit, Olga Gerassimenko, Riina Kasterpalu, Andriela Raabis, and
Krista Strandson. Towards computer-human interaction in natural language.
International Journal of Computer Applications in Technology, 34:291–297,
March 2009.

[Kir96] Jurek Kirakowski. Usability Evaluation in Industry, chapter The Software
Usability Measurement Inventory: Background and Usage, pages 169–177.
London: Taylor & Francis, 1996.

[KJL10] Geert-Jan M Kruijff, Miroslav Janicek, and Pierre Lison. Continual processing
of situated dialogue in human-robot collaborative activities. In RO-MAN,
2010 IEEE, pages 594 –599, 2010.

[KKERK03] Ivana Kruijff-Korbayová, Stina Ericsson, Kepa J. Rodríguez, and Elena
Karagjosova. Producing contextually appropriate intonation in an
information-state based dialogue system. In Proceedings of the tenth confer-
ence on European chapter of the Association for Computational Linguistics -
Volume 1, EACL ’03, pages 227–234, Stroudsburg, PA, USA, 2003. Associa-
tion for Computational Linguistics.

[Klo10] David Klotz. Modeling engagement in a multi-party human-robot dialog.
Masters thesis, Bielefeld University, 2010.

[Kön09] Ralf König. State-Based Modeling Method for Multiagent Conversation
Protocols and Decision Activities. In Jaime G. Carbonell, Jörg Siekmann,
Ryszard Kowalczyk, Jörg P. Müller, Huaglory Tianfield, and Rainer Unland,
editors, Agent Technologies, Infrastructures, Tools, and Applications for E-
Services, volume 2592 of Lecture Notes in Computer Science, chapter 13,
pages 151–166. Springer, Berlin, Heidelberg, 2009.

[KWK07] Stephan Kirstein, Heiko Wersing, and Edgar Körner. A biologically motivated
visual memory architecture for online learning of objects. Neural Networks,
2007.

[KWL99] Candace A. Kamm, Marilyn A. Walker, and Diane J. Litman. Evaluating
Spoken Language Systems. In American Voice InputOutput Society AVIOS,
1999.

[KWP+11] David Klotz, Johannes Wienke, Julia Peltason, Britta Wrede, Sebastian
Wrede, Vasil Khalidov, and Jean-Marc Odobez. Engagement-based multi-
party dialog with a humanoid robot. In SIGDIAL 2011 Conference, page
341–343. Association for Computational Linguistics, Association for Compu-
tational Linguistics, 17/06/2011 2011.

[LBGP01] Oliver Lemon, Anne Bracy, Alexander Gruenstein, and Stanley Peters. The
WITAS multi-modal dialogue system. 2001.

168 Bibliography

[Lem03] Oliver Lemon. Managing dialogue interaction: A multi-layered approach. In
Proceedings of the 4th SIGDial Workshop on Discourse and Dialogue, 2003.

[Lem04] Oliver Lemon. Context-sensitive speech recognition in ISU dialogue sys-
tems: results for the grammar switching approach. In 8th Workshop on the
Semantics and Pragmatics of the Dialogue, CATALOGUE’04, 2004.

[Lev83] Stephen Levinson. Pragmatics. MIT Press, Cambridge, 1983.

[LF94] Yannis Labrou and Tim Finin. A semantics approach for KQML—a
general purpose communication language for software agents. In Proceed-
ings of the third international conference on Information and knowledge
management, CIKM ’94, pages 447–455, New York, NY, USA, 1994. ACM.

[LGBP02] Oliver Lemon, Alexander Gruenstein, Alexis Battle, and Stanley Peters.
Multi-tasking and collaborative activities in dialogue systems. In Proceedings
of the 3rd SIGdial workshop on Discourse and dialogue, pages 113–124,
Morristown, NJ, USA, 2002. Association for Computational Linguistics.

[LHL+09] Christian Lang, Marc Hanheide, Manja Lohse, Heiko Wersing, and Gerhard
Sagerer. Feedback interpretation based on facial expressions in human–robot
interaction. In International Symposium on Robot and Human Interactive
Communication (RO-MAN). IEEE, 2009.

[LHRS09] Manja Lohse, Marc Hanheide, Katharina J. Rohlfing, and Gerhard Sagerer.
Systemic interaction analysis (sina) in hri. In Proceedings of the 4th
ACM/IEEE international conference on Human robot interaction, HRI ’09,
pages 93–100, New York, NY, USA, 2009. ACM.

[LHS00] Diane J. Litman, Julia B. Hirschberg, and Marc Swerts. Predicting auto-
matic speech recognition performance using prosodic cues. In Proceedings of
NAACL-00, pages 218–225, 2000.

[LHS+07] Manja Lohse, Frank Hegel, Agnes Swadzba, Katharina Rohlfing, Sven
Wachsmuth, and Britta Wrede. What can i do for you? appearance and
application of robots. In Proceedings of “The Reign of Catz and Dogz? The
role of virtual creatures in a computerised society”, AISB’07, pages 121–126.
Newcastle University, 2007.

[LHS+10] Ingo Lütkebohle, Frank Hegel, Simon Schulz, Matthias Hackel, Britta Wrede,
Sven Wachsmuth, and Gerhard Sagerer. The Bielefeld Anthropomorphic
Robot Head ‘‘Flobi’’. In 2010 IEEE International Conference on Robotics
and Automation. IEEE, 2010.

Bibliography 169

[LHW+05] Shuyin Li, Axel Haasch, Britta Wrede, Jannik Fritsch, and Gerhard Sagerer.
Human-style interaction with a robot for cooperative learning of scene objects.
In Proceedings of the 7th international conference on Multimodal interfaces,
ICMI ’05, pages 151–158, New York, NY, USA, 2005. ACM.

[Li07] Shuyin Li. Multi-modal Interaction Management for a Robot Companion.
Phd, Bielefeld University, Bielefeld, 2007.

[LKF+04] Shuyin Li, Marcus Kleinehagenbrock, Jannik Fritsch, Britta Wrede, and
Gerhard Sagerer. “BIRON, let me show you something”: evaluating the
interaction with a robot companion. In Proceedings of the 2004 IEEE
International Conference on Systems, Man and Cybernetics, pages 2827–
2834, 2004.

[LLC+00] Staffan Larsson, Peter Ljunglöf, Robin Cooper, Elisabet Engdahl, and Stina
Ericsson. Godis: an accommodating dialogue system. In ANLP/NAACL
Workshop on Conversational systems, ANLP/NAACL-ConvSyst ’00, pages 7–
10, Stroudsburg, PA, USA, 2000. Association for Computational Linguistics.

[LM77] James A. Levin and James A. Moore. Dialogue-games: metacommunication
structures for natural language interaction. Cognitive Science, 1(4):395–420,
1977.

[LPH+10] Ingo Lütkebohle, Julia Peltason, Robert Haschke, Britta Wrede, and Sven
Wachsmuth. The curious robot learns grasping in multi-modal interaction. In
Interactive Communication for Autonomous Intelligent Robots, Anchorage,
AK, USA, 2010. video submission with abstract.

[LPP+11] Ingo Lütkebohle, Roland Philippsen, Vijay Pradeep, Eitan Marder-Eppstein,
and Sven Wachsmuth. Generic middleware support for coordinating robot
software components: The Task-State-Pattern. Journal of Software Engi-
neering for Robotics, 1, 2011.

[LPS+09] Ingo Lütkebohle, Julia Peltason, Lars Schillingmann, Britta Wrede, Sven
Wachsmuth, Christof Elbrechter, and Robert Haschke. The curious robot -
structuring interactive robot learning. In IEEE International Conference on
Robotics and Automation, pages 4156 –4162, may 2009.

[LPWW11] Ingo Lütkebohle, Julia Peltason, Britta Wrede, and Sven Wachsmuth.
The Task-State Coordination Pattern, with applications in Human-Robot-
Interaction. In Learning, Planning and Sharing Robot Knowledge for Human-
Robot Interaction, number 10401 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2011. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany.

170 Bibliography

[LRGB99] Lori Lamel, Sophie Rosset, Jean-Luc Gauvain, and Samir Bennacef. The
Limsi Arise system for train travel information. In IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 501–504, 1999.

[LSR06] Tim Laue, Kai Spiess, and Thomas Röfer. Simrobot - a general physical
robot simulator and its application in robocup. In A. Bredenfeld, A. Jacoff,
I. Noda, and Y. Takahashi, editors, RoboCup 2005: Robot Soccer World Cup
IX, volume 4020 of Lecture Notes in Artificial Intelligence, pages 173–183.
Springer, 2006.

[LT00] Staffan Larsson and David R. Traum. Information state and dialogue manage-
ment in the trindi dialogue move engine toolkit. Nat. Lang. Eng., 6:323–340,
September 2000.

[Lüt11] Ingo Lütkebohle. Coordination and composition patterns in the "Curious
Robot" scenario. PhD thesis, Bielefeld, Germany, 2011.

[MAF+99] Toshihiro Matsui, Hideki Asoh, John Fry, Youichi Motomura, Futoshi Asano,
Takio Kurita, Isao Hara, and Nobuyuki Otsu. Integrated natural spoken
dialogue system of Jijo-2 mobile robot for office services. In Sixteenth National
Conference on Artificial intelligence and the Eleventh Innovative Applications
of Artificial Intelligence conference, pages 621–627, Menlo Park, CA, USA,
1999. AAAI.

[Man88] William C. Mann. Dialogue games: Conventions of human interaction.
Argumentation, 2(4):511–532, November 1988.

[MB95] Mark S. Fox Mihai Barbuceanu. Cool: A language for describing coordination
in multi agent systems. In First International Conference on Multiagent
Systems, pages 17–24, 1995.

[MCM99] David L. Martin, Adam J. Cheyer, and Douglas B. Moran. The open agent
architecture: A framework for building distributed software systems. Applied
Artificial Intelligence, 13(1-2):91–128, January-March 1999.

[McT04] Michael F. McTear. Spoken dialogue technology - toward the conversational
user interface. Springer, 2004.

[Mea55] George H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

[MEBF+10] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt
Konolige. The Office Marathon: Robust navigation in an indoor office
environment. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 300–307, May 2010.

Bibliography 171

[MES08] Sebastian Möller, Klaus-Peter Engelbrecht, and Robert Schleicher. Predicting
the quality and usability of spoken dialogue services. Speech Communication,
50(8-9):730–744, August 2008.

[MHF06] Bilge Mutlu, Jessica K. Hodgins, and Jodi Forlizzi. A Storytelling Robot:
Modeling and Evaluation of Human-like Gaze Behavior. In Proceedings of
HUMANOIDS’06, 2006 IEEE-RAS International Conference on Humanoid
Robots. IEEE, 2006.

[Nie94] Jakob Nielsen. Usability engineering. Morgan Kaufmann Publishers, San
Francisco, Calif., 1994.

[NIN+10] Mikio Nakano, Naoto Iwahashi, Takayuki Nagai, Taisuke Sumii, Xiang Zuo,
Ryo Taguchi, Takashi Nose, Akira Mizutani, Tomoaki Nakamura, Muhan-
mad Attamim, Hiromi Narimatsu, Kotaro Funakoshi, and Yuji Hasegawa.
Grounding new words on the physical world in multi-domain human-robot
dialogues. In AAAI Fall Symposium: Dialog with Robots. AAAI, 2010.

[NKS06] Tatsuya Nomura, Takayuki Kanda, and Tomohiro Suzuki. Experimental
investigation into influence of negative attitudes toward robots on human-
robot interaction. AI & Society, 20:138–150, February 2006.

[NKSK04] Tatsuya Nomura, Takayuki Kanda, Tomohiro Suzuki, and Kennsuke Kato.
Psychology in human-robot communication: an attempt through investigation
of negative attitudes and anxiety toward robots. In 13th IEEE International
Workshop on Robot and Human Interactive Communication, ROMAN 2004,
pages 35–40, 2004.

[NKSK08] Tatsuya Nomura, Takayuku Kanda, Tomohiro Suzuki, and Kennsuke Kato.
Prediction of human behavior in human–robot interaction using psychological
scales for anxiety and negative attitudes toward robots. Robotics, IEEE
Transactions on, 24(2):442 –451, april 2008.

[NMH+99] Mikio Nakano, Noboru Miyazaki, Jun-ichi Hirasawa, Kohji Dohsaka, and
Takeshi Kawabata. Understanding unsegmented user utterances in real-
time spoken dialogue systems. In 37th annual meeting of the Association for
Computational Linguistics on Computational Linguistics, ACL ’99, pages 200–
207, Stroudsburg, PA, USA, 1999. Association for Computational Linguistics.

[NMY+00] Mikio Nakano, Noboru Miyazaki, Norihito Yasuda, Akira Sugiyama, Jun-
ichi Hirasawa, Kohji Dohsaka, and Kiyoaki Aikawa. WIT: A Toolkit for
Building Robust and Real-Time Spoken Dialogue. In Proceedings of SIGdial
Workshop,150-159, pages 150–159, 2000.

172 Bibliography

[OM00] Ian M. O’Neill and Michael F. McTear. Object-oriented modelling of spoken
language dialogue systems. Natural Language Engineering, 6(3& 4):341–362,
2000.

[ON98] P. D. O’Brien and Richard C. Nicol. FIPA - Towards a Standard for Software
Agents. BT Technology Journal, 16:51–59, July 1998.

[Par96] Van Dyke Parunak. Visualizing Agent Conversations: Using Enhanced Dooley
Graphs for Agent Design and Analysis. In Proceedings of Second International
Conference on Multi-Agent Systems (ICMAS’96), pages 275–282, 1996.

[PBRH07] Christopher Parlitz, Winfried Baum, Ulrich Reiser, and Martin Hägele.
Intuitive Human-Machine-Interaction and Implementation on a Household
Robot Companion. In Proceedings of the 12th International Conference on
Human-Computer Interaction, 2007.

[PCR+08] Xavier Perrin, Ricardo Chavarriaga, Céline Ray, Roland Siegwart, and José
del. A comparative psychophysical and EEG study of different feedback
modalities for HRI. In Proceedings of the 3rd ACM/IEEE international
conference on Human robot interaction, HRI ’08, pages 41–48, New York,
NY, USA, 2008. ACM.

[Pel10] Julia Peltason. Position paper. In Young Reseachers’ Roundtable on Spoken
Dialog Systems, Tokyo, Japan, 2010.

[PH05] Roberto Pieraccini and Juan Huerta. Where do we go from here? Research
and commercial spoken dialog systems. In Proceeedings of the 6th SIGDdial
Worlshop on Discourse and Dialogue, pages 1–10, September 2005.

[PLL+95] Michael Peters, Bruno Laeng, Kerry Latham, Marla Jackson, Raghad Zaiy-
ouna, and Chris Richardson. A redrawn Vandenberg and Kuse mental
rotations test: different versions and factors that affect performance. Brain
and cognition, 28(1):39–58, June 1995.

[PLWH09] Julia Peltason, Ingo Lütkebohle, Britta Wrede, and Marc Hanheide. Mixed
initiative in interactive robotic learning. In Workshop on Improving Human-
Robot Communication with Mixed-Initiative and Context-Awareness, Toyama,
Japan, 2009.

[Poh09] Marian Pohling. Verhaltensweisen zur Steuerung der Blickrichtung eines
humanoiden Roboters. Technical report, Bielefeld University, 2009. Bachelor
Thesis.

[PRW13] Julia Peltason, Hannes Rieser, and Sven Wachsmuth. The hand is no
banana – on communicating natural kind terms to a robot. Alignment in
Communication: Towards a New Theory of Communication. 2013.

Bibliography 173

[PRWL12] Julia Peltason, Nina Riether, Britta Wrede, and Ingo Lütkebohle. Talking
with robots about objects: a system-level evaluation in hri. In HRI, pages
479–486, 2012.

[PRWW12] Julia Peltason, Hannes Rieser, Sven Wachsmuth, and Britta Wrede. The hand
is not a banana. on developing a robot’s grounding facilities. Proceedings
of SemDial 2012 (SeineDial): The 16th Workshop on the Semantics and
Pragmatics of Dialogue, pages 179–181, 2012.

[PRWW13] Julia Peltason, Hannes Rieser, Sven Wachsmuth, and Britta Wrede. On
grounding natural kind terms in human-robot communication. KI - Kün-
stliche Intelligenz, 27(2):107–118, 2013.

[PSS+09] Julia Peltason, Frederic H.K. Siepmann, Thorsten P. Spexard, Britta Wrede,
Marc Hanheide, and Elin A. Topp. Mixed-initiative in human augmented
mapping. In Robotics and Automation, 2009. ICRA ’09. IEEE International
Conference on, pages 2146 –2153, 2009.

[PWa] Julia Peltason and Britta Wrede. A mixed-initiative approach to interactive
robot tutoring. In E. Prassler, W. Burgard, U. Handmann, R. Haschke,
M. Hägele, G. Lawitzky, B. Nebel, W. Nowak, P. Pläger, U. Reiser, and
M. Zöllner, editors, Towards Service Robots for Everyday Environments.
Springer. In press.

[PWb] Julia Peltason and Britta Wrede. Structuring human-robot-interaction in
tutoring scenarios. In E. Prassler, W. Burgard, U. Handmann, R. Haschke,
M. Hägele, G. Lawitzky, B. Nebel, W. Nowak, P. Pläger, U. Reiser, and
M. Zöllner, editors, Towards Service Robots for Everyday Environments.
Springer. In press.

[PW10a] Julia Peltason and Britta Wrede. Modeling human-robot interaction based on
generic interaction patterns. In AAAI Fall Symposium: Dialog with Robots.
AAAI, 2010.

[PW10b] Julia Peltason and Britta Wrede. Pamini: A framework for assembling
mixed-initiative human-robot interaction from generic interaction patterns.
In SIGDIAL Conference, pages 229–232, 2010.

[PW11] Julia Peltason and Britta Wrede. The curious robot as a case-study for
comparing dialog systems. AI Magazine, 32(4):85–99, 2011.

[PWSS11] Karola Pitsch, Sebastian Wrede, Jens-Christian Seele, and Luise Süssenbach.
Attitude of german museum visitors towards an interactive art guide robot. In
Proceedings of the 6th international conference on Human-robot interaction,
HRI ’11, pages 227–228, New York, NY, USA, 2011. ACM.

174 Bibliography

[RDO11] Pierre Rouanet, Fabien Danieau, and Pierre Y. Oudeyer. A robotic game
to evaluate interfaces used to show and teach visual objects to a robot
in real world condition. In 6th ACM/IEEE International Conference on
Human-robot interaction, HRI ’11, 2011.

[RE07] Antoine Raux and Maxine Eskenazi. A multi-layer architecture for semi-
synchronous event-driven dialogue management. In IEEE Workshop on
Automatic Speech Recognition & Understanding, pages 514–519, 2007.

[RE09] Antoine Raux and Maxine Eskenazi. A finite-state turn-taking model for
spoken dialog systems. In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, NAACL ’09, pages 629–637, Stroudsburg, PA,
USA, 2009. Association for Computational Linguistics.

[RHSR07] Frank Röthling, Robert Haschke, Jochen J. Steil, and Helge J. Ritter. Plat-
form portable anthropomorphic grasping with the bielefeld 20-dof shadow
and 9-dof tum hand. In Proceedings of International Conference on Intelligent
Robots and Systems (IROS), pages 2951–2956, San Diego, California, USA,
Oct 2007. IEEE, IEEE.

[RJ96] Don Roberts and Ralph Johnson. Evolving Frameworks: A Pattern Language
for Developing Object-Oriented Frameworks. In Proceedings of the Third
Conference on Pattern Languages and Programming, volume 3, 1996.

[RLB+05] Antoine Raux, Brian Langner, Dan Bohus, Alan W. Black, and Maxine
Eskenazi. Let’s go public! taking a spoken dialog system to the real world.
In INTERSPEECH 2005, 2005.

[RLGR02] Charles Rich, Neal Lesh, Andrew Garland, and Jeff Rickel. A plug-in
architecture for generating collaborative agent responses. In Proceedings of
the first international joint conference on Autonomous agents and multiagent
systems: part 2, AAMAS ’02, pages 782–789, New York, NY, USA, 2002.
ACM.

[Ros10] Robert Ross. Putting things in context: Situated language understanding
for human-robot dialog(ue). In AAAI Fall Symposium: Dialog with Robots.
AAAI, 2010.

[RRT10] Susan Robinson, Antonio Roque, and David Traum. Dialogues in Context:
An Objective User-Oriented Evaluation Approach for Virtual Human Di-
alogue. In Nicoletta C. Chair, Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors,
Proceedings of the Seventh conference on International Language Resources

Bibliography 175

and Evaluation (LREC’10), Valletta, Malta, May 2010. European Language
Resources Association (ELRA).

[RS98] Charles Rich and Candace L. Sidner. COLLAGEN: A Collaboration Manager
for Software Interface Agents. User Modeling and User-Adapted Interaction,
8:315–350, 1998.

[RS05] Norbert Reithinger and Daniel Sonntag. An integration framework for a
mobile multimodal dialogue system accessing the semantic web. In INTER-
SPEECH, pages 841–844, 2005.

[RS10] Charles Rich and Candace Sidner. Collaborative discourse, engagement and
always-on relational agents. In AAAI Fall Symposium: Dialog with Robots,
2010.

[RSL01] Charles Rich, Candace L. Sidner, and Neal Lesh. COLLAGEN: Applying
collaborative discourse theory to human-computer interaction. AI Magazine,
Special Issue on Intelligent User Interfaces, 22(4):15–25, 2001.

[SC09] Maria Staudte and Matthew W. Crocker. Visual attention in spoken human-
robot interaction. In Proceedings of the 4th ACM/IEEE international con-
ference on Human robot interaction, HRI ’09, pages 77–84, New York, NY,
USA, 2009. ACM.

[SCd+98] Stephen Sutton, Ronald Cole, Jacques de Villiers, Johan Schalkwyk, Pieter
Vermeulen, Mike Macon, Yonghong Yan, Ed Kaiser, Rrian Rundle, Khaldoun
Shobaki, Paul Hosom, Alex Kain, Johan Wouters, Domonic Massaro, and
Michael Cohen. Universal speech tools: the CSLU toolkit. In International
Conference on Spoken Language Processing, pages 3221–3224, 1998.

[Sea69] John R. Searle. Speech acts : an essay in the philosophy of language. Cam-
bridge University Press, London, 1969.

[SEHR10] Jan Steffen, Christof Elbrechter, Rorbert Haschke, and Helge J. Ritter. Bio-
inspired motion strategies for a bimanual manipulation task. In International
Conference on Humanoid Robots (Humanoids), 2010.

[SFK+06] Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz,
Alan Schultz, and Michael Goodrich. Common metrics for human-robot
interaction. In Proceedings of the 1st ACM SIGCHI/SIGART conference on
Human-robot interaction, HRI ’06, pages 33–40, New York, NY, USA, 2006.
ACM.

[SHL+98] Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao, Philipp Schmid,
and Victor Zue. Galaxy-ii: A reference architecture for conversational system

176 Bibliography

development. In International Conference on Spoken Language Processing,
INTERSPEECH, pages 931–934, 1998.

[Shn86] Ben Shneiderman. Designing the user interface: strategies for effective
human-computer interaction. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[SIKN10] Komei Sugiura, Naoto Iwahashi, Hisashi Kawai, and Satoshi Nakamura.
Active learning for generating motion and utterances in object manipulation
dialogue tasks. In AAAI Fall Symposium: Dialog with Robots. AAAI, 2010.

[SKG+09] Satoru Satake, Takayuki Kanda, Dylan F. Glas, Michita Imai, Hiroshi
Ishiguro, and Norihiro Hagita. How to approach humans?: strategies for
social robots to initiate interaction. In Proceedings of the 4th ACM/IEEE
international conference on Human robot interaction, HRI ’09, pages 109–116,
New York, NY, USA, 2009. ACM.

[SKLL04] Candace L. Sidner, Cory D. Kidd, Christopher Lee, and Neal Lesh. Where
to look: a study of human-robot engagement. In Proceedings of the 9th
international conference on Intelligent user interfaces, IUI ’04, pages 78–84,
New York, NY, USA, 2004. ACM.

[SLK+05] Candace L. Sidner, Christopher Lee, Cory D. Kidd, Neal Lesh, and Charles
Rich. Explorations in engagement for humans and robots. Artifical Intelli-
gence, 166(1-2):140–164, 2005.

[SMHS07] Svetlana Stenchikova, Basia Mucha, Sarah Hoffman, and Amanda Stent.
RavenCalendar: a multimodal dialog system for managing a personal calendar.
In Proceedings of Human Language Technologies: The Annual Conference of
the North American Chapter of the Association for Computational Linguistics:
Demonstrations, NAACL-Demonstrations ’07, pages 15–16, Stroudsburg, PA,
USA, 2007. Association for Computational Linguistics.

[SNC+96] Stephen Sutton, David G. Novick, Ronald Cole, Pieter Vermeulen, Jacques
de Villiers, Johan Schalkwyk, and Mark Fanty. Building 10,000 spoken
dialogue systems. In International Conference on Spoken Language Processing,
volume 2, pages 709–712, 1996.

[Spi01] Dimitris Spiliotopoulos. Human-robot interaction based on spoken natural
language dialogue. In European Workshop on Service and Humanoid Robots,
2001.

[SS73] Emanuel A. Schegloff and Harvey Sacks. Opening up closings. Semiotica,
8(4):289–327, 1973.

Bibliography 177

[SS09] David Schlangen and Gabriel Skantze. A general, abstract model of incre-
mental dialogue processing. In EACL ’09: Proceedings of the 12th Conference
of the European Chapter of the Association for Computational Linguistics,
pages 710–718, Morristown, NJ, USA, 2009. Association for Computational
Linguistics.

[SW02] Stephanie Seneff and Chao Wang. Modelling Phonological Rules through
Linguistic Hierarchies. In Pronunciation Modeling and Lexicon Adaptation
for Spoken Language Technology (PMLA), pages 71–76, 2002.

[SWK08] Frank E. Schneider, Dennis Wildermuth, and Andreas Kräußling. Discus-
sion of exemplary metrics for multi-robot systems for formation navigation.
International Journal of Advanced Robotic Systems, 2008.

[SWP92] Elizabeth Shriberg, Elizabeth Wade, and Patti Price. Human-machine
problem solving using spoken language systems (SLS): factors affecting
performance and user satisfaction. In Proceedings of the workshop on Speech
and Natural Language, HLT ’91, pages 49–54, Stroudsburg, PA, USA, 1992.
Association for Computational Linguistics.

[SWWB11] Julie Shah, James Wiken, Brian Williams, and Cynthia Breazeal. Improved
human-robot team performance using chaski, a human-inspired plan execution
system. In Proceedings of the 6th international conference on Human-robot
interaction, HRI ’11, pages 29–36, New York, NY, USA, 2011. ACM.

[TBC+02a] Christian Theobalt, Johan Bos, Tim Chapman, A. Espinosa-Romero, Mark
Fraser, Gillian Hayes, Ewan Klein, Tetsushi Oka, and Richard Reeve. Talk-
ing to godot: Dialogue with a mobile robot. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2002), pages 1338–1343,
2002.

[TBC+02b] Christian Theobalt, Johan Bos, Tim Chapman, Arturo Espinosa-Romero,
Mark Fraser, Gillian Hayes, Ewan Klein, Tetsushi Oka, and Richard Reeve.
Talking to Godot: dialogue with a mobile robot. volume 2, pages 1338–1343
vol.2, 2002.

[TFBD00] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust
Monte Carlo Localization for Mobile Robots. Artificial Intelligence, 128(1-
2):99–141, 2000.

[TL03] David Traum and Staffan Larsson. The Information State Approach to
Dialogue Management, pages 325–353. Kluwer Academic Publishers, 2003.

[Top08] Elin A. Topp. Human-Robot Interaction and Mapping with a Service Robot:
Human Augmented Mapping. PhD thesis, 2008.

178 Bibliography

[Tra94] David R. Traum. A Computational Theory of Grounding in Natural Language
Conversation. PhD thesis, Rochester, NY, USA, 1994.

[Tri00] The TRAINS project: Natural spoken dialogue and interactive planning,
2000. http://www.cs.rochester.edu/research/cisd/projects/trains/
Accessed 20-Feb-2012.

[WBK99] Marilyn Anne Walker, Julie Boland, and Candace Kamm. The utility of
elapsed time as a usability metric for spoken dialogue systems. In ASRU99,
1999.

[WDW+06] Michael L. Walters, Kerstin Dautenhahn, Sarah N. Woods, Kheng Lee Koay,
I. René J. A. te Boekhorst, and David Lee. Exploratory studies on social
spaces between humans and a mechanical-looking robot. Connection Science,
18(4):429–439, 2006.

[WDWK07] Michael L. Walters, Kerstin Dautenhahn, Sarah N. Woods, and Kheng Lee
Koay. Robotic etiquette: results from user studies involving a fetch and
carry task. In Proceedings of the ACM/IEEE international conference on
Human-robot interaction, HRI ’07, pages 317–324, New York, NY, USA, 2007.
ACM.

[WFOB05] Michael White, Mary E. Foster, Jon Oberl, and Ash Brown. Using facial
feedback to enhance turn-taking in a multimodal dialogue system. In HCI
International, 2005.

[WHBS04] S. Wrede, M. Hanheide, C. Bauckhage, and G. Sagerer. An active memory as a
model for information fusion. In 7th International Conference on Information
Fusion, pages 198–205, 2004.

[Win86] Terry Winograd. A language/action perspective on the design of cooperative
work. In Conference on Computer-Supported Cooperative Work CSCW ’86,
pages 203–220, New York, NY, USA, 1986. ACM Press.

[WKL00] Marylin A. Walker, Candace Kamm, and Diane J. Litman. Towards develop-
ing general models of usability with PARADISE, 2000.

[WLKA97] Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, and Alicia Abella.
PARADISE: a framework for evaluating spoken dialogue agents. In 8th
Conference of the European Chapter of the Association for Computational
Linguistics, 1997.

[WLKA98] Marylin A. Walker, Diane J. Litman, Candace A. Kamm, and Alicia Abella.
Evaluating spoken dialogue agents with PARADISE: Two case studies. Com-
puter Speech & Language, pages 317–347, October 1998.

Bibliography 179

[WSZL11] Sven Wachsmuth, Frederic Siepmann, Leon Ziegler, and Florian Lier. Tobi -
team of bielefeld: The human-robot interaction system for robocup@home
2010. Technical report, Bielefeld University, 2011.

[WW11] Johannes Wienke and Sebastian Wrede. A middleware for collaborative
research in experimental robotics. In 2011 IEEE/SICE International Sympo-
sium on System Integration, SII2011. IEEE, IEEE, 2011.

List of Figures

2.1 A simple dialog graph for a travel system 9
2.2 The TRIPS architecture . 12
2.3 Collagen’s collaborative interface agent paradigm 13
2.4 Finite state machine for HRI . 16
2.5 PARADISE’s structure of objectives for spoken dialog performance 20

3.1 MALIN dialog system architecture . 33
3.2 RavenClaw dialog system architecture . 34
3.3 Ravenclaw result frame . 34
3.4 WITAS architecture . 35
3.5 Example KQML message . 36
3.6 The task state machine . 38
3.7 Example task specification . 40
3.8 Schematic PaMini architecture . 41
3.9 Use-case: Mixed task initiative . 42
3.10 Use-case: Integration of action execution and interaction 43
3.11 Use-case: Multitasking . 44
3.12 Use-case: Interactive Learning . 45
3.13 Winograd’s conversation for action . 48
3.14 Gandhe’s finite state machine modeling an offer subdialog. 52
3.15 Schematic graphical representation of an Interaction Pattern 53
3.16 Human Simple Action Request. 56
3.17 Robot Information Request With Explicit Confirmation 56
3.18 Schematic achitecture of the PaMini dialog manager 59
3.19 Processing user input . 60
3.20 Processing task requests . 61
3.21 Processing task events . 62
3.22 Traum’s transition network of grounding 65
3.23 Excerpt from an Interaction Pattern configuration. 67
3.24 Number of Interaction Patterns over time 69
3.25 Creation date of each Interaction Pattern 70

4.1 Ravenclaw’s task tree for the Curious Robot scenario. 73
4.2 Ravenclaw’s dialog task specification for the Grasp agency 75
4.3 Collagen’s recipes for the Robot Initiative goal. 78

181

182 List of Figures

4.4 RobotInitiative recipe, coded in Collagen’s task specification language. . . 79
4.5 Dipper’s information state definition and update rules for the label query. 82
4.6 PaMini’s dialog act configuration for the robot’s label query 86

5.1 Grounding-based dialog modeling in the Sunshine dialog 98
5.2 Overview of the implemented scenarios . 100

6.1 A scene from the Home-Tour scenario. 104
6.2 The BIRON platform . 106
6.3 Spurious detections in the Home-Tour . 106
6.4 The Curious Robot setup . 110
6.5 The CeBit setup . 112

7.1 Scenario overview. 123
7.2 Chaining together simple statements . 124
7.3 Components of the Curious Flobi system. 127
7.4 The different object referencing strategies. 134

8.1 The Receptionist Vince . 146
8.2 ToBi at 2011 RoboCup@Home challenge 146
8.3 Example dialog with Receptionist Vince 146
8.4 Example dialog from the 2011 RoboCup@Home challenge 147
8.5 Multi-party quiz game with Nao . 148
8.6 Nao explaining an exhibit . 148
8.7 Example dialog from the multi-party quiz game with Nao 148
8.8 Example dialog from the Art Exhibition Scenario 149
8.9 Example task from the PlaSta experiment 150
8.10 Example dialog from the PlaSta experiment. 150
8.11 Example dialog from the Sports Companion scenario 151
8.12 Playing memory with Flobi . 152
8.13 Example dialog from the Memory scenario 152

List of Tables

2.1 Confirmation strategies for a railway information system. 19
2.2 Sample of aspects investigated in interactive robots 25
2.3 Aspects of dialog modeling evaluated in this thesis. 29

3.1 The semantics of the task state updates. 39
3.2 List of all Interaction Pattern . 58

4.1 Example dialog for the Curious Robot implementation with Ravenclaw. . 74
4.2 Example dialog for the Curious Robot implementation with Collagen/Disco. 77
4.3 Interaction Patterns for the Curious Robot scenario with PaMini. 84
4.4 Example dialog for the Curious Robot implementation with PaMini . . . 85
4.5 Distinctive features of dialog modeling approaches. 89
4.6 Overview of the tasks given in the usability test 92
4.7 Subjects that solved the respective task up to the given percentage 93
4.8 Average time needed to completely solve the respective task 93

5.1 Usage of Interaction Patterns in the different scenarios 102

6.1 Example dialogs in the Home-Tour . 105
6.2 Example dialogs in the Curious Robot scenario. 109
6.3 Replies after System Initiative . 112
6.4 Proportion of correctly and incorrectly understood utterances. 115
6.5 Breakdown of non-understandings into the different error causes 116

7.1 Strategies to deal with the different speech recognition error sources. . . . 119
7.2 Example utterances from the WOz object teaching study. 120
7.3 Concept accuracy for the test grammar. 122
7.4 Interaction capabilities of the system . 126
7.5 Objective measures. 133
7.6 Ratios for out-of-capability utterances. 133
7.7 Ratios for referencing strategies. 134
7.8 Subjective measures. 136
7.9 Performance functions . 137
7.10 Significant between-subjects differences in subjective measures. 139
7.11 Significant between-subjects differences in objective measures. 139

183

A XML Schema Definition for the Pattern
Configuration Language

<?xml version ="1.0"?>
<xsd:schema xmlns:xsd =" http: // www.w3.org /2001/ XMLSchema ">

<xsd:element name=" patternConfiguration ">
<xsd:complexType >

<xsd:sequence >
<xsd:group ref=" dialogActs " minOccurs ="0" maxOccurs =" unbounded "/>

</ xsd:sequence >
<xsd:attribute name="name" type=" xsd:string " use=" required "/>

</ xsd:complexType >
</ xsd:element >

<xsd:group name=" dialogActs ">
<xsd:sequence >

<xsd:element ref=" humanDialogAct " minOccurs ="0" maxOccurs =" unbounded "/>
<xsd:element ref=" robotDialogAct " minOccurs ="0" maxOccurs =" unbounded "/>

</ xsd:sequence >
</ xsd:group >

<xsd:element name=" humanDialogAct ">
<xsd:complexType >

<xsd:sequence >
<xsd:element ref=" param " minOccurs ="0"/>

</ xsd:sequence >
<xsd:attribute name=" state " type=" xsd:string " use=" required "/>
<xsd:attribute name=" xpath " type=" xsd:string "/>
<xsd:attribute name="type" type=" xsd:string " use=" required "/>

</ xsd:complexType >
</ xsd:element >

<xsd:element name=" param ">
<xsd:complexType >

<xsd:attribute name="type" type=" xsd:string " fixed =" String " use=" required "/>
<xsd:attribute name="name" type=" xsd:string " use=" required "/>
<xsd:attribute name=" xpath " type=" xsd:string " use=" required "/>

</ xsd:complexType >
</ xsd:element >

<xsd:element name=" robotDialogAct ">
<xsd:complexType >

<xsd:sequence >
<xsd:element ref=" output " maxOccurs ="1"/>
<xsd:element ref=" rephrasing " minOccurs ="0" maxOccurs =" unbounded "/>

</ xsd:sequence >
<xsd:attribute name=" state " type=" xsd:string " use=" required "/>
<xsd:attribute name="type" type=" xsd:string " use=" required "/>

</ xsd:complexType >
</ xsd:element >

<xsd:element name=" output ">
<xsd:complexType >

<xsd:all >
<xsd:element ref=" verbalization " minOccurs ="0"/>
<xsd:element ref=" point " minOccurs ="0"/>
<xsd:element ref=" mimic " minOccurs ="0"/>
<xsd:element ref=" vince " minOccurs ="0"/>

185

186 A XML Schema Definition for the Pattern Configuration Language

<xsd:element ref=" naoBehavior " minOccurs ="0"/>
<xsd:element ref=" motionSpeechSync " minOccurs ="0"/>

</ xsd:all >
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" rephrasing ">
<xsd:complexType >

<xsd:all >
<xsd:element ref=" verbalization " minOccurs ="0"/>
<xsd:element ref=" point " minOccurs ="0"/>
<xsd:element ref=" mimic " minOccurs ="0"/>
<xsd:element ref=" vince " minOccurs ="0"/>
<xsd:element ref=" naoBehavior " minOccurs ="0"/>
<xsd:element ref=" motionSpeechSync " minOccurs ="0"/>

</ xsd:all >
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" verbalization ">
<xsd:complexType >

<xsd:attribute name="text" type=" xsd:string " use=" required "/>
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" point ">
<xsd:complexType >

<xsd:attribute name=" coordinatesXpath " type=" xsd:string " use=" required "/>
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" mimic ">
<xsd:complexType >

<xsd:attribute name="name" type=" xsd:string " use=" required "/>
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" vince ">
<xsd:complexType >

<xsd:sequence >
<xsd:element ref="act" minOccurs ="0" maxOccurs =" unbounded "/>

</ xsd:sequence >
</ xsd:complexType >

</ xsd:element >

<xsd:element name="act">
<xsd:complexType >

<xsd:attribute name="text" type=" xsd:string " use=" required "/>
<xsd:attribute name=" function " type=" xsd:string " use=" required "/>

</ xsd:complexType >
</ xsd:element >

<xsd:element name=" naoBehavior ">
<xsd:complexType >

<xsd:attribute name=" behavior " type=" xsd:string " use=" required "/>
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" motionSpeechSync ">
<xsd:complexType >

<xsd:attribute name="text" type=" xsd:string " use=" required "/>
</ xsd:complexType >

</ xsd:element >
</ xsd:schema >

B The Pattern Library
Shown below are the graphical representations of all Interaction Patterns, as provided in PaMini’s
developer API. They have been generated automatically from the XML statechart definition
associated with each Interaction Pattern, using the open source graph visualization software
Graphviz.

Action Patterns
Human Simple Action Request

initiate
task(initiated)

H.request /
asserted

accepted / R.assert

refused

rejected / R.refuse

failed

failed / R.apologize

terminated

completed / R.ack

 /

 /

 /

Human Simple Action Request with Explicit Confirmation

await_conf

H.request / R.askForConf

initiate
task(initiated)

H.conf /

terminated

H.negate / R.ack

asserted

 accepted / R.assert

refused

 rejected / R.refuse

failed

 failed / R.apologize
 completed / R.ack

 /

 /

 /

Human Cancellable Action Request

initiate
task(initiated)

H.request /

asserted

accepted / R.assert

refused

rejected / R.refuse

failed

failed / R.apologize

terminated

completed / R.ack

cancel_requested
task(abort)

H.cancel /

 /

 /

 /

cancel_failed / R.refuse

canceled / R.ack

Human Cancellable Action Request with Explicit Confirmation

await_conf

H.request / R.askForConf

initiate
task(initiated)H.conf / terminated

H.negate / R.ack

asserted

accepted / R.assert

refused

rejected / R.refuse failed

failed / R.apologize

completed / R.ack

cancel_requested
task(abort)H.cancel /

 /

 /

 /
cancel_failed / R.refuse canceled / R.ack

187

188 B The Pattern Library

Robot Self-Initiated Simple Action

initiate
dlg-task(accepted)

task(initiated)

 / R.announce
asserted

 accepted / R.assert

refused
dlg-task(failed)

 rejected / R.refuse

failed
dlg-task(failed)

 failed / R.apologize

terminated
dlg-task(completed)

 completed / R.ack

 /

 /

 /

Robot Self-Initiated Cancellable Action

initiate
dlg-task(accepted)

task(initiated)

 / R.announce

asserted

 accepted / R.assert

refused
dlg-task(failed)

 rejected / R.refuse

failed
dlg-task(failed)

 failed / R.apologize

terminated
dlg-task(completed)

 completed / R.ack

cancel_requested
task-state(abort)

H.cancel /

 /

 /

 /

 cancel_failed / R.refuse

 canceled / R.ack

Robot Self-Initiated Cancellable Action with Explicit Confirmation

await_permission

 / R.ask

H.negate / R.ack

initiate
dlg-task(accepted)

task(initiated)

H.conf /
asserted

 accepted / R.assert

refused
dlg-task(failed)

 rejected / R.refuse

failed
dlg-task(failed)

 failed / R.apologize

terminated
dlg-task(completed)

 completed / R.ack

cancel_requested
task-state(abort)

H.cancel /

 /

 /

 /

 cancel_failed / R.refuse

 canceled / R.ack

Information Patterns
Human Information Request

asked
task(initiated)

H.question /
answered

completed / R.answer

failed

failed / R.apologize
 /
 /

Robot Simple Information Request

asked
dlg-task(accepted)

 / R.question
repeated

update-dlg-task-spec
dlg-task(result_available)
dlg-task(completed)

H.answer / R.repeat /

Robot Correctable Information Request

asked
dlg-task(accepted)

 / R.question
repeated

update-dlg-task-spec
dlg-task(result_available)

H.answer / R.repeat
H.negate / R.question

H.correct / R.repeat

confirmed
dlg-task(completed)

 / /

189

Robot Information Request with Explicit Confirmation

asked
dlg-task(accepted)

 / R.question
await_conf

update-dlg-task-spec
dlg-task(result_available)

H.answer / R.askForConf
H.negate / R.question

H.correct / R.askForConf

confirmed
dlg-task(completed)

H.conf / R.ack /

Robot Information Request with Explicit Confirmation and Task Acknowledgement

asked
dlg-task(accepted)

 / R.question
await_conf

update-dlg-task-spec
dlg-task(result_available)

H.answer / R.askForConf
H.negate / R.question

H.correct / R.askForConf

initiate_learning
task(initiated)

H.conf / R.assert

learning_failed
dlg-task(failed)

 failed / R.apologize

learning_succeeds
dlg-task(completed)

 completed / R.ack
 /
 /

Robot Rejectable Information Request with Explicit Confirmation

asked
dlg-task(accepted)

 / R.question

await_conf
update-dlg-task-spec

dlg-task(result_available)

H.answer / R.askForConf

failed
dlg-task(failed)

H.rejectAnswer / R.ack
H.negate / R.question

H.correct / R.askForConf

confirmed
dlg-task(completed)

H.conf / R.ack

 /
 /

Robot Rejectable Information Request with Explicit Confirmation and Task Acknowledgement

asked
dlg-task(accepted)

 / R.question

await_conf
update-dlg-task-spec

dlg-task(result_available)

H.answer / R.askForConf

learningFailed
dlg-task(failed)

H.rejectAnswer / R.ack
H.negate / R.question

H.correct / R.askForConf

initiate_learning
task(initiated)

H.conf / R.assertLearning
 failed / R.apologize

learning_succeeds
dlg-task(completed)

 completed / R.ack

 /
 /

Object Patterns
Human Object Demonstration

resolve_reference
task(initiated)

H.demonstrate / failed / R.apologize

repeated
task(initiated)

completed / R.repeat rejected / R.refuse

learning

accepted / R.assert completed / R.ack

failed / R.apologize

Human Object Demonstration with Explicit Confirmation

resolve_reference
task(initiated)

H.demonstrate /
failed / R.apologize

await_conf

completed / R.askForConfH.correct / R.askForConf await_corrected

H.negate / R.question

initiate_learning
task(initiated)

H.conf / R.ack
H.answer / R.askForConf

rejected / R.refuse

learning_asserted

accepted / R.assert
failed / R.apologize

completed / R.ack

190 B The Pattern Library

Human Object Test

resolve_reference
task(initiated)

H.question /

failed / R.apologize

lookup
task(initiated)

completed / R.assert completed / R.answer

failed / R.apologize

Interactional Patterns
Human Interaction Opening

greeted

H.greet / R.greet /

Human Interaction Closing
said_goodbye
reset-interaction
close-interaction

H.goodbye / R.goodbye /

Human Interaction Reset
asserted

reset-interaction
H.request / R.assert /

Human System Reset

asserted
reset-interaction
close-interaction
task(initiated)

H.request / R.assert /

Robot Interaction Opening

robot_greeted
dlg-task(accepted)

 / R.greet human_greeted
dlg-task(completed)

H.greet / /

General Patterns
Human Simple Statement

replied

H.statement / R.reply /

191

Robot Notification

notified
dlg-task(accepted)
dlg-task(completed)

 / R.notify /

Robot Simple Statement

awaitReply
dlg-task(accepted)

 / R.statement H.reply /

Robot Suggestion

suggested
dlg-task(accepted)

 / R.suggest

rejected
update-dlg-task-spec

dlg-task(result_available)
dlg-task(completed)

H.reject / R.regret

accepted
update-dlg-task-spec

dlg-task(result_available)
dlg-task(completed)

H.accept / R.ack
 /
 /

Clarification Patterns
Robot Ask Repeat

asked

H.uninterpretable / R.askRepeat /

Robot Suggest Interaction Reset

suggested

H.uninterpretable / R.suggest

H.negation / R.ack

asserted
reset-interaction

H.conf / R.assert /

C Programming Tasks for the Usability Test
Task 1: Greeting1

In our scenario, the human begins interaction by greeting the robot. The robot greets back.

Example interaction
H Hello, robot.
R Hello, human.

We assume a speech understanding component that, whenever a greeting occurs, provides data
matching the XPath “/utterance/semanticInfo/frame[@val=’Greeting’]”.

Task 2: Parting
In addition, the human should be capable to end the interaction.

Example interaction
H Bye, bye.
R Bye, see you later.

We assume a speech understanding component that, whenever a greeting occurs, provides data
matching the XPath “/utterance/semanticInfo/frame[@val=’Greeting’]”.

Task 3: Navigation Instruction
Our robot is a mobile robot that is able to follow the human on request. The human can cancel
the follow task at any time.

Example interaction
H Follow me!
R OK, I follow you.
H Stop!
R OK, I stop.

In the class AsuXPathCollection, you find a collection of XPath expressions that are useful for
checking conditions of speech understanding data.

The navigation module is registered on tasks with the following task specification: <FOLLOW/>.

1 The tasks were originally given in German. They were translated into English for the purpose of this
thesis.

193

194 C Programming Tasks for the Usability Test

The Interaction Patterns you will use for this task consists of quite a lot of transitions. There is a
configuration template available that may facilitate writing the configuration document.

Task 4: Low Battery Warning
If the battery level is critical, the robot needs to take initiative in order to notify the human about
it, and to state the current battery level.

We assume a power management component that requests a dialog task with the following task
specification: <power level=’X’>.

Hint: Data provided by the power management control match the XPath expression “//power”.

Example interaction
The task <power level=’10’> should generate the following robot notification:
R Battery charge is low, only 10% remaining.

Task 5: Acquiring Person Name
Finally, the robot is supposed to ask humans unknown to him for their name.

Example interaction
R Hi, what’s your name?
H My name is Peter.
R Nice to meet you.

For this purpose, there is a person management component. If the interaction partner is unknown
to the robot, it initiates a dialog task with the following task specification: “<unknown_person
name=”>”.

The task specification should be augmented with the human’s name, e.g. “<unknown_person
name=’Peter’>”.

The speech understanding component provides for an introduction data that match the XPath
expression “frame[@val=’Name_personal’]”.

An XPath that extracts the name from the data is “//frame[@val=’Name_personal’]/child::name”.

D Sentences for Evaluating the Concept Accuracy
1. Hallo Biron, ich bin Carlo und ich werde dir jetzt mal ein paar Sachen zeigen.

(Hello Biron, I am Carlo and I’m going to show you a couple of things now.)
2. Hallo Biron, ich bin Debora. Ich bring dir jetzt neue Wörter bei.

(Hello Biron, I am Debora. I am going to teach you new words now.)
3. Hallo Biron, ich bin Anke. ich wollt’ dir mal heute ein paar schicke Sachen zeigen.

(Hello, Biron, I am Anke, as I said before. I wanted to show you some great things today.)
4. Hier ist der Heinz aus Bielefeld.

(This is Heinz from Bielefeld.)
5. Ja, ich bin hier um dir ein paar Sachen beizubringen und ich werde dir die Sachen jetzt

einfach nacheinander zeigen und dir die Namen der Objekte beibringen.
(Yeah, I am here to teach you some things, and I am just going to show you the things, one
after another, and teach you their names.)

6. Ja, freut mich Biron, wie gesagt, ich bin Arne und werde dir gleich ein paar Objekte erklären.
(Yeah, I am pleased, as I said before, I am Arne and I am going to explain you some objects
now.)

7. Hallo, mein Name ist Daniela. Wie geht es dir?
(Hello, my name is Daniela. How are you?)

8. Wir werden heute zusammen arbeiten. (We are going to work together today.)
9. Hallo Biron, na hörst du mich? Wer da?

(Hello Biron, well can you hear me? Someone there?)
10. Ich möchte ihnen einige Haushaltsgegenstände zeigen, der Reihe nach.

(I would like to show you some household items, one after another.)
11. Ich werde dir jetzt ein paar Dinge vorstellen, die du, wie ich weiß, noch nicht kennst.

(I am going to present you some things that you, as I know, don’t know yet.)
12. Möchtest du wissen, was hier vor mir auf diesem Tisch liegt?

(Would you like to know, what is on the table in front of me?)
13. Du hast hier viel auf dem Tisch.

(You have lots of things on the table here.)
14. Biron, das ist eine Zeichenhilfe, ein Lineal.

(Biron, this is a drawing aid, a ruler.)
15. Biron, das was du hier siehst, ist ein Buch.

(Biron, what you see here is a book.)
16. Hier habe ich einen Schokoriegel.

(I have a choccolate bar here.)
17. Das ist ein Datenträger, man nennt sie CD.

(This is a data medium, it is called CD.)
18. Das ist eigentlich nicht interessant, aber wir können das mal verallgemeinen, eine Süßigkeit.

(That’s not really interesting, but we could generalize it, a sweet.)
19. Das hier ist ein Schokoriegel.

(This here is a choccolate bar.)

195

196 D Sentences for Evaluating the Concept Accuracy

20. Dieses Objekt ist ein Kugelschreiber.
(This object is a ballpoint pen)

21. Nein, keine Kugel, sondern ein Kugelschreiber.
(No, not a ball, but a ballpoint pen.)

22. Das ist ein Ball, damit kann man Spielen.
(This is a ball, you can play with it.)

23. Ich wiederhole nochmal, das ist eine CD.
(I repeat, this is a CD.)

24. Das ist keine Tasche, sondern eine Flasche.
(This is not a bag, but a bottle.)

25. Eine Flasche.
(A bottle.)

26. Möchtest du noch mehr Artikel kennenlernen?
(Would you like to get to know more items?)

27. Ok, machen wir einfach mal weiter.
(Ok, let’s just go on.)

28. Das ist eine Schere.
(No, these are scissors. Scissors.)

29. Toll, hast du dir gut gemerkt.
(Great, well memorized.)

30. Nein, das ist ein Lineal.
(No, this is a ruler.)

31. Nein, das ist eine Tasse zum Trinken.
(No, this is a cup, for drinking.)

32. Schallplatte, ja. man sagt auch CD dazu.
(Record, yes. It is also called CD.)

33. Guck mal, und wenn du zum Basteln mal gerade Linien brauchst oder gerade Ausschneiden
möchtest, dann brauchst du ein Lineal.
(Look here, and if you need straight lines for handcrafting or want to cut straight, then you
need a ruler.)

34. Dies ist ein Lineal, ziemlich flach und gerade.
(This is a ruler, quite flat and straight.)

35. Das ist ein Stift. Das einfache Wort ist Stift und das komplizierte Wort ist Kugelschreiber.
Kannst du dir das merken?
(This is a pen. The simple word is pen and the complicated word is ballpoint pen. Can you
remember that?)

36. Das ist eine Flasche, Flasche.
(This is a bottle, bottle.)

37. Und was ich besonders gerne mag, das sind Bücher. Ein Buch besteht aus vielen Seiten.
(And what I particularly like are books. A book consists of many pages.)

38. Nein, ein Buch.
(No, a book.)

39. So nun hab’ ich dir alles gezeigt, Biron, möchtest du noch etwas sehen? Nochmal den Ball?
(Well, I have shown you everything, Biron, you want to see more? The ball again?)

40. Du hast das wiedererkannt, das finde ich gut.
(You have recognized this, I like that.)

41. Dieses Objekt, was du hier in meiner Hand siehst, nennt sich Lineal.

197

(The object you see here in my hand is called ruler.)
42. Sehr schön, da haben wir doch schon eine ganze Menge gelernt.

(Very nice, we have learned quite a lot already.)
43. Das ist ein Buch. B-U-C-H, Buch.

(This is a book. B-O-O-K, book.)
44. Nein, das ist eine CD-ROM.

(No, this is a CD-ROM.)
45. Eine CD.

(A CD.)
46. Das ist ein Buch, da kann man drin lesen.

(This is a book, you can read in it.)
47. Guck noch mal rein, lieber computer, das ist ein Buch, was ich hier in der Hand hab, zum

Lesen.
(Have one more look, dear computer, this is a book, what I have in the hand, for reading.)

48. Ein Lineal oder ein Zeichnstab.
(A ruler or a drawing aid.)

49. Nicht Flasche, sondern Tasse.
(Not bottle, but cup.)

50. Und das ist ein Stück Schokolade von Mars. Ein Stück Mars-Schokolade.
(And this is a piece of choccolate of Mars. A piece of Mars choccolate.)

51. Eine Flasche, wo man Wasser draus trinken kann.
(A bottle, where you can drink water out of.)

52. Nein, das ist eine Schere. Eine Schere.
(No, these are scissors. Scissors.)

53. Hatten wir den Ball schon? Hatten wir den Ball? Das ist ein Ball.
(Did we have the ball already? Did we have the ball? This is a ball.)

54. Das ist, hier, das ist ein Schokoriegel. Hier, hier unten.
(This is, here, this is a choccolate bar. Here, down here.)

55. Ich hab’s dir schon gezeigt.
(I’ve shown it to you already.)

56. Und dieses Objekt?
(And this object?)

57. Genau, gut gemerkt.
(Right, well remembered.)

58. Das ist ein Buch. Ein schweres Buch. Was ist das?
(This is a book. A heavy book. What is that?)

59. Das ist gut. Wie heißt das Objekt?
(This is good. What is the object called?)

60. Was ist das?
(What is that?)

61. Nein, Biron, was ist das hier?
(No, Biron, what is this here?)

62. Richtig.
(Correct.)

63. Und das? Was ist das?
(And this? What is this?)

64. Ja, Biron, ich möchte mich jetzt verabschieden. Auf Wiedersehen.

198 D Sentences for Evaluating the Concept Accuracy

(Well, Biron, I would like to say goodbye now. Goodbye!)
65. Ja, Biron, also eigentlich haben wir jetzt schon alle Objekte einmal durch, und wären damit

fertig.
(Well, Biron, actually we have had all objects already, and would thus be done.)

66. Biron, ich bin jetzt mal weg. Schönen Tag noch, tschüss.
(Biron, I’m gone. Have a nice day, bye.)

67. Ich gehe jetzt nach Hause, Biron, tschüss.
(I am going home now, Biron, bye.)

68. Ok Biron, wir haben genug geübt für’s Erste, und ich bedanke mich, dass wir zusammen
arbeiten konnten. Auf Wiedersehen, Biron.
(Ok, Biron, we have practiced enough for now, thank you for working together. Goodbye,
Biron.)

69. Bis demnächst.
(See you soon.)

70. Ja, dann möchte ich mich herzlich von dir verabschieden, und weiter, alles Gute.
(Well, I would like to say good bye warmly, and all the best in the future.)

71. Ich muss jetzt weiter, tschüss.
(I have to go now, bye.)

72. Wir sind jetzt fertig und ich würde jetzt tschüss sagen.
(We are done now and I would say goodbye now.)

73. Ciao Biron, ich hoffe du hast was gelernt.
(Ciao Biron, I hope you have learned something.)

74. Ja Biron, hat mich gefreut dich kennen zu lernen, auf Wiedersehen.
(Well Biron, I was pleased to meet you, goodbye.)

E User Instruction for the Curious Flobi User Study
General information1

Dear participant, welcome to our study with the robot Flobi!

In the following, you will receive relevant information about the study. If you still have questions,
please don’t hesitate to address the experimenter.

The robot Flobi
The robot Flobi is a prototype we use to investigate human-robot interaction. It is equipped with
a microphone and cameras in its eyes, i.e. it can see you and hear you. It can understand speech
input in German, and react to it. Flobi will be tested so that it can be improved in future. In this
study, Flobi is supposed to learn the labels of objects.

Procedure
The study will proceed as follows:

1. First you will be asked to fill part 1 of the questionnaire.
2. Subsequently, the interaction with Flobi will follow.
3. Finally, you will fill part 2 and part 3 of the questionnaire.

Your task
You will now have the opportunity to engage in interaction with Flobi. This will take about 5-10
minutes. Here are some hints that might be helpful:

• You can begin interaction by greeting Flobi, and end it by saying goodbye.
• Flobi is supposed to learn the labels of objects within the interaction. For this purpose, you

may use the objects you will find on the table.
• Flobi recognizes objects best when they are lying on the table.
• Please make sure that Flobi actually has learned the objects.
• Speech input is often not recognized correctly. In these cases, it might help to repeat the

input more clearly, or to rephrase it. In difficult situations, the instruction "restart" may be
helpful.

1 The instructions were originally given in German. They were translated into English for the purpose of
this thesis.

199

F User Questionnaire for the Curious Flobi User
Study

The questionnaire has been created using LimeSurvey, an open source survey application. Partici-
pants were asked to fill the questions at a desktop computer. The personal information and part 1
of the questionnaire had to be filled out before the interaction with the robot, part 2 after it.
The questionnaire shown below is the one used for the conditions C2 (MixedIni) and C3 (Struc-
turedIni), where the robot asks for objects on its own initiative. For condition C1 (UserIni), which
enables user initiative only, the questions on the robot initiative has been omitted (“Wenn der
Roboter nach einem Objeckt gefragt hat, war mir immer klar, welches gemeint war.”).
The questions of part 1, targeting the user’s expectation towards the robot before interaction, have
not been considered in the evaluation yet. However, we plan to relate them to the user’s impression
of the robot after interaction in a future evaluation.

201

202 F User Questionnaire for the Curious Flobi User Study

203

204 F User Questionnaire for the Curious Flobi User Study

