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1. Introduction 

Cancer is the second most common cause of death in the US (Society, 2012) and 

can be categorized as a group of diseases with diverse genetic and phenotypic 

appearances. Excessive cell proliferation induced by irregular entry into the cell cycle 

as well as cancer cell evasion from growth suppressors are two of the hallmarks of 

cancer (Hanahan and Weinberg, 2011).  

Cancer is caused by both external (such as chemicals and radiation) and internal 

factors (including inherited mutations and metabolism by-products). Today’s 

treatment options include surgery, radiation, chemotherapy and molecular targeted 

therapy. The major drawbacks of current therapies are the lack of initial response of 

tumors and occurring resistance toward therapeutic intervention (Society, 2012). 

Many gene expression signatures have been described in the past to influence 

treatment choice and predict relapse probability (Lord and Ashworth, 2012). These 

studies largely identify the high expression of proliferation-related genes and the loss 

of control or safeguard gene expression in patients with poor prognosis (Beroukhim et 

al., 2010).  

This thesis focuses on the negative cell cycle control protein cyclin G2 (CycG2), 

expression of which is downregulated in several human cancers (Ito et al., 2003; Kim 

et al., 2004; Le et al., 2007). In contrast to regular proliferation promoting cyclins, 

CycG2 is implicated in growth restriction (Figure 1-3) following differentiation 

(Sepulveda et al., 2008; Zhou et al., 2009), inhibition of mitotic signaling (Le et al., 

2007; Stossi et al., 2006) and stress induced cell cycle arrest (Bates et al., 1996; 

Murray et al., 2004). 

1.1 Cell Cycle 

Mammalian somatic cells reproduce by duplicating all of their molecules and 

organelles (including DNA, proteins and mitochondria) before dividing into two 

genetically identical daughter cells. This cell division cycle (cell cycle) is a complex 

process, which needs to be precisely controlled on multiple levels to ensure both the 

correct time for duplication and the accurate distribution of components between 

daughter cells. Proliferation of mammalian cells is initiated by growth factors and 

driven by cyclin depended kinases (CDKs) and their regulatory activators the cyclins 
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(Koepp et al., 1999; Morgan, 1997). CDKs are constitutively expressed in cells, 

whereas cyclins are synthesized at specific stages of the cell cycle, and are degraded 

at others, in response to various molecular signals. As cells go through the four phases 

(G1, S, G2 and M) of the cell cycle, four major proliferation-related cyclins (D, E, A, 

and B) are sequentially expressed to regulate CDK activity (Figure 1-1) 

(Satyanarayana and Kaldis, 2009).  

 

 

Figure 1-1: Schematic of the somatic cell cycle regulation. Typical somatic cell cycle can be divided 

into four phases (G1, S, G2 and M). Progression is triggered by sequential activation of cyclin 

dependent kinase (CDK) complexes with their regulatory partners the cyclins. Shapes outside the cycle 

indicate the increase and reduction of corresponding cyclin/CDK activity. Grey segment specifies Rb 

phosphorylation (restriction point) and dephosphorylation events (adapted from (van den Heuvel, 

2005)). 

 

1.1.1 G1-phase 

The majority of cells in vivo and in vitro exhibit a G1-phase DNA content (2N). 

Cells that have exit the cell cycle (such as quiescent and senescent cells) are classified 

as being in G0-phase, but display the same DNA content as G1-phase cells. Mitogenic 

stimuli, such as growth factors, induce the expression of D-type cyclins (D1, D2, and 

D3), which bind and activate CDK4 and CDK6. Together, these CycD/CDK 

complexes drive the cell through G1-phase by phosphorylation of the retinoblastoma 

(Rb) family (p105, p107 and p130) of proteins (Sherr and Roberts, 1999). 

Phosphorylated Rb can no longer bind to E2F transcriptions factors (TFs). Release of 
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E2F from Rb induced inhibition leads to the expression of proliferation-related genes, 

such as CycE and CycA (Harbour and Dean, 2000). Together with its regulatory 

subunit, CycD1, CDK4 is considered an oncogene, and both are frequently amplified 

in a diverse set of human cancers driving cellular proliferation (Beroukhim et al., 

2010). 

In the next step of cell cycle progression, CycE/CDK2 complexes further 

phosphorylate Rb, to mediate E2F-dependent transcription of genes involved in 

nucleotide metabolism and DNA synthesis. Once cells have passed through the 

restriction point they are committed to completing the cell cycle even when mitotic 

stimuli are withdrawn (Dulic et al., 1992; Zwang et al., 2011). 

1.1.2 S-phase 

After the E2F transcriptional program is initiated, cells no longer rely on 

persistent mitogenic signals to maintain Rb phosphorylation. Initiation of DNA 

synthesis is started at replication origins, that are activated only once during S-phase 

through phosphorylation by CycA/CDK2 complexes (Krude et al., 1997; Petersen et 

al., 1999). In early S-phase CycE is no longer needed and phosphorylation by GSKβ 

and CDK2 targets CycE for proteasomal degradation in the Skp1/Cul1/F-box protein 

(SCF) pathway (see 1.1.5 Ubiquitin Proteasome Pathway) (Clurman et al., 1996).  

1.1.3 G2-phase 

The G2-phase CycB/CDK1 kinase complexes prevent the re-replication of the 

DNA and initiate the G2/M transition. Transcription of CycB starts in S-phase and 

peaks in late G2-phase. The majority of the inactive complexes localize at the 

centrosomes (Hagting et al., 1998). The kinases Wee1 and Myt1 keep the formed 

CycB/CDK1 complexes inactive through phosphorylation of residues T14/Y15 in 

CDK1 (also known as Cdc2). Activation of CDK1 is initiated in late S- and early G2-

phase through phosphorylation of T161 by the CDK-activating kinase (CAK), and 

through dephosphorylation of T14/Y15 by Cdc25 phosphatases (O'Farrell, 2001). If 

cells enter mitosis prematurely, when CycB/CDK1 activity is low, the reduced 

phosphorylation of mitotic entry network components could lead to failure of normal 

execution of mitosis and thereafter cell death (Lindqvist et al., 2007). 



Introduction 

 

4 

 

1.1.4 Mitosis 

Inactive CycB/CDK1 complexes are continuously exported from the nucleus. At 

the beginning of mitosis, activated CDK1 phosphorylates CycB. This phosphorylation 

masks the nuclear export sequence (NES) thereby enabling the nuclear accumulation 

that is critical for CycB1/CDK1 function (Lindqvist et al., 2007). Within the nucleus 

CycB/CDK1 complexes phosphorylate Wee1 kinases leading to the proteasomal 

degradation of Wee1 through SCF pathway (Watanabe et al., 2004). Active 

CycB/CDK1 complexes drive mitosis by promoting the breakdown of the nuclear 

envelope through phosphorylation of the nuclear lamins (Dessev et al., 1991). At the 

end of mitosis CycB is ubiquitinated and degraded through the anaphase promoting 

complex/cyclosome (APC/C) proteasome pathway (van Leuken et al., 2008). 

1.1.5 Ubiquitin Proteasome Pathway 

The timely destruction of multiple cell cycle regulatory proteins is accomplished 

by the proteasomal pathway, which is triggered by poly-ubiquitylation of the 

substrates (Chau et al., 1989). Two major E3 ubiquitin ligase complexes, SCF and 

APC/C, are in control of the timely ubiquitylation of numerous cell cycle related 

proteins (such as CycE and p27) (Nakayama and Nakayama, 2006). From late G1- to 

early M-phase, SCF is active and ubiquitylates substrates, whereas APC/C is active 

from mid-M phase (anaphase) to the end of G1-phase. Regulation of SCF activity is 

achieved throughout the cell cycle by the phosphorylation status of its substrates. Its 

activity is reduced by APC mediated ubiquitylation of SCF components (Nakayama 

and Nakayama, 2006; Petroski and Deshaies, 2005). In contrast to SCF, APC 

substrates do not require phosphorylation for recognition. APC’s activity is tightly 

controlled throughout the cell cycle to regulate target destruction. In G1 and S-phase 

APC is inhibited by CycA/CDK2 complexes, while it is activated by CycB/CDK1 

complexes during mitosis (Lindqvist et al., 2009; Mocciaro and Rape, 2012). The 

activation of APC is important to regulate the metaphase to anaphase transition 

(Merbl and Kirschner, 2009; Mocciaro and Rape, 2012). 

1.1.6 CDK Inhibitors 

Two families of genes encode CDK inhibitors (CKIs), the CDK interacting 

protein/kinase inhibitory protein (cip/kip) family and the inhibitor of kinase 
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4/alternative reading frame (INK4a/ARF) family. CKIs prevent cyclin/CDK activity 

in response to negative stimuli and, as a result, avert cell cycle progression. CKIs are 

also known as tumor suppressors, and are commonly misregulated in cancers (Chu et 

al., 2008; Pateras et al., 2009). The cip/kip family includes p21, p27 and p57. These 

proteins halt the cell cycle in G1-phase by inhibiting CDK1 and CDK2 activity. p21 is 

transcriptionally stimulated by DNA damage activated p53 (Gartel and 

Radhakrishnan, 2005). p27 is primarily regulated at the post-transcriptional level 

through phosphorylation by CycK/CDK6 (Kuntz and O'Connell, 2009) and by 

subsequent proteasomal degradation (Sherr and Roberts, 1999). In addition to its 

inhibitory effect on CDK1 and CDK2, binding of p21 and p27 to CycD/CDK leads to 

stabilization of their complexes, but not to inhibition of kinase activity (Sherr and 

Roberts, 1999). The INK family includes p15, p16, p18, and p19. INK family 

members bind to CDK4 and CDK6, disrupting the interaction with CycD and 

arresting the cell cycle in G1-phase (Pei and Xiong, 2005). 

1.2 Cyclin G2 

Not all cyclins and CDKs are involved in cell cycle progression (Satyanarayana 

and Kaldis, 2009). CycG2 is one example of an atypical cyclin. It is encoded by the 

gene CCNG2 and belongs, together with CycG1 and CycI, to the G-type family of 

unconventional cyclins. In contrast to proliferation promoting cyclins, G-type cyclin 

mRNAs are low in proliferating cells, but elevated in cells undergoing cell cycle 

arrest (Bates et al., 1996; Horne et al., 1997; Horne et al., 1996; Okamoto and Beach, 

1994). 

 Northern blot analysis of various tissue types and cell lines shows a high level of 

CCNG2 transcript in spleen, prostate, thymus, and cerebellar tissues (Horne et al., 

1996). CycG2 mRNA is moderately expressed in proliferating cells, peaking in late 

S/early G2-phase. It is, however, significantly upregulated in differentiated tissue and 

in cells undergoing cell cycle arrest in response to DNA damage, endoplasmic 

reticulum stress (ERS) and oxidative stress (Bates et al., 1996; Hofstetter et al., 2012; 

Horne et al., 1996; Murray et al., 2004; Thomas et al., 2007). Contrastingly, the 

transcription of CCNG2 is inhibited by mitogenic signaling through the nuclear 

estrogen receptor (ER) and surface membrane growth factor receptors (such as HER2) 

(Le et al., 2007; Stossi et al., 2006). 
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1.2.1 CycG2 Protein 

CCNG2 encodes a 344 amino acid protein that exhibits high sequence similarity 

with the prototypical cyclins such as CycA that drive cell cycle progression (Horne et 

al., 1996). In contrast to these proliferation promoting cyclins, overexpression of 

CycG2 in several cell lines leads to a G1-phase cell cycle arrest (Arachchige Don et 

al., 2006; Bennin et al., 2002; Chen et al., 2006; Kim et al., 2004; Le et al., 2007; Xu 

et al., 2008). This arrest is largely mediated through its C-terminus (Bennin et al., 

2002) and is dependent on the presence of p53 and Chk2 checkpoint proteins 

(Arachchige Don et al., 2006; Zimmermann et al., 2012). 

Alignment of CycG2 and CycA amino acid sequences indicates that these two 

proteins form similar tertiary structures (Horne et al., 1997; Horne et al., 1996). 

Comparable to other cyclins, CycG2 possesses a conserved amino acid region called 

cyclin box that is required for binding and activation of CDKs. An additional 

sequence motif that is present in cell cycle promoting cyclins, required for interaction 

with the CKIs, p21 and p27, however, is not conserved in CycG2 (Horne et al., 1997). 

Through overexpression studies it was determined that CycG2 can bind to CDK5 but 

these complexes were not enzymatically active (Bennin and Horne, unpublished data). 

Interestingly, CycG2 directly interacts with catalytically active protein phosphatase 

2A (PP2A) complexes (Arachchige Don et al., 2006; Bennin et al., 2002). The 

serine/threonine phosphatase PP2A plays major roles in growth control, development, 

cytoskeletal dynamics, DNA damage response, apoptosis, and regulation of signal 

transduction cascades such as the mitogen activated protein kinase (MAPK) pathway 

(Chowdhury et al., 2005; Dozier et al., 2004; Janssens and Goris, 2001). The 

heterotrimeric PP2A holoenzyme is composed of one catalytic (C), a structural 

scaffold (A) and a regulatory (B) subunit. Substrate specificity, selectivity and 

subcellular localization of PP2A are mediated by the various regulatory subunits 

(B55/PR55, B’/B56/PR56 and B’’/PR72) that are able to bind to the A/C core 

(Janssens and Goris, 2001; McCright et al., 1996). CycG2 can form active complexes 

with the C and B’/B56 subunits, but does not interact with the scaffolding subunit. 

CycG2/PP2AC/B’ complexes co-localize at centrosomes and in the cytoplasm as 

detergent-insoluble cytoskeletal-associated complexes. Some distinct CycG2/B’ 

containing complexes also co-localize within nuclei. The C-terminus of CycG2 is 

both necessary and sufficient for the association with PP2A (Bennin et al., 2002). 
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Formation of the CycG2/PP2A complex may further modulate PP2A activity, and as a 

result, could influence a variety of cellular functions associated with PP2A 

(Arachchige Don et al., 2006; Bennin et al., 2002).  

Similar to CycB1, CycG2 is a centrosome associated nucleocytoplasmic shuttling 

protein (Arachchige Don et al., 2006; Lindqvist et al., 2007). CycG2 does not contain 

a nuclear localization sequence (NLS), but contains several possible NES (Horne et 

al., 1996; Kutay and Guttinger, 2005, Arachchige Don, unpublished data). Nuclear 

accumulation of CycG2 is observed after inhibition of the nuclear export protein 

CRM1 with leptomycin B (Arachchige Don et al., 2006) and may occur after binding 

to proteins that contain a NLS (Bennin et al., 2002; Zhao et al., 2003).  

Degradation of CycG2 can be prevented by proteasome inhibitors, an indication of 

the involvement of the ubiquitin proteasome system (UPS) in CycG2 stability. 

Moreover, CycG2 is a target of lysine 48-linked ubiquitylation (Cowan and Horne, 

unpublished data). The SCF complex (see 1.1.5 Ubiquitin Proteasome Pathway) is 

responsible for ubiquitylation of multiple inhibitors of the G1/S transition (Nakayama 

et al., 2004; Xu et al., 2008). Consistent with the previous observations, the stability 

of CycG2 was shown to be regulated in part through a PEST sequence within its C-

terminus (Xu et al., 2008). The PEST region of CycG2, promotes binding to Skp1 and 

2, two components of the SCF complex (Xu et al., 2008). This interaction is one 

mechanism by which CycG2 degradation through the UPS is mediated. In addition, it 

was recently shown that CycG2 is a substrate of APC (Merbl and Kirschner, 2009). 

1.2.2 CycG2 Gene Expression 

Transcription of CCNG2 is modulated by several TFs depending on the signaling 

pathways that are engaged (Figure 1-3) (Adorno et al., 2009; Ahmed et al., 2012; 

Jayapal et al., 2010; Martinez-Gac et al., 2004; Stossi et al., 2006). In contrast to the 

CycG1 gene, CCNG1, the promoter region of CCNG2 does not contain binding sites 

for the tumor suppressor p53. However, CCNG2 expression is positively regulated by 

the p53 homolog, p63. Inhibition of the p63-mediated stimulation of CCNG2 

expression promotes tumor cell invasion and metastasis (Adorno et al., 2009). 

 The forkhead box O (FOXO) family of TFs that promote cell cycle arrest and 

apoptosis were the first identified transcriptional activators of CCNG2 (Martinez-Gac 

et al., 2004). FOXO TFs bind to FOXO response elements (FRE) within the CCNG2 
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promoter region and potently activate CCNG2 transcription in response to inhibition 

of the phosphatidylinositol 3-kinase (PI3K) (Martinez-Gac et al., 2004). In addition, 

binding of FOXO and δEF1 to the insulin response sequences (IRS) within the 

CCNG2 promoter has been demonstrated to stimulate CCNG2 expression (Chen et al., 

2006; Fu and Peng, 2011).  

The tumor suppressor BRCA1 regulates multiple processes including gene 

transcription, DNA repair and cell cycle checkpoint control (Venkitaraman, 2002). 

Though the TFs involved have not been defined, induction of ectopic BRCA1 has 

been shown to increase CCNG2 expression coincident with the reduction of the 

oncogene Myc (Bae et al., 2004; Welcsh et al., 2002).  

Repression of CCNG2 expression follows the activation of growth factor signaling 

and mitogenic stimuli (Frasor et al., 2003; Le et al., 2007; Oliver et al., 2003; Stossi et 

al., 2006). It was previously shown that elevated expression of the oncoprotein Myc in 

neuroblastoma and pancreatic cancer cells leads to increased expression of histone 

deacetylase (HDAC) 2, and a consequent reduction in CCNG2 expression. Myc 

protein recruits HDAC2 to the promoter region of CCNG2 and induces histone hypo-

acetylation, leading to transcriptional repression. Consistently, downregulation of 

Myc expression or treatment with HDAC inhibitors leads to upregulation of CCNG2 

expression (Cellai et al., 2011; Jayapal et al., 2010; Marshall et al., 2010; Truffinet et 

al., 2007). Notably, Myc expression has been linked to endocrine therapy resistance in 

breast cancers (BCs) (Miller et al., 2011b).  

The promoter region of CCNG2 contains one half-estrogen response element 

(ERE) as well as a GC-rich region important for the estrogen receptor α (ERα) 

binding to DNA. Interestingly, treatment of estrogen (E2) responsive cells with E2 

leads to ERα mediated transcriptional repression of CCNG2 expression (Figure 1-2) 

(Frasor et al., 2003; Stossi et al., 2006; Stossi et al., 2009). Estrogen bound ERα binds 

with Sp1 to the ERE within the CCNG2 promoter region and recruits the co-repressor 

complex N-CoR and HDAC, leading to histone deacetylation and release of the basal 

transcription machinery (Stossi et al., 2006). E2-mediated ER-activity drives 

proliferation (see 1.4 Breast Cancer) and is the target of various BC therapeutics 

(Lange and Yee, 2011). 

 



Introduction 

 

9 

 

 

Figure 1-2: Proposed model for ER-mediated repression of the CycG2 gene expression. In the 

absence of E2 (left), CCNG2 basal transcription is regulated by Sp1 and other possible factors acting as 

transcriptional activators. Recruitment of co-activator complexes to the CCNG2 promoter stabilizes the 

basal transcriptional machinery (BTM) and enables gene transcription by RNA polymerase II. Upon E2 

treatment, Sp1 mediated ER recruitment to the half-ERE, leads to displacement of RNA polymerase 

II and induces recruitment of a co-repressor complex containing N-CoR and histone deacetylases 

(HDAC). Formation of this complex leads to hypo-acetylation of histones, which causes stabilization 

of the nucleosome structure, limiting accessibility to the BTM and thus repressing CycG2 gene 

expression (adapted from (Stossi et al., 2006)). 

 

CycG2 negatively regulates cell cycle progression and is itself negatively 

regulated by mitotic signaling (Figure 1-3) through growth factor receptors such as 

the human epidermal growth factor receptor 2 (HER2), the insulin receptor (IR), the 

insulin like growth factor (IGFR) as well as their downstream kinases PI3K and 

mammalian target of rapamycin (mTOR) (Casa et al., 2011; Jensen et al., 2008; 

Kasukabe et al., 2005; Le et al., 2007; Stossi et al., 2006). CCNG2 expression is 

repressed following the inactivation of FOXO activity by growth factor mediated 

activation of the PI3K signaling pathway (Frasor et al., 2003; Martinez-Gac et al., 

2004). Activation of the transmembrane receptors HER2 and IGFR is implicated in 

stimulation of cancer growth and resistance to endocrine therapy through activation of 

PI3K/mTOR and MAPK signaling  (Zhang et al., 2011). mTOR activity is regulated 

(Figure 1-7) downstream of growth factor signaling, simultaneously sensing the status 

of energy, nutrients and stress (Zoncu et al., 2011). Recently is was shown that 

inhibition of mTOR activity in human embryonic stem cells (hESC) by rapamycin 

induces CycG2 expression, leading to reduced self-renewal capabilities and 

endoderm/mesoderm differentiation (Zhou et al., 2009). This indicates a role for 

CycG2 in regulating cell growth in hESC following induction of differentiation 

(Castro et al., 2011; Houldsworth et al., 2002; Sepulveda et al., 2008). 

CycG2 mRNA expression is repressed in a variety of human cancers, including 
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thyroid (Ito et al., 2003), oral (Kim et al., 2004) and breast carcinomas (Adorno et al., 

2009; Hu et al., 2006; van de Vijver et al., 2002). Analysis of publicly available 

cDNA microarray data indicates that low CCNG2 expression correlates with more 

aggressive, poor-prognosis breast cancer subtypes (Adorno et al., 2009; Hu et al., 

2006; van de Vijver et al., 2002). In contrast, higher levels of CycG2 mRNA can be 

found in normally differentiated breast and hormone responsive tumor cells treated 

with anti-estrogens (Dudek and Picard, 2008; Frasor et al., 2004). CycG2 mRNA 

levels are significantly upregulated in response to a variety of stresses such as DNA 

damage, hypoxia, heat shock, ERS and oxidative stress (Figure 1-3) (Akli et al., 2004; 

Bates et al., 1996; Hofstetter et al., 2012; Ito et al., 2004; Murray et al., 2004; Thomas 

et al., 2007).  

 

 
 

Figure 1-3: Model of the regulation of CycG2 expression. CycG2 expression is upregulated in 

response to growth inhibitory signals (for example: DNA damage, ERS, and differentiation) and 

suppressed by growth stimulatory signals (including growth factors). Ectopic expression of CycG2 

inhibits cell cycle progression in G1-phase. This arrest is p53 and Chk2 dependent. CycG2 gene 

expression is activated by FOXO3a and 1 TFs. FOXO activity is negatively regulated by PI3K/Akt 

pathway. CycG2 is degraded through the ubiquitin proteasome pathway by the E3 ligase SCF involving 

Skp2, which also targets FOXO TFs. 

 

1.3 DNA Damage 

Genomic instability is considered a hallmark of cancer. Maintaining genomic 

integrity is important to prevent cell death and cancer development (Hanahan and 

Weinberg, 2011). Damage of DNA can be triggered by various exogenous (UV light, 

ionizing radiation, chemicals) or endogenous factors (DNA replication, metabolic 
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products). Therefore, cells have developed multiple DNA repair mechanisms to 

protect cells from such perilous damage (Lord and Ashworth, 2012). The first cellular 

reaction to DNA damage is the induction of DNA damage response (DDR) to halt the 

cell cycle progression. Inducing a cell cycle arrest gives the cell time for DNA repair. 

If the damage is too substantial, apoptosis is induced (Oberle and Blattner, 2010). 

1.3.1 DNA Damage Checkpoints 

Cellular response to DNA damage is mediated through the activation of cell cycle 

checkpoints. These checkpoints (G1/S, intra-S and the G2/M) are used by the cell to 

monitor and regulate the progress of the cell cycle and to ensure the integrity of the 

genome (Houtgraaf et al., 2006; Rainey et al., 2006). The G1/S checkpoint is 

frequently compromised in human cancers, due to loss of p53 or Rb tumor suppressor 

functions (Kastan et al., 1991; Sherr and McCormick, 2002). The intra-S checkpoint 

can slow the rate at which damaged DNA is replicated, in part by diminishing the rate 

of replication origin firing (Bartek et al., 2004). The G2/M checkpoint helps prevent 

cells with damaged genomes from committing to mitosis by suppressing CycB/CDK1 

activity and to allow time for DNA damage repair (O'Connell et al., 2000). A 

functional G2/M checkpoint is retained in virtually all tumor cell lines (Kuntz and 

O'Connell, 2009).  

Inducing DNA damage by radiation or chemotherapy is a widely used method in 

cancer therapy (Lord and Ashworth, 2012). Cancer cells are very sensitive to DNA 

damaging agents, due to loss of one or several checkpoints. Thus a combination of 

DNA damage induction and simultaneous inhibition of the DNA damage response 

(DDR) pathway holds promise for the enhancement of current therapeutics (Al-Ejeh 

et al., 2010). 

1.3.2 DNA Damage Response 

The DDR pathway (Figure 1-4) plays a crucial role in tumorgenesis and response 

to cancer therapy. It has evolved to maintain genomic integrity following DNA 

damage by inhibiting cellular replication and inducing DNA repair (Bohgaki et al., 

2010; Houtgraaf et al., 2006). Information regarding DNA lesions is relayed within 

minutes through DDR signal-transduction pathways. The signaling cascade is 

composed of sensor, transducer, and effector proteins. The type of cellular response 
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(cell cycle arrest, DNA repair, and apoptosis) depends on the type and extent of the 

damage. DNA double strand breaks (DSBs) pose the most serious type of damage, 

and induce the activation of DNA DSB DDR pathway (Figure 1-4). Involved in DNA 

damage repair is the tumor suppressor BRCA1 (Welcsh et al., 2002). 

Damage sensors initiate and coordinate activation of one of the PI3K-related 

kinases (PIKKs) that play central roles in maintenance of organismal longevity. 

Members of this family are ataxia telangiectasia mutated (ATM), ATM and Rad3-

related (ATR) and DNA-dependent protein kinase (DNA-PK) (Jackson and Bartek, 

2009; Lovejoy and Cortez, 2009). ATM is primarily activated by DNA DSBs incurred 

through γ-IR induced damage (Derheimer and Kastan, 2010), whereas ATR activation 

occurs mostly in response to singlestranded DNA (ssDNA) such as those presented in 

stalled replication intermediates or resected DSB ends (Shiotani and Zou, 2009a). 

DNA-PK is a critical participant in the non-homologous end-joining (NHEJ) pathway 

utilized for the repair of DSBs resulting from the normal process of V(D)J 

recombination, but it is also thought to serve a vital DNA repair function during 

DDRs to genotoxic stress (Hill and Lee, 2010). Growing evidence suggests, however, 

that extensive crosstalk between the DNA damage responsive PIKKs exists, the 

summation of which determines cell fate (Hill and Lee, 2010; Shiotani and Zou, 

2009a). 

ATM activation is critical for the initial response to DSBs (Derheimer and Kastan, 

2010). The Mre11-Rad50-Nbs1 (MRN) sensor complex promotes ATM activation 

and recognition of DSBs (Lee and Paull, 2004). It facilitates trans-

autophosphorylation of inactive ATM dimers on Ser1981 and ATM dissociation into 

catalytically active monomers (Derheimer and Kastan, 2010; Lee and Paull, 2004). 

Once activated, ATM interacts with and phosphorylates numerous proteins (including 

Nbs1, Chk2, Chk1 and p53) to amplify and propagate the signal. Later in the DSB 

response, the progressive resection of blunt end DSB junctions to ones with longer 

single strand ends triggers ATR activation (Derheimer and Kastan, 2010; Jazayeri et 

al., 2006; Shiotani and Zou, 2009b). ATM and ATR have overlapping substrate 

specificity towards Chk2 and Chk1 (Shiotani and Zou, 2009a). Activated Chk1 and 

Chk2 phosphorylate and modulate the activity of downstream effectors (such as 

Cdc25 A, B and C; p53), halting the progression of cells through G1/S and G2/M-
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phase checkpoints (Derheimer and Kastan, 2010; Lindqvist et al., 2009; Shiotani and 

Zou, 2009a; Stracker et al., 2009). 

 

 
 

Figure 1-4: Illustration of the activation of the G1/S and G2/M checkpoints after DNA damage. In 

response to DNA damage, the ATM, ATR signaling pathway is activated, which leads to the 

phosphorylation and activation of Chk1 and Chk2 kinases. Chk1 and Chk2 phosphorylate CDC25, 

thereby triggering its sequestration into the cytoplasm by 14-3-3 proteins. CDC25 sequestration 

prevents activation of CycB/Cdc2 (CDK1), resulting in G2-phase arrest. Activated ATM/ATR also 

activates p53-dependent signaling pathway. This contributes to the maintenance of G2 arrest by 

upregulation of 14-3-3, which sequesters CDK1 in the cytoplasm. In addition, p53 induces 

transcription of p21, resulting in CycE/CDK2 complex inhibition and G1/S-phase arrest (adapted from 

(Wang et al., 2009)). 

 

1.4 Breast Cancer 

Breast cancer (BC) is the most frequently diagnosed cancer (excluding cancers of 

the skin) in women. Increasing age is the most significant risk factor for BC. 

Additionally, factors such as obesity, usage of hormone replacement therapy, physical 

inactivity, alcohol consumption, never having children, and having one’s first child 

after age 30 also contribute to a higher risk of developing BC (Society, 2012). 

Inherited mutations or deletion of breast cancer susceptibility genes (BRCA) 1 and 2 

result in an increased risk for breast and ovarian cancer (Roy et al., 2012). 

Cellular proliferation of BC is driven by signaling through activated ER, HER2 

and mTOR pathways. Each of these signaling nodes is a target of adjuvant therapy 
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(Di Cosimo and Baselga, 2008), and activation of these pathways negatively regulate 

CycG2 expression (Kasukabe et al., 2008; Le et al., 2007; Stossi et al., 2006).  

BC can be divided into at least five distinct subtypes in ascending order of 

unfavorable prognosis. First, the luminal A subtype is characterized by ER expression 

and low cellular proliferation. Second, the luminal B type is ER positive (some are 

also HER2 positive), and exhibits higher proliferation and poorer prognosis then 

luminal A. Third, the HER2-enriched class shows a more aggressive behavior. Fourth, 

the basal-like BC is triple negative for ER, progesterone receptor (PR) and HER2 and 

shows an aggressive behavior phenotype with high cellular proliferation, and very 

poor prognosis. Last, the normal-like type, which shows a gene expression pattern 

similar to adipose tissue (Alizart et al., 2012). 

Approximately two-thirds of BCs demonstrate estrogen-dependent growth 

(Martin, 2006). Therefore, a common therapeutic approach is the targeting of ER and 

HER2 activity, but the majority of BC patients eventually develop resistance (de novo 

or acquired) (Lange and Yee, 2011; Zhang et al., 2011). 

1.4.1 Estrogen Receptor 

The estrogen receptor exists as two isoforms, ERα and ERβ, which are encoded by 

two different genes. Both are members of the nuclear receptor superfamily of TFs and 

mediate the proliferative actions of E2. ERα is expressed in the normal mammary 

gland and is critical for both, proper development and function of reproductive 

structures. It represents one of the most important molecular markers guiding therapy 

decisions in BC (DeNardo et al., 2007; O'Donnell et al., 2005; Pearce and Jordan, 

2004). ERα is the main ER in the breast and its expression increases with the 

progression of BC, whereas the amount of ERβ decreases (Leygue et al., 1998). The 

biological relevance of ERβ in BC is not clear. Multiple studies show that ERβ is the 

primary ER expressed in the colon. Loss and change in localization of ERβ is 

associated with the progression of colon cancer (Pearce and Jordan, 2004). 

ERα is expressed in about 70% of all BCs and is increased in both premalignant 

and malignant lesions (Fabris et al., 1987). Determination of ERα expression by 

immunohistochemistry or microarray is thus common practice to predict response to 

therapies directed against ER signaling (Viale, 2007). 
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1.4.2 Estrogen Receptor Signaling 

E2 can freely diffuse into the cells and bind to the ER within the cytoplasm 

(Figure 1-5). Subsequently, the receptor undergoes conformational changes and forms 

homodimers. The dimers relocate into the nucleus where they initiate or inhibit gene 

expression by attracting co-activators or co-repressors to EREs within the promoters 

of target genes (Osborne and Schiff, 2011).  

 

 
 

Figure 1-5: Schematic of estrogen receptor signaling and response to ER inhibitors. Binding of 

estrogen (E2) to the estrogen receptor (ER) leads to recruitment of co-regulator complexes and 

stimulation of cellular proliferation. Upon binding tamoxifen, ERα adopts a conformation (right) that is 

distinct from both the apo-ERα (top-middle) and that which occurs upon binding estradiol (bottom). 

This conformational change disrupts the primary co-regulator binding surface on ERα. Binding of 

fulvestrant (left) leads to ERα nuclear export and recognition by the UPS (adapted from (McDonnell 

and Wardell, 2010)). 

 

E2 mediated ER activation stimulates the expression of genes positively 

influencing proliferation (such as CycD1 and CycA2) and downregulates 

transcriptional repressors, antiproliferative and proapoptotic genes (including, CycG2, 

p21, and FOXO3a) (Frasor et al., 2003). In addition, ER activity can regulate cellular 

function in a ligand independent manner (non-genomic effects) (Pearce and Jordan, 

2004), which induces crosstalk to other signaling pathways like IGFR and MAPK 

(Kato, 2001; Lannigan, 2003; Zhang et al., 2002). This ligand independent activity is 

probably mediated by plasma membrane localized ER (Zhang et al., 2002), a 

consequence of both, a shift in localization from the nucleus to the plasma membrane 

and ER phosphorylation (Lannigan, 2003). Proliferation of ER positive BC tumors is 



Introduction 

 

16 

 

driven by activated ER signaling. Therefore, inhibition of ER signaling is common 

practice in BC therapy (Lange and Yee, 2011).  

1.4.3 ER Targeted Therapeutics 

The disruption of ER signaling can be achieved by various approaches. Selective 

estrogen receptor modulators (SERMs) such as tamoxifen (4OHT) are commonly 

used to treat ER positive BC. They compete with E2 for ER binding and can display 

agonist or antagonist behavior depending on the tissue and concentration (Jordan et 

al., 2001). Treatment of BC with selective estrogen receptor downregulators (SERDs) 

like fulvestrant (ICI 182,780), leads to the inhibition of E2 signaling and 

downregulation of the receptor itself by targeting ERα protein for degradation 

(Croxtall and McKeage, 2011; Dauvois et al., 1993). A third mechanism to prevent 

ER signaling is the use of aromatase inhibitors to hinder the production of E2 by 

blocking the conversion of precursor molecules to E2 (Pearce and Jordan, 2004).  

Resistance to ER inhibition eventually develops in the majority of patients (Zhang 

et al., 2011), possibly through increased utilization of ligand independent signaling 

crosstalk with insulin-like or epidermal growth factor receptor (IGFR and EGFR, 

respectively) pathways (Song et al., 2010). This crosstalk leads to activation of the 

growth promoting MAPK and PI3K cascade pathways. Activation of IGFR signaling 

results in the phosphorylation of ER, leading to increased ER interaction with DNA 

and co-factor binding (Arpino et al., 2008). In addition, IGFR can form heterodimers 

with HER2 leading in the continued HER2 signaling presence of the HER2 inhibitor 

trastuzumab (Huang et al., 2010). In cell line models of endocrine resistant BC, 

CycD1 expression and Rb phosphorylation were maintained despite effective ER 

blockade (Thangavel et al., 2011). Simultaneously, inhibition of E2 signaling and ER 

crosstalk pathways may reverse resistance. 

1.5 The Mitogen Activated Protein Kinase Cascade Pathway 

Constitutive activation of the mitogen activated protein kinase (MAPK) pathway 

can be found in approximately 30% of all human cancers (Ohren et al., 2004). To 

date, four distinct MAPK cascades (ERK, JNK, p38, and ERK5) have been described 

(Abe et al., 2002). In general, the ERK-MAPK (Figure 1-6) pathway is activated by 
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growth factors, whereas the JNK, p38 and ERK5 pathways are activated by growth 

factors, and additionally by stress (Roberts and Der, 2007). 

 

 

Figure 1-6: Schematic of the ERK-MAPK cascade activation. Activation of the receptor tyrosine 

kinase (RTK) EGFR by the growth factor EGF leads to activation of the MAPK cascade. Activated 

receptors recruit Ras guanine nucleotide-exchange factors, such as son of sevenless (SOS) through the 

adaptor protein growth-factor-receptor-bound-2 (Grb2), which generates GTP bound Ras. Ras 

facilitates the phosphorylation of MAPK and ERK kinase (MEK) by Raf, and enhances the generation 

of activated extracellular signal-regulated kinase (ERK). Activated ERKs translocate to the nucleus, 

where they phosphorylate and regulate various transcription factors leading to changes in gene 

expression (adapted from Cell Signaling phospho S259 cRaf datasheet, pdf downloaded 03-16-12). 

 

1.5.1 ERK-MAPK Cascade 

The extracellular signal-regulated kinase (ERK) cascade is stimulated by multiple 

extracellular signals, and, in turn, regulates various cellular processes, including 

proliferation, differentiation, survival and apoptosis (Shaul and Seger, 2007). Sensing 

and responding to extracellular signals is accomplished by binding of growth factors 

(such as EGF) to its specific surface membrane receptors (such as EGFR) and 

relaying the signal to downstream TFs (Figure 1-6). Following receptor activation, the 

signal is transmitted to the small G-protein Ras, that recruits the serine/threonine 

kinase Raf to the plasma membrane and mediates its activation (Wellbrock et al., 

2004). The inhibitory Akt phosphorylation at residue S259 of Raf is removed by 
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PP2A (Abraham et al., 2000). Following phosphorylation of S338 by Pak (p21-

activating protein), active Raf phosphorylates MAPK/ERK kinases (MEK) 1 and 2 at 

residues S218/222 and S222/226, respectively (King et al., 1998).  

MEK activity is regulated through several phosphorylation sites, targeted either by 

upstream activators, downstream proteins (including ERK, PAK1), or by binding to 

scaffold proteins (such as Grb10) (Resing et al., 1995). Inactivation of MEK is 

achieved by dephosphorylation mainly through PP2A (Sontag et al., 1993). 

Additionally, N-terminal phosphorylation by PAK1 (T298), ERK (T292), and CDK5 

(T286) contributes to MEK inhibition (Roskoski, 2012).  

Active MEK1/2 activates its only substrates, ERK1 and ERK2, by 

phosphorylation at the regulatory residues T202/Y204 and T183/Y185, respectively 

(Seger et al., 1992). Dephosphorylation of either one or both of these regulatory sites 

by PP2A (S/Y specificity), PTP-SL (Y specificity), or MAPK phosphatase MKP (T/Y 

specificity) deactivates ERK (Alessi et al., 1995; Pulido et al., 1998; Sun et al., 1993). 

ERK activation triggers inhibitory phosphorylation of the upstream proteins SOS, 

Raf, and MEK. These negative feedback loops are important for the reduction of the 

mitogenic signal (Shaul and Seger, 2007). Activated ERK phosphorylates and 

activates a series of transcription factors such as Elk1, c-Fos, p53, Ets1/2 and c-Jun, 

which are implicated in the initiation and regulation of proliferation and oncogenic 

transformation. 

1.6 PI3K/Akt Signaling Pathway 

Many growth factors stimulate the activity of PI3K to phosphorylate 

phosphatidylinositol 4,5-bisphosphate (PIP2) lipids to generate phosphatidylinositol 

3,4,5-trisphosphate (PIP3). This generates binding sites for Akt and PDK, recruiting 

them to the plasma membrane. Akt’s activity and specificity is stimulated by PDK1 

phosphorylating T308 (Calleja et al., 2007) and by mTOR phosphorylating S473 

(Jacinto et al., 2006). Translocation of activated Akt into the nucleus influences 

downstream pathways such as metabolism, proliferation, cell survival and 

angiogenesis (Figure 1-7). Akt signaling is terminated by PTEN (PIP3 

dephosphorylation) and PP2A (Akt dephosphorylation) (Andjelkovic et al., 1996; 

Brognard et al., 2007). Inhibition of FOXO TFs, GSKβ and TSC2 by phosphorylation 



Introduction 

 

19 

 

through Akt (Figure 1-7), positively influences proliferation and cell survival 

(Manning and Cantley, 2007). 

 

 

Figure 1-7: A model of PI3K/Akt/mTOR signaling cascade and its function. Mitogen signaling 

through RTK activates PI3K, which generates PIP3 to recruit Akt to the plasma membrane. Akt is 

activated by PDK1 through Thr308 phosphorylation and by mTORC2 (consisting of mTOR, mLST8 

and Rictor) trough S473 phosphorylation. Activated Akt destabilizes the TSC1/TSC2 complex by 

phosphorylating TSC2 (T1462 or S939). TSC2 inhibits Rheb, which positively modulates mTORC1 

(consisting of mTOR, mLST8, and raptor) function. Phosphorylated GSK3 leads to its translocation 

into the nucleus, where it mediates the phosphorylation dependent destruction of CycD and CycE. 

Phosphorylation of FOXO TFs by Akt leads to their nuclear export and degradation in the cytoplasm. 

Low energy level (ATP, amino acids) activates LKB1 (serine threonine kinase 11) and AMPK (AMP-

activated kinase), which in turn activate TSC1/2, leading to mTORC1 inhibition. Active mTORC1 

phosphorylates S6K1 and 4E-BP1 and leads to release of the inhibitory block of 4E-BP1 (eukaryotic 

initiation factor 4E binding protein-1) from elF-4E (eukaryotic initiation factor 4E). mTORC1 initiates 

a negative feedback loop to modulate Akt activity through S6K1 (protein S6 kinase 1) (adapted from 

(Wan and Helman, 2007)). 
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1.7 Forkhead Box O Transcription Factors 

A key signaling molecule induced and activated in response to cellular stress is 

the highly conserved FOXO TF (Salih and Brunet, 2008). FOXO TFs are involved in 

the regulation of multiple cellular processes such as cell cycle arrest, cell death, and 

DNA damage repair. Inactivation of FOXO proteins is associated with BC, prostate 

cancer, and leukemia (Dong et al., 2006; Myatt and Lam, 2007; Yang et al., 2008). 

The activation of oncogenic pathways such as PI3K/Akt and ERK-MAPK triggers 

FOXO inactivation through phosphorylation at multiple sites, leading to its nuclear 

export and degradation within the cytosol (Brunet et al., 1999; Yang et al., 2008). 

Increasing FOXO activity by counteracting on its inhibitory pathways may provide an 

effective therapeutic cancer strategy. 

1.8 Mammalian Target of Rapamycin 

The protein kinase mTOR forms two distinct complexes (mTOR complex 1 and 2: 

TORC1/2) important for nutrient status recognition and growth factor signaling 

(Figure 1-7). Deregulation of mTOR signaling is implicated in cancer growth and 

survival (Wan and Helman, 2007). Two regulatory mechanisms regulate TORC1 

activity. First, growth factor stimulation triggers the activation of the PI3K/Akt 

signaling pathway, which leads to the inhibition of the tuberous sclerosis complex 

(TSC) 2 (Inoki et al., 2002). Unphosphorylated TSC2 forms stable complexes with 

TSC1, consequently inhibiting the activity of the small GTPase Ras homologue 

expressed in brain (Rheb), which is required for mTOR activity (Hay and Sonenberg, 

2004). Active Rheb promotes mTOR activation by preventing the binding of the 

endogenous mTOR inhibitor FKBP38 (Bai et al., 2007). 

The second regulatory pathway senses the energy state of the cell through amino 

acid and ATP levels. Low energy levels activate AMP-activated kinase (AMPK), 

which in turn activates TSC2, leading to TORC1 inhibition (Inoki et al., 2003). 

TORC1 activation induces gene transcription via protein S6 kinase (S6K) and 4E-BP1 

phosphorylation, promoting protein synthesis, cell growth and proliferation (Martin 

and Hall, 2005). A negative feedback loop is initiated by TORC1 through S6K1 to 

inhibit Akt activation (Figure 1-7) (Wan and Helman, 2007).  
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1.9 Aims of this Work 

The goal of the present study was to define the role of the cell cycle regulatory 

protein CycG2 in the control of cell cycle progression following therapeutic treatment 

of cancer cells. We hypothesize that CycG2 mediates cell cycle restriction following 

induction of DSBs and ERS, and the inhibition of E2 and mTOR signaling. This 

hypothesis was investigated though the following three approaches: 

 

1. To define the role of CycG2 in checkpoint control, the effects of ectopic CycG2 

expression on cell cycle progression and DDR signaling in the absence of DNA 

damage was assessed. Next, shRNA mediated KD of endogenous CycG2 

expression was used to investigate the involvement of CycG2 in 

chemotherapeutically induced DDR.  

2. The contribution of CycG2 to therapeutically mediated growth restriction in BC 

cell proliferation was determined as was CycG2’s implication in therapy 

resistance. To clarify the impact of CycG2 expression in BC therapy, the cellular 

response to therapeutic E2 and ER inhibition in combination with RNAi mediated 

knockdown of CycG2 expression was analyzed using both cell cycle distribution 

and the expression of proliferation-related proteins.  

3. The possible contribution of CycG2 expression to growth control in TSC 

fibroblasts was addressed. To determine whether CycG2 upregulation during 

inhibition of mTOR activity or pharmacologically induced ERS modulates the 

proliferation of normal and TSC-deficient cells, biochemical and cell cycle 

analyses of CycG2 modulation were performed. 

 

Together, these studies were intended to determine the degree to which CycG2 

expression influences the growth-inhibitory effects on DDR inducing therapies, as 

well as inhibition of E2 and mTOR signaling. 
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2. Material und Methods 

2.1 Material 

2.1.1 Pharmacological Agents 

All reagents not listed in table below were of standard quality from established 

suppliers. 

Reagent Vendor Stock Solution FC Number 

Aprotinin 
Sigma-Aldich Corp., St. 

Louis, MO 

20 mg/mL in 

H2O 
2 µg/mL A1153 

BrdU Sigma-Aldich 10 mM in H2O 10 µM B5002 

BSA 
RPI Corp., Mount Prospect, 

IL 
5% in TBS-T or 1% in PBS A30075 

Caffeine 

(Caff) 
Sigma-Aldich 

freshly dissolved 

in medium 
3 mM C0750 

CGK 733 
Tocris Bioscience, 

Ellisville, MO 
20 mM in DMSO 2 µM 2639 

Doxorubicin 

(Dox) 
Sigma-Aldich 

0.4 mg/mL in 

H2O 
0.2 µg/mL D1515 

Estradiol 

(E2) 
Sigma-Aldich 

50 mg/mL in 

ethanol 
10 nM E8875 

Etoposide 

(ETP) 
Sigma-Aldich 

100 mM in 

DMSO 
30 µM E1383 

Fulvestrant 

(ICI 182,780) 
Tocris 5 mM in ethanol 100 nM 1047 

Insulin Sigma-Aldich 
10 mg/mL in 

acidified H2O 
1 µg/mL I1882 

IPTG 
Fisher Scientific, 

Pittsburgh, PA 
1 M in H2O 1 mM 367-93-1 

KU 60019 Selleckchem, Houston, TX 
50 mM in 

ethanol 
1 µM S1570 

KU 55933 Calbiochem, Rockland, MA 
100 mM in 

methanol 
10 µM 118500 

Leupeptin Sigma-Aldich 
10 mg/mL in 

H2O 
1 µg/mL L2884 

LY 294004 

(LY) 

Cell Signaling technology, 

Danvers, MA  
50 mM in DMSO 25 µM 9901 

Metformin 

(Met) 
Sigma-Aldich 1 M in PBS 1 mM D150959 

Microcystin 

LR 
Calbiochem 

400 µM in 

DMSO 
2 µM 475815 

NaF Sigma-Aldich 800 mM in H2O 25 mM 201154 

NaPPi Sigma-Aldich 250 mM in H2O 25 mM S9515 

Nocodazole 

(Noc) 
Sigma-Aldich 

10 mg/mL in 

DMSO 
50 ng/mL M1404 

NU 7026 Cayman Chemical, Ann 10 mM in DMSO 5-10 µM 13308 
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Reagent Vendor Stock Solution FC Number 

Arbor, MI 

NU 7441 Selleckchem 50 mM in DMSO 1-2 µM S2638 

pepstatin A Sigma-Aldich 
1 mg/mL in 

methanol 
1 µg/mL 77170 

Polybrene Sigma-Aldich 8 mg/mL in H2O 4 µg/mL H9268 

PMSF Sigma-Aldich 
34 mg/mL in 

ethanol 
34 µg/mL P7626 

pNPPi Sigma-Aldich 1 M in DMSO 1 mM N3254 

Propidium 

Iodine (PI) 
Sigma-Aldich 

10 mg/mL in 

H2O 

0.5 

mg/mL 
P4170 

Puromycin Sigma-Aldich 5 mg/mL in H2O 
1.5 - 3 

µg/mL 
P8833 

Rapamycin 

(rapa) 
Cell Signaling  

100 µM in 

methanol 
10 nM 9904 

Tamoxyfen 

(4OHT) 
Sigma-Aldich 1 mM in ethanol 100 nM H7904 

Thapsigargin 

(Thap) 
Invitrogen, Carlsbad, CA 

1.5 mM in 

ethanol 

200-500 

nM 
T7458 

Tunicamycin 

(Tuni) 

Santa CruzBiotechnology, 

Santa Cruz, CA 
5 mM in DMSO 500 nM sc-3506 

 

2.1.2 Table of Kits for Chemiluminescence, DNA and RNA Preparation 

Kits Vendor Cat. Number 

BCA kit 
Pierce Protein Research 

Products, Rockford, IL 
23227 

ECL detection reagent 
GE Healthcare, 

Buckinghamshire, UK 
RPN2106 

ECL plus detection reagent GE Healthcare RPN2132 

Lipofectamine 2000 Invitrogen, Carlsbad, CA 11668-019 

Luminata Classico Millipore, Billerica, MA WBLUC0500 

Nucleobond Xtra DNA maxiprep 

EF kit 

E & K Scientific, Santa Clara, 

CA 
740424.10 

QIAprep spin DNA miniprep kit Qiagen, Valencia, CA 27106 

QIAquick Gel extraction kit Qiagen 28704 

QIAshredder kit Qiagen 79654 

RNasey kit Qiagen 74104 

RT
2
 first strand kit SABioscience, Frederick, MD 330131 

SuperSignal West Femto Pierce  34095 

2.1.3 Enzymes and Markers 

DNA Polymerases and restriction enzymes together with their respective reaction 

buffers were bought from New England Biolabs (Ipswich, MA). RNaseA (EN0531), 

GeneRuler 1kb Plus DNA Ladder (SM1333) and PageRuler Prestained Protein 
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Ladder (50-860-114) were purchased from Fermentas (Glen Burnie, MD). DNase 

(79254) was obtained from Qiagen. 

2.2 Methods 

2.2.1 Sterilization 

Solutions, bacterial growth media and materials were sterilized by autoclaving for 

45 min at 121ºC. Heat-labile solutions were sterilized by filtering through a sterile 

membrane filter with a pore size of 0.22 μm (Millipore or Corning).  

2.2.2 Microbiological Methods  

2.2.2.1 Culturing of Bacterial Strains 

Bacterial strains used in this work are listed in the table below. The strains DH5α and 

NovaBlue were routinely used for molecular biology and protein expression. For 

storage and amplification of viral vectors Stbl3 was used. In general the bacteria were 

grown at 37ºC over night (ON) in LB medium (1 % (w/v) Tryptone (BD), 0.5 % (w/v) 

Yeast extract (BD), 171 mM NaCl, pH 7.4) containing the appropriate antibiotic 

(50 μg/mL for kanamycin or 10 μg/mL for ampicilin) whilst shaking at 250 rpm. LB 

plates contained 1.5 % (w/v) agar and were also incubated at 37ºC ON. 

Strain vendor Genotype 

DH5 alpha  
Invitrogen 

18265-017 

F- φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 

hsdR17(rk-, mk +) phoAsupE44 thi-1 gyrA96 relA1 λ- 

NovaBlue  
EMD 

7018 

endA1 hsdR17 (rK12- mK12+) supE44 thi-1 recA1 

gyrA96 relA1 lac F′[proA+B+ lacIqZΔM15::Tn10] (TetR) 

Stbl3 
Gibco 

C737303 

F– mcrB mrr hsdS20(rB–, mB–) recA13 supE44 ara-14 

galK2 lacY1 proA2 rpsL20(StrR) xyl-5 λ– leu mtl-1 

 

2.2.2.2 Expression Constructs 

Backbone Expression cassette  Source 

pcDNA3 V5 tagged murine CycG2 Horne lab 

pcDNA3 GFP tagged murine CycG2 Horne lab 

pcDNA3 GFP tagged human CycG2 Horne lab 

pcDNA3 Untagged human CycG2 Horne lab 

pReceiver-Lv71 mCherry tagged human CycG2 GeneCopoeia 

pcDNA3 GFP tagged murine CycG1 Horne lab 

pcDNA3 GFP Horne lab 

pEGFP GFP tagged murine CycG2 1-140 Horne lab 

pEGFP GFP tagged murine CycG2 1-160 Horne lab 
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Backbone Expression cassette  Source 

pEGFP GFP tagged murine CycG2 1-187 Horne lab 

pEGFP GFP tagged murine CycG2 142-344 Horne lab 

pReceiver-M08 HA tagged human CDK10 GeneCopoeia 

pcDNA3 Myc tagged PP2AB’g Horne lab 

pSilencer1.0 RFP Horne lab 

pSilencer1.0 CycG2 shRNA 1-B, RFP Horne lab 

pSilencer1.0 shRNA NSC, RFP Horne lab 

pGeneClip hMGFP CycG2 shRNA ID3, GFP SABiosciences 

pGeneClip hMGFP Scrambled shRNA NC, GFP SABiosciences 

pSUPER.retro.puro CycG2 shRNA 1-B This study 

pSUPER.retro.puro shRNA NSC This study 

pSUPER.retro.puro CycG2 shRNA ID3 This study 

pVETL.gfp CycG2 shRNA 1-B plus GFP This study 

pVETL.gfp  shRNA NSC plus GFP This study 

pVETL.gfp CycG2 shRNA ID3 plus GFP This study 

pVETL.gfp shRNA NC plus GFP This study 

 

2.2.2.3 Preparation of Plasmid DNA  

DNA from fresh ON cultures was purified with QIAprep spin DNA miniprep kit or 

Nucleobond Xtra DNA maxiprep EF kit following the manufacturer’s protocols. 

DNA concentration and purity was determined by measuring the optical density at 

280 and 260 nm with a Take3 multi volume plate in a Synergy2 plate reader (BioTek) 

by using the analysis software Gen5. The purity of DNA was determined by the ratio 

of A260/280. 

2.2.2.4 Enzymatic Modifications of DNA 

Analytical restriction of plasmid DNA was prepared by digest with endonucleases. An 

aliquot of DNA was mixed with the enzyme to be used and the corresponding buffer 

according to the manufacturer’s instructions and incubated at the recommended 

temperature for 3 h to ON. The volume of the digestion mixture was usually 20 μL for 

analytical and 50 μL for preparative restrictions. Generated fragments were separated 

by 0.8 to 1% agarose gel electrophoresis. Bands were stained by immersing the gel in 

TAE buffer (40 mM Tris-Acetate, 1 mM EDTA) containing 1:10000 SYBR gold 

(Invitrogen, S-11494) for 1 h to ON. For further experiments, reactions were purified 

from a preparative agarose gel via QIAquick Gel extraction kit following 
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manufacturer protocols. To ligate DNA-fragments, T4 DNA ligase from NEB was 

used according to manufacturer instructions. Ligation was carried out at 16ºC ON. 

2.2.2.5 Transformation 

DH5α and Stbl3 competent cells were transformed following manufacturers 

protocols. Briefly, E. coli cells were thawed on ice and DNA was added to the cell 

solution and incubated for 30 min on ice. Cells were subjected to a heat shock of 42ºC 

for 45 sec, and subsequently supplemented with 300 μL SOC (Invitrogen, 1544036) 

medium. After incubation for 1 h at 37ºC shaking, miscellaneous volumes of the 

culture were plated directly onto agar-selection plates and further incubated at 37ºC 

ON. 

2.2.2.6 shRNA Expression Constructs Cloning into pSUPERretro.puro 

shRNA target sites were chosen following the guidelines provided on Ambion’s 

“siRNA Target Finder and Design Tool”. The ID3 shRNA designed against a 

different target site and non-targeting NC control shRNA were purchased from 

SABiosciences (Frederick, MD). The oligonucleotide sequences were engineered to 

contain BglII and HindIII endonuclease restriction sites and the oligonucleotides were 

obtained from Integrated DNA Technologies (Coralville, IA). The DNA constructs 

for expression of shRNA targeting CycG2 and controls in pSUPER.retro.puro 

(OligoEngine, WA) were cloned as followed. Each shRNA insert (see oligo 

sequences in table below) was generated by annealing forward and reverse 

oligonucleotides and ligating them into BglII/HindIII digested pSuper.retro.puro 

vector. After transformation and initial screening for possible positive clones, via 

XhoI/EcoRI digest of purified mini-prep DNA, the constructs were verified by DNA 

sequencing.  

 

Name Sequence of forward and reverse oligonucleotides 

1-B 
5’ GATCgctactactgccttaaact ttcaagaga agtttaaggcagtagtagcttttt 3’ 

5’ AGCTaaaaagctactactgccttaaact tctcttgaa agtttaaggcagtagtagc 3’ 

ID3 
5’ GATCcccggagaatgataacacttt cttcctgtca aaagtgttatcattctccgggttttt 3’ 

5’ AGCTaaaaacccggagaatgataacacttt tgacaggaag aaagtgttatcattctccggg 3’ 

NSC 
5’ GATCgctcccaccaccttaaact ttcaagaga agtttaaggtggtgggagcttttt 3’ 

5’ AGCTaaaaagctcccaccaccttaaact tctcttgaa agtttaaggtggtgggagc 3’ 

NC 
5’ GATCggaatctcattcgatgcatac cttcctgtca gtatgcatcgaatgagattccttttt 3’ 

5’ AGCTaaaaaggaatctcattcgatgcatac tgacaggaag gtatgcatcgaatgagattcc 3’ 
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2.2.2.7 Cloning of shRNA Constructs into pVETL 

For generating the pVETL.gfp (Davidson and Harper, 2005; Harper et al., 2006) 

shRNA containing expression constructs, the shRNA insert inclusive the H1 promoter 

from the previous generated pSUPERretro.puro vector was PCR amplified using 

primers listed below. Amplified and MfeI digested DNA was ligated into MfeI 

digested pVETL.gfp vector. All constructs were verified by DNA sequencing.  

 

2.2.2.8 Gene Expression Analysis 

Total RNA was isolated from cells using the QIAshredder and RNeasy kits (Qiagen). 

RT
2
 first strand kit (SABiosciences) was used for reverse transcription of the RNA 

samples. Real-time-PCR (qRT-PCR) analysis was performed on an ABI 7900HT 

instrument (University of Iowa) with RT
2
 Custom Profiler PCR Array (SABioscience) 

and SYBR Green qPCR master mix (SABioscience). Fold changes in gene expression 

were calculated via the Web-Based PCR Array Data Analysis program from 

SABioscience (http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php). 

2.2.3 Cell Culture 

2.2.3.1 Cell Lines and Medium 

U2OS and HCT116 (parental, p53-/-, p21-/-, and Chk2-/-, kind gift of Dr. B. 

Vogelstein) cell lines were cultured in high-glucose DMEM (Gibco), supplemented 

with 10% heat-inactivated fetal bovine serum (HI-FBS, Atlanta Biologicals), 

100 units/mL penicillin, 100 µg/mL streptomycin sulfate (Gibco) and 1 mM sodium 

pyruvate (Sigma). NIH3T3 cells were grown in DMEM supplemented with 10% heat-

inactivated calf-serum (Cellgro), 100 units/mL penicillin and 100 μg/mL streptomycin 

sulfate. MCF7 cells were cultured in EMEM (Gibco) supplemented with 10% HI-

FBS, 2 mM L-glutamine (RPI), 1 mM sodium pyruvate, 100 units/mL penicillin and 

100 µg/mL streptomycin sulfate, and 10 µg/mL bovine insulin (Sigma). Stable 

shRNA expressing MCF7 clones were selected in MCF7 medium containing 3 µg/mL 

puromycin and maintained in medium with 1.5 µg/mL puromycin. SV40 transformed 

Name Sequence 

forward 5’ ggcgccgCAATTGgatcgatctctcgaggtcgac 3’ 

reverse 5’ cccggtaCAATTGgaacgctgacgtcatcaacccgc 3’ 

sequencing 5’ ctaaggttggttatttgcg 3’ 
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normal (GM00637), ATM deficient (GM05849), TSC (GM06121, GM06100, 

GM02332, GM04520) and normal untransformed (IMR90, WI-38) human primary 

fibroblast cells were purchased from Coriell Cell Repositories (Camden, NJ) and 

cultured in EMEM, 10-20% HI-FBS, 2 mM L-glutamine, with 2x concentration of 

essential and non-essential amino acids and vitamins (Gibco). B-cell lymphoma SU-

DHL4, SU-DHL8 and SU-DHL16 cell lines (gift of Dr. Epstein) were grown in RPMI 

1640 (Gibco) supplemented with 10% HI-FBS, 2 mM L-glutamine, 100 units/mL 

penicillin and 100 μg/mL streptomycin sulfate and 50 M -mercaptoethanol. 

2.2.3.2 Subculturing of Adherent Cells 

Cell monolayers were washed with 1x PBS (Gibco) to remove all traces of growth 

medium. Thereafter cells were detached from growth surface by incubation with 

0.05% trypsin/EDTA (Gibco) solution until cells lifted from the surface. Trypsin was 

deactivated by re-addition of growth medium and pipetting multiple times up and 

down to break up cell clumps. All cultures were plated at 20-30% and maintained at 

50-90% confluency in a humidified chamber at 37°C with 5% CO2.  

Treated cultures were harvested by detaching the cells with 0.05 % trypsin/EDTA and 

subsequent centrifugation of detached cells with the collected treatment medium. Cell 

counts were obtained by using trypan blue (Gibco) exclusion and a hemocytometer. 

Cells were washed twice with PBS before storage of the cell pellet at -80ºC until 

further use. 

2.2.3.3 Subculturing of Suspension Cells 

Cells grown in suspension were subcultured by dilution of stock cultures. Cells were 

maintained at 0.3 x 10
6 

to 2 x 10
6 

cells per mL. For experiments cells were seeded at 

0.2 x 10
6
 per mL.  

2.2.3.4 Freezing Human Cells 

Generally, log phase cells where collected and cell number was determined. Cell 

pellet was resuspended in FBS containing 10% DMSO so that the cell concentration 

was 1 x 10
6
 to 5 x 10

6
 cells per mL. Aliquots were transferred into cryo tubes 

(Sarstedt) and placed in a crygenic freezing container (for gradual freezing, thus 

reducing the risk of ice crystal formation and cell damage). The container was placed 

into a -80ºC freezer for 2 days before vials were moved into the LN2.  
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2.2.3.5 Selection of Stable MCF7 CycG2 Knockdown Clones 

For selection of stable MCF7 clones freshly established cultures were transfected with 

NdeI linearized vector using Lipofectamine 2000 (Invitrogen). One day later, cells 

were reseeded at different densities onto new dishes and plates. The following day 

selection for puromycin-resistant clones was started by an exchange of culture 

medium containing 3 μg/mL puromycin. Selected clonal populations were expanded 

and tested for their ability to suppress expression of exogenous and endogenous 

human CycG2 by immunoblot analysis. 

2.2.3.6  Transfection 

2.2.3.6.1 Lipofectamine 

Cells were plated the day before transfection, to be 90-95% confluent at the day of 

transfection. The appropriate amounts of DNA and Lipofectamine 2000 (Invitrogen) 

were mixed separately in Opti-MEM (Gibco) and incubated at RT for 5 min. The two 

mixtures were then combined and further incubated for 20 min at RT. Half of the 

growth medium from cultures was aspirated and the DNA-Lipofectamine-OptiMEM 

mixture was added. The plates were gently rocked back and forth to ensure proper 

mixing of the components. Cultures were incubated at 37ºC for 4 h before the medium 

was changed.  

2.2.3.6.2 Calcium Phosphate Transfection 

Cells were plated the day before transfection, to be were ca. 50% confluent at the time 

of transfection. DNA was diluted with 250 mM CaCl2 and the mix was added 

dropwise to the HeBS (50 mM Hepes, 280 mM NaCl, 1.5 mM Na2HPO4 -7 H2O 

pH 7.11) buffer while aerating the buffer with a long sterile pasteur pipette. After 

incubation at RT for 10 min the mix was added dropwise to the cultures and mixed by 

moving the dishes back and forth. Cells were further incubated for 7 h to ON 

(depending on Ca
2+

 sensitivity of cells) at 37ºC before changing the media or re-

plating cells.  

2.2.3.6.3 Viral Infection 

Cells were plated the day before infection, so that they were ca. 90% confluent at the 

time of infection. The appropriate amount of virus was diluted in low serum (2% 

FBS) medium containing 4 µg/mL polybrene. Growth medium was aspirated from 
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cells and virus containing solution was added to the cells. Following 4 to 6 h 

incubation at 37ºC, the medium was changed to regular growth medium. The infected 

cultures were incubated 24 to 72 h further to ensure gene expression or knockdown. 

Infection efficiency was verified by fluorescence microscopy.  

2.2.3.7 Culture Treatments 

2.2.3.7.1 DNA Damage Treatments 

DNA damage was induced in the specified cultures by treatment with the 

chemotherapeutic agents doxorubicin hydrochloride (345 nM) or etoposide (30 µM) 

for the indicated time periods.  

2.2.3.7.2 Hormone Treatments 

For estrogen depletion experiments, plated cells were washed twice with 1x PBS and 

cultured for indicated periods of time in phenol red free MEM medium containing 

10% heat inactivated charcoal/dextran (CD) treated FBS, 2 mM L-glutamine, 1 mM 

sodium pyruvate, 100 units/mL penicillin and 100 µg/mL streptomycin sulfate, 

10 µg/mL bovine insulin and 10 mM HEPES (Gibco). For ICI and 4OHT treatments 

cells were seeded the day before treatment to be 70% confluent at the point of harvest. 

Culture medium was preplaced with ICI (100 nM) or 4OHT (100 nM) containing 

regular MCF7 (E2 and phenol red containing) medium for indicated periods of time. 

2.2.3.8 Fixation of Cells  

2.2.3.8.1 Fixation of Cells on Coverslips 

After indicated treatments coverslips were rinsed with 1x PBS and immediately 

submerged with ice-cold MeOH and incubated at -20ºC for 5 min. Alternatively, 

coverslips were fixed with 4% PFA-PBS solution for 10 min at RT. In both instances, 

after additional PBS washings, the coverslips were stored in PBS containing 0.02% 

Na-Azide until further use.  

2.2.3.8.2 Fixation of Cells for Flow Cytometry 

For one parameter flow cytometry, cells were collected and washed with PBS before 

fixation with -20ºC 70% ethanol or 100% methanol. To preserve fluorescent signals, 

cells were 10 min prefixed with 0.5% PFA/10 mM EDTA in PBS, washed with PBS 
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and fixed with -20ºC 100% methanol. Fixed cells were stored at -20ºC in the alcohol 

solution until analysis. 

2.2.3.9 Determination of Cell Viability by Trypan Blue Exclusion 

A small sample of single cells in suspension, were stained with trypan blue solution 

for 2 min at RT and cells were counted in a hemocytometer. The ratio of viable 

(trypan blue negative) and non-viable (trypan blue positive) cells was determined. 

2.2.4 Protein Biochemical Methods 

2.2.4.1 GST Fusion Protein Expression and Antibody Column Preparation 

GST and GST fusion proteins were expressed in E. coli (NovaBlue). Inoculated 

cultures were induced for protein expression for 4 h with 1 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG). Cells were collected by centrifugation and stored at 

-80ºC until lysis. Cell pellet was resuspended in 50 mL TBS (150 mM NaCl, 15 mM 

Tris-Cl, pH 7.4) containing 0.1 mg/mL lysozyme and protease inhibitors (1 µg/mL 

pepstatin A, 1 µg/mL leupeptin, 2 µg/mL aprotinin, 200 nM PMSF). After 30 min 

incubation on ice, 15 mM dithiothreitol (DTT), 10 mM EDTA and 1.5% sarkosyl 

were added and further incubated for 15 min. Insoluble material was removed by 

centrifugation at 186 010 x g for 1 h (4°C, Ti-45 rotor). After addition of 2-3% Triton 

X-100 to the cleared lysate to neutralize the sarkosyl, 1 mL of prewashed glutathione-

sepharose was added and incubated ON at 4°C. The resin was collected by 

centrifugation and transferred into Econo chromatography columns (BioRad, 737-

1012). The resin was washed with TBS until OD280 < 0.01. 

For cross linking the fusion proteins to the resin, the resign was washed with cross-

link buffer (100 mM NaHCO3/150 mM NaCl pH 8.3) and incubated in dimethyl 

pimelimidate (DMP) solution (7.75 mg/mL in cross-link buffer, pH 8.3) for 2 to 6 h at 

RT in the dark. The reaction was stopped with 100 mM Tris/150 mM NaCl pH 8.0 

solution. Final cleaning of resin was achieved by extensive washings with 100 mM 

glycine pH 3.0 and TBS solutions. Columns were stored in TBS containing 0.02% 

sodium azide at 4ºC. The purity of all immobilized proteins was confirmed by SDS-

PAGE and Coomassie staining.  
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2.2.4.2 Antibody Purification 

Generation of rabbit anti-cyclin G2 antibodies was as previously described (Bennin et 

al., 2002). The antisera against CycG2 and CycG1 proteins were affinity purified with 

CycG2GST or CycG1GST glutathione-sepharose columns (described earlier). 

Thawed CycG2 sera (2.5 mL) were incubated consecutively with GST and Cyc1GST 

preclear columns for 1 h at RT to remove unspecific antibodies against GST moiety of 

the fusion protein or those cross-reactive against CycG1. Precleared sera were then 

incubated with the affinity column for at least 16 h at 4ºC. After rigorous washing 

steps with TBS 0.1% tween antibodies were eluted with 100 mM glycine pH 2.5, 

neutralized with 0.1 M (final concentration) Tris-Cl pH 8.0 and concentrated with 

Amicon Ultra centrifugal filter devices (Millipore, Bedford, MA). 

2.2.4.3 Immunoblot Analysis 

Collected cell pellets were lysed in RIPA buffer (10% glycerol, 1% Nonidet P-40, 

0.4% deoxycholate, 0.05% SDS, 150 mM NaCl, 10 mM EDTA, 5 mM EGTA, 

50 mM Tris, pH 7.4) containing protease inhibitors (1 μg/mL pepstatin A, 1 μg/mL 

leupeptin, 2 μg/mL aprotinin, and 200 nM PMSF) and phosphatase inhibitors (25 mM 

NaF, 25 mM NaPPi, 1 mM pNPPi, and 2 μM microcystin). To further break up cell 

structures and compartments, lysates were sonicated for 10 sec and further incubated 

on ice for 30 min. Cell lysates were centrifuged at 10,000 x g to remove insoluble 

material. Total protein concentration of each sample was determined with the BCA 

protein assay kit (Pierce, Rockford, IL). A total of 10 to 75 μg of protein was 

separated by 10% SDS-PAGE and transferred to poly vinylidene fluoride (PVDF) 

membranes (BIO-RAD, Hercules, CA) via the Mini protean III Trans-Blot (BIO-

RAD) system. Blocking of membranes was performed using TBS-Tween-20 (0.1%) 

containing 5% nonfat milk powder at RT for 1 h. Membranes were incubated with 

primary antibodies (see table below) for 2 h at RT or for 16 h at 4ºC. After thorough 

washing with TBS-Tween-20, membranes were incubated for 1 h with peroxidase-

conjugated secondary antibodies. Signals were detected by chemiluminescence (GE 

Healthcare, Millipore, Pierce) using Kodak BioMax light film (Carestream, 

Rochester, NY). Developed films were scanned and densitometric measurements 

were performed with Adobe Photoshop CS3. 
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Species Antigene specificity Source/Vendor 
Catalog 

Number 

Dilution 

used 

Rabbit Akt 
Cell Signaling 

Technology, Danvers, MA 
4691 1/1000 

Rabbit Akt phospho S473 Cell Signaling 4060 1/500 

Rabbit Akt phospho T308 Cell Signaling 2965 1/1000 

Mouse alpha Tubulin Santa Cruz Biotechnology sc-32293 1/20000 

Rabbit ATM Cell Signaling 2873 1/500 

Mouse ATM phospho S1981 Cell Signaling 4526 1/500 

Rabbit beta Actin Cell Signaling 4970 1/2000 

Rabbit BiP Cell Signaling 3177 1/1000 

Mouse BrdU Invitrogen B35141 1/40 

Rabbit CDC2 Santa Cruz Biotechnology sc-54 1/1000 

Rabbit CDC2 phospho Y15 Cell Signaling 9111 1/1000 

Mouse CDC25A Santa Cruz Biotechnology sc-7389 1/500 

Rabbit CDC25B Cell Signaling 9525 1/1000 

Rabbit CDC25B Santa Cruz Biotechnology sc-326 1/1000 

Rabbit CDC25C Cell Signaling 4688 1/1000 

Rabbit CDC25C phospho S216 Cell Signaling 4901 1/1000 

Goat CDK10 C19 Santa Cruz Biotechnology sc-51266 1/100 

Mouse Chk1  Cell Signaling 2360 1/3000 

Rabbit Chk1 phospho S296 Cell Signaling 2349 1/1000 

Mouse Chk2 Ab5 Neomarkers, Fremont, CA MS-1515 1/4000 

Rabbit Chk2 phospho T68 Cell Signaling 2661 1/1000 

Mouse Chop Cell Signaling 2895 1/1000 

Rabbit cRaf Cell Signaling 9422 1/500 

Rabbit cRaf  Millipore, Billerica, MA 04-412 1/4000 

Rabbit cRaf phospho S338 Cell Signaling 9427 1/1000 

Rabbit cRaf phospho S259 Cell Signaling 9421 1/1000 

Rabbit cyclin B1 Cell Signaling 4138 1/1000 

Mouse cyclin D1 Santa Cruz Biotechnology sc-20044 1/6000 

Rabbit cyclin G1  Dr. Horne 1133 1/50 

Rabbit cyclin G1 C18 Santa Cruz Biotechnology sc-320 1/100 

Rabbit cyclin G1 H46 Santa Cruz Biotechnology sc-7865 1/100 

Rabbit cyclin G2  Dr. Horne 68232 1/500 

Rabbit cyclin G2  Dr. Horne 68964 1/500 

Rabbit cyclin G2  Dr. Horne 63622 1/200 

Rabbit cyclin G2  Dr. Horne 1263 1/250 

Rabbit cyclin G2  Dr. Horne 1264 1/250 

Sheep cyclin G2  Dr. Horne 422 1/50 

Mouse DsRed 
BD pharmingen, San 

Diego, CA 

51-

8115GR 
1/2000 

Rabbit ERK1/2 Cell Signaling 9102 1/2000 

Rabbit 
ERK1/2 phospho 

T202/Y204 
Cell Signaling 9101 1/3000 

Rabbit FOXO1 Cell Signaling 2880 1/1000 

Rabbit FOXO1/3a phospho Cell Signaling 9464 1/1000 
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Species Antigene specificity Source/Vendor 
Catalog 

Number 

Dilution 

used 

T24/T32 

Rabbit FOXO3a Cell Signaling 9467 1/1000 

Mouse GAPDH Millipore MAB374 1/200000 

Mouse GFP 
NeuroMab Facility, Davis 

CA 
N86/8 1/500 

Bovine Goat IgG (HRP labeled) 
JacksonImmunoResearch, 

West Grove, PA 

805-035-

180 
1/2000 

Donkey Goat IgG (HRP labeled) JacksonImmunoResearch 
705-035-

147 
1/2000 

Mouse HA Covance, Emeryville, CA 
MMS-

101P 
1/1000 

Rabbit MEK1/2 Cell Signaling 8727 1/1000 

Rabbit 
MEK1/2 phospho 

S217/221 
Cell Signaling 9121 1/3000 

Goat mouse IgG (HRP labeled) BioRad, Hercules, CA  170-6516 1/5000 

Donkey mouse IgG (alexa488) Molecular Probes A21202 1/1000 

Donkey mouse IgG (alexa594) Molecular Probes A21203 1/1000 

Rabbit mTOR Cell Signaling 2983 1/1000 

Rabbit mTOR phospho S2448 Cell Signaling 2971 1/1000 

Mouse Myc Dr. Horne 9E10 1/1000 

Rabbit Myt1 Cell Signaling 4282 1/1000 

Rabbit NBS1 Cell Signaling 3002 1/1000 

Rabbit NBS1 phospho S343 
Novus Biologicals, 

Littleton, CO 

NB100-

92610 
1/1000 

Rabbit p27 Cell Signaling 2552 1/3000 

Mouse p53 Neomarkers MS-186 1/1000 

Mouse PP2A, C subunit Millipore 05-421 1/1000 

Mouse rabbit IgG Fc (HRP) JacksonImmunoResearch 
211-032-

171 
1/5000 

Goat rabbit IgG (HRP labeled) BioRad 170-6515 1/5000 

Donkey rabbit IgG (alexa488) Molecular Probes A21206 1/1000 

Donkey rabbit IgG (alexa647) Molecular Probes A31573 1/1000 

Mouse Rb Cell Signaling 9309 1/2000 

Rabbit Rb phospho S780 Cell Signaling 9307 1/3000 

Rabbit S6K phospho S371 Cell Signaling 9208 1/1000 

Rabbit S6K phospho T389 Cell Signaling 9234 1/1000 

Goat Sheep IgG (HRP labeled) JacksonImmunoResearch 
713-035-

147 
1/2500 

Donkey Sheep IgG (alexa660) Molecular Probes A21101 1/1000 

Rabbit Wee1 Cell Signaling 4936 1/1000 

Rabbit Wee1 phospho Cell Signaling 4910 1/1000 

2.2.4.4 Immunoprecipitation 

Cleared whole lysate protein (150 to 1000 µg) was precleared with 20 µL protein A 

agarose or protein G sepharose bead slurry including non-specific IgG and incubated 
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at 4ºC for 1 h, to remove non-specific binding to sepharose or agarose beads. 

Precleared supernatant was incubated with 20 µL bead slurry and 1 to 10 µg 

precipitation antibody for 16 h at 4ºC. Preclear and immunoprecipitation beads were 

extensively washed with lysis buffer and proteins were eluted by adding 20 µL 1.5x 

SDS loading buffer. After heating the samples for 5 min at 95ºC supernatant was 

separated by 10% SDS-PAGE and subjected to immunoblotting. 

2.2.4.5 Immunofluorescence Microscopy 

2.2.4.5.1 Preparation of Coverslips  

Square shaped 22 mm #1 glass coverslips (Surgipath, Richmond, IL) were treated 

with 2 M NaOH solution for 2 h at RT, rinsed with H2O and immersed in pure 

ethanol. Individual coverslips were flamed until dry, placed into an aluminum lined 

glass dish and autoclaved for 20 min. Sterilized coverslips were coated with 

10 mg/mL collagen and 1 μg/mL poly-L-lysine (Sigma) and stored at 4ºC until use.  

2.2.4.5.2 Immunostaining 

Cells were seeded at 1.5 x 10
5 

cells/35 mm well on glass coverslips 14-18 h before 

treatment. PFA fixed specimens were permeabilized with 0.4% Triton-X in PBS for 

20 min at RT. After incubation for 2 h in blocking solution (2% Glycerol, 50 mM 

NH4Cl, 5% FBS, 2% goat serum in PBS) cells were stained with indicated antibodies 

diluted in blocking solution ON at 4ºC. After extensive washings with PBS wash 

solution (PBS, 0.15% Tween-20, 0.15% NP40) cells were blocked with 2% Glycerol, 

50 mM NH4Cl, 5% FBS, 2% goat serum, 0.2% Tween-20 in TBS for 30 min. 

Secondary antibodies and Hoechst 33342 stain was diluted in TBS containing 

blocking solution and incubated with the cells for 2 h at RT. Coverslips were washed 

with TBS, 0.15% Tween-20, 0.15% NP40 before being mounted with ProLong 

Antifade from Molecular Probes on microscope slides. Images were collected by 

confocal microscopy. 

2.2.5 Flow Cytometry 

2.2.5.1 Cell Cycle Analysis via Propidium Iodide Staining 

To perform DNA cell cycle analysis, fixed cells were washed twice with 1x PBS and 

stained in with 50 µg/mL propidium iodide (PI, Sigma) and 0.25 mg/mL RNaseA 

(Fermentas) in PBS for 30 min at RT. A minimum of 20,000 events were collected 
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using a FACScan (Becton Dickinson, San Jose, CA) flow cytometer. DNA content 

cell cycle profiles were determined using FlowJo 8.5 analysis software.  

2.2.5.2 Cell Cycle Analysis via Hoechst  

For analysis of DNA content in non-fixed populations, cells were stained with 1 M 

TO-PRO3 and 10 g/mL Hoechst 33342 in medium for 30 min at 36°C. Cell cycle 

analysis was performed on the TO-PRO negative (dead) and Hoechst positive 

population using a LSRII flow cytometer (Becton Dickinson). 

2.2.5.3 BrdU Incorporation 

To measure DNA synthesis the BrdU incorporation method was used. Cells were 

pulsed for 1 h prior methanol fixation with 10 μM BrdU and incubated at 37°C. 

MeOH fixed cells were washed with PBS prior to DNA denaturation with 2 M HCl 

for 45 min at RT. Neutralization of hydrochloric acid was archived by adding 0.1 M 

Sodium-Borate buffer pH 8.2. After additional washing with PBS containing 1% 

BSA, cells were blocked with PBS 1% BSA solution for 20 min at RT following 

incubation with anti BrdU primary antibody for 2 h at RT. After washing of cells with 

1% BSA in PBS cell were incubated with Alexa488 (Molecular Probes) conjugated 

secondary antibodies for 1 h at RT. Subsequent, cells were washed and DNA was 

stained with PI. 

2.2.5.4 Fluorescence Activated Cell Sorting   

Cells were stained with 1 μM of the cell stain TO-PRO3 for 30 min to exclude dead 

cells from collection. TO-PRO3 negative HCT116 cells transfected with the GFP 

tagged CycG2 were sorted on the basis of GFP expression with the MoFlo cell sorter 

(Beckman Coulter). Collected cell pellets were subsequently lysed and subjected to 

immunoblot analysis. 

2.2.6 Statistical Analysis 

Means and SEMs were calculated from at least three experimental repeats and 

analyzed using Prism 5.01 statistical analysis software (GraphPad Software, Inc. 

www.graphpad.com) with one-way analysis of variance tests and the indicated post-

tests. 
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3. Results 

3.1 Contribution of CycG2 to DNA Damage Response 

Induction of genotoxic DNA damage in tumor cells, via ionizing radiation or 

chemotherapy, is a central approach for the control of cancer growth. Existing data 

showed that the mRNA expression of CycG2 is induced by the DNA damaging agent 

actinomycin-D, however the function of CycG2 in DNA damage checkpoint remains 

unclear (Bates et al., 1996; Gajate et al., 2002). To begin to address these questions, 

the effect of ectopic CycG2 expression on cell cycle progression and DNA damage 

response (DDR) signaling in the absence of DNA damage was assessed.  

To further investigate the involvement of CycG2 in therapeutic-induced DNA 

double strand break (DSB) DDR, alterations in expression pattern for CycG2 and 

DDR signaling proteins induced by doxorubicin (Dox) and etoposide (ETP) were 

evaluated alongside the cell cycle arrest response. RNAi mediated knockdown (KD) 

of CycG2 expression was carried out to assess its contribution to Dox-induced 

signaling and cell cycle checkpoint responses.  

3.1.1 Ectopic Expression of CycG2 Induces G1-Phase Cell Cycle Arrest 

Cell lines used in this study were transiently transfected with GFP tagged CycG2 

(mCycG2GFP) expression constructs for 32 to 48 h, before harvesting for cell cycle 

analysis (Figure 3-1). The DNA in harvested and fixed cells was stained with 

propidium iodide (PI) and cell cycle distribution was analyzed by flow cytometry. 

Histogram overlays of DNA content of mCycG2GFP expressing (red line) and non-

expressing (grey area/black line) cells from the same transfected culture are shown in 

Figure 3-1. Compared to the non-expressing control, expression of CycG2 leads to an 

increase in the number of cells in G1-phase and a simultaneous reduction in the S- and 

G2/M-phases of the cell cycle (numbers in upper right corner of each histogram). 

These experiments confirmed previous observations (Arachchige Don et al., 2006; 

Bennin et al., 2002; Chen et al., 2006; Kim et al., 2004; Xu et al., 2008) that ectopic 

expression of CycG2 leads to G1-phase cell cycle arrest in various cell lines. 
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Figure 3-1: Overexpression of CycG2 leads to G1-phase arrest in various cell lines. Representative 

flow cytometry cell cycle analysis of indicated cell lines transiently transfected with mCycG2GFP 

expression constructs. Histogram overlays of PI stained DNA of non-expressing (grey area) and 

mCycG2GFP expressing (red line) cells of the same transfected culture. Numbers of cells in respective 

phases of the cell cycle are indicated in the upper right corner of each overlay. 

 

3.1.2 Activation of DDR Proteins after Ectopic CycG2 Expression 

Previous results of Dr. Arachchige Don established that the CycG2 induced cell 

cycle arrest is dependent on the DDR pathway proteins p53 and Chk2 (Arachchige 

Don et al., 2006; Zimmermann et al., 2012). As the cell cycle inhibitory effects of 

CycG2 are dependent on these critical DDR signaling effectors, the status of DDR 

proteins after ectopic expression of CycG2 was analyzed. Based on preliminary 

results of ectopically expressed CycG2 compared to GFP expression, a more thorough 

investigation of the effect of CycG2 overexpression on DDR signaling was 

conducted. Therefore, transiently transfected HCT116 cultures were sorted for 

mCycG2GFP positive and negative populations (Figure 3-2). Lysates prepared from 

sorted HCT116 WT and p53-/- (Figure 3-2, A) or WT and Chk2-/- (Figure 3-2, B) 

cultures were analyzed for the expression of activated forms of several DDR pathway 

proteins; fold change in expression is indicated under each lane. Treatment for 8 h 

with the DNA DSB inducing agent Dox serves as a positive control for the activation 

of the DDR pathway. As expected, phosphorylation of NBS1, Chk2 and Chk1 

increases following Dox treatment. In HCT116 WT cells ectopic CycG2 expression 

(+) also increases the presence of phospho-activated forms of Chk2 (54 to 64 fold 

increase) and NBS1 (6.8 to 12 fold increase) compared to non-expressing (-) cells. 

Activation of Chk2 and NBS1 was maintained in p53-/- cultures. As anticipated, no 

Chk2 immunosignals were detected in Chk2-/- cultures, but NBS1 activation was still 

present in CycG2 expressing cells. No change in Chk1 phosphorylation was observed 
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between the sorted CycG2 expressing and non-expressing samples in WT, p53-/- and 

Chk2-/- cell lines.  

 

 

 

Figure 3-2: Ectopic expression of CycG2 induces the activation of DNA damage response 

proteins Chk2 and NBS1. A-B) Immunoblots of proteins in total lysates isolated from transiently 

transfected cultures probed with antibodies directed against the indicated proteins. Indicated cell lines 

were transfected for 44 h with mCycG2GFP constructs before sorting for GFP expressing (+) and non-

expressing (-) populations. Culture treatment for 8 h with (+) doxorubicin (Dox) or vehicle (-) serves as 

a positive control. Fold increase of NBS1, Chk2 and Chk1 phosphorylation is indicated under total 

protein lanes (non-treated or non-expression controls are set to 1.0). Expression of phosphorylated 

Nbs1 (pNbs1 S343), Chk2 (pChk2 T68), Chk1 (pChk1 S296) compared to NBS1, Chk2, Chk1, p53, 

CycG2, GFP, βactin and PP2AC of HCT116 WT and p53-/- A) or WT and Chk2-/- cultures B). 

 

3.1.3 CycG2 Induced Cell Cycle Arrest is not ATM Dependent 

The observations that ectopic CycG2 expression induces a Chk2 dependent cell 

cycle arrest and phosphorylation of Chk2 at the ATM target site T68, suggested that 

these effects could involve ATM. HCT116 WT cells were transfected with 
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mCycG2GFP in the presence of the specific ATM inhibitor KU55933 and the cell 

cycle distribution was assessed (Figure 3-3, A left).  

 

 
 

Figure 3-3: CycG2 induced cell cycle arrest is not ATM dependent. A) Representative flow 

cytometry analysis of DNA content in fixed HCT116 WT and ATM deficient (ATM-/-) fibroblast cell 

cultures. Numbers in the upper right of each histogram panel specify the percentage of cells in 

indicated cell cycle phases. Cell cycle analysis was performed 32 h (HCT116) or 48 h (ATM) after 

transfection. Left) HCT116 cells were transfected with mCycG2GFP and treated with ATM inhibitor 

KU55933. Presented are non-expressing (red line) and mCycG2GFP expressing (green area) histogram 

overlays of PI stained DNA in cells of the same transfected culture. Right) Histogram overlays of ATM 

-/- cells transfected with indicated constructs. Shown are the mCycG2GFP expressing (green area) and 

GFP expressing (red line) cell population. B) Statistical analysis (one way ANOVA with Bonferroni`s 

post-test) of cell cycle phase distribution ATM -/- cultures transfected for 32 h (top) or 48 h (bottom) 

(*** p < 0.001, ** p < 0.01, * p < 0.05, ns indicates no significant difference). 

 

 

The presence of ectopic GFP tagged CycG2 (green area) compared to non-

expressing cells (red line) of the same transfected culture leads to a strong increase of 
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the percentage of cells in G1-phase of the cell cycle (70% compared to 47%). To 

validate these findings, the ATM deficient (ATM-/-) primary human fibroblast cell 

line (GM05849) was used in similar experiments. ATM-/- cultures were transfected 

with mCycG2GFP or GFP control constructs and the DNA distribution was analyzed 

(Figure 3-3, A right). The histogram overlay of CycG2 (green area) and GFP control 

(red line) expressing population in ATM-/- cells shows that CycG2 induces a G1-

phase cell cycle arrest (59% compared to 45%). Statistical analysis of the cell cycle 

distribution of ATM-/- cells transfected with CycG2, shows a significant increase 

(p<0.001) of cells in G1-phase compared to non-expressing cells after 32 h (Figure 

3-3, B top) and 48 h (Figure 3-3, B bottom) of expression. Simultaneously, the 

number of cells in S-phase is reduced at 32 h of transfection but is significantly 

diminished after 48 h. A significant decrease of cells in G2/M-phase is also observed 

at both time points. In contrast to CycG2 expressing cultures, expression of GFP 

alone has no significant influence on the cell cycle profile of ATM deficient cells. 

3.1.4 The DNA Damage Agent Doxorubicin Induces Cell Cycle Arrest 

Previously published results show that Dox treatment leads to a robust G2/M-

phase arrest in various cell lines (Reinke et al., 1999; Schonn et al., 2011). In order to 

verify and better characterize the effect of Dox treatment on the cell cycle distribution 

in the cell lines used in this study, cultures were treated with Dox and the DNA 

content was determined by flow cytometry. Cell cycle analysis showed a robust 

increase of cells G2/M-phase in response to the induction of DSBs (Figure 3-4). This 

G2/M checkpoint arrest was apparent in many of the cell lines within 12 h of 

treatment (not shown) and clearly after 16 h of treatment. U2OS and ATM cells also 

exhibited an accumulation of cells in S-phase, indicating an intact S-phase 

checkpoint. 
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Figure 3-4: DNA damaging agent doxorubicin induces G2-phase cell cycle arrest in multiple cell 

lines. Histograms of DNA content of indicated cell lines, cultured in the absence (left column) or 

presence of doxorubicin (Dox) for 16 h (middle column) or 24 h (right column). Note, U2OS and ATM 

cell lines show a distinct S-phase arrest, before G2-phase arrest. 

 

3.1.5 Upregulation of CycG2 Protein Following DNA Damage 

The observation that a high level of CycG2 protein induces activation of DDR 

proteins motivated the decision to investigate CycG2 expression during DDR. 

Treatment of the BC cell line MCF7 with the genotoxic chemotherapeutics Dox and 

ETP (Figure 3-6) elevates CycG2 protein level in a time-dependent manner. CycG2 

expression is significantly upregulated after 16 h (fold increase 3.0 ± 0.7, p<0.05) and 

24 h (fold increase 3.8 ± 0.6, p<0.01) of Dox and ETP treatment. 
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Figure 3-5: Treatment of MCF7 cells with doxorubicin and etoposide elevates CycG2 protein 

level. Top) Representative immunoblot analysis of CycG2 protein expression after indicated 

treatments. CycG2 level in non-treated controls (0) are set to 1.0. Statistical analysis of CycG2 

expression in MCF7 cells treated with chemotherapeutics doxorubicin (Dox) or etoposide (ETP) for 16 

or 24 h (* indicates p<0.05, ** indicates p<0.01). Analysis was performed using one way ANOVA 

with Tukey’s post-test, shown are mean ± SEM. 

 

To define CycG2’s upregulation in relation to the activation of DDR proteins and 

cell cycle checkpoints, MCF7 cell cultures were treated over a time course with Dox 

or ETP (Figure 3-6). Immunoblot analyses of CycG2 expression and the phospho-

activated forms of the DDR proteins are presented in Figure 3-6 top. Upregulation of 

CycG2 expression was clearly induced after 4 h of treatment and continued to 

increase during the 24 h response period. The activation of the early response DDR 

proteins ATM, Nbs1 and Chk2 could already be detected after 2 h of Dox exposure, 

2 h before a prominent elevation of CycG2 was evident. The activation of the ATR 

target Chk1 was detected at later points, between 4 h and 8 h of Dox exposure. An 

obvious arrest of cells in G2-phase did not occur before 16 h of exposure (Figure 3-6, 

bottom), thus CycG2 expression preceded the onset of cell cycle arrest but followed 

the activation of DDR proteins. 
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Figure 3-6: DNA damage induced upregulation of CycG2 expression follows activation of the 

ATM signaling pathway but precedes accumulation of cells at the G2-phase checkpoint. 
Immunoblot analysis of CycG2 expression relative to the phospho-activated forms of DDR proteins 

during indicated time periods of Dox A) or ETP B) treatment. Protein expression of pATM S1981, 

ATM, pNbs1 S343, Nbs1, pChk2 T68, Chk2, pChk1 S296, Chk1, CycG2 and loading control (GAPDH 

or αTub) in indicated cultures. Quantification of fold upregulation of protein expression induced by 

indicated treatment relative to control for each time point in MCF7 is indicated below each lane. 

Protein levels in non-treated controls are set to 1.0. The corresponding cell cycle profile of the specified 

cell culture is shown at the bottom. 

 

3.1.6 Testing of shRNA Constructs for CycG2 Knockdown 

To assess the contribution of elevated CycG2 expression to DDR signaling and 

cell cycle checkpoint arrest, shRNA constructs were generated to target CCNG2 gene 
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expression. The specific shRNA 1-B was designed to target human CCNG2 mRNA 

whereas ID3 targets human and murine CycG2 transcripts (Figure 3-7, A). The 

control vector NC contains a scrambled sequence, whereas the non-silencing control 

NSC sequence overlaps with the 1-B sequence, but contains 3 to 4 point mutations in 

the murine or human CCNG2 sequence, respectively. Validation of shRNA specificity 

and efficiency was performed by co-expression experiments and immunoblot analysis 

(Figure 3-7). The indicated murine (Figure 3-7, B) and human (Figure 3-7, C) CycG2 

expression constructs were co-transfected with specific shRNA (1-B and ID3) or 

control (vec., NC and NSC) plasmids (ratio 1:4). Expression of ectopic mCycG2 was 

reduced in ID3 co-expressed samples compared to controls (NC and vec.). As 

expected, expression of NC had no effect on CycG2 expression compared to vector 

alone. Co-transfection of human CycG2 with shRNA 1-B and ID3 resulted in a 

blunted CycG2 expression. Specificity was determined by co-transfection of the 

indicated shRNA constructs with plasmids encoding for CycG2’s closest homolog, 

CycG1. None of the tested shRNAs reduced the expression level of CycG1.  

 

 
 

Figure 3-7: Design and testing of CCNG2-specific shRNAs. A) Schematic of the CycG2 protein. 

Black bars indicate amino acid region encoded in the mRNA target site of the indicated shRNAs. The 

nucleotides that differ between human and non-silencing control (NSC) shRNAs are indicated by 

capitalized font. B-C) Immunoblot analysis of ectopic expression of indicated constructs relative to 

loading control α-tubulin (αTub) to test effectiveness and specificity of shRNAs. B) Expression level of 

murine CycG2 and CycG1 in cells co-transfected with control (Vec., and NC) or CycG2-targeting 

(ID3) shRNA vectors (ratio 1:4). C) Expression level analysis of human CycG2 and murine CycG1 in 

cells co-transfected with indicated specific (1-B, ID3) or control (empty vector or NSC) shRNA 

plasmids (ratio 1:4). 
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3.1.7 Transient Knockdown of CycG2 Blunts Dox Induced Cell Cycle Arrest 

The validated shRNAs constructs were subsequently used to knockdown CycG2 

in transient transfection assays (Figure 3-8). To preclude off target site effects of the 

used shRNAs, initial results obtained with shRNA 1-B (Zimmermann et al., 2012) 

were confirmed with the second shRNA ID3. HCT116 WT cells were transfected 

with shRNA 1-B or ID3 alone, and in combination for 48 h before cultures were 

treated with Dox. After 24 h of exposure to Dox, the cultures were harvested for 

immediate analysis. The DNA of the unfixed cells was stained with Hoechst 33342 

and cell cycle analysis was performed on the TO-PRO3 negative (live cell) 

populations.  

 

 
 

Figure 3-8: shRNA-mediated knockdown of CycG2 represses doxorubicin induced G2-phase cell 

cycle arrest. Comparative cell cycle analysis of vehicle control (top row) or doxorubicin (bottom row) 

treated HCT116 WT cells transfected with indicated plasmids. Shown are histogram overlays of 

Hoechst 33342 stained DNA content from live cell cultures of non-expressing cells (grey area), and 

cells expressing the shRNA 1-B (red line), shRNA ID3 (green line) or both (yellow line). Percentage of 

cells in each phase of the cell cycle (determined by the Watson-Pragmatic cell cycle program) is shown 

at the right of each overlay (non-expressors (-) and shRNA-expressing (+) cells) of the respective 

histogram. 

 

As expected, Dox treatment of the non-expressing (grey area/black line) cell 

population leads to a potent G2/M-phase cell cycle arrest (G2/M: 56 to 71%). 
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Histogram overlays of DNA content in Dox treated cultures show an abrogated G2-

phase arrest (G2/M: 13 to 25%) in the shRNA expressing (colored lines) compared to 

non-expressing populations. The strongest effect is demonstrated in cells expressing 

both shRNAs (Figure 3-8, right). The percentage of G2/M cells in Dox treated shRNA 

expressing populations (G2/M: 13 to 25%) is comparable to that observed for mock-

treated non-expressing populations (G2/M: 13 to 24%). Expression of CycG2 specific 

shRNA constructs does not alter the cell cycle profile of mock treated cells (Figure 

3-8, top). 

3.1.8 Establishment of Stable shRNA Mediated CycG2 Knockdown Clones 

To further analyze the contribution of CycG2 to Dox-induced DDR, cell lines 

were generated that stably incorporated the validated shRNA expression cassettes 

1-B, ID3 and NSC (Figure 3-9). Selected clonal populations were screened by 

immunoblot analysis for their ability to limit the expression of ectopic CycG2 (Figure 

3-9, A). Transient transfection experiments showed that numerous shRNA 1-B and 

ID3 containing clones showed the ability to repress the expression of ectopic CycG2 

when compared to CycG2 expression levels in MCF7 WT and NSC2 control clones. 

The generated clones that exhibited the strongest knockdown of ectopic CycG2 

expression were used for subsequent analysis of endogenous CycG2 expression 

(Figure 3-9, B and C). Dox induced CycG2 expression was diminished in KD clones 

compared to WT and NSC2 controls. Statistical analysis of immunoblot data showed 

a significant decrease of CycG2 expression in MCF7 harboring the specific shRNA 1-

B and ID3 compared to controls (WT and NSC2). 
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Figure 3-9: Establishment and testing of stable shRNA-mediated knockdown of CycG2 cell 

cultures. A) Immunoblot assessment of transiently transfected mCherry-tagged human CycG2 levels 

in the specified MCF7 stable clones and WT control populations relative to α-tubulin (αTub), GFP or 

total protein (Ponce. S) in cell lysates from indicated cultures. B) Expression of endogenous CycG2 in 

indicated KD or control MCF7 cultures, treated with Dox (+) or vehicle (-) for 16 h (left) or 24 h (right) 

compared to loading control GAPDH. C) Statistical analysis (one way ANOVA with Bonferroni’s 

post-test) of fold increase in CycG2 expression levels in indicated cultures before (-) and after (+) Dox 

treatment for 16 h (left) or 24 h (right) compared to WT control. 

 

3.1.9 Stable CycG2 KD Attenuates G2-Phase Arrest Following DNA Damage 

Several CycG2 KD clones were tested for their ability to induce G2-phase cell 

cycle arrest after induction of DNA damage. Treatment with Dox induces a strong G2-

phase cell cycle arrest in MCF7 WT and NSC2 control cells (Figure 3-4 and Figure 

3-10). Multiple CycG2 KD clones display a statistically significant (p <0.01 to 0.001) 

reduction in the percentage of cells in G2/M-phase (Figure 3-10, C) compared to 

controls. In addition to the reduction of cells in G2/M-phase, the KD clones exhibit an 
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increase in the percentage of the population in G1- and S-phase, when compared to 

controls (Figure 3-10, B).  

 

 
 

Figure 3-10: Stable shRNA-mediated knockdown of CycG2 represses doxorubicin-induced G2-

phase cell cycle arrest. A) Assays of DNA content of MCF7 WT, NCS control and stable KD clones 

after 24 h mock (NT) or Dox treatment. B) Bar graph of average percentage of cells in G1, S and G2/M-

phase of indicated clones treated with vehicle (-) or with (+) Dox for 24 h. Numbers embedded in each 

bar represent the percentage of cells in the indicated cell cycle phase. Numbers below each bar graph 

pair denote the number of experimental repeats. C) Statistical analysis of average percentage of cells in 

G2/M-phase of the indicated Dox treated (+) and vehicle treated (-) cultures (one way ANOVA with 

Tukey’s post-test, *** p<0.001, ** p<0.01). 

3.1.10 Maintained Induction of CycG1 Expression and Activation of Chk2 and 

Nbs1 Following DNA DSB Induction 

The closest homolog of CycG2, CycG1, is a DNA damage response protein linked 

to the regulation of G2/M transition (Kimura et al., 2001). Dox-induced DNA damage 

triggered upregulation of CycG1 in MCF7 WT and NSC2 cells and as well as in 
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CycG2 KD clones (Figure 3-11, A), verifying that CCNG1 expression is not affected 

by CCNG2-targetting shRNA. These results indicate that CycG1 does not compensate 

for the loss of CycG2. 

 

 
 

Figure 3-11: Doxorubicin induced expression of CycG1 and phospho-active forms of ATM, 

NBS1, Chk2, is maintained in CycG2 KD clones. A) Immunoblot analysis of expression of CycG1 in 

lysates from indicated cultures treated with Dox for 16 h A) or 24 h B), compared to loading controls 

GAPDH or α-tubulin (αTub) (* denotes unspecific background band). B) Expression of phosphorylated 

ATM (pATM S1981), Nbs1 (pNbs1 S343) and Chk2 (pChk2 T68) compared to total ATM, Nbs1, 

Chk2 and loading control α-tubulin (αTub) in indicated vehicle (-) and Dox (+) treated cultures. 

 

Given that ectopic CycG2-induced cell cycle arrest requires expression of Chk2 

and p53 and promotes the phosphorylation of Chk2 and Nbs1, the effect of CycG2 

KD on the expression of several activated forms of the DDR pathway was examined 

(Figure 3-11, B). Immunoblot results show that depletion of CycG2 did not affect the 

Dox dependent induction of pATM, pNbs1 or pChk2 compared to control cells (WT 

and NSC2).  
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3.1.11 Decreased Accumulation of Inactive CycB1/Cdc2 Complexes in Dox-

Treated CycG2 KD Cells 

Passage from G2-phase into mitosis requires active CycB1/Cdc2 complexes, but 

once in mitosis CycB1 is targeted for proteasomal-mediated degradation (Lindqvist et 

al., 2009). DNA damage induces G2-phase cell cycle arrest and causes the 

accumulation of CycB1 protein level. MCF7 WT and NSC2 control cells display a 

robust increase in CycB1 levels (5.5 to 5.6 fold increase) after Dox treatment (Figure 

3-12, A). Compared to controls, accumulation of CycB1 was reduced (0.7 to 2.0 fold 

change) in the CycG2 KD clones, consistent with the relative reduction in the number 

of cells arrested at the G2/M boundary (Figure 3-10, C).  

DNA damage signaling is known to inhibit CycB1/Cdc2 activation through 

maintenance of the Wee1 and Myt1 mediated inhibitory phosphorylation of Cdc2 on 

T14 and Y15 (Lindqvist et al., 2009). Consistent with the findings above, immunoblot 

analysis (Figure 3-10, B) shows an obvious increase in Y15-phosphorylated Cdc2 

(pCdc2 Y15) in the Dox-treated control cultures (2.4 to 3.4 fold increase), but the 

abundance of pCdc2 Y15 is decreased (0.9 to 1.5 fold change) in treated CycG2 KD 

clones.  

Activation of CycB1/Cdc2 complexes is largely promoted through 

dephosphorylation of Cdc2’s inhibitory sites (T14 and Y15) by the dual specificity 

phosphatases Cdc25B and Cdc25C (Lindqvist et al., 2009). A sharp reduction in 

Cdc25B level is necessary for an efficient G2/M checkpoint response to DNA DSB 

(Bansal and Lazo, 2007; Lemaire et al., 2010; Miyata et al., 2001). Immunoblot 

analysis revealed a 50 to 80 % reduction in Cdc25B expression in Dox-treated, MCF7 

WT and NSC2 cells relative to untreated controls (Figure 3-12, C). In contrast, 

Cdc25B expression in the Dox-treated CycG2 KD clones appeared to be similar to or 

even increased above the level of its respective non-treated controls. This suggests 

that loss of CycG2 abrogates the sharp reduction in Cdc25B that promotes G2/M 

checkpoint arrest. The basal level of Cdc25B in CycG2 KD cultures seems to be 

lower than in unperturbed MCF7 WT and NSC2 populations. The fact that the lower 

basal level of Cdc25B in the untreated CycG2 KD cultures did not induce an increase 

in the percentage of cells with a G2/M-phase DNA content (Figure 3-10) suggests that 

the CycG2 KD clones have adapted to lower Cdc25B levels.  
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Figure 3-12: Inhibition of CycG2 expression represses doxorubicin-induced accumulation of 

phospho-inhibited CycB/Cdc2 complexes. (A-C) Immunoblot analysis of changes in protein 

expression induced by treatment of indicated MCF7 cultures with Dox. Fold change of protein 

expression compared to NT (-) controls, indicated under brackets. A) Expression level of CycB1 

compared to loading control α-tubulin (αTub) in cultures treated for 24 h. B) Phosphorylated Cdc2 

(pCdc2 Y15) expression relative to total Cdc2 and loading control GAPDH or αTub in indicated cell 

populations. C) Immunoblot detection of Cdc25B expression relative to GAPDH in designated 

cultures. 

 

3.2 Contribution of CycG2 to Endocrine Therapy Response 

Estrogen (E2) and the estrogen receptor (ER) are critical for both, proper 

development and function of reproductive organs and mammary tissue. ER signaling 

pathways regulate cell growth and survival, but also promote breast cancer (BC) 

progression. Therefore, the inhibition of E2 mediated ER signaling is the basis of 

endocrine therapies against BC (Pearce and Jordan, 2004). CCNG2 expression is 

directly inhibited at the promoter level by E2-bound ER complexes (Stossi et al., 
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2006). The contribution of CycG2 to the endocrine therapy response and resistance, 

however, is unknown. KD of CycG2 in the ER positive BC cell line MCF7 was used 

to study CycG2’s contribution to endocrine therapy response. Immunoblot and cell 

cycle analyses were performed to compare the effects of E2 signaling blockade in 

CycG2 KD cells relative to control MCF7 cell populations.  

3.2.1 Inhibition of E2 Signaling Leads to G1-phase Cell Cycle Arrest 

Initial studies were performed to examine the effect of E2 signaling inhibition on 

cell proliferation. Culturing of the E2-dependent cell line MCF7 in E2 and phenol red 

free medium, induces growth arrest (Figure 3-13, A).  

 

 
 

Figure 3-13: Inhibition of estrogen receptor signaling in MCF7 leads to G1-phase cell cycle arrest. 

A-B) Shown are offset histogram overlays of MCF7 cell cultures depleted of E2 A) or treated with ICI 

B) for the indicated periods of time. A) Cell cycle analysis of MCF7 cells cultured in estrogen depleted 

medium (-E2) for up to 6 days. Statistical analysis (one way ANOVA with Bonferroni’s post-test) of 

cell cycle distribution of MCF7 cells depleted from E2 for 4 days is shown below. B) Cell cycle 

profiles of MCF7 cell cultures treated with the ER downregulator fulvestrant (ICI) for up to 4 days. 

Statistical analysis (one way ANOVA with Bonferroni’s post-test) of cell cycle distribution of MCF7 

cells treated with ICI for 2 days (*** p<0.001, * p<0.05). 
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This arrest is marked by a significant increase of cells in G1-phase (p<0.001), and 

by a decrease in the cell population in the S- and G2/M-phases (p<0.001 and p<0.05, 

respectively) of the cell cycle. Similarly, inhibition of ER signaling by the selective 

estrogen receptor downregulator (SERD) fulvestrant (ICI) induces a significant G1-

phase (p<0.001) cell cycle arrest in treated MCF7 cell cultures (Figure 3-13, B), and 

reduced the percentage of the population in S- and G2/M-phases (p<0.001 and p<0.05, 

respectively) within 2 days of treatment. 

3.2.2 Upregulation of CycG2 Protein after Inhibition of E2 Signaling 

Published mRNA data show that CCNG2 expression is influenced by the presence 

or absence of E2 (Stossi et al., 2006). In agreement with these mRNA data, CycG2 

protein levels are also influenced by E2 mediated ER signaling (Figure 3-14, A). 

Compared to cells grown in regular E2 and phenol red containing medium (RM), 

culturing of MCF7 cells in E2 depletion medium (DM) leads to a 1.7 fold increase of 

CycG2 protein level (lanes 1 and 2). Addition of E2 to DM (DM/E2, lane 3) repressed 

CycG2 expression. Furthermore, compared to E2 re-stimulation (DM/E2), inhibition 

of E2 induced ER activation by co-treatment with ICI (DM/E2/ICI) or tamoxifen 

(4OHT, DM/E2/4OHT) leads to the increase (8.1 and 6.1 fold, respectively) of CycG2 

protein level in MCF7 cells (lanes 3, 4 and 5). 

Cell cycle analysis revealed that the growth arrest induced by E2 depletion (Figure 

3-13, A and Figure 3-14, B top-left), can be reversed by re-addition of E2 (Figure 

3-14, B top-2
nd 

left). Consistent with earlier results, treatment of cells grown in RM or 

DM/E2 with either ICI or 4OHT leads to G1-phase arrest. The growth-stimulating 

effect of the re-addition of E2 to the depletion medium could be prevented by co-

treatment with ICI and 4OHT (Figure 3-14, bottom). 
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Figure 3-14: Inhibition of ER signaling leads to upregulation of CycG2 expression and G1-phase 

cell cycle arrest. A) Expression level of CycG2 compared to loading control α-tubulin (αTub) from 

MCF7 cultures grown in regular medium (RM) or estrogen depleted medium (DM). After five days of 

depletion, cultures were treated with 10 nM estradiol (E2), 100 nM fulvestrant (ICI) or 100 nM 4-

hydroxytamoxifen (4OHT) for two additional days before harvesting. Fold change of CycG2 

expression is indicated below each lane. B) Cell cycle analysis of MCF7 cells grown in RM or DM for 

nine days. In addition, indicated cultures were depleted for six days followed by three subsequent days 

of indicated drug treatment in DM. 

 

3.2.3 Upregulation of CycG2 after Inhibition of E2-mediated ER Signaling is 

Abolished in KD Clones 

To examine the influence of CycG2 on the cell cycle effects of E2 signaling 

inhibition, the previously described and validated stable MCF7 CycG2 KD clones 

were tested for their ability to induce CycG2 expression (Figure 3-15) and to undergo 

cycle arrest (Figure 3-16, Figure 3-17, and Figure 3-18) following inhibition of E2 

mediated ER signaling. 

The indicated cell cultures were grown in the presence (+) or absence (-) of E2 

and lysates were tested for CycG2 expression via immunoblotting (Figure 3-15, A). 
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Statistical analysis of CycG2 protein expression (Figure 3-15, A bottom) revealed that 

the treated KD clones (1-B and ID3) display a significant reduction (p<0.001) in 

CycG2 expression compared to controls (WT and NSC2). Control MCF7 cultures 

deprived of E2 exhibited significantly elevated levels of CycG2 expression (p<0.001), 

a response that is completely repressed in CycG2 KD clones. 

 

 
 

Figure 3-15: The upregulation of CycG2 expression upon inhibition of estrogen receptor 

signaling of MCF7 cultures is abolished in CycG2 KD clones. A) MCF7 cells were cultured in the 

presence (+) or absence (-) of E2 for four days prior to analysis. Top) Representative western blot 

analysis of CycG2 protein expression from whole lysate (WL) in control (WT, NSC2) and CycG2 KD 

(1-B, ID3) samples relative to loading control GAPDH. Bottom) Statistical analysis of fold change 

expression of CycG2 relative to loading control shown as mean +/- SEM with one-way ANOVA and 

the Bonferroni post-test. B) Top) Representative western blot analysis of CycG2 protein expression 

from whole lysate (WL) in control (WT, NSC2) and CycG2 KD (1-B, ID3) samples relative to loading 

control GAPDH treated with (+) or without (-) ICI for 2 days. Bottom) Statistical analysis of fold 

change expression of CycG2 relative to loading control shown as mean +/- SEM with one-way 

ANOVA and the Bonferroni post-test (*** p<0.001).   

 

Likewise, 48 h treatment of control MCF7 cells (WT and NSC2) with ICI (+) 

leads to a significant (p<0.001) increase in CycG2 expression, compared to mock 

treated (-) samples (Figure 3-15, B). All tested CycG2 KD clones showed a 

significant (p<0.001) decrease in basal CycG2 expression and did not display a 

pronounced increase in CycG2 levels following exposure to ICI (Figure 3-15, B 

bottom). 



Results 

 

57 

 

3.2.4 CycG2 Knockdown Diminishes G1-Phase Arrest Following the Inhibition 

of E2-mediatd ER Signaling 

Next, CycG2 KD clones were tested for their ability to undergo the expected G1-

phase cell cycle arrest response following inhibition of E2 mediated ER signaling. 

First, MCF7 cells were cultured in E2-deprived medium for 4 days before analysis of 

DNA content by flow cytometry. Histogram overlays of PI stained DNA from cells 

grown in regular E2 containing (grey area with black line) or E2 deprived (green line) 

medium is shown in Figure 3-16, A. Cell cycle analysis revealed a clear inhibition of 

MCF7 WT and NSC2 cell proliferation in treated cultures; the percentage of the S-

phase population was reduced (from 23% and 25% to 11% and 13%, respectively) 

and accompanied by a corresponding increase of cells in G1-phase (from 58% and 

55% to 78% and 71%, respectively). Compared to these control cell lines, CycG2 KD 

clones show an increased number of cells in S-phase (17 to 25 %) and a clear 

reduction in the percentage of the population accumulating in G1-phase (59 to 64%). 

Similarly, in comparison to the potent response of MCF7 WT and NSC2 cultures to 

ICI (red line), CycG2 KD clone cultures did not display as robust a G1-phase cell 

cycle arrest response to ICI treatment (Figure 3-16, B). 
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Figure 3-16: CycG2 knockdown diminishes G1-phase cell cycle arrest after ER inhibition. A+B) 

Representative cell cycle analysis of indicated MCF7 cultures deprived of estrogen A) or treated with 

ER antagonist ICI B). Treatment induced G1-phase cell cycle arrest is reduced in CycG2 KD clones (1-

B, ID3) compared to control (WT, NSC2) cultures. 

 

Statistical analysis revealed a significant difference in the cell cycle distribution of 

CycG2 KD clone and MCF7 control cultures, responding to the inhibition of E2 

signaling (Figure 3-17). Untreated MCF7 control and CycG2 KD cultures exhibit no 

significant difference in distribution of cells throughout the cell cycle (Figure 3-17, 

left column). Inhibition of E2/ER signaling through ICI treatment (middle column) or 
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deprivation of E2 (right column), induced a reduced G1-phase arrest response in 

CycG2 KD clones when compared to MCF7 WT and NSC2 controls (Figure 3-17, top 

row, p<0.01 or 0.001, middle row, p<0.05 to 0.001).  

 

 
 

Figure 3-17: Decreased cell cycle arrest in CycG2 KD clones in response to ER inhibition. Shown 

are bar graphs of indicated cell cycle phases of specified cultures after treatment (left, mock treatment; 

middle, 48 h 100 nM ICI; right, 4 days of E2 depletion). KD clones display a significantly decreased 

G1-phase arrest (top) and an increase of % of cells in S-phase (middle) compared to control cultures.  

 

To test whether the blunted G1-phase arrest response of CycG2 KD clones reflects 

an increase in the population of replicating cells undergoing DNA synthesis, 

incorporation of the nucleotide analog 5-bromo-2'-deoxyuridine (BrdU) into newly 

synthesized DNA was assessed by two-parameter DNA flow cytometry. Cultures 

were pulse labeled for 1 h with BrdU prior to fixation. The incorporated BrdU was 

detected with specific anti-BrdU antibodies. As anticipated, MCF7 WT and NSC2 

control cultures responding to inhibition of E2 signaling showed a dramatic decrease 

in BrdU signal intensity (Figure 3-18, rows 1 and 2), whereas similarly treated CycG2 

KD clones, showed a less pronounced decrease of incorporated BrdU (rows 3 to 5). 

As seen before, compared to controls, the G1-phase arrest response of treated CycG2 

KD cell populations is reduced (Figure 3-18). 
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Figure 3-18: Increase of S-phase population is not due to S-phase arrest. BrdU incorporation assay 

after 48 h ICI treatment (middle) or 4 days E2 depletion (right) of indicated cultures are depicted. 

Compared to controls (WT, NSC2) CycG2 KD clones (1-B, ID3) demonstrate an increase in DNA 

synthesis (BrdU incorporation) and a decrease in G1-phase arrest. 

 

3.2.5 Increased Activation of MAPK Signaling Components in CycG2 KD 

Clones 

Reduced CycG2 mRNA expression correlates with higher recurrence and poor 

survival probability (Adorno et al., 2009; Hu et al., 2006; van de Vijver et al., 2002). 

In contrast, higher levels of CycG2 mRNA are present in normally differentiated 

breast and hormone responsive tumor cells treated with anti-estrogens (Dudek and 
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Picard, 2008; Frasor et al., 2004). Resistance of ER positive BC tumor cells to E2/ER 

antagonizing drugs eventually develops in the majority of patients undergoing long-

term treatment regimens. The molecular mechanisms behind the development of 

resistance to these therapies are complex, possibly induced by phosphorylation 

mediated increases in ER signaling, or through ER-independent pathways, such as 

increased activation of growth factor signaling (Di Cosimo and Baselga, 2008). To 

investigate the influence of CycG2 expression levels in the development of resistance 

to pharmacological inhibition of E2 signaling, immunoblot analysis of the signaling 

responses following these treatments was carried out. 

The phosphorylation ERK-MAPK pathway proteins cRaf, MEK, ERK and Rb 

was analyzed in MCF7 cell cultures deprived of E2 (left) or treated with ICI (right). 

MCF7 WT and NSC2 lysates display low basal levels of activating Raf 

phosphorylation at S338 under control and treatment conditions (Figure 3-19). In 

contrast to control cell lines, CycG2 KD clones exhibit elevated levels of pRaf S338. 

 

 
 

Figure 3-19: CycG2 KD leads to the activation of the pRaf. Immunoblot analysis of indicated 

proteins in lysates from cultures grown in the presence (+) or absence (-) of E2 (left) or in ICI (right). 

Phosphorylation status of the activated form of cRaf at Ser338, against total cRaf and loading controls 

actin and GAPDH.  

 

Consistent with a low level of cRaf phosphorylation, the downstream components 

of the MAPK pathway, MEK and ERK, also exhibit little phospho modification in the 

control cell lines (Figure 3-20). Compared to the WT and NSC2 controls, CycG2 KD 

clones exhibit not only elevated levels of phosphorylation on Raf, but also of MEK 

and ERK proteins, under basal conditions and after inhibition of E2 signaling (Figure 

3-19 and Figure 3-20).  
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Figure 3-20: Activation of the ERK-MAPK pathway in CycG2 KD clones. Representative 

immunoblot analysis of indicated proteins in lysates from cultures grown in the presence (+) or absence 

(-) of E2 (left) or ICI (right). Phosphorylation status of activated forms of proteins of the ERK-MAPK 

signaling pathway MEK (top) and ERK (bottom) against total protein of MEK and ERK and loading 

control actin. 

 

Signal transduction through the MAPK is known to stimulate CycD1 expression 

and activity of CycD1-CDK4/6 complexes (Lavoie et al., 1996). Activated 

CycD/CDK complexes phosphorylate Rb proteins, thereby promoting the release of 

sequestered E2F transcription factors from Rb to allow stimulation of cell cycle-

promoting gene transcription (Shaul and Seger, 2007). Consistent with the increased 

cell proliferation and MAPK cascade activation in CycG2 KD clones, the abundance 

of CycD1 appears to be increased when compared to WT and NSC2 controls (Figure 

3-21). Similarly, the levels of hyperphosphorylated Rb seem to be elevated in a 

number of CycG2 KD clones, in comparison to the control cell lines (Figure 3-21), as 

seen in the banding pattern for both S780-phosphorylated Rb and total Rb.  
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Figure 3-21: CycG2 KD leads to the upregulation of MAPK downstream target CycD1 and 

phosphorylation of Rb. Representative immunoblot analysis of indicated proteins in lysates from 

cultures grown in the presence (+) or absence (-) of estrogen (left) or ICI (right). Expression level of 

downstream protein CycD1 (top) and phosphorylation status of Rb (bottom) compared to loading 

control actin. 

3.2.6 Co-Purification of CycG2 with CDK10 

CDK10 was recently proposed as a critical determinant of BC resistance to E2 

signal inhibiting endocrine therapies (Iorns et al., 2008). CDK10 interacts with Ets2 

TFs and modulates Ets2 transactivation (Kasten and Giordano, 2001). Downregu-

lation of CDK10 expression results in relief of Ets2 inhibition, leading to elevated 

cRaf transcription and the upregulation of MAPK signaling (Iorns et al., 2008; Kasten 

and Giordano, 2001). Little is known about the regulation of CDK10 activity and its 

putative binding partner. To date, there is no known cyclin partner for CDK10.  

To investigate a possible interaction of CycG2 with CDK10, co-immunoprecipi-

tation experiments with ectopic GFP-tagged CycG2 and HA-tagged CDK10 

constructs were carried out (Figure 3-22). HA-tagged CDK10 strongly co-purifies 

with the full length (FL) and the CycG2 1-160 constructs that contains the full cyclin 

box, but not with CycG2 1-140 construct, that contains only a truncated cyclin box 

(Figure 3-22, B). Surprisingly, CDK10 also co-purifies with CycG2 142-344 C-

terminus. It was previously shown that PP2AB’ co-purifies with FL or C-term (142-

345) CycG2, but not with the N-terminal regions of CycG2 encompassing the cyclin 

box (Bennin et al., 2002). Co-expression of CDK10 and myc-tagged PP2A with 

CycG2 and subsequent co-IP showed that CDK10 and PP2A co-purify with 
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immunoprecipitated CycG2 (Figure 3-22, B). Reciprocal IPs yielded complementary 

results, CDK10 and CycG2 co-purify with immunoprecipitated myc-PP2A. 

 

 
 

Figure 3-22: CycG2 co-purifies with CDK10 and PP2AB’. A) Schematic of GFP-tagged full length 

(FL) and truncation CycG2 expression constructs. Indicated to the right is the ability of co-purification 

of CycG2 with CDK10. B) Co-expression of HA-tagged CDK10, myc-tagged PP2AB’g constructs 

with GFP tagged FL or truncated CycG2 plasmids. CDK10 and PP2A co-purify with the CycG2 C-

terminus. In addition CDK10 can co-IP with the entire cyclin-box containing CycG2 construct 1-160 

but not with the truncated version 1-140. PP2A constructs only co-purify with FL or C-term (142-345) 

CycG2. C) CDK10 and PP2A bind to different protein regions within CycG2. Co-expression of 

constant amounts of CycG2 and PP2A with increasing amounts of CDK10 leads to increased 

CycG2/PP2A complex co-purification. PC indicates sample incubation with non-specific isotype 

matched antibodies. 
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Co-expression of constant amounts of CycG2 and PP2A with increasing amounts 

of CDK10 first promotes increased CycG2/PP2A complex co-purification (Figure 

3-22, C). After reaching a maximum, increasing amounts of CDK10 leads to the 

displacement of PP2A from the immunoprecipitated complexes. 

To investigate whether endogenous CDK10 can form complexes with endogenous 

CycG2, MCF7 cell lysates were used for co-immunoprecipitation experiments (Figure 

3-23). Endogenous CycG2 can be detected in CDK10 IPs (Figure 3-23, left) and 

CDK10 can be detected in CycG2 IPs (Figure 3-23, right). Inhibition of E2 signaling 

in MCF7 cells via E2 depletion (DM) or inhibitor treatment (ICI and 4OHT) leads to 

an increase in CycG2-CDK10 co-IP compared to cells grown in regular medium 

(RM), or E2 supplemented (DM/E2) medium (* indicates specific co-IP signal). 

 

 

 

Figure 3-23: CycG2 co-purifies with CDK10 upon inhibition of ER signaling. Western blot 

analysis of immunoprecipitates (IPs) from MCF7 cell lysates. Cultures were grown for 6 days in 

regular (RM) or E2 depleted (DM) medium and an additional 3 days in the absence or presence of 

10 nM estrogen (E2), 100 nM ICI or 100 nM 4OHT. Proteins were co-IP with CDK10 (left) or CycG2 

(right) or control IgG antibodies and blots were probed against indicated antigens (* denotes specific 

CycG2 or CDK10 band). 

 

To further investigate whether the interaction between CycG2 and CDK10 is 

reflected by recruitment and colocalization in cells, co-expression studies for confocal 

immunofluorescence microscopy assays were performed. U2OS and MCF7 cells were 

transfected with GFP tagged CycG2 and HA tagged CDK10 for 48 h. PFA fixed cells 

were immunostained with antibodies directed against HA and the microtubule marker 

-tubulin, and examined by confocal microscopy (Figure 3-24). Analysis of the 

captured images using ImageJ 1.45s and JACoP plugin (NIH http://imagej.nih.gov.ij) 

software revealed that CycG2 co-localizes with CDK10 in co-transfected U2OS and 

MCF7 cells. The correlation of the intensity distribution between channels (Pearson’s 

coefficient) is r=0.906 for U2OS and r=0.95 for MCF7.  
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Figure 3-24: CycG2 and CDK10 co-localize. Confocal microscopy images of U2OS (top) and MCF7 

(bottom) cells transfected with GFP tagged CycG2 and HA tagged CDK10 constructs for 48 h. PFA 

fixed cells were stained for HA (CDK10, red) and -tubulin (cytoskeleton, blue). Immunosignals are 

shown pseudo-colored in the merged panel (CycG2, green; CDK10, red; Tubulin, blue) and single 

channel signals are shown in black and white for better contrast. 

 

3.3 Contribution of CycG2 to Growth Arrest Following mTOR 

Inhibition 

It is though that, as BC cells develop resistance to ER targeted therapy, they no 

longer rely on genomic ER signaling, instead, growth factor receptor signaling 

pathways are upregulated to stimulate cell growth (Massarweh et al., 2008). Signaling 

through EGFR, IGFR and HER2 mediates the activation of the PI3K/Akt/mTOR 

pathway (Zhang et al., 2011). Inhibitors of the downstream kinase mTOR have been 

successfully used to treat a subset of cancers including lymphoma and BC (Baselga et 

al., 2009; Witzig et al., 2011). To analyze the contribution of CycG2 expression to the 

cell cycle inhibitory effects of mTOR signaling blockade, immunoblot and cell cycle 

analyses were performed. 

3.3.1 Rapamycin Induces G1-Phase Arrest and CycG2 Expression 

It was previously shown that treatment of cells with the mTOR inhibitor 

rapamycin induced CycG2 expression and a G1-phase cell cycle arrest (Kasukabe et 

al., 2008; Le et al., 2007; Zhou et al., 2009). Diffuse large B cell lymphomas 

(DLBCLs) exhibit aberrant regulation of cell-cycle control, apoptosis, differentiation 

and signal transduction. CycG2 is highly expressed in organs that are enriched for 

lymphocytes, like spleen, lymph nodes and thymus (Horne et al., 1996). To confirm 
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published mRNA data, additional experiments in DLBCL cell lines were conducted. 

In initial experiments, the DLBCL cell lines DHL4, 8 and 16 were treated with 

rapamycin for 8 and 24 h before analysis of DNA content. These experiments 

confirmed the rapamycin induced G1-phase cell cycle arrest in multiple DLBCL cell 

lines (Figure 3-25).  

  

 
 

Figure 3-25: Treatment of the B-cell lymphoma lines with rapamycin induces G1-phase cell cycle 

arrest. B-cell lymphoma lines SU-DHL4, SU-DHL8 and SU-DHL16 were treated with 10 nM 

rapamycin for 8 h (top) and 24 h (bottom) before ethanol fixation and cell cycle analysis. Histogram 

overlays of PI stained DNA of indicated cell lines. 

 

In agreement with the mRNA data, treatment of these cell lines with rapamycin for 

9 h induces a 1.6 to 1.7 fold increase in CycG2 protein levels (Figure 3-26). 

 

 
 

Figure 3-26: Treatment with rapamycin induces CycG2 expression. B-cell lymphoma lines SU-

DHL4, SU-DHL8 and SU-DHL16 were treated with 10 nM rapamycin for 9h and protein expression 

was assed via immunoblotting against CycG2 and -tubulin as loading control. Fold increase of CycG2 

expression is indicated under each lane. 
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3.3.2 Metformin Induces G1-Phase Arrest and CycG2 Expression 

Metformin is a widely prescribed anti-diabetic drug associated with a reduced risk 

of cancer. In breast and ovarian cancer cells, metformin stimulates the AMP activated 

protein kinase (AMPK) leading to the activation of the tuberous sclerosis 2 (TSC2) 

protein and the consequent downstream inhibition of mTOR signaling (Ben Sahra et 

al., 2010). Treatment of MCF7 cells with metformin (Met) over a timecourse of 48 h 

showed the induction G1-phase cell cycle arrest. Cell cycle distribution also revealed a 

slight reduction in the number of cells in S- and G2/M-phase (Figure 3-27). In 

addition to single parameter analysis of PI stained DNA (Figure 3-27, A), BrdU 

incorporation assays were performed. Two parameter dot plots of BrdU and PI stained 

DNA are shown in Figure 3-27, B. Treatment with metformin leads to a 36% 

reduction of cells with BrdU incorporation (DNA synthesis) in MCF7 WT cells. 

 

 
 

Figure 3-27: mTOR inhibition with metformin leads to reduced BrdU incorporation and G1-

phase cell cycle arrest. A) Offset histogram overlays of PI stained DNA in fixed MCF7 cells treated 

for indicated time with 1 mM metformin. B) Two-dimensional BrdU incorporation assay of PI stained 

MCF7 cells treated with metformin for indicated periods of time. 

 

Immunoblot analysis of pilot experiments showed that CycG2 protein expression 

is upregulated up to 2.5 fold following treatment of cell lines derived from normal 

breast (MCF10a) and breast cancer (MCF7) with metformin (Figure 3-28). Treatment 

with the mTOR inhibitor rapamycin was used as a positive control for the induction of 

CycG2 expression. 
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Figure 3-28: Treatment of MCF7 and MCF10a cultures with metformin induces CycG2 

expression. Immunoblot analysis of CycG2 expression in normal MCF10a and in the breast cancer cell 

line MCF7 after treatment with the mTOR inhibitor metformin (Met). CycG2 expression in WL A) and 

IP B) samples. Fold increase of CycG2 expression compared to non-treated controls is indicated under 

each lane. NT controls are set to 1.0. 

  

Initial experiments indicate that the modest metformin induced upregulation of 

CycG2 expression is abolished in the CycG2 KD clones (Figure 3-29). Immunoblot 

analysis of metformin treated MCF7 KD and control cell lines shows no changes in 

CycG2 protein level in KD clones treated with metformin. Simultaneously, CycD1 

protein levels appear to be elevated in several of the CycG2 KD clones, whereas its 

expression is reduced in response to metformin treatment in control and KD samples. 

 

 
 

Figure 3-29: Metformin induced upregulation of CycG2 is abolished in CycG2 KD clones. 

Immunoblot analysis of indicated proteins in MCF7 cells cultured in the presence (+) or absence (-) of 

1 mM metformin for 48 h.  
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To explore the effect that expression of CycG2 has on the metformin-induced cell 

cycle arrest of MCF7 cells, the CycG2 KD clones and NSC2 control cell cultures 

were treated for 48 h with metformin and prepared for DNA flow cytometry. Cell 

cycle analysis of PI stained DNA revealed that the metformin-induced G1-phase cell 

cycle arrest response is reduced in CycG2 KD clones (Figure 3-30). In addition to a 

reduced number of cells in G1-phase (67% and 63% compared to 77%) of the cell 

cycle, CycG2 KD clones exhibit higher numbers of cells in S-phase (17 % and 19% 

compared to 14%) following treatment with metformin, when compared to control 

NSC2. 

 

 
 

Figure 3-30: CycG2 KD diminishes metformin induced G1-phase cell cycle arrest. Histogram 

overlays of PI stained DNA of mock (black line) or metformin treated (red area) NSC2 control and 

CycG2 KD clones (1-B8, ID3-11). MCF7 cultures were treated for 48 h with 1 mM metformin. 

 

3.4 Contribution of CycG2 to Growth Control in Tuberous Sclerosis 

Cells isolated from tuberous sclerosis patients with inactivating mutations in genes 

encoding the tuberous sclerosis complex (TSC) proteins 1 and 2 exhibit excessive 

mTOR activity (Orlova and Crino, 2011). The hyperactivation of mTOR signaling, 

however, eventually triggers a negative feedback loop, disinhibiting FOXO 

transcriptional activity through phosphorylation of the insulin receptor substrate (IRS) 

that subsequently deactivates Akt signaling (Harvey et al., 2008; Zoncu et al., 2011). 

The disease is associated by the growth of benign tumors in multiple organ systems 

(including skin, kidney, brain, heart and lung) (Crino et al., 2006). Treatment of TSC 

patients with mTOR inhibitors such as rapamycin is one therapeutic approach that 

holds considerable promise (Bissler et al., 2008; Ozcan et al., 2008). Recent studies 
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indicate that loss of TSC function triggers endoplasmic reticulum stress (ERS) and an 

unfolded protein response (UPR) that promotes hypersensitivity to ERS-inducing 

pharmacological agents (Ozcan et al., 2008). As CycG2 is a rapamycin and ERS-

responsive FOXO TF target, the possibility that CycG2 functions as a cell cycle 

inhibitory protein, counteracting mTOR-driven growth, was examined. 

To test the effects of CycG2 depletion in TSC and normal human fibroblasts the 

previously described (3.1.6 Testing of shRNA Constructs for CycG2 Knockdown) 

CCNG2 targeting and non-silencing control shRNA expression vectors were adapted 

for lentiviral transduction experiments. The potential contribution of CycG2 to the 

cell cycle arrest responses of WT and TSC fibroblasts responding to rapamycin and 

ERS invoking drugs was investigated. 

3.4.1 CycG2 Expression in TSC Cells 

Baseline CCNG2 expression in three TSC (2332, 6100 and 6121) relative to the 

normal (IMR90) human fibroblast cell lines was determined by quantitative real-time 

(qRT) PCR assays. Analysis showed that basal levels of CCNG2 transcription were 

greater in two of the three TSC lines examined, the greatest in TSC 6100 (Figure 

3-31). 

 

 

Figure 3-31: Increased basal expression of CycG2 in TSC cells. qRT-PCR analysis of basal CCNG2 

expression in normal human fibroblast cells (IMR90) compared to TSC (2332, 6100 and 6121) cell 

lines. Note the elevated CCNG2 transcript level in TSC cell lines 2332 and 6100. 

3.4.2 Rapamycin Induces G1-phase Cell Cycle Arrest in TSC Cells 

Treatment of normal (IMR90) and TSC human fibroblast cell lines with 

rapamycin (Rapa) induced a G1-phase cell cycle arrest (Figure 3-32). To establish the 

treatment durations necessary for optimal inhibition of cell cycle progression in the 

WT and TSC deficient cell lines, timecourse experiments were conducted. Indicated 

cell lines were treated with 10 nM Rapa for 16, 24 and 32 h and the DNA content was 

determined by flow cytometry. Compared to mock (NT) treated controls, Rapa 



Results 

 

72 

 

treatment (bold typing or red area) led to the accumulation of cells in G1-phase and a 

corresponding reduction in the S- and G2/M-phase populations of all tested cell lines. 

 

 
 

Figure 3-32: Treatment of TSC cultures with the mTOR inhibitor rapamycin induces G1-phase 

cell cycle arrest. Left) Table of the percentage of cell population in indicated phases of the cell cycle, 

of vehicle (NT) or Rapa (bold type) treated cell lines. Right) Histogram overlays of PI stained DNA in 

control (IMR90) and TSC cell line 6121, treated with Rapa (red area) or vehicle (black line) for 32 h. 

3.4.3 Rapamycin Induces CycG2 Expression 

Inhibition of mTOR activation via Rapa treatment induced CCNG2 expression in 

all cell lines (Figure 3-33). qRT-PCR analysis showed that Rapa treatment increased 

CCNG2 mRNA (Figure 3-33, A) in WT and TSC fibroblast cell lines. The most 

robust increase (3 to 5 fold) was observed in IMR90 (WT) and TSC 6121 cells. 

Consistent with the mRNA data, CycG2 protein expression levels in the WT and 

TSC-deficient fibroblasts increased within 16 to 24h of treatment (Figure 3-33, B). 

Initial immunoblot analysis of the cells treated with Rapa for 24 h indicated an 

increased CycG2 expression in two WT human fibroblasts control cell lines 

GM00637 and IMR90 (Figure 3-33, left). As this analysis of CycG2 levels in 

extracted lysates from treated and untreated populations of the different WT and TSC 

deficient lines was to some degree ambiguous, CycG2 was concentrated by 

immunoprecipitation prior to immunoblot analysis (Figure 3-33, right). Again, 

treatment with Rapa induced the upregulation of CycG2 expression in both, control 

and TSC cell lines.  

Similar immunoblot analysis of the FOXO regulated CKI, p27, showed that p27 

levels are upregulated in Rapa treated samples, but p27 upregulation was not as high 

in TSC cell lines relative to IMR90 controls. Basal p27 levels appear to be lower in 

TCS cell lines compared to IMR90 control. Proliferation promoting CycD1 protein 

levels are elevated in TSC cells compared to controls but are reduced following Rapa 

treatment (Figure 3-33, C). 
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Figure 3-33: Inhibition of mTOR via rapamycin induces CycG2 expression. A) Treatment of 

indicated cell lines with Rapa increases CCNG2 transcript levels. qRT-PCR analysis of cultures treated 

for 24 h with Rapa compared to vehicle (NT) control. B) Assessment of change in CycG2 protein 

expression level after 24 h Rapa treatment in total lysates (left) and immunoprecipitation (right). 

mTOR inhibition leads to an elevation of  CycG2 protein level and phosphorylation of Akt and FOXO 

proteins in normal human fibroblast cell lines (IMR90 and GM00637). C) Immunoblot analysis of 

specified proteins in indicated cell lines after 16 h (left) and 24 h (right) of Rapa treatment.  

 

Treatment of indicated cell lines with Rapa induced the expression of phospho-

activated forms of Akt (pAkt T308/S473) and phospho-inhibited forms of FOXO TFs 
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(pFOXO1 T24/ pFOXO3a T32) (Figure 3-33 B and C). Phosphorylation of mTOR (p 

mTOR S2448) and its downstream target S6K (pS6K S371 and pS6K T389) at their 

activation sites is strongly reduced after Rapa treatment (Figure 3-33 C). 

3.4.4 Expression of Stress Response Genes Following mTOR Inhibition 

Comparisons of Rapa induced modulation of mRNA expression of selected genes 

linked to cell cycle arrest (p27, Bim, Chop and CycG1) are shown below (Figure 

3-34). The upregulation of p27 and Bim mRNAs was more potent in IMR90 and TSC 

6121 cells following Rapa treatment compared to TSC 6100 and 2332. Chop and 

CycG1 mRNA levels were not appreciably affected by the treatment.  

 

 

Figure 3-34: Expression of stress response regulated genes following mTOR inhibition. qRT-PCR 

analysis of the induction of stress response genes for p27, Bim, Chop and CycG1 following mTOR 

inhibition with rapamycin (Rapa) after 24 h of treatment. 

 

3.4.5 CycG2 KD Diminishes Inhibitory Cell Cycle Effects of Rapamycin 

Validated CycG2 shRNAs (see Figure 3-7) were used to assess the contribution of 

CycG2 upregulation to the cell cycle inhibitory effects of acute blockade of mTOR 

and induction of ERS signaling. To allow high transduction efficiency in primary 

human fibroblasts the shRNA expression cassettes were shuttled into a lentiviral 

expression vector (pVETL.gfp). Co-expression of the GFP marker protein in this 

expression vector allows the visual identification of transduced cells. We determined 

that the FIV viroids could transduce both, WT and TSC-deficient primary fibroblast 
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cultures with the pVETL.gfp-shRNA constructs (>90% efficiency) and blunt basal 

expression of endogenous CycG2 in infected cell populations (Figure 3-35). 

 

 
 

Figure 3-35: FIV transduced primary human fibroblast cell lines with CycG2 shRNA silences 

CycG2 protein level. TSC 6121 and 6100 fibroblast cell cultures were infected with CCNG2 specific 

(ID3 and 1-B) shRNAs for 72 h before protein assessment. 

 

To test the consequence of CycG2 KD in cells responding to rapamycin, cultures 

of the indicated fibroblast cell lines were infected with FIV viroids harboring 

expression cassettes for control (NSC or NC) or CCNG2 targeting (1-B or ID3) 

shRNAs and cultured for 24 h before expansion onto additional dishes. After a further 

48 h growth period, cultures were treated with Rapa or vehicle (NT) for an additional 

24 h. qRT-PCR analysis (Figure 3-36, A) showed that the increase in CCNG2 

transcript levels following Rapa treatment in NSC controls, was repressed in cultures 

infected with the shRNAs 1-B and ID3; 1-B had the most potent knockdown.  

Immunoblot analysis of CycG2 KD effects on CycD1 expression was performed 

(Figure 3-36, B). Transduction with CycG2 shRNA viroids resulted in the repression 

of the basal and Rapa-induced CycG2 protein expression levels in IMR90 cultures 

(Figure 3-36, left). Importantly, CycD1 protein levels were increased in cultures 

expressing either of the CCNG2-targeting shRNAs (Figure 3-36, right).  

To assess the effect of CycG2 KD on Rapa-induced G1-phase arrest, cell cycle 

analysis of indicated cultures was performed (Figure 3-36, C). shRNA-mediated 

depletion of CycG2 blunts the G1-phase cell cycle arrest response to Rapa in two TSC 

cell lines and the WT control. Though the effect on the IMR90 WT was quite modest, 

a clearer effect was seen in the TSC lines 6100 and 6121. Relative to the Rapa treated 

NSC-expressing control, the 1-B and ID3 transduced cells had a greater percentage of 

cells in S-phase and decreased percentage of cells in G1-phase. Even in the untreated 

cell populations, expression of the CCNG2-targeting shRNAs reduced the percentage 

of cells with a G1-phase DNA content relative to that found in the NSC shRNA 

control cells and increased the percentage of cells in S-phase.  
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Figure 3-36: KD of CycG2 expression promotes cell cycle progression following mTOR 

inhibition. A) Analysis of CCNG2 expression by qRT-PCR of indicated cell lines infected with 

shRNA constructs for 72 h and treated with Rapa for 24 h. B) Reduction of CycG2 protein level in 

specific shRNA (ID3, 1-B) infected cultures compared to control shRNA (NSC) before and after 

treatment with Rapa for 24 h. Note the increase in CycD1 expression in CycG2 KD lysates. C) Rapa-

mediated inhibition of cell cycle is partially blocked by CycG2 knockdown. Top) Percentage of cells in 

different phases of the cell cycle of indicated cultures. Bottom) Bar graph of cell cycle phase 

distribution in indicated cultures. 

 

3.4.6 Induction of ERS Inhibits Cell Proliferation  

To establish the effect that ERS has on cell cycle progression of the cell lines used 

in this study, treatments with tunicamycin (Tuni) and thapsigargin (Thap) were used 
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to induce ERS. WT and TSC fibroblasts were treated with for 24 h with 200 and 

500 nM of Thap or Tuni (bold typing) and the cell cycle distribution of cells in each 

culture was determined by DNA flow cytometry (Figure 3-37). Analysis of the DNA 

content showed that pharmacological induction of ERS induces G1-phase cell cycle 

arrest in human fibroblasts. The cell cycle arrest was most potent in the Thap-treated 

compared to Tuni-treated cultures of both WT and TSC fibroblasts.  

 

 
 

Figure 3-37: Induction of ERS with thapsigargin and tunicamycin induces cell cycle arrest. 

Treatment of indicated cell lines with the endoplasmic reticulum stress (ERS) evoking agents 

thapsigargin (Thap) and tunicamycin (Tuni) leads to G1-phase cell cycle arrest. Shown at the top is the 

table of the percentage of population in indicated phases of the cell cycle, of vehicle (NT), Thap (bold 

type) or Tuni (bold type) treated cell lines for 24 h. Cell cycle analysis was performed on ethanol fixed 

and PI stained cells. Bottom) Presentation of histogram overlays of PI stained DNA in control (IMR90) 

and TSC cell line 2332, treated with 500 nM Thap or Tuni (red area) or vehicle (black line). 

 

3.4.7 ERS Induces CycG2 Expression 

Next, the effects of Thap on CycG2 mRNA and protein expression levels were 

examined (Figure 3-38). Treatment of cultures with 200 nM Thap for 24 h increased 

CCNG2 transcript levels between 5 and 12 fold (Figure 3-38, A), substantially more 

than what was observed for 24 h treatment with 10 nM Rapa. The most prominent 

increase in the transcript level was observed for WT cells (IMR90) and the TSC lines 

6121. Immunoblot analysis of CycG2 protein levels from lysates of treated (+) and 
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untreated (-) populations of WT and TSC cell lines also showed an increase in the 

CycG2 protein levels that mirrored what was seen for the upregulation of CycG2 

transcripts (Figure 3-38, B). Notably, in contrast to what was seen in fibroblasts 

treated with rapamycin, expression of the Akt-site phosphorylated forms of FOXO1 

and FOXO3a were repressed upon treatment with Thap (Figure 3-33, B and C, Figure 

3-38, B).  

 

 
 

Figure 3-38: CycG2 upregulation after induction of ERS. A-B) Thapsigargin (Thap) induced ERS 

upregulates CycG2 mRNA and protein level. A) qRT-PCR analysis of CCNG2 expression in vehicle 

(NT) or 200 nM Thap treated cultures. B) Immunoblot analysis of indicated protein after 24 h Thap 

treatment in total lysates (left) and immunoprecipitates (IP) (right). 

 

3.4.8 Expression of Stress Response Genes Following the Induction of ERS 

Comparisons of Thap-induced modulation of mRNA expression levels of selected 

genes (p27, Bim, Chop and CycG1) that are linked to cell cycle arrest and ERS 

response are shown below (Figure 3-39). In contrast to Rapa-treatment, 200 nM Thap 

not only strongly upregulated CycG2 (Figure 3-38) mRNA levels, but also 

substantially increased Bim and Chop mRNA levels. CycG1 and p27 mRNA was 

only moderately (up to 2 fold) upregulated, compared to Chop, Bim or CycG2 

mRNA. 
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Figure 3-39: Expression of stress response regulated genes following ERS induction. qRT-PCR 

analysis of the induction of stress response genes, p27, Bim, Chop and CycG1, following induction of 

ERS by thapsigargin (Thap) after 24 h of treatment. 

 

3.4.9 Reduced Cell Cycle Arrest Induced through ERS in CycG2 KD Clones 

The effect of CycG2 KD on mock (NT, -) and Thap (+) treated gene expression 

and cell cycle progression was assessed to define the CycG2 contribution to the cell 

cycle inhibitory effects of Thap-induced ERS. Cultures of the indicated cell lines were 

infected with FIV particles carrying pVETL.gfp plasmids encoding the control (NSC) 

and CCNG2-targeting shRNAs (ID3 and 1-B). After 72 h of infection each culture 

was treated with 200 nM Thap or vehicle (NT) for an additional 24 h.  

Gene expression analysis showed that basal and Thap induced CCNG2 transcript 

levels were repressed upon viral mediated KD of CCNG2 (Figure 3-40, A). In 

analogous experiments the effect of CycG2 KD on CycD1, p27, phosopho-activated 

forms of Akt, and the ERS proteins BIP and Chop was assessed (Figure 3-40, B). 

Immunoblot analysis showed that the induction of the ERS response proteins BIP and 

Chop were robustly upregulated by Thap treatment and appeared unaffected by 

transduction with CCNG2-targeting shRNAs. Substantial upregulation of p27 was 

only observed in Thap-treated IMR90 cells and this upregulation was largely 

maintained irrespective of the transduced shRNA cassette. Expression of the phospho-

activated forms of Akt (which acts to repress FOXO activity) was strongly repressed 

in all Thap-treated cultures, irrespective of the transduced shRNA expression vector. 

As expected, Thap treatment suppressed CycD1 expression. As seen before, 
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compared to the NSC control samples, CycG2 KD samples showed an increase in 

CycD1 protein level (Figure 3-40, B).  

 

 
 

Figure 3-40: Diminished cell cycle inhibitory effects of thapsigargin in CycG2 KD cultures. A) 

qRT-PCR assay of CCNG2 expression level in WT and TSC (6100 and 2332) human fibroblasts. 

Analysis was performed 72 h after transduction with indicated shRNA FIV-viroids and additional 24 h 

Thap treatment. B) Immunoblot analysis of indicated proteins, after 72 h infection and additional 24 h 

Thap treatment. C) Cell cycle analysis of indicated cell lines transduced with CCNG2 (ID3, 1-B) and 

control (NSC) shRNA expression cassettes for 72 h and an additional 24 h of Thap treatment. Top) 

Table of percentage of cells in different phases of the cell cycle, numbers in bold type indicate values 

of Thap treated cultures. Bottom) Bar graph of cell cycle phase distribution in indicated cell cultures. 
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Cell cycle analysis of data obtained from a set of similar experiments on FIV 

transduced cultures in the presence (bold typing) or absence (plain font) of Thap 

indicated that depletion of CycG2 could modestly blunt the G1-phase cell cycle arrest 

response to Thap in some of the tested cell lines, the most potent response was 

observed in the two TSC cell lines 6100 and 6121 transduced with 1-B constructs 

(Figure 3-40). 
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4. Discussion 

Cancer is the second most common cause of death (after heart disease) in the US, 

accounting for one out of four deaths. In women, breast cancer is the most commonly 

diagnosed cancer type and leads to 29% of all cancer related deaths. Improvement in 

patient survival is due to advancement in diagnosis and treatment (Siegel et al., 2012). 

Today’s treatment options include surgery, chemotherapy and targeted therapy, all of 

which are contingent on tumor grade, lymph node status and the expression levels of 

biomarkers (Howard and Bland, 2012). A low expression of the cell cycle inhibitory 

protein CycG2 is implicated in poor prognosis and predicts a lower metastasis free 

survival rate (Adorno et al., 2009). Understanding how CycG2, as a negative regulator 

of cell cycle progression, contributes to the effects of BC therapeutics may lead to the 

use of CycG2 expression as a biomarker for therapeutic outcomes and to the 

development of improved cancer diagnostics and therapies. 

4.1 Contribution of CycG2 to DDR Cell Cycle Checkpoint Arrest  

DNA double strand break (DSB) inducing chemotherapeutics including topoiso-

merase II poisons such as doxorubicin (Dox) and etoposite (ETP) are the mainstay of 

cancer therapy (Jackson and Bartek, 2009; Lord and Ashworth, 2012; Nitiss, 2009). 

Induction of DSBs activates the DNA damage response (DDR) pathway that mediates 

the activation of cell cycle checkpoints. Subsequently, induction of cell cycle arrest 

gives time for DNA repair; if the damage is too severe, apoptosis is induced (Oberle 

and Blattner, 2010). Cancer cells are very sensitive to DNA damaging agents due to 

the frequent loss of an efficient G1/S checkpoint (Kastan et al., 1991; Sherr and 

McCormick, 2002). A functional G2/M checkpoint however is usually retained in 

tumor cells (Kuntz and O'Connell, 2009). Thus a combination of DNA damage 

induction and simultaneous inhibition of the DNA damage response (DDR) pathway 

holds promises for the enhancement of current therapeutics (Al-Ejeh et al., 2010). 

The observations that CycG2 is upregulated during cell cycle arrest responses to a 

variety of inhibitory signals (including DNA damage) and induces a G1-phase cell 

cycle arrest when ectopically expressed, inspired further study of CycG2’s 

involvement in the DDR (Arachchige Don et al., 2006; Bates et al., 1996; Bennin et 
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al., 2002; Chen et al., 2006; Horne et al., 1997; Kim et al., 2004; Le et al., 2007; Xu et 

al., 2008).  

In response to DNA DSBs, ATM-dependent T68 phosphorylation of Chk2 

triggers a G1-phase checkpoint arrest (Stracker et al., 2009). Ectopic expression of 

CycG2 promotes Chk2 dependent G1-phase cell cycle arrest (Zimmermann et al., 

2012, in press) and Chk2 phosphorylation at T68 (Figure 3-2). Previous studies 

showed that phosphorylation of p53 by activated Chk2 promotes G1-phase checkpoint 

arrest (Chehab et al., 2000) indicating that the p53 dependent G1-phase arrest induced 

by ectopic CycG2 is likely downstream of T68-activated Chk2. As the CycG2 

induced G1-phase cell cycle arrest did not require ATM function (Figure 3-3), the 

effects of ectopic CycG2 on Chk2 are likely ATM-independent. Moreover, the 

phosphorylation of the ATR target Chk1 was not influenced by ectopic CycG2 

(Figure 3-2), suggesting that CycG2 overexpression did not activate ATR. A possible 

explanation for the effects of ectopic CycG2 induced Chk2 phosphorylation in the 

absence of DNA-damage could be the induction of a defective mitosis. Recent work 

indicates a DNA-damage independent function of pChk2(T68) during mitosis, to 

ensure proper spindle assembly and maintain chromosomal stability (Chabalier-Taste 

et al., 2008; Stolz et al., 2010). The kinases PLK1, TTK/ hMps1 and DNA-PK can 

each phosphorylate Chk2 on T68 and play DDR-independent roles in regulating 

mitosis and spindle assembly checkpoints (Chen and Poon, 2008; Lee et al., 2011; Li 

and Stern, 2005; Tsvetkov et al., 2003; Wei et al., 2005). Ectopic CycG2 expression 

promotes formation of nocodazole-resistant microtubules and aberrant nuclei (Bennin 

et al., 2002), therefore, overexpression of CycG2 may trigger a defective mitosis that 

provokes Chk2 activation through DNA-damage independent pathways. 

Alternatively, CycG2 may influence PP2A mediated pChk2(T68) dephosphorylation. 

Phosphorylation of Chk2 on T68 is negatively regulated by B56 isoforms of PP2A 

(Carlessi et al., 2010; Freeman et al., 2010). As CycG2 can form complexes with 

PP2A B56- and C-subunits (Bennin et al., 2002; Hofstetter et al., 2012; Rual et al., 

2005), it is possible that, in otherwise unperturbed cells, overexpressed CycG2 acts as 

a PP2A sink preventing Chk2 dephosphorylation by PP2A. In this context it is notable 

that CycG2, PP2A and Chk2 all associate with centrosomes (Arachchige Don et al., 

2006; Bollen et al., 2009; Golan et al., 2010).  
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CCNG2 expression is upregulated as cells undergo cell cycle arrest in response to 

a variety of growth-inhibitory signals including DNA damage (Bates et al., 1996; 

Chen et al., 2006; Fang et al., 2007; Gajate et al., 2002; Grolleau et al., 2002; Horne et 

al., 1997; Le et al., 2007; Martinez-Gac et al., 2004; Murray et al., 2004; Tran et al., 

2003; Xu et al., 2008). The increase of endogenous CycG2 expression following the 

induction of DNA DSB through treatment with Dox and ETP occurs 8 to 12 h before 

an obvious arrest of cells at the G2/M boundary (Figure 3-6). This likely reflects that 

the DDR pathway triggers the upregulation of CycG2 and is not the result of cells 

accumulation in G2-phase. The increase in endogenous CycG2 levels followed the 

activation of ATM signaling by several hours, but coincided with the activation of the 

late phase DDR protein Chk1 (Figure 3-6), suggesting that CycG2 may play a role in 

the maintenance of G2/M checkpoint arrest. Indeed, shRNA mediated CycG2 KD 

blunts the Dox-induced G2/M checkpoint arrest (Figure 3-8 and Figure 3-10).  

Dox-induced DNA DSBs trigger first the activation of ATM and in the later phase 

of DNA damage-repair the presence of ssDNA activates ATR (Jackson and Bartek, 

2009; Nitiss, 2009). ATR activity is thought to regulate the majority of the late (2-9 h 

post -IR) phase of the checkpoint response to DNA DSBs (Brown and Baltimore, 

2003; Shiotani and Zou, 2009a, b). In the absence of ATM both ATR and DNA-PK 

play dominant roles in promoting G2/M checkpoint responses to DNA DSBs 

(Arlander et al., 2008; Tomimatsu et al., 2009). Recently for publication accepted 

results of Donaldson and Arachchige Don show that Dox-triggered upregulation of 

CycG2 is neither repressed by the ATM inhibitor KU55933 nor repressed in ATM-

deficient fibroblasts, but is blunted by the ATM and ATR inhibitor caffeine 

(Zimmermann et al., 2012, in press). Thus, DNA DSB-induced stimulation of CycG2 

expression is ATM independent. These results, together with the observation that 

Dox-triggered upregulation of CycG2 is primarily a late phase DDR, suggests that 

DSB induced CycG2 expression is ATR dependent.  

The expression of CycG2’s closest homolog CycG1 has been linked to G2/M 

checkpoint control, however whether it promotes or inhibits either cell cycle arrest or 

cell death in response to DNA damage is controversial (Kimura et al., 2001; Kimura 

and Nojima, 2002; Ohtsuka et al., 2004; Okamoto and Prives, 1999; Seo et al., 2006; 

Shimizu et al., 1998). CycG1 is a direct transcriptional target of p53, and CCNG1 
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transcript levels are increased in response to DNA damage (Bates et al., 1996; 

Okamoto and Beach, 1994). Predictably, CycG1 expression was robustly elevated in 

Dox-treated MCF7 cells and its protein levels were not reduced in CycG2 KD cells 

(Figure 3-11). The fact that CycG2 depletion leads to a reduced G2/M-phase arrest 

despite the rise in CycG1 levels, indicates that CycG1 cannot fully compensate for 

loss of CycG2 and that these protein homologs are not have redundant function.  

Passage from G2 into M-phase is promoted by activation of CycB1/Cdc2 

complexes and their entry into the nucleus. CycB1 protein levels increase as cells 

enter G2-phase and decrease as cells proceed through mitosis (Lindqvist et al., 2009). 

The cell cycle inhibitory kinases Myt1 and Wee1 phosphorylate Cdc2 on T14 and 

Y15 and thereby restrict CycB1/Cdc2 activity. Dephosphorylation of T14 and Y15 

Cdc2 is triggered by Cdc25 phosphatases and leads to the activation of CycB1/Cdc2 

complexes (Lindqvist et al., 2009; Stracker et al., 2009). During DDR signaling the 

dual specificity phosphatases Cdc25B and Cdc25C are themselves subject to 

inhibitory phosphorylation by Chk1 and Chk2 that promotes Cdc25 degradation 

(Lindqvist et al., 2009). As predicted, the Dox triggered G2/M checkpoint arrest led to 

accumulation of CycB1 and pCdc2(Y15) levels in WT and shRNA control cultures. 

In addition to their blunted G2/M checkpoint arrest response (Figure 3-10), CycG2 

KD clones also exhibited diminished levels of CycB1 and phospho-inhibited Cdc2 

when compared to treated WT and shRNA controls (Figure 3-12). Although Cdc25B 

expression is not required for G2/M transition in otherwise unperturbed somatic cell 

populations, it is essential for resumption of cell cycle progression after DNA damage 

induced checkpoint arrest (Lindqvist et al., 2009). Even moderately increased Cdc25B 

expression levels impair proper G2/M checkpoint control (Aressy et al., 2008; Bansal 

and Lazo, 2007; Bugler et al., 2006). Compared to mock treated controls, Cdc25B 

levels are diminished in Dox-treated WT and NSC, but not in CycG2 KD cell cultures 

(Figure 3-12). These results suggest that the weakened G2/M checkpoint arrest in 

CycG2 KD cells is due to a disruption of the regulatory circuit controlling Cdc25B 

expression. Thus, CycG2 may contribute to G2/M checkpoint enforcement by limiting 

the Cdc25B modulated CycB1/Cdc2 activity.  

CCNG2 transcripts are upregulated during G1-phase cell cycle arrest in response 

to a variety of DDR independent anti-mitogenic signaling cascades (Horne et al., 
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1997; Le et al., 2007; Martinez-Gac et al., 2004; Xu et al., 2008). RNAi KD of 

CCNG2 has been shown to blunt the G1-phase arrest response to some of these growth 

inhibitory signals (Kim et al., 2004; Xu et al., 2008). Given these observations and the 

effects that ectopic CycG2 expression has on G1/S phase transition, the diminished 

G2/M checkpoint arrest response of CycG2 KD clones to Dox was somewhat 

surprising. However, other cell cycle regulators have been described (such as p53 and 

p21) that can influence G1/S as well as G2/M checkpoints (Bunz et al., 1998; 

Cazzalini et al., 2010; Harper et al., 1993; Lee et al., 2009; Waldman et al., 1995). For 

example, ectopic and endogenous expression of p21 induces G1-phase checkpoint 

arrest through binding and inhibition of CDK2 (Lu and Hunter, 2010). Additionally, 

p21 influences G2/M transition through binding and inhibition of CycA/Cdc2 and 

CycB1/Cdc2 complexes (Cazzalini et al., 2010). Although most of the evidence in the 

literature supports a role for CycG2 in limiting G1/S-phase transition, there are 

indications that CycG2 could also participate in G2/M regulation (Adorno et al., 2009; 

Shimada et al., 2003; Suenaga et al., 2009; Welcsh et al., 2002). The idea that CycG2 

has a regulatory function in G2/M-phase transition is also supported by the discovery 

that CycG2 is a substrate of an essential regulator of mitosis, APC, being both 

ubiquitinated and degraded in mitotic cell extracts enriched with APC-Cdc20 

complexes (Merbl and Kirschner, 2009; Mocciaro and Rape, 2012).  

4.2 Contribution of CycG2 Expression to Endocrine Therapy 

Response 

Growth of nearly two-thirds of all primary BCs is dependent on estrogen (E2) 

signaling through ER (Deroo and Korach, 2006; Fabris et al., 1987). Hence, ER 

positive BCs are commonly treated with ER antagonists such as the SERM tamoxifen 

(4OHT) and the SERD fulvestrant (ICI) or aromatase inhibitors (AIs) that prevent E2 

production (Di Cosimo and Baselga, 2008). The advantages of these therapeutics are 

limited by the frequent development of resistance (Lange and Yee, 2011).  

Stimulation of E2 dependent BC cell lines with E2 leads to the repression of 

CCNG2 expression. CycG2 transcription is negatively regulated by the E2 occupied 

ER through the recruitment of the N-CoR co-repressor complex and histone 

deacetylases (HDAC) to CCNG2 promoter region (Stossi et al., 2006). Consistent 
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with these findings, results presented in this thesis show CycG2 protein levels are 

elevated after blockade of E2 signaling through either E2 depletion, or through 

treatment with ICI and 4OHT. Furthermore, upregulation of CycG2 expression is 

repressed upon re-stimulation with E2 (Figure 3-14). These results suggest that the 

growth inhibitory properties of SERMs and SERDs could be mediated, in part, 

through upregulation of CycG2 expression. In accordance with this idea, MCF7 cells 

depleted of CycG2 expression via shRNA mediated KD, show, compared to controls, 

a diminished accumulation of cells in G1-phase in response to inhibition of E2 

signaling (Figure 3-16 and Figure 3-17). These results indicate that elevated CycG2 

expression contributes to the treatment induced G1-phase cell cycle arrest. Additional 

ICI treatment or E2 depletion experiments showed, that in contrast to MCF7 control 

cultures, CycG2 KD clones exhibit an increased number of cells with an S-phase 

content that are actively synthesizing DNA (Figure 3-17 and Figure 3-18). Thus, 

indicating that upregulation of CycG2 is important to enforce cell cycle arrest 

responses following inhibition of E2 signaling. Accordingly, loss of CycG2 

expression might contribute to the development of tumor cell resistance against 

therapeutically induced ER inhibition in ER positive BCs. Numerous models of 

endocrine-resistance show ER-independent stimulation of CycD1 expression through 

activation of the MAPK pathway downstream of elevated growth factor signaling 

(Kato, 2001; Lannigan, 2003; Zhang et al., 2002). Active CycD1/CDK complexes 

phosphorylate Rb, thereby releasing E2F transcription factors that drive the 

expression of proliferation promoting genes. CycG2 KD clones with diminished arrest 

responses to E2 signaling inhibition exhibit elevated CycD1 protein levels and 

increased activation of the components in the MAPK signaling pathway (Figure 3-19, 

Figure 3-20 and Figure 3-21). These results indicate that the loss of CycG2 expression 

contributes to the development of tumor cell resistance to inhibition of E2 signaling 

by increasing MAPK signaling and the subsequent upregulation of CycD1 expression.  

A recent report showed that development of resistance of ER positive BC to E2 

withdrawal or tamoxifen could be linked to loss of CDK10 expression (Iorns et al., 

2008). CDK10 is a CDK homolog and previously shown to play a role in G2/M 

transition (Li et al., 1995). CDK10 can bind to and inhibit the activity of Ets2 

transcription factors (Kasten and Giordano, 2001). Active Ets2 stimulates Raf1 kinase 
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expression. Growth factor receptor induction of Ras signaling stimulates Raf1-

mediated activation of the MAPK signaling pathway (Iorns et al., 2008; Shaul and 

Seger, 2007). The resulting increase in CycD1 expression mediates tamoxifen 

resistance by abolishing the reliance on E2 signaling (Wilcken et al., 1997). Reduced 

CDK10 expression is associated with reduced time until relapse and poor overall 

survival (Iorns et al., 2008). Although CDK10 shares the conserved protein sequence, 

common to other CDKs, which is essential for cyclin binding (Brambilla and Draetta, 

1994), its corresponding cyclin has not been identified to date. Ectopic and 

endogenous CycG2 can form complexes with CDK10 that co-localize in a distinct 

pattern in the nucleus and cytosol (Figure 3-22, Figure 3-23 and Figure 3-24). Binding 

of CDK10 to CycG2 seems to be mediated not only through the cyclin box within the 

CycG2 N-terminus, but also through CycG2’s C-term. Additionally, co-IP of 

endogenous proteins is enhanced after the inhibition of E2-mediated ER signaling and 

subsequent upregulation of CycG2 (Figure 3-23). Given that both CycG2 KD and 

CDK10 KD lead to increased MAPK activation, CycG2 effects on cell cycle arrest 

response toward ER inhibition might be mediated through binding and activation of 

CDK10. However, it is not clear if CycG2/CDK10 complexes are catalytically active 

and if kinase activity is necessary for its function. CDK10 mediated inhibition of Ets2 

transactivation seems to be independent of CDK10’s kinase activity (Kasten and 

Giordano, 2001). Kinase dead CDK10 is able to suppress Ets2 transactivation, 

perhaps through blockage of Ets2's association with the basal transcription machinery 

or other co-activators. In addition, Ets2 activity is positively regulated via 

phosphorylation (Yang et al., 1996). It is known that CycG2 can form phosphatase 

active complexes with PP2A (Bennin et al., 2002). Therefore, CycG2/PP2A 

complexes could, through binding to CDK10, inactivate Ets2 by dephosphorylation.  

4.3 Regulation of CycG2 Expression Following mTOR Inhibition 

It is believed that ER positive BC tumors develop resistance to ER targeted 

therapy as a consequence of increased signaling through one or more of the 

transmembrane growth factor receptors HER2, EGFR and IGFR (Massarweh et al., 

2008). Growth factor mediated activation of EGFR, IGFR and HER2 triggers the 

activation of two key proliferation-promoting pathways, the MAPK and PI3K/mTOR 
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pathways (Becker et al., 2011; Lange and Yee, 2011; Massarweh et al., 2008; Miller 

et al., 2011a; Zhang et al., 2011). Increased activation of PI3K signaling is linked to 

oncogenesis and resistance to cancer therapy (Ogita and Lorusso, 2011). Therapeutics 

inhibiting the downstream kinase mTOR have been successfully used to treat a subset 

of cancers, including lymphoma and BC and improved inhibitors are in the stages of 

clinical development (Baselga et al., 2009; Witzig et al., 2011). CycG2 expression in 

BC tumor cells is not only inhibited by E2 signaling, but is also negatively regulated 

by HER2/PI3K/Akt/mTOR pathway (Le et al., 2007; Stossi et al., 2006). Importantly, 

treatment of BC cell lines with rapamycin (Rapa) is known to upregulate CCNG2 

mRNA expression (Kasukabe et al., 2008; Le et al., 2007). In agreement with these 

earlier findings, treatment of both MCF7 BC cells and diffuse large B-cell lymphoma 

cell lines (SU-DHL 4, 8 and 16) induces a potent G1-phase arrest and upregulation of 

CycG2 protein expression (Figure 3-25 and Figure 3-26). Moreover recent studies 

indicate that CCNG2 transcripts are downregulated following stimulation of IGFR 

signaling in BC cells (Casa et al., 2011). Thus elevation of HER2 and IGFR signaling 

through PI3K/Akt/mTOR would be predicted to limit CycG2 associated cell cycle 

inhibitory activity that restricts tumor growth. 

Interestingly, use of the widely prescribed anti-diabetic drug metformin (Met) has 

recently been linked to reduce cancer incidence in treated patients (Evans et al., 

2005). Treatment of BC cells with Met activates the AMP activated protein kinase 

(AMPK) that negatively regulates mTOR activity via activation of TSC2 and 

induction of G1/G0-phase cell cycle arrest (Ben Sahra et al., 2010). In agreement with 

this, treatment of the BC cell line MCF7 with Met induces G1-phase cell cycle arrest 

characterized through a reduction in DNA synthesis and reduced CycD1 protein 

levels (Figure 3-27 and Figure 3-28). Simultaneously, CycG2 protein levels are 

increased in MCF7 cultures and in the normal breast cell line MCF10a treated with 

Met (Figure 3-28). Blockade of CycG2 induction via shRNA mediated KD results in 

increased expression of CycD1 protein and in a decreased G1-phase arrest (Figure 

3-28 and Figure 3-29). This indicates CycG2 KD blocks Met induced CycD1 

downregulation and thereby promotes cell cycle progression. By extension, these 

results suggest that CycG2 expression likely contributes to Met-induced cell cycle 

arrest through signaling pathways that restrict CycD1 expression. It is notable that KD 
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of CycG2 relieves the repression of both CycD1 expression and cell cycle progression 

that is imposed by ER antagonists and mTOR inhibitor Met. Co-inhibition of multiple 

signaling pathways such ER and mTOR signaling has been proposed as an effective 

treatment regimen for endocrine resistant BCs. Results presented in this work, 

demonstrate that the elevation of CycG2 levels contributes to the cell cycle inhibitory 

effects of the discussed BC therapeutics and that its expression could be an important 

prognostic indicator for treatment choice and outcome. 

4.4 Potential Contribution of CycG2 to Growth Control in TSC 

Tumor growth in TSC patients is promoted by mutational inactivation of either of 

the mTOR regulatory proteins, TSC1 or TSC2. Loss or inhibition of TSC1 or 2 leads 

to mTOR hyperactivation (Crino et al., 2006; Orlova and Crino, 2011). Cell growth in 

these tumors is thought to be limited by an mTOR-dependent negative feedback 

mechanism, that inhibits Akt signaling through blockade of the insulin receptor 

substrate (IRS) signaling downstream of growth factor receptors (Harvey et al., 2008; 

Zoncu et al., 2011). The inhibition of mTOR activity by Rapa and its derivatives has 

been proposed as a therapeutic option for TSC patients (Bissler et al., 2008; Ozcan et 

al., 2008). As noted above, CycG2 expression is upregulated in human BC cell lines 

in response to Rapa treatment (Kasukabe et al., 2008; Le et al., 2007). The function of 

CycG2 in growth control in TSC and its contribution to the cell cycle inhibitory 

effects of Rapa, however, are not clear. 

Consistent with previous work (Kasukabe et al., 2008; Le et al., 2007), mTOR 

inhibition via Rapa treatment robustly increased CycG2 expression levels in both 

normal (IMR90, GM00637) and TSC-deficient (6100, 6121, 2332) primary human 

fibroblasts (Figure 3-33). Given that basal CCNG2 mRNA of non-treated TSC 6100 

and 2332 cells were higher (Figure 3-31) it is not surprising that the Rapa-induced 

upregulation of CCNG2 transcript levels was greatest in IMR90 and TSC 6121 

cultures that showed lower basal CCNG2 mRNA level. The expression of the FOXO 

target, p27, appears to be lower in TSC cell lines and Rapa treatment only leads to a 

modest increase, whereas CycD1 level are elevated in TSC cell lines and strongly 

reduced following Rapa treatment (Figure 3-33). Importantly, Rapa-induced 

upregulation of CycG2 in WT cells appeared to be independent of FOXO TF 
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activation as the increase was concurrent with increase in phospho-activated forms of 

Akt and phospho-inhibited forms of FOXO1 and FOXO3a (Figure 3-33). The results 

suggest that long-term Rapa mediated inhibition of mTOR in human fibroblasts 

abolishes the TORC1 driven negative feedback loop to inhibit Akt activity. Sustained 

Akt activation then leads to the inhibition of FOXO TFs (Hay, 2011; Huang and 

Manning, 2009). However, the basal levels of phospho-inhibited FOXO3a/FOXO1 in 

the TSC deficient cell lines appeared to be lower than in the WT cells, consistent with 

the idea that, chronic activation of mTORC1 in TSC deficient cells constitutively 

inhibits Akt signaling and in turn increases FOXO TF transcriptional activity (Harvey 

et al., 2008; Huang and Manning, 2009). Comparison of Rapa-induced modulation of 

gene expression shows that CycG2 mRNAs were more potently upregulated 

compared to CCNG1 and CKI p27, but similar to the pro-apoptotic FOXO target Bim 

(Figure 3-34). This suggests that, a FOXO-independent mechanism induces growth 

inhibition and the upregulation of both, CycG2 and Bim. 

The Rapa induced CycG2 upregulation coincides with a G1-phase cell cycle arrest 

(Figure 3-32) that was diminished after CycG2 KD in two TSC and in the WT control 

cell lines (Figure 3-36). Similar experiments show that CycD1 protein levels decrease 

with Rapa treatment but stayed elevated in CycG2 KD cultures (Figure 3-36). This 

indicates that loss of CycG2 expression promotes upregulation of CycD1 and thus cell 

cycle progression. CycG2 expression may contribute to the cell cycle inhibitory 

response of both WT and TSC cells to mTOR inhibition. Even in the untreated cell 

populations, expression of the CCNG2-targeting shRNAs seemed to reduce the 

percentage of cells with a G1-phase DNA content relative to shRNA control cells, 

consistent with the idea that CycG2 expression delays progression of cells from G1- 

into S-phase.  

Loss of TSC function results in the induction of endoplasmic reticulum stress 

(ERS) and activates the unfolded protein response in TSC tumors (Ozcan et al., 2008). 

To determine whether CycG2 upregulation during ERS modulates cell proliferation, 

the same molecular and cellular biology methods as for Rapa treatment were used. 

Induction of ERS response by thapsigargin (Thap) treatment robustly increased both 

CycG2 mRNA and protein expression in the tested cell lines (Figure 3-38), with the 

most robust increase seen for treated IMR90 and TSC 6121 fibroblasts, the cell lines 
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that showed the lowest basal CCNG2 transcription level (Figure 3-31). CycG2 

upregulation by Thap treatment correlated with the induced G1-phase cell cycle arrest 

(Figure 3-37). Notably, in contrast to what was seen in fibroblasts treated with Rapa, 

expression of the phosphorylated forms of FOXO1 and FOXO3a were repressed upon 

treatment with Thap (Figure 3-38), suggesting that the more dramatic upregulation of 

CycG2 expression under these ERS-inducing conditions could occur through 

increased FOXO1/3a transcriptional activation of CCNG2. Comparison of Thap-

induced modulation of gene expression indicates that CycG2 mRNAs were more 

potently upregulated than p27 and but similar to the robust increase in Bim mRNA 

levels. As expected, Thap also substantially increased the transcription of the ERS 

responsive TF, C/EBP homologous protein (Chop) (Figure 3-39). The expression of 

CycG1 was again only modestly influenced by ERS induction. This would indicate 

that CycG2 plays a more central role in regulating cell cycle responses to mTOR 

inhibition and ERS than either its closest homolog CycG1, or the FOXO TF target 

protein and CDK inhibitor p27. 

To assess the contribution of CycG2 upregulation to the cell cycle inhibitory 

effects of Thap-induced ERS, CycG2 was depleted in WT and TSC cell lines (Figure 

3-35). Immunoblot analysis showed that CycG2 KD had did not blunt Thap-induced 

upregulation of either Chop or BIP (Figure 3-40). Robust upregulation of p27 protein 

level was only observed in Thap-treated IMR90 cells (Figure 3-40), and was largely 

maintained in both CycG2 KD and control cell cultures. This suggests that the Thap-

mediated cell cycle arrest in the TSC lines does not require increased expression of 

p27. It is notable that expression of the phospho-activated forms of Akt (which act to 

repress FOXO activity) was strongly repressed in all Thap-treated cultures, 

irrespective of the transduced shRNA expression vector. The data indicated that the 

increase in CycG2 expression following Rapa-mediated inhibition of mTOR is not 

FOXO-dependent; whereas, Thap induced ERS appears to reduce active forms of Akt 

and disinhibition of FOXO TFs. The potent upregulation of CycG2 during Thap 

stimulation could therefore occur through direct FOXO mediated transcriptional 

activation of CCNG2. Importantly, as seen with CycG2 KD cells treated with ER 

antagonists and mTOR inhibitors, CycD1 levels increased in Thap-treated cultures 

expressing the CCNG2-targeting shRNAs (Figure 3-40), suggesting that loss of 
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CycG2 expression promotes upregulation of CycD1 and thus cell cycle progression. 

Indeed, cell cycle analysis of Thap-treated cultures indicated that CycG2 KD can at 

least modestly blunt the G1-phase cell cycle arrest response (Figure 3-40). The data 

suggest that one mechanism by which CycG2 upregulation might inhibit cell cycle 

progression is through the reduction of CycD1 expression levels. 

These results point to a role for CycG2 in mTOR inhibitor and ERS mediated 

repression of fibroblast proliferation. Together with the findings outlined in 3.3 and 

4.3, these results suggest that CycG2 is a Rapa and Met stimulated ERS response 

protein that restricts cell cycle progression and could play a role in limiting tumor 

growth in TSC.  

4.5 Future Directions 

The results presented in this work show that DNA DSB induced CycG2 

expression is not ATM dependent, but suggests the involvement of ATR. Additional 

information regarding the upstream regulators of CycG2 expression in the DDR may 

be informative. Through the utilization of specific ATR and DNA-PK inhibitors as 

well as ATR/DNA-PK siRNA or KO cell lines, the DDR kinase pathway could be 

further delineated. Also an open question is the precise mechanism by which CycG2 

could repress the Cdc25B/Cdc2/CycB1 pathway during DDR to DSBs. Cdc25B is 

known to be regulated at the transcriptional level and via phosphorylation mediated 

degradation through the proteasome pathway. Further dissecting the mechanism of 

CycG2 in these processes would be useful in understanding the involvement of 

CycG2 in cell cycle control. 

Distinct from the DNA damage checkpoint function of CycG2 is its role in 

restricting the G1/S transition in response to the inhibition of E2 signaling. We 

hypothesize that CycG2 acts as a positive regulator of associated CDK10 activity and 

that loss of CycG2 results in the enhanced ability of Ets2 to promote RAF1 

expression. However, it is yet unclear if CycG2/CDK10 complexes contain kinase 

activity. Analysis of how CycG2 binding to CDK10 influences its inhibitory 

properties toward Ets2 would be required to better define the relationship between 

these two regulators of E2-dependent growth. Site directed mutagenesis of residues in 

CycG2 that are implicated in cyclin/CDK binding would give further insight into the 



Discussion 

 

94 

 

binding characteristics of CycG2 to CDK10. Furthermore, the expression of siRNA-

resistant CycG2 point mutants, deficient in PP2A or CDK-binding, in CycG2 KD cell 

lines would be helpful to elucidate the mechanisms behind CycG2-mediated cell cycle 

inhibitory effects. Analysis of mutant CycG2 properties on associated phosphatase 

and kinase activity, as well as cell cycle progression would provide a better 

understanding in the mechanism behind CycG2 actions.  

To further confirm the preliminary results of CycG2’s involvement in the cell 

cycle restriction of primary human fibroblasts responding to Rapa and ERS, 

additional repeat experiments are necessary. Given that the TSC cell lines expressed 

different levels of basal CycG2 and varied in the degree of their responses to CCNG2 

KD, additional experiments would be particularly informative. The variations 

exhibited by the different TSC fibroblast lines may originate from their diverse 

genetic background that is not well characterized. To circumvent this problem TSC2 

negative MEFs, isolated from knockout mice, could be obtained to further analyze the 

role of CycG2 in cell cycle restriction in TSC. As an alternative, laboratory cell lines 

with a well-characterized genetic background could be utilized through RNAi-

mediated stable suppression of TSC expression.  

The generation of CycG2 KO mice would provide central information about 

CycG2 functions in organismal development, cell differentiation and cancer 

formation. 
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5. Summary 

Cancers develop as the result of uncontrolled proliferation, growth and metastasis 

of aberrantly differentiated cells. CycG2 is an unconventional cyclin homolog linked 

to inhibition of cellular proliferation and promotion of cell differentiation. Expression 

of the CycG2 gene, CCNG2, is repressed in variety of human cancers. Reduced 

CCNG2 transcript levels are found in more aggressive, poor-prognosis breast cancer 

(BC) subtypes, compared to normally differentiated breast tissues, and are elevated in 

tumor cells responding to cancer therapies. This thesis addresses the question of 

CycG2’s contribution to the cell cycle inhibitory responses of tumor cells to 

chemotherapeutics and growth inhibitory drugs; namely, DNA damaging 

topoisomerase II poisons, estrogen signaling inhibitors, mTOR signaling inhibitors 

and drugs that induce endoplasmic reticulum stress (ERS). 

Evaluation of previous findings suggested that CycG2 could be a DNA damage 

response (DDR) protein that participates in DNA damage checkpoint regulation. This 

thesis further defines the involvement of CycG2 in the DDR signaling pathway. 

Ectopic expression of CycG2 promotes phosphorylation of the DDR checkpoint 

kinase Chk2 on an activational target site. Furthermore, induction of DNA double 

strand breaks (DSBs) through treatment with the chemotherapeutic doxorubicin (Dox) 

induces CycG2 expression that correlates with the induced cell cycle arrest and the 

activation of DDR proteins. Transient and stable shRNA mediated knockdown (KD) 

of CycG2 attenuates the G2/M checkpoint arrest response of multiple cell lines caused 

by the Dox-induced DNA damage. Furthermore, KD of CycG2 blunts the DDR-

triggered reduction in Cdc25B levels, inhibitory-phosphorylation of Cdc2 and 

accumulation of CycB1, which are important processes for a potent G2/M checkpoint 

arrest. Thus, CycG2 may participate in the enforcement and maintenance of G2/M 

checkpoints by limiting the Cdc25B-mediated promotion of CycB1/Cdc2 activity.  

The role CycG2 plays in the anti-proliferative responses of BC cells to estrogen 

(E2)-signaling deprivation was analyzed in a second study. CycG2 expression is 

elevated in E2-deprived cells, but reduced in E2-stimulated cells. CycG2 KD 

diminishes the cell cycle arrest response following inhibition of E2 signaling. In 

addition, these clones showed elevated levels of the growth promoting cyclin, CycD1, 
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and elevated activation of the growth factor signaling cascade, mitogen activated 

protein kinase (MAPK), pathway. These results indicate that loss of CycG2 

expression may promote the development of BC tumor cell resistance to E2 

antagonizing therapeutics by stimulating the activation of the MAPK pathway. 

Importantly, results presented here show that CycG2 can associate with the cyclin 

dependent kinase (CDK) 10, which was recently implicated as an upstream repressor 

of MAPK signaling. Thus suggesting that the resistance of BC cells to the inhibition 

of E2 signaling that is acquired following CycG2 KD could result from loss of 

CycG2-mediated stimulation of CDK10 activity. 

CycG2 expression is upregulated following inhibition of the growth promoting 

kinase mTOR and the induction of ERS. KD of CycG2 expression in multiple cell 

lines induces CycD1 expression and attenuates cell cycle arrest responses to 

treatments with rapamycin, metformin and thapsigargin. These results suggest that 

CycG2 expression restricts proliferation of cells responding to mTOR inhibition 

(rapamycin and metformin) and ERS-induction (thapsigargin). The data further 

indicate that rapamycin-induced CycG2 expression is not dependent on FOXO TF 

expression. In contrast, the potent upregulation of CycG2 expression triggered by 

thapsigargin is likely the consequence of the FOXO TF activity at the CCNG2 

promoter.  
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6. Zusammenfassung 

Die Entwicklung von Krebs ist die Folge von unkontrollierter Zellproliferation, 

Zellwachstum und Bildung von Metastasen aus abnormal differenzierten Zellen. Das 

unkonventionelle Cyclin, CycG2, ist wichtig für Zellzykluskontrolle und Förderung 

von Zelldifferenzierung. Die Expression des Gens für CycG2, CCNG2, ist in vielen 

Krebsarten vermindert. Die Expression von CCNG2 ist erhöht in chemotherapeutisch 

behandeltem Brustkrebs (BC), ebenso wie in normalen Brustgewebe. Eine geringe 

Expression von CCNG2 wird unter anderem mit einem aggressivem 

Krankheitsverlauf und schlechteren Heilungschancen assoziiert. Im Rahmen dieser 

Arbeit wurde die Rolle von CycG2 im durch Chemotherapeutika und 

wachstumsinhibierende Medikamente ausgelösten Zellzyklusarrest untersucht. 

Genauer gesagt wurde der Einfluss von CycG2 auf Behandlung mit DNA 

schädigenden Topoisomerase II Giften, Inhibitoren von wachstumsstimulierendem 

Östrogen und mTOR Signalvermittlungswegen sowie Medikamenten die Stress des 

Endoplasmatischen Retikulums (ERS) auslösen, untersucht.  

Es wurde gezeigt, dass die Expression von CCNG2 durch die von DNA Schäden 

ausgelöste Zellantwort (DDR) induziert wird und wichtig ist für die Regulation von 

Zellzyklus-checkpoints. Diese Arbeit untersucht die genaue Funktion von CycG2 in 

der Regulation des DDR Signalweges. Gezielte Überexprimierung von CycG2 führt 

zu einer Aktivierung von verschieden Komponenten des DDR Signalweges und 

einem Zellzyklusarrest in der G1-Phase. Die Behandlung von Zellen mit dem 

Chemoterapeutikum Doxorubicin (Dox) induziert DNA Doppelstrangbrüche (DSB) 

und einen Zellzyklusarrest in der G2-Phase. Damit einher geht ein Anstieg der CycG2 

Expression und die Aktivierung des DDR Signalweges. Der zeitliche Ablaufs dieser 

Vorgänge lässt darauf schließen, dass die Expression von CycG2 in der späten Phase 

des DDR Signalweges induziert wird. Zudem vermindert ein transienter und stabiler 

knockdown (KD) von CycG2 den Dox-induzierten G2/M Checkpointarrest in 

verschiedenen Zelllinien. Die Ergebnisse verdeutlichen, dass die Expression von 

CycG2 notwendig ist für die Durchsetzung des DDR induzierten Zellzyklusarrest. 

Des Weiteren wurde im Rahmen dieser Arbeit, die Rolle von CycG2 mit Hilfe 

stabiler CycG2 KD Zelllinien in der endokrinen Brustkrebstherapie untersucht. 
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Behandlung von BC mit Inhibitoren des Östrogensignalweges führt zu einer 

Erhöhung der Expression von CycG2 und einem Zellzyklusarrest in der G1-Phase. Die 

CycG2 KD Zelllininen zeigen im Vergleich zu normalen Brustkrebszellen nach der 

Inhibierung des Östrogensignalweges eine verminderte Arrestreaktion und einen 

erhöhten Expressionslevel des proliferationsstimulierenden Proteins CycD1. 

Außerdem wurde gezeigt, dass die Aktivität des wachstumsstimulierenden mitogen-

activated protein kinase (MAPK) Signalweges in den CycG2 KD Zelllinien erhöht ist. 

Eine unkontrollierte Aktivierung des MAPK Signalweges steht in Verbindung mit der 

Entwicklung von Resistenz des BC Tumors gegen Östrogenrezeptor-antagonisten. 

Zusätzlich wurde mit CDK10 ein neuer Bindungspartener für CycG2 identifiziert. Der 

Verlust von CDK10 Expression steht in Verbindung mit einer erhöhten Aktivität des 

MAPK Signalweges. Diese Ergebnisse lassen darauf schließen, dass die Entwicklung 

von Resistenzen gegen die Inhibierung des Östrogensignalweges in BC Tumoren 

durch den Verlust von CycG2 Expression gefördert wird, wahrscheinlich durch den 

Verlust der CycG2 vermittelten CDK10 Aktivität. 

In einem weiteren Projekt wurde die Funktion von CycG2 in der Hemmung des 

Zellzykluses in Folge der Behandlung mit mTOR Inhibitoren (Rapamycin und 

Metformin) und ERS Auslösern (Thapsigargin) untersucht. Es wurde gezeigt dass die 

Zellzyklusarrestreaktionen nach der Behandlung mit Rapamycin, Metformin und 

Thapsigargin in CycG2 KD Zelllinen reduziert sind und sich gleichzeitig die 

Expression des proliferationsstimulierenden CycD1 erhöht. Diese Ergebnisse zeigen, 

dass die Expression von CycG2 die Zellproliferation begrenzt und in Folge 

Zielgerichteter Therapieformen das Tumorwachstum von mehreren Zellarten limitiert. 
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4OHT    tamoxifen 

AMPK AMP activated protein kinase 

APC/C anaphase promoting complex  

/cyclosome 

ATM ataxia telangiectasia mutated 

ATR   ATM and Rad3 related 

BC   breast cancer 

CDK   cyclin dependent kinase 

CKI   CDK inhibitor 

Cyc   cyclin 

DDR   DNA damage response 

Dox   doxorubicin 

DSB   double strand break 

E2   estrogen/estradiol 

EGFR epidermal growth factor 

receptor 

ER   estrogen receptor 

ERE estrogen responsive element 

ERK extracellular signal regulated 

kinase 

ERS endoplasmic reticulum stress 

EtOH   ethanol 

ETP   etoposide 

FACS fluorescence activated cell 

sorting 

FBS   fetal bovine serum 

FRE   FOXO response element 

FOXO   forkhead box O 

GAPDH glyceraldehyde-3-phosphate 

dehydrogenase 

GFP   green fluorescent protein 

HDAC   histone deacetylase 

HER2 human epidermal growth factor 

receptor 2 

ICI fulvestrant 

IGFR   insulin-like growth factor 

IP   immunoprecipitation 

IRS   insulin receptor substrate 

KD   knockdown 

MAPK mitogen activated protein kinase 

MEK   MAPK/ERK kinase 

MeOH   methanol 

MRN   Mre11-Rad50-Nbs1 

mTOR mammalian target of rapamycin 

NBS1 Nijmegen breakage syndrome1 

NHEJ non-homologous end-joining 

PCR   polymerase chain reaction 

PI3K   phosphatidylinositol 3-kinase 

PIKK   PI3K related kinase 

PIP3 phosphatidylinositol 3,4,5-

trisphosphate 

PP2A   protein phosphatase 2A 

qRT-PCR quantitative real time PCR 

Rapa   rapamycin 

Rheb Ras homologue expressed in 

brain 

S6K   S6 kinase 

SCF   Skp1/Cul1/F-box protein 

SERD selective estrogen receptor 

downregulators 

SERM selective estrogen receptor 

modulators 

TF   transcription factor 

Thap   thapsigargin 

TSC   tuberous sclerosis complex 

UPR   unfolded protein response 

UPS   ubiquitin proteasome system 
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