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1. Introduction

When interacting with one another, humans rely on a variety of expressive behaviors
including utterances, gestures, facial expressions, gaze, etc. Being able to interact with
others, thus, requires to perceive, recognize, and interpret such behaviors, as well as
to generate and employ them purposefully for expressing meaning and communicative
intentions. The main challenge arises from the dynamic nature of interactive behavior:
conventionalized behaviors like utterances or symbolic gestures (e.g., a thumb-up gesture)
work by agreement on their meaning between individuals within a certain community,
e.g., all speakers of English. However, these behaviors are still subject to considerable
variation due to situational constraints, personal style, cultural traits, etc., and beyond
this variability, many behaviors themselves are not conventionalized at all. Such behaviors
are created by one interlocutor on the spot, get dynamically established between the
interactants, and becoming part of their so-called common ground. In summary, interacting
with one another means engaging in a highly dynamic process in which the forms as well as
the meanings of expressive behaviors are flexibly and spontaneously observed, recognized,
picked up, adapted, and adopted. Computer systems that are to participate in such
scenarios are confronted with various technical challenges that arise from the complex and
dynamical nature of human interaction.

Machine learning offers a wide variety of approaches for interaction technologies. With
machine learning techniques, computer systems can identify relevant data, recognize
important data changes, or focus their resources and capabilities toward a given target. In
interaction environments, most of the collected data, e.g., gestural communication, attention
signals, speech interaction, multivariate sensor data streams from a smart room’s system,
etc., can be described as time series data; reliable, robust, and flexible machine learning
algorithms for time series are crucial for a number of desirable ways of interactions:

• Recognition of human behaviors such as speech, gestures, or handwriting,

• Reproduction of these observations by means of available actuators, and

• Organization of observations according to an inherent data structure.

However, as stated above, interaction with humans is a highly dynamic process and enabling
a computer system to participate in such a scenario is a difficult task. The system is
confronted with various technical challenges: (i) In order to enable a continuous interaction
without significant delay, fast response times from the data processing systems are crucial.
(ii) Interactive systems are required to make sense of their observations incrementally to
foresee evolving behaviors. (iii) In order to be successful, even in unknown and unforeseen
situations, a system should be able to adapt to particular users or environments. (iv) The
approach has to provide robustness towards incomplete observations, i.e., it should be able
to recognize behaviors even if they are incompletely executed. (v) An ideal algorithmic
solution integrates all of the above-mentioned abilities — recognition, reproduction, and
organization — in one model.

1



1. Introduction

Common choices for machine learning techniques that address the particular properties of
multivariate time series, i.e., variable length and non-linear distortions of the time axis,
are Dynamic Time Warping [DTW, Chiba and Sakoe, 1978] and Hidden Markov Models
[HMMs, Rabiner, 1989]. Numerous applications in interaction scenarios, e.g., in speech [Ra-
biner, 1989], handwriting [Plötz and Fink, 2009], or gesture recognition [Kellokumpu et al.,
2005], underline the importance and significance of those methods. State-of-the-art per-
formance can be achieved if Support Vector Machines [Vapnik, 2000] are combined with
specialized time series kernels for interaction data [e.g Bahlmann et al., 2002]. However,
the computational costs of recognition with such approaches are usually high due to the
evaluation of a possibly large number of kernel functions.

The first research objective of this thesis is to develop algorithms for machine learning
of interaction time series data that allows recognition, reproduction, and organization
of observed behavior. Thereby, the algorithms should meet the particular requirements
outlined above that allow successful application in interaction scenarios. A second research
objective of this thesis is to empirically evaluate the algorithms with time series data
from various interaction scenarios. These data sets include gestures of different body
parts (hands, arms, heads), computer mouse gestures, data collected from musicians
handling their instruments, speech, handwriting, but also — to underline the general
applicability of the proposed algorithms to time series — time series benchmark data sets
from various alternative domains. We will evaluate the proposed algorithms in terms of
research questions related to accuracy, response times, robustness, adaptability, incremental
evaluation, prototyping, influence of hyperparameter and the training process, as well as
their organization abilities.

The thesis is structured as follows: in Chapter 2 we will introduce this thesis’ aim in
detail and define the research objectives and research questions that we will address.
Chapter 3 summarizes the theoretical background of this thesis. Here, we present relevant
machine learning techniques for time series data, and give an overview about related work
where techniques for learning and representing iteration data are used. In Chapter 4 we
introduce Ordered Means Models (OMMs), a probabilistic state-space model that we use as
a starting point for this thesis’ algorithmic work. Subsequently, we specify the experimental
setups, the algorithms that we chose for comparison, and give an overview of the data
sets in Chapter 5. Chapters 6, 7, and 8 are related to experimental evaluation of OMM’s
recognition, reproduction, and organization capabilities, respectively. Last, Chapter 9
concludes the thesis with a summary and a discussion of its results. The last section of
this chapter outlines the scope for future research directions.

The presented work resulted in the following peer-reviewed publications and contributions:

• N.-C. Wöhler, U. Großekathöfer, A. Dierker, M. Hanheide, S. Kopp, T. Hermann.
A Calibration-free Head Gesture Recognition System with Online Capability. In
International Conference on Pattern Recognition, Istanbul, Turkey, 2010.

• T. Grosshauser, U. Großekathöfer, T. Hermann. New Sensors and Pattern Recognition
Techniques for String Instruments. In NIME 2010: Proceedings of the 2010 Conference
on New Interfaces for Musical Expression, 2010.

• U. Großekathöfer, A. Barchunova, R. Haschke, T. Hermann, M. Franzius, H. Ritter.
Learning of Object Manipulation Operations from Continuous Multimodal Input. In
Proceedings of the IEEE/RAS International Conference on Humanoid Robots 2011.
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• U. Großekathöfer, A. Sadeghipour, T. Lingner, P. Meinicke, T. Hermann, S. Kopp.
Low Latency Recognition and Reproduction of Natural Gesture Trajectories. In
ICPRAM 2012: Proceedings of the International Conference on Pattern Recognition
Applications and Methods 2012).

• U. Großekathöfer, N.-C. Wöhler, T. Hermann, S. Kopp. On-the-fly Behavior
Coordination for Interactive Virtual Agents: A Model for Learning, Recognizing and
Reproducing Hand-Arm Gestures Online. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems 2012.

• U. Großekathöfer, S. Geva, T. Hermann, S. Kopp. Learning Hierarchical Prototypes
of Motion Time Series for Interactive Systems. In ECAI2013: Proceedings of the
Workshop on Machine Learning for Interactive Systems, 2012.
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2. Recognition, Reproduction, and
Organization of Interaction Time Series

Consider a scenario like companion-based interaction with a smart room where the room’s
intelligence is managed by means of a virtual agent. In such a setting, we find a dense
net of sensors that collects data about the room, e.g., the room’s state might be captured
by temperature and air pressure sensors, and motions in the room might be detected by
means of cameras. The virtual agent has to make sense of the information captured by
the sensor network, he has to be able to recognize activities and behavior patterns of the
room’s inhabitants, organize the observation data, adapt to common scenarios or persons
that use the room regularly — and all in a robust and reliable way.

In order to operate computer systems, appropriate interfacing is necessary. Information
and data has to be transferred to the computer, instructions how to process the data need
to be communicated, and, eventually, the computer has to be able to present the outcome
of a computing process back to the user. Computers are tools that are able to quickly
solve computational tasks. By design, computers sequentially process simple arithmetic
commands that can be combined to more complex tasks and applications. By means of
abstraction, mathematical modeling, and higher-order programming techniques, computers
contribute to various aspects of today’s life: database systems store and organize large data
sets for banks or libraries, high-performance compute clusters analyze large amounts of
biomedical data, and digital controllers navigate space ships. Computers are also applied to
many everyday objects such as smart phones, elevators, streetlights, televisions — and even
some refrigerators are equipped with internet connectivity. However, in order to use this
omnipresent computing power, the design of the interaction between user and computer
system is becoming increasingly important. How the loop of data and instructions input,
data processing, and presentation of results is modeled, has a major impact on what can
be achieved by the user and of what quality the interaction is.

In the early days of modern computing, there was only minimal interaction between human
users and computers. Data and programs were communicated to the machine by means of
punched cards — paper cards with holes that represent information in bits. Today, the
usage of computers is dominated by graphical user interfaces (GUIs). GUIs are usually
displayed on monitors, and are controlled by means of keyboards, which are used to enter
data and commands to the computer, and computer mice that act as simple pointing
devices [Myers, 1998]. Even though GUIs are still widely used today, they do not present
an optimal interfacing for many applications.

A research field that is related to studying and improving the interaction between computer
systems and their users is Human-Computer-Interaction [HCI, Dix, 2004]. HCI is associated
to the design, implementation, and evaluation of interactive computing systems for use of
humans. It is connected to many academic disciplines: research from psychology, computer
science, design, art, or cognitive science contributes to novel and more intuitive HCI

5
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experiences. Moreover, applications in tangible computing [Ullmer and Ishii, 2000], social
robotics [Breazeal, 2003], or auditory displays [Kramer, 1994] prove that HCI research
improves and re-defines the way we use computer systems today. A major research objective
in HCI is to enable more human-like interaction with the aim that computer systems
should provide communicative functionality that is natural to human users.

A wide variety of human expressions towards a computer system can be considered as
interaction data. These modalities include classical keyboard and mouse interaction, inter-
action by spoken or written words, gestural interaction and body motions, interaction via
touch-sensitive surfaces, as well as brain computer interfaces that use electroencephalog-
raphy readings for communication purposes. E.g., gestures are widely-used in human
communication, where they structure and facilitate communication by (i) either pragmatic
functions such as emphasizing a speaker’s linguistic course, (ii) semantic functions, such as
classical pointing gestures to indicate spatial location, (iii) or featuring semantic content,
for example, the Victory ’V’ or the OK gestures — let alone sign languages for hearing
impaired [McNeill, 1992]. Enabling interactive systems to employ gestures — for either
recognition or reproduction — expands the potential interaction experiences. A just as
widely used modality in human-computer interaction is speech. Speech is a vocalized
form of human interaction, where language is articulated as sound that is decoded by a
receiver [Campbell, 1982]. Speech is ubiquitous in human interaction, and since it is part
of the human nature for tens of thousands of years, human interactants are expert speech
users. In order to allow computer systems to benefit from this expertise the computer has to
be able to understand and generate speech. Such a task comprises a complex combination
of low- and high-level speech and language processing. Thus, in order to understand what a
spoken utterance means, the computer is required to derive meaning and intention from an
audio signal. This complex process might not only involve audio processing and linguistic
knowledge, but also domain knowledge and a user model. Last yet importantly, the ability
to perceive written text is a remarkable human accomplishment, and written words are a
widely used communication medium. Allowing computer systems to recognize handwritten
(or machine-printed) text is a major aim of pattern recognition research that for limited
domains such as address-reading in machines that sort mail, seems to be solved. In more
complex domains such as longer domain-independent text, current technologies reach their
limits.

Today’s advances in HCI are ushered by developments of novel and alternative input and
output devices, as well as improved hardware in general. Over the past years, we witnessed
a dramatic evolution in computing technologies. These include increased computational
power, e.g., the availability of multi-core CPUs and enlarged memory that leads to faster
systems that can process more data and, therefore, solve tasks that are more complex.
Advances in sensor technology such as cheap 9-DOF modules to measure circular and linear
acceleration as well as low-field magnetic sensing, enable cheap motion-based applications.
In combination with reduced power requirements and minimization trends in hardware
design, this leads to portable HCI solutions. This is best illustrated by smartphones that
comprise, among a global positioning system that provides location information anywhere
on earth, acceleration sensors and high computational power. In addition, various novel
input devices such as multi-touch displays, touch-sensitive surfaces, eye tracking devices,
depth-of-field cameras, tactile sensor grids, etc. allow alternative data input. Broadband
network access is widely available and enables high-throughput applications and distributed
computing based on cloud computing. Due to wireless networks, these can be accessed
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Figure 2.1.: This figure illustrates an interaction loop: a user acts, the system’s sensors
captures relevant data, and presents the results from a data processing back
to the user.

almost everywhere — yielding mobile and everywhere usable applications. Also improved
displays, e.g., retina displays, E-Ink technology, 3D displays, as well as tangible interfaces
are available and promise exciting novel research opportunities and applications.

In lights of such advances, it is clear that, in addition to powerful hardware components,
appropriate algorithms for processing the recorded data are crucial. If we consider the
before-mentioned scenario of a companion-based interaction with a smart room, we can
identify different requirements for successful interaction. On one hand, the system is
confronted with observations from various sensor sources. In order to make sense of the
collected data, the virtual agent’s computing system should be able to recognize recurring
behavior patterns from human users in order to map raw signal recordings to (meaningful)
behavior representations. This might include recognition of gestures and speech, or analysis
of facial expressions to, e.g., estimate a user’s emotional state. On the other hand, a user’s
interaction experience with the virtual companion would greatly benefit if the agent would
be able to align to the user by reproducing her or his behaviors. E.g., if users perform
particular greeting gestures, they would endure familiarity through an agent who is able to
imitate their greeting habits. Last yet importantly, behavior patterns from humans might
appear with great variance. E.g., handwriting varies from writer to writer — even within
a single writer —, and the ability to organize these observations unsupervised would allow
the companion to autonomously discover otherwise hidden similarities. Please refer to
Figure 2.1 for an illustration of the interaction scenario.
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2. Recognition, Reproduction, and Organization of Interaction Time Series

Figure 2.2.: This matrix illustrates the classification of the terms recognition, organiza-
tion, and reproduction along the dimensions supervised vs. unsupervised and
signal→symbol vs. symbol→signal.

These requirements also correspond to translations between signals and meanings according
to a sub-symbolic/symbolic paradigm. In such a paradigm, a sub-symbolic representation
is related to a raw signal or feature representation of an observation, and a symbolic
representation equals a semantic and meaningful denotation. Given this, pattern recognition
algorithms might be considered as a supervised translation of a sub-symbolic signal to a
symbol or category. This translation is supervised because pattern recognition algorithms
usually require labeled data, i.e., observations whose categories are known, to learn a
generalized recognition scheme. Analogously, organization corresponds to an unsupervised
conversion from signal to categories. However, in such a scenario, a system should
discover categories autonomously and unsupervised without prior knowledge in terms
of predetermined labels. In contrast, reproduction describes the process of generating
a sub-symbolic signal realization for a given symbol — regardless of how the symbolic
representation was gathered. Figure 2.2 illustrates the structure along the dimensions
supervised vs. unsupervised and signal→symbol vs. symbol→signal translation.

Thus, depending on the aspired application, recognition, reproduction, and organization of
observation are fundamental prerequisites for a successful interactive system:

• Recognition: The system has to be able to recognize human behavior patterns such
as utterances, communicative gestures, or hand writing.

• Reproduction: In addition, the interactive system should be able to reproduce
observed behavior patterns by means of its own actuators. E.g., a virtual agent
can use his internal behavior model that was learned by observations to reproduce
behavior himself.

• Organization: Ideally, the interactive system is able to organize its observations
according to an inherent data structure. E.g., if the human user performs a behavior
pattern from one category in very different ways, the system should be able to
structure the performances accordingly.

Based on these requirements, a technical application of such algorithms in interaction
scenarios are confronted with various challenges:
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• Low Latency Response: In order to enable a continuous interaction without
significant delay, fast response times from the data processing systems are crucial.
E.g., an interactive system needs to respond in a certain time frame to an utterance
of a human user to act plausible and be believable.

• Incremental Update: Human interactants are able to make sense of their obser-
vations incrementally and can foresee, e.g., speech utterances or gestural behaviors.
Interactive systems require a similar incremental processing scheme that updates a
potential outcome or result while observing.

• Adaptive Model: A system should be able to adapt to a particular user or envi-
ronment to be successful, even in unknown and unforeseen situations, or in case of
unpredicted events.

• Robustness: An interactive system should provide robustness toward incomplete
observations, i.e., it should be able to recognize a user’s behavior even if the behavior
is imprecisely or incompletely performed.

• Integrated Approach: Ideally, an algorithmic solution integrates all of the above-
mentioned abilities — recognition, reproduction, and organization — in one model.
Thus, instead of using separated modules for each sub-task one model fits it all.

Usually, interaction happens in a temporal, sequential manner: gestural communication,
attention signals, speech interaction, or multivariate sensor data streams from a smart
room’s sensor network occur in time. Subsequent to a necessary multi-sensor data fusion
step [Xiong and Svensson, 2002] in which readings from various sensor sources are joined,
the observed interaction data can be naturally modeled as multivariate time series. For
this reason, we will represent interaction data as time series data and assume a prior
fusion in this thesis. Machine learning offers a wide variety of algorithms to process time
series data. Algorithms are able to recognize, reproduce, and organize interaction data
according to the above illustrated requirements, and numerous applications in speech
recognition [Rabiner, 1989], handwriting recognition [Plötz and Fink, 2009], and gesture
recognition [Kellokumpu et al., 2005] underline the importance of accurate and fast methods.
In particular, specialized techniques are required to cope with the variable length and with
non-linear compressions or expansions of the time axis. Among others, Dynamic Time
Warping [DTW, Chiba and Sakoe, 1978] and Hidden Markov Models [HMMs, Rabiner,
1989] are common approaches to deal with the variability of time series data. The ability of
HMMs to model time series data typically arises from a combination of discrete model states
with state-specific distributions of observable variables and the transitions between these
states. Although HMMs provide a high flexibility and provide recognition and reproduction
capabilities, choosing the optimal model architecture for a particular task usually requires
expert knowledge. Suboptimal HMM structures may easily result in a decrease of speed
and accuracy. In particular, unreasonably low or high transition probabilities estimated
during the model training process may result in a lack of model robustness. For that reason
more simple techniques such as DTW are still widely used [e.g., Rath and Manmatha,
2003]. Focusing on accuracy, discriminative machine learning approaches have been shown
to outperform HMMs in many recognition problems. State-of-the-art performance can be
achieved if Support Vector Machines [Vapnik, 2000] are combined with specialized time
series kernels [Bahlmann et al., 2002]. However, the computational cost of recognition is
usually high due to the evaluation of a possibly large number of kernel functions.
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2.1. Research Objectives and Research Questions

The work presented in this thesis aims to systematically address the above described
requirements and challenges. We will contribute work according to the following technique
and application driven research objectives:

As a technical motivated research objective, this work aims to develop algorithms for
machine learning of interaction data that are represented as time series. A major challenge
is to present a solution that integrates different usage scenarios and that can be used for
recognition, reproduction, and organization of interaction data. In addition, the presented
algorithms should meet the particular requirements according to robustness, incremental
evaluation, low latency response times, and adaptability.

In addition to the algorithmic work, we will empirically evaluate and apply the algorithms
in various interaction scenario. We will use them with various time series data sets that are
related to interaction data. These include gestures that are performed with various body
parts (hands, arms, heads), computer mouse gestures, data collected from interaction with
musical instruments, speech, handwriting, but also — to underline the general applicability
of the proposed algorithms to time series — time series benchmark data sets from various
other domains.

As the fundamental basis for our algorithmic work, we will use Ordered Means Models —
an easy-to-use machine learning approach for time series data that has proven to perform
very well in different usage scenarios [Großekathöfer and Lingner, 2005].

In order to evaluate if Ordered Means Models are an appropriate approach to machine
learning of interaction data that is able to meet the above-denoted requirements, these
requirements were divided into a set of research questions:

• (Q1) Accuracy: How do OMM-based classifiers compare to standard methods for
classification of time series data in terms of accuracy? (→ Recognition, Chapter 6)

• (Q2) Response Times: How do OMM-based classifiers compare to standard
methods for classification of time series data in terms of response times?
(→ Recognition, Chapter 6)

• (Q3) Robustness Property: How do OMM-based classifiers perform in terms of
incomplete observations in comparison to standard classifiers?
(→ Recognition, Chapter 6)

• (Q4) Adaptability: To what degree can OMMs dynamically adapt to changing
behaviors? (→ Recognition, Chapter 6)

• (Q5) Incremental Evaluation: Does an incremental evaluation of OMMs allow an
on-the-fly classification of observed behavior, and can this improve the time required
for recognition? (→ Recognition, Chapter 6)

• (Q6) Prototype Property: Do OMMs provide interpretable prototypes of inter-
action data, i.e., to what degree is the learned array of reference vectors a reliable
prototype representation for a given data set? (→ Reproduction, Chapter 7)

• (Q7) Influence of Hyperparameters: What influence does the choice of the
OMM hyperparameters, namely, the deviation parameter σ and the parameter that
indicates the number of model states K have? (→ Reproduction, Chapter 7)
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• (Q8) Training Process: To what degree is the development of the learned OMM
representations related to the development of the objective function?
(→ Reproduction, Chapter 7)

• (Q9) Organization: How can OMMs be used to organize observations that are
represented as time series in an unsupervised manner, without intervention of an
external human observer? (→ Organization, Chapter 8)

• (Q10) Hierarchical Organization: How can we enable OMMs-based methods to
discover inherent but hidden hierarchical structures in observed interaction behaviors,
again unsupervised? (→ Organization, Chapter 8)

2.2. Document Structure

This thesis is structured as follows:

Chapter 3: Background: Machine Learning of Time Series covers the theoretical back-
ground of machine learning of time series data with a major focus on interaction data.
The presented algorithms are limited to learning approaches that will be used in
experiments later in this thesis. In detail these are: Nearest Neighbor Classifiers with
Dynamic Time Warping Distance Functions, Support Vector Machines with particular
Time Series Kernels, Hidden Markov Models and extension, Ordered Means Models,
K-means and K-tree clustering, alongside essential fundamentals. In addition, we
will introduce evaluation measures for different machine learning tasks.

Chapter 4: Theory and Definition of Ordered Means Models specifies Ordered Means
Models in detail. After describing the model design in detail, we will present the
process of estimating appropriate model parameter by means of a set of observation,
followed by considerations according to numerical aspects in practical applications.
Last, we will discuss the relation of OMMs and HMMs in Section 4.4.

Chapter 5: Experiments: Methods, Data Sets, and Application introduces the evalua-
tion schemes we chose in experiments. We will present the standard machine learning
algorithms that we chose to evaluate and compare OMM-based recognition, repro-
duction, and organization techniques. Further, we will outline the application of the
algorithms in experiments with real-world data, e.g., how the data was normalized,
and how a particular model configuration for a given task was selected. Additionally,
the 28 data set that we used for evaluation are presented together in a short condensed
fashion alongside their basic properties.

Chapter 6: Recognition of Interaction Time Series Data with OMMs is related to in-
vestigate how well Ordered Means Models are able to recognize time series data
with a focus on interaction time series. After presenting the theoretical outline of
this chapter, we will describe a maximum-likelihood approach to classification with
OMMs, followed by an extension to incremental classification of time series that
allows recognition of behavior patterns while they are observed. We will close with a
description of an adaptive online learning scheme. In an experimental evaluation,
we will investigate if OMM-based classifiers are suited for recognition of interaction
time series. We will focus OMMs’ robustness probabilities, and we will introduce two
applications in interaction scenarios: (i) Recognition of communicative head gestures
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and (ii) recognition of bowing-types and malpositions in bowing instrument playing.
In addition, we will evaluate the incremental classification approach as well as the
adaptive training scheme in an interaction scenario where a human plays a variant of
the well-known Rock-Paper-Scissors game against the virtual agent VINCE.

Chapter 7: Reproduction of Interaction Time Series Data with OMMs evaluates the
capabilities of OMMs for reproduction of interaction data. We will investigate
OMM’s prototype property as well as the influence of the hyperparameter selection
and the training process on the emerging prototypes. In experiments, we will analyze
a mouse gesture data set that comprises 33 computer mouse gestures in the classes
spiral, figure eight, and circle. We will also apply OMMs to reproduce and recognize
natural gesture trajectories represented as 3-dimensional location coordinates of the
right hand wrist.

Chapter 8: Organization of Interaction Time Series Data with OMMs refers to the
question, if OMMs are able to organize interaction time series data in an unsu-
pervised manner. Therefore, we will introduce and evaluate two approaches to
unsupervised time series processing based on OMMs: K-OMMs provides a clustering
solution for time series that is similar to classical K-means clustering. K-OMM-trees,
is a tree-based approach to unsupervised hierarchical organization of time series
data. We will empirically evaluate K-OMMs by means of 20 benchmark data sets.
To evaluate the clustering performance of K-OMMs algorithm, we will discuss dif-
ferent initialization strategies for K-OMMs clustering. Subsequently, we will assess
K-OMMs and K-OMM-trees clustering approaches by means of interaction time
series data sets from the UCI machine learning repository. Last, we will apply
K-OMM-trees to a recognition task and investigate if their hierarchical organization
capabilities lead to improved generalization in gesture recognition.

Chapter 9: Conclusion concludes this thesis with a summery, and a discussion of its
results, while Section 9.3 outlines future research direction based on the outcome of
this thesis.
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3. Background: Machine Learning of Time
Series

Time series are ubiquitous in interaction scenarios and most interaction data can naturally
be described as time series. E.g., readings from a smart room’s sensor network are sampled
in time, gestures can be easily represented as location coordinates that change in time, or
speech might be modeled as audio features that, also, vary in time. As stated in Chapter 2,
machine learning algorithms that can process time series data hold a key-role in successful
application design for interactive systems.

The following chapter will cover theoretical background about machine learning in general,
and machine learning of time series in particular. The presented algorithms are limited to
learning approaches that will be used in experiments (Chapter 6 ff). In detail these are:
Nearest Neighbor classifier (Section 3.3.2) with Dynamic Time Warping distance functions
(Section 3.2.1), Support Vector Machines with particular time series kernels (Section 3.3.3),
Hidden Markov Models and extension (Section 3.2.2), K-means (Section 3.4.1) and K-tree
clustering (Section 3.4.2), alongside essential fundamentals. In addition, we will investigate
how algorithms for machine learning of time series are used in interaction scenarios in
Section 3.5. Last, we will present performance measures (Section 3.6) for classification and
clustering that we will use to evaluate our methods in comparison to other algorithms.

3.1. Machine Learning

In general, the term learning describes the ability of a system to improve in managing a
task by example or observation [cf., e.g., Nilsson, 1996, Langley et al., 1996]. According to
Cherkassky and Mulier [1998],

a learning method is an algorithm (usually implemented in software) that
estimates an unknown mapping (dependency) between a system’s inputs
and outputs from available data, namely from known (input, output)
samples.

The outcome of a machine learning algorithm is usually expressed as a function f(x) = y
where f(·) differs according to the given task. Most algorithms include a training phase
or learning phase in which the function f(·) is adapted to fit or represent a data set of
observations X = {x1, . . . ,xN}, the so-called training data set. The goal of the training
phase is to realize a function f(·) that is able to process unknown observations x successfully
in terms of the given task — a property is usually described by the term generalization.
A common distinction of machine learning approaches is supervised and unsupervised
learning. Algorithms, in which the training observations xi are presented together with
their designated outcome yi as tuples (xi,yi), are called supervised learning. These tasks
include, e.g., classification and regression problems. If yi is unknown or does not exist
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Figure 3.1.: This figure shows schematic steps that are necessary for machine learning.

and only {x1, . . . ,xN} are presented to the learner, the algorithms are called unsupervised
learning algorithms. Here, clustering, i.e., the discovery of data subsets that share a
common quality is a well-known task. In addition, methods such as Principal Component
Analysis, Independent Component Analysis etc. process data independently from a label
and, thus, are unsupervised.

Machine learning approaches differ in how the function f(·) and the observations are
represented. Figure 3.1 illustrates a typical machine learning approach, starting with data
recording, data preprocessing and feature extraction, and finishing with a prediction from
a learned model. Common machine learning tasks include

• Density Estimation: estimation of an unknown, underlying probability density
function for a set of observations,

• Classification: assignment of an unseen observation to a given category,

• Regression: learning a dependency between two or more random variables by means
of observations,

• Clustering: discovering of data partitions or clusters in a given set of observations
according to a similarity or distance criterion.

An important matter for all machine learning tasks is the choice of an appropriate data
representation, i.e., how the observations are represented in a learning system.

Usually, this feature extraction step (cf. Figure 3.1) embraces data recording, digitization
and quantization, as well as data pre-processing, e.g., segmentation and normalization of
the recorded data. In machine learning, observations are usually represented as feature
vectors x ∈ Rd where each dimension d′ ∈ {1, . . . , d} is associated with one particular
feature.

3.2. Alignment Methods for Time Series Data

In order to apply machine learning algorithms to time series data, specific preparations
and methods are necessary. Time series data might involve different lengths and varying
developments in time, i.e., compressions and expansions of the time-axis. Let’s consider
Oi = oi1, . . . ,o

i
Ti

and Oj = oj1, . . . ,o
j
Tj

to be two time series that are elements of time series

space O with oi ∈ Rd. Due to expansions or compressions of the time axis, it is unclear
how to optimally represent such observations in an uniformed feature space, thus, requiring
costly data pre-processing. A particular successful family of algorithms that circumvent a
classical feature space representation of time series apply alignments to time series, i.e.,
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(a) Euclidean distance sample assignments (b) Dynamic Time Warping sample assign-
ments

Figure 3.2.: This figure illustrates the differences between the sample assignments of two
time series according to Euclidean distance (a) and Dynamic Time Warping
(b) [based on an illustration from Keogh and Pazzani, 1999].

two time series are aligned towards each other to obtain a value that is associated with a
defined, joined quality. In other approaches, e.g., HMMs, the time series are aligned to
data models.

There are various approaches to alignment of time series and sequential data. In case of
discrete data, i.e., sequences that only contain elements from a finite alphabet such as
protein sequences or words, string metrics are often useful. Such approaches align one
observation with another according to a similarity measure and penalize insertions, deletions,
or replacements of single or multiple elements. Famous string metrics are edit distances
such as Levensthein Distance [Levenshtein, 1966] that penalize insertions, deletions, and
mismatches by the same penalty. In alignment approaches that origin in bio-informatics,
e.g., the Smith-Waterman algorithm [Smith and Waterman, 1981], insertions, deletions
and mismatches are penalized according to biological motivated costs, e.g., based on the
likelihood that a particular mismatch occurs.

For continuous time series, various distance measures and functions exist. In addition to
simple approaches based on L-norms such as Manhattan, Euclidean, or maximum distances,
that require time series of the same lengths, there are many alignment measures based on
the concept of edit distance. Here, the most prominent example is Dynamic Time Warp-
ing [DTW, Sakoe and Chiba, 1978] that allows expansions or compressions of the time axis.
In order to speed up DTW a constrained warping window size reduces the computational
demands and can also improve the accuracy. Alternative approaches are Longest Common
Sub-sequence [Vlachos et al., 2002], Edit Distance on Real Sequences [Chen et al., 2005],
and Edit Distance with Real Penalty [Chen and Ng, 2004]. These methods try to improve
DTW by also allowing insertions and deletions in the warping path. For a comprehensive
comparison of similarity measures of time series data and their performance in classification,
please see Ding et al. [2008].

3.2.1. Dynamic Time Warping

In order to compute a distance function for two time series of different lengths and varying
development in time, Dynamic Time Warping (DTW) aligns the two time series according
to an order preserving warping path. The computed DTW value can then be used, e.g., as
a distance function value in Nearest Neighbor classification (cf. Section 3.3.2).

For (multivariate) time series, the sum of Euclidean distances for all samples is an insufficient
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3. Background: Machine Learning of Time Series

distance measure, because (i) the length of the time series may differ and, therefore, a
data pre-processing such as truncation of the longer time series, or interpolation of one of
both time series to equal lengths [Keogh and Ratanamahatana, 2004] may be required. In
addition, (ii) such an approach is prone to small variations in time.

The DTW algorithm minimizes a global distance by means of a warping path that assigns
samples from one time series O1 = o1

1, . . . ,o
1
T1

to samples of a second time series O2 =
o2

1, . . . ,o
2
T2

. A warping path q = q1, . . . , qT between these time series is an assignment
function that can be represented as a T1 × T2 matrix

Φ : {1, . . . , T} → {1, . . . , T1} × {1, . . . , T2}, (3.1)

with T being the length of the warping path that is constrained by max(T1, T2) ≤ T ≤
T1 + T2− 1. Here, qt = (i, j)t denotes indexes from a T1× T2 matrix that contains pairwise
distances d(o1

i ,o
2
j ) between the time series’ samples. This distance is usually chosen to be

Euclidean.

The warping path has to fulfill the following constraints:

• Monotonicity: The warping path has to be order preserving in time: if qt−1 = (i, j)
and qt = (i′, j′) then i′ − i ≥ 0 and j′ − j ≥ 0 is necessary,

• Continuity: For qt−1 = (i, j), and qt = (i′, j′), i′ − i ≤ 1 and j′ − j ≤ 1 is true,

• Boundary Condition: q1 = (1, 1), and qT = (T1, T2).

The number of possible paths increases exponentially with the lengths of the time series,
thus, it is impossible to explicitly compute the warping costs for all paths. However, we
are only interested in the path that minimizes the warping costs

ddtw(O1, O2) =
1

T

T∑
t=1

wt,

where wt denotes the pairwise distance d(o1
i ,o

2
j ) associated with qt. This value and the

corresponding optimal DTW path can be efficiently computed by a recursive dynamic
programming solution through

γ(i, j) =


d(o1

1,o
2
1), if i = j = 1,

d(o1
i ,o

2
j ) + min [γ(i− 1, j − 1), γ(i, j − 1), γ(i− 1, j)] if i > 1 or j > 1,

∞ otherwise.

γ(i, j) accumulates the DTW value up to the i-th and j-th time series samples. In order to
retain the optimal path, the assignments (i, j) have to be saved in the assignment function
Φ.

The algorithmic complexity of the DTW algorithm is O(T1 · T2). To further reduce the
computational demands of DTW, the set of possible alignment paths can be limited to
paths that are close to the diagonal. In addition, lower bounding techniques allow faster
similarity search in huge time series data sets.

Pruning for Dynamic Time Warping

An intuitive alignment path is unlikely to drift very far from the diagonal. Thus, an obvious
extension to DTW is to only incorporate paths in the dynamic programming that are close
to the matrix’s diagonal. Such a technique is called pruning.
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(a) In standard DTW all paths
through the dynamic pro-
gramming matrix are con-
sidered.

(b) This figure illustrates DTW
pruning according to the
Sakoe-Chiba band. Here,
only the yellow colored ma-
trix elements are considered
as relevant for the dynamic
programming.

(c) The Itakura parallelogram
further reduces the relevant
elements by also incorporat-
ing the distance from the be-
ginning and end in the dy-
namic programming.

Figure 3.3.: These figures illustrate different pruning techniques for DTW: the figure on
the left shows a full dynamic programming matrix that takes all possible paths
in consideration, the figure in the middle shows the Sakoe-Chiba band, and
the leftmost figure displays the Itakura parallelogram. Please note that these
plots illustrate the special case T1 = T2.

In order to realize pruning, a window of size r is added as an additional parameter to
the DTW algorithm: r limits the distance from the diagonal in number of steps that is
considered as likely paths in the dynamic programming.

Popular examples for pruning techniques are the Sakoe-Chiba band that prunes the search
space according to a fixed window size r, and the Itakura parallelogram, a pruning technique
that adjusts the window size in dependency of the distance to the beginning and end of
the paths. See Figure 3.3 for an illustration of these pruning algorithms.

By applying these restrictions, the algorithmic complexity of DTW can efficiently be
reduced from polynomial O(T1 · T2) to linear O(T ).

3.2.2. Hidden Markov Models

A Hidden Markov Model (HMM) can be described as a generative, discrete state space
model that emits the time series O out of K hidden states.

Hidden Markov Models provide one of the most widely used techniques for analysis of
time series and sequences. HMMs originate in the 1960s when the theory of HMMs
were published by Baum and Petrie [1966], Baum and Eagon [1967], Baum and Sell
[1968], Baum et al. [1970]. The ability to model sequential data typically arises from a
combination of discrete model states with state-specific distributions of observable variables
and the transitions between these states [e.g., Roweis and Ghahramani, 1999]. Successful
applications of HMMs include speech recognition [Rabiner, 1989], biological sequence
analysis [Eddy, 1998], and biomedical signal processing [Obermaier et al., 2001].
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3. Background: Machine Learning of Time Series

Figure 3.4.: This figure illustrates a Hidden Markov Model with three hidden states and
corresponding transitions a [based on an illustration from Bishop, 2006].

Let O = o1, . . . ,oT be a sequence of observation vectors with ot ∈ Rd, e.g., a (multivariate)
time series. The model specifies a first-order Markov chain, i.e., in a path qT = q1, . . . , qT
through the model states q ∈ Q, where the current state qt only depends on the previous
state qt−1. Figure 3.4 shows an exemplary sketch of an HMM with three states.

A complete HMM λ is characterized by the tuple λ = (A,B, π), with

• State Transition Probabilities: A = [ak,l] is a matrix whose elements define the
state transition probabilities of the Markov chain with ak,l = P (qt = l|qt−1 = k),
k, l = 1, . . . ,K.

• Emissions: B = {bk(ot)} is a set of emission densities (or probabilities), each
associated with a particular state k. These emissions can be modeled in different
ways. E.g., in biological sequence analysis a common choice are discrete probabilities,
whereas for speech recognition often continuous emission densities such as mixture-
of-Gaussians are used.

• Initial State Probabilities: π = {πk} with πk = P (q0 = k) denotes the HMM’s
initial state probabilities, i.e., the probabilities of starting the generating process in
state k.

The application of HMMs typically requires a solution to three problems:

• Evaluation: Computing the posterior likelihood p(O|λ) for an observed times series
O and a given HMM λ . This problem is also associated with the question how to
score an observation and how well the observation matches the given model λ.

• Decoding: Finding the optimal path q∗T = q1, . . . , qT through the model λ for an
observed time series O of length T .

• Learning: Estimating the model parameters A,B and π from an example data set
O = {O1, . . . , ON} of observations. The model is adapted to the data set and an
optimal representation is found.
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3.2. Alignment Methods for Time Series Data

The Baum-Welch algorithm — a realization of the expectation maximization algorithm —
allows to train an HMM, i.e., to find a solution for the above-mentioned learning problems.
The Baum-Welch algorithm estimates a parameter configuration for an HMM λ = (A,B, π)
by maximizing the likelihood

L =
N∏
i=1

P (Oi|λ) (3.2)

for a set of observations O = {O1, · · · , ON}. The algorithm incorporates an iterative
optimization scheme, where

1. the emission probabilities P (Oi|λ) of the observations for a given HMM λ are
computed, and

2. the model parameters are updated according to the frequency that they are used in
step 1. The resulting HMM will be an improved representation for the observations.

These two steps are repeated until convergence, i.e., until the likelihood (Eq. 3.2) converges
or the model parameters do not substantially alter anymore. Rabiner [1989] gives a detailed
introduction to HMMs and describes the Baum-Welch-Algorithm thoroughly.

Duration Modeling in Hidden Markov Models

A well known limitation of HMMs is that the duration to stay in one model state is
geometrically distributed. The probability to stay τ time steps in one state of an HMM
depends on the self-transition probability ak,k, i.e., the probability to transit from the k-th
state to the same k-th state:

Pk(τ) = aτ−1
k,k · (1− ak,k).

However, such a probability distribution might not be compatible to a particular distribution
found in a set of observations. For example, it is known that the temporal characteristics
of speech are not well represented by a geometric distribution as modeled by standard
HMMs [Levinson, 1986, Rabiner, 1989, Johnson, 2005]. To circumvent this restriction,
various approaches have been proposed that incorporate the state duration into the model
definition. The most important approaches are:

Hidden Semi-Markov Models Hidden Semi-Markov Models (HSMMs) are similar to
HMMs, but instead of emitting only one observation, each state can emit a sequence of
observations. Thus, the transition probabilities in standard HMMs are replaced by explicit
state duration distributions in HSMMs. Popular HSMMs are

• Explicit Duration HMMs (EHMMs): EHMMs explicitly model the state dura-
tion probabilities P (τ), which have to be estimated from given training data. EHMMs
were introduced by Ferguson [1980].

• Continuously Variable Duration HMMs (CVDHMMs): CVDHMMs reduce
the complexity of EHMMs by representing the duration probabilities as parametric
continuous probability density functions. Here, a gamma distribution is usually used:

p(τ ; k, θ) =
1

θ

k 1

Γ(k)
xk−1e−

x
θ , with Γ(k) = (k − 1)!. (3.3)
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3. Background: Machine Learning of Time Series

Such a duration model only requires estimating the model parameters k and θ instead
of a set of probabilities for each state. CVDHMMs were first introduced by Levinson
[1986].

Variable Transition Hidden Markov Models (VTHMMs) VTHMMs model the transi-
tion probabilities ai,j(τ) as a function of the elapsed duration, i.e., the number of time
steps already spent in state i:

ai,j(τ) = P (qi = t, qj = t+ 1|λ, τ). (3.4)

VTHMMs were introduced by Vaseghi [1995], who suggested estimating the transition
probabilities from the Viterby path, i.e., the most like sequence of states.

Expanded State Hidden Markov Models (ESHMMs) ESHMMs define sub-HMMs in
each state that share the same emission densities. By means of such an approach, the
duration probability for a state is modeled by the duration probability of the sub-HMM.
ESHMMS were introduced by Russell and Cook [1987].

However, none of these approaches reduces the overall complexity of Hidden Markov Models;
instead, all models introduce further parameters, e.g., parameters of duration distributions,
and/or additional states. This is reflected in higher algorithmic complexity and increased
computational requirements.

3.2.3. Ordered Means Models

The duration modeling of Ordered Means Models (OMMs) also differs from standard HMMs.
However, instead of explicitly defining a state duration probability and, thus, increasing
the model complexity, OMMs’ model design is radically reduced, which leads to implicitly
changed state duration probabilities. In addition, the state duration probability P (τ ;T ) of
OMMs depends on the length T of an evaluated time series — a so far unique approach.
Please see Section 4.1.2 for a detailed analysis of OMMs’ state duration probabilities.

In general, OMMs are, similar to HMMs, generative state space models that emit a sequence
of observation vectors O = o1, . . . ,oT out of K hidden states. However, OMMs incorporate
a number of design decisions:

• Path Probabilities: In OMMs, each path, i.e., each valid sequence of states is
equally likely. Note that such a design differs fundamentally from modeling transition
probabilities in HMMs. There is no equivalent realization of equally likely paths in
terms of transition probabilities (cf. Section 4.4).

• Emission Densities: The emissions of each state are modeled as probability dis-
tributions bk(·) and are assumed to be Gaussian with bk(ot) = N (ot;µl, σ). The
standard deviation parameter σ is identical for all states and is used as a global
hyperparameter.

• Model Topology: In OMMs, only transitions to states with equal or higher indices
as compared to the current state are allowed. I.e., the network of model states follows
a left-to-right topology.
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3.3. Classification

• Length Distribution: In principle, OMMs require the definition of an explicit
length distribution either by domain knowledge or by estimation from the observed
lengths in the training data. This, however, may not be possible due to missing
knowledge or non-representative lengths of the observations. To circumvent the
definition and estimation of a length model, we assume a flat distribution in terms of
an improper prior according to equally probable lengths.

With regard to these design decisions, an OMM Ω is completely defined by an ordered
sequence of reference vectors Ω = µ1, . . . ,µK — the expectation values of emission
densities.

Parameter Estimation In order to estimate particular model parameters Ω = µ1, . . . ,µK
by a set of observations O = {O1, . . . , ON} the likelihood

L =
N∏
i=1

P (Oi|Ω) (3.5)

is maximized with respect to the mean vectors µk. To solve this optimization problem, an
iterative expectation maximization algorithm similar to Baum-Welch-training of HMMs
can be used.

OMMs are introduced in detail in Chapter 4.

3.3. Classification

A classification describes an arrangement of entities according to similarities, shared quali-
ties, or features. These arrangements can be hierarchical (e.g., taxonomies as known from
phylogenetic), analytical and one-dimensional, or non-hierarchical and multi-dimensional.
In case of the latter, the observations are categorized according to multi-dimensional feature
vectors x ∈ Rd.
Then, a classifier is a system that assigns previously unseen observations in form of feature
vectors x to a category or class that is an element of a finite set of categories. A classifier
can be described as a function f that maps a feature vector x to a class y ∈ Y :

f : Rd → Y, (3.6)

with |Y | = M,M ∈ N. In general, the task of classification is assigned to supervised
learning.

In order to allow classification of time series data, we have to describe a function f that
maps a time series from time series space O to a class y:

f : O→ Y. (3.7)

3.3.1. Bayes Classifier

Bayes classifier are a standard approaches to classification. In a Bayes classifier, the risk R
of incorrect classification decisions is minimized. A loss function L has to be defined that
specifies the expected costs in case of an incorrect classification for a particular task.
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3. Background: Machine Learning of Time Series

In order to minimize R, we then get

minR = E[L] = E[L(f(x), y)]. (3.8)

In case of Bayes classification, we assume equal costs for miss-classifications and zero costs
for correct classification decisions. Given the class-specific probability density functions
p(x|yi) and their a-priori probabilities P (yi), we can show — based on the principles of
risk minimization — that

P (yi|x) =
p(x|yi) · P (yi)

p(x)
. (3.9)

This leads to a classification decision

f(x) = arg max
yi

P (yi|x). (3.10)

Since P (yi|x) cannot be estimated from observations directly, and the joint distribution
p(x) is identical for all classes yi ∈ Y we get

f(x) = arg max
yi

(
p(x|yi) · P (yi)

)
(3.11)

for classification. If p(x|yi) and P (yi) are unknown, the particular probabilities have to be
estimated by means of adequate estimation approaches, e.g., parametric data model whose
parameters are estimated from observations.

The latter approach allows us to use time series models such as HMMs or OMMs for
classification of times series data. In case of OMMs the conditional likelihood p(O|yi) to
observe O from class yi is the production likelihood p(O|Ωi) that the time series O was
generated by the OMM that is associated with class yi. Classification of time series thus
implies that we first estimate one OMM Ωi for each class yi ∈ Y from a given data set. If
we assume equal priors P (yi) for all yi ∈ Y , an unknown time series then is assigned to
the class associated with the model that yields the highest production likelihood p(O|Ωi)
of all models:

f(O) = arg max
yi

P (yi|O) = arg max
yi

p(O|Ωi). (3.12)

3.3.2. Nearest Neighbor Classifier

Instead of estimating probability distributions for a given set of (labeled) observations,
Nearest Neighbor classifiers forthrightly use the observations, i.e., the data is used without
further pre-processing. Thus, Nearest Neighbor classifiers are memory-based. For classi-
fication, Nearest Neighbor classifiers assign an unknown, unlabeled observation x to the
class that comprises the labeled observation, which is closest to x:

f(x) = yi if d(x,xi) = min
j=1,...,N

d(x,xj). (3.13)

Here, d(·) is a distance function.

Even though d(·) is usually chosen to be Euclidean, it might be useful to use alternative
metrics or distance functions depending on the application and the data domain.

To allow classification of time series by means of Nearest Neighbor classification, a time
series distance function is required. Dynamic Time Warping as described in Section 3.2.1
provides a common choice for time series.
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3.3. Classification

Figure 3.5.: Linear separating hyperplane in case the classes are separable. The support
vectors are circled [illustration from Burges, 1998].

3.3.3. Support Vector Machines

The term Kernel Machines denotes a collection of algorithms that utilize the so-called
kernel trick to implicitly map a given vector space to another, higher-dimensional vector
space. One of the most popular Kernel Machines are Support Vector Machines (SVMs).
SVMs are binary classifiers, targeting to distinguish two classes [Vapnik, 2000, Burges,
1998]. SVMs aim to minimize the empirical risk of an incorrect classification by means of a
separating hyperplane, similar to linear classifiers such as Fisher’s discriminates. Based on
the statistical learning theory, the idea of SVMs is to constrain the capacity of a learned
hyperplane function in order to maximize its generalization properties. SVMs are described
as linear hyperplanes that are embedded in a higher-dimensional hyperspace. The mapping
to this hyperspace is implicitly done by means of the kernel functions. For a detailed
introduction to Support Vector Machines please refer to Burges [1998].

Linear Support Vector Machines

In the following,

{(x1, y1), (x2, y2), . . . , (xN , yN )} ∈ Rd × {−1, 1}

is a training set of N (labeled) observations, where the xi are data vectors of dimensionality
d, and yi their corresponding class labels.

A separating hyperplane can be represented as

f(x) = w · x + b (3.14)

with a weight vector w and a bias term b. In order to apply such a hyperplane to prediction
of an unknown example x, the sign of the projection of x to the weight vector w reveals
the estimated class label

ŷ = sgn (w · x + b) . (3.15)

In principle, there are several possible hyperplanes that separate the data set in two subsets,
and the choice of one of these hyperplanes is crucial for classification performance. In
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3. Background: Machine Learning of Time Series

SVMs, a maximum margin approach is used as an optimization criterion for the separating
hyperplane. Please see Figure 3.5 for a 2-dimensional illustration of a SVM hyperplane.

If the given examples from both classes are linear separable, the hyperplane that maximizes
the margin ξ between those classes has to meet the following constraints

xi ·w + b ≥ 1, if yi = 1 (3.16)

xi ·w + b ≤ −1, if yi = −1, (3.17)

given that the weight vector w is normalized. With binary class labels yi that are either 1
or −1, these equations can be combined to

yi · (xi ·w + b) ≥ 1. (3.18)

This constraint guarantees that each data point has a minimum distance of 1 to the
separating hyperplane. Thus, the margin is defined as

ξ = w · (x+ − x−) =
2

||w||
(3.19)

with x+,x− representing the examples from the positive and negative classes, respectively.
Maximizing the distances between all training examples and the margin ξ is, therefore,
equivalent to minimizing the canonical hyperplane

min
w

1

2
||w||2 (3.20)

with subject to the constraint in Equation 3.18.

Optimization In terms of optimization, a quadratic objective function (Equation 3.20)
with linear constraint (Equation 3.18) has to be minimized [cf. Smola and Schölkopf, 1998].
This leads to a convex function whose minimum can be found by means of Lagrange
theory [Smola and Schölkopf, 1998]. The Lagrangian function of Equation 3.20

L(w, b, α) =
1

2
||w||2 −

N∑
i=1

αi · (yi · (w · xi + b)− 1), (3.21)

has to be minimized with respect to w and b, and maximized w.r.t. the positive Lagrange
multipliers αi. Inserting the resulting 1st derivative’s constraints

N∑
i=1

αi · yi = 0, and (3.22)

w =
∑
i=1

αi · yi · xi (3.23)

in Equation 3.21, leads to its dual representation with

max
α

W (α) =

N∑
i=1

αi −
1

2

N∑
i,j=1

αi · αj · yi · yj · xi · xj (3.24)

subject to αi > 0 (3.25)

and

N∑
i=1

αiy
i = 0. (3.26)
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3.3. Classification

Given this, the decision function reveals the class label by

ŷ = f(x) = sgn

(
N∑
i=0

αi · (xi · x) · yi + b

)
. (3.27)

In a geometrical interpretation (cf. Figure 3.5), all xi with αi > 0 are called support vectors
and lie on the planes H1 and H2. Only these vectors are relevant for the SVM solution,
and given some αi = 0 yield a sparse representation of the hyperplane, i.e., vectors with
αi = 0 do not contribute to the solution in Equation 3.27.

Soft Margin Approach

However, the assumption of linear separable data does only very rarely match what is
required in real-world data. In order to allow violation of the constraint in Equation 3.18,
so-called slack variables ξi are added:

yi · (w · xi + b) ≥ 1− ξi,with ξ ≥ 1,∀i = 1, . . . , N. (3.28)

By introducing a penalty term to the objective functions

min
w,ξ

1

2
||w||2 + C

N∑
i=1

ξi (3.29)

small ξ values are preferred during minimization. C is a regulation of the penalty term,
and higher values of C correspond to a stronger penalization. According to the dual
representation of the objective function, only an upper bound is added to the constraint in
Equation 3.25

0 ≤ αi ≤ C. (3.30)

The penalty regulation parameter C has to be chosen by means of a hyperparameter
selection algorithm, e.g., N-fold cross validation (cf. Section 5.2.1).

Non-linear Support Vector Machines An alternative approach to separate data that are
not linear separable, is to transform the data to another feature space H in which the data
is linear separable. The data set is transformed

Φ : Rd → RD, (3.31)

to a, usually, higher-dimensional feature space RD (d < D). For this, the expression xi · xj
is replaced by Φ(xi) · Φ(xj) in Equation 3.27.

Kernel Trick However, choosing a suitable transformation Φ is a non-trivial task that
comes at additional cost and, possibly, requires additional parameter selection. Instead of
explicitly defining a mapping function Φ, the so-called kernel trick is capable to implicitly
map the data to another feature space while dramatically reducing the computational
costs.
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3. Background: Machine Learning of Time Series

The scalar products in Equations 3.27 are replaced by a kernel functions k(·) with

Φ(xi) · Φ(xj) = k(xi,xj). (3.32)

Necessary prerequisites for functions to be used as a kernel functions k(·) are

• Symmetry: k(xi,xj) = k(xj ,xi),

• Cauchy-Schwarz Inequality: k(xi,xj)2 =
(
Φ(xi) · Φ(xj)

)2 ≤ ||Φ(xi)||2 ·||Φ(xj)||2.

A sufficient precondition is Mercer’s Condition that requires a positive semi-definite N ×N
Kernel matrix (often called Gram matrix) Ki,j = k(xi,xj).

Among others, established kernel function are

• Linear Kernel: k(xi,xj) = xi · xj ,
• Polynomial Kernel: k(xi,xj) = (xi · xj)l,
• Radial Basis Function Kernel: k(xi,xj) = exp

(
−γ · ||xi · xj ||2

)
,

• Neural Net Kernel: k(xi,xj) = tanh
(
κxi · xj − δ

)
.

Again, choosing the kernel parameters γ, l, κ, etc. requires an external parameter selection
process.

Last, it is possible to combine both approaches for separation of data that are not linear
separable — an additional penalty term and an implicit data transformation into another
feature space by means of the kernel trick. However, this induces the selection of at least
two hyperparameters what comes at additional computational costs.

Time Series Kernels To use kernel machines such as SVMs for analysis of time series,
various approaches exist. On one hand, time series data can be embedded in a traditional
feature space by applying a feature extraction to the time series. However, more advance
approaches utilize the kernel trick by defining specific time series kernels. Time series
kernels apply a kernel function k(Oi, Oj) to two time series Oi, Oj that maps from time
series space O to real numbers R: k : O×O→ R.

Interpolation The probably simplest approach to time series kernels is an interpolation
of the time axis. In context of speech recognition, Clarkson and Moreno [1999] suggest to
apply a linear normalization in time, i.e., time series of different length are interpolated to
equal length while the kernel function is applied. After such a pre-processing, standard
vector space metrics can be used to further process the interpolated series in a SVM.

Fisher Kernel Another family of time series kernels employ probabilistic models such as
HMMs in kernel functions. E.g., the Fisher kernel [cf. Jaakkola et al., 1999] uses the fisher
score

UO = ∇θ logP (O, θ)

with O denoting one time series, and θ ∈ Θ being one particular parametrization of a
generative model. The Fisher kernel is then defined as

kfisher(O
i, Oj) = UTOiUOj .
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Fisher kernels combine the advantages of generative models with discriminative approaches
such as SVMs. Originating in bio-informatics, Fisher kernels have been successfully
applied to various data domains, e.g., audio mining [Moreno and Rifkin, 2000] and speaker
identification [Wan and Renals, 2002]. A similar approach, the conditional symmetric
independence kernel, proposed by Watkins [1999], incorporates Pair Hidden Markov Models
for computation of the kernel values.

Alignment Kernel A different approach for time series kernels are Alignment kernels.
Such kernel functions utilize a dynamic-time alignment such as DTW or edit-distance
(cf. Section 3.2) for computation of the kernel values. These kernels use the alignment
scores as a similarity or distance function.

A simple alignment kernel is proposed by Gudmundsson et al. [2008]. They suggest to
choose the negative dynamic time warping distances as kernel (cf. Section 3.2.1) values:

kndtw(Oi, Oj) = −ddtw(Oi, Oj).

In addition, Bahlmann et al. [2002] define the Gaussian-Dynamic-Time-Warping kernel
(GDTW) straight forward, replacing the Euclidean distances in RBF kernels (cf. Sec-
tion 3.3.3) with DTW distance values:

kgdtw(Oi, Oj) = exp
(
−λ · ddtw(Oi, Oj)

)
.

Similarly, the authors of Shimodaira et al. suggest an approach where the “DTW distance”
is replaced by a “DTW score” with a likewise exponentiation.

However, note that none of the so far presented alignment kernel functions fulfill Mercer’s
Condition. Thus, none of these approaches does provide a valid kernel function. In contrast,
Cuturi et al. [2007] proposed an approach in which all time-alignment paths are considered
for computation of the kernel value, and the authors claim that their alignment kernel is
positive semi-definite.

Support Vector Machines for Multi-Class Classification

So far, SVMs are only used for binary classification, i.e., classification of two classes.
However, most classification problems involve more than two classes (M > 2). In order
to apply binary SVM classifiers to multi-class problems, a given multi-class set has to be
broken down to a series of binary classifications problems [e.g., Chang and Lin, 2011]. A
strategy to process M -class problem is obtained by M binary classifiers, each of which is
trained with the data of one class as elements of the positive class, while the examples from
the remaining classes are used as negative training data. An alternative approach is to
use M(M − 1)/2 binary classifiers, each trained with the data of one class against another
class. The first approach is called one-against-all, the second one-against-one training.
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3.4. Clustering

Clustering is a fundamental technique for data analysis and data mining. Its basic idea is
to discover hidden structures and similarities in data collection without prior knowledge,
i.e., in an unsupervised manner. Clustering has been widely used and studied for at
least 5 decades, in which many methods and applications have been developed. For
a good overview, please refer to Berkhin [2006]. Most popular clustering methods are
either hierarchical or partitioning clustering approaches. While the first ones try to detect
hierarchical, refining similarity structures in a set of observations, the latter partition the
data set into K groups according to a similarity or distance measure and an objective
function.

In order to allow clustering of time series data, the algorithms need to reflect particular
properties of the data that are often connected to data values that change in time, i.e.,
varying length and compression or expansion of the time-axes. According to Liao [2005],
we can distinguish between three clustering approaches for time series data: (i) approaches
based on raw data observations, (ii) clustering based on feature representation, and
(iii) model-based clustering approaches. The particular algorithms differ in how the
observations and the discovered clusters are represented. The major focus of this thesis
is on model-based clustering solutions, thus, clusters are represented by data model. A
frequently apply model for clustering of time series data are HMMs. E.g., Alon et al. [2003]
and Smyth [1997] propose algorithms based on mixture-of-HMMs with either probabilistic
or deterministic; Oates et al. [1999] apply an iterative procedure in which a set of HMMs
is found, with each HMM accepting a disjoint subset of the original set of sequences. In
contrast to approaches that use models to represent clusters, spectral clustering algorithms
apply time series kernels to time the observations and process gram matrices [e.g., Jebara
et al., 2004, 2007].

3.4.1. K-means

The general idea of K-means clustering is to minimize an error function that accumulates
the distances between each observation and a prototype, often called cluster centroid or
cluster means, to which it is assigned to. The algorithm that minimizes the error proceeds
in two steps: first, each observation is assigned to its nearest prototype according to a
distance measure. Second, each prototype is updated with respect to the assignments.
These two steps are repeated until a termination condition is reached, e.g., the error
function is converged.

K-means clustering is a common method to partition a set of observations into K groups.
It was initially developed more then 40 years ago [MacQueen and Others, 1966]. The
general idea of K-means clustering is to minimize an objective function that accumulates
the distances between each observation xi and a prototype cj (often called “cluster centroid”
or “cluster means”) to which it is assigned to, expressed as

minE =

N∑
i=1

K∑
j=1

wi,j · d(xi, cj)2 (3.33)

subject to wi,j ∈ {0, 1} and ∀j :
∑K

i=1wi,j = 1. The latter constraint assures that each
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example is only assigned to one prototype. The basic algorithm that minimizes this error
proceeds as follows:

First, assign each observation xi to its closest prototype cj according to a distance measure
d(x, c). Second, update the prototypes c1, . . . , cK according to their assigned observations.
These steps are repeated until convergence.

For observations that are embedded into a d-dimensional feature space, i.e. xi, cj ∈ Rd,
d(xi, cj) usually is the Euclidean distance measure and the function that updates the
prototypes is the average function. However, depending on the application, other distance
measures and update functions might be suitable as well. If the observations are time
series, such a distance measure is impractical. One way to overcome this issue is to use
generative probabilistic models such as HMMs. To apply these models to clustering analysis,
a common distance function between a time series Oi and a probabilistic model Ωj is the
negative production log-likelihood d(Oi,Ωj) = − ln p(Oi|Ωj). By this, the general objective
function in Equation 3.33 accumulates the squared log-likelihoods that the time series Oi

has been generated by the centroid models. The update function in such an approach is a
re-training of the models according to the assigned time series [Smyth, 1997, Oates et al.,
1999, Perrone and Connell, 2000, Alon et al., 2003].

Due to local extrema, the quality of the K-means solution heavily depends on initialization.
A näıve and yet common approach is to randomly choose initial prototypes or clusters
as initialization for the first iteration. Other authors [e.g., Smyth, 1997] suggest an
initialization based on pairwise distances between the examples of a data set. These
distances then can be exploited to hierarchically clustering of the data set and encourage
compact cluster initializations beforehand.

3.4.2. K-trees

For very large data sets, common variations of the K-means algorithm involve efficient
search procedures, usually based on search trees. A powerful approach is the K-tree
algorithm [Geva, 2000, De Vries and Geva, 2009a,b], which is a hybrid of the before-
mentioned K-means algorithm and classical B+-trees [Comer, 1979]. The K-tree algorithm
constructs a balanced search tree, where each node contains a key that is used for comparison,
and each leaf holds an observation. While achieving similar results as compared to standard
K-means, the training procedure of K-trees is computationally more efficient and, thus,
scales up to much larger data sets. In contrast to K-means clustering, the K-tree algorithm
does not require that the number of cluster centroids to be specified beforehand.

A K-tree provides a nearest neighbor search tree for data that is represented as real-value
vectors x ∈ Rd. The tree’s nodes n are represented as an array of tuples (v, c), where each
v is a vector v ∈ Rd, and each c is a child node. The number of elements l of the array n
cannot exceed the tree’s order m:

1 ≤ l ≤ m.

In case that a node is a leaf, the child c is empty. The vector v is the mean of all
sub-adjacent leaves, i.e., the vectors x that represent the observations. A K-tree is build
bottom-up and a full node, i.e., a node whose length l is equal to the tree’s order m, is
split by applying K-means to its vectors v.
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(a) Level 1 (b) Level 2 (c) Level 3

Figure 3.6.: Voronoi cells on according to a data partitions of a K-tree on different levels.
The data were drawn randomly from a Gaussian distribution with a location
parameter of 1, and a deviation parameter of 0.3. The K-trees order was
m = 11 [illustrations from De Vries, 2010].

A K-tree of order m is defined as [c.f. Geva, 2000]:

1. All leaves are on the same level.

2. All internal nodes, including the root, have at most m non-empty children, and at
least one nonempty child.

3. Codebook vectors act as search keys.

4. The number of keys in each internal node is equal to the number of its non-empty
children, and these keys partition the keys in the children to form a nearest neighbor
search tree.

5. Leaf nodes contain data vectors.

Since a K-tree is ultimately a nearest neighbor search tree, the time complexity of building
a K-tree is O(N · logN) where N is the number of observations. The low time-complexity
of K-trees originates in the efficiency of the B+-algorithm.

K-trees have been used to analyze very large data sets, usually, for the purpose of infor-
mation retrieval and document clustering. Here, as, e.g., shown by De Vries and Geva
[2009a,b], the K-tree algorithm provides results of similar quality as standard clustering
tools that are popular in information retrieval [e.g., CLUTO, Karypis, 2003], while offering
substantially decreased run-time requirements.

Building a K-tree Building a K-tree is a dynamic process that inserts data vectors on-line,
as they arrive. Consider an already existing K-tree of order m, and an additional vector
x that is presented to insertion. The insertion procedure is: first, the tree is searched to
identify the node that contains the vectors’ nearest neighbor. If this node stores less than
m — the tree’s order — vectors, x is inserted into this leaf. Since this insertion changes
the cluster structure, the parent nodes up to the root node must update their search keys
in terms or re-computing the means.

When a leaf stores m+ 1 vectors, it can not contain any more elements. It then is split
by applying the K-means algorithm with k = 2 to the m+ 1 elements of that node. The
resulting centroids become the search keys for two new child nodes, each containing the
associated vectors. Now consider that the parent of these new nodes contains m+ 1 search
keys after the splitting process. Then it also has to be split, replacing itself in its parent
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by the two new child nodes. This process is repeated in a similar manner until a node
with less than m search keys is reached, or the root node is replaced by a new root. The
procedure of building a K-tree is initialized with an empty root node and just one leaf.

In order to use K-trees for clustering of time series data, we will propose an approach
based on OMMs in Chapter 8.

3.5. Application in Interaction Scenarios

Classification and clustering techniques are often used to recognize, reproduce, and organize
interaction data. Among others, handwriting, speech, and gestures are popular research
topics that created successful applications in the past. Others, such as Brain Computer
Interfaces translate brain activity — for instance recorded as readings from Electroen-
cephalography devices — in commands for computers, and gaze estimation systems measure
an individual’s visual attention by tracking the location where a human user is looking in
3D.

3.5.1. Recognition

Recognition of interaction data has a long history in computer science research. In
particular, handwriting, speech, and gesture recognition are popular research topics for
decades that already yielded many applications.

Recognition of handwriting has been subject to pattern recognition and image processing
research for a long time. Depending on the recognition task, i.e., online or offline, different
recognition algorithms can be used. Offline recognition of handwritten text allows com-
prehensive data pre-processing and feature extraction before applying a classifier in the
actual recognition step. Thus, the application of any classification algorithm with standard
feature space representation is possible. Such approaches include Neural Networks [e.g.,
Graves et al., 2009, Arora et al., 2010, Asthana et al., 2011], Support Vector Machines [Bin
et al., 2000, Bahlmann et al., 2002], Nearest Neighbor classifiers [Bottou et al., 1994], and
others [for an overview, please see Liu et al., 2002]. If the handwriting is represented as time
series, particular time series classifiers are used that employ an observation alignment, e.g.,
Dynamic Time Warping or Hidden Markov Models. Here, in particular Hidden Markov
Models are a widely used choice [Bercu and Lorette, 1993, Hu et al., 1996, Schenkel et al.,
1995, El-Yacoubi et al., 1999, Marti and Bunke, 2001, Plötz and Fink, 2009]. Other authors
suggest hybrid classifiers, e.g., combinations of Neural Networks and Hidden Markov
Models [Bourlard and Morgan, 1994].

Automatic speech recognition (ASR) describes the process of translating spoken words
into text by means of an autonomous computer system. ASR has been studied for many
decades and its performance improved significantly over the years. Today, commercial
solutions for ASR, for example, in interactive voice response systems or reading voice
dictation, exist. Most of the ASR systems utilize statistical modeling techniques for
speech recognition, with Hidden Markov Models being one of the most successful modeling
approaches. In this context, HMMs are usually used to represent sub-words, e.g., phonemes
or syllables [Rabiner, 1989, Juang and Rabiner, 1991]. A well-known limitation of HMMs
is that the state duration probabilities are geometrically distributed, which does not well
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3. Background: Machine Learning of Time Series

represent the temporal characteristics of speech [Levinson, 1986, Johnson, 2005]. To
circumvent this restriction, various approaches have been proposed that incorporate the
state duration into the model definition [Ferguson, 1980, Levinson, 1986, Vaseghi, 1995].
Other authors suggest to use discriminative training strategies for HMMs to improve the
recognition performance [Nádas et al., 1988, Juang and Katagiri, 1992, Juang et al., 1997,
Katagiri et al., 1998, McDermott et al., 2007], and again others utilize Sparse Kernel
Machines such as Support Vector Machines for ASR [Ganapathiraju et al., 2004, Hamaker
et al., 2002, Smith and Niranjan, 2001]. However, all of these ASR approaches have in
common that extensive data pre-processing is necessary to extract relevant information
from the data.

A third widely used interaction modality is gestural interaction, and various approaches
for gestures recognition exists. Technically, these approaches usually include (i) sensing
technologies, e.g., the use of tracking or vision devices, (ii) data pre-processing, i.e.,
feature extraction, normalization, etc. and (iii) recognition algorithms, i.e., statistical
modeling, image processing, etc. Popular choices for gesture recognition algorithms are
HMMs [Yamato et al., 1992, Samaria and Young, 1994, Starner and Pentland, 1995, Starner
et al., 1998, Yoon et al., 2001, Bowden et al., 2003, 2004] and Finite State Machines [Davis
and Shah, 1994, Bobick and Wilson, 1997, Yeasin and Chaudhuri, 2000, Hong et al., 2000],
but also Kalman and Particle Filtering approaches [Black and Jepson, 1998, Maskell and
Gordon, 2001, Ramamoorthy et al., 2003, Kwok et al., 2004], Neural Networks such as
Multilayer Perceptrons or Time-Delay Neural Networks [Sung and Poggio, 1995, Rosenblum
et al., 1996, Yang and Ahuja, 1999], or Dynamic Time Warping [Gavrila et al., 1995, Akl
and Valaee, 2010] are used.

Brain Computer Interfaces translate brain activity in commands for computer devices.
Brain activity is usually measured by means of electroencephalography (EEG) or functional
magnetic resonance imaging (FMRI) recordings and machine learning algorithms are used to
learn the relevant characteristics of the data. Various learning algorithms are used, ranging
from Hidden Markov Models [Obermaier et al., 2001], Support Vector Machines [Kaper
et al., 2004], to simpler linear separating algorithms [Finke et al., 2009].

3.5.2. Reproduction

Speech generation, also known as speech synthesis, is, similar to speech recognition, a major
research field in computer science for decades. There exist various approaches to synthesize
speech: The simplest and yet widely used approach is concatenative synthesis where
pre-recorded speech segments, e.g., words, are concatenated to build complete sentences. In
contrast, in unit selection synthesis“units”, i.e., realizations of phones, diphones, etc., are
selected from large databases. In these databases additional information such as frequency,
pitch, neighborhood phones, etc. are stored, and a desired unit is selected according to
these information, usually, by means of search trees [Hunt and Black, 1996, Conkie, 1999].
A completely different approach is statistical parametric synthesis. Here, generative models,
mostly a combination of multiple Hidden Markov Models, are used to synthesize speech
parameter sequences [Yoshimura et al., 1999, Tokuda et al., 2000, 2002, Black et al.,
2007].

Gesture reproduction and generation is usually engineered as an alignment task with speech
generation. Such approaches have shown promising results, in particular in Embodied
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Conversational Agents research [Yan, 2000, Salem et al., 2012]. However, if gesture
generation is examined independently of other modalities, the most used approaches are
based on generative models, particularly Hidden Markov Models. Inamura et al. [2003]
use a straightforward generation process with HMMs trained for joint angle trajectories of
human motion observations: new trajectories are generated by simulating state transitions
and emissions, with averaged repeated trails. In contrast, Calinon and Billard [2004]
employ HMMs in imitation learning scenarios with the aim to learn generalized gesture
representations from multiple observations. They generate new gestures by interpolating
mean vectors from the observations [see also Calinon and Billard, 2005, 2007, Asfour et al.,
2008, Kwon and Park, 2008].

3.5.3. Organization

Organization and prototyping of interaction data is usually done to gather a condensed
data representation that allows (i) data quantization, or (ii) performance prototyping.
Organization of interaction data requires usually unsupervised machine learning algorithms
such as K-means clustering or Self-Organizing Maps.

Relating to handwriting, Schomaker [1993] uses Self-Organizing Maps to organize strokes,
i.e., pieces of handwriting movement bounded by minima in the pen-tip velocity, and
characters for feature vector quantization. The obtained prototypes that represent the
neurons can then be interpreted as abstract character (or stroke) representations [cf. Figure 3
on page 448 in Schomaker, 1993]. In contrast, Kurniawan et al. [2009] use Self-Organizing
Maps to discover characters/segments in cursive handwritten text. Hierarchical clustering
algorithms for handwriting are used in different contexts: Jay et al. [2001] apply clustering
algorithms to pre-sort character segments to allow data-driven design of HMM topologies;
Vuori et al. [2001] use clustering in order to condense a training data set; while Vuurpijl
and Schomaker [1997] use clustering techniques to categorize large data sets of handwriting
in hierarchical structures. Similarly, Perrone and Connell [2000] use a K-means clustering
approach to extract sub-class models in an unsupervised manner.

In both, ASR and speech synthesis systems, clustering algorithms are used to pre-select
relevant elements of a given speech data set, or organize large data sets to allow quick data
retrieval in a selection process [Nakajima and Hamada, 1988, Black and Taylor, 1997].

There also exists research towards organization of gestures. Most of these approaches share
that they rely on a clustering algorithm to discover hidden structures in gesture observation
sets. For example, Heidemann et al. [2004] use Self-Organizing Maps to automatically
cluster pointing gestures in order to simplify data labeling for a, subsequently, supervised
training of a gesture classifier. Similarly, Steffen et al. [2007, 2008], Steffen [2010] apply
Self-Organizing Maps and Unsupervised Kernel Regression to structure grasping and
manipulative motions that allow robots to perform adequate grasping motions as required
in a particular situation. Other authors suggest using K-means algorithms for clustering
[e.g., Wachs et al., 2005] or quantization [e.g., Schlömer et al., 2008] of gesture data.
Additionally, clustering with distance functions based on HMMs [e.g., Wang et al., 2001]
are proposed. Some of these organization approaches also use the obtained clusters as
prototypes, either for quantization [Schlömer et al., 2008] or as performance templates
[Steffen, 2010].
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Figure 3.7.: This figure illustrates a confusion matrix with four possible outcomes of a
binary classifier. The columns denote the actual classification value (the label)
and the rows refer to the predicted outcome.

3.6. Performance Measures

3.6.1. Classification

A classifier maps observations to a finite set of classes. In order to rate the performance of
a classifier or to compare classifiers against each other, we are interested in the relation
of correctly vs. incorrectly classified observations. However, depending on the aim of an
application, we might need a more detailed analysis of the classification process. E.g., if a
classifier is used to monitor an industrial plant, it might be catastrophic if the classifier
does not alert a potentially life-threatening event to the operators due to an incorrect
classification decision. In such a case, the costs of a false negative classification might be
enormous — and a system operator would welcome a large amount of false positive alarms,
if a real emergency is rightfully notified.

Consider a binary classifier whose classification decisions can be either positive or negative.
There are four possible outcomes from such a classifier [Fawcett, 2006]:

• True Positive (TP): When the classification yields a positive value and the actual
value is indeed positive.

• True Negative (TN): When the outcome of the classification is negative and the
actual value is negative.

• False Positive (FP): When the classification yields a positive value, but the actual
value is negative.

• False Negative (FN): When the outcome of the classifier is negative but the actual
value is positive.

If we take a classification task with P positive and N negative observations, these rates
are usually illustrated by means of a confusion matrix (cf. Figure 3.7). However, to
quantitatively assess the results of a classification outcome, the elements of the confusion
matrix can be used to define measures that rate the performance of the classifier:
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• Sensitivity (TPR) (in other contexts also called true positive rate) describes the
rate of correctly classified positive examples in all available positive examples: TPR =
TP/P .

• Specificity (TNR) (sometimes called true negative rate) analogously denotes the
number of correctly classified negative examples in relation to the overall number of
negative examples.

• Accuracy (ACC) denotes the proportion of true classification outcomes, i.e., the
correctly classified positive and negative examples: ACC = (TP + TN)/(P +N).

3.6.2. Generalization Error

In this thesis, we will use a common evaluation scheme to empirically rate the performance
of classification algorithms: the generalization error. A classifier’s property to recognize
previously unseen observations is called generalization. To ensure good generalization
performance, it is necessary to avoid over-fitting, i.e., to make sure that the classifier
represents an underlying dependency, instead of learning minor changes in the data. In this
thesis, we will apply the generalization error GE as a performance measure for classifiers.
The generalization error describes the expected rate of incorrect classifications that occur
in unseen data:

GE = E[L(f(oi), yi)],

which is easy estimated by the rate of incorrectly classified examples in relation to the
absolute number of classified examples in a test set with N examples:

ĜE =
1

N

N∑
i=1

L(f(oi), yi).

Here, L denotes the loss function (cf. Sec. 3.3.1).

3.6.3. Receiver Operating Characteristic

However, the generalization error measure is prone to skewed and dynamic class distri-
butions, in particular, in scenarios with unequal classification costs. E.g., Fawcett [2006]
gives an example from the domain of medical decision making where the class distribution
changes due to an epidemic disease. I addition, scenarios with only few positive and a
large amount of negative examples are common, e.g., in failure prediction for production
facilities.

Receiver Operating Characteristics (ROC) analysis provides an approach to circumvent the
above-sketched shortcomings of generalization error analysis. ROC graphs are a technique
for visualizing classifier performances in terms of exploding the proportion of TP- and
FP-rate of a classification system. This implies that a classifier is not rated by an actual
(mis-)classification rate but by the proportion of incorrectly classified positive examples in
relation to mistakenly positive classified negative examples, i.e., the relation of sensitivity
and 1−specificity.

A ROC graph shows the true positive rate on the x-, and the false positive rate on the
y-axis of a plot. Figure 3.8a illustrates this exemplary for five hypothetical classifiers.
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(a) A Receiver Operating Characteristic
graph. The x-axis represents the true
positive rate, while the y-axis the false
positive rate.

(b) A Receiver Operating Characteristic
curve that is obtained by varying the clas-
sification threshold from −∞ to ∞ and
tracing the ROC values for the classifiers.

Figure 3.8.: These figures illustrate Receiver Operating Characteristic graphs. Both illus-
trations are from Fawcett [2006].

Classifiers that are represented by points in the lower-right triangle (below the diagonal
in Fig. 3.8a) perform worth than classifiers with random classification decision, whereas
points in the upper left triangle of a ROC graph represent classifiers that perform better
than random. A perfect classifier is located in (0, 1), and a point in (0, 0) is related to a
classifier that never yields a positive classification decision — in opposite to a classifier in
(1, 1) that only yields positive classification predictions.

Fawcett [2006] informally characterizes the ROC space by entitling points on the left-hand
side close to the x-axis as “conservative” since they only issue positive classifications “with
strong evidence so they make few false positive errors, but they often have low true positive
rates as well” [Fawcett, 2006, p. 863].

Points on the upper right-hand side of a ROC graph are “liberal” according to Fawcett
[2006]: “they make positive classifications with weak evidence so they classify nearly all
positives correctly, but they often have high false positive rates” [Fawcett, 2006, p. 863].

Curves in ROC space If a classifier yields a probability or a score that is related to the
degree of which an observation is a member of a class, a common classification approach is
to define a threshold value. An observation for which a classifier yields a probability or
score value below the defined threshold will be classified as negative, while an observation
with a probability or score above the threshold will be classified as positive. Since in
dependency of the threshold the point in ROC space differs it is possible to vary the
threshold from −∞ to ∞ and trace its ROC values through ROC-space. The evolving
path of changing TP- and FP-rates is called ROC curve. Please note that most classifiers
can be re-defined in a way that they issue a score that describes the classifier’s certainty,
and thus, qualify for ROC curve analysis. Figure 3.8b shows an example ROC curve for a
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hypothetical classifier.

Area Under Curve A ROC curve is a 2-dimensional representation of a classifier’s
performance. In order to reduce this visual presentation to a quantitative value that is
easily interpretable, a common approach is to calculate the Area under Curve (AUC). The
AUC value lies between 0 and 1, with a value of 0.5 indicating a random classification.
Fawcett [2006] points out that the “AUC has an important statistical property: the AUC
of a classifier is equivalent to the probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative instance.”

In order to extend AUC analysis to multi-class problems, we calculate the average AUCtotal

value weighted by the class’ prior probability:

AUCtotal =
∑
yi∈Y

AUC(yi) · p(yi)

where Y denotes the set of classes and p(yi) the class’s yi prior probability [Provost and
Domingos, 2003].

For a detailed introduction to Receiver Operating Characteristics, please see the introduc-
tion by Fawcett [2006].

3.6.4. Clustering

To evaluate the quality of an unsupervised clustering, we can distinguish between intrinsic
and extrinsic evaluation approaches.

Intrinsic evaluation is based on inter- and intra-cluster distances or similarities, i.e., how
close the examples that are assigned to the clusters are located to each other, and how
distant they are from elements of other clusters. Extrinsic approaches incorporate ground
truth to rate the clustering solution. This induces that all data are labeled with the
associated correct cluster. Based on this information, the estimated clustering solution
can be compared to the aspired correct solution. In the following section, we will use the
nomenclature suggested by Rosenberg and Hirschberg [2007]: the known ground truth
clustering is denoted by a set of classes Y = {yi|i = 1 . . . n}, and the learned clustering is
represented by a set of clusters C = {ci|i = 1 . . .m}. In addition, A = [ai,j ] is a matrix
produced by the clustering algorithm. ai,j is the number of vectors that are elements of
class yi and that are associated to cluster cj . Extrinsic evaluation measures are still subject
to discussion in the research community and many approaches to measure the distance
between ground truth and an estimated clustering exist. Amigó et al. [2009] distinguish
four extrinsic clustering measures:

• Evaluation by set matching: These measures rely on specificity and sensitivity
from classification evaluation (cf. 3.6.1). According to Amigó et al. [2009], these
set matching evaluation measures “share the feature of assuming an one to one
mapping between clusters and categories”. Purity [Zhao and Karypis, 2001] and
F-measure [Steinbach et al., 2000] are examples for set matching evaluation measures.

• Metrics based on counting pairs: These metrics incorporate statistics about
pairs of elements [Halkidi et al., 2001, Meila, 2005]. The metrics usually compare
if these pairs share classes in ground truth and the estimated clusters, e.g., if pairs
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of elements that are in the same class are also in the same learned cluster. Popular
metrics from this family are Rand R or Jaccard Coefficient J .

• Metrics based on entropy: These metrics are motivated by information theory.
The entropy of a cluster measures how the ground truth classes are distributed in the
learned data clustering. Metrics based on entropy are, e.g., mutual information [Dom,
2002], Q0 [Xu et al., 2003], or V-measure [Rosenberg and Hirschberg, 2007].

• Metrics based on edit distance: Here, a clustering solution is evaluated by the
number of transformation steps that are necessary to obtain the original cluster-
ing [Bagga and Baldwin, 1998].

For a comprehensive comparison and detailed descriptions of external classification measures,
please refer to Amigó et al. [2009].

The work described in this thesis incorporates four extrinsic clustering measures: purity,
homogeneity, completeness, V-measure:

• Purity: purity implies that a perfect clustering solution consists of clusters that only
contain examples from a single class. Imperfect clustering solutions deviate from this,
i.e., not all but still a majority of data examples from a learned clustering should
be associated with a class from ground truth. In this sense, purity is similar to the
accuracy measure from classification, but instead of given class labels, the clusters
are assigned to a category by majority voting. According to the original authors
[Zhao and Karypis, 2001] who described purity in the first place, it “measures the
extent to which each cluster contained documents from primarily one class”. Purity
is defined by

purity =

m∑
r=1

1

n
max(nir)

where m is the number of clusters, nr is the size of cluster r, and nir is the number of
data vectors in class yi that is assigned to the learned cluster r.

• Homogeneity: A similar approach is homogeneity, which prefers clustering results
that contain data vectors from one class. This measure examines the conditional
distribution H(Y |C) normalized by information provided by the clustering H(Y ).
With

H(Y |C) = −
m∑
c=1

n∑
y=1

ay,c
N

log
ay,c∑n
i=1 ai,c

(3.34)

H(Y ) = −
n∑
y=1

∑m
c=1 ay,c
n

log

∑m
c=1 ay,c
n

(3.35)

the homogeneity h is then defined as

h =

{
1 if H(Y |C) = 0,

1− H(Y |C)
H(Y ) else.

(3.36)

The inversion of 1 and 0 is introduced in the definition of homogeneity in order to
adhere the rule that 0 denotes the unwanted and 1 the desired solution.
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• Completeness: The completeness criteria describes an opposite situation: a high
completeness value indicates that all data vectors that are elements of a given class
are also elements of the same cluster. The completeness of a clustering is defined by

H(C|Y ) = −
m∑
c=1

n∑
y=1

ay,c
N

log
ay,c∑n
i=1 ay,i

(3.37)

H(C) = −
m∑
c=1

∑n
y=1 ay,c

n
log

∑n
y=1 ay,c

n
. (3.38)

Given these, the completeness c is defined as

c =

{
1 if H(C|Y ) = 0,

1− H(C|Y )
H(C) else.

(3.39)

• V-measure: In general, we are interested in clustering solutions that reach both,
good completeness and good homogeneity values. Both measures quantify desirable
properties, and, usually, a clustering is preferred if the clusters contain only data
examples from one class, but also if all data examples that are elements of a given
class are elements of the same cluster. The V-measure provides a clustering evaluation
measure that incorporates completeness and homogeneity to one value. Therefore,
the V-measure Vβ is calculated by computing the (weighted) harmonic mean of
homogeneity and completeness:

Vβ =
(1 + β) · h · c

(β · h) + c
.

We can control the influence of completeness and homogeneity by selecting β values
according to a particular application. β > 1 favors good homogeneity, while β < 1
yield good completeness values.

3.7. Summary

The aim of this chapter was to present algorithms for machine learning of time series
as well as their application to interaction time series data. We limited the selection to
algorithms that will be used in experiments later in this thesis (Chapter 6 ff).

In Section 3.1, we shortly introduced machine learning and feature extraction with a
specific focus on approaches to process time series data in Section 3.2. We addressed
Dynamic Time Warping (Section 3.2.1), Hidden Markov Models (Section 3.2.2), and
introduced Ordered Means Models (Section 3.2.3). Please note that Ordered Means Models
will be described in detail in the following Chapter 4. In Section 3.3, we presented
algorithms for classification and their application to time series data. In details, these were
Bayes classifier (Section 3.3.1), Nearest Neighbor classifiers (Section 3.3.2), and Support
Vector Machines (Section 3.3.3).

Section 3.4 was related to clustering of time series data, and we introduced approaches
based on K-means as well as K-trees for hierarchical clustering.
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In Section 3.5, we investigated how algorithms for machine learning of time series are
used to process time series data in interaction scenarios in related work. Here, we focused
on recognition, reproduction, and organization of speech, handwriting, and gestures as
widely used interaction modalities.

Last, we presented performance measures for classification and clustering in Section 3.6.
For classification, we first introduced the concept of confusion matrices and related perfor-
mance measures (Section 3.6.1). Subsequently, we described Receiver Operating Charac-
teristic and the corresponding Area Under Curve measure in Section 3.6.3. For clustering
(Section 3.6.4), we focused on extrinsic performance measures that incorporate ground
truth, i.e., knowledge about correct clustering solutions. Here, we focused on purity,
homogeneity, completeness, as well as V-measure to assess a learned clustering. We will use
these measures to evaluate our methods in comparison to other algorithms in experiments,
later in this thesis (Chapter 6 ff).
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4. Theory and Definition of Ordered Means
Models

In this thesis, we use Ordered Means Models (OMMs) for learning of interaction time series.
OMMs can be described as a rigorous simplification of HMMs in terms of an exclusion of
any transition probabilities. OMMs can still be trained by simple maximum likelihood
estimation using the EM algorithm. In this chapter, we describe the theoretical framework
of OMMs.

4.1. Model Design

An Ordered Means Model (OMM) is a generative, discrete state space model that emits
a time series out of an adjustable number K of model states. The overall model design
of OMMs is similar to the model design of HMMs, but instead of explicitly modeling
transition probabilities, in OMMs all paths through a network of model states are equally
likely. In addition, only transitions to states with equal or higher indexes as compared to
the current state are allowed, i.e., the network of model states and state transitions follows
a left-to-right topology. See Figure 4.1a for a diagram that illustrates the components and
topology of an OMM. Let O = o1, . . . ,oT be a (multivariate) time series of observation
vectors with ot ∈ Rd. Given the above model structure, an OMM is defined by a set of
emission densities B = {bk(ot)}, each of which is associated with a particular state k. To
model the emission densities we use Gaussian densities

bk(ot) = N (ot;µk, σ) =
1

(2 · π · σ2)d/2
· exp

−1

2 · σ2
||ot − µk||2. (4.1)

The deviation parameter σ describes the deviation of the associated data ot from the
location parameter µk. A low σ value indicates that the data vectors are close to the
location parameter, a high σ value denotes wider distributed data examples. In OMMs,
the deviation parameter is modeled as a global hyperparameter, which implies that the σ
value is identical in all states and has to be chosen by an external evaluation or domain
knowledge. By varying the deviation parameter σ, it is possible to change the influence of
distant data vectors.

The global standard deviation and the left-to-right model topology give rise to models
that are mainly defined by a linear array of reference vectors µ1, . . . ,µK , i.e. the location
parameters of the emission densities.

For a given length T , we define each valid path qT = q1, . . . , qT through the model to be
equally likely:

P (qT |Ω) =

{ 1
MT
· P (T ) if q1 ≤ q2 ≤ · · · ≤ qT ,

0 else
(4.2)
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(a) This figure illustrates the design of an Or-
dered Means Model with three states.

(b) Here, all equally likely paths through the
model are illustrated by black arrows.
Please note that self-transitions can occur
multiple times.

Figure 4.1.: OMM with three states and possible paths through the model. The circles
picture the model states, the blue arrows represent the emissions from the
state, and orange arrows emphasize the allowed state transitions.

where MT is the number of valid paths for a time series of length T through a K-state
model:

MT = |{qT : q1 ≤ q2 ≤ · · · ≤ qT }| =
(
K + T − 1

T

)
. (4.3)

The number of paths through the model is limited by the left-to-right topology of the model.
In enumerative combinatorics — an area of mathematics that is related to the studies of
finite discrete structures — such a setting is called k-combination with repetitions. The
term

(
K+T−1

T

)
denotes the number of ways to sample T elements from a set of K elements

and allowing duplicates. Since the order is not taken into account, the elements can be
sorted increasingly.

The likelihood to observe the time series O for a given path qT and a model Ω then is

p(O|qT ,Ω) =
T∏
t=1

p(ot|qt,Ω) · P (T ) =
T∏
t=1

bqt(ot) · P (T ), (4.4)

where P (T ) denotes the probability to observe a sequence of length T . The likelihood to
observe the time series O and a path qT for a given model Ω is

p(O,qT |Ω) = p(O|qT ,Ω) · P (qT |Ω) =
1

MT

T∏
t=1

bqt(ot) · P (T ) (4.5)

and the overall production likelihood for a time series of length T corresponds to the sum
of all possible paths (denoted as Q) in Equation 4.5

p(O|Ω) =
∑
qT

p(O,qT |Ω) =
1

MT

∑
q∈Q

T∏
t=1

bqt(ot) · P (T ). (4.6)
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4.1.1. Sequence Length Distribution in OMMs

In principle, OMMs require an explicit modeling of the length variable T . Therefore, we
have to choose a particular P (T ), either by domain knowledge or by estimation from
the observed lengths in the training data. However, this may not be possible due to
missing knowledge or a biased length of the observations. To circumvent the definition and
estimation of a length model we assume a flat distribution in terms of an improper prior
according to equally probable lengths. Note that since we do not define a maximum sequence
length, the particular probability is unknown and can be assumed to be constant.

4.1.2. State Duration Probabilities in OMMs

State duration probabilities of HMMs depend on the transition probabilities and are
geometrically distributed. In OMMs, the probability Pk(τ) to stay τ time steps in state k
depends on the sequence length T and the number of model states K. Considering the
combinatorics of the path generation process (see Equation 4.2 and Equation 4.3), the
duration probability distributions of OMMs follow

Pk(τ ;T,K) =

(
T+K−2−τ

K−2

)(
T+K−1
K−1

) . (4.7)

According to this distribution, the expected value of the state duration is

E[X] =

∞∑
τ=0

τ · Pk(τ) =
T

K
, (4.8)

where X is a random variable associated with Pk(τ).

4.2. Parameter Estimation

In order to estimate the parameters of an OMM, we use a realization of the expectation
maximization algorithm.

To learn the model parameters µk from a set of N example time series O = {O1, . . . , ON},
we maximize the log-likelihood

L = ln

(
N∏
n=1

p(Oi|Ω)

)
(4.9)

with respect to the mean vectors µk:

max
Ω
L = max

Ω

N∑
i=1

ln p(Oi|Ω) (4.10)

= max
Ω

N∑
i=1

ln
∑
q∈Q

p(Oi|q,Ω) · P (q|Ω) (4.11)

= max
Ω

N∑
i=1

ln

 1

M i
T

∑
q∈Q

T∏
t=1

bqt(ot)

 . (4.12)
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Since this maximization cannot be solved directly, the optimization problem has to be
solved iteratively. We use an expectation maximization approach [cf. Dempster et al., 1977]
that is similar to Baum-Welch training of HMMs.

This implies a training scheme where we first compute the responsibilities

rik,t =
p(Oi, qt = k|Ω)

p(Oi|Ω)
(E-step) (4.13)

and then re-estimate the model parameters according to

µk =

N∑
i=1

T∑
t=1

rik,t · oit
N∑
i=1

T∑
t=1

rik,t

(M-step). (4.14)

These two steps are repeated until convergence. Please see Appendix A for details of the
expectation maximization algorithm.

4.2.1. Efficient Computation of Production Likelihoods and Responsibilities

To compute the production likelihood (Equation 4.6) and the responsibilities (Equation 4.13)
in a computationally efficient way, we use a dynamic program similar to the forward-
backward algorithm known from HMMs [Rabiner, 1989]. We define the forward variable
according to

αk,t = αk,t−1 · bk(ot) + αk−1,t ∝ p(o1, . . . ,ot|qt ≤ k,Ω). (4.15)

Here the current αk,t depends only on the variable of the previous state k − 1 and of
the previous point in time t− 1. This yields an elegant and fast dynamic programming
solution:

αk,t = αk,t−1 · bk(ot) + αk−1,t, (4.16)

αk,0 = 1, (4.17)

α0,t = 0. (4.18)

In a similar way we can compute the backward variable

βk,t = βk,t+1 · bk(ot) + βk+1,t ∝ p(ot, . . . ,oT |qt ≥ k,Ω), (4.19)

βk,T+1 = 1, (4.20)

βK+1,t = 0 (4.21)

by means of recursion. Note that the terminal values for the forward and backward variables
are equal and proportional to the production likelihood:

αK,T = β1,1 ∝ p(O|Ω). (4.22)

By combination of Equation 4.15 and 4.19 the responsibilities can be computed by

rk,t =
αk,t−1 · bk(ot) · βk,t+1

αK,T
. (4.23)
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4.2.2. Influence of the Standard Deviation Parameter

In our implementation of OMMs the standard deviation σ as well as the model size K are
global hyperparameters and must be validated, e.g., by means of N-fold cross validation
(cf. Section 5.2.1). In this process, σ controls the influence of distant vectors ot on the
reference vectors µk.

The limiting case σ → 0 leads to an expectation maximization procedure with deterministic
assignments zk,t of the T -length time series O to the model Ω with zk,t ∈ {0, 1} and∑K

k=1 zk,t = 1. Given this, we only consider the best path q∗T through the model resulting
in

p∗(O|Ω) = p(O,q∗T |Ω) = max
qT

p(O,qT |Ω). (4.24)

The likelihood that an observed time series is generated by the optimal path can be
efficiently computed by the Viterbi algorithm [cf. Lou, 1995]

v1(k) = bk(o1),

vt(k) = max
k′

vt−1(k′) · bk(ot) with k′ < k,

p∗(O|Ω) = max
k

vT (k)

where vt(k) is the so-called Viterbi variable [cf. Forney, 1973]. Combined with a back
tracking matrix Φ, we can find the optimal path and the assignments zk,t.

Since each path is equally likely (p(q| 1
M )) is the probability to observe O for a given OMM

Ω under the optimal path q∗:

p∗(O|Ω) = P (q∗|Ω) · p(O|q∗,Ω) (4.25)

=
1

M

T∏
t=1

bq∗t (ot). (4.26)

If this is inserted into the objective function (Equation 4.10), we get:

max
Ω
L = max

N∑
i=1

ln p∗(Oi|Ω) = min

N∑
i=1

T i∑
t=1

K∑
k=1

zik,t||oit − µk||2 (4.27)

where the zik−t ∈ {0, 1} denote the assignments of oit to µk.

This can be solved according to a re-estimation scheme (cf. Equation 6.8) by

µk =

N∑
i=1

T∑
t=1

zik,t · ot

N∑
i=1

T∑
t=1

zik,t

. (4.28)

4.3. Numerical Aspects

The implementation of the dynamic programming as described in Section 4.2.1 requires
considerations about numerical aspects.
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Consider the definition of

αK,T ∝ p(O|Ω) =
1

MT

∑
q∈Q

T∏
t=1

bqt(ot). (4.29)

Here bqt(ot) is, since it is a probability, in the numerical range between 0 and 1. For

large T ,
∏T
t=1 bqt(ot) heads exponentially towards zero and will quickly exceed the numerical

precision range of today’s computer. E.g., if we assume all bqt(ot) = 0.1, and choose a time

series length of T = 100,
∏T
t=1 bqt(ot) = 10−100 — a number that cannot be represented

properly in terms of floating point precision.

To avoid numerical instabilities, we developed two approaches:

1. Computation in log space,

2. Incorporation of a scaling procedure.

4.3.1. Computation in Log Space

In order to transform probabilities to a suited numerical range, a common approach to
multiplication of probabilities is to sum their logarithms. In case of OMMs, the emission
densities are then represented by distances

lnN (ot;µk, σ) ≈ −1

2 · σ2
· ||ot − µk||2. (4.30)

In log space, products are substituted by sums, and the Kingsbury-Rayner formula allows
fast summation

log(a+ b) = log(a) + log(1 + b/a) = log(a) + log(1 + exp(log(b)− log(a))). (4.31)

In addition, many programming languages provide fast function calls for computation of
log(1 + x) (e.g. the Python or C programming languages).

4.3.2. Scaling of Probabilities

Another approach to multiply many probabilities is to incorporate a scaling procedure.

In case of OMMs, the goal is to scale all αk,t and βk,t to a dynamic range that is feasible
for a computer. This should be enabled in a way that in the end, i.e., for computation
of the responsibilities rk,t and the production probabilities p(ot|Ω), all scaling factors are
canceled out.

Consider the scaling coefficient

ct =
1∑K

k=1 αk,t
. (4.32)

We then can write by induction

α̂k,t = ct · α̂k,t =

(
T∏
u=0

cu

)
· αk,t (4.33)
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according to the dynamic programming in Equation 4.16. Scaling βk,t in a similar manner

β̂k,t = ct · βk,t (4.34)

yields a re-formulation of the responsibilities (Equation 4.23) by

rk,t =
αk,t−1 · bk(ot) · βk,t+1

αK,T
(4.35)

=

(
T∏
u=0

cu

)
· αk,t−1 · bk(ot) · βk,t+1(
T∏
u=0

cu

)
· αK,T

. (4.36)

=

(
t−1∏
u=0

cu

)
· αk,t−1 · bk(ot) ·

(
T∏
u=t

cu

)
· βk,t+1(

T∏
u=0

cu

)
· αK,T

. (4.37)

The scaling factor maps the magnitude of αt and βt to 1 and, thus, in a numerical reasonable
range.

Similarly, the production likelihood then is

p(O|Ω) =
1

M
αT,K =

1

M ·
(

T∏
u=0

cu

)αK,T . (4.38)

4.4. Relation to Hidden Markov Models

At first sight, the general design of OMMs is similar to other graphical probabilistic
models, most notably HMMs. However, there are important differences that make OMMs
particularly suitable for time series of the kind we want to deal with here. OMMs are
defined without any state transition probabilities, which leads to fundamentally modified
state duration probabilities. In OMMs, the probability Pk(τ) to stay τ time steps in state k
depends on the time series length T and the number of model states K and, thus, varies
for time series of different length. Considering the combinatorics of the path generation
process (see Equation 4.2 and Equation 4.3), the duration probability distributions of
OMMs follow

Pk(τ ;K,T ) =

(
T+K−2−τ

K−2

)(
T+K−1
K−1

) . (4.39)

In contrast, the state duration probabilities of HMMs depend on the transition probabilities
and are geometrically distributed. There is no equivalent realization of such a modeling in
terms of transition probabilities in HMMs. In addition, the time complexity of OMMs is
O(K · T ), i.e., linear in the number of model states K and the length of a time series T .
The time complexity of HMMs that incorporate a similar left-to-right topology is, with
O(K2 · T ), polynomial in the number of model states K. In practical applications, this can
make an enormous difference. Consider the quite realistic case of models with K = 100
states and a time series of T = 100 length (i.e., about 3 seconds duration with a common
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4. Theory and Definition of Ordered Means Models

sampling rate of 30 Hz). With c being a constant factor, OMMs would need c · 104 steps
of calculation, a similar HMM c · 106 computational steps. In interaction scenarios where
fast response times are crucial, the reduced complexity of OMMs can improve the reaction
times considerably.

4.5. Summary

In this chapter, we introduced Ordered Means Models (OMMs), a probabilistic discrete
state-space model that is the base of this thesis’ algorithmic work. The general model
design of OMMs is similar to the model design of HMMs, but instead of explicitly modeling
transition probabilities, in OMMs all paths through a network of model states are equally
likely. In addition, only transitions to states with equal or higher indexes as compared to
the current state are allowed, and the emission distribution are modeled as Gaussians with
the standard deviation parameter used as a global hyperparameter.

In Section 4.1, we presented the general model design of OMMs. Here, we were able to
show that OMMs’ state duration probabilities depend on the number of model states and
the length of the observed time series. In Section 4.2, we described iterative training
schemes to estimate appropriate model parameters for a set of observation by a realization
of the Expectation Maximization algorithm. Here we demonstrated that, despite a flexible
left-to-right model topology, the computational complexity of OMMs’ training is linear in
the number of model states and the average time series length. In addition, we considered
the limiting case of the deviation parameter approaching 0, what leads to an alternative
training scheme where only the optimal path through the model states is considered.
After considering difficulties in representing probabilities as floating point numbers in
Section 4.3, we subsequently presented two solutions to avoid numerical instabilities:
computation in log-space and scaling the probabilities to a magnitude of 1. Last, we
discussed the relation of OMMs and HMMs and were able to demonstrate that the state
duration distribution of OMMs cannot be realized by means of transition probabilities in
HMMs (Section 4.4).
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5. Experiments: Methods, Data Sets, and
Application

In order to evaluate if Ordered Means Models are able to represent interaction time series
data, we compare our approach to a variety of standard methods for machine learning of
time series data. We evaluate these methods with various data sets from different data
domains. This chapter introduces the standard machine learning algorithms that we use for
comparison (Section 3.6), the evaluation schemes we choose to address this work’s research
questions (Section 5.5), as well as an overview of the data sets (Section 5.6).

5.1. Methods

To determine the abilities of OMM-based methods for recognition, reproduction, and
organization of time series data, we compare them to standard approaches to time series
analysis from classification, clustering and prototyping of time series.

5.1.1. Recognition

For recognition of interaction time series, we use standard algorithms for classification
of time series. On one hand, we compare OMMs to memory-based approaches such as
Nearest-Neighbor classifiers and Support Vector Machines. On the other hand, we use
generative, probabilistic models, i.e., various variants of Hidden Markov Models. In detail,
the following time series classifiers are used in experiments:

• NNDTW: As a base-line approach, we use Nearest Neighbor classifiers that incorpo-
rate Dynamic Time Warping as a distance function. The time complexity of NNDTW

is O(N ·T · T̄ ·d) where N denotes the number of training examples, T is the length of
the time series that is to be classified, T̄ is the average length of the labeled training
data, and d refers to the data dimensionality. A Nearest Neighbor classifier does not
require training nor involve hyperparameter selection.

• NNDTW-window: This Nearest Neighbor classifier also uses Dynamic Time Warping
as a distance function. In contrast to NNDTW, NNDTW-window comprises the Sako-
Chiba band in the DTW function. The algorithmic complexity of NNDTW-window is
still O(N · T · T̄ · d), but pruning the DTW search space by means of a Sako-Chiba
band significantly reduces the complexity in practice, and in an optimal case, the
time complexity of NNDTW-window can be linear in all factors: O(N · T̄ ·d). In contrast
to a standard NNDTW approach, NNDTW-window requires a thorough selection of
the Soka-Chiba band window size, e.g., by means of an external process such as
N-fold cross validation (cf. Section 5.2). In our implementation of NNDTW-window,
the window size parameter is mapped to [0, 1] with 0 denoting a window size of one
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sample (i.e., a linear solution that limits the number of possible DTW paths to one),
while 1 is related to a full DTW paths search.

• SVMGDTW: More sophisticated approaches to classification are provided by Sup-
port Vector Machines with Gaussian Dynamic Time Warping kernels [SVMGDTW,
Bahlmann et al., 2002, cf. Section 3.2.1]. A Gaussian Dynamic Time Warping kernel
is a standard RBF kernel that incorporates a Dynamic Time Warping distance instead
of the Euclidean distance into the exponent. The time complexity of SVMGDTW for
classification is with O(NSV · T · T̄ · d) equivalent to NNDTW. However, SVMGDTW

only embraces NSV support vectors in a classifier. Please note that in dependency of
a given data set, the amount of support vectors NSV might be substantially smaller
than the number of all data example N .

During training, SVM classifiers require to compute pairwise kernel functions for the
complete training data set. Thus, the time complexity of SVMGDTW is polynomial in
the number of training data O(N2 · T̄ 2 · d). In addition, SVMGDTW requires two hy-
perparameters: the kernel function parameter λ, and the regularization parameter C.
These parameters have to be selected, usually, by an external hyperparameter selec-
tion process such as N-fold cross validation. As SVM software, we use libsvm [Chang
and Lin, 2011] with pre-computed kernel matrices in experiments.

In addition to those standard approaches to time series classification, we use different
HMM variants that, just as OMMs, incorporate a simplification in model design. In
general, OMMs provide a model with reduced model complexity. In this thesis, we use
HMM variants with Gaussian emission densities and use the variation parameter as a
hyperparameter. In addition, we further reduce the model complexity by limiting the model
topology in regard to (a) the number of transition probabilities, and (b) the requirement
to estimate the transition probabilities at all:

• HMMLR: HMMLR are Hidden Markov Models that incorporate the same model
topology as OMMs, i.e., a left-to-right model topology that only allows transition
to states with equal or higher indexes than the current state. Similar to OMMs,
the emissions of HMMLR are Gaussian. The time complexity of HMMLR is with
O(K2 · T ) polynomial in the number of model states K and linear in the length T of
the analyzed time series.

• HMMLIN: This HMM variant incorporates a similar design as HMMLR. However,
instead of comprising a left-to-right model topology, HMMLIN incorporate a linear
topology where only self-transitions or transitions to the next state are allowed.
The time complexity of HMMsLIN is, similar the complexity of OMMs, linear in the
number of model states K and the lengths T of the analyzed time series O(K · T ).
HMMsLIN do not provide such a flexible model topology such as HMMLR or OMMs.

• HMMPDTP: HMMPDTP are an HMM variant with pre-defined transition probabili-
ties. The model complexity of HMMs is decreased by eliminating the requirement to
estimate transition probabilities during training. There are various ways to do so,
e.g., näıve approaches with uniform transition probabilities or models with randomly
chosen transition probabilities. In HMMPDTP, we apply prior knowledge to define
the transition probabilities.

In general, the probability to stay τ time steps in the k-th state of an HMM is
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geometrically distributed with

Pk(τ) = aτ−1
k,k · (1− ak,k). (5.1)

For a model with K states and a time series of length T , we can require each state
to emit T

K time series positions on average. Given this, the expectation value of the
geometric distributed random variable X with P (X) = Pk(τ) is

E[X] =
1

(1− ak,k)
=
T

K
. (5.2)

By solving this equation, we can compute the self-transition probabilities for all
states via

ak,k =
T −K
T

, with T 6= 0. (5.3)

In models with linear topology, where only self transitions ak,k and transitions to the
subsequent state ak,k+1 are allowed, the probability to change to the next state then
is

ak,k+1 = 1− ak,k =
K

T
. (5.4)

The transition probabilities are completely determined by such an approach. In
combination with Gaussian emission densities and a fixed global standard deviation,
this approach leads to reduced HMMs, for which only the location parameters of
the emissions have to be estimated. The general process of parameter estimation is
similar to standard HMMs.

5.1.2. Organization

In order to evaluate the performance of the proposed OMM-based clustering algorithms,
we use standard clustering of time series data.

• K-means clustering: In case observations of equal lengths are available, we use
standard K-means clustering for comparison (cf. Section 3.4.1 for a detailed de-
scription). Please note that such an approach is highly artificial since time series
data usually differ in example lengths. The algorithmic complexity of K-means is
O(C ·N · d), i.e., linear in all factors: the number of observations N , the number of
centroids C, and the data dimensionality d.

• K-HMMs clustering: This approach applies HMMs to represent the cluster cen-
troids, thus, allowing the observations to be time series data of varying lengths. To
apply HMMs to clustering analysis, an available distance function between a time
series Oi and an HMM λj is defined via the negative production log-likelihood

d(Oi, λj) = − ln p(Oi|λj). (5.5)

Thus, longer distances are related to lower production likelihood values, while short
distances correspond to high production likelihoods. The update function for the
centroids then is a re-training of the centroid HMMs. In this thesis, we use HMMs
with a similar model topology as OMMs, i.e., a flexible left-to-right topology, and
emissions that are modeled as Gaussians whereas the standard deviation parameter
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is a global hyperparameter. The algorithmic complexity of the K-HMMs algorithm
then is O(C ·N · T ·K2), i.e., linear in the number C of centroid HMMs, the number
of observations N , the length of the observations T , and polynomial in the number
of model states K. The K-HMMs algorithm for clustering of time series was first
introduced by Smyth [1997].

5.1.3. Prototype Property

Similar to OMMs, the emission densities of HMMLR, HMMLIN, and HMMPDTP are Gaus-
sians and the standard deviation parameters are used as global hyperparameters. Thus, the
expectation values of the emission densities can be described as a linear array of reference
vectors. Moreover, since these reference vectors are elements of the same vector space as
the observations from the genuine time series space, the complete array of reference vectors
are elements of the time series data, too. However, given the model design of HMMs
transition probabilities are necessary to completely describe HMMsLR and HMMsLIN —
an information that is unused in such a prototype definition.

5.2. Hyperparameter Selection

Most machine learning algorithms require a configuration of hyperparameters. In case of
OMMs, the hyperparameters are the number of model states K and the standard deviation
parameter σ, for standard SVMs, the penalty weight C and kernel parameters, e.g., the
kernel bandwidth parameter γ have to be determined. In general, the choice of appropriate
hyperparameters is crucial for the algorithm’s performance. In order to choose a particular
hyperparameter set, we use N-fold cross validation in this thesis.

5.2.1. N-Fold Cross Validation

Cross validation is a common approach to select hyperparameter and to evaluate a classifier’s
performance. The general idea of cross validation is to hold a subset of a complete training
data set back and use it for testing.

In order to apply cross validation to a data set, the data set is partitioned into N folds
of (almost) equal size. One of these folds is taken out for testing, while the remaining
N − 1 folds are merged and used for training. This procedure is repeated for all N folds
and an average of all N folds’ performances is used to rate the parameter set or the learner,
respectively.

In a more formal definition is κ : {1, . . . , N} → {1, . . . ,N} a function that randomly maps
an observation i ∈ {1, . . . , N} in a fold g ∈ {1, . . . ,N}. And let f−κ(g)(x) be a model
that was trained without the data from the g’s fold. The estimated error from the cross
validation procedure is

ÊCV =
1

N

N∑
i=1

N−κ(i)∑
j=1

L(f−κ(i)(xj), yj).

Common values for the number of folds N are 5 or 10.
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5.3. Initialization of OMMs and HMMs

For initialization of the iterative model estimation scheme, we choose randomized deter-
ministic assignments to model states for all time series. The resulting random paths are
forced to follow the restrictions induced by the model topologies. The initial transition
probabilities for HMMs are chosen according to (normalized) uniform random numbers.
All algorithms used in this study are implemented in the Python programming language.
Time-critical parts such as the dynamic programming are realized using the C programming
language. The complete source code is available on the complementary CD.

The experiments were performed on a computing cluster with 16 nodes and 128 processors.

5.4. Data Pre-Processing

All data is normalized to zero-mean and unit variance. Let O = {O1, . . . ON} be a set of
observed time series On = on1 . . .o

n
T . In order to normalize the data, we first estimate the

mean vector for all observations

µ̂ =
1

N ·
∑N

n=1 Tn

N∑
n=1

Tn∑
t=1

ont ,

followed by an estimation of the data’s standard deviation

σ̂ =
1

N ·
∑N

n=1 Tn

(
N∑
n=1

Tn∑
t=1

(ont − µ̂)2

) 1
2

.

The normalized data sample is then computed by

õt =
ot − µ̂
σ̂

.

5.5. Application in Experiments

To establish the classifiers’ comparative merits, we apply a uniform procedure to all
data sets and models in this work: first, we identified optimal hyperparameter values for
classifiers — unless otherwise stated — by means of 5-fold cross validation on the training
data. Subsequently, we train a classifier using all training data and the hyperparameters
associated with the highest performance measure value. To obtain the final performance
rate, we apply the resulting classifiers to the dedicated test data set.

We evaluate the reproduction capabilities of our approaches by visual inspection. E.g.,
mouse gestures can be easily inspected in terms of 2-dimensional spatial diagrams.

In order to evaluate the performance of the organization algorithms, we apply uniform
procedures to all data sets and methods. We employ the organization methods with
different hyperparameter value sets to a given data set, and evaluate the performance by
means of appropriate performance measures for clustering (cf. Section 3.6.4).

In other experiments, we evaluate the organization capabilities of an algorithm by means of
test set performance, similar to the recognition experiments. Here, we estimate appropriate
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hyperparameters for each method by means of the training data. Subsequently, we take
the best hyperparameters found in this process to train a model from the complete training
data sets and apply the resulting clustering model to the test data sets.

Unless otherwise stated, we initialize the time series clusters with randomized cluster
assignments.

5.6. Overview of Data Sets

We use a variety of data sets to evaluate and demonstrate the properties of OMMs — in
particular related to time series that arise in interaction scenarios, but also in relation
to time series analysis in general and from other domains. Alongside to widely used
benchmark data sets for time series classification and clustering provided by Keogh et al.
[2006], we use interaction time series data sets from the UCI machine learning repository,
as well as data sets that are genuine to this thesis. Table 5.1 gives an overview of basic
properties for the used data sets, while Table 5.2 shows what data set is used in which
experimental context. In detail the data sets are:

• The UCR Time Series Classification/Clustering Data Sets: This collection
of time series data sets provides 20 labeled data sets from various data domains
represented as time series1. The collection includes data sets with various proper-
ties and claims to provide “a public service to the data mining/machine learning
community, to encourage reproducible research for time series classification and
clustering” [Keogh et al., 2006]. A shortcoming of these data sets for the purpose of
the given thesis is that all time series from a single data set share an equal length.
Such a prerequisite usually requires a pre-processing step in which, e.g., the recorded
time series are interpolated to equal lengths. However, in interaction scenarios, such a
pre-processing step is, usually, impractical due to time constraints or an incremental
evaluation approach. All data sets in this collection are uni-variate.

• The Australian Sign Language Signs2: This data set is provided by the UCI
machine learning repository. The data set contains recordings from sign language
signs that were collected from a single right-handed Nintendo Power Glove at a
sample rate of approximately 23 Hz. With 95 classes, this data set comprises the
largest amount of classes in this thesis. Kadous [1995] recorded this data set for an
honors thesis.

• The Character Trajectories3: The character trajectories data set is also provided
by the UCI machine learning repository. This data set contains trajectories of
characters that were written on a WACOM tablet by various human participants. A
character is represented as a time series of three dimensional feature vectors (x/y
coordinates and pen force). We randomly partitioned the data set in training and
test sets of equal sizes. The data set was collected by Ben Williams [e.g., Williams
et al., 2006] and was primarily used for a PhD study.

1Please note, that when the experiments with the UCR data sets where conducted, the collection contained
20 data sets. By now (13.02.2013), the collection has grown to 47 data sets.

2http://www.cse.unsw.edu.au/˜waleed/tml/data/
3http://archive.ics.uci.edu/ml/datasets/Character+Trajectories

54



5.6. Overview of Data Sets

d
at

a
se

t

#
cl

as
se

s

#
tr

a
in

ex
am

p
le

s

#
te

st
ex

a
m

p
le

s

av
g.

le
n

g
th

#
d

im
en

si
on

s

U
C

R
b

en
ch

m
ar

k
d

at
a

se
ts

50words 50 450 455 270 1
Gun Point 2 50 150 150 1
OSULeaf 6 200 242 427 1
Two Patterns 4 1000 4000 128 1
Adiac 37 390 391 176 1
ECG200 2 100 100 96 1
wafer 2 1000 6164 152 1
Beef 5 30 30 470 1
FaceAll 14 560 1690 131 1
Lighting2 2 60 61 637 1
SwedishLeaf 15 500 625 128 1
yoga 2 300 3000 426 1
CBF 3 30 900 128 1
FaceFour 4 24 88 350 1
Lighting7 7 70 73 319 1
synthetic control 6 300 300 60 1
Coffee 2 28 28 286 1
fish 7 175 175 463 1
OliveOil 4 30 30 570 1
Trace 4 100 100 275 1

UCI interaction data sets
Australian Sign Language Signs 95 1710 570 57 22
Character Trajectories 20 1429 1429 171 3
Spoken Arabic Digits 10 6599 2199 39 13

original data sets

Concrete Gestures 48 369 151 141 3
Abstract Gestures 9 362 147 144 3
SCH3 5 289 150 21 6
Head Gestures 4 751 357 137 6
Mouse Gestures 3 11 - 100 2
Violin Finger Pressure 3 1143 1143 14 4

Table 5.1.: This table denotes basic properties of the data sets used in the experiments.
In detail, these are the number of classes, the number of training examples,
the number of test examples, the average length of the time series, and the
dimensionality of the time series. The original data sets were recorded in
different studies for this thesis.
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• The Spoken Arabic Digits4: As both data sets above, the Spoken Arabic Digits
data set is available through the UCI machine learning repository. It provides
8800 examples of spoken Arabic digits in 10 classes, each digit in one class. The
spoken digits are represented by time series of 13 dimensional mel frequency cepstral
coefficients [Logan et al., 2000]. This data set provides dedicated training and test
data sets and was recorded by the Laboratory of Automatic and Signals, University
of Badji-Mokhtar, Annaba, Algeria.

• Concrete Gestures: This data set was originally recorded by Amir Sadeghipour
in cooperation with the author of this thesis. We recorded hand-arm gestures as
3-dimensional location coordinates of the right hand wrist that vary in time by means
of a time-of-flight camera and a marker-free tracking software. Overall, we collected
48 different gesture classes, each with respect to some of the following variant features:
size (e.g., small and big circle), performing space (e.g., drawing a circle at the right
side or in front of oneself), direction (clockwise or counter-clockwise), orientation
(horizontal or vertical), repetition (repeating some sub-parts of the movement, such
as drawing a circle once or twice, or swinging the hand for several times during
waving). The performed gestures ranged from conventional communicative gestures
(“waving”, “come here” and “calm down”) over iconic gestures (“circle”, “spiky”,
“square”, “surface” and “triangle”) to deictic gestures (“pointing” to left, right and
upward).

• Abstract Gestures: This data set comprises the same gesture trajectories as the
before-mentioned Concrete Gestures data set. In contrast to the Concrete Gestures
data set, the Abstract Gestures data set combines the trajectories differently to
only nine abstract gesture classes. These classes comprise gestures from higher-level
semantic categories, e.g., all circle gestures are combined to one class “circle” despite
of their size, performance space, direction, orientation, or repetition. This leads to
classes that enclose very different trajectories in terms of the given raw data, and,
thus, are more challenging to represent by a data model.

• SCH3: The SCH3 data set contains trajectories of human players who play a
modified version of the common Rock-Paper-Scissors hand gestures game against
the virtual agent VINCE. In contrast to its classic form, the opponents had to use
hand-arm gestures to represent the RPS items. Besides that, we also added two
more items to the game (Lizard and Spock) to provide a more comprehensive data
collection. In this setup, we captured the gestures that were performed by the human
users as normalized 3-dimensional positions of the wrists with respect to the body
center. The data set was recorded by Wöhler [2012] as part of his Master’s thesis
under close supervision of Amir Sadeghipour and the author of this thesis.

• Mouse Gestures: The Mouse Gestures data set is a very small data collection that
comprises computer mouse trajectories in three classes with 11 examples per class.
The mouse gestures are represented as 2D location coordinates that vary in time.
This data set was originally recorded by the author of this thesis.

• Head Gestures: This data set provides angular momentum data of conversation
head gestures. Therefore, we recorded head movements of 10 human participants
during dyadic conversation by means of the 3 DoF gyroscopes of a Xsens MT9

4http://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
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UCR Time Series Classification/Clustering Data Set X X
Australian Sign Language Signs X
Character Trajectories X
Spoken Arabic Digits X
Concrete Gestures X X X
Abstract Gestures X X X
SCH3 X
Mouse Gestures X
Head Gestures X
Violin Finger Pressure X

Table 5.2.: This table shows the usage of data set in the experimental contexts. Please note,
that the UCR Time Series Classification/Clustering data sets is a collection
of 20 benchmark data sets from various fields that is provided by Keogh et al.
[2006].

inertial sensor5 that was mounted to the top of the participants’ heads. Afterward,
we annotated the recorded data by means of the video footage recorded by a scene
camera according to the four most frequently occurring head movements: nod, shake,
tilt, and look. This data set was collected by Wöhler [2009] as part of his Bachelor’s
thesis under close supervision of Angelika Dierker in cooperation with the author of
this thesis.

• Violin Finger Pressure: This data set contains finger pressure measurements of
a violin player performing. We recorded the pressure that the fingers of the right
hand put on the bow. Therefore, we mounted force sensing resistors to the bow’s
frog. In addition, we used a goniometer to measure the direction and range as well
as the rotation of the bow’s motion. The data set comprises different up- and down
bowings (Martele, Detache and Spiccato) in different tempi (slow and fast), and
defined inaccurate bowings. The data set was recorded by Tobias Grosshauser in
cooperation with the author of this thesis.

5http://www.xsens.com/
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5.7. Summary

In this chapter, we introduced the algorithms that we chose for comparison and the
evaluation schemes that we use in experiments. Furthermore, we gave an overview of the
data sets that are employed in empirical evaluations.

In Section 5.1 we presented the standard machine learning algorithms that we use for
comparison of our OMM-based recognition, reproduction, and organization approaches.
In addition to Support Vector Machines with Gaussian Dynamic Time Series kernel
(SVMGDTW) and Nearest Neighbor approaches that incorporate Dynamic Time Warping as
a distance function (NNDTW, NNDTW-window), we introduced Hidden Markov Models with
different characteristics: (i) HMMsLR incorporate the same model design as OMMs but
incorporate transition probabilities, (ii) HMMsLIN use, in contrast to OMMs and HMMsLR,
a linear model topology, and (iii) HMMsPDTP — an HMM variant with pre-defined
transition probabilities. In addition to evaluation of OMMs recognition capabilities, these
HMMs are also used to evaluate the abilities of OMMs to provide prototype representations
for interaction data. To establish OMM-based organization merits, we presented K-means
as well as K-HMMs that we use for comparison.

Afterward, we described the application of the algorithms in experiments with real-world
data, e.g., practical aspects of data pre-processing and model selection (Section 5.2).
In Section 5.3, we described the initialization of OMM’s and HMM’s iterative training
scheme, while Section 5.4 specified the data normalization. In Section 5.5, we described
how the methods are applied in experiments. Last, we gave a short and condensed overview
of the 28 data sets that are used in this thesis in Section 5.6, alongside basic data set
properties.
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6. Recognition of Interaction Time Series
Data with OMMs

Interacting with one another means engaging in a highly dynamic process in which expressive
behaviors are flexibly and spontaneously observed, taken up, recognized, adapted, and
adopted (cf. Chapter 2). This includes the ability to rapidly and robustly recognize an
observed behavior, thus, recognizing interactive behavior in highly dynamical environments
confronts technical systems such as autonomous agents or robots with various challenges:
(i) In order to allow a seaming-less interaction experience without substantial delays, it is
essential that a system can recognize behavior patterns rapidly with low response times.
(ii) Coping with data sources in highly dynamic environments implies a high chance for
faulty, corrupt data streams, e.g., if a sensor fails, the available data will be incomplete.
However, the human participants themselves might induce an even bigger challenge: being
accustomed to deal with reliable human interactants, they might perform behavior patterns
only loosely or partially, leaving the observer to deduce the meaning by context of knowledge.
(iii) In order to provide a seaming-less communication experience without noticeable delay,
it is essential, that a system can recognize a behavior and deduce its (possible) meaning
incrementally while it is performed. (iv) To adapt to a dynamical environment the system
will highly benefit from the ability to learn a behavior already from the first presentation
on, and to adjust the learned model incrementally when observing further instances of this
behavior.

In the following chapter, we will investigate Ordered Means Models for classification of
time series data with a major focus on interaction time series.

Our experimental setups are directly related to the following major research questions of
this thesis (cf. Section 2.1):

• (Q1) Accuracy: How do OMM-based classifiers compare to standard methods for
classification of time series data in terms of accuracy?

• (Q2) Response Times: How do OMM-based classifiers compare to standard
methods for classification of time series data in terms of response times?

• (Q3) Robustness Property: How do OMM-based classifiers perform in terms of
incomplete observations in comparison to standard classifiers?

• (Q4) Adaptability: To what degree can OMMs dynamically adapt to changing
behaviors?

• (Q5) Incremental Evaluation: Does an incremental evaluation of OMMs allow an
on-the-fly classification of observed behavior, and can this improve the time required
for recognition?

The chapter is organized as follows:
Section 6.1 is related to classification of time series and gesture data with OMMs. Here,
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we will evaluate if OMM-based classifiers are suited for recognition of time series data and,
in particular, interaction time series. We will apply OMM classifiers to simulation and
benchmark data sets for time series classification, and we will introduce two applications of
OMM classifiers in interaction scenarios: (i) for communicative head gesture recognition,
and (ii) for recognition of bowing-types and malpositions in bowing instrument playing.
In Section 6.7, we will evaluate an incremental classification approach that updates a
classification decision while a behavior is observed. In addition, the model is dynamically
updated while the data arrives. Here, we examine an interaction scenario where a human
plays a variant of the well-known Rock-Paper-Scissors game against the virtual agent
VINCE.

6.1. Classification with Ordered Means Models

In order to recognize time series data, we will use a maximum likelihood classification
approach to OMMs.

In this classification paradigm, we first estimate on OMM Ω for each class yj ∈ Y from the
data. An unknown time series then is assigned to the class associated with the model that
yields the highest production likelihood p(O|Ωi) of all models:

f(O) = arg max
yi

p(O|Ωi) = arg max
yi

αyiK,T . (6.1)

6.1.1. Incremental Classification of Time Series with OMMs

Incremental classification of time series data describes the process of yielding a classification
result while a time series data is observed and, thus, the classification decision is updated
each time new information is available, e.g., when a new sample in time arrives. Consider
the time series O = o1, . . . ,oT . The classifier f(·) returns a hypothesis f(o1) = ŷt=1

when the first sample o1 is observed. However, if new data, i.e., more samples of the
time series, becomes available, the hypothesis gets updated and, supposedly, improved:
f(o1, . . . ,ot) = ŷt=t. Since the classification decision is updated incrementally, and available
at present at any time during observation of the time series, such an approach is an
incremental classification of time series, and we will refer to corresponding OMMs by
OMMsincremental.

The dynamic programming scheme of OMMs (cf. Equation 4.16) allows an incremental
evaluation of time series. Since the value of αiK,t only depends on αiK,t−1 — the values of
the forward variables that are related to the previous observed sample — it is possible to
update the production likelihood P (oi1, . . . , o

i
t|Ωj) ∝ αiK,t sample-by-sample, which is the

basis for the classification decision. Notably, this update scheme leads to incrementally
improved classification decisions with every further piece of evidence that arrives. In
consequence, a classification decision can be made with specific required certainties as soon
as possible, and the system can wait for and process further evidence otherwise.

In order to enable incremental classification of time series based on OMMs, the dynamic
programming approach as described in Equation 4.16 need to be altered. A cumulative
computation scheme of the production probabilities is
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6.1. Classification with Ordered Means Models

p(o1, . . . ,ot|Ω) =
1

Mt
· αK,t (6.2)

where αK,t = p(o1, . . . ,ot|Ω) (6.3)

= αK,t−1 · bK(ot) + αK−1,t (6.4)

and Mt = Mt−1
K + t− 1

t
(6.5)

induced with M0 = 1 (6.6)

and αk,0 = 1, α0,t = 0,∀k ≤ K. (6.7)

Here, Mt denotes the number of paths through the OMM Ω if a time series of length t is
observed, given a model with K model states, and αk,t being the forward variable from
the dynamic programming. Both Mt and αK,t are recursively computed and only require
the Mt−1 and αK−1,t values, respectively, as well as the newest observed sample ot.

Incremental classification can be realized analogously to non-incremental classification with
a maximum likelihood decision: first, J class-specific models Ω are estimated from the data.
An unknown time series then is assigned to the class associated with the model that yields
the highest production likelihood p(Ot|Ωj) of all models. In contrast to non-incremental
classification, the production likelihoods are updated with each observed sample ot, and
thus the classification decision.

6.1.2. Adaptive Learning

Our adaptive learning approach allows to train OMMs online, i.e., observation by obser-
vation while they are observed. The general idea of our online OMM training is similar
to Liang and Klein [2009] [see also Neal and Hinton, 1998], who propose an incremental
expectation maximization (iEM) procedure for probabilistic models. The training scheme
of iEM subtracts the model adjustment from the previous example to add in the new one.
Such a procedure can be straight-forwardly transfered to OMM training:

Let Ω be an OMM and Ω′∆ the difference between this model and the model from the
last iteration step. The algorithm to incorporate the time series Oi into the model online
proceeds as follows:

1. Compute the responsibilities rik,t for Ω and Oi

2. Compute Ω∆ = µ∆,1, . . . ,µ∆,K according to

µ∆,k =

T∑
t=1

rik,t · oit
T∑
t=1

rik,t

. (6.8)

3. Update the model: Ω = Ω + Ω∆ − Ω′∆

4. Replace old with new: Ω′∆ = Ω∆

5. Repeat until convergence
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NNDTW-window SVMGDTW OMM
data set window size C γ K σ

Australian Sign Language Signs 0.5 5 0.002 34 1.5
Character Trajectories 1.0 5 0.002 171 0.47
Spoken Arabic Digits 0.4 1 0.008 39 1.125

Table 6.1.: Optimal hyperparamters found in cross validation for the benchmark data from
the UCI repository.

6.2. Low Latency Recognition of Interaction Time Series

In order to determine the abilities of OMM-based classifiers for low latency recognition
of time series data, we will, first, investigate how such classifiers perform as compared to
standard approaches to time series classifications, both, in terms of generalization error, as
well as running times.

In an experimental setup, we compare OMM classifiers to widely-used classification tech-
niques on various time series data sets from the UCI machine learning repository [Frank
and Asuncion, 2010], namely, the Australian Sign Language Signs [Kadous, 2002]1, the
Character Trajectories Data Set2, and the Spoken Arabic Digits Data Set3. Table 5.1
displays basic properties of these data sets. Besides OMM classifiers, we applied Nearest
Neighbor Classifiers based on a Dynamic Time Warping distance function (NNDTW) in
two variants: (i) NNDTW: here, the DTW function incorporates the complete dynamic
programming scheme with all possible paths, (ii) NNDTW-window: this classifier uses dy-
namic time warping with a reduced amount of warping paths, as well as (iii) SVMGDTW:
a SVM classifiers that uses a Gaussian Dynamic Time Warping kernels. See Section 5.1.1
for detailed descriptions of these classification approaches.

Results from these experiments are directly related to this thesis’ major research question
(RQ1).

6.2.1. Data Sets

The Australian Sign Language data set consists of 95 classes each containing 27 realizations
of one particular sign. Each point in time is represented as 22 dimensional feature vectors
that include the locations and orientations of both hands, as well as the bend measures
of all fingers. The data was captured in nine sessions, of which we use the examples of
the first seven sessions as training data, and data records from sessions eight and nine for
testing.

The Character Trajectories data set consists of 2858 examples in 20 classes. Each class
contains trajectories of one character that was written on a WACOM tablet by different
human participants. A character is represented as a time series of three dimensional feature
vectors (x/y coordinates and pen force). We randomly partitioned the data set in training
and test sets of equal sizes.

1http://www.cse.unsw.edu.au/˜waleed/tml/data/
2http://archive.ics.uci.edu/ml/datasets/Character+Trajectories
3http://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
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data set NNDTW NNDTW-window SVMGDTW OMM

Australian Sign Language Signs ≈ 0.039 ≈ 0.039 ≈ 0.007 ≈ 0.019
Character Trajectories ≈ 0.064 ≈ 0.051 ≈ 0.041 ≈ 0.109
Spoken Arabic Digits ≈ 0.055 ≈ 0.027 ≈ 0.008 ≈ 0.028

Table 6.2.: Test set error rates for time series data sets from the UCI machine learning
repository.

The Spoken Arabic Digits data set provides 8800 examples in 10 classes that are represented
by time series of 13 dimensional mel frequency cepstral coefficients. This data set provides
dedicated training and test data sets.

6.2.2. Experiments

We identified optimal hyperparameter values as described in Section 5.2. For OMMs,
we chose 10 equidistant values for the number of states K depending on the (average)
time series length T with rounded values from { T10 ,

2·T
10 , . . . , T}. The set of values for the

standard deviation parameter σ was equal in all cases: σ ∈ {2 · 0.75y|y = 1, . . . , 10}.
Similarly, for SVM classifiers, we chose the penalty constant C ∈ {10y, 5 · 10y|y = 0, . . . , 4}
and the GDTW kernel parameter γ ∈ {0.5y|y = 0, . . . , 9}.
For NNDTW-window classifiers, we evaluated a window length factor from {0.1, 0.2, . . . , 1.0}.
Please note that a window length factor of 1.0 is equal to a NNDTW classifier that incorpo-
rates the complete DTW path search space. The NNDTW classifiers do not incorporate
any hyperparameters.

6.2.3. Results and Discussion

Table 6.2 shows the performance results of our evaluation in terms of error rates on the
test sets. The optimal hyperparameters found in cross validation are denoted in Table 6.1.
In general, all methods show sufficient accuracy, whereby the discriminative kernel-based
SVMsGDTW systematically outperform OMMs and the Nearest Neighbor approach. On
two out of three data sets OMMs outperform NNDTW classifiers while a contrary result
can be observed on the third data set.

The superior performance of the kernel-based SVMGDTW comes at the cost of substantially
increased computational demands. For classification of an unseen example, kernel-based
approaches often require the calculation of a large number of kernel functions. Table
6.3 shows the average running times for classification of a single example for the three
methods. In comparison to SVMGDTW, OMMs demonstrate a speed-up factor between
≈ 25 (Character Trajectories) and ≈ 339 (Spoken Arabic Digits). In contrast to SVMGDTW

and NNDTW, the short running times of OMMs underline their suitability for real-time
applications as required in many interaction scenarios. Note that the running times of
SVMGDTW depend on the sparseness of the classifier, i.e., how many support vectors are
actually used.

In terms of this thesis’ major research questions (Section 2.1) the results of this
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data set NNDTW NNDTW-window SVMGDTW OMM

Australian Sign Language Signs ≈ 5.75s ≈ 3.06s ≈ 5.71s ≈ 0.13s
Character Trajectories ≈ 10.10s ≈ 10.10s ≈ 5.86s ≈ 0.23s
Spoken Arabic Digits ≈ 6.80s ≈ 3.14s ≈ 3.39s ≈ 0.01s

Table 6.3.: Average running times in seconds for classification of one test example.

experiment show that OMM-based classifiers are able to recognize interaction data with
high accuracy (Q1). In contrast to highly accurate kernel machines, the OMM algorithm
is substantially more computational efficient, which allows low latency response times in
interaction scenarios (Q2).

An additional shortcoming of kernel machines is that in general the model is not easily
interpretable in terms of characteristic features in data space. Such features may provide
additional insights into the underlying data distribution including regularities and variations
of relevant patterns. In Chapter 7, we will investigate if and how all estimated OMM
parameters can directly be inspected in terms of a prototype representation.

6.3. Robust Recognition: Incomplete Data

In the previous section, we found that OMM-based classifiers are able to classify and
recognize interaction data rapidly and with high accuracy. However, in interaction scenarios,
robustness towards unpredictable errors is a crucial prerequisite.

To test if OMM classifiers are robust towards incomplete observations, we will evaluate
OMM-based classifiers, first, with an artificial simulation data where we control all aspects
of the processed data set. Second, we assess the robustness properties of OMM classifiers
in comparison to standard classification methods in 20 benchmark data sets for time series
classification.

6.3.1. Data Set

We designed a simulation experiment in which we evaluated the classification accuracy
with fragmented test examples of decreasing length.

For this purpose, we created a binary classification task containing a class of sine waves and
a class of triangular waves, each covering two complete periods. The time series lengths
follow a truncated Gaussian distribution with µ = 60, σ = 20 and lower and upper bounds
of 20 and 100, respectively. Additionally, we apply Gaussian noise to the signals so that
the resulting time series have a signal-to-noise ratio of SNR = 5. The simulation data set
consists of 2200 time series and is partitioned into a training set of 200 time series (100 for
each class) and a test set of the remaining 2000 time series (1000 for each class).

Furthermore, we created additional test sets of decreasingly shorter fragments out of the
original test set time series. The length of each fragment is relative to the original length of
the time series according to a fragment length factor L between L = 1.0 and L = 0.1. For
example, if the length of a test time series is T = 100, then its fragment length for L = 0.5
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(a) Examples from the simulation data set.
Each row shows one class while the columns
show time series fragments for different val-
ues of the fragment length factor L. The
first column shows ideal noise-free waves
as used for example generation.
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(b) Error rates for fragmented test time series
from the simulation data set. The y-axes
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corresponds to time series fragments of de-
creasing length according to the fragment
length factor L.

Figure 6.1.: These plots show example data from the simulation data sets (a) and related
classification results (b).

is TL=0.5 = 50. In this study, L decreases in steps of 0.01 to provide 91 different test data
sets with correspondingly shorter fragments. The location of the fragment is randomly
chosen for each time series O and fragment length factor L. Figure 6.1a shows examples
from the simulation data set for different values of L together with ideal noise-free waves
used as the basis for data set generation.

6.3.2. Experiments

We compared OMM-based classifiers with an HMM-based approach (cf. the HMMLR

approach as described in Section 5.1.1), with similar model properties as the used OMM
classifier: (i) a flexible left-to-right topology, (ii) emissions that are modeled as Gaussian’s
with a global standard deviation parameter σ that is used as a hyperparameter. However,
in contrast to OMMs, HMMsLR require the estimation of transition probabilities from the
data. We selected optimal classifiers by means of 5-fold cross validation on the training
data (cf. Section 5.2). Subsequently, we tested the performance of the arising OMM- and
HMMLR-classifiers with all 91 test data sets corresponding to the decreasing L factor
values.

6.3.3. Results and Discussion

The results of the simulation experiments are summarized in Figure 6.1b. The plot reflects
the dependency of the error rate on decreasing values of the fragment length factor L. Here,
OMMs clearly outperform HMMsLR in terms of correctly classified fragments. Although
OMMs and HMMsLR perform almost equally on full-length test time series, the error rate
of HMMsLR increases rapidly on the fragmented data. While both models provide an error
rate of less than 10% for full test time series, the error rates differ by ≈ 0.2 at L = 0.53.
In particular, OMMs provide an error rate below 0.2 for fragments of less than half the
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Figure 6.2.: Comparative scatter plots of the error rates associated with the experimental
results for Ordered Means Models (OMM), Hidden Markov Models with left-
to-right topology (HMMLR), with linear model topology (HMMLIN), and with
pre-defined transition probabilities (HMMPDTP). These plots illustrate the
results for the original (complete) test data. Each marker corresponds to one
data set; the x- and y-axes denote the error rates for the specified models.

length of the original data. In contrast, HMMsLR do not reach this accuracy level even
for fragments with a length above 80% of the full time series length. While OMMs do
not exceed the 0.3 error rate before L = 0.2, HMMsLR already reach that error level for
L = 0.75. These results indicate that HMMsLR are more susceptible to fragmented data
than OMMs.

According to the major research questions of this thesis, the results of this experiment are
a first indicator that OMMs are able to recognize incomplete data with higher accuracy as
compared to HMMs (Q3).

6.4. Robust Recognition: Influence of Transition Probabilities

The results from the simulation data experiment suggest that OMM-based classifiers are
well suited for classification of incomplete data. To further support these findings, we
evaluated OMM-based classifiers with real-world time series data sets from various data
domains (cf. Section 5.6).
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Figure 6.3.: Comparative scatter plots of the error rates associated with the experimental
results for Ordered Means Models (OMM), Hidden Markov Models with left-
to-right topology (HMMLR), with linear model topology (HMMLIN), and with
pre-defined transition probabilities (HMMPDTP). These plots illustrate the
results for he comparisons for the half-length fragments generated from the
testing data. Again, each marker corresponds to one data set; the x- and
y-axes denote the error rates for the specified models.

6.4.1. Data Sets

We tested the proposed models with common benchmark data sets for time series classifica-
tion from the UCR time series repository [Keogh et al., 2006]. The repository contains 20
data sets from various research fields, each providing dedicated training and test sets with
time series of equal length. The data dimensionality of all data sets is d = 1. Table 5.1 in
Section 5.6 displays basic properties of the UCR benchmark data sets.

6.4.2. Experiments

To test the influence of the transition probabilities on the robustness of the proposed
models, we designed an experiment, which corresponds to the observation of incomplete
data — similar to the one described in Section 6.3. Here, fragments of half the length (50%)
of the original time series are used. The beginning of the fragment was chosen randomly
for each time series. For evaluation, we tested the resulting fragments with the classifiers
obtained from the original training data.
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OMMs 1 22 38 16 1 36 47 11
HMMsLR 1 22 40 18 2 9 33 24
HMMsLIN 3 -17 19 36 3 -19 19 38
HMMsPDTP 4 -27 13 40 4 -26 15 41

Table 6.4.: Results from a ranking test for Ordered Means Models (OMMs), Hidden Markov
Models with left-to-right topology (HMMsLR), Hidden Markov Models with
linear model topology (HMMsLIN), and Hidden Markov Models with pre-defined
transition probabilities (HMMsPDTP) on the benchmark data sets. The second
column (”L = 1.0”) shows the ranking for complete time series, the third column
(”L = 0.5”) the ranking for fragments of 50% length of the original data.

Since OMMs are defined without any transition probabilities, we evaluated the gen-
eralization performance of four model types to investigate the influence of transition
probabilities:

• How does the absence of transition probabilities affect the generalization performance
on benchmark data?

• How does the model robustness depend on transition probabilities when incomplete
(fragmented) observations occur?

We compared OMM-based classifiers with three HMM-based approaches, each of which
follow a different modeling. For comparison, we chose (i) HMMLR, (ii) HMMLIN, and
(iii) HMMPDTP. Please see Section 5.1.1 for a detailed description of these methods.

In the process of hyperparameter selection by means of 5-fold cross validation (cf. Sec-
tion 5.2), we chose ten equidistant values for the number of states K depending on the
time series length T with rounded values from { T10 ,

2·T
10 , . . . , T}. The set of values for the

standard deviation parameter σ is equal in all cases: σ ∈ {1.5 · 0.75y|y = 0, . . . , 9}. These
values are the same for all evaluated models.

As a measure for comparison of the generalization performance, we used the empirical
classification error on test sets. We summarized the results of both complete and fragmented
data in terms of a ranking test as used in the WEKA toolbox [Hall et al., 2009]. In a
ranking test, the error rates across all data sets are compared for each pair of methods.
In case one particular method outperforms another one, this is counted as a ’win’, the
opposite case is counted as a ’loss’. All methods are then ranked according to the difference
between the number of wins and losses.
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data set OMMs HMMsLR HMMsLIN HMMsPDTP

K σ K σ K σ K σ

50words 162 0.84 135 0.47 108 0.84 135 0.84
Gun Point 135 0.15 120 0.15 45 0.36 150 0.2
OSULeaf 427 0.63 214 0.47 342 0.47 214 1.13
Two Patterns 51 0.63 26 0.27 26 1.13 26 0.27
Adiac 88 0.27 106 0.27 106 0.2 123 0.36
ECG200 58 0.2 96 0.27 77 0.84 77 1.5
wafer 30 0.36 122 0.47 106 1.5 137 1.13
Beef 47 0.63 94 0.27 94 0.47 141 1.13
FaceAll 79 0.63 131 0.36 105 0.63 79 0.84
Lighting2 573 0.84 573 0.84 255 1.13 510 1.5
SwedishLeaf 90 0.36 115 0.2 102 0.36 90 0.27
yoga 298 0.36 85 0.47 128 0.84 85 0.84
CBF 13 1.5 115 0.2 38 0.15 13 1.5
FaceFour 175 0.84 315 0.36 280 0.27 280 0.47
Lighting7 191 0.47 287 1.5 96 1.13 96 0.63
synthetic control 24 0.84 36 0.47 42 0.84 30 0.27
Coffee 200 1.5 86 0.63 86 0.27 200 0.27
fish 463 0.47 232 0.36 370 0.2 370 0.36
OliveOil 228 1.5 513 0.11 456 0.11 570 0.47
Trace 28 0.15 275 0.11 138 0.2 138 0.2

Table 6.5.: The best hyperparameters K (number of states) and σ (global standard de-
viation) from cross validation for Ordered Means Models (OMMs), Hidden
Markov Models with left-to-right topology (HMMsLR), with linear model topol-
ogy (HMMsLIN), and with pre-defined transition probabilities (HMMsPDTP) on
the benchmark data sets from Keogh et al. [2006].

6.4.3. Results and Discussion

Table 6.6 shows the error rates for all data sets and evaluated models. Figures 6.2 and 6.3
illustrate these results with comparative scatter plots of the error rates for complete and
fragmented time series, respectively. Each marker corresponds to one data set; the x- and
y-axes denote the error rates for the specified models.

The corresponding Table 6.4 summarizes the performance results from our experiments
in terms of a ranking test as used in the WEKA toolbox [Hall et al., 2009]. The second
column of Table 6.4 shows the results for complete time series (L = 1.0), while the third
column gives an overview of the performance values on fragments of 50% length of the
original data (L = 0.5).

For complete time series, the models with left-to-right topology (OMM and HMMLR)
both rank at first position, while the models with linear model topology (HMMLIN and
HMMPDTP) rank at position three and four. In the case of simulated missing data,
OMM exclusively rank at first position, while the HMMLR rank as second, and again
followed by HMMLIN and HMMPDTP.
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50words 0.25 0.34 0.3 0.39 0.93 0.82 0.84 0.89
Gun Point 0.18 0.02 0.25 0.33 0.24 0.25 0.29 0.5
OSULeaf 0.49 0.35 0.58 0.56 0.71 0.48 0.64 0.69
Two Patterns 0.04 0.02 0.05 0.06 0.5 0.41 0.46 0.49
Adiac 0.63 0.72 0.68 0.72 0.8 0.95 0.94 0.95
ECG200 0.23 0.19 0.44 0.24 0.34 0.5 0.64 0.55
wafer 0.1 0.13 0.39 0.37 0.39 0.47 0.56 0.51
Beef 0.48 0.45 0.48 0.52 0.56 0.56 0.52 0.52
FaceAll 0.23 0.29 0.44 0.43 0.67 0.78 0.87 0.88
Lighting2 0.3 0.36 0.33 0.28 0.34 0.45 0.44 0.36
SwedishLeaf 0.37 0.41 0.44 0.44 0.67 0.82 0.86 0.83
yoga 0.37 0.35 0.39 0.37 0.39 0.4 0.48 0.44
CBF 0.06 0.02 0.04 0.06 0.13 0.22 0.36 0.31
FaceFour 0.14 0.12 0.31 0.29 0.41 0.51 0.63 0.65
Lighting7 0.27 0.53 0.21 0.35 0.47 0.74 0.65 0.66
synth control 0.02 0.03 0.02 0.02 0.21 0.34 0.38 0.36
Coffee 0.29 0.16 0.26 0.26 0.4 0.42 0.4 0.42
fish 0.19 0.44 0.5 0.47 0.6 0.8 0.86 0.85
OliveOil 0.52 0.36 0.64 0.82 0.77 0.8 0.84 0.84
Trace 0.09 0.09 0.05 0.15 0.29 0.51 0.64 0.67

Table 6.6.: Test set error rates for Ordered Means Models (OMMs), Hidden Markov Models
with left-to-right topology (HMMsLR), with linear model topology (HMMsLIN),
and with pre-defined transition probabilities (HMMsPDTP) on the benchmark
data sets from Keogh et al. [2006]. The best error rates obtained for each data
set are printed in bold.

In addition to the ranking test, we also performed a Wilcoxon signed rank test to measure
the significance of our findings. Table 6.7 shows the p-values from paired, two-sided
tests applied to the error rates of complete time series (Table 6.7a) and fragmented data
(Table 6.7b).

Corresponding to the results from the ranking test, the signed rank test does not indicate a
performance difference between OMMs and HMMsLR for complete time series (p = 0.936).
However, the performance of OMMs is superior on fragmented time series as indicated by
the ranking test is significant (p = 0.018) given a widely used confidence interval of 5%.
Combining the results from both ranking and signed rank test, models with a left-to-right
topology consistently outperform models with a linear topology, while no evidence for a
performance difference between models with a linear topology is given.

The comparison of the models with linear topology gives no evidence for different per-
formances in both scenarios. The signed rank test on the error rates of HMMsLIN and
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OMM 0.018 0.001 0.001
HMMLR 0.004 0.013

HMMLIN 0.844

(b) P-values from signed rank tests for
the error rates from the models on
fragmented time series.

Table 6.7.: P-values from a signed rank test for error rates in complete time series ob-
servations (a) and fragments of half length (b) from the UCR time series
classification/clustering benchmark repository [Keogh et al., 2006]

HMMsPDTP results in a p-value of 0.4072 for complete time series and in a p-value of
0.8444 for the fragments. The models with left-to-right topology consistently outperform
the models with linear topology as indicated by the results of the signed rank test and the
ranking test.

To analyze the practical relevance of the algorithm complexity of the proposed models,
we also measured the running times for the whole evaluation procedure in terms of single
core CPU time on an Intel Xeon CPU with 2.5GHz. The total running times for OMMs,
HMMsLR, HMMsLIN, and HMMsPDTP accumulate to ≈ 82, ≈ 452, ≈ 172, and ≈ 101 days,
respectively.

Last, Table 6.5 on page 69 shows the optimal hyperparameter values for all benchmark
data sets and models. Here, K denotes the number of states and σ the standard deviation
associated with the lowest cross validation error rate. OMMs yield the smallest models
in terms of the number of states in 11 cases, while HMMsLR, HMMsLIN, and HMMsPDTP

provide the smallest models in four, five, and six cases, respectively.

With regard to this thesis’ major research questions (Section 2.1), these results indicate
that: First, the explicit modeling of transition probabilities does not seem to provide a
general advantage, although, in particular cases the implied structure may result in a
better generalization performance. In general, HMMs as well as OMMs are well suited to
represent time-series and both methods could reach very low error rates on benchmark
classification problems (Q1). Second, exclusion of transition probabilities can enormously
reduce the computational needs. This enables the application of OMMs in situations with
limited computational resources. On the other hand, for a given limit on runtime, OMMs
allow to represent a higher resolution of temporal dynamics using an increased number of
states, i.e., a higher density of reference vectors (Q2). Third, the implicit modeling of the
time series length distribution by transition probabilities has an impact on the robustness
of the learned model with respect to fragmented data (Q3).
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Figure 6.4.: Scenario for data acquisition. Both participants are wearing a MT9 inertial
sensor to measure head motions.

6.5. Scenario: Conversational Head Gestures

Head gestures are important for human communication, e.g., Munhall et al. [2004] showed
that head movements improve the perception of syllables in Japanese. In order to make
conversation with virtual agents and social robots more lifelike, it might be useful to allow
recognition and reproduction of head gestures [Cassell et al., 1994]. To allow agents to
perform head gestures (i) at appropriate timing, and (ii) in a suitable pace it is initially
necessary to investigate the appearance of head gestures in human-human interaction.
For such research questions, typically, video data are manually annotated. This costly
and time-consuming process can be dramatically simplified by a combination of machine-
learning methods and head tracking techniques. Possible approaches are described in
detail by Vatavu et al. [2005] who states that vision-based approaches [e.g. Morency et al.,
2002] benefit from an unobtrusive measurement but are dependent on constant lighting
conditions and on a full view of the interactants’ faces. In addition, high computing power
is necessary to analyze the recorded video data streams.

In this experiment, we chose a sensor-based approach for recognition of head gesture data.
Therefore, we mounted motion sensors on the participant’s head, which allows independence
of lighting conditions and almost unrestricted mobility. In addition, a motion sensor is
easy-to-apply and usable without any calibration.

To examine such a sensor-based head gesture recognition system, we accomplished a study
with 10 subjects in comparatively natural setups. We abdicated any sensor preparations and
adjustments, and analyzed the recorded data with regards to separability and robustness
towards incomplete observations.

6.5.1. Data Set

We recorded the experimental data by means of a Xsens MT9 inertial sensor4 (we only
used the gyroscopes with 3 DoF rate-of-turn). With this sensor attached to the top of
the participants’ heads, we recorded the head movements of 10 subjects during dyadic
conversation (see Figure 6.4). All subjects were German native speakers and briefly informed
about the purpose of the experiment. The conversation was videotaped by a scene camera

4www.xsens.com
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Number of Events for

Participant Nod Shake Tilt Look Length Duration

1 27 17 0 2 0.98s 11 m
2 22 14 0 2 1.1s 11 m
3 33 1 0 0 1.39s 15 m
4 22 1 4 3 1.09s 15 m
5 35 67 2 37 1.4s 33 m
6 27 38 6 26 1.2s 33 m
7 77 81 15 47 1.46s 27 m
8 15 16 1 49 1.04s 27 m
9 122 37 13 65 1.42s 43 m

10 67 33 3 79 1.17s 43 m∑
447 305 44 310

Table 6.8.: This table denotes the number of head movement samples per participant: the
participant’s number, the medium length of event (in seconds), overall duration
of the measurement (in minutes).

and we disrupted the experiment when the conversation became stagnant. We synchronized
the sensor data with the scene camera video and annotated the head movements in ELAN
[Hellwig and Uytvanck, 2004]. We then left out all weak annotations and sliced the head
motion data into segments that are related to the four most frequent occurring head
movement annotations: nod, shake, tilt (occurred as a gesture of uncertainty), and look
(sideways). Table 6.8 illustrates the resulting samples.

We randomly partitioned the complete data set into a train and a testing data subset. All
data were recorded at 33Hz and normalized to zero-mean and unit variance.

6.5.2. Experiments

To estimate the accuracy of OMMs for head gesture recognition, we tested these four head
movement classes with three experiments based on the obtained dataset. We examined:

1. Are OMM classifiers suitable for recognition of head gestures that are observed by
means of goniometers?

2. Which combinations of head gesture classes are easily separable by means of an
OMM-based classifier, and which combinations are not?

3. What influence do incomplete observations have on the recognition capabilities of
OMM-based classifiers in this context?

In order to answer these research questions, we conducted the following experiments.
First, we applied a standard 5-fold cross validation procedure on the training data to
obtain optimal OMM hyperparameters (K,σ) for the given recognition task. We use the
hyperparameters found in this process in all following experiments. Afterward, we tested
the generalization properties of the classifier by means of the remaining testing data.
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Figure 6.5.: This figure illustrates the results from the cross validation procedure for all
hyperparameter pairs (K,σ) for the head gesture data set.

To answer the second research question, we evaluated the obtained classifier with all
elements in the power set of the testing data’s classes with cardinality greater than 1, i.e.,
we used all feasible class combinations for testing:

Y = {nod, shake, look, tilt}
P>1(Y ) = {{nod, shake}, {nod, look}, {nod, tilt}, {shake, look}, {shake, tilt},

{look, tilt}, {nod, shake, look}, {nod, shake, tilt}, {nod, look, tilt},
{shake, look, tilt}, {nod, shake, look, tilt}}

For investigating the influence of incomplete head gesture observations, we tested the
classifier with fragmented test examples of decreasing length. The length of each fragment
is relative to the original length of the head gesture according to a fragment length factor
L between L = 1.0 and L = 0.1, similar to the procedure described in Section 6.3. In this
experiment, we used 10 values for the fragment length factor L ∈ {0.1, 0.2, . . . , 1.0}.
During cross validation (cf. Section 5.2), we chose 10 different values for the number of
OMM states K with K ∈ {14, 28, 42, 56, 70, 84, 98, 112, 126, 141}. The set of values for the
global standard deviation σ was σ ∈ {1.5 · 0.75x|x = 0, . . . , 9)} ∪ {0}.

6.5.3. Results and Discussion

The results of the cross validation experiment reveals error rates between ≈ 0.21 and ≈ 0.64
with an average of ≈ 0.38. Figure 6.5 illustrates the cross validation landscape. The plot
indicates that the recognition rate of the given head gestures increases with lower σ values.
And indeed, the optimal hyperparameter pair found in this experiment is (K,σ) = (112, 0),
i.e., the OMMs comprises 112 model states combined with a Viterby training. While
evaluating the testing data, these hyperparameters yield an error rate of ≈ 0.23.
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Figure 6.6.: This figure illustrates the influence of incomplete head gesture observations on
the recognition accuracy of the evaluated head gesture class sets. The x-axes
of the plots denote the fragment length factor, i.e., the proportional fragment
length as compared to the full head gesture length. The y-axes denote the
error rate.
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head gestures error rate running time

nod, shake 0.06 0.02 s
nod, look 0.09 0.01 s
nod, tilt 0.06 0.02 s
shake, look 0.28 0.01 s
shake, tilt 0.07 0.02 s
look, tilt 0.07 0.01 s
nod, shake, look 0.21 0.02 s
nod, shake, tilt 0.1 0.02 s
nod, look, tilt 0.12 0.02 s
shake, look, tilt 0.3 0.02 s
nod, shake, look, tilt 0.23 0.03 s

Table 6.9.: This table denotes the error rates and average running times for classification
of one example for the classification experiment of head gestures.

real gesture classified gesture

nod shake tilt look

nod 0.87 0.05 0.04 0.04
shake 0.04 0.86 0.03 0.07
tilt 0.02 0.23 0.62 0.08
look 0.1 0.41 0 0.48

Table 6.10.: Here, the confusion matrix for the classification of the head gesture data set is
denoted. Please note, that we report the accuracy, i.e., the rate of mis-classified
examples.

If we analyze the influence of the selected head gestures classes (see Table 6.9), the lowest
error rate of ≈ 0.06 is achieved when nod vs. shake, and nod vs. tilt, respectively, are used as
class sets, closely followed by shake vs. tilt, and look vs. tilt with an error rate of ≈ 0.07. In
case of three classes, the lowest error rate of ≈ 0.1 yields a classifier trained for recognition
of shake, nod, tilt. The highest error rate of ≈ 0.28 occurred in case of shake vs. look. If
all classes are used, the classification error rate reaches ≈ 0.23. The results indicate that
OMM-based classifiers heavily depend on the chosen class set. In particular, class sets that
include both, shake and look, classes suffer from mis-classifications, probably caused by
confusing the head gestures from these two classes. This assumption is further underlined
by the confusion matrix displayed in Table 6.10. Based on this matrix, we can see that
≈ 41% of all look gestures are inadequately recognized as shake movements. However, the
recognition performance in the opposite direction is substantially better: only 7% of all
shake head gestures are classified as look. This might be due to the fact that look gestures
can be described as fragments of shake movements: while the head moves several times
from left to right and back when a shake gesture is performed, a typical look gesture stops
after only one “look” to the left or to the right.

Figure 6.6 illustrates the influence of incomplete head gesture observations on the recognition
accuracy. The x-axes of the plots denote the fragment length factor, i.e., the proportional
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fragment length as compared to the full head gesture length. The y-axes denote the error
rate. In contrast to the findings from the results from the experiments with fragmented
data as presented in Section 6.3, here, OMM-based classifiers are able to recognize even
short fragments of head gestures with low error rate. In case that all four head gesture
classes are used, an average fragmented head gesture only reaches an error rate that is
≈ 0.06 points higher than the error rate yield by complete head gestures. And fragments
with a fragment length factor L = 0.1, i.e., fragments that cover only 10% of the complete
observations length’ reach an average recognition error rate that is ≈ 0.16 higher as
compared to complete gestures. Even though the classification accuracy of complete head
gesture observations is substantially higher as compared to the much shorter fragments,
the good performance of fragmented head gestures indicates that it might be useful to only
apply the beginning of an observation for recognition. E.g., when an interactive system
demands very short response times, the required running time can be dramatically reduced
by using only the first 10% or 20% of an observation for classification.

According to the major research questions of this thesis, these results indicate that OMM-
based classifiers are able to recognize head gesture with high accuracy (Q1) and low
response times (Q2). In particular in combination with robust recognition of fragmented
head gestures (Q3), the already low response times are once more dramatically reduced —
with only little loss of recognition performance.

6.6. Scenario: Finger Pressure Patterns in Playing Musical
Instruments

Teaching, performing, and exercising instruments are everyday tasks for musicians. Such
activities can greatly benefit from sensing technology. Sensors measurements can support
instrument teachers by exposing otherwise hidden mistakes in the student’s handling of
an instrument. And students can benefit from such technology in their exercises, e.g., by
preventing fatigue or malpositions — factors that often lead to ailments and pain.

In this study, we used a sensor-based approach to monitor bowing gestures of violin players.
Thereby, our sensing system is a (i) small, lightweight, and wireless, (ii) easy-to-use, as well
as (iii) real-time capable approach that comprises pressure sensor on the bow of the violin
player. The sensors measure the finger pressure during execution of movements of the bow.
The method described here is a further development of the approach of Grosshauser [2008].
However, the sensing technologies we used in this study extend this approach by measuring
the pressure of every finger.

6.6.1. Data Set

In order to record the pressure levels of each finger of the right hand, we fixated force
sensing resistor (FSR) foils to the bow’s frog, where the fingers contact the bow (Figure 6.7).
Thereby, we placed one FSR underneath the thumb, forefinger, little finger, and another
single FSR under ring and middle finger. In addition, we used a goniometer to measure
the direction and range as well as the rotation of the bow’s motion.

Our self-made goniometer is equipped with a potentiometer and is used for joint angle
measurement. The goniometers are fixated at the right hand elbow and wrist. Figure 6.8
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Figure 6.7.: This picture shows the pressure
sensors that are attached to the
bow. The picture was taken
after recording approximately
3000 bowing examples.

Figure 6.8.: This plot illustrates the devel-
opment of fore- and little fin-
ger’s pressure during Martele
up- and down-bow strokes.

shows an example of the recorded pressure values changing in time.

For evaluating our setup, we recorded (i) different up- and down bowings (Martele, Detache
and Spiccato) (ii) in different tempi, (iii) and defined inaccurate bowings in terms of
traditional violin playing. The inaccurate examples were (i) wrong angle with more or
less than 90◦ between bow and the strings, and (ii) too much or not enough pressure in
combination with too long or short pressure. In addition, (iii) wrong pressure distribution
and inaccurate pressure changes before and during the stroke were executed. We recorded
each of these bowings around 200 times (cf. Table 6.11). Figure 6.8 shows a typical
measurement of a Martele stroke, i.e., the development of the fore- and little finger during
four strokes.

We used data recorded from a professional violinist. The violinist participated in several
recording sessions in our laboratory during one week. The recording setup was simple:
the sensors were attached to the bow as described in the previous section. The data were
recorded by a standard laptop computer connected to the sensor board via Bluetooth. The
required playing techniques were presented to the subject by instruction and in musical
notation.

In order to prepare the captured data for classification, we used the sensor data from
the goniometer for stroke detection. We partitioned the continuous data stream captured
by the goniometer into fragments, each ranging from a local maximum to the nearest
subsequent local minimum and vice versa. We only used the corresponding data fragments
of the pressure sensors for the classification experiments. Please note that we did not
distinguish between up-bows and down-bows in this scenario. Table 6.11 gives a brief
overview of the data collected in this process.

According to the collected data, we established various classification tasks with different
class sets:

(A) “bowings slow”: Martele vs. Detache vs. Spiccato with slow stroke frequency
(≈ 1Hz),

(B) “bowings fast”: Martele vs. Detache vs. Spiccato with fast stroke frequency (≈ 2Hz),

(C) “detache angle”: correct Detache strokes vs. incorrect Detache strokes with an
angle lower then 90◦ vs. incorrect Detache strokes with an angle above 90◦,
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identifier run number of examples

correct executions:

MCS martele slow 206
MCF martele fast 198
DCS detache slow 196
DCF detache fast 156
SCS spiccato slow 207
SCF spiccato fast 192

inaccurate executions:

MIA>90 martele angle >90 170
MIA<90 martele angle <90 203
MIP+ martele pressure+ 133
MIP− martele pressure− 206
DIA>90 detache angle >90 214
DIA<90 detache angle <90 206

Table 6.11.: This table shows the number of examples per recorded condition.

(D) “martele angle”: correct Martele strokes vs. incorrect Martele strokes with an
angle lower then 90◦ vs. incorrect Martele strokes with an angle above 90◦,

(E) “martele pressure”: correct Martele strokes vs. incorrect Martele strokes with to
much pressure vs. Martele strokes with not enough pressure.

The class sets (A) and (B) are concerned to general separability of bowings, whereas
class sets (C), (D), and (E) are related to the question of detecting inaccurate bowing
executions.

6.6.2. Experiments

In order to evaluate the proposed system, we chose an experimental setup for investigation
of the following questions:

1. Can the data from the pressure sensors be used to classify bowings and if so, to what
accuracy?

2. Is it possible to detect inaccurate bowing executions by the data form the pressure
sensors?

In order to answer these research questions, we conducted the following experiments. We
applied a standard 5-fold cross validation procedure on the training data to obtain optimal
OMM hyperparameters (K,σ) (c.f. Section 5.2), and then used the hyperparameters found
in this process to test the generalization properties of the classifier by means of the
remaining testing data. In this process, we chose equal values for the number of OMM
states K and the global standard deviation σ in all experiments with K ∈ {2, 4, . . . , 20}
and σ ∈ {2.0, 1.6, 1.28, 1.02, 0.81, 0.65, 0.52, 0.41, 0.33, 0.26}. We repeated this process 100
times for each class set to enable simple statistics on the achieved error rates.
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class sets classes error rate

mean std

(A) MCF, DCF, SCF 0.02 0.01
(B) MCS, DCS, SCS 0.03 0.01
(C) DCF, DIA>90, DIA<90 0.13 0.02
(D) MCF, MIA>90, MIA<90 0.09 0.02
(E) MCF, MIA+, MIA− 0.02 0.01

Table 6.12.: Error rates from the experiments for different class sets: (A) “bowings slow”,
(B) “bowings fast”, (C) “detache angle”, (D) “martele angle”, (E) “martele
pressure”.

6.6.3. Results and Discussion

The results of the bowings classification experiments are summarized in Table 6.12 and
Figure 6.9. As a main result, OMMs are able to correctly classify examples from all class
sets with high accuracy. For the 100 runs of class sets (A) and (B), which are related to
bowing detections, we found a mean error rate of ≈ 2% and ≈ 3%, respectively, with a
standard deviation of ≈ 1% in both cases. OMMs provide very stable recognition rates,
and there seems to be almost no dependency on the execution speed.

Additionally, OMMs detect incorrect bowing execution with reasonable accuracy. For the
class sets (C) and (D), which are related to incorrect bowing angles, the classifiers reached
a mean error rate of ≈ 13% and ≈ 9% with a standard deviation of ≈ 9% and ≈ 2%,
respectively. On the other side, the classifiers achieved an error rate of ≈ 2% for detection
of incorrect bowing pressure in class set (E). This indicates that identification of inaccurate
bowings depends on the type of the inaccuracy. However, even the highest error rate of all
500 runs is below 20% (see Figure 6.9) and provides very good assumptions about if and
what mistake occurs.

With regards to this thesis’ major research questions, the given results indicate that
OMM-based classifiers provide a sufficient representation to recognize bowing types and
incorrect bowings. These finding further fortify the results from the previous experiments
related to classification: OMMs are able to recognize interaction data with high accuracy
(Q1).

6.7. Incremental Recognition and Adaptive Learning

In this Section, we will evaluate an incremental classification approach where a classification
decision is updated while an behavior is observed. In addition, we will evaluate an adaptive,
online training scheme that updates an OMM observation by observation, as they arrive.
Therefore, we will examine an interaction scenario where a human plays a variant of
the well-known rock-paper-scissors game against the virtual agent VINCE. The proposed
classification scheme for incremental classification is presented in-depth in Section 6.1.1,
while we introduce our adaptive online training approach in Section 6.1.2.
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Figure 6.9.: Box plots of the error rates for each class sets from 100 runs. The x-axis denotes
the error rate and the y-axis the class set (A) “bowings slow”, (B) “bowings
fast”, (C) “detache angle”, (D) “martele angle”, (E) “martele pressure”

6.7.1. Data Set

In order to evaluate the proposed approach and to demonstrate its abilities for incremental
recognition and adaptive learning, we implemented an interaction in which fast adaption
and quick online recognition are crucial and have observable consequences for the interaction.
Specifically, we realized an extended version of the rock-paper-scissors (RPS) game for one
human player and the virtual agent VINCE.

In its classic form, RPS is a hand gesture game in which both players simultaneously
choose one of three hand gestures: rock, paper, or scissors. To ensure simultaneity (and
thus fairness), both players entrain by performing an initial counting-in while saying “Ro!
Cham! Beau!” in correspondence to rhythmical arm movement. On ”Beau!”, both players
present their hand gestures. The winner of the game is selected by comparison of the
gestures. In the classic variant with three gestures rock beats scissors, scissors beats paper,
and paper beats rock, which leads to balanced chances for the gesture selection. RPS exists
in variation since ≈ 4000 years, and since 2002 the World Rock Paper Scissors Society
organizes an annual world cup.

We adopted a famous extension to RPS that adds two extra gestures to the game, a lizard
and a spock gesture. We will refer to it as rock-paper-scissors-lizard-spock, RPSLS. Figure
6.10 shows a resolution diagram for all gesture combinations of RPSLS. In this variant each
gesture wins against two gestures and looses against the remaining two gestures, again,
balancing the chances to win. The figure also shows the corresponding gestures we used in
our implementation of the game (Section 6.7.1 gives the rationale for using them).

In our scenario, we enabled VINCE to play RPSLS, but based on abilities for incremental
behavior coordination: the agent does the initial counting phase in sync with the player,
but instead of performing a pre-chosen gesture on ”Beau!”, VINCE tries to recognizes as
rapidly as possible the gesture of the human player and then performs a corresponding
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Figure 6.10.: Gestures included in the rock-paper-scissors-lizard-spock game along with the
winning relations.

winning gesture himself. The agent thereby learns and adapts to the particular user-specific
way of performing a particular hand-arm gesture via online training of the models. Further,
VINCE uses the learned OMM prototype models to realize gestures during the game
himself, thus reproducing the observed behaviors and coordinating with the user. Please
see Chapter 7 for a detailed introduction to reproduction of interaction data with OMMs.

Setup

In our setup shown in Figure 6.11, a human player competes against the virtual agent
VINCE. A Microsoft KinectTM sensor captures the scene in 3D at a frequency of ≈ 30 fps.
The scene data are processed using the OpenNI5 framework to extract a human skeleton for
the present user in the scene. We captured the relevant information of the skeleton, such
as the user’s height, spatial positions of the wrists and the center of mass to compute the
normalized 3-dimensional positions of the wrists with respect to the user’s body center. In
addition, we capture the user’s right hand finger configuration by means of an Immersion
CyberGlove device. Here, we recorded 24 joint-angles of all five fingers, again at a frequency
of ≈ 30 fps. Note that RPS (as well as RPSLS) is classically played with different hand
postures. We have successfully realized this variant with the CyberGlove data as input
vectors for the OMMs. We chose to only use the data captured by the relatively less
reliable Microsoft Kinect, since initial pre-study experiments showed that recognizing arm
gestures is the harder and hence more revealing task compared to hand gestures captured

5http://www.openni.org
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Figure 6.11.: Setup of the RPSLS game; the Microsoft KinectTM sensor is on a table in
front of a monitor on which the virtual agent VINCE is displayed. The
leftmost monitor displays the software that captures the Kinect data, the
monitor in the middle shows the gestures as a reminder for the player. The
arm of the human player wearing a CyberGolve device is in the front.

by the CyperGove. Therefore, we replaced the classical hand postures with gestures to be
executed with both arms. Thus, the player presents the chosen gesture and configuration of
both arms after performing the (unchanged) counting-in step. See Figure 6.10 for pictures
of the arm configurations used in our scenario.

As additional communication channel during the game, the player can give verbal commands
to the system via a head mounted microphone. For speech recognition, we use the Microsoft
Windows 7 Speech Recognizer. VINCE, in turn, generates synthetic speech and lip sync
speech animation using the Articulated Communicator Engine [ACE, Kopp and Wachsmuth,
2004].

The course of the game is as follows:

1. VINCE welcomes the player and asks to start a game
2. VINCE offers to demonstrate all five gestures
3. VINCE adopts a starting position and asks if the human player is ready
4. If agreed, the next round of the game starts.
5. VINCE, in sync with the human player, executes the counting in arm movements

while saying “Ro! Cham! Beau!” with a time lag of 510ms between each word.
6. Both players perform a gesture on (or shortly after) “Beau!”.
7. VINCE indicates which gesture he thinks the player did, and then asks which gesture

the player has actually performed
8. The game score of the player with the winning gesture increases by 1.
9. When one player reaches a score of 20, the game ends. Otherwise, another turn

begins at 3.

That is, a game takes at least 20 rounds during which VINCE learns and adapts to the
player’s gestures in an, at least, partly supervised manner.

The agent recognizes the gestures the user performs by means of an OMMincremental-based
classifier. This classifier returns a classification decision if the likelihood ratio between
the most-likely and the second-most-likely OMM exceeded a value of 2 or, latest, 310ms
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(a) rock (b) paper (c) scissors (d) lizard (e) spock

Figure 6.12.: Screenshots of VINCE performing the learned OMM prototypes for the five
classes.

after “Beau!”. Therefore, the user gets the impression that VINCE presents his gesture
without noticeable delay. Depending on the outcome of the recognition, the agent chooses
a gesture that will win against the one picked by the player. The game begins with an
unlearned classifier that adapts to the gestures performed by the user. After each turn, the
classifier is re-trained with the new observation according to the adaptive training scheme
as presented in Section 6.1.2. Thus, in the beginning, the human or the agent will win by
chance, but VINCE’s abilities to predict the gestures of the player improve rapidly during
the course of the game. In order to keep the human player motivated and to increase the
amount of example data, we let VINCE randomly perform a loosing gesture if VINCE is 5
points in the lead.

In our setup, the agent VINCE adapts to the gestures the human player performs. The
adapted models enable better prediction and classification, but are also used when VINCE
performs gestures himself. VINCE uses the OMM prototypes that the system learns in the
course of the game as his own gesture model. Therefore, VINCE re-produces the learned
mean values. Adaptation thus leads to increased reproduction and imitation. Since the
OMMs emit mean 3D wrist locations in working space, the coordinates of the user’s wrists
positions are transformed from the coordinate system of the player’s egocentric location
space into the virtual agent’s body-centered frame of reference. Using inverse kinematics,
VINCE can then reproduce the human’s gesture in concordance with his body relations.
Before a model is available, i.e., before the user presented a gesture to VINCE, we use
pre-recorded gesture trajectories. Please see Chapter 7 for details about reproduction of
interaction data with OMMs.

Based on the demonstration setup, we conducted an evaluation study with 11 participants
who played the game with VINCE until either player reached a score of 20. We recorded the
wrist positions of both arms as location coordinates relative to the user’s body center for
later analysis. The recording started when VINCE executes the second count (“Chamb”)
and ends 1110 milliseconds later. Table 6.13 gives an overview about the collected data
and the participants. Overall, we collected a data set containing 408 gestures in five
classes. Figure 6.12 shows screenshots of VINCE performing the learned OMM prototypes
as gestures during the game, i.e., after a few rounds. The obvious correspondence to the
users’ gestures, as displayed in Figure 6.10, demonstrates the ability of the approach to
rapidly acquire novel gestures and to learn models that enable the agent to perform the
(prototype of the) behavior itself.
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1 27 male 7 7 8 6 5 33
2 24 male 5 8 10 7 5 35
3 23 female 11 7 6 4 5 33
5 20 male 14 7 10 8 7 46
6 37 male 6 5 9 7 8 35
7 20 male 12 12 10 8 5 47
8 21 male 10 8 9 9 10 46
9 24 female 7 5 9 5 4 30

10 24 male 9 8 8 9 8 42
11 24 male 6 7 6 8 6 33
12 23 female 4 6 5 7 6 28∑

91 80 90 78 69 408

Table 6.13.: Here, age and gender of the human players as well as the number of gestures
recorded in the study are shown.

6.7.2. Experiments

We analyzed the collected data set according to the following questions:

1. What influence does the choice of OMMincremental hyperparameters have on the
recognition performance?

2. What recognition accuracy do OMMincremental classifiers reach compared with stan-
dard classifiers in sample-by-sample classification?

3. Are OMMincremental classifiers able to adapt to the user over the course of a game?

To address the first question, we evaluated a set of OMM hyperparameter pairs by means
of 10-fold cross validation on the complete data set. Here, we varied the number of OMM
states K ∈ {3, 5, 8, 10, 15, 20, 25, 35, 40, 50, 60, 80} and standard deviation parameter of
the emission densities σ ∈ {0.1, 0.2, . . . , 1.1} as hyperparameters. In order to address the
second question, we compared the OMMincremental classifiers to a widely used classification
technique for time series, a Nearest Neighbor Classifier with Dynamic Time Warping
as a distance function (NNDTW, please see Section 3.3.2 and Section 3.2.1 for in-depth
introductions to these techniques). We applied a uniform procedure to both classifiers and
evaluated the recognition accuracy in the course of a gesture by means of a 5-fold cross
validation. We applied a sample-based OMMincremental procedure to the fold’s testing data.
To simulate an incremental approach with NNDTW classifiers, we used the corresponding
sub-time series from the beginning to the current point t in time. We identified optimal
OMM hyperparameter by means of a 5-fold cross validation on the training data beforehand.
To address the third question, we evaluated the development of the classification accuracy
during the course of the game for all 11 participants.
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Lizard Paper Scissors Spock Rock
Lizard 20 0 0 1 0
Paper 0 29 2 1 3
Scissors 0 1 26 0 1
Spock 1 0 0 28 2
Rock 1 0 1 0 33

Table 6.14.: Confusion matrix from the classification experiments. The columns are the
actual labels and the rows the classification decision. The cells of this table
indicate how many elements of a genuine class are classified as all classes.

6.7.3. Results and Discussion

Figure 6.13 shows the cross validation error rate for our gesture data set, depending on the
OMM hyperparameters (K,σ). As can be seen, the classification accuracy is stable for the
evaluated number of model states K and the standard deviation parameter σ. On average,
OMMincremental classifiers yield a classification error of ≈ 0.15 with a standard deviation of
≈ 0.04. The lowest error rate of ≈ 0.08 yields a classifier that was trained with K = 40 and
σ = 0.2. A model trained with only K = 5 model states and σ = 0.7, however, still reached
a cross validation error of only ≈ 0.13. These results show that OMMincremental classifiers
are able to recognize behavior patterns with high accuracy, even with not optimally adjusted
hyperparameter values. This neat property allows to use OMMincremental classifiers with a
smaller number of model states, e.g., in scenarios with little computational resources or
severe time constraints, while still reaching good recognition results.

Figure 6.14 shows the development of the production likelihoods of the OMMincremental mod-
els for the five different gestures, during observing an example gesture of class spock. In
the beginning, all models are equally likely to produce that particular gesture in question.
However, after ≈ 600ms (approximately on ”Beau!”) the model related to class spock
stably stays on a likelihood level of ≈ 10−13 while the likelihood associated with the other
models decreases to a minimum of ≈ 10−79. In this case, a recognition of the gesture is
possible ≈ 600ms after the gesture performance begins, i.e., in synchronization with the
gesture presentation.

Figure 6.15 gives the results of the comparison of the recognition errors of OMMincremental

and NNDTW classifiers in online classification. As can be seen, the recognition accuracy of
both classifiers increases with each additional sample becoming available. For complete
gesture performances, NNDTW classifiers reach a slightly lower error rate of ≈ 0.12 in
contrast to a recognition rate of ≈ 0.18 for OMMincremental classifiers. However, for partial
gesture performances, OMMincremental classifiers yield up to ≈ 10% (on average ≈ 5%)
lower error rates. These results indicate that OMMincremental classifiers are well suited
when incremental recognition of behavior patterns is required.

Last, Figure 6.16 shows the average learning curves (averaged over all five gestures) for
all 11 games. In the beginning, VINCE is unable to recognize a gesture the human
player performs, because the OMMs are neither learned nor adapted to the specific user
(recognition error rate of 1.0 for the first turn). The decrease, however, especially over
the first 10-15 rounds, demonstrates the rapid learning ability of the used OMMincremental
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Figure 6.13.: This figure illustrates the achieved classification accuracy (in cross validation)
for different numbers of OMM states K and different standard deviation
parameters σ.

classifiers. The error rate decreases down to an average recognition error of ≈ 0.15. The
characteristic drops occur when the user performs a gesture for the first time, or in a very
different way than before. In total, VINCE managed to win all 11 games with a lead of at
least 3 points.

6.8. Summary

The aim of this chapter was to investigate if OMMs are capable to recognize interaction
data that is modeled as time series. We investigated the general applicability of OMMs
to recognition of interaction data with a focus on response times and OMMs’ robustness
properties. Further, we examined an incremental recognition approach, as well as an
adaptive, online learning scheme to reflect changing behaviors.

In Section 6.1, we presented the theoretical outline of this chapter. Here, we first described
a maximum-likelihood approach to classification with OMMs, followed by an extension
to incremental classification of time series that allows on-the-fly recognition of behavior
patterns while they are observed (Section 6.1.1). The section closes with a description of
an adaptive online learning scheme (Section 6.1.2).

In the subsequent Section 6.2, we evaluated if OMM-based classifiers are able to recognize
interaction data at all. We examined the classification performance of OMM-based classifiers
in comparison to standard approaches for time series classification: Nearest Neighbor
Classifiers with Dynamic Time Warping distance function and Support Vector Machines
with Gaussian Dynamic Time Warping kernels. The results from experiments on real-world
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Figure 6.14.: Likelihoods of class-related OMMincremental models during observation of a
spock gesture. Note how the likelihood difference between an OMMincremental

that corresponds to lizard and the remaining OMMincremental substantially
increases after ≈ 600ms.

interaction time series data sets indicate that OMMs are well suited to process interaction
data; and in contrast to highly accurate kernel machines, the computational efficiency of
the OMM classifiers is substantially low and, thus, allows real-time recognition in various
scenarios.

In Section 6.3 we focused on the robustness properties of OMMs in terms of incomplete
observations. Therefore, we compared OMM-based classifiers with a topologically similar
HMM-based approach. In order to investigate the robustness of the proposed models, we
designed a simulation experiment where we evaluated the classifiers with fragmented test
data of decreasing length. We found that the error rates of HMMs increased dramatically
on time series fragments, whereas OMMs still performed well up to a fragment length
of 20% of the genuine time series lengths. These results indicate that the omission of
transition probabilities, among enormously reduced computational demands, has a positive
impact on the robustness with respect to fragmented time series observations.

To further underline these findings, we subsequently examined the influence of transition
probabilities by means of 20 benchmark data sets that are related to various time series
domains in Section 6.4. We evaluated OMMs as well as HMMs with various topologies
(HMMLR, HMMLIN, and HMMPDTP) with full and artificially fragmented testing examples
of half-length. The results indicate that the simplification provided by OMMs significantly
increases the robustness with regard to classification of incomplete data as compared
to HMMs. Although OMMs provide higher model flexibility and consistently superior
classification accuracy, the computational cost is even lower than that of linear HMMs. In
comparison with equally flexible left-to-right HMMs, the considerable speed-up is practically
relevant for interaction scenarios. Therefore, the duration modeling that arises from the
omission of transition probabilities represents a valuable alternative to standard HMMs
and their various extensions.

88



6.8. Summary

0 200 400 600 800 1000 1200
time (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

e
rr

o
r 

ra
te

omm

nndtw

Figure 6.15.: Change of recognition accuracies of OMMincremental and NNDTW classifiers
over time (during observation of gestures).

In Section 6.5 we introduced and evaluated an interaction scenario related to head gesture
recognition. We conducted a comprehensive study with 10 subjects, where we captured head
gesture examples by means of 3 DoF goniometer recordings. Subsequently, we analyzed
the emerging data set that contains four head gestures classes by means of OMMs with
regard to separability and incomplete observations. The results of this experiment indicate
that OMM-based classifiers are able to represent head gesture data with high accuracy.
However, the classification performance depends heavily on the chosen classes: class sets
that include shake and look classes yield substantially more mis-classifications. In terms of
incomplete observations, OMMs are able to recognize head gestures with comparatively
low error rates even if only 10% of the genuine head gesture is performed, what indicates
that head gestures are still well separable if only partial observations are available. This
leads to the conclusion, that OMMs are able to provide a reasonable hypothesis after a
short observation period.

In Section 6.6 we explored an application driven scenario for recognition of bowing types
and incorrect bowing executions for violinists. In this setup, we measured the pressure
of each finger and the thumb of the right hand (the hand that holds the bow) by means
of Force Sensing Resistors. Subsequently, we applied OMM-based classifiers to detect
(i) which bowing type is performed (Martele, Detache, Spiccato) in concurrency with
different timings, (ii) if a bowing is played incorrectly, e.g., with too much or not enough
pressure, or with an incorrect angle between bow and strings. The results of this study
showed that OMMs-based classifiers are a well suited choice to detect bowing types and
mistakes in bowing handling. The combination of single finger pressure measurements and
OMMs is a promising approach to improve violin teaching and exercises.

The aim of Section 6.7 was to evaluate adaptive online learning and the incremental
classification scheme that allows classification while an observation is made and before all
samples are present. To see whether OMMs work in such a way, we realized the Rock-
Paper-Scissors game as an application and test scenario in which the virtual agent VINCE
engages in fast, real-life gesture-based interaction with human users. This scenario directly
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Figure 6.16.: These plot illustrate the average learning curves (averaged over all five
gestures) for all 11 human player’s games.
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6.8. Summary

taps into the abilities of the model for incremental recognition and adaption. The results
that we obtained in an evaluation study indicate that OMMs can meet all before-mentioned
requirements: rapid, incremental recognition with high accuracies; as well as the ability to
adapt to a particular user via online re-training of the classifiers.

In terms of the major research questions that were defined in Section 2.1, the given
experimental results indicate that: (i) OMM classifiers are able to recognize interaction and
behavior time series data with an accuracy that is comparable to standard classification
approaches of time series (Q1). (ii) OMMs allow low latency classification, which makes
them particularly well suited for interaction scenarios where rapid response times are
crucial (Q2). (iii) In addition, OMM-based classifiers perform outstanding in terms of
incomplete observations as compared to similar HMM-based classifiers. Here, the absence
of transition probabilities leads to a flexible modeling of the observation lengths distribution.
This might be the reason why OMMs are superior in recognizing fragmented observations,
which are, in principle, observations from a known class but drawn from a different lengths
distribution (Q3). (iv) The incremental classification scheme of OMMs allows updating
classification decisions while behaviors are observed (Q5). (v) The online re-training of
OMM models supports successful adaption to particular users and environments (Q4).
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7. Reproduction of Interaction Time Series
Data with OMMs

As stated in Chapter 1, reproduction of user interaction is of utmost importance for many
interaction scenarios and applications. I.e., in human-human interactions we find that
gestures between communicating people are tightly interweaved and thereby successfully
support and structure interaction. Obviously, the interactants make sense of their observa-
tions incrementally and can foresee the continuation and/or intervene and react gutturally
without significant delay. Particularly imitation is a behavior pattern observed frequently
in human-human interaction where it supports and establishes communicative alignment.
However, beyond communicative functions, gesture reproduction is also needed if machines
are to learn behavior patterns from example, thus, allowing commanding future robots or
agents by just demonstration.

In this chapter, we analyze the capabilities of OMMs for gesture reproduction. The
experiments are directly related to the following major research questions of this thesis:

• (Q6) Prototype Property: Do OMMs provide interpretable prototypes of inter-
action data, i.e., to what degree is the learned array of reference vectors a reliable
prototype representation for a given data set?

• (Q7) Influence of Hyperparameters: What influence does the choice of the
OMM hyperparameters, namely, the deviation parameter σ and the parameter that
indicates the number of model states K have?

• (Q8) Training Process: To what degree is the development of the learned OMM
representations related to the development of the objective function?

This chapter is structured as follows: After addressing the term prototype as it is used in
this thesis in Section 7.1, we investigate if OMMs are able to reproduce interaction data
accurately. We initially use OMMs to analyze computer mouse gestures in Section 7.2.
Section 7.3 is related to an application in human-agent interaction that incorporates
imitation learning of natural hand-arm gestures by the artificial agent VINCE.

7.1. Definition: Prototype

Mathematical modeling of quantitative observation is a common technique in statistics,
machine learning, data mining, and numerous other scientific and engineering disciplines.
The term model usually characterizes a (simplified) description of a system. Sometimes,
e.g., in case of machine learning and data mining, a model describes a given set of
observations, effects, or events. For example, statistical models such as random variables
incorporate certain distributions that are often used to qualify observed data that share a
distinctive quality of a particular type. Such a model usually characterizes the data with
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7. Reproduction of Interaction Time Series Data with OMMs

few parameters, e.g., in case of multivariate Gaussian distributions, the data is represented
by an expectation value vector µ and a covariance matrix Σ:

p(x) =
1

(2π)
d
2 |Σ|

1
2

exp
{
−1

2(x− µ)TΣ−1(x− µ)
}
. (7.1)

with x,µ ∈ Rd, Σ ∈MR (d, d) . (7.2)

Here, MR (d, d) denotes the matrix space of size d× d.

Such a model may help to explain a system and to study the influence of various components,
or to make predictions about the model’s future behavior.

We understand the term prototype in this thesis as a typical representative for a given
set of observations. The Oxford Dictionary of English [Pearsall and Hanks, 1998] defines
prototype as

the first, original, or typical form of something; an archetype.”

Such a definition induces that a prototype is of the same type as the observations. In
contrast to a model, a required prior condition for prototypes is that they could be elements
of the genuine set of observations.

By this definition, the above-mentioned Gaussian distributed random variable (Equation 7.1)
is not a prototype. Nevertheless, since the expectation vector µ ∈ Rd of the Gaussian
distribution is an element of the same vector space as the observation x ∈ Rd. Thus, the
ordered sequence of expectation vectors Ω = µ1, . . . ,µT defines a times series that can be
used as a prototype for the observed times series.

In these terms, Ordered Means Models provide a prototype as well as a mathematical
model for time series observations. This is a unique property that we do not find in other
time series models.

7.2. Mouse Gestures

Mouse gestures are an alternative modality in human computer interaction and widely
used in, e.g., mobile devices or web browsers. Even though many applications already exist
that incorporate mouse gestures1, and mouse gesture recognition is not a challenging task
anymore, the here used mouse gesture data set offers us the opportunity to investigate and
illustrate basic research questions related to reproduction and prototyping.

7.2.1. Data Set

To answer the above-mentioned research questions, we designed a simple research study.
The study is situated in a common office place, with the participants sitting in front of a
desk that holds a 13” computer monitor and a computer mouse. Figure 7.1 illustrates the
experimental setup. The monitor shows a plain white screen and a common mouse pointer
that is shaped like a small arrow. After a short introduction about the aim of the study,
we ask the participants to perform three gestures with the computer mouse:

1one of the first widely available applications that incorporated mouse gestures was the opera web
browser http://www.opera.com/browser/tutorials/gestures/. Opera introduced mouse gesture in
April 2001.

94

http://www.opera.com/browser/tutorials/gestures/


7.2. Mouse Gestures

Figure 7.1.: This figure illustrates the setting of the mouse gesture experiment. The scenario
is a standard office scenario.

• Spiral: a counterclockwise spiral that unfolds from the center,

• Circle: a clockwise circle gesture,

• Figure Eight: a horizontal figure eight also known as the infinity symbol.

Initially, the supervisor demonstrates the mouse gestures once. The emerging mouse gesture
trajectories that are performed by the participants are recorded as 2-dimensional location
coordinates with time stamps. Eleven human demonstrators participated in this study, all
of whom were computer science students and well-trained computer and computer mouse
user. Mouse gestures can be plotted as 2-dimensional spatial diagrams and, therefore, can
be easily inspected visually.

The collected mouse gestures data set was recorded at 60Hz and contains 33 trajectories in
three classes. The average length of the mouse gesture trajectories is 1.6 seconds (within a
standard deviation of 0.64 seconds), i.e., ≈100 samples (a deviation of ≈38). The complete
data set is available as supplementary material.

7.2.2. Experiments

We used the emerging mouse gestures trajectories to train OMMs — one for each gesture
class. We then examined the resulting model parameters according to the above-mentioned
research questions.

For comparison, we not only examined OMM prototypes, but also prototypes based on
Hidden Markov Models that are obtained in a similar manner as the OMM prototypes:
(i) HMMsLR are topologically similar to OMMs, but incorporate transition probabilities,
(ii) HMMsLIN comprise a linear model topology. Please see Section 5.1 for detailed
descriptions of these approaches.

Similar to OMMs, the emission densities of both HMM variants are Gaussian and their
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7. Reproduction of Interaction Time Series Data with OMMs

standard deviation parameters are used as global hyperparameters. Thus, they both can
be partly described as a linear array of reference vectors, i.e., the expectation values of the
emission densities. Since these reference vectors are elements of the same vector space as the
samples of the genuine time series, the complete array of reference vectors are elements of
the gesture space, too. However, given the model design of HMMs, transition probabilities
are necessary to completely describe HMMsLR and HMMsLIN — an information that is
unused in our HMM prototype.

In order to examine the influence of the hyperparameters we repeatedly train OMM- and
HMM-prototype representations with different hyperparameter combinations. We use pairs
of the deviation parameter σ and the number of model states K according to

(σ,K) ∈ {0, 0.25, 0.5, 1.0, 2.0} × {5, 10, 20, 50, 100}

in this process.

In a similar manner, we examined the influence of the training process on the prototypes.
First, we analyzed the course of the complete-data log-likelihood for both OMMs and
HMMs. Afterward, we investigated how the mouse gesture models develop during the
training process.

7.2.3. Results and Discussion

Figure 7.2 illustrates various developments of the complete-data log-likelihood (i.e., the
objective function, cf. 4.10) plotted against the number of iterations. Each sub-figure
contains curves for different values of the deviation parameter σ and the number of
model states K, as well as a comparison of the evolving log-likelihoods of OMMs and
HMMsLR. The plots indicate that the training process of OMMs quickly meets a stable
log-likelihood level. For almost all model configurations, the objective function converges
after approximately one iteration. Only for σ = 0.25, the complete-data log-likelihood
converges after three iterations, and for K = 100, a considerable increase of the complete-
data log-likelihood can be observed after nine iterations. In comparison, the objective
function of HMMsLR requires up to 14 iterations to converge (K = 100, σ = 0.25). However,
in general also the complete-data log-likelihood of HMMsLR quickly converges after only
few iteration steps. For higher σ values, the complete-data log-likelihoods do not change
substantially after initialization. This might be because σ controls the influence of distant
data points in the objective function. In case of σ ≥ 1, also comparatively far distances
are fully added to the objective function’s outcome. This leads to only minor changes in
the value due to training. Summarized, these results indicate that the EM-algorithm of
OMMs, as well as the complementary training procedure of HMMs are able to quickly
reveal relevant information from a gesture data set.

Figure 7.3 further underlines these findings. The figure illustrates the development of the
learned OMM prototype for mouse gestures of class spiral depending on the number of
iterations with a model size of K = 100 and σ = 1. Similar to the developments of the
complete-data log-likelihoods as discussed above, the model does not change substantially
after three iterations, with the vastest alternation being between initialization and the first
EM-step. In the following iterations, the OMM prototype only alters marginally.

Both results, the analysis of the development of the objective function as well as the
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Figure 7.2.: These plots illustrate the development of the objective function for the models
used in this study (OMMs, HMMLR) and different values of the hyperparame-
ters. Each plot illustrates the development of the complete-data log-likelihood
for a different value of the deviation parameter σ, while combining values for
the number of states parameter and the chosen model. Since the results for
HMMsLIN are similar to HMMsLRwe omit them to increase clarity of the plot.

inspection of the OMM prototype, indicate that the training procedure of OMMs are able
to rapidly extract meaningful, characteristic representations from mouse gesture data.

Figure 7.4 illustrates the evolving OMM prototype for different values of the number of
model states K and the emission distributions’ standard deviation parameter σ exemplary
for the mouse gesture class spiral. Each row contains plots for fixed values of σ whereas the
columns display plots for fixed number of model states K. Theses plots emphasize the effect
of the deviation parameter on the model smoothness. For σ ∈ {0, 0.25} a trajectory in
form of a spiral is, even though evident, very noisy and does not sustain visible inspection.
For σ > 0.5 the visible smoothness considerably increases and unfolds a seemly trajectory
in form of a spiral. For further increased values of the deviation parameter, also the
smoothness increases. E.g., a small dip in the trajectory that can be observed for at top of
the plots for values of σ = 0.5 and K ≥ 50, dissipated for σ ≥ 1.0. On the other hand, the
number of model states K controls the resolution of the learned prototype representation:
for models with less than 50 states, single trajectory segments are visible. However, the
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7. Reproduction of Interaction Time Series Data with OMMs

(a) iteration #1 (b) iteration #2 (c) iteration #3 (d) iteration #4 (e) iteration #5

Figure 7.3.: These plots illustrate the development of the learned OMM prototype de-
pending on the number of iterations. The first plot shows the model after
initialization without any training.

general underlying spiral form can sill be identified. The number of model states has to be
chosen according to a desired application.

Figure 7.5 displays OMM prototypes in comparison to HMMLR and HMMLIN prototypes
— for all three mouse gesture classes figure eight, spiral, and circle. For all evaluated models,
we chose the number of model states as K = 100 and the deviation parameter as σ = 1. The
first column shows the prototypes of OMMs, the second and third columns the prototypes
of HMMLIN and HMMLR, respectively. The plots indicate that OMMs and HMMsLIN

are able to extract meaningful prototypes for mouse gestures trajectories. However, even
though the particular trajectory classes can be identified easily for HMMLIN the prototypes
plots are more uneven and patchy. In particular, the HMMLIN representation of the circle
class lacks smoothness in contrast to OMMs’ prototype plots that display a seemliness
reproduction. The figures clearly indicate that HMMLR are unable to adequately represent
the relevant characteristics of the underlying mouse gesture class.

Summarized in terms of this thesis’ major research questions, the results of the mouse
gesture study indicate that OMMs provide an interpretable prototype (Q6) after only few
iterations in training (Q8). Choosing adequate hyperparameters is crucial for quality and
smoothness of the prototype (Q7): small values of the deviation parameter σ yield noisy
prototype representations, while a too large value might eliminate details. The number of
model states controls the resolution of the prototype time series.

7.3. Scenario: Gesture Imitation for Virtual Agents

In order to further demonstrate the prototype property of OMMs we will outline and
analyze an application in which OMM prototypes are used for imitation learning of arm
gestures. In this application, we understand gestures as expressive wrist movements that
are executed in free space. The setup is optimized towards imitation learning during
human-agent interaction between the humanoid virtual agent VINCE and a human user.
Thereby, the agent imitates the gestures the user performs by means of learned OMM
prototypes.

7.3.1. Data Set

The setup comprises a time-of-flight camera, a marker-free tracking software and a humanoid
virtual agent called VINCE (see Figure 7.6). The time-of-flight camera (a SwissRangerTM

98



7.3. Scenario: Gesture Imitation for Virtual Agents

(a) σ = 0
K = 5

(b) σ = 0
K = 10

(c) σ = 0
K = 20

(d) σ = 0
K = 50

(e) σ = 0
K = 100

(f) σ = 0.25
K = 5

(g) σ = 0.25
K = 10

(h) σ = 0.25
K = 20

(i) σ = 0.25
K = 50

(j) σ = 0.25
K = 100

(k) σ = 0.5
K = 5

(l) σ = 0.5
K = 10

(m) σ = 0.5
K = 20

(n) σ = 0.5
K = 50

(o) σ = 0.5
K = 100

(p) σ = 1
K = 5

(q) σ = 1
K = 10

(r) σ = 1
K = 20

(s) σ = 1
K = 50

(t) σ = 1
K = 100

(u) σ = 2
K = 5

(v) σ = 2
K = 10

(w) σ = 2
K = 20

(x) σ = 2
K = 50

(y) σ = 2
K = 100

Figure 7.4.: The plots illustrate the quality of the learned prototype in dependency on the
chosen OMM hyperparameters. As indicated in the caption of each plot, the
rows show models for different value of the deviation parameter σ and models
in the columns are associated to the number of model states.
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(a) OMM (b) HMMLIN (c) HMMLR

Figure 7.5.: These plots show the learned prototype representations based on OMMs,
HMMsLR, and HMMLIN.

SR40002) captures the scene in 3D at a frequency of ≈ 30 fps. The software iisuTM 2.03

then maps a human skeleton on the present user in the scene. We extract the relevant
information of the skeleton, such as the user’s height, spatial positions of the wrists and
the center of mass. We compute normalized 3D positions of the wrists with respect to the
user’s body size. Within a body-correspondence-solver module, the wrists’ positions are
transformed (rotated and scaled) from the coordinate system of the camera to egocentric
space of the virtual agent which stays face-to-face to the human demonstrator. Our focus
in the current study lies on the location of the right wrist. The data was recorded as time
series for each performed gesture. During data acquisition, VINCE imitates the subject’s
right hand movements in real time. In this way, the demonstrator receives visual feedback
on how VINCE performs the shown gestures. The ambiguous position of the elbow at
each time step is not captured but computed with the aid of inverse kinematic [Tolani
et al., 2000]. We captured 520 examples gestures in 48 classes in the format of 3D wrist
location coordinates trajectories with time stamps. Each trajectory starts from and ends
at the rest position of the right hand, whereas the gestures were demonstrated at different
velocities and require an average execution of 4.75 seconds. The performed gestures ranged
from conventional communicative gestures (waving, come here, and calm down) over iconic
gestures (circle, spiky, square, surface, and triangle) to deictic gestures (pointing to left,
right, and upwards). These gestures have been performed as 48 different classes, each
with respect to some of the following variant features: size (e.g., small and big circles),
performing space (e.g., drawing a circle at the right side or in front of oneself), direction
(clockwise or counter-clockwise), orientation (horizontal or vertical), repetition (repeating
some sub-parts of the movement, such as drawing a circle once or twice, or swinging
the hand for several times during waving). Figure 7.7 shows graphical representations of
randomly selected gestures from the classes surface front horizontal three times, circle big

2http://www.mesa-imaging.ch
3http://www.softkinetic.net
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7.3. Scenario: Gesture Imitation for Virtual Agents

Figure 7.6.: In our setup, demonstrated right hand gestures are captured and preprocessed
within the motion capture module and the resulting 3D trajectories are stored
as time series. OMM prototypes are computed from different demonstrations
and performed by the virtual agent VINCE, as the result of the prototype
learning process.

front counterclockwise vertical two times, circle small right counterclockwise vertical two
times, triangle front counterclockwise vertical one time. The complete data set is available
as supplementary material.

7.3.2. Experiments

In order to evaluate if OMMs are able to learn gesture prototypes we designed an experi-
mental setup to investigate the following research questions:

1. Do the learned OMM parameters provide an interpretable prototype that can be
utilized in human-agent interaction and imitation learning?

2. Can these prototypes additionally be used for recognition of unknown gestures? How
do the OMMs perform in terms of generalization accuracy, even if only few training
data are available?

3. What influence does the number of model states in OMMs have on the classification
accuracy and the computational demands?

To address the first question, we trained an OMM for each gesture class and examined the
resulting model parameters. Subsequently, we let the virtual agent VINCE execute the
trained prototypes and captured these executions on video (cf. supplementary material).

In order to address the second question, we compared OMM classifiers to a standard
classification technique in terms of classification accuracy and running times on artificially
reduced training data sets. For comparison, we chose Nearest Neighbor Classifiers based
on Dynamic Time Warping distance function [NNDTW, Chiba and Sakoe, 1978, please see
Section 5.1.1 for details]. We evaluated both classifiers with subsets from the training data
set, whereby the amount of training data per class ranged from one to seven examples.
Additionally, we conducted classification experiments with all available training data. To
obtain the final error rate, we applied the resulting classifiers to the dedicated test data
set.
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Figure 7.7.: This figure shows plots of randomly selected gesture trajectory from the time-
of-flight data set as 3-dimensional plots (first row) and as x-, y-, z-location
coordinates varying in time (second row).

We evaluated the influence of the number of model states K in a similar way. Here, the
classifiers were trained with a reduced number of model states K and number of training
examples to test their generalization capabilities with the complete test data set.

For all experiments, we partitioned the data set into a training set (369 example gestures)
and a test set (the remaining 151 examples). All data was normalized to zero mean and
unit variance according to the training data. We identified optimal OMM hyperparameters
K and σ by means of leave-one-out cross validation on the training data set. As the
criterion for hyperparameter optimization, we chose the area under the receiver operating
curve (AUC, cf. Section 3.6.3). We trained a model with the training data of one class
(except the one left out). We then used the left out gesture as a positive and the gesture
data from the remaining classes as negative examples for AUC analysis. We chose eleven
equidistant values for the number of OMM states K ∈ {10, 30, . . . , 230}, the set of values
for the standard deviation parameter was σ ∈ {2 · 0.75y|y = 1, . . . , 10}.

7.3.3. Results

Figure 7.8 illustrates learned gesture prototypes for gestures from class circle big front
counterclockwise vertical two times. Each column illustrates a model that trained with
different values for the number of model states K. The first row shows the data as
3-dimensional plots and the second row shows the same data as location coordinates
developing over time. For the prototypes, we chose three different values for the number of
states K ∈ {10, 30, 50, 100}. As standard deviation parameter, we chose σ = 0.84375, the
value that reached the highest AUC value of ≈ 0.95 in cross validation.
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Figure 7.8.: This figure illustrates OMM prototypes trained with different values for
the number of model states K, as 3-dimensional plots (first row) and as
x-, y-, z-location coordinates varying in time (second row). In each column an
OMM prototypes trained with all available examples from class circle big front
clockwise vertical one time with 10, 30, 50, and 100 model states is plotted,
respectively.

The plots indicate a clear correspondence between an underlying gesture class and the
learned OMM parameters, and it is visually obvious that OMMs are able to extract
prototype representations of the gestures. Even a prototype with K = 10 model states
reveals a trajectory that is similar to the genuine circle gesture as displayed in the second
column of Figure 7.7. For K = 30 the plot of the prototype fully represents a circle gesture
that, in comparison to the models with K ∈ {50, 100} states, only differs in length.

To underline the prototype capacity of OMMs, we executed all gesture prototypes with
our virtual agent VINCE. In the supplementary material, a video is attached that contains
example gestures from all 48 gesture classes, and recordings of the virtual agent performing
the related gesture prototypes. Additionally, Figure 7.10 shows screenshots of these video
recordings. The first row shows video screenshots from a human demonstrator performing
a gesture during data acquisition; the screenshots in the second row show how the virtual
agent VINCE is executing the learned OMM parameters from the matching class. In this
video the demonstrator and VINCE are performing the gesture waving head 2.5 swings.

In general, both results — the examination of the learned prototype as well as the videos
of VINCE who executes these prototype gestures — indicate that the architecture of
OMMs is able to deduce essential gesture features from a set of example trajectories.
However, some videos (e.g., all come and surface prototypes) suggest that using only a
limited body model, such as the right hand wrist, might not be adequate to fully represent
and reproduce a gesture. E.g., VINCE’s performances of the come prototypes lack the
orientation of his hand palm. Even though the plain hand wrist trajectory matches the
subject’s hand wrist trajectories, the incorrectly oriented palm might make it difficult for a
human user to identify the intended gesture. Presumably, a more detailed body model,
as, e.g., in Bergmann and Kopp [2009], would improve the prototype representation. In
contrast, other gesture classes are sufficiently represented only by hand wrist trajectories,
e.g., VINCE’s performances of all waving related classes are easy to comprehend.
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(a) Classification accuracy of test data set. (b) Average running time for classification of
one unseen gesture.

Figure 7.9.: This figure shows the accuracy (Fig. a) and average running times (Fig. b) for
single trial classification of unseen gestures for NNDTW and OMM classifier
depending on the number of training examples per class. For OMM classifier,
different values for the number of model states K ∈ {10, 50, 210} are plotted.

Figure 7.9a shows the performance results of our evaluation in terms of classification
accuracy on the test set depending on the number of training examples per class for
different classifiers. These include OMMs with a high number of states according to
maximum classification accuracy (K = 210) and OMMs with a reduced number of states
(K = 10, 50). In general, all classifiers are able to recognize unseen gesture trajectories
with high accuracy, although OMM classifiers with 10 model states reach substantially
lower accuracy. Using all training examples, NNDTW as well as OMMs classify gestures
with a high accuracy of ≈ 0.94, although the performance for OMM classifiers with only
K = 10 is noticeably lower. The plot also shows that a reduction of the number of training
examples does not substantially reduce the classification accuracy. Only for OMMs with a
low number of states, a degradation can be observed below three examples.

The slightly higher recognition performance of NNDTW classifiers comes at the cost of
substantially increased computational demands. In the scenario with all available training
data, OMM classifiers provide an average speed-up factor of at least ≈ 3. For decreasing
number of model states the speed-up factor increases once more. OMM classifier with
K = 50 respond in ≈ 0.14 seconds, with K = 10 OMMs classify an unseen gesture in 0.04
seconds. In comparison to the average classification times of NNDTW, this is an acceleration
between 3 and 44 times. This allows low-latency recognition of gesture performances, which
is a requirement for interaction with humans. Please note that HMMLR-based classifiers
would likely reveal a — similar to OMMs — flat dependency between the number of training
examples and running time. However, due to an algorithmic complexity that is polynomial
in the number of model states, the computational demands would be substantially higher
than the one of OMMs.

In lights of the major research questions of this thesis, the results from these experiments
further consolidate the findings from our mouse gesture experiments (Section 7.2): (i) OMMs
are able to reveal an interpretable prototype for gesture data that can, e.g., be used for
imitation learning (Q6). (ii) The chosen hyperparameters are crucial for the prototype
representation (Q7), and improper selected hyperparameters might result in noisy or
segmented prototype representations.
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Figure 7.10.: This figure shows screen-shots from the gesture videos. The first row shows
video screen-shots of a human demonstrator during data acquisition. In
the second row VINCE, a virtual agent, performs the corresponding OMM
prototype. The gesture in these videos is from class waving head 2.5 swings.

7.4. Summary

The aim of this chapter was to evaluate the capabilities of OMMs for reproduction of
interaction data as, e.g., needed in many communication scenarios or for imitation learning
with robots and agents. We focused on investigating of OMM’s prototype property,
the influence of the hyperparameter selection and the training process on the emerging
prototypes.

Initially, in Section 7.1 we addressed the term prototype and described how it is understood
in this thesis. Additionally, we distinguished its definition from the widely used term model.
Here, we emphasized that, in contrast to models, prototypes are of the same type as the
observations it ought to be prototypical for.

Subsequently, we analyzed a mouse gesture data set in Section 7.2. The data set comprises
33 computer mouse gestures in three classes (spiral, figure eight, circle) performed by 11
human participants. Since we chose to represent computer mouse gestures as 2-dimensional
location coordinates with time stamps, we were able to easily inspect the gestures as well as
the OMM prototypes visually. Analyzing the learned OMM prototype representations for
the computer mouse gestures revealed that the model parameters of OMMs are well suited
to reproduce the gestures. Depending on the chosen model configuration, OMMs can be
used as prototypes for the given gestures classes. Thereby, OMM’s deviation parameter
σ controls the smoothness of the prototype with higher values of σ yielding smoother
prototypes. The number of model states K governs the sampling rate of the prototype, i.e.,
the pace or the frequency. In comparison to reproduction capabilities of similar HMMs, the
results indicate that OMMs are able to reveal the relevant information quicker. However,
depending on the chosen model topology, HMMs did also provide a feasible prototype.

In Section 7.3 we applied OMMs to reproduce and recognize natural gesture trajectories.
Here, we captured 48 hand-arm gestures as 3-dimensional location coordinates of the right
hand wrist, with 520 collected gestures performances. In this scenario, we used a Time-Of-
Flight camera in combination with a tracking software and a body-correspondence solver to
capture the gesture data. The results from our classification experiment showed that OMMs
are able to learn gestures from multivariate time series even if only few observations are
available. Furthermore, our run time measurements indicate, that OMMs are well suited
for low latency gesture recognition. Even though more complex models and methods might
further increase the recognition performance, in particular in human computer interaction
scenarios the response time is crucial. Here, OMMs are able to provide a suitable trade-off
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between accuracy and computational demands. We showed that OMMs with few model
states can still reach competitive accuracy while considerably decreasing computational
demands to ensure low latency capability.

According to the major research questions of this thesis, the results from these experi-
ments indicate that OMMs provide a prototype representation for interaction data that
is represented as time series. These prototypes can be used for imitation learning during
human-agent interaction (Q6). In addition, the choice of hyperparameter values influences
the quality and characteristic of the learned prototype. Incorrectly selected hyperparame-
ters might result in noisy or segmented prototypes (Q7). Further results suggest that the
iterative training scheme of OMMs is able to quickly reveal the relevant information for
a prototype from a data set. In some cases, only one iteration was necessary to expose
a prototype from an interaction time series data set (Q8). In terms of running time,
the results from a study in gestural human-agent interaction indicate that OMM-based
classifiers are able to provide a suitable trade-off between accuracy and computational
demands (Q2).
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Data with OMMs

Besides recognition (cf. Chapter 6) and reproduction (cf. Chapter 7) of observations,
desirable properties for interactive system are organization capabilities of complex behav-
ior observations according to an inherent structure. Humans, who observe meaningful
interactions such as arm gestures, are easily able to incrementally and abstractly structure
arising observations by common characteristics such as, e.g., orientation, shape, size, or
velocity. In addition, humans reproduce these observations with their own body according
to the learned structures — and a human observer is capable to rapidly generalize from
these characteristics and derive an abstract meaning independently from its properties.
This is, e.g., the case in humans that communicate by means of sign languages: the
interactants are able to structure and organize sign language signs, and they make sense of
their observations in an incremental way, even though sign language signs cover substantial
inter-personal variations.

A computer system that is to participate in such interactions would greatly benefit from
being able to organize its observations according to the inherent data structure. E.g., if
the human user performs a behavior pattern from one category in very different ways, the
system should be able to structure the performances accordingly. This gives rise to the
following research questions:

• (Q9) Organization: How can OMMs be used to organize observations that are
represented as time series in an unsupervised manner, without intervention of an
external human observer?

• (Q10) Hierarchical Organization: How can we enable OMMs-based methods to
discover inherent but hidden hierarchical structures in observed interaction behaviors,
again unsupervised?

According to these questions, ideally, a system should be able to identify relevant similarities,
dissimilarities, and, thus, data clusters of hierarchical or non-hierarchical structures without
user interventions.

In this chapter, we will investigate if OMMs are able to organize interaction time series data
in an unsupervised manner. We will introduce and evaluate two approaches to unsupervised
time series processing based on OMMs. First, we will present and evaluate K-OMMs, a
clustering solution for time series that is similar to classical K-means clustering. Second, we
will assess K-OMM-trees, a tree-based approach to unsupervised hierarchical organization
of time series.

This chapter is organized as follows: after introducing the K-OMMs and K-OMM-trees
algorithms in Section 8.1, we will, first, evaluate 20 benchmark data sets from the UCR time
series repository [Keogh et al., 2006] in Section 8.2. In addition to address the clustering
performance of K-OMMs algorithm, we will discuss different initialization strategies for
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K-OMMs clustering. Subsequently, we will compare the K-OMMs and K-OMM-trees
clustering approaches by means of interaction time series data sets from the UCI machine
learning repository. Last, in Section 8.4, we will recall the human-agent interaction scenario
that was introduced in Section 7.3. Here, we will show that the unsupervised organization
capabilities of K-OMM-trees allow an improved straightforward generalization in context
of gesture recognition.

8.1. Methods: Clustering of Time Series Data with OMMs

In order to realize organization of time series, we present two clustering algorithms for
time series data. First, K-OMMs reveal flat partitions in a data set, while K-OMM-trees
expose hidden hierarchical structures.

8.1.1. Partitioning Clustering: K-OMMs

To discover subsets in a set of observations in an unsupervised manner, we adapt a K-means
procedure, in which the cluster centroids are replaced by OMM prototypes Ω and the
negative production likelihood p(O|Ω) is applied as a distance function. K-means clustering
is a commonly used method to partition a set of observations into K groups that are
associated by a joint quality. The general idea of K-means is to minimize an objective
function that accumulates the distances between each observation Oi and its nearest cluster
centroid Cj to which it is assigned to. Please see Section 3.4.1 for a detailed introduction
of K-means clustering.

If the observations are multivariate time series, specific time series distance functions and
centroid representations are required. To apply OMMs to clustering analysis, a feasible
distance function between a time series Oi and a model Ωj is given by the negative
production log-likelihood

d(Oi,Ωj) = − ln p(Oi|Ωj). (8.1)

Please note that since such a distance function is unsymetric, it does not define a distance
measure. If the Ωj represent the cluster centroids, the objective function of K-OMMs
accumulates the likelihoods that the time series Oi have been generated by their associated
centroid models Ωj . As introduced in Chapter 7, the learned models that are used as
centroids can be interpreted as prototypes for the set of associated observations. The
update function in such an approach is a re-training of the models according to the assigned
time series. As introduced in Chapter 7, the learned models that are used as centroids can
also be interpreted as prototypes for the set of associated observations. Note that in case
of K-means the number of prototypes K has to be determined by an external process such
as the elbow method.

Pairwise Sequence Distance

As described above, a common distance function between a time series and an OMM is the
negative production log-likelihood. Since an OMM ultimately is a time series itself, i.e., an
array of reference vectors, this definition can be easily extended to a pairwise non-symmetric
distance function between two time series Oi and Oj . If we consider one time series as a
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generating model and the other one as the time series that has been generated, a feasible
distance definition between these two time series would be d(Oi, Oj) = p(Oi|Oj). Note
that in contrast to similar distances based on HMMs, no additional training or parameter
estimation is necessary. Following the suggestions that Rabiner [1989] made for HMMs, an
appropriate symmetric distance measure definition is given by

dOMM =
1

2
·
(
p(Oi|Oj) + p(Oj |Oi)

)
. (8.2)

Cluster Initialization

Due to local extrema, the quality of the K-means solution heavily depends on initialization.
A näıve and yet common approach is to randomly choose cluster assignments as initialization.
For clustering of time series with HMMs, Smyth [1997] suggests an initialization based on
pairwise distances between all examples of a data set. These distances can be exploited to
cluster a data set hierarchically and encourage compact cluster initializations beforehand.

In this study we use, alongside randomized initial assignments of the examples to clusters, a
similar approach to identify a compact initialization. We compute the symmetric distances
as defined in Equation 8.2 for the time series, and we apply hierarchical clustering with
the ”average” merge heuristic [cf. Anderberg, 1973] to find K initial clusters.

8.1.2. Hierarchical Clustering: K-OMM-trees

To enable hierarchical identification of time series prototypes, we use K-OMM-trees —
an approach with structurally similar properties as K-trees [De Vries et al., 2009, Geva,
2000]. Generally, K-OMM-trees are height balanced clustering trees that combine classical
K-means and B+-trees algorithms with OMMs to clustering trees for time series data. A
K-OMM-tree of order m is defined as [Geva, 2000]:

1. All leaves are on the same level.

2. All internal nodes, including the root, have at most m children, and at least one
child.

3. Clusters centroids are represented as OMMs and are used as search keys.

4. The number of keys in each node is equal to the number of its nonempty children,
and these keys partition the keys in the children to form a search tree.

5. Leaf nodes contain observed time series.

The time complexity of building K-OMM-tree is — similar to standard K-trees —O(n log n).
The nodes of the tree are represented by OMM prototypes and the leafs hold the time
series examples. The process of building a K-OMM-tree is similar to the building of a
K-tree. However, in contrast to Euclidean distances, we use the negative log-likelihood
(cf. Eq. 8.1) as a distance function and re-train the OMMs if a new time series is added
to a branch. Since OMMs are represented by ordered arrays of reference vectors and are,
therefore, time series themselves, it is possible to build “OMMs of OMMs”, i.e., to train a
model for a set of models. This unique property enables a fast training of K-OMM-trees:
for nodes that contain sub-trees, it is possible to build an OMM representation out of the
OMM representations from the level below.
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Building a K-OMM-tree is a dynamic process that inserts time series on-line, as they are
observed. Consider an already existing K-OMM-tree of order m to which an additional
time series O is presented for insertion. The insertion procedure is: first, the tree is
searched to identify the node that contains the time series’ nearest neighbor. If this node
stores less than m — the tree’s order — observations, O is inserted as a leaf. Since this
insertion changes the cluster structure, the parent nodes up to the root node must update
their search keys in terms or re-computing their associated OMMs. When a leaf stores
m+ 1 time series, it cannot contain any more observations. It then is split by applying the
K-OMMs algorithm with two clusters to the m+ 1 elements of that node. The resulting
OMMs become the search keys for two new child nodes. Now consider that the parent
of these new nodes contains m + 1 search keys after the splitting process, too. Then it
also has to be split, replacing itself in its parent by two new child nodes. This process is
repeated in a similar manner until a node with less than m+ 1 search keys is reached or a
new root node replaces the current root node. The procedure of building a K-OMM-tree
is initialized with an empty root node and just one leaf.

To use K-OMM-trees for classification, i.e., to assign an unseen gesture to one of J classes,
J class-specific K-OMM-trees are first estimated from the data. Similar to classification
with OMMs as described in Section 6.1, and assuming equal prior probabilities, an unknown
gesture O is assigned to the class associated with the model that yields the highest
production likelihood p(O|Ω). In case of K-OMM-trees, all models Ω that are related to
the tree and represent the tree’s nodes, are used for classification.

8.2. Experiment: Partitioning of Time Series Data

Since the hierarchical organization scheme of K-OMM-trees relies on the non-hierarchical
K-OMMs approach, we will initially investigate if the latter is able to adequately discover
clusters in times series data. We designed an experimental setup to evaluate:

• How do K-OMMs perform compared to standard methods for clustering of time
series data?

• What is the impact of the initialization strategies in terms of clustering performance?

• Do the learned K-OMMs centroids provide an interpretable prototype?

8.2.1. Experiments

To answer these questions, we conducted a comprehensive study on 20 time series clustering
benchmark data sets from the UCR time series repository [Keogh et al., 2006]. To cover a
wide range of time series types and research scenarios, the benchmark data set collection
combines examples from various research fields (cf. Section 5.6). In this scenario, we tested
the following approaches:

• K-means: the standard K-means algorithm with Euclidean distance measure,

• K-OMMs: the K-means clustering where OMMs are used as cluster centroids
(cf. Section 8.1.1).

Note that K-means with Euclidean distances requires data examples of equal lengths
and dimensionality. Usually, time series do not meet this criterion, but fortunately, the
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time series provided by the UCR repository share the same lengths. This allows us to
compute the Euclidean distance between two examples and, thus, to compare K-OMMs
and standard K-means.

Additionally, we investigated to which extent an initialization schemes changes the perfor-
mance of our clustering approaches. Therefore, we tested K-means and K-OMMs clustering
with

• Random initialization: the time series are randomly assigned to a cluster,

• Compact initialization: time series are merged to initial clusters by similarity
according to a pairwise distance as described in Section 8.1.1.

Since ground truth is available, i.e., all data sets are fully labeled, we applied purity as a
validation measure to the learned cluster assignments (Section 3.6.4). Note that we did
not estimate the number of clusters in this study; instead, we assumed to know the right
amount beforehand.

We applied a uniform procedure to all data sets. First, we estimated an appropriate hyper-
parameter for each method by means of the training data as described in Section 5.2. For
OMMs we tested 10× 11 hyperparameter pairs where K ∈ {T/10, 2 · T/10, . . . , T} with T
being the time series lengths of the particular data set, and σ ∈ {1.5 · 0.75y|y = 0, . . . , 9} ∪ {0}.
Subsequently, we took the optimal hyperparameters found in this process to train a
K-OMMs model with the complete training data set and applied the resulting clustering
models to the test data set.

8.2.2. Results and Discussion

Table 8.1 displays the optimal hyperparameters found for all data sets. K denotes the
number of model states, and σ the standard deviation parameter that yields the highest
clustering purity for the benchmark’s training sets. For some data sets (Two Patterns,
Beef, wafer, Lighting7, Gun Point, CBF, OSULeaf, Trace) the best models found require
considerably fewer model states K than the time series’ length T to represent the data. In
contrast, data sets like Coffee, FaceFour, SwedishLeaf, and EGC200 used exact K = T
states to model the data, which averages to one state per sample.Table 8.2 shows the clustering purity values for the algorithms and initialization schemes
achieved by means of the benchmark’s testing data sets. For the majority of data sets,
K-OMMs reach higher purity values than standard K-means. With random initialization
K-OMMs yield higher purity levels for 13 data sets, while K-means is superior on seven
data sets. The results for the compact initialization approach uncover a similar picture:
while K-OMMs yield superior purity values for 12 data sets, K-means reach a higher purity
for eight data sets. In particular, K-OMMs are able to represent the Two Patterns, wafer,
50words, and CBF data sets better as compared to standard K-means. Independently of
the chosen initialization, the performances differ up to ≈ 30%. K-means only reaches higher
purity values for the yoga and the OliveOil data sets where K-OMMs are outperformed by
more than ≈ 10%.

If we focus on the evaluated initialization strategies, we only find notable differences for
very few data sets. While the compact initialization in comparison to random initialization
enhances the results of standard K-means for ten data sets, the performances are reduced or
remain constant for the other ten data sets. For K-OMMs the performance only increases
for eight data sets, the purity decreases for seven data sets, and remains equal for five
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data set K σ

Two Patterns 38 0.844
Coffee 28 0.633
yoga 341 0
Beef 94 0.356
wafer 15 0
OliveOil 285 1.5
Lighting7 64 1.125
FaceFour 350 1.5
SwedishLeaf 128 0.844
FaceAll 105 0.475
50words 162 0.844
Gun Point 15 0.113
ECG200 96 1.5
CBF 13 1.125
OSULeaf 85 0.633
Adiac 70 0.475
synthetic control 48 1.125
Lighting2 318 0.267
fish 417 0.633
Trace 28 0.475

Table 8.1.: This table displays the optimal hyperparameter pairs found during training set
evaluation of the benchmark data sets from the UCR repository. K denotes
the number of model states, and σ is the standard deviation parameter that is
associated with the emission densities of OMMs.

data sets. In particular, the performances of K-OMMs strongly improve for Two Pattern,
FaceAll, synthetic control, and fish data sets with enhanced purity between ≈ 10% and
≈ 20%. For standard K-means the only notable performance change is a decreased purity
value for the Trace data set by ≈ 12%. For the remaining data sets, the performance
differences in this scenario are only marginal.

Figure 8.1 illustrates the cluster centroids as prototypes alongside randomly chosen examples
from the synthetic control data set. Each row corresponds to one class of the data set. The
left column displays the time series and the right column shows the associated model. The
synthetic control data set contains simulation data in six classes from a domain of control
chart patterns. These classes correspond to typical developments in control charts, namely,
normal, cyclic, decreasing trend, increasing trend, upward shift, and downward shift.

In the examined scenario with 20 benchmark data sets, we found that K-OMMs are
generally able to discover appropriate hidden structures. For the majority of data sets,
K-OMMs could reach higher purity values than standard K-means — up to a difference of
more than 30%. Unfortunately, there is little knowledge about the particular characteristics
of each benchmark data set (e.g., if it is non-stationary, noisy, etc.) and we cannot
further interpret these results, e.g., to point out particular time series properties for which
K-OMMs are especially well suited.
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data set random
initialization

compact
initialization

K-means K-OMMs K-means K-OMMs

Two Patterns 0.48 0.61 0.47 0.81
Coffee 0.76 0.72 0.77 0.72
yoga 0.81 0.69 0.86 0.68
Beef 0.57 0.62 0.64 0.57
wafer 0.80 0.94 0.8 0.94
OliveOil 0.85 0.70 0.82 0.70
Lighting7 0.72 0.63 0.67 0.63
FaceFour 0.77 0.80 0.68 0.73
SwedishLeaf 0.63 0.59 0.67 0.47
FaceAll 0.43 0.74 0.49 0.85
50words 0.45 0.74 0.51 0.75
Gun Point 0.70 0.73 0.70 0.73
ECG200 0.84 0.81 0.79 0.82
CBF 0.73 0.94 0.76 0.95
OSULeaf 0.51 0.57 0.59 0.54
Adiac 0.60 0.49 0.61 0.55
synthetic control 0.85 0.87 0.85 0.99
Lighting2 0.75 0.80 0.75 0.80
fish 0.60 0.73 0.58 0.60
Trace 0.70 0.73 0.70 0.85

Table 8.2.: This table displays the purity values of the benchmark test data sets for
K-OMMs, K-means and the initialization variants. The bold font indicates the
highest purity reached for the particular initialization approach.

The findings of the initialization experiment reveal an ambiguous picture. On one hand,
the compact initialization strategy heavily enhances the clustering accuracy for some data
sets. On the other hand, the majority of data sets could not benefit from such an approach.
Surprisingly, even standard K-means with Euclidean distances could not take advantages
out of the compact initialization scheme. This indicates that the chosen initialization
strategy might not be well suited for this method or this type of data in general.

The plots of the model parameters in Figure 8.1 indicate that centroid OMMs are good
prototypes for the learned data partitions. The array of model parameters as plotted in
the right column of Figure 8.1 allow further insights in the data, in particular, if no or only
little prior knowledge about the data set is available. A clear correspondence between the
time series and the associated learned models is visible. Moreover, the models in the right
column nicely fit the underlying structures of the classes as described in Section 8.2.2. The
class cyclic displayed in the second row is particularly interesting as the number of cycles
between the example sequence (4 maxima) and the learned prototype (5 maxima) differs.
This indicates that other observations from this class might have a different cycle frequency
as compared to the randomly selected one. The model represents this characteristic in a
prototype that consolidates all observations according to the OMM data representation.
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Figure 8.1.: Examples from the synthetic control data set and corresponding OMMsṪhe
left column shows one randomly chosen time series from each class. The right
column shows the uncovered OMM prototype that matches the particular
example.

In general, the K-OMMs approach to clustering of time series might be particularly
interesting in situations where only little or no knowledge about the data is available. Then,
K-OMMs can discover hidden structures and present informative cluster centroids of these
structures by means of time series prototypes.

In terms of the major research questions of this thesis, theses results show that K-OMMs are
able to uncover hidden clusters in time series data sets (Q9) with high accuracy. Further
findings indicate that the learned OMM cluster centroids are appropriate prototypes for
particular data clusters (Q6), which allows additional insights into an analyzed time series
data set.

8.3. Experiments: Hierarchical Organization with
K-OMM-trees

To investigate if the proposed methods for clustering of time series are also able to analyze
interaction data, we evaluated K-OMM-trees and K-OMMs with common benchmark data
sets from the UCI machine learning repository.
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data set measure K-OMMs K-OMM-trees K-HMMs

Australian Sign
Language Signs

running time 220.6s 24.5s 1462.8s
V-measure 0.869 0.899 0.888
homogeneity 0.779 0.83 0.811
completeness 0.988 0.986 0.987

Character
Trajectories

running time 668.4s 79.5s 2193.5s
V-measure 0.976 0.973 0.777
homogeneity 0.957 0.951 0.649
completeness 0.997 0.996 0.998

Table 8.3.: Results for clustering evaluation for time series data sets from the UCI machine
learning repository.

8.3.1. Experiments

In order to evaluate the K-OMM-trees algorithm, we designed an experimental setup for
investigation of the following questions:

1. Can K-OMMs and K-OMM-tree algorithms extract clusters from interaction time
series sets?

2. Are K-OMM-trees able to extract meaningful prototypes for interaction data?

We compared K-OMM-trees and K-OMMs clustering algorithms on benchmark interaction
data sets from the UCI machine learning repository [Frank and Asuncion, 2010]. As a
base-line approach, we use a K-HMMs clustering algorithm as described in [Perrone and
Connell, 2000]. As benchmark data sets, we chose the Australian Sign Language Signs as
well as the Character Trajectories data sets. For both data sets, ground truth is available
and all examples are labeled; Table 5.1 shows basic properties of these data sets.

According to the first question, we evaluated the performance of the presented methods by
applying common clustering evaluation measures to the obtained data clusters. We applied
uniform procedures to all data sets and methods. We tested K-OMM-trees, K-OMMs, and
K-HMMs with different hyperparameter values. The set of values for the standard deviation
parameter was σ = 1, the number of model states was chosen from K ∈ {3, 5, 10, 20, 50},
and the order of the K-OMM-tree was chosen from m ∈ {3, 5, 10, 20, 50}. As evaluation
measures we used completeness, homogeneity, V-measure, and the computational demands
in terms of running time.

In order to address the second question, we used K-OMM-trees to analyze a subset of
the Character Trajectories data set. We chose 25 examples in five classes to train a
K-OMM-trees and examined the resulting model parameters. In this scenario, we chose
the number of OMM states K = 50, the standard deviation parameter σ was set to 1, and
the order of the K-OMM-trees was 3.

For all experiments, we initialized the time series clusters with randomized cluster assign-
ments.
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(a) K (b) order

Figure 8.2.: Running time of K-OMMs, K-HMMs and K-OMM-trees in dependency of the
number of model states and the order of the K-OMM-tree for the Character
Trajectory data set.

8.3.2. Results and Discussion

Table 8.3 shows the results of our benchmark study in terms of clustering evaluation
measures and running time. In general, all methods show sufficient clustering performances
related to ground truth on both evaluated data sets, i.e., almost all methods are able to
discover similar cluster assignments as compared to the known class labels. K-OMM-trees
reach the highest V-measure value of ≈ 0.899, closely followed by K-HMMs and K-OMMs
with V-measure values of ≈ 0.888 and 0.869, respectively. The homogeneity measures
are similarly ranked: K-OMM-trees, K-OMMs, and K-HMMs reach average homogeneity
values ≈ 0.83, ≈ 0.811, and ≈ 0.799. For completeness, we find a reversed ranking. Here,
K-OMMs reach the highest average completeness value of ≈ 0.988, followed by K-HMMs
and K-OMM-trees, each with a 0.001 decreased completeness value. The results for the
character trajectory data sets are different. K-OMM-trees and K-OMMs archive high
average V-measure values of ≈ 0.973 and ≈ 0.976; in contrast, K-HMMs only reach a
V-measure value of ≈ 0.777. Similarly, K-HMMs reach a substantially lower homogeneity
value of ≈ 0.649 (K-OMM-trees: ≈ 0.951, K-OMMs: ≈ 0.957) in analysis the Character
Trajectory data set. In addition, all methods archive very high completeness values of
more than 0.99.

These results indicate that all evaluated methods are able to extract clusters in motion
data sets with high accuracy. In terms of ground truth, K-OMMs, K-OMM-trees, and
K-HMMs are able (i) to assign examples to clusters that are members of the same class
(as indicated by high homogeneity values), and (ii) to assign examples of a given class to a
single cluster (as indicated by high completeness values). Only the application of K-HMMs
to the character trajectory data set leads to substantially lower cluster completeness as
compared to K-OMM-trees and K-OMMs, however, in terms of homogeneity also K-HMMs
are able to discover appropriate clusters in the given data set.

In terms of computational running time, the methods differ substantially. In average,
K-OMM-trees require ≈ 25s to process the Australian Sign Language Signs data set.
The K-OMMs approach needs ≈ 9 times more computational power (≈ 222s), whereas
K-HMMs require more than 60 times longer running time (≈ 1462s) than K-OMM-trees.
A similar picture unfolds for the character trajectory data set. Here, K-OMMs require ≈ 8,
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...

Figure 8.3.: A K-OMM-tree learned from the Character Trajectory data set. The trajec-
tories in the leaf are examples from the data set, the nodes contain learned
OMM prototypes.

and K-HMMs ≈ 27 times more running time as compared to K-OMM-trees.

In order to further analyze the differences in running time, Figure 8.2 displays the compu-
tational demands of the evaluated approaches depending on the number of model states
(Figure 8.2(a)), and the order of the K-OMM-tree (Figure 8.2(b)). Figure 8.2(a) indicates
that the computational demands of all three methods increase for larger amount of model
states, whereby in particular the running time of K-HMMs heavily depends on this param-
eter. In addition, the plot shows that the running times curve of K-HMMs is steeper than
the corresponding curves for K-OMMs and K-OMM-trees. We disrupted the analysis of
K-HMMs for more than 10 model states due to limited computational resources.

In terms of K-OMM-tree’s order m and the accompanying number of clusters a similar
picture unfolds. For a small order, K-HMMs require considerably more computational
running time than K-OMM-trees and K-OMMs

Figure 8.3 illustrates a K-OMM-tree that was learned from the Character Trajectory
data set. The leaf trajectories are examples from the data set, the nodes contain OMM
prototypes. The tree clearly uncovers inherent data structures: e.g., the observations of
the left branch are narrower than their counterparts from the right branch. And the node
OMMs compellingly reflect the characteristics of their subordinate observations.

The findings of these experiments indicate that OMMs are able to unsupervised reveal both,
non-hierarchical partitions (Q9) and hierarchical structures (Q10) in interaction data sets.
The results show that both presented approaches — K-OMMs as well as K-OMM-trees —
uncover these structures with high accuracy. In dependency of the chosen hyperparameters
(Q7), the hierarchical K-OMM-trees allow to process larger data sets due to dramatically
reduced running times, which could be interpreted as a further indicator for OMMs’ low
latency capabilities (Q2).
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8. Organization of Interaction Time Series Data with OMMs

(a) (b) (c) (d) (e) (f)

Figure 8.4.: These plots display randomly selected circle gestures from the data set that we
used in the study. The 3-dimensional trajectories are mapped on the x/y-axis;
the color indicates the time during execution (from “blue” to “red”).

8.4. Scenario: Gesture Recognition with K-OMM-trees

To demonstrate the capabilities of our algorithm, we reuse the application setup that
was introduced in Section 7.3 The scene comprises a virtual agent that learns gestures
classes by means of a human demonstrator. This setting includes a high variety in gesture
performances within each class.

In this study, we investigate the following questions:

1. Does the unsupervised learned structure of K-OMM-trees support recognition of
unseen gestures?

2. What influence do K-OMM-tree’s hyperparameters have on the performance?

3. Do the learned OMM prototypes of K-OMM-trees provide a model for gesture
reproduction?

8.4.1. Data Set

This setup employs the same gesture trajectories as the before-used Concrete Gestures data
set (cf. Section 7.3). However, the trajectories are here combined differently to nine abstract
gesture classes. The classes comprise gestures from higher-level semantic categories, e.g.,
all circle gestures are combined to one class circle despite of their size, performance space,
direction, orientation, or repetitions. This leads to classes that enclose very different raw
data trajectories, and, thus, are more challenging in terms of representation by a data
model. Please see Figure 8.4 for illustrations of five randomly selected circle gestures
recorded in this data set. The nine abstract classes include conventional communicative
gesture classes (waving, come here and calm down), iconic gesture classes (circle, spiky,
square, surface and triangle), as well as deictic gesture classes (pointing). We divided the
data set into training and test sets. The training set contains approximately two-thirds
of all examples (362 gestures) and the remaining 147 gesture performances are used for
testing.

8.4.2. Experiments

We used OMMs, HMMs, and K-OMM-trees for classification of abstract gesture classes.
Thereby, we applied an identical procedure to all classifiers as described in Section 5.2.
We chose equal values for the hyperparameters in the 5-fold cross validation scheme: the
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8.4. Scenario: Gesture Recognition with K-OMM-trees

Method K σ order cv error rate test set error rate

K-OMM-trees 50 0.47 3 0.05 0.09
HMMs 51 0.47 - 0.24 0.19
OMMs 50 0.47 - 0.27 0.26

Table 8.4.: This table denotes the results from the classification experiments of the arm-
gesture data set for all evaluated methods. In detail, the hyperparameters
(number of model states K, the deviation parameter σ, and the order of the
K-tree m) as well as the cross validation and associated test set error rates are
shown.
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Figure 8.5.: This figure shows the cross validation error rates of for varying number of model
states K (sub-figure (a)), varying order of the K-OMM-tree (sub-figure (b)),
as well as varying deviation parameter σ (sub-figure (c)).

number of model states was K ∈ {3, 5, 10, 20, 50}; the set of values for the standard
deviation parameter was σ ∈ {0.5, 1.0, 1.5, 2.0}. In case of K-OMM-trees, we additionally
chose five values for the tree’s order m ∈ {3, 4, 5, 7, 10}.
In addition, we examined the resulting OMM parameters that represent the tree’s nodes.

8.4.3. Results and Discussion

Table 8.4 displays the results from the classification experiments. In terms of cross
validation and test set error rates, K-OMM-trees classifiers clearly outperform OMM- and
HMM-based classifiers by up to ≈ 22%. While K-OMM-trees achieve a test set error value
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8. Organization of Interaction Time Series Data with OMMs

(a) Root (b) Node level 1 (c) Node level 2 (d) Node level 3 (e) Node level 4 (f) Leaf: gesture

Figure 8.6.: These plots illustrate the OMM prototypes that correspond to one branch
of the learned K-OMM-tree for the class circle. The plots are related to
child-nodes from left to right, i.e., the left-most plot is on the tree’s root
level, the second plot on level 1 and so forth. The plot on the very right side
shows a gesture performance in a leaf. Please note that we used all three
location coordinates in the training process; these figures only plot the x/y-
coordinates. The trajectories are mapped on the x/y-axis; the color indicates
the development in time (from “blue” to “red”).

of ≈ 0.09, OMM yield ≈ 0.26 and HMMs ≈ 0.19. Similarly, the cross validation error rate
of K-OMM-trees is with a value of ≈ 0.05 substantially lower than the cross validation
errors of OMMs (≈ 0.27) and HMM classifiers (≈ 0.24). These results indicate that the
hierarchical structure of K-OMM-trees induce a superior data representation, at least if, as
given with the evaluated gesture data, the data set involves a wide intra-class variability.

Figure 8.5 illustrates the dependency between K-OMM-tree’s hyperparameters and the
reached cross validation accuracy. Each plot displays the influence of one varying hyper-
parameter while the remaining parameters are fixed. Here, only a varying order of the
K-tree m leads to substantially increased cross validation error rates, e.g., the K-OMM-tree
classifier yields an accuracy of ≈ 0.71 with an order m = 10. In contrast, changes of the
standard deviation parameter σ are almost without consequences: here, σ = 1.125 yields
the highest error rate of ≈ 0.07 — only ≈ 0.02 higher than the best error rate that is
archived by a classifier trained with σ = 0.47. Last, variations in the number of model
states K induce small changes in cross validation performance; in particular small K values
lead to a decreased classification performance, e.g., a K-OMM-tree classifier with K = 3
model states yields an error rate value of ≈ 0.21.

Figure 8.6 shows graphical representations for one branch of the tree associated to class
circle. The branch reaches from the root node (sub-figure (a)) to an actual gesture in a leaf
(sub-figure (f)), i.e., the first 5 plots show OMM prototypes that represent the tree’s nodes
and the last plot illustrates a circle gesture that was used for training of the K-OMM-tree.
These plot clearly indicate that K-OMM-trees are able to hierarchical organize gesture
trajectories whereby higher levels are associated to more abstract gestures and lower nodes
are connected to more concrete gesture performances.

As elements of the genuine gesture space, these prototypes could be easily used for
reproduction purposes as described in Section 7.3.

According to the major research questions that we introduced in Chapter 2, these results
indicate that a hierarchical time series representation as provided by K-OMM-trees can
dramatically improve the recognition performance (Q1) of unseen observations. As already
noted in previous experiments (cf. Section 8.3), the learned hierarchy seems to reflect an
inherent data structure (Q10) that spans from abstract data characterizations in nodes
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close to the root node to concrete manifestation at the bottom. Even though we did not
perform the learned OMM gesture prototypes by means of the virtual agent VINCE, a
visual inspection indicates that the prototypes would most likely provide good reproduction
capabilities (Q6).

8.5. Summary

The aim of this chapter was to investigate if OMMs are able to organize complex behavior
patterns according to an inherent data structure. For this, we introduced two clustering
algorithms for time series data based on OMMs (Section 8.1). The K-OMMs approach is
an adapted K-means algorithm, where the cluster centroids are represented as OMMs and
the negative production likelihood is used as a distance function. Further, we introduced an
initialization strategy to enable compact initial cluster centroids and to avoid suboptimal
solutions due to local minima. In addition, the K-OMM-trees algorithm is a hybrid of
K-OMMs and K-trees clustering where the tree’s nodes are OMMs and its leafs hold time
series observations.

We conducted a comprehensive study on 20 benchmark data sets where we compared
K-OMMs to K-means with Euclidean distance function in Section 8.2. In addition, we
evaluated both models with randomized initialization and compact cluster initialization. In
terms of clustering purity, we found that the K-OMMs approach reaches a higher degree
of purity than K-means for the majority of data sets, independently of the initialization
strategy. Additional results show that the compact initialization could only improve the
performance for few data sets. Last, the learned sequences of model parameters of the
cluster centroid OMMs provide prototypes for the associated clusters and, thus, might
raise further insights into a given data set.

To evaluate the hierarchical clustering approach of K-OMM-trees, we tested the proposed
algorithms in comparison to K-HMMs on interaction time series data sets from the UCI
repository related to character trajectories and sign language signs (Section 8.3). The
results from our experiments show that all evaluated methods are able to extract clusters
in interaction time series data sets with high purity. In contrast, the tested methods differ
substantially in their computational running times. K-OMMs require up to ≈ 9 times more
running time, while K-HMMs demand ≈ 60 times more computational power as compared
to K-OMM-trees. This behavior depends on the chosen hyperparameters, in particular the
number of model states K and the K-OMM-tree’s order m influence the computational
demands.

In Section 8.4 we evaluated hierarchical K-OMM-trees for recognition and reproduction
of gestures. The results from these classification experiments show that K-OMM-trees
are able to recognize gesture data with substantial higher accuracy than traditional
classifiers. In addition, the learned models could be directly interpreted as data prototypes.
These findings indicate that the combination of improved accuracy and hierarchical data
representations and prototype abstractions make K-OMM-trees a well suited method for
interactive systems. In terms of the uncovered hierarchical structures, higher levels in the
tree are associated with more general gesture properties, whereas nodes closer to the leaves
represent more specific gesture features. It is the extraction of this structure that enables
better learning of instances of interactive behavior.
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8. Organization of Interaction Time Series Data with OMMs

According to this thesis’ major research questions as outlined in Section 2.1, we found
evidence that OMM-based clustering algorithms are able to organize interaction time
series with high accuracy. K-OMMs provide a flat partitioning approach that can uncover
data clusters (Q9) and provides interpretable prototypes for these clusters (Q6). In
addition, K-OMM-trees are able to reveal hierarchical structures (Q10) in interaction
data sets. Influenced by selected hyperparameters (Q7), the hierarchical K-OMM-trees
requires dramatically reduced running times, which further indicates low latency capabilities
of OMMs (Q2). In addition, K-OMM-trees can substantially improve the recognition
performance (Q1) of unseen observations, and the learned hierarchy reflects an inherent
data structure that spans from abstract data characterizations in nodes close to the root
node to more specific manifestation at the bottom (Q6).
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9. Conclusion

The research objectives of this thesis were (i) to develop algorithms for machine learning
of time series data that allow recognition, reproduction, and organization of observed
interaction data and (ii) to empirically evaluate these algorithms with data sets from
various interaction scenarios. Time series data are ubiquitous in interaction scenarios and
arise in a variety of ways: e.g., gestures, speech, or sensor data streams from a smart room
etc. happens in time and, thus, can be naturally represented as time series.

We addressed three prerequisites for an interactive system that is to participate in interaction
environments:

• Recognition of human behavior,

• Reproduction of these behavior observations, and

• Organization of the observations according to an inherent data structure.

Thereby, we coped with different technical challenges: (i) fast response times to enable
seaming-less interaction experiences, (ii) incremental evaluation of observations while
they are performed, (iii) adaptability to particular users or environments, (iv) robustness
towards incomplete observations, and (v) an algorithmic solution that integrates all of the
above-mentioned prerequisites — recognition, reproduction, and organization — in only
one model.

9.1. Contributions: Algorithms

Based on previous work on Ordered Means Models, the algorithms presented in this
thesis allow classification, incremental classification, adaptive online training, unsupervised
clustering, as well as hierarchical clustering of time series observations.

The here presented incremental classification technique empowers to obtain classification
hypothesizes while a time series is observed. Thus, the classification decision is updated
each time new information is available, i.e., when new samples arrive. In consequence, a
classification decision can be made with specific required certainties as soon as possible, or
wait for and process further evidence otherwise. The proposed online training scheme allows
incremental training of OMMs observation by observation. Such a training procedure
enables the ability to learn a behavior starting already with the first presentation, and to
adjust the learned model incrementally when observing further instances of this behavior.

For organization of time series data, we introduced K-OMMs. K-OMMs are similar to clas-
sical K-means clustering and allow discovering of time series clusters as well as cluster proto-
types in an unsupervised manner. Last but importantly, we presented K-OMM-trees, a tree-
based approach to unsupervised hierarchical organization of time series data. K-OMM-trees
are height balanced clustering trees that combine classical K-means and B+-trees algo-
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9. Conclusion

rithms with OMMs to clustering trees for time series. Here, higher levels in the tree are
associated with more general prototype properties, whereas nodes closer to the leaves
represent prototypes that are more specific.

9.2. Contributions: Empirical Data Analysis

In terms of OMMs’ recognition capabilities we found that OMMs are well suited to
process data from interaction scenarios. We successfully applied OMM-based classifiers
to various interaction data sets and in different interaction scenarios. OMMs were able
to recognize handwriting, speech, and sign language signs. We also succeeded in using
OMMs to recognize conversational head gestures and finger-pressure patterns in musical
instruments.

According to the robustness properties of OMMs in terms of incomplete observations, we
found that OMMs still perform well with artificially fragmented data. These findings
were established by experiments with simulation data as well as 20 benchmark data sets.
In comparison to HMMs with different topologies the simplification provided by OMMs
significantly increases the robustness with regard to classification of incomplete data. In
a conversational head gesture scenario, OMMs were able to recognize head gestures with
comparatively low error rates even if only 10% of the genuine head gesture was performed.
This indicates that head gestures are still well separable if only partial observations are
available. All together, the omission of transition probabilities represents a valuable
alternative to standard HMMs when robust recognition is crucial.

Although OMMs provide high model flexibility and consistent classification accuracy, we
found that the computational costs of OMMs are even lower than the costs of HMMs
with linear model topology. In comparison to equally flexible left-to-right HMMs, the
considerable speed-up is still practically relevant for interaction scenarios.

Results from experiments on real-world interaction data sets indicate that OMMs are well
suited to process interaction data, and in contrast to highly accurate kernel machines,
the computational efficiency of OMM classifiers is substantially lower and, thus, enable
real-time recognition in interaction scenarios. Additional results from gesture recognition
experiments reveal that OMMs are able to learn time series gestures even if only few
observations are available. Here, OMMs reach competitive accuracy with few model states
what leads to considerably decreasing computational demands and, thus, also ensures low
latency capability.

To see whether OMMs are able to incrementally recognize interaction time series and can
adapt to particular users, we realized the Rock-Paper-Scissors game as an application and
test bed scenario in which the virtual agent VINCE engages in fast, real-life gesture-based
interaction with human users. This scenario directly taps into the abilities of the model
for incremental recognition and adaption. The results we obtained in an evaluation study
indicate that OMMs can meet the before-mentioned requirements: incremental recognition
with high accuracies, as well as the ability to adapt to particular users via online training.

In terms of reproduction of interaction data, we investigated OMMs’ prototype property.
In evaluation of mouse gestures and hand-arm gestures, we found that OMMs are feasible
to reproduce interaction data. Thereby, the deviation parameter σ of OMMs controls the
smoothness of the prototype with higher values of σ yielding smoother prototypes. The
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number of model states K governs the number of samples of the prototype, i.e., the pace
or the sample frequency. In comparison to reproduction capabilities of similar HMMs, the
results indicate that OMMs are able to reveal the relevant information quicker, however,
depending on the chosen model topology, HMMs were also capable to provide a feasible
prototype. The learned prototype representations for a hand arm gesture data set could
also be used for classification of unseen gestures with high accuracy — a strong indicator
that OMMs provide an integrated approach to reproduction and recognition of interaction
data.

According to OMMs’ organizational features, we found that OMM-based clustering algo-
rithms are able to partition a given interaction time series data set, as well as uncover
hidden hierarchical structures, both in an unsupervised manner. A study on benchmark
data revealed that for the majority of data sets, K-OMMs reach a higher degree of purity
as compared to standard K-means. Further results indicate that these findings are indepen-
dent of the chosen cluster initialization. As an additional outcome of these experiments, we
found that the learned cluster centroids provide interpretable prototypes for the associated
time series clusters. This indicates that OMMs are able to integrate organization and
reproduction properties in a single model.

Results from experiments on interaction time series data revealed that both — K-OMMs
and K-OMM-trees — are able to extract data clusters from such data with high purity.
However, the tested methods differ substantially in their computational costs. Influenced by
selected hyperparameters, hierarchical K-OMM-trees require dramatically reduced running
times in comparison to K-OMMs and a similar approach based on HMMs. In terms of
prototype extraction, the learned hierarchy of K-OMM-trees reflects an inherent data
structure that spans from abstract data characterizations in nodes close to the root node to
more specific manifestation at the bottom. Further experiments toward gesture recognition
showed that K-OMM-trees are able to substantially improve the recognition performance
of unseen gestures.

9.3. Future Work

The work and results presented in this thesis prepare the way for future work in various
research directions, both, driven by algorithms and applications.

In our current definition of OMMs, the emission densities are represented as Gaussians
whose standard deviation parameter is used as a global hyperparameter. Here, using
alternative distribution models could allow a more suitable representation of time series
or increased robustness towards noisy observations. Appropriate choices would be, e.g.,
mixture-of-Gaussians or double exponential distributions. In addition, estimating all
parameters of the emission densities in training might yield adequate data representations
with reduced costs for model selection.

Since OMMs also provide a probabilistic similarity function for two time series, they could
also be employed as time series density kernels in kernel density estimators and related
methods. In such an approach, OMMs’ standard deviation parameter would be used as a
kernel bandwidth parameter. In this context, sparse, discriminative classification approaches
based on kernel density estimation such as maximum contrast classifiers [Meinicke et al.,
2002] might further improve OMMs’ recognition performance. In order to preserve OMMs’
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excellent response times and nevertheless allow discriminative classification, the objective
function of OMMs could be altered to not only maximize the class-specific likelihoods, but
also minimize the likelihoods related to observations from other classes.

According to reproduction, promising research directions are OMMs’ generation properties.
In contrast to reproduction by means of prototypes, generation would yield greater variation
in the reproduced time series. Here, it could be beneficial to limit the path selection in a
generating process to paths that are close to the diagonal in the dynamic programming —
similar to pruning for DTW.

In terms of organization of time series data, straightforward extensions of K-OMMs are
self-organizing maps (SOM) based on OMMs that would allow processing of time series. In
such an approach, SOM neurons would be represented by OMMs to which observations are
assigned according to their production likelihoods. But also other manifold estimators for
time series are possible: the time series distance introduced in this thesis could be applied
to isomap — as well as all isometric mapping learners based on pairwise distances — to
discover manifolds in time series space.

In addition to algorithmic extensions, the work of this thesis can contribute to countless
application in various scenarios. Among others, the proposed algorithms for organization
of interaction time series enable activity clustering of, e.g., sensor readings in smart phones
to predict potential medical or emotional states of the user; OMM-based classifiers could
be used in multimodal dialog situations with a sociable agent in order to allow adaption to
adequate social categories; last but not least, the prototype property of OMMs directly
allows imitation learning of gestures and mimics in robotics and virtual agent research.
However, not only interactive systems can benefit from OMMs: time series data arises
in various ways, and robust, rapid, and reliable algorithms to process this data enable
exciting applications in many other domains.
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A. Expectation Maximization Algorithm

If we understand an OMM as a mixture of M i components — here: p(Oi|q,Ω) — with
constant weights wm = 1

M i , we can maximize L by iterating

expectation step:
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maximization step:
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These responsibilities rik,t are used in the maximization step to estimate updated prototypes
Ω = [µ1, . . . ,µK ]:

Ω = arg min
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These steps are repeated until the error function converges.
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B. pyOMM: An OMM Package for the
Python Programming Language

PyOMM is an implementation of the OMM algorithms in the Python programming
language. The package provides algorithms for training of OMMs as well as classification,
clustering, and model selection solutions for time series based on OMMs. In addition,
necessary data structures to represent multivariate time series and time series data sets
are available.

Copyright 2013: Ulf Großekathöfer, ugrossek@gmail.com

B.1. Installation Instructions

The pyOMM package requires scipy. If you do not have scipy installed on your system,
please go to http://www.scipy.org/, download, and install it. Even though most parts of
pyOMM is written in the Python programming language, time critical parts such as the
dynamic programming are implemented in the C programming language. In order to access
C code from python, scipy.weave is used. Please make sure that you have scipy.weave
installed on your system. Due to a bug in scipy.weave, pyOMM requires a gnu C compiler
version before gcc-4.2. PyOMM was written for Python version 2.5 or higher, however, it
might be compatible to previous versions of Python. Please note that pyOMM does not
work with Python 3.0.

For installation unpack pyomm-¡version¿.tar.gz, change to the archive directory, and call
the installation script. For example, if you are using Linux the commands are:

> tar xvfz pyomm-<version>.tar.gz

> cd pyomm-<version>

> python setup.py install

To obtain a complete list of installation options, call:

> python setup.py help

B.2. How to use pyOMM

In order to use pyOMM, you first need to import the module omm in your python program.
You then can use the provided functions and classes. From a user point of view, the most
important functions are:

• omm.classifier(flavour="OMM", data_set, K, param) initializes a classifier.
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B. pyOMM: An OMM Package for the Python Programming Language

• omm.cluster(flavour, K, param, C, sequence_or_data_set, init) for initial-
ization of a clustering of time series data.

• omm.omm(sequence_set, K, param) initializes an OMM according to the provided
parameters.

In order to select a specific model for classification or clustering, the arguemnt flavor can
be used; flavor understands the following values: "omm": for use of OMMs, "ommonline":
to use the incremental variant of OMMs, "lrhmm": a similar HMM with left-to-right model
topology, "linearhmm": to specify an HMM with linear model topology, or "brownhmm":
an HMMwith linear model topology and predefined transition probabilities.

Important Data Structures

Time series are represented as numpy arrays in the pyOMM package. The data representa-
tion comprises the following classes:

• class Sequence stores a single time series or sequence observation in a numpy array.

• class SequenceSet is a container class for sequences. Note that a SequenceSet is
not actually a set but a list.

• class Class is a SequenceSet with a label.

• class DataSet is a list of Class objects.

pyOMM provides implementations for various OMM and HMM variants that as used in
this thesis:

• class OMM represents an Ordered Means Model.

• class OMMAll is class related to a probabilistic representation of Ordered Means
Model that implements the log-space training approach.

• class OMMBest is a deterministic OMM variant (with σ → 0) and Viterbi training.

• class OMMAllScale is a probabilistic Ordered Means Model with a training that is
related to scaling of probabilities.

• class OMMAnytime implements the incremental evaluation scheme for sample by
sample evaluation.

• class HMM is a Hidden Markov Model with left-to-right topology,

• class HMMLinear provides an HMM with linear model topology,

• class HMMBrown is related to an HMM implementation with pre-defined transition
probabilities that do not have to be estimated from the observations.
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C. pyKTree: A Python Implementation of
the K-tree Algorithm

PyKTree provides a K-tree implementation in the Python programming language. K-trees
are a scalable approach to clustering by combining the B+-tree and K-means algorithms.
Clustering can be used to solve problems in signal processing, machine learning, and other
contexts.

Copyright 2011: Ulf Großekathöfer, ugrossek@gmail.com
License: GNU General Public License 3.0

C.1. Installation Instructions

The pyktree package requires scipy. If you do not have scipy installed on your system,
please go to http://www.scipy.org/, download, and install it. Additionally, you will need
Python version 2.5 or higher. Please note that this K-tree implementation does not work
with Python 3.0 yet.

For installation unpack pyktree-¡version¿.tar.gz, change to the archive directory, and call
the installation script. For example, if you are using Linux the commands are:

> tar xvfz pyktree-<version>.tar.gz

> cd pyktree-<version>

> python setup.py install

To obtain a complete list of installation options, call:

> python setup.py help

C.2. How to use pyKTrees

There are two ways of using pyktree: first, as a Python library, or, second, as command
line tools.

Library use

Import the module ktree in your python program and use the provided functions and
classes. The module provides a function ktree.ktree(order=5, data set) that generates
a K-tree from a data set of order order.

Please see example/ktree example.py for example code.
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C. pyKTree: A Python Implementation of the K-tree Algorithm

Command line use

pyktree comes with three command line scripts: ktmk, ktnn, ktpr. ktmk builds a K-Tree
for a data set and saves it to a file; ktnn searches the nearest neighbors in a K-Tree for a
set of unseen examples, while ktpr prints an ASCII representation of a K-tree to stdout.
Please note, this representation can get very large, even for (relatively) small K-Trees. It
is not recommended to use ktpr for K-Trees with more than 1000 examples.

A typical use case would look like this:

> # Build a K-Tree for a data set:

> ktmk --data-set data.txt --order 6 --k-tree ktree.ktf -m -r

> # Print the K-Tree:

> ktpr ktree.ktf

> # Find nearest neighbors in K-Tree for unseen examples:

> ktnn --k-tree ktree.ktf --data-set unseen.txt --outfile nn.txt

132



Bibliography

A. Akl and S. Valaee. Accelerometer-based gesture recognition via dynamic-time warping,
affinity propagation, & compressive sensing. In Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on, pages 2270–2273. IEEE, 2010.

J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering clusters in motion time-series
data. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, volume 1, pages I–375. IEEE, 2003.
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N.-C. Wöhler. Anytime klassifikation mit ordered means models am beispiel eines gesten-
interaktions-spiels mit einem virtuellen agenten. Master’s thesis, Bielefeld University,
Neuroinformatics Group, 2012.
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