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Zusammenfassung 
 ADAMs sind Transmembranproteine mit einer Disintegrin- und Metalloprotease-Domäne (A 

Disintegrin and Metallprotease). Entsprechend dieser funktionellen Domänen sind sie an Zell-

Zell-Fusion und -Adhäsion sowie an der Proteolyse von Membranproteinen wie Rezeptoren, 

Zelladhäsions- und Signalmolekülen beteiligt. ADAMs erfüllen wichtige Funktionen bei der 

Fertilisation, Myogenese und Neurogenese und sind an der Metastasierung verschiedener 

Krebszellen beteiligt. Einige physiologisch relevante ADAM-Substrate sind bekannt. Es 

wurden bislang jedoch wenige systematische Analysen zur Bestimmung von ADAM-

Substraten sowie zur Bestimmung von ADAM-Expressionsmustern in verschiedenen 

Geweben durchgeführt. Der Schwerpunkt der vorliegenden Arbeit liegt auf der 

Proteasefunktion des Familienmitglieds ADAM8 sowie der systematischen Suche nach neuen 

physiologisch relevanten Substraten. 

Für die systematische Suche nach neuen ADAM8-Substraten wurden in vitro Spaltungstests 

mit fluoreszierenden Peptid-Substraten und löslichen, rekombinanten Formen von ADAM8-

Protease durchgeführt. Etwa 40 Peptide wurden als potentielle ADAM8-Substrate ausgewählt. 

Diese Peptide wurden entweder von bekannten Peptid-Substraten anderer Metalloproteasen 

oder von membrannahen Bereichen möglicher Metalloprotease-Substrate abgeleitet. ADAM8 

wird im Organismus durch entzündliche Stimuli aktiviert. Die Suche nach Substraten wurde 

deshalb schwerpunktmäßig mit Peptiden durchgeführt, die von Zytokinen oder anderen 

Molekülen, die an Entzündungsprozessen beteiligt sind, abgeleitet wurden. Durch in vitro 

Spaltversuche wurden neue Kandidaten-Substrate für ADAM8 bestimmt. Zusätzlich ergaben 

sich durch diese Tests Hinweise für bevorzugte Aminosäuren im Bereich der Spaltstelle von 

ADAM8 Peptid-Substraten. Bislang ist keine Konsensus-Sequenz für ein Spaltmotiv bekannt, 

es konnten jedoch in dieser Arbeit minimale Notwendigkeiten für die Spaltung bestimmt 

werden. 

Als Beispiel einer sehr spezifischen Protease-Substrat Beziehung wurde das 

Zelladhäsionsmolekül CHL1 (Close Homologue of L1) als Substrat für ADAM8 identifiziert. 

Durch biochemische Studien wurde die physiologische Relevanz dieser Protease-Substrat-

Beziehung bestätigt. Dabei stellte sich heraus, dass CHL1 ein physiologisches Substrat für 

ADAM8 ist. In in vivo Studien förderte die von ADAM8 abgespaltene lösliche Form von 

CHL1 das Neuritenwachstum und unterdrückte neuronalen Zelltod. Basierend auf den 

Ergebnissen der Peptid-Tests werden die zugehörigen Proteine gespaltener Peptide ebenfalls 

in weiteren physiologischen Tests auf die physiologische Relevanz als ADAM8-Substrate 

untersucht. Bislang konnte gezeigt werden, dass das Amyloid Precursor Protein (APP) in Ko-
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Transfektionsexperimenten in Zellkultur ebenfalls von ADAM8 gespalten wird und dass der 

Tumor Nekrose Faktor Rezeptor 1 (TNF-R1) in Geweben von ADAM8 defizienten Mäusen 

in geringerem Umfang gespalten wird als in entsprechenden Wildtyp-Geweben. 

In einem parallelen Projekt wurde eine Methode für die Detektion von ADAM-Aktivitäten in 

Zellkultur und in Lysaten von primären humanen Gehirntumoren entwickelt. Unter 

Verwendung von ADAM8 beziehungsweise ADAM19 spezifischen Peptid-Substraten 

wurden erhöhte Protease-Aktivitäten dieser ADAMs in bestimmten Gehirntumor-Typen 

nachgewiesen. 
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Summary  
ADAM proteins are transmembrane multidomain proteins with A Disintegrin And 

Metalloprotease domain. Due to these functional domains, they are involved in cell-cell 

fusion or adhesion events as well as in proteolysis of membrane proteins such as receptors, 

cell adhesion and signalling molecules. They serve essential function in fertilisation, 

myogenesis and neurogenesis and have potential implication for metastasis of cancer cells. 

Although a number of ADAM substrates have been determined, comparatively little work was 

performed on the systematic substrate search and on determination of ADAM expression 

patterns in different tissues. In the work presented here, I have focused on the protease 

domain of ADAM8 by searching for new, physiologically relevant substrates. 

A systematic method was established in order to find new ADAM8 substrates. A collection of 

fluorogenic peptides was designed for in vitro cleavage assays with soluble forms of 

ADAM8. The peptides were derived from known peptide substrates of other ADAMs or from 

juxtamembraneous regions of supposed metalloprotease substrates. With the main focus on 

inflammatory diseases, most of the peptides were derived from cytokines or from molecules 

involved in inflammatory processes. This in vitro peptide assay was supposed to indicate new, 

potential ADAM8 substrates. In addition, this approach provided comprehensive information 

on preferred amino acids of ADAM8 peptide substrates to define the minimal requirements 

for cleavage as so far no consensus sequence is known for ADAM8 substrates.  

In previous work, the cell adhesion molecule CHL1 was identified as an in vitro substrate of 

ADAM8. In further biochemical studies, CHL1 turned out to be a physiological substrate of 

ADAM8, with the released CHL1 molecule promoting neurite outgrowth and suppressing 

neuronal cell death. Based on the peptide cleavage assays, corresponding proteins are further 

examined in vivo concerning the physiological relevance as ADAM8 substrates. In 

biochemical studies, the amyloid precursor protein (APP) was also cleaved in co-transfection 

experiments in cell culture, and shedding of the tumour necrosis factor receptor I (TNF-R1) 

was decreased in ADAM8 knockout tissues in comparison to corresponding wild type tissues.  

A challenging task in the analysis of ADAM proteins is the specific definition of their 

proteolytic activities. In a parallel project I have worked out a method for the detection of 

ADAM activities in cell culture and in protein extracts from primary human brain tumours. 

By using specific peptides for ADAM8 and ADAM19, respectively, it was demonstrated that 

the proteases exerted enhanced proteolytic activity in certain brain tumour specimens.  
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1. Introduction  
The physiology of cells is regulated by intracellular as well as by extracellular signals. The 

extracellular matrix is a repository of molecules involved in cell differentiation, cell 

proliferation and cell migration – important processes in development and regeneration but 

also in inflammation and disease.  

Among other molecules, extracellular matrix proteases play important roles in these processes 

by enabling cell migration via degradation of matrix components or cell communication via 

release of signal molecules. The ADAMs form a group of membrane-type metalloproteases 

which have, in addition to the extracellular protease function, an extracellular binding site for 

integrins and intracellular binding sites for molecules involved in cell signalling. ADAMs are 

therefore able to mediate cell adhesion by heterophilic or homophilic cell-cell or cell-matrix 

interactions and to disrupt cell adhesion or to activate signal transduction pathways by the 

specific release of cell adhesion molecules, cytokines, receptors or other molecules. 

Specific protease-substrate relationships are important for development and maintenance of 

cell systems, but do also play a role in their pathology. The cell adhesion molecule L1 is 

released from the cell surface by ADAM10 (Mechtersheimer et al., 2001) and the soluble 

form of L1 is able to suppress neuronal cell death (Chen et al., 1999). Defects in proteolysis 

of L1 may have pathological consequences in the nervous system. Tumour necrosis factor 

alpha (TNF-α) is released from the membrane by ADAM17 (Black et al., 1997; Moss et al., 

1997). The soluble form of TNF-α acts as a proinflammatory cytokine with a dual role in the 

nervous system: on the one hand it is implicated to trigger neuronal cell death (Knoblach et 

al., 1999; Venters et al., 1999), and on the other hand it can have neuroprotective effects 

(Bruce et al., 1996; Tarkowski et al., 1999). 

In several diseases such as allergic asthma (King et al., 2004), the involvement of ADAMs 

was demonstrated. Concerning the expanding physiological roles for ADAMs and their 

substrates, the interest in identification and functional characterisation of ADAM-substrate 

relationships is increasing. Further knowledge about ADAM expression patterns under 

specific pathological conditions as well as analysis of new ADAM substrates may help to 

understand the complex regulation of cell systems and the cause of disease. 
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1.1 A Disintegrin And Metalloprotease (ADAM) 

Numerous zinc metalloproteases contain a consensus motif “HEXXHXXGXXH” in their 

catalytic centre and a conserved methionine residue close to the zinc-binding active site. 

These enzymes referred to as metzincins can be grouped into four families, the astacins, the 

adamalysins, the serralysins and matrix metalloproteases (Stocker and Bode, 1995). The 

metzincins share a similar catalytic reaction mechanism in which the three conserved 

histidines coordinate the zinc ion, whereas the glutamic acid polarises a zinc-bound water 

molecule for nucleophilic attack of the scissile peptide bond of a bound substrate (Stocker and 

Bode, 1995). 

 

 
 

ADAM proteins form a large and widely expressed subfamily of the adamalysins with high 

homology to the snake venome metalloproteases (SVMP). Chantry et al. (1989) discovered a 

metalloprotease in brain myelin membrane preparations degrading myelin basic protein 

(MBP) which later turned out to be ADAM10. ADAM1 and ADAM2 were originally 

identified as alpha und beta subunits of the sperm surface protein PH-30 which formed a 

complex involved in sperm-egg fusion. In this complex, the alpha domain contained a fusion 

peptide typical for viral fusion proteins, and the beta subunit contained a domain related to 

soluble integrin ligands found in snake venoms (Blobel et al., 1992; Wolfsberg et al., 1993). 

Finally, the ADAMs were identified as one large gene family encoding proteins with a 

disintegrin and metalloprotease domain (Wolfsberg et al., 1995). At present, 39 ADAMs in 

various species are known (http://www.people.virginia.edu/%7Ejw7g/Table_of_the_ 

ADAMs.html), about half of them are expected to be catalytically active based on their 

conserved consensus sequence. ADAMs are type I membrane proteins with a multidomain 

Figure 1.1-1: The catalytic 
centre of the Metzincins.  
A zinc ion (black) is complexed 
by 3 histidine residues (blue) of 
the consensus sequence in the 
catalytic centre. The glutamic 
acid (red) in this sequence is 
important for electron transfer 
during the catalytic cleavage 
reaction.  
(Bergers and Coussens, 2000; 
modified in Stocker and Bode, 
1995) 
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structure containing a pro, metalloprotease, disintegrin-like, cystein-rich, epidermal growth 

factor (EGF) like, transmembrane and cytoplasmic domain (Figure 1.1-2). According to 

different functional domains, ADAMs have multiple functions: catalytic activity via the 

metalloprotease domain, homophilic and heterophilic adhesion via the disintegrin and 

cysteine-rich domains and cell signalling via binding motifs in the cytoplasmic domain.  

 
 

 
1.1.1 The prodomain 

 

1.1.1 The prodomain 

ADAMs are expressed as inactive zymogens. Many ADAM proteases like ADAM9, 

ADAM10, ADAM17, and ADAM19 undergo proteolytic prodomain removal by furines or 

prohormone convertases. The respective recognition motifs RXR/KR are located in the hinge 

region located between the pro and the metalloprotease domain (Anders et al., 2001; Clarke et 

al., 1998; Kang et al., 2002; Roghani et al., 1999). Sequence alignment of this processing 

region reveals that ADAM8 as well as ADAM28 do not contain these consensus motifs. As 

both ADAMs show high homology to hemorrhagic snake venom proteases which are 

activated by autocatalysis, it was analysed whether ADAM8 and ADAM28 are processed in 

the same manner. In experiments in which Glutamate330 in the HEXXH consensus motif was 

exchanged by a glutamine (EQ-ADAM8), prodomain removal was completely abolished 

(Schlomann et al., 2002). A similar experiment performed with ADAM28 with the glutamate 

exchanged by alanine gave an identical result (Howard et al., 2000). In further experiments, 

EQ-ADAM8 co-transfected with a construct encoding the ectodomain of ADAM8 was 

activated by the ectodomain in cis during transport through the Trans-Golgi network. Co-

transfection of EQ-ADAM8 with a construct encoding the metalloprotease domain did not 

result in prodomain removal, allowing for the conclusion that the presence of the disintegrin 

domain influenced autocatalytic prodomain removal, e.g. by mediating the interaction of at 

least two ADAM8 molecules (Schlomann et al., 2002). 

transmembrane 

HEXXHXXGXXH
D 

signal/pro domain metalloprotease disintegrin EGF-like cytoplasmic 

Zn2+  

RX R/K R consensus 

Figure 1.1-2: Overview of the conserved domain structure of ADAMs 
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1.1.2 The metalloprotease domain 

ADAMs can act as proteolytic enzymes releasing membrane proteins from the cell surface – 

therefore referred to as “sheddases” – or cleaving proteins of the extracellular matrix. 

Proteolytic activity of ADAMs was first shown for ADAM10 cleaving MBP (Chantry et al., 

1989). Thereafter, ADAM17 was purified and characterised on the basis of its catalytic 

activity as TNF-α converting enzyme (TACE) able to cleave TNF-α to its mature form 

(Black et al., 1997; Moss et al., 1997). Meanwhile, ADAM8 (Choi et al., 2001; Schlomann et 

al., 2002), ADAM9 (Roghani et al., 1999), ADAM12 (Loechel et al., 1998), ADAM15 

(Martin et al., 2002), ADAM19 (Chesneau et al., 2003; Shirakabe et al., 2001), ADAM28 

(Howard et al., 2001) and ADAM 33 (Zou et al., 2004) have been shown to be catalytically 

active.  

ADAM substrates form a heterogeneous group of proteins with diverse function in the cell. 

Among them are receptors, growth factors, cytokines and cell adhesion molecules. Table 

1.1.2 shows an overview of a number of ADAM substrates, synonyms of protein names are 

listed in 6.5. For some substrates, a modified shedding was observed in cells lacking 

proteolytic ADAM activity. Accordingly, Peschon et al. (1998) proposed an influence of 

ADAM17 in shedding of pro-transforming growth factor receptor (TGF-α) and L-Selectin. As 

many of the substrates listed in table 1.1.2 were identified either on the basis of in vitro 

cleavage experiments with recombinant proteins or with peptides representing the 

juxtmembraneous regions of membrane proteins, it is not definite that they are all of 

physiological relevance (e.g. Amour et al., 2002; Chesneau et al., 2003; Fourie et al., 2003; 

Roghani et al., 1999; Zou et al., 2004). For some proteins, additional transfection experiments 

in vivo in cell culture were performed; e.g. shedding of CD23 and TRANCE by ADAM8 and 

ADAM19, respectively, was confirmed in co-transfection experiments, whereas ADAM19 

seemed to function as a negative regulator of kit ligand precursor (KL) shedding and 

ADAM33 of APP shedding (Chesneau et al., 2003; Fourie et al., 2003; Zou et al., 2004). 

In other studies, mouse models were used to examine physiological relevance of ADAM 

substrates. Sahin et al. (2004) and Weskamp et al. (2004) used cells isolated from ADAM 

knockout mice lacking different candidate-releasing enzymes to study shedding of different 

proteins. On the basis of these experiments, ADAM10 was identified as the main sheddase of 

pro-epidermal growth factor precursor (EGF) and betacellulin (BTC) and ADAM17 of 

epiregulin precursor, TGF-α, amphiregulin (AR), heparin-binding EGF-like growth factor 

precursor (HB-EGF) and low affinity neurotrophin receptor (p75NTR)(Sahin et al., 2004; 

Weskamp et al., 2004). 
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ADAM Substrate  Reference 
ADAM8 APP, amyloid beta A4 protein precursor (Amour et al., 2002) 
CD156a CD23, low affinity immunoglobulin epsilon Fc receptor (Fourie et al., 2003) 
MS2 CD27-L, CD27 ligand (Fourie et al., 2003) 
 CD30-L, CD30 ligand (Fourie et al., 2003) 
 CHL1, close homologue of L1  (Naus et al., 2004) 
 IL-1R, interleukin-1 receptor (Amour et al., 2002) 
  KL, kit ligand precursor  (Amour et al., 2002) 
  MBP, myelin basic protein (Schlomann et al., 2002) 
  TNF-α, tumour necrosis factor alpha (Amour et al., 2002) 
ADAM9 APP, amyloid beta A4 protein precursor (Koike et al., 1999; Roghani et al., 1999) 
MDC9 Beta Casein (Schwettmann and Tschesche, 2001) 
Meltrin γ CD23, low affinity immunoglobulin epsilon Fc receptor (Fourie et al., 2003) 
  Collagen XVII (Franzke et al., 2002) 
  Fibronectin (Schwettmann and Tschesche, 2001) 
  Gelatine (Schwettmann and Tschesche, 2001) 
 Insulin β chain (Roghani et al., 1999) 
 HB-EGF, heparin-binding EGF-like growth factor precursor  (Izumi et al., 1998) 
 IGFBP-3, insulin like growth factor binding protein 5 precursor  (Mohan et al., 2002) 
   KL, kit ligand precursor  (Roghani et al., 1999) 
  p75NTR, low affinity neurotrophin receptor (Roghani et al., 1999) 
  TNF-α, tumour necrosis factor alpha (Roghani et al., 1999) 
ADAM10 APP, amyloid beta A4 protein precursor  (Lammich et al., 1999) 
MADM BTC, betacellulin precursor (Sahin et al., 2004) 
Kuzbanian CD40-L, CD40 ligand  (Amour et al., 2002) 
  Collagen VI (Millichip et al., 1998) 
  CollagenXVII (Franzke et al., 2002) 
  CX3CL1, fractalkine precursor  (Hundhausen et al., 2003) 
  CXCL16, small inducible cytokine B16 precursor  (Abel et al., 2004; Gough et al., 2004) 
  Delta, notch ligand delta  (Qi et al., 1999) 
  EGF, pro-epidermal growth factor precursor  (Sahin et al., 2004) 
  Ephrin-A2, ephrin-A2 precursor (Hattori et al., 2000) 
  HB-EGF, heparin-binding EGF-like growth factor precursor  (Lemjabbar and Basbaum, 2002) 
 IL-1R, interleukin-1 receptor (Amour et al., 2000) 
  IL-6R-1, interleukin-6 receptor precursor (Matthews et al., 2003) 
  L1, neuronal cell adhesion molecule L1 precursor  (Mechtersheimer et al., 2001) 
  MBP, myelin basic protein  (Chantry et al., 1989) 
 N-Cadherin, neuronal-cadherin precursor (Reiss et al., 2005) 
  Notch, neurogenic locus notch protein precursor  (Lieber et al., 2002) 
  PrP, major prion protein precursor (Vincent et al., 2001) 
 TNF-α, tumour necrosis factor alpha (Lunn et al., 1997) 
ADAM12 Casein (Roy et al., 2004) 
Meltrin α Collagen IV (Roy et al., 2004) 
  Gelatine (Roy et al., 2004) 
  HB-EGF, heparin-binding EGF-like growth factor precursor  (Asakura et al., 2002) 
  IGFBP-3, insulin like growth factor binding protein 3 precursor  (Loechel et al., 2000) 
  IGFBP-5, insulin like growth factor binding protein 5 precursor  (Loechel et al., 2000) 
  P-LAP, placental leucine amino peptidase  (Ito et al., 2004) 
ADAM15 CD23, low affinity immunoglobulin epsilon Fc receptor (Fourie et al., 2003) 
MDC15 Collagen IV (Martin et al., 2002) 
Metargidin Gelatine (Martin et al., 2002) 
ADAM17 APP, amyloid beta A4 protein precursor (Buxbaum et al., 1998) 
CD156b AR, amphiregulin precursor  (Sunnarborg et al., 2002) 
TACE CD30-L, CD30 ligand  (Hansen et al., 2000) 
  CD40-L, CD40-ligand  (Contin et al., 2003) 
  Collagen XVII  (Franzke et al., 2002) 
 CSF-1-R, macrophage colony-stimulating factor receptor  (Rovida et al., 2001) 
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ADAM Substrate Reference 
ADAM17 CX3CL1, fractalkine precursor  (Garton et al., 2001) 
CD156b EBOV GP, ebola virus surface glycoprotein GP  (Dolnik et al., 2004) 
TACE Epiregulin, epiregulin precursor (Sahin et al., 2004) 
 GPIb-α, platelet glycoprotein Ib alpha chain  (Bergmeier et al., 2004) 
 GHS-R, growth hormone secretagogue receptor type I  (Zhang et al., 2000) 
 HB-EGF, heparin-binding EGF-like growth factor precursor  (Merlos-Suarez et al., 2001) 
 HER-4, receptor protein-tyrosine kinase ErbB-4 precursor  (Rio et al., 2000) 
 IL-1R-2, interleukin-1 receptor type II precursor  (Reddy et al., 2000) 
 IL-6R-1, interleukin-6 receptor precursor  (Althoff et al., 2000) 
 IL-15R-α, interleukin-15 receptor alpha chain precursor  (Budagian et al., 2004) 
 Insulin β chain (Roghani et al., 1999) 
 Jagged1, jagged1 precursor  (LaVoie and Selkoe, 2003) 
 L-Selectin (Peschon et al., 1998) 
 Mucin 1, mucin 1 precursor (Thathiah and Carson, 2004) 
 Notch1, neurogenic locus notch homolog protein 1 precursor  (Brou et al., 2000) 
  NRG, pro-neuregulin precursor  (Montero et al., 2000) 
  p75NTR, low affinity neurotrophin receptor (Weskamp et al., 2004) 
  PAR-1, proteinase activated receptor 1  (Ludeman et al., 2004) 
 GPV, platelet glycoprotein V  (Rabie et al., 2005) 
  PrP, major prion protein precursor (Vincent et al., 2001) 
  TGF-α, transforming growth factor alpha (Peschon et al., 1998) 
  TNF-α, tumour necrosis factor alpha  (Black et al., 1997; Moss et al., 1997) 
  TNF-R1, tumour necrosis factor alpha receptor 1 (Peschon et al., 1998) 
  TNF-R2, tumour necrosis factor alpha receptor 2 (Reddy et al., 2000) 
  TRANCE, TNF-related activation-induced cytokine (Lum et al., 1999) 
  V-CAM1, vascular cell adhesion molecule 1 precursor  (Garton et al., 2003) 
ADAM19 α-2-M, alpha-2-macroglobulin  (Wei et al., 2001) 
Meltrin β Insulin β chain (Chesneau et al., 2003) 
  KL, kit ligand precursor  (Chesneau et al., 2003) 
  NRG-1, pro-neuregulin-1 precursor  (Shirakabe et al., 2001) 
  TNF-α, tumour necrosis factor alpha (Chesneau et al., 2003) 
  TRANCE, TNF-related activation-induced cytokine (Chesneau et al., 2003) 
ADAM28 CD23, low affinity immunoglobulin epsilon Fc receptor (Fourie et al., 2003) 
  IGFBP-3, insulin like growth factor binding protein 3 precursor (Mochizuki et al., 2004) 
  MBP, myelin basic protein (Howard et al., 2001) 
ADAM33 α-2-M, alpha-2-macroglobulin  (Garlisi et al., 2003) 
  APP, amyloid beta A4 protein precursor (Zou et al., 2004) 
  Insulin β chain (Zou et al., 2004) 
   KL, kit ligand precursor  (Zou et al., 2004) 
  TRANCE, TNF-related activation-induced cytokine (Zou et al., 2004) 

 

 

Little is known about the substrate specificity of ADAMs. Many membrane-type substrates 

are released from cells near the cell surface, but it is not clear if structural characteristics or 

primary amino acid sequences are important for protease-substrate recognition. Structural 

characteristics might be important for interaction, e.g. with the disintegrin-domain, bringing 

protease and substrate into close proximity. Furthermore, ADAM specific motifs around the 

cleavage sites probably exist, as in vitro cleavage assays with oligo peptides derived from 

proteolytically sensitive sequences of shed proteins resulted in the same cleavage sites than 

assays with the complete proteins (Amour et al., 2002; Schlomann et al., 2002). 

Table 1.1.2: Overview of known ADAM substrates 
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Some work was done to define consensus sequences of ADAM cleavage sites. The low 

affinity immunoglobulin epsilon Fc receptor (CD23) is released from the cell surface by a 

metalloprotease to result in fragments of 37, 33 and 29 kDa (Mayer et al., 2002) and ADAM8 

is probably involved in the cleavage (Fourie et al., 2003). A hypothetical consensus sequence 

was constructed from the cleavage sites of these three fragments suggesting basic amino 

residues preferred at positions P1 and P2’ (Mayer et al., 2002). From computer models of 

enzyme-substrate complexes, a cleavage site with a serine or threonine residue in P1 position 

and a hydrophobic residue in P1’ position for ADAM10 was proposed (Manzetti et al., 2003). 

As metalloproteases are zinc dependent, chelators like EDTA or EGTA can be used for 

inhibition of ADAM catalytic activity. For many metalloproteases including ADAMs, 

peptide-like inhibitors designed on the basis of hydroxamates are used. The four known tissue 

inhibitors of metalloproteases (TIMP) are known to be physiological inhibitors of matrix 

metalloproteases (MMP). Whereas they inhibit MMPs effectively, they are not necessarily 

inhibitors of ADAM proteases. ADAM8 and 9 are not inhibited by any of the TIMPs (Amour 

et al., 2002; Schlomann et al., 2002). ADAM10, 12, 17 and 28 are inhibited by TIMP3 

(Amour et al., 2000; Amour et al., 1998; Loechel et al., 2000; Mochizuki et al., 2004). 

Furthermore, ADAM10 is inhibited by TIMP1 and ADAM28 by TIMP4 (Amour et al., 2000; 

Mochizuki et al., 2004). ADAM19 is known not to be inhibited by TIMP1 and 2 (Wei et al., 

2001). 

 

1.1.3 The disintegrin domain 

The ADAM disintegrin-like domain was proposed to function as integrin ligand, as it is 

highly homologous to small non-enzymatic peptides isolated from the venom of snakes that 

function as antagonists of integrins (Gould et al., 1990; McLane et al., 1998). These peptides, 

referred to as disintegrins, ideally present an RGD integrin-binding motif at the end of an 

extended loop structure which is called the disintegrin loop. However, this condition is only 

found in human ADAM15, whereas other disintegrin domains contain variant sequences in 

the disintegrin loop such as MLD or VGD (McLane et al., 1998).  

Indeed, several ADAMs have been reported to interact with integrins. ADAM2, 9, 12, 15 and 

23 are known to interact with different integrins, mainly integrins α6β1, αvβ3, α9β1, αvβ5, α5β1 

(Evans, 2001). ADAM15 is able to interact in an RGD-dependent manner with integrin αvβ3 

(Zhang et al., 1998) as well as in an RGD-independent manner with integrin α9β1 (Eto et al. 

2000). Eto et al. (2002) determined how these two integrins recognise the ADAM15 

disintegrin domain by mutational analysis. They found, that the RGD motif (residues 484-
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486) was critical for integrin αvβ3 binding, but other flanking regions were not. In contrast, 

the conserved motif RX(6)DLPEF flanking the RGD motif (residues 481-492) was critical for 

integrin α9β1 binding. This flanking motif is conserved among many ADAMs, but not in 

ADAM10 and 17. In contrast to ADAM1, 2, 3 and 9, integrin α9β1 did not bind to ADAM10 

and 17 disintegrin domains (Eto et al., 2002). Other data indicate that an ECD tripeptide is an 

adhesion mediating motif for ADAM2 and ADAM23 suggesting that an acetic residue is 

important for interaction with specific integrins as an alanine or a lysine substitution of the 

terminal aspartic residue resulted in a loss of function (Evans, 2001). ADAM28 was found to 

interact with integrin α4β1. As ADAM28 is expressed on lymphocytes and integrin α4β1 on 

leukocytes, this interaction has particular importance for the migration of lymphocytes 

(Bridges et al., 2002). Experiments with substitution mutants indicated that residues located 

outside of the ADAM28 disintegrin loop were important for integrin α4β1 recognition 

(Bridges et al., 2003). Recently it was demonstrated that functional interaction between 

ADAM17 and integrin α5β1 in trans orientation was inhibited by RGD peptides (Bax et al., 

2004).  

Interaction between integrins and disintegrin domains of ADAMs have mainly been 

characterised concerning sperm-egg binding (Evans, 2001). But these interaction are also 

important for muscle development, migration of lymphocytes, cell motility and modulation of 

proteolytic activity (Bax et al., 2004; Bridges et al., 2002; Nath et al., 2000; Zhao et al., 

2004). 

 

1.1.4 The cytoplasmic domain 

The cytoplasmic domains of ADAMs are thought to play a role in controlling functions of 

ADAMs like intracellular maturation, trafficking to the cell membrane and catalytic activity. 

They are less conserved than the ADAM extracellular domains, their sizes vary from 11 

residues for ADAM11 to 197 residues for ADAM13 (Poghosyan et al., 2002). Nevertheless, 

many ADAM cytoplasmic domains contain binding domains for Src homology 3 (SH3) 

domains. Furthermore, tyrosine residues in ADAM cytoplasmic domains can be substrates for 

tyrosine kinases or, when phosphorylated, binding domains for Src homology 2 (SH2) or 

phosphotyrosine-binding domains. Several proteins interacting with ADAM cytoplasmic 

domains have been identified by co-immunoprecipitation, yeast-two hybrid and other 

methods. 

The cytoplasmic domains of ADAM9 and 15 interact directly with the SH3 domain-

containing proteins endophilin I and SH3PX1, a protein containing a phox homology domain 
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in addition to a SH3 domain (Howard et al., 1999). Mitotic Arrest Deficient 2 (MAD2) was 

identified as a binding protein for ADAM17 and a MAD2-related protein, MAD2 β, as a 

binding protein for ADAM9 (Nelson et al., 1999). PKCδ binds to the cytoplasmic domain of 

ADAM9. Constitutively active PKCδ or ADAM9 resulted in shedding of proHB-EGF, 

whereas lack either of ADAM9 metalloprotease domain or PKCδ, suppressed TPA-induced 

shedding of the ectodomain (Izumi et al., 1998). Poghosyan et al. (2002) demonstrated 

specific interaction between cytoplasmic domain of ADAM15 and several Src family protein-

tyrosine kinases (PTKs) including Lck, Fyn, Abl, and Src and the adaptor protein Grb2 in 

vitro. As interaction was decreased by dephosphorylation of cell extracts, it is likely that the 

state of phosphorylation influences the interaction of ADAM15 cytoplasmic domain with its 

binding partners (Poghosyan et al., 2002). 

ADAM12 is an adhesion protein implicated in differentiation and fusion of myoblasts. The 

interactions of the cytoplasmic domain of ADAM12 with α-actinin 1 and 2, two actin-binding 

and cross-linking proteins, were discussed to play a role in regulation of myogenesis mediated 

by ADAM12 (Cao et al., 2001; Galliano et al., 2000). In further studies, ADAM12 

cytoplasmic domains were reported to interact with SH3 domains of Src and Grb2 (Kang et 

al., 2000; Suzuki et al., 2000) and to be phosphorylated by Src (Suzuki et al., 2000). Co-

expression of Src and ADAM12 in C2C12 muscle cells led to activation of recombinant Src 

(Kang et al., 2000). In the same cells, phosphatidylinositol (PI) 3-kinase was activated by 

ADAM12 cytoplasmic domain interacting with the SH3 domain of p85α regulatory subunit of 

PI 3-kinase (Kang et al., 2001). These results indicated that ADAM12 may mediate adhesion-

induced signalling during myoblast differentiation. 

ADAMs are implicated in signalling of epidermal growth factor receptor (EGF) by 

ectodomain shedding of EGF-R ligands. The corresponding activation mechanism of ADAMs 

remains elusive. Tanaka et al. (2004) identified a protein designated as Eve-1 as an ADAM12 

binding protein. As shedding of HB-EGF, TGF-α, AR and epiregulin was decreased in case 

of Eve-1 knockdown by small interfering RNA, it was proposed that Eve-1 plays a role in 

positively regulating ADAM activity (Tanaka et al., 2004). 
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1.2 ADAM8 

ADAM8 was originally cloned as MS2 or CD156a from macrophages (Yoshida et al., 1990). 

Later on, ADAM8 was identified as a catalytically active protease (Choi et al., 2001; 

Schlomann et al., 2002) with adhesive function of the disintegrin domain (Schlomann et al., 

2002; Schluesener, 1998). Analysis of ADAM8 knockout mice showed that ADAM8 is 

widely expressed during development, and also in the adult mouse (Kelly et al., 2005). 

ADAM8 is supposed to have various physiological functions such as involvement in 

inflammation in the nervous system (Schlomann et al., 2000), in immune response in allergic 

asthma (King et al., 2004) as well as in osteoclast fusion (Choi et al., 2001). 

 

1.2.1 Catalytic activity of ADAM8  

Due to the metzincin consensus sequence in the catalytic centre, ADAM8 was expected to be 

catalytically active. Experiments with soluble forms of ADAM8 transfected into HEK293 

cells or in COS7 cells clearly indicated protease activity (Choi et al., 2001; Schlomann et al., 

2002). This proteolytic activity was dependent on the presence of the metalloprotease domain 

and did not require further domains. Protease activity was examined by cleavage of MBP. 

Inhibition of proteolytic activity was obtained by using the metalloprotease inhibitors 1,10 

ortho-phenanthroline (OPT) and batimastat (BB-94) (Schlomann et al., 2002), whereas none 

of the four known TIMPs inhibited cleavage even when high concentrations up to 500 nM 

were used (Amour et al., 2002; Schlomann et al., 2002). The ADAM8 cleavage site in MBP 

within the sequence TTHYGSLP↓QKAQGQ was similar to those found for ADAM10 and 

ADAM28 (Howard et al., 2001). Further substrates of ADAM8 were detected on the basis of 

in vitro cleavage experiments with recombinant proteins or on the basis of peptides 

representing the juxtamembraneous regions of membrane proteins (Amour et al., 2002; Fourie 

et al., 2003). 

 

1.2.2 Adhesive function of ADAM8 

ADAM8 was detected in neurons and oligodendrocytes in the central nervous system (CNS) 

(Schlomann et al., 2000). As ADAM8 was up-regulated in the CNS upon neurodegeneration 

followed by activation of glia cells, astrocytes and microglia, Schlomann et al. (2000) 

suggested involvement of ADAM8 in neuron-glia interaction. ADAM8 had further been 

implicated in osteoclast differentiation (Choi et al., 2001). These data indicated that ADAM8 

is involved in cell adhesion and cell fusion.  
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Evidence for the adhesive function of the ADAM8 disintegrin domain in the course of disease 

came from an autoimmunity model in the rat (Schluesener, 1998). In this model, a MBP 

peptide was used to induce severe generalised autoimmune symptoms in the brain (GANS). 

When rats were pre-treated with the recombinant disintegrin domain of ADAM8, the 

autoimmune symptoms were dramatically reduced, indicating that either the disintegrin 

domain competed with endogenous ADAM8 for cell-cell interactions or that the effect was 

indirect e.g. by influencing ADAM8 protease activity. Experiments with a recombinant 

ADAM8 disintegrin/cystein-rich domain argued for cell adhesion in a homophilic manner. 

The recombinant disintegrin protein coated as a substrate on cell culture dishes was able to 

mediate adhesion specifically to cells expressing ADAM8 (Schlomann et al., 2002). 

 

1.2.3 Regulation of ADAM8  

An important function for ADAM8 in immune responses was postulated on the basis of its 

inducibility by inflammatory stimuli. Katoaka et al. (1997) reported the induction of ADAM8 

expression by lipopolysaccharide (LPS) from E.coli and interferon-gamma (IFN-γ) in the 

murine macrophage cell line aHINSB3. In another murine macrophage cell line RAW264.7, 

target genes for peroxisome proliferator-activated receptor gamma (PPARγ) were identified 

by stimulation with a natural prostaglandin ligand of PPARγ. ADAM8 mRNA expression as 

well as expression of CD36 and ATP-binding cassette transporter A1 (ABCA1), which 

mediated cholesterol efflux, were induced (Hodgkinson and Ye, 2003). In the same 

macrophage cell line, shedding of the tumour necrosis factor receptor 1 (TNF-R1) was 

dependent on treatment with LPS inducing ADAM8 in these cells (Wildeboer et al., 

unpublished data). 

In an inherited model for neurodegeneration, the wobbler (WR) mouse, a model for human 

amyotrophic lateral sclerosis (ALS), ADAM8 mRNA was found to be prominently 

upregulated in degenerating neurons and in glia cells. The inducer for enhanced transcription 

was the cytokine TNF-α (Schlomann et al., 2000). In lungs of mice undergoing asthma 

induction with different allergens like ovalbumin and Aspergillus fumigatus, ADAM8 was 

strongly induced (King et al., 2004) suggesting that ADAM8 plays a role in pathogenesis of 

allergic asthma. Under these conditions, the induction of ADAM8 was increased by 

interleukins 4 and 13 (IL-4, IL-13). The pathways leading to increased expression of ADAM8 

in allergic asthma were critically dependent on the IL-4 receptor α-chain and on a signal 

transducer and activator of transcription (STAT) protein family member, STAT6. 
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The cytoplasmic region of ADAM8 contains putative proline rich SH3 binding sequences, 

suggesting the capability of intracellular signalling (Yoshida et al., 1990; Yoshiyama et al., 

1997). So far, no evidence for an intracellular regulation of ADAM8 e.g. by phorbolester TPA 

has been given. This is in contrast to ADAM10 and TACE which can be activated by TPA 

leading to enhanced shedding of membrane proteins. 

 

1.2.4 Expression of ADAM8 

ADAM8 was first detected in macrophages (Yoshida et al., 1990), later in the nervous system 

and in osteoclasts (Choi et al., 2001; Schlomann et al., 2000). A systematic analysis of 

ADAM8 expression in the mouse came from ADAM8 deficient mice. In early embryonal 

development, ADAM8 was expressed by maternal cells in the decidua and by trophoblast 

derivatives of the embryo. At later stages of embryonal development, ADAM8 was expressed 

in the gonadal ridge, thymus, developing cartilage or bone, in mesenchymal tissue in close 

proximity to developing blood vessels and lymphatic vessels as well as in the developing 

brain and spinal cord. Despite this prominent expression in embryonal development, no major 

defects or abnormalities were evident (Kelly et al., 2005). 

In adult tissues, ADAM8 expression occurred in the lymphatic organs thymus and spleen as 

well as in lung, epithelia of salivary glands, and in tubular epithelial cells of the kidney. In 

lungs, expression was restricted to epithelial cells of distinct respiratory bronchioles. Under 

experimental induction of allergic asthma, ADAM8 expression was upregulated in these cells 

(Kelly et al., 2005), whereas no expression was observed in smooth muscle layers underlying 

the bronchioles. In the brain, ADAM8 was expressed weakly in neurons and oligodendrocytes 

under normal conditions. Under inflammatory stimuli like exogenous LPS injected 

subcutaneously or TNF-α, expression levels enhanced, caused by additional expression in 

astrocytes and microglia, and also in degenerating neurons. 
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1.3 ADAMs in inflammation and disease 

ADAM proteins form a large group with widespread cell distribution. Initially, ADAMs were 

classified into five subgroups according to their so far known functions (Kataoka et al., 1997). 

A group containing ADAM8, 10 and 17 was supposed to play a role in protein degradation. 

One group (ADAM1 and 12) with hydrophobic regions similar to viral fusion peptides was 

assumed to contribute to cell fusion, another one (ADAM2) to cell adhesion. Group 4 implied 

ADAM8, 9, 10, 12 and 15 mediating cell signalling or cytoskeletal attachment via SH3 

domain containing proteins. The last group including ADAM7, 10 and 12 was supposed to 

facilitate differentiation and maturation of cells. It was expected that other ADAM family 

proteins would be subdivided into these groups (Kataoka et al., 1997). With the knowledge 

about ADAMs gained in recent years it emerged that specific functions cannot be assigned to 

individual ADAMs, but that ADAMs can have multiple functions. Furthermore, it turned out 

that ADAM function is involved in inflammation and several diseases. 

 

1.3.1 ADAMs in inflammation 

ADAM17 was identified as the TNF-α converting enzyme (TACE) able to cleave the 

cytokine TNF-α to its mature form (Black et al., 1997; Moss et al., 1997). Meanwhile, several 

ADAMs were identified as proteases of a number of cytokines (Table 1.1.2). Cytokines 

together with hormones and neurotransmitters are ’messenger proteins’ enabling 

communication between cells and controlling development and homeostasis. Moreover, 

cytokines coordinate the activity of the immune system. As cytokines play a role in many 

diseases and inflammatory processes, ADAMs are thought to be involved as cytokine 

sheddases. Further indications for the involvement of ADAMs in inflammation came from 

experiments in which ADAM expression was upregulated under inflammatory conditions. 

Numerous publications report that several ADAM shedding activities can be induced by 

phorbol esters presumably by activating protein kinase C. ADAM8 was reported to be 

induced by stimulation with LPS and IFN-γ (Kataoka et al., 1997). ADAM8 mRNA was 

found to be upregulated in degenerating neurons and glia cells under inflammatory conditions 

in an experimental mouse model for neurodegeneration with the expression induced by the 

cytokine TNF-α (Schlomann et al., 2000).  

ADAMs might be involved in inflammatory processes either directly by shedding of 

cytokines or cytokine receptors or indirectly by their activation induced by cytokines. A 

feedback regulation in inflammation was discussed for ADAM8. TNF-α is constitutively 

released from the cell surface by ADAM17. Soluble TNF-α bound to its receptor TNF-R1 
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induces ADAM8 transcription by intracellular signalling. Expressed ADAM8 protein on the 

cell surface is able to cleave TNF-R1 (unpublished data). Thereby, target cells are 

desensitised to high TNF-α concentration under inflammational conditions and a dose-

dependent cellular response is maintained (Moss and Bartsch, 2004; see also figure 4.4.3). 

Asthma is a complex chronic pulmonary disease associated with production of 

immunoglobulin E (IgE), mucus hypersecretion, airway obstruction, eosinophilic 

inflammation and enhanced bronchial reactivity to spasmogens (Broide, 2001). The severity 

of asthma correlates with the presence of CD4+ T helper 2 lymphocytes (Th2) (Hogan et al., 

1998; Robinson et al., 1992). These cells are thought to induce asthma by secretion of several 

cytokines, mainly IL-4 and IL-13. King et al. (2004) defined a set of “asthma signature” genes 

with a gene chip and detected increased ADAM8 expression levels in murine asthmatic lungs 

which were induced by IL-4 and IL-13. As increase of serum IgE of individuals with allergic 

asthma correlated with increased concentrations of CD23, CD23 was supposed to be involved 

in allergic asthma (Mayer et al., 2002). CD23 first detected on activated B cells is also located 

to other hematopoietic cells. The membrane bound form of CD23 has a modulatory role in 

antigen presentation and a regulatory role in IgE synthesis through a negative feedback 

mechanism (Mayer et al., 2002), whereas shed fragments were supposed to perform cytokine-

like activities (Armant et al., 1994; Armant et al., 1995; Mossalayi et al., 1992). The fact that 

ADAM8 was shown to cleave CD23 (Fourie et al., 2003), further indicated involvement of 

ADAM8 in allergic asthma: surface bound CD23 is probably released from the cell surface by 

ADAM8 as a result of induction of ADAM8 expression by IL-4 and IL-13.  

In a genome-wide study, the ADAM33 gene was significantly associated with asthma (Van 

Eerdewegh et al., 2002). Consistent with a role in the pathophysiology in asthma, ADAM33 

was expressed in bronchial tissues and smooth muscle cells (Garlisi et al., 2003).  

 

1.3.2 ADAMs in the CNS 

Several catalytically active ADAMs were reported to be expressed in the normal adult rodent 

brain or during brain development (e.g. Bernstein et al., 2004; Bosse et al., 2000; Goddard et 

al., 2001; Gunn et al., 2002; Schlomann et al., 2000) suggesting a role of ADAMs in normal 

brain function and brain maturation. However, most studies examined differential ADAM 

expression in the brain mainly under inflammatory conditions or in brain tumour development 

(see also 1.3.3).  

Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative syndrome 

belonging to a group of disorders known as motor neuron diseases. ALS is characterised by 
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rapidly progressive degeneration of motor neurons in brain and spinal cord. In the WR mouse, 

a model for ALS, ADAM8 mRNA levels were increased in brain stem and spinal cord in 

regions in which neurodegeneration occurred. Low expression levels were detected in 

oligodendrocytes and neurons throughout the normal mouse brain, whereas levels were highly 

increased in neurons, reactive astrocytes and activated microglia in the WR brainstem and 

spinal cord. Expression levels of TNF-α were increased with the same cellular distribution. 

As ADAM8 expression was induced by this cytokine and as this induction was suppressed by 

an interferon-regulating factor 1 (IRF-1) antisense oligonucleotide, it was supposed that IRF-

1-mediated induction of ADAM8 by TNF-α is a signalling pathway relevant for 

neurodegenerative disorders with glia activation (Schlomann et al., 2000). 

Multiple sclerosis (MS) is an inflammatory demyelinating disorder in the CNS mediated by 

several cytokines and proteases. This disease is characterised by demyelinated plaques which 

are supposed to disrupt the blood brain barrier and which contain inflammatory cells – T 

lymphocytes and monocytes – and activated glial cells which are thought to enhance 

generation of plaques (Calder et al., 1989). At least partly, the cytokine TNF-α is involved in 

MS pathology. As ADAM17 is able to cleave TNF-α and as ADAM10 is involved 

demyelination processes, both proteases are thought to play a role in MS pathology. In brain 

sections of post mortem CNS tissue samples from patients with MS, ADAM10 was detected 

in astrocytes in all MS as well as in control sections of healthy patients. However, it was 

exclusively detected in perivascular macrophages in the MS sections suggesting that it is 

constitutively expressed in astrocytes and only under inflammatory conditions in perivascular 

macrophages. ADAM17 was expressed in active MS plaques in invading T lymphocytes. 

ADAM10 co-localised with TNF-α expression in perivascular macrophages, whereas 

ADAM17 and TNF-R2 were expressed in MS plaques. In cerebrospinal fluid samples from 

MS patients, increased levels of ADAM17 and of soluble TNF-R2 were measured suggesting 

shedding of TNF-R2 by ADAM17. These results indicated that in MS pathogenesis, 

ADAM10 upregulated in perivascular macrophages and ADAM17 expressed by invading T 

lymphocytes are actively involved in the inflammatory disorder (Kieseier et al., 2003).  

Alzheimer’s disease and Creutzfeldt-Jacob’s disease are spongiform encephalopathies caused 

by accumulation of cerebral plaques of infectious forms of proteins. ADAMs are thought to 

play a role in these neurodegenerative diseases by cleaving either the amyloid beta A4 protein 

precursor (APP) or the prion precursor protein (PrPc) into non-infectious forms preventing 

accumulation of infectious forms to cerebral plaques and subsequent neurodegeneration.  
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The Alzheimer’s APP is cleaved proteolytically in two different pathways. It is cleaved in the 

amyloidogenic pathway by β- and γ-secretases to release a toxic amyloid β (Aβ) peptide 

forming toxic non-soluble plaques. In a non-amyloidogenic pathway, it is cleaved within the 

amyloidogenic Aβ domain by an α-secretase to release a non-amyloidogenic p3 peptide and, 

furthermore, a large ectodomain of APP (sAPPα) with neuroprotective and memory-

enhancing function (Furukawa et al., 1996; Mattson et al., 1999; Meziane et al., 1998, see also 

figure 4.4.2). ADAM10 was the first ADAM described to have α-secretase activity. In 

ADAM10 overexpressing cells, basal and protein kinase C stimulated α-secretase activity was 

increased and inhibited by using a catalytically inactive form of ADAM10. Purified non-

amyloidogenic p3 fragments exhibited the correct α-secretase cleavage sites. Increase of 

ADAM10 expression was suggested as treatment of Alzheimer’s disease (Lammich et al., 

1999). In vivo studies with mice overexpressing either ADAM10 or a catalytically inactive 

ADAM10 mutant supported this idea, as secretion of neurotrophic sAPPα was enhanced and 

the formation of Aβ peptides into plaques was reduced in neurons of mice overexpressing 

wild type ADAM10 (Postina et al., 2004). Furthermore, ADAM9 and ADAM17 were 

suggested to act as α-secretases (Buxbaum et al., 1998; Koike et al., 1999). In a comparative 

study, the physiological roles of ADAM9, ADAM10 and ADAM17 were examined. In 

human glioblastoma cells, the expression of these ADAMs was suppressed by lipofection of 

double-stranded RNA encoding these ADAMs. As ADAM9, ADAM10 and ADAM17 were 

active as α-secretases, it was suggested that the endogenous α-secretase was composed of 

several ADAM enzymes (Asai et al., 2003). 

Usually, prion precursor protein PrPc is cleaved in the 106-126 toxic domain of the protein 

producing a non-toxic protein N1. The pathological cleavage more N-terminally at the 90-91 

site leads to a toxic isoform which accumulates and which is resistant to proteases (Chen et 

al., 1995). In stable HEK cells overexpressing ADAM10 and 17, N1 formation was 

drastically reduced by inhibitors against these two ADAMs. Furthermore, in ADAM10 and 

ADAM17 deficient cells N1 formation was reduced. These data indicated that ADAM10 and 

17 might be responsible for normal cleavage of PrPc and therefore for avoiding formation of 

toxic prion protein. These ADAMs were therefore discussed as putative cellular targets for 

therapeutic strategies (Vincent et al., 2001). Recently, dual mechanisms for shedding of PrPc 

were detected. Apart from cleavage by ADAM proteases, another cleavage mechanism most 

likely to occur via phospholipase cleavage of the glycosylphosphatidylinositol (GPI) anchor 

of PrP was observed (Parkin et al., 2004). Both cleavage mechanisms reduced the amount of 
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membrane bound prion precursor for subsequent conversion into the toxic form and might 

therefore both be important in the pathogenesis of Creutzfeldt-Jacob’s disease. 

Neuronal cell adhesion molecules form a group of further potential target proteins for 

ADAMs in the brain. They form a subfamily of the immunoglobulin superfamily which is 

important for mediating interactions between cells in the nervous system. These molecules are 

widely expressed during brain development and in the adult brain and have multiple 

functions. They are involved in neurite outgrowth, regeneration and cell migration (e.g. 

Brummendorf et al., 1998; Chaisuksunt et al., 2000; Kamiguchi and Lemmon, 1997). In 

chicks, the neuronal cell adhesion molecule L1 was involved in consolidation of memory 

(Scholey et al., 1995). Defects in the genes for L1 or the close homologue of L1 (CHL1) 

resulted in neuropsychatic disorders such as schizophrenia (Irintchev et al., 2004). As 

neuronal cell adhesion molecules promoted cell migration, they might also contribute to 

migration and proliferation of tumour cells (Chen et al., 2004; Tsuzuki et al., 1998). Soluble 

forms of CHL1 as well as of L1 prevented neuronal cell death (Chen et al., 1999). L1 is 

known to be released from the cell surface by ADAM10 (Mechtersheimer et al., 2001). 

Assuming that other members of this family are also cleaved by ADAMs, research concerning 

the physiological role of ADAMs in nervous system would expand.  

 

1.3.3 ADAMs in cancer 

ADAMs have potential implication for metastasis of cancer cells via cell adhesion and 

protease activity. In several studies, either chip technology, immunohistochemistry, PCR or 

immunoblotting methods were used to identify molecular markers for diagnosis and prognosis 

of cancer. Indeed, increased levels of ADAMs – mainly of ADAM8, 9, 10, 12, 15, 17 and 19 

– were detected in cancer cells compared to normal cells indicating involvement of ADAMs 

in cancer.  

Increased levels of ADAMs were detected in various kinds of cancers: in cancer cells derived 

from haematological malignancies (Wu et al., 1997), in breast cancer cells (Lendeckel et al., 

2005; O'Shea et al., 2003), in lung cancer cells (Ishikawa et al., 2004; Shintani et al., 2004), in 

prostatic tumour cell lines (Karan et al., 2003), in gastric cancer cell lines (Carl-McGrath et 

al., 2005), in pancreatic ductal adenocarcinomas (Grutzmann et al., 2003; Grutzmann et al., 

2004), in hepatocellular carcinomas (Ding et al., 2004; Tannapfel et al., 2003), in renal cell 

carcinomas (Roemer et al., 2004), in glioblastomas (Kodama et al., 2004) and primary human 

brain tumours (Wildeboer et al., submitted). In many studies, increased ADAM expression 

levels correlated with cancer progression. In human renal cell carcinoma, ADAM8 expression 
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correlated with a shorter survival of patients (Roemer et al., 2004), and high levels of 

ADAM8 were significantly more common in advanced-stage lung cancer adenocarcinomas 

than in those at earlier stages (Ishikawa et al., 2004). ADAM12 expression in glioblastomas 

was associated with glioblastoma cell proliferation (Kodama et al., 2004). 

The ability of invasive tumour cells to degradate connective tissue stroma and basement 

membrane is one important step for the metastatic process (Liotta and Stetler-Stevenson, 

1991; Stetler-Stevenson et al., 1993). ADAM15 degrades collagen IV and gelatine (Martin et 

al., 2002) and only recently, it was demonstrated by zymography that ADAM12 degrades 

collagen IV (Roy et al., 2004). ADAMs are therefore potentially able to degrade the basement 

membrane and to provide metastasis directly by matrix degradation. In addition – at least 

partially – ADAMs are involved in cancer progression indirectly by modification of signalling 

pathways regulating cell proliferation and differentiation; e.g. via the epidermal growth factor 

receptor (EGF-R).  

The EGF-R signalling pathway has a critical function for cell proliferation. EGF-R ligands are 

integral membrane proteins that are proteolytically released from the cell surface and that 

stimulate intracellular signalling pathways by binding to their receptor as soluble proteins. 

Several EGF-R ligands have been identified as ADAM substrates and indeed, ADAMs are 

discussed to be involved in cancer progression by shedding of these ligands, e.g. when 

ADAM17 expression was prevented, TGF-α interacted with EGF-R but did not activate the 

receptor (Borrell-Pages et al., 2003).  
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1.4 Proteomic approaches for the analysis of proteases 

Proteases form a part of physiological systems operating with other proteases, substrates, 

inhibitors, receptors and binding molecules. Often, one protease can cleave several substrates 

and conversely, several proteases can cleave the same substrate. Proteolytic processing is 

possible in trans as well as in cis and can lead to activation of other proteases, release of 

signal proteins thereby activating signal cascades or release of other proteins of the 

physiological system. As the involvement of proteases in many diseases is evident, proteases 

have become more relevant as drug targets. Therefore, the characterisation of the hierarchical 

status of proteases within a system, their physiological functions as well as their interaction 

partners is of importance, in addition to the detailed characterisation of individual proteases 

and their substrates.  

A substrate identified in vitro is necessarily of physiological relevance in vivo. Several 

proteases may cleave a substrate in vitro, but in vivo only one protease might be of 

importance. Tools for examination of all expressed proteases of a physiological systems as 

well as for screening for new physiologically relevant protease substrates are eligible. All 

genomic and proteomic applications to identify protease and protease-substrate in their 

entirety in an organism can be summarised as “Degradomics”. Different degradomic 

approaches have been developed in order to determine proteases expressed in cells or tissues 

and to identify new substrates (Lopez-Otin and Overall, 2002).  

 

1.4.1 Identification of protease profiles 

With the examination of proteases under distinct physiological conditions it can be 

ascertained if specific sets of proteases are switched on under specific pathological 

conditions, in specific cell types or tissues. Conventional genomic methods such as reverse 

transcriptase PCR, real-time PCR as well as microarray chip technique are used to examine 

expression of proteases under specific physiological conditions. A DNA microarray with 

oligonucleotides for identification of all 715 human proteases, their inactive homologs and 

inhibitors was used to compare protease expression levels of cancerous breast tissues in 

comparison to normal ones. In invasive ductal cell carcinoma, expression of ADAMTS17, 

carboxypeptidases A5 and M, tryptase-gamma, matriptase-2 and MMP-28 was increased 

(Overall et al., 2004). Nevertheless, the examination of protease expression levels do not 

necessarily correspond to the activity of corresponding proteins, as other mechanisms such as 

post-translational regulation, prodomain removal or regulation by inhibitors can be of 

importance for proteolytic activity. The same disadvantages arise with identification of 
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proteases using conventional proteomic methods involving denaturation, two dimensional 

electrophoreses, tryptic digestion and subsequent mass spectrometry. For examination of 

active proteases in complex samples, approaches distinguishing between active proteases, 

inactive precursor or inhibitor-bound forms have to be used. These can be based on capturing 

of proteolytically active proteases by immobilised inhibitors, substrates or chemicals (Lopez-

Otin and Overall, 2002). 

 

1.4.2 Identification of protease substrates  

Several protease substrates were identified in knockout studies because of accumulation of 

non-processed proteins; e.g. in such studies, L-Selectin, TNF-R1 and 2, TGF-α, APP and IL-

1R-2 were identified as ADAM17 substrates (Buxbaum et al., 1998; Peschon et al., 1998; 

Reddy et al., 2000). Mostly, only one or a few substrates were identified for particular 

proteases.  

As more systematic approaches for the identification of substrate sets, two different states in 

cells or tissues with different protease expression were analysed in 2D gel electrophoreses 

with subsequent mass spectrometry. Using specific labelling of cell surface proteins in cell 

culture, released proteins could be analysed directly by mass spectrometry without performing 

2D gel electrophoresis and corresponding tryptic digestion. Supernatants from isotope-coded 

affinity tag (ICAT) labelled breast carcinoma cells either in the presence or absence of 

membrane type 1 matrix metalloprotease (MT1-MMP) were analysed by mass spectrometry. 

Among others, the cytokines interleukin-8 (IL-8) and TNF-α were determined as new 

substrates of MT1-MMP (Tam et al., 2004). As further systematic approaches, phage display 

peptide libraries as well as combinatorial peptide libraries with either quenched or fluorophor-

coupled peptides were used to express diverse peptide sequences as potential protease 

substrates. For some proteases, conserved cleavage sites could be derived with this method by 

sequencing of peptide substrates. Furthermore, new substrates could be determined using 

protein databases. For ADAMs, only several new substrates were determined either on the 

basis of peptides known to be metalloprotease substrates (e.g. Amour et al., 2002) or on the 

basis of combinatorial peptide libraries (e.g. Fourie et al., 2003). Cleavage in these assays did 

not necessarily indicate substrates in vivo. For that reason, e.g. CD23 cleavage by ADAM8 

was confirmed in transfection experiments (Fourie et al., 2003). 

In a yeast-two hybrid approach, a catalytically inactive protease domain lacking the pro-

domain was used as bait which bound to but did not cleave substrates. Using catalytically 

inactive MT1-MMP lacking the prodomain, a human fibroblast cDNA library was screened 
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for interacting proteins in order to find new MT1-MMP substrates. Wnt-induced signalling 

protein-2 (WISP-2) was identified by this approach and biochemically confirmed as a new 

substrates by further experiments (Ortiz et al., 2004). Another yeast-two hybrid approach took 

into account that binding sites outside the catalytic domain might be necessary for cleavage 

specificity. The characteristic C-terminal hemopexin-like domains in MMPs have specific 

roles in individual MMPs like activation of proenzymes, substrate specificity and TIMP 

binding. For the detection of MMP substrates in the yeast two-hybrid approach, the 

hemopexin domain was used as a bait in order to find binding partners which were potential 

new substrates (McQuibban et al., 2000). Transferred to ADAMs, the disintegrin and 

cysteine-rich domains could be used in such an approach, as they are supposed to be of 

importance for substrate recognition and cleavage. For ADAM8, it was suggested that the 

disintegrin domain influences autocatalytic prodomain removal by mediating the interaction 

of at least two ADAM8 molecules (Schlomann et al., 2000). 
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1.5 Objectives 

The ADAMs form a family of metalloproteases which is known for about 10 years. A number 

of physiologically relevant ADAM substrates have been determined since, but only little work 

was done on systematic substrate search and on determination of ADAM expression patterns. 

The objective of this work focused on search for physiologically relevant protease substrates 

of the family member ADAM8. 

In order to find new ADAM8 substrates, an in vitro approach with fluorogenic peptides was 

established. Therefore, a collection of peptides was designed. Sequences were either derived 

from known peptide substrates of other ADAMs or from juxtamembraneous regions of 

supposed metalloprotease substrates. To get soluble, catalytically active forms of ADAM8 for 

the in vitro peptide assays, new ADAM8 cDNA constructs encoding the pro and 

metalloprotease domain were cloned and expressed in cell culture as well as in E.coli.  

Cleaved peptides were examined in order to find a consensus sequence for ADAM8 

substrates. The corresponding proteins of positively tested peptide substrates were supposed 

to be tested for their physiological relevance in vivo as ADAM8 substrates. In addition to 

these proteins, the physiological relevance of the ADAM8 substrate close homologue of L1 

(CHL1) in the nervous system was determined.  

A test method for the determination of ADAM activities in tumour tissue extractions was 

established using specific peptides for ADAM8 and 19, respectively, in order to determine 

whether expression levels of ADAM8 and 19 correlated with proteolytic activity. 
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2. Materials and methods 

 

2.1 Materials  

 

2.1.1 Materials and chemicals  

Chemicals and molecular biology reagents were mainly obtained from the companies 

Applichem (Darmstadt, Germany), Sigma (Taufkirchen, Germany), Merck (Darmstadt, 

Germany) and Roth (Karlsruhe, Germany), cell culture materials from Invitrogen (Groningen, 

Netherlands), Seromed Biochrom AG (Berlin, Germany) and PAA Laboratories GmBH 

(Linz, Austria), plastic articles from Greiner Labortechnik GmbH (Solingen, Germany), 

Eppendorf (Hamburg, Germany) and Nunc (Wiesbaden, Germany). The tissue inhibitors of 

metalloproteases 1 (TIMP1) as well as the broad range matrix metalloprotease protease 

inhibitor batimastat (BB-94) was kindly provided by Prof. Tschesche (Biochemie, Chemische 

Fakultät, Universität Bielefeld). TIMP3 was obtained from Chemicon (Heidelberg, Germany). 

The metalloprotease inhibitor 1,10-ortho-phenanthroline (OPT) was obtained from Sigma 

(Taufkirchen, Germany) and the protease inhibitor cocktail, CompleteTM EDTA-free from 

Roche (Mannheim, Germany). 

 

2.1.2 Cell lines 

COS1 cells (ATTC No. CRL-1650) and COS7 cells (ATTC No CRL-1651) were derived 

from the fibroblast-like kidney cell line CV-1 (ATTC No. CCL-70) from African green 

monkey (Cercopithecus aethiops). They were transformed with an origin defective mutant of 

SV40 coding for the wild type T antigen. The cells contain a single integrated copy of the 

complete early region of the SV40 genome. COS7 cells were allocated from Prof. Lehmann 

(Zellkulturtechnik, Technische Fakultät, Universität Bielefeld) and COS1 cells from Prof. 

Frey (Biochemie, Fakultät für Chemie, Universität Bielefeld). 

 

2.1.3 Animals 

Breeding and experimental use of mice were performed in agreement with the German law on 

the protection of animals, with a permit by the local authorities. The wobbler mutation 

(Duchen and Strich, 1968) as well as the ADAM8 knockout mouse was maintained on a 

C57BL/6 background. The mouse deficient in ADAM8 was obtained from Dr. A.J.P 

Docherty (Celltech, Slough, UK). 
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2.1.4 Recombinant proteins 

The three recombinant cell adhesion molecules L1-Fc, CHL1-Fc, NCAM-Fc were allocated 

by Prof. Melitta Schachner (ZMN Hamburg, Germany) as recombinant fusion proteins 

containing the extracellular portions of the proteins fused to a human immunoglobulin Fc-tag 

and were used for in vitro cleavage experiments. Recombinant myelin basic protein (MBP) 

was obtained from Sigma (Taufkirchen, Germany). 

 

2.1.5 Antibiotics 

Penicillin (Seromed Biochrom AG, Berlin, Germany) und streptomycin (Sigma, Taufkirchen, 

Germany) were used in cell culture media for COS1 and COS7 cells to prevent 

contaminations. Ampicillin, chloramphenicol and streptomycin (Roth, Karlsruhe, Germany), 

were used for selection of transformed bacteria and were added to culture media. 

Anhydrotetracyclin (IBA, Göttingen, Germany) was used for induction of ADAM8 

expression in E.coli. 

 

2.1.6 Antibodies 

Antibody dilutions are quoted either for immunoblotting (*) or for immunohistochemistry (§). 
 

Primary antibody Host animal Characterisation Dilution 

anti-BiPro antibody mouse  

monoclonal antibody against a birch pollen profilin tag 

(Rudiger et al., 1997), allocated by Prof. Jockusch 

(Universität Braunschweig) 

1:25* 

anti-ADAM8 antibody rabbit  
polyclonal antibody against cytoplasmic domain of 

mouse ADAM8 (AA 766-780) (Schlomann et al., 2000) 
1:1000* 

anti-ADAM10 antibody rabbit 
polyclonal antibody against the cytoplasmic domain of 

mouse ADAM10 (AA 727–741) 
1:1000* 

anti human IgG antibody rabbit 
polyclonal, non conjugated antibody against human IgG, 

allocated by Prof. Melitta Schachner (ZMN Hamburg) 
1:10000* 

anti-CHL1 antibody rabbit 

polyclonal antibody against the extracellular domain of 

mouse CHL1, allocated by Prof. Melitta Schachner 

(ZMN Hamburg) 

1:10000* 

anti-GAPDH antibody mouse 

monoclonal antibody against glyceraldehyde-3-

phosphate dehydrogenase (Chemicon, Darmstadt, 

Germany) 

1:500* 

anti-NF200 antibody rabbit 
polyclonal antibody against neurofilament NF200, 

heavy chain (Sigma, Taufkirchen, Germany) 
1:100§ 
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Secondary antibody Characterisation Dilution 

peroxidase-conjugated affine 

pure goat anti mouse  

horse radish peroxidase coupled polyclonal anti mouse antibody  

(Sigma, Taufkirchen, Germany) 
1:7500* 

anti rabbit IgG antibody 
horse radish peroxidase coupled polyclonal antibody against rabbit 

IgG (Sigma, Taufkirchen, Germany) 

1: 5000* 

 

anti rabbit IgG-cy3 antibody 
cy3 coupled polyclonal antibody against rabbit IgG (Sigma, 

Taufkirchen, Germany) 
1:250§ 

 

 

2.1.7 Oligonucleotide primer 

Oligonucleotide primer were obtained from MWG-Biotech (Ebersberg, Germany) und TIB-

Molbiol (Berlin, Germany).  
 

Primer  Primer sequence Annealing T[°C] Cycles DNA product 

mADAM8.a 5’-ctc tgg ctg ctc agc gtc tta-3’ 64 30 459 bp 

mADAM8.b 5’-gat gct ttg cct gat aca tcg-3’ 64 30 459 bp 

mA8MPSec.s 5’-gaa ttc act tgg cct ctg gct 
   gct cag-3’ 

67 

mA8MPSec.as 
5’-ctc gag cga tct cct gag gct 
   taa act gag gga agg aca cga 
   acc ggt tga cat ctg g-3’ 

67 
see 2.2.6 

 

 

2.1.8 Restriction endonucleases 

Endonucleases were obtained from MBI Fermentas (St.Leon-Rot, Germany). The webcutter 

2.0 (http://rna.lundberg.gu.se/cutter2/) was used for the identification of enzymes cutting a 

given DNA sequence.  
 

Restriktion endonuclease Cleaved sequence 

EcoRI 5’- G / AATC -3’ 

XhoI 5’- C / TCGAG -3’ 

HindIII 5’- A / AGCTT-3’ 

 

 

2.1.9 Bacterial strains 

For the cloning vector pCR® II-TOPO, provided chemical-competent E.coli TOP10F’ cells 

from the TOPO TA Cloning® Kit (Invitrogen, Groningen, NL) were used. For expression of 

cDNA constructs in pTargetTM or pSecTag2 B expression vectors, either chemical-competent 

E.coli JM109 cells or electro-competent E.coli XL1-Blue cells were used. For expression of 

the pro and metalloprotease domain of ADAM8 in bacteria the chemical-competent E.coli 

BL21(DE3)pLysS cells obtained from Invitrogen (Groningen, NL) were used. 
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2.1.10 Vectors 

 

pASK-IBA 3+  

The expression vector pASK-IBA 3+ (IBA, Göttingen, Germany) was used for expression of 

the pro and metalloprotease domain of ADAM8 in E.coli. The protein was expressed as a 

fusion protein with a Strep-tag at the C-terminal end. The expression of ADAM8 was induced 

via the tetA promotor with anhydrotetracyclin.  

 

pcDNATM 3.1(+) 

The expression vector pcDNATM 3.1(+) (Invitrogen, Groningen, NL) was used for the 

expression of full length CHL1 in cell culture and was kindly provided by Prof. Melitta 

Schachner (ZMN Hamburg). 

 

peGFP-N3 

The expression vector peGFP-N3 (BD Biosciences Clontech, Heidelberg, Germany) was 

transfected into cell culture cells as a control for transfection efficiency. According to the 

portion of GFP expressing cells, the efficiencies of transfections were evaluated. 

 

pTargetTM 

The expression vector pTargetTM (Promega, Heidelberg, Germany) was used by Uwe 

Schlomann for cloning of cDNA constructs encoding full length mouse ADAM8, EQ-

ADAM8, ADAM10 and ADAM17 and for expression of these proteins in cell culture. 

 

pSecTag2 B 

The expression vector pSecTag2 B (Invitrogen, Groningen, NL) was used for cloning of the 

cDNA construct expressing the pro and metalloprotease domain of ADAM8 as a fusion 

protein with a SecTag at the C-terminal end encoding for a secretion tag for additional 

secretion of expressed proteins. 

 

pCR® II-TOPO 

pCR® II-TOPO (Invitrogen, Groningen, NL) was used as cloning vector. 
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2.2 Molecular biology methods 

 

2.2.1 Culture media for bacteria 

For bacterial cultures, autoclaved LB-Medium (Luria-Bertani) containing 10 g NaCl, 5 g 

yeast extract and 10 g trypton or pepton per litre medium (pH 7.0) was used. Appropriate 

antibiotics were added after media had cooled down. For the preparation of LB-agar plates 

which were used to obtain monocultures, 15 g/l agar-agar were added to 1 l medium before 

autoclaving. After cooling down to ~60 °C, respective antibiotics were added, and 20 ml were 

filled in each petri dish with 100 mm diameter. Media and agar plates were stored at 4 °C. 

 

2.2.2 Glycerol cultures 

For long-time storage of recombinant bacterial colonies, glycerol cultures were prepared by 

mixing 800 µl of a bacterial culture in stationary growth phase and 200 µl of glycerol and 

were stored at -80 °C. 

 

2.2.3 Isolation of plasmid DNA 

For preparation of plasmid DNA preparation, either the QIAprep Spin Miniprep Kit for 

isolation of up to 20 µg high-copy plasmid DNA or the Qiagen Plasmid Midi Kit for 

purification up to 100 µg plasmid DNA was used (Qiagen, Hilden, Germany). These kits were 

based on alkaline lysis without using phenol/chloroform and subsequent DNA purification 

with ion exchanger columns. Either 3 ml or 40 ml bacterial cultures were prepared according 

to the manufacturers instructions. 

 

2.2.4 Determination of DNA concentrations 

DNA concentrations were determined with a Bio Photometer (Eppendorf, Hamburg, 

Germany) by measuring the absorption at 260 nm of 2 µl DNA solution mixed with 98 µl 20 

mM Tris, pH 7.4 and calculating the corresponding DNA concentration. Additionally, the 

photometer measured the absorptions at 280 nm and 230 nm. A value of 1.8 for the ratio 

A260/A280 indicated high purity of the DNA sample, whereas a small value for A230 indicated 

little stray light.  

 

2.2.5 Precipitation of DNA 

For removal of buffer components as well as for increasing DNA concentrations, DNA 

solutions were precipitated. The smallest volume of DNA solution used for precipitation was 
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100 µl. DNA solutions were mixed with 1/10 volume 3 M sodium acetate, pH 5.2 and 2.5 

volumes 100 % ethanol. Batches were either precipitated for 15 minutes at -80 °C or 

overnight at -20 °C. After centrifugation for 30 minutes at 13000 x g, supernatants were 

discarded. Pellets were washed with 500 µl ice cold 70 % ethanol. After centrifugation for 15 

minutes at 13000 x g, supernatants were discarded. Pellets were dried and resuspended in 

distilled water or adequate buffer. 20 µl ligation sample (2.2.11) was precipitated with 2 µl 

yeast tRNA and 78 µl distilled water and washed as described above. Yeast t-RNA served as 

carrier improving precipitation.  

 

2.2.6 Polymerase chain reaction (PCR) 

PCR is a technique for amplifying specific DNA sequences in complex mixtures. A DNA 

sequence located between two oligonucleotide primers present in excess concentration is 

amplified in an exponential fashion by repeated cycles of melting DNA double strands to 

single strands, binding of primers to complementary DNA sequences on the single strands, 

and synthesis of new DNA fragments. Criteria for olinucleotide primers are GC contents of 

40-60 %, lengths of 18-30 nucleotides, no complementary sequences to each other and 

annealing temperatures of 50-65 °C.  

Usually, the 2 x Taq PCR-Mastermix (Quiagen, Hilden, Germany) containing Taq-

Polymerase, dNTPs and corresponding salts was used for PCR. For 10 µl reaction batches, 5 

µl Mastermix were mixed with 0.2 µl 50 µM sense and anti-sense olignucleotide primer, 50 

ng DNA and water. For the control of bacterial clones on agar plates, as template DNA a little 

of the whole colony was picked and mixed with the batch. Furthermore, this colony was 

seeded on a new agar plate for isolation. For DNA amplification, either a Trio Thermoblock 

(Biometra, Göttingen, Germany) or a Mastercycler Gradient (Eppendorf, Hamburg, Germany) 

was used. A standard protocol for amplification with Taq-Polymerase was as follows. Used 

number of cycles and annealing temperatures are listed in table 2.1.7. Depending on the 

length of amplified DNA fragments, 45 to 60 seconds were used for denaturation and 

annealing. 

 

Denaturation   4 min   94 °C 
 

Denaturation  45-60 sec 94 °C    
Annealing  45-60 sec X °C     18-35 cycles 
Polymerisation 1 min   72 °C     

 
A-Tailing  10 minutes 72 °C    
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For amplification of DNA fragments used for further cloning, proofreading DNA polymerases 

that efficiently add 3’-deoxyadenoside overhangs to PCR amplicons for subsequent TA-

cloning were used. For amplification of the ADAM8 pro and metalloprotease domain cloned 

into the pSecTag2 B vector (Invitrogen, Groningen, NL), the Expand Long Template PCR 

System (Roche, Mannheim, Germany) was used. 25 µl buffer III containing 5 µl 10 x buffer 

III, 0.75 µl enzyme and distilled water were mixed with a 25 µl reaction batch containing 10 

µl 2.5 mM dNTPs, 0.6 µl of each primer (50 mM), 2 µl template cDNA and distilled water. A 

Mastercycler Gradient (Eppendorf, Hamburg, Germany) was used for amplification according 

to the following protocol.  

cDNA was generated from total RNA extracted from cells of the macrophage cell line 

J774A.1 with the Nucleospin RNAII Kit (Macherey-Nagel, Düren, Germany). For reverse 

transcription, SuperscriptII Reverse Transcriptase (Roche, Mannheim, Germany) was used.  

 

Denaturation   2 min   94 °C 
 

Denaturation  10 sec  94 °C    
Annealing  30 sec  67 °C     10 cycles 
Polymerisation 2 min   68 °C     

 
Denaturation  10 sec  94 °C    
Annealing  30 sec   67 °C     25 cycles 
Polymerisation 2 min (+20sec) 68 °C   
 
A-Tailing  10 minutes 72 °C    

 

 

2.2.7 Agarose gel electrophoresis 

DNA fragments were separated according to their molecular mass by agarose gel 

electrophoresis. For DNA fragments larger than 1000 bp, 1 % gels were used and for smaller 

fragments 2 % gels (SeaKem LE Agarose, Cambrex, USA). Agarose was mixed and melted in 

TAE buffer. Samples were mixed with 6 x sample buffer, and either DNA-Marker 100 bp-

Leiter or DNA-Marker Lambda Mix II (MBBL, Bielefeld, Germany) was used as DNA 

molecular mass marker. Gels were run with constant voltage of 5 V per cm electrode distance. 

The DNA in the gels was stained with ethidium bromide by incubation in TAE buffer 

containing 1 µg/ml ethidium bromide for 15 minutes. The DNA with the intercalated dye was 

detected on an illuminator (excitation: 312 nm, emission: 590 nm). 
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TAE buffer 

0.04 M Tris, HAc 

1 mM EDTA, pH 8.0 

 

6 × sample buffer 

0.25 % Bromphenol blue 

0.25 % Xylencyanol FF 

30 % Glycerol in distilled water.  
 

  
 

 

2.2.8 DNA isolation from agarose gels 

DNA isolation from agarose gels was performed with the MinEluteTM Gel Extraction Kit 

(Qiagen, Hilden, Germany) according to the manufacturers instructions in order to purify 

DNA fragments needed for subsequent cloning steps. 

 

2.2.9 TA-cloning 

Before cloning into the target expression vector, PCR fragments were inserted into the 

cloning vector pCR® II-TOPO by TA-cloning with the TOPO TA Cloning® Kit (Invitrogen, 

Groningen, NL). TopoisomeraseI bound to a terminal thymine of the linear pCR® II-TOPO 

cloning vector combined the thymine with the 3’-deoxyadenoside overhangs in the PCR 

amplicons.  

The ligation reaction was performed with 2 µl PCR product, 1 µl provided salt solution and 1 

µl vector for 5 minutes at room temperature. For transformation, 2 µl of this reaction batch 

were mixed with an aliquot of provided chemical-competent TOP10F’ One Shot®cells and 

Figure 2.2.7: DNA markers 

 



  MATERIALS AND METHODS 

 34 

were incubated on ice for 20 minutes. After a heat-shock at 42 °C for 30 seconds and quick 

cooling down on ice, 250 µl SOC medium were added. The transformed cells were incubated 

for 1 hour at 37 °C in a shaker. Subsequently, 50 µl and 100 µl were plated on LB agar plates 

which were then incubated overnight at 37 °C. In addition to 50 µg/ml ampicillin, the agar 

plates contained isopropyl-ß-thiogalactopyranosid (IPTG, 40 µl of a 100 mM stock solution) 

and the synthetic β-galactosidase substrate 5-brom-4-chloro-3-indigo-ß-D-galactoside (X-Gal, 

40 µl of a 40 mg/ml stock solution) for the selection of transformed colonies.  

In the untransformed E.coli strain TOP10F’, the multiple cloning site was located in the LacZ 

gene and the lac repressor was overexpressed. Induction with IPTG resulted in transcription 

of the LacZ gene and expression of β-galactosidase which turned over X-Gal to the dye 5-

brom-4-chlor-indigo. Corresponding colonies were blue coloured. In case of integration of a 

PCR fragment into the multiple cloning site, lacZ promoter and lacZ gene were separated 

and β-galactosidase was not expressed. Corresponding colonies remained colourless. Some of 

these colourless colonies were further tested for the integrated DNA in colony PCR reactions 

(2.2.6). 

 

2.2.10 Restriction of DNA 

Restriction reactions were performed either to provide PCR fragments and vectors with 

complementary ends for ligation reaction or to examine insertion and orientation of inserted 

DNA fragments in cloned constructs. The used restriction enzymes (MBI Fermentas, St. 

Leon-Rot, Germany) were type II endonucleases. For reactions with two or more 

endonucleases, MBI Fermentas provided information for the best reaction conditions 

(www.fermentas.com/doubledigest/double.php). 

For 20 µl restriction reaction samples, 2 µg DNA, 0.6 µl of each enzyme (10 U/µl), 2 µl 10 x 

buffer (MBI Fermentas, St. Leon-Rot, Germany) and distilled water were mixed and 

incubated overnight at 37 °C. Digested fragments were analysed by agarose gel 

electrophoresis (2.2.7). 

 

2.2.11 Ligation 

PCR fragments and linearised target expression vectors with complementary ends were 

ligated with T4-Ligase (MBI Fermentas, St.Leon-Rot, Germany). 1 µl T4 Ligase and 2 µl 5 x 

buffer (MBI Fermentas, St.Leon-Rot, Germany), ~100 ng vector and ~300 ng insert were 

applied for 20 µl reaction batches. The ligation reaction was incubated overnight in a water 

bath at 16 °C. DNA was then precipitated (2.2.5) and transformed into bacteria. 
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2.2.12 Transformation of electro-competent E.coli cells 

The E.coli strain XL1 blue was used for transformation by electroporation. Electro-competent 

cells were stored in aliquots at -80 °C. For electroporation, cells were defrosted on ice and 

carefully mixed with either 10 µl of a ligation batch (2.2.11), 2 µl of precipitated DNA (2.2.5) 

or 50 ng purified plasmid DNA (2.2.3). After incubation for 1 minute on ice, the mixture was 

pipetted into an electro cuvette and electroporation was performed with a GenePulserTM (Bio-

Rad, München, Germany) with a voltage of 2.5 kV, an electric resistance of 400 Ω and an 

electric capacity of 25 µF. 900 µl SOC medium were added into the cuvette immediately. The 

mix was decanted into an Eppendorf tube and incubated in a shaker for 1 hour at 37 °C. 50 µl 

and 100 µl were plated on LB agar plates containing 50 µg/ml ampicillin, IPTG and X-Gal 

(see also 2.2.9) which were then incubated overnight at 37 °C.  

 

SOB medium 

20 g trypton 

5 g yeast extract 

0.5 g NaCl 

Components were mixed in 950 ml distilled water and 10 mM KCl was added. The pH 

was adjusted to 7.0. The solution was filled up to 1 l and was autoclaved. 

Subsequently, 5 ml sterile 2 M MgCl2 solution were added.  

 

SOC medium 

 SOB medium 

 20 mM sterile glucose 

  

2.2.13 Transformation of chemical-competent E.coli cells 

The E.coli strain TOP 10F’ (TOPO TA Cloning® Kit, Invitrogen, Groningen, NL) was used 

for chemical transformation. Transformation was performed according to manufacturers 

instruction (see also 2.2.9).  

 

2.2.14 DNA sequencing  

Sequencing was performed by the IIT sequencing service (Universität Bielefeld) according to 

the Sanger sequencing method. Examination of sequencing data was performed with the 

software ClustalX 1.81 and Chromas 2.24. 
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2.3 Protein biochemical methods 

 

2.3.1 Preparation of proteins from cell culture cells and supernatants 

Cells were grown to 90 % confluence. Cell supernatants were collected and spun for removal 

of cells and other particles and were enriched by ultrafiltration (2.3.6) or subjected to affinity 

chromatography either with ConA sepharose or Nickel-NTA (2.3.3, 2.3.4).  

Cells were washed twice with PBS and lysed with RIPA containing protease inhibitor 

cocktail. After incubation with lysis buffer for 15 minutes at room temperature, cells were 

abraded from the cell culture plates and were sonicated at medial amplitude twice for 30 

seconds. After removal of insoluble particles by centrifugation, samples were used directly or 

were subjected to affinity chromatography with ConA sepharose (2.3.3). If not used 

immediately, samples were frozen on liquid nitrogen. 

For native preparation of cells and subsequent analysis of protease activities in cell lysates, a 

HEPES lysis buffer containing protease inhibitor cocktail was used for lysis. After incubation 

at room temperature for 15 minutes, cells were abraded from the culture plates and spun at 

13000 x g for 2 minutes. The resulting pellets were directly assayed for protease activity. 

 

1 x PBS (pH 7.4) 

136 mM NaCl 

3 mM KCl 

8 mM Na2HPO4 x 2H2O 

1.5 mM KH2PO4 

 

RIPA 

1 x PBS 

1 % Nonidet P-40 

0.5 % sodium deoxycholate  

0.1 % SDS 

 

HEPES lysis buffer 

20 mM HEPES pH 7.4 

1 % NP-40 

0.5 % sodium deoxycholate  

 



  MATERIALS AND METHODS 

 37 

2.3.2 Preparation of proteins from tissues 

Wobbler mice and ADAM8 knockout mice as well as wild type litter mates were killed by 

neck fraction. Brain tissues, spinal chord and lungs were prepared and either used 

immediately or frozen on liquid nitrogen. 30-day old wobbler mice with an evident wobbler 

phenotype were used for biochemical analysis. 

Mouse tissues were lysed with either an ultraturrax or with pestles in 500 µl RIPA (2.3.1) 

containing protease inhibitor cocktail per 100 mg fresh weight. After incubation on ice for 30 

minutes, samples were sonicated at medial amplitude twice for 30 seconds. After removal of 

insoluble particles by centrifugation, samples were used directly or were subjected to ConA 

sepharose affinity chromatography (2.3.3). If not used immediately, samples were frozen on 

liquid nitrogen. 

Brain tumour tissues were prepared under native conditions for subsequent analysis of 

protease activities. Brain tumour specimens were obtained from archival material of patients 

who underwent neurosurgery for tumour resection. Histologically normal temporal cortex 

with adjacent white matter served as control. This material was removed in the course of 

surgical hippocampectomy for therapy of medical refractory epilepsy. The tissue specimens 

used for protein extractions were obtained frozen in liquid nitrogen from a collaborating 

group (Dr. Axel Pagenstecher, Abteilung Neuropathologie, Pathologisches Institut, 

Universität Freiburg). Brain tissue extracts were lysed with pestles in 10 µl HEPES lysis 

buffer (2.3.1) containing protease inhibitor cocktail per mg fresh weight. Samples were spun 

down and supernatants were purified with ConA sepharose (2.3.3). ConA sepharose with 

bound proteins was used in subsequent activity assays. 

 

2.3.3 Affinity chromatography with ConA sepharose 

For enrichment of glycosylated cell surface proteins from tissue extracts, cell lysates or cell 

supernatants, affinity chromatography with the lectin concanavalin A was performed under 

native conditions and in a batchwise procedure. ConA sepharose obtained from Amersham 

Biosciences (Uppsala, Sweden) is ConA coupled to Sepharose 4B by the cyanogens bromide 

method with a capacity of binding 20-45 mg glycosylated protein per ml sepharose. 

ConA sepharose was washed twice with 20 mM HEPES (pH 7.4). In case of small sample 

volumes, about five volumes of ConA buffer were added. For large volumes of supernatants, 

NaCl was added to a final concentration of 300 mM NaCl and the pH was adjusted to pH 7.4. 

After having added ConA sepharose, samples were incubated on an orbital shaker for at least 

90 minutes at 4 °C. Subsequently, supernatants were discarded and the sepharose was washed 
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twice with 20 mM HEPES (pH 7.4). Elution was performed with 0.2-0.4 M α-D-

methylmannoside on an orbital shaker for at least 90 minutes at 4 °C or with 2 x SDS sample 

buffer (from 5 x SDS sample buffer, 2.3.10) for 5 minutes at 95 °C. For activity assays, 

protein was not eluted, but ConA sepharose pellets with bound protein were used. 

 

ConA buffer 

20 mM HEPES, pH 7.4 

 1 mM CaCl2 

 1 mM MnCl2  

0.3 M NaCl  

Protease inhibitor cocktail  

 

2.3.4 Affinity chromatography with Nickel-NTA 

For enrichment of proteins with a His-tag consisting of six histidines, immobilised metal-ion 

affinity chromatography (IMAC) with Nickel-NTA was performed in batchwise procedure 

under native conditions. The chelate nitrolotriacetic acid (NTA) was bound to a matrix and 

charged with nickel for specific binding of histidine containing proteins. Either the Ni-NTA 

Purification System (Invitrogen, Groningen, NL) or HIS-SelectTM Nickel Affinity Gel (Sigma, 

Taufkirchen, Germany) was used. The manufacturers protocols were slightly modified. 

 

Ni-NTA Purification System (Invitrogen, Groningen, NL) 

Centrifugations steps were performed at 4000 x g. Incubation and washing steps were 

performed at 4 °C on an orbital shaker. 

1 ml Ni-NTA matrix was washed with 6 ml distilled water, and was equilibrated twice with 6 

ml native wash buffer. Ni-NTA gel and samples were mixed and incubated for 90 minutes. 

After centrifugation, supernatants were discarded. The gel was washed 4 times with 8 ml 

native wash buffer. Subsequently, protein was eluted from the gel with 8 ml native elution 

buffer for 10 minutes. Elution steps were repeated to recover more protein. Samples were 

dialysed and enriched after elution by ultrafiltration (2.3.8, 2.3.6). 

 

Native wash buffer (pH 8.0) 

50 mM Na3PO4 

500 mM NaCl 

10 mM imidazole 
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Native elution buffer (pH 8.0) 

50 mM Na3PO4 

500 mM NaCl 

250 mM imidazole 

 

HIS-SelectTM Nickel Affinity Gel (Sigma, Taufkirchen, Germany) 

The gel had to be handled carefully. Centrifugations steps were performed with 4000 x g. 

Incubation and washing steps were performed at 4 °C on an orbital shaker. 

The gel was washed three times with 10 gel volumes wash buffer. Gel and samples were 

mixed and incubated for 30 minutes. After centrifugation, supernatants were discarded. The 

gel was washed twice with 10 gel volumes wash buffer for 5 minutes. Subsequently, protein 

was eluted from the gel with 2 gel volumes elution buffer for 10 minutes. Elution steps were 

repeated to recover more protein. Samples were dialysed, and depending on the elution 

volume, samples were enriched after elution by ultrafiltration (2.3.8, 2.3.6). 

 

Wash buffer (pH 8.0) 

 50 mM Na3PO4 

 300 mM NaCl 

 

Elution buffer (pH 8.0) 

 50 mM Na3PO4 

 300 mM NaCl 

250 mM imidazole  

 

2.3.5 Affinity chromatography with Strep-tag®/Strep-Tactin®  

Recombinant proteins expressed in E.coli containing a streptavidin-tag (NH2-WSHPQFEK-

COOH) were enriched and purified with the Strep-tag®/Strep-Tactin® system (IBA, 

Göttingen, Germany). Cloning of the corresponding construct A8-ProMP into the pASK-3+ 

vector (IBA, Göttingen, Germany) as well as improvement of expression conditions and 

purification methods was performed by the diploma student Simone Reipschläger. 

This purification method was based on the binding of biotin to streptavidin. Recombinant 

ADAM8 protein containing a strep-tag II bound to the streptavidin derivate Strep-Tactin on a 

matrix. Sepharose® and MacroPrep® (Polymethacrylat) were used as matrices. But as 

MacroPrep® turned out to be more specific, this matrix was used for large scale purifications. 



  MATERIALS AND METHODS 

 40 

Elution was performed with the biotin derivate desthiobiotin, and regeneration with a HABA 

(2-[4-hydroxy-phenylazo] benzoic acid) containing buffer. 

HPLC with a Strep-Tactin MacroPrep Cartridge (IBA, Göttingen, Germany) with a bed 

volume of 1 ml and a binding capacity of 50-100 nMol per 1 ml was performed. After 

equilibration of the column with 15 ml washing buffer, 10 ml protein sample (2.3.15) was 

loaded. Subsequently, the column was washed with 20-30 ml washing buffer, and elution was 

performed with 20 ml elution buffer collecting several fractions. Regeneration was performed 

with 20 ml regeneration buffer, which was removed afterwards with 40 ml wash buffer. The 

elution fractions were concentrated to 500 µl by ultrafiltration (2.3.6) and protein 

concentrations were determined (2.3.9). Samples were analysed by immunoblotting and in 

Coomassie-Brilliant-Blue or silver stained gels (2.3.12, 2.3.13) and were then used for activity 

assays. Initially, HPLC was performed in the research group of Prof. Horst Hinssen 

(Biochemische Zellbiologie, Fakultät für Biologie, Universität Bielefeld).  

 

Resuspension buffer (pH 8.0) 

100mM Tris  

150 mM NaCl  

1 mM PMSF  

 

Wash buffer (pH 8.0) 

100 mM Tris 

150 mM NaCl 

 

Elution buffer (pH 8.0) 

100 mM Tris 

150 mM NaCl 

2.5 mM desthiobiotin 

 

10 x regeneration buffer (pH 8.0) (IBA, Göttingen, Germany) 

1 M Tris-Cl 

1.5 M NaCl 

10 mM EDTA 

10 mM HABA 
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2.3.6 Enrichment of protein solutions 

For enrichment of protein solutions and for reduction of the volumes of cell culture 

supernatants, ultrafiltration with either Amicon® Ultra-4 filtration units (Millipore 

Corporation, Bedford, UK) or Centricon® YM-10 filtration units (Millipore Corporation, 

Bedford) was performed. Both filtration units had an exclusion volume of 10 kDa. 

Centrifugation was performed according manufacturers instructions at 4 °C. Filtration units 

were refilled and used up to three times for equal samples. 

 

2.3.7 Precipitation of proteins 

Protein precipitation was performed for enrichment of protein containing solutions. 

Precipitation with acetone as well as with TCA denatured proteins and was only performed 

for samples subjected to SDS-PAGE. 

For acetone precipitation, samples were incubated with 7 volumes ice cold acetone for 30 

minutes at -20 °C. After centrifugation, the supernatants were discarded and the pellets were 

washed twice with ice cold acetone. The pellets were dried and resuspended in distilled water. 

For TCA precipitation, samples were incubated with one volume of cold 10 % trichloric 

acetic acid for 20 minutes on ice. After centrifugation, the supernatants were discarded and 

the pellets were washed extensively four times with 70 % ethanol. The pellets were dried and 

resuspended in distilled water. 

 

2.3.8 Dialysis 

Dialysis was used for the exchange of buffers of protein containing solutions. Dialysis 

membranes with an exclusion volume of 14 kDa were used (Medicell International Ltd, 

London, UK) and dialysis was performed overnight at 4 °C under constant stirring. Protein 

solutions with soluble ADAM8 were dialysed against a buffer containing 20 mM HEPES, pH 

7.4, 5-10 mM CaCl2, 25 µM ZnCl2 and 100-200 mM NaCl. 

 

2.3.9 Determination of protein concentrations with BCA 

The bicinchoninic acid (BCA) Protein Assay Kit (Pierce, Rockford, USA) was used according 

to manufacturers instructions with BSA used as standard. The assay is based on the reduction 

of Cu(II) to Cu(I) by proteins in alkaline solutions. Two molecules BCA and one molecule 

Cu(I) form a complex which is quantifiable at 562 nm. 

 

 



  MATERIALS AND METHODS 

 42 

2.3.10 SDS polyacrylamid gelelectrophoresis (SDS-PAGE) 

For separation of proteins from cell extracts, cell lysates and cell culture supernatants 

according to their mass, SDS-PAGE with a SDS-containing discontinuous HCl/Tris-glycine 

buffer system was used (Laemmli et al., 1970). Depending on the size of the analysed 

proteins, 5 % to 15 % mini gels with a width of 1 mm were used. Usually, 5 % gels were used 

for CHL1, 7.5 % gels for full length ADAM8, 10 % gels for recombinant forms of ADAM8 

and 15 % gels for MBP. A dual plate vertical electrophoresis unit with corresponding supplies 

(Sigma, Taufkirchen, Germany) was used for preparing and running the gels.  

The radical starter TEMED and the catalyst of the polymerisation reaction APS were added to 

gel solutions immediately before casting gels. The separating gels were covered with 

isopropanol during polymerisation for smoothing the upper edge of the gels. Combs with 

either 10 or 12 wells depending on the number of samples were inserted into the stacking gels. 

Samples were denatured by incubation with 5 x SDS sample buffer for 5 minutes at 95 °C. 

Gels were run with a constant current of 12 mA per gel. Mark 12 (Invitrogen, Groningen, NL) 

was used as a protein marker. 

 

Separating gel (~8 ml) Stacking gel (~2 ml)  1 mini gel 

5 % 7.5 % 10 % 15 % 3.75 % 

Acrylamid mix,  

30 % AA, 0.8 % BisAA  

(Rotiphorese Gel 30, Roth, Karlsruhe) 

2.65 ml 3 ml 3.3 ml 4 ml 250 µl 

Distilled water 4.2 ml 3.8 ml 3.5 ml 2.8 ml 960 µl 

3 M Tris, pH 8.8 1 ml - 

1 M Tris, pH 6.8 - 250 µl 

60 % sucrose - 500 µl 

10 % SDS 80 µl 20 µl 

10 % APS 80 µl  20 µl 

TEMED 8 µl 2 µl 

 

5 x SDS sample buffer (pH 6.8) 

250 mM Tris 

 10 % SDS 

 50 % glycerol 

0.05 % Bromphenol blue 

100 mM β-mercaptoethanol 
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10 x SDS running buffer (pH 8.9) 

 2.5 M glycine 

 250 mM Tris base 

 1 % SDS 

 

 
 

 

2.3.11 Detection of proteins in immunoblots 

Proteins separated by SDS-PAGE were electrically transferred to nitrocellulose membranes 

(PROTRAN® BA 79, Pore size 0.1 µm, Schleicher & Schuell, Dassel, Germany) by a 

semidry-electroblotter at a constant current of 2.5 mA per cm2 gel surface. As a control for 

blotting efficiencies and for marking marker bands, membranes were stained with Ponceau S 

(Sigma, Taufkirchen, Germany) and subsequently destained with TBS. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.10: Mark12 

 
Weight 
 
 
Cathode 
 
 
3 layers Whatmann in 20 % methanol, 25 mM Tris, ε-Amino-n-caproic acid 
 
Gel 
Nitrocellulose transfer membrane 
1 layers Whatmann in 20 % methanol, 30 mM Tris 
2 layers Whatmann in 20 % methanol, 300 mM Tris 
 
Anode 

Figure 3.2.11: Semidry-electroblot 
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To avoid unspecific binding of antibodies, nitrocellulose membranes were incubated with 5 % 

non-fat dried milk powder in TBS either for 2 hours at room temperature or overnight at 4 °C. 

Primary antibodies were used in 5 % milk powder in TBS in concentrations listed previously 

(2.1.5) and were incubated with the membranes either overnight at 4 °C or for 3 hours at room 

temperature. Membranes were washed with TBS containing 0.1 % Tween20 three times for 

10 minutes, before incubation with horse radish peroxidase coupled secondary antibodies in 5 

% milk powder in TBS for 60 minutes at room temperature. Secondary antibodies were used 

in concentrations listed previously (2.1.6). After another three washing steps with TBS 

containing 0.1 % Tween20, the membranes were subjected to development with the ECL-

System Lumi-LightPLUS (Roche, Mannheim, Germany). Horse radish peroxidase coupled to 

the secondary antibodies oxidised the substrate Luminol in the presence of hydrogen 

peroxide. With the emitted light, Kodak X-OMAT X-ray films were exposed for 30 seconds 

to 24 hours depending on the intensity of the reaction. Fixing and developing of the films was 

performed with Kodak X-ray Developer LX 24 and Kodak X-ray Fixer AL4 (Eastman Kodak, 

Rochester, NY, USA). 

For a new incubation with different antibodies, the membranes were stripped in PBS 

containing 2 % SDS for 15 minutes at 37 °C and 1 hour at room temperature. After washing 

with TBS containing 0.1 % Tween20, unspecific binding was blocked with 5 % milk powder. 

  

10 x TBS 

 1.37 M NaCl 

 100 mM Tris, pH7.3 

 

2.3.12 Detection of proteins by Coomassie-Brilliant-Blue staining 

With Coomassie-Brilliant-Blue staining, proteins in concentrations of 200-400 ng per band 

are detectable in SDS gels.  

The gels were stained for one hour in a staining and fixing solution containing 10 % acetic 

acid, 25 % isopropanol and 2.5 % Coomassie-Brilliant-Blue. Subsequently, the gels were 

destained for several hours in 10 % acetic acid and 12.5 % isopropanol until protein bands 

were clearly visible. All staining steps were performed at room temperature. Stained gels were 

either stored in water or were wrapped and dried in cellophane foil (Ostmann, Bielefeld, 

Germany).  
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2.3.13 Detection of proteins by silver staining 

Silver staining is sensitive for protein concentrations of 5 ng per band. Proteins in SDS gels 

were fixed with 50 % methanol, 12 % acetic acid and 0.02 % formaldehyde for 15 minutes. 

After three washing steps in 50 % ethanol for 10 minutes each and 1 minute in 0.02 % sodium 

thiosulfate, the gels were incubated in the staining solution containing 0.2 % silver nitrate and 

0.05 % formaldehyde for 15 minutes. During that incubation, silver nitrate accumulated to 

proteins. After a washing step with water, the silver nitrate was reduced to metallic silver in 

the following developing step in a solution containing 6 % sodium carbonate, 0.02 % 

formaldehyde and 0.4 x 10-3 % sodium thiosulfate. The staining reaction was stopped with 50 

% methanol and 12 % acetic acid when bands were clearly visible. All staining steps were 

performed at room temperature. Stained gels were either stored in water or were wrapped and 

dried in cellophane foil (Ostmann, Bielefeld, Germany). 

 

2.3.14 Preparative blot for protein sequencing 

For sequencing, CHL1 fragments were separated by SDS-PAGE. SDS was removed from the 

gel by washing in blotting buffer. A Porablot-PVDF membrane (Macherey und Nagel, Düren, 

Germany) was activated in ethanol and equilibrated in blotting buffer for each 1 minute. By 

semidry-electroblotting (2.3.11), protein fragments were transferred onto the Porablot-PVDF 

membrane for 60 minutes with a constant current of 2 mA per cm2 gel surface. Afterwards, 

the membrane was stained for 5 minutes and subsequently destained. Corresponding CHL1 

fragments were cut out of the membrane and subjected to sequencing. Sequencing was kindly 

performed by Kerstin Bröker from the research group of Prof. Tschesche (Biochemie, 

Fakultät für Chemie, Universität Bielefeld) with a sequencer of the company Knauer. 

 

Blotting buffer 

 50 mM H3BO3, pH 9.0 

 20 % ethanol 

 1 mM DTT 

 

Staining solution 

 0.02 % Coomassie-Brilliant blue 

 45.5 % ethanol 

 9 % acetic acid 

 1 mM DTT 
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Destaining solution 

 45.5 % ethanol 

 9 % acetic acid 

 1 mM DTT 

 

2.3.15 Expression of recombinant ADAM8 in E.coli 

Cloning of the corresponding construct A8-ProMP in the pASK-3+ vector (IBA, Göttingen, 

Germany), transformation in the E.coli strain BL21(DE3)pLysS (Invitrogen, Groningen, NL) 

as well as improvement of expression conditions and purification methods was performed by 

the diploma student Simone Reipschläger.  

For large scale purifications of recombinant ADAM8 from the cytoplasma of E.coli, 1 l to 1.5 

l expression cultures were used. Bacteria were grown in LB-Medium (2.2.1) containing 

ampicillin (100 µg/ml) and chloramphenicol (34 µg/µl). Expression was induced at OD 0.5 by 

0.2 µg/ml anhydrotetracyclin for 6 hours at 30 °C with 50 µM ZnCl2 added to the medium. 

Subsequently, media were spun and supernatants were discarded. Pellets were resuspended in 

10 ml resuspension buffer containing 150 mM NaCl, 100 mM Tris (pH 8.0) and 1 mM 

phenylmethylsulfofluoride (PMSF) for inhibition of serine proteases. The suspension was 

subjected to ultrasonic treatment at medial amplitude three times for 30 seconds. 5 µg/ml 

DNase I and 10 µg/ml RNaseA were added to the sample to decrease viscosity. After spinning 

at 50000 x g and filtration with a 0.2 µm filter unit, supernatants were subjected to HPLC in a 

Strep-Tactin MacroPrep Cartridge (IBA, Göttingen, Germany) (2.3.5). Samples were 

analysed by immunoblotting (2.3.11) and Coomassie-Brilliant-Blue or silver stained gels 

(2.3.12, 2.3.13) and were then used for activity assays. 

 

2.3.16 Expression of recombinant ADAM8 in COS1 cells 

COS1 cells were transiently transfected with a cDNA encoding the pro and metalloprotease 

domain of ADAM8 in a SecTag2 B vector according to the DEAE/Dextran method (2.4.3). 

Cells were maintained in DMEM with 10 % SerEx for 36-48 hours after transfection. 

Supernatants were collected and subjected to ultrafiltration (2.3.6), ConA (2.3.3) or Nickel-

NTA affinity chromatography (2.3.4). Samples were analysed by immunoblotting (2.3.11) 

and silver stained gels (2.3.13) and were used for activity assays. 
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2.3.15 Cleavage assays with recombinant proteins 

Myelin basic protein (MBP) was used for in vitro cleavage to confirm proteolytic activity of 

purified ADAM8 (Schlomann et al., 2002). 20 µl samples were prepared containing 10 µg 

recombinant MBP (Sigma, Taufkirchen, Germany), digestion buffer, ADAM8 solution 

containing 2-5 µg protein and protease inhibitor cocktail. Cleavage assays were performed 

likewise with 1 µg recombinant L1-Fc, CHL1-Fc and NCAM-Fc. Samples were incubated 

overnight at 37 °C and cleavage products of MBP were analysed by 15 % SDS-PAGE and 

cleavage products of L1-Fc, CHL1-Fc and NCAM-Fc were analysed by 5 % SDS-PAGE 

(2.3.10). Gels were subsequently silver stained (2.3.13). For inhibition experiments, ADAM8 

was preincubated with inhibitors for 90 minutes at 37 °C. Metalloprotease inhibitors were 

used as follows: EDTA 10 mM, TIMPs 500 nM, OPT 10 mM, hydroxamates 200 nM.  

 

20 × digestion buffer (pH 7.3) 

0.4 M Tris 

0.1 M CaCl2 

1 mM ZnCl2 

2 M NaCl 

 

2.3.16 Quantitative analysis of CHL1 cleavage 

After cleavage assay with CHL1, ADAM8 and inhibitors where necessary, a quantitative 

analysis of CHL1 cleavage was performed. The band intensities of uncleaved CHL1-Fc in a 

silver stained gel were determined for each cleavage condition. These intensities were 

compared to 1 µg of uncleaved CHL1-Fc protein which intensity was set to 100 % and were 

given as means. For quantification, Quantiscan software (Bio-Rad, Göttingen, Germany) was 

used. 

 

2.3.17 Peptide synthesis 

The three peptides NH2-NDLGPRALEI-COOH, NH2-PRALEIYRAQ-COOH and NH2-

RAQPRNWLIP-COOH were synthesised with an automatic peptide synthesiser by Fmoc/tBu 

method in a batchwise procedure. In case of peptides NH2-NDLGPRALEI-COOH and NH2-

PRALEIYRAQ-COOH Wang resin was used, in case of peptide NH2-RAQPRNWLIP-COOH 

2-Chlorotrityl-resin.  

The first amino acid – isoleucine in case of peptide 1, glutamine in case of peptide 2 and 

proline in case of peptide 3 – was coupled manually to the resin with 1 equivalent TBTU and 
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2 equivalents DIPEA corresponding to the molar amounts of used amino acid. Coupling 

efficiencies were controlled by decoupling a small aliquot of resin and measurement of Fmoc 

concentration at wavelength 292 nm. From the result, the amount of amino acids coupled on 

the resin was extrapolated. In the automated synthesis coupling was performed with a 

threefold excess of amino acids and TBTU and a sixfold excess of DIPEA based on the 

coupled amino acids on the resin. Cleavage of Fmoc groups was obtained by 2 % piperidine 

and 2 % DBU in DMF. Washing steps were performed with DMF. Permanent side chains and 

bonds between peptides and resin were cleaved in a solution containing 95 % TFA, 2.5 % 

TIPS and 2.5 % H2O. The peptide solution was evaporated to an oily consistency and 

precipitated twice in Diethylether followed by lyophilisation. Correct synthesis was confirmed 

by MALDI-TOF MS and reverse phase HPLC. 

The peptide synthesis was performed in the study group of Prof. Norbert Sewald 

(Bioorganische Chemie, Fakultät für Chemie, Universität Bielefeld) with kind aid by the 

technician Marco Wißbrock. 

 

2.3.18 Design of peptide collection 

A number of peptides was designed in order to perform peptide assays with proteolytically 

active forms of ADAM8 and to find new peptide substrates of ADAM8. Peptides were 

derived from mouse proteins and included sequences of other metalloprotease peptide 

substrates as well as sequences from membrane proximal regions of proteins supposed to be 

released from the cell surface by metalloproteases. 

For literature search the database of the National Center of Biotechnology Information 

(NCBI) (http://www.ncbi.nlm.nih.gov) was used. For protein information the NCBI database 

as well as the Swiss-Prot/TrEMBL protein database (http://www.expasy.org/sprot/) was used. 

For known human metalloprotease peptide substrates, homologous mouse sequences were 

chosen using the programme ClustalX as alignment tool. If no cleavage site details were 

available, overlapping peptides covering either juxtamembraneous regions or other proposed 

cleavage site regions were designed. The overlap with three amino acids guaranteed that all 

possible cleavage sites were covered. Table 3.3.1 shows the list of designed peptides used in 

cleavage experiments. 
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2.3.19 MBP peptide cleavage assay 

The peptide Suc-H-(Mcp)-GSLPQKSH-K-(Dpa)-R-amide derived from the MBP cleavage 

site (Schlomann et al. 2002) was used in in vitro cleavage experiments either to confirm 

proteolytic activity of purified ADAM8 or to analyse protease activities in cells transfected 

with ADAM8, EQ-ADAM8 or ADAM10. The peptide was N-terminally coupled to the 

fluorophor Mcp (DL-2-amino-3-(7-methooxycoumaryl)-propionic acid) and C-terminally to 

the quencher Dpa (L-2-amino-3-(2,4-dinitrophenyl)aminopropionic acid). Fluorescence of the 

fluorophor was detectable after peptide cleavage, when fluorophor and quencher were 

separated. The assays were performed with a sample volume of 100 µl. 100 µM peptide were 

mixed with either purified ADAM8 solution containing 2-5 µg protein, 10-20 µl ultrafiltrated 

supernatants, ConA pellets or cell pellets and assay buffer. Fluorescence (excitation: 340 nm, 

emission: 405 nm) was measured over a time course of 2 hours with a Perkin-Elmer LS50B 

Luminescence spectrometer in black-coated 96 well plates (Nunc, Wiesbaden, Germany). 

Fluorescence measurements were performed in the research group of Dr. Olaf Kruse 

(Molekulare Zellphysiologie, Fakultät für Biologie, Universität Bielefeld). 

 

Assay buffer 

 20 mM HEPES, pH 7.4 

0.06 % CHAPS 

 

2.3.20 Peptide cleavage assays with peptide collection 

This assay was based on peptides synthesised on continuous cellulose membranes using the 

SPOT-synthesis technique. The peptides were synthesised with an amino-benzoic-acid (Abz) 

fluorescent moiety at the N-terminal end and were punched out as disks into 96 well plates. 

Peptides were obtained from JPT Peptide Technologies GmbH (Berlin, Germany).  

Cellulose disks were cut into equivalent pieces, activated in methanol for 5 minutes and 

subsequently washed 4 times with assay buffer (2.3.19). For the reactions, disks were 

incubated at 37 °C with 100 µl purified ADAM8 solution containing 2-5 µg protein, protease 

inhibitor cocktail and assay buffer. In negative controls, 10 mM EDTA was added. As 

positive controls, some peptides containing either arginine or lysine residues were incubated 

with trypsin. Fluorescence (excitation: 325 nm, emission: 420 nm) was measured 

immediately, after 2 and 6 hours and after overnight incubation with a Perkin-Elmer LS50B 

Luminescence spectrometer in black-coated 96 well plates (Nunc, Wiesbaden, Germany). 
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2.3.21 Peptide cleavage assays with fluorescamine 

This assay method was based on binding of the fluorophor fluorescamine to alpha amino 

groups of new N-terminal ends from peptide cleavage resulting in increase of fluorescence. 

Fluorescamine did not specifically bind to the assayed peptide, but to all N-terminal amino 

groups as well as to epsilon amino groups of lysine residues in a sample. Depending on the 

purity of the protease sample, large variations could occur because of different background 

fluorescence. In the work presented here, peptide cleavage assays with A8.1 peptide (NH2-

NDLGPRALEI-COOH) A8.2 peptide (NH2-PRALEIYRAQ-COOH), A8.3 peptide (NH2-

RAQPRNWLIP-COOH), CD23 peptide (DNP-SHHGDQMAQKSQSTQI-COOH), TNF-α 

peptide (DNP-SPLAQAVRSSSR-COOH) and CRDA19 peptide (Ac-RPLESNAV-COOH) 

were performed. The peptides A8.1, A8.2 and A8.3 were derived from the autocatalytic 

cleavage site of ADAM8 (Schlomann et al., 2002) and were tested as new peptide substrates 

of ADAM8. According to an established protocol, the CD23 peptide was determined as new 

substrate of ADAM8 (Diploma thesis, Simone Reipschläger). TNF-α and CRDA19 peptides 

were known as ADAM17 and ADAM19 substrates respectively (personal communication, 

M.Moss, Biozyme Inc., NC, USA; Kang et al., 2002). The assay method was established by 

modifying a protocol from Kang et al. (2002). As the protocol was modified and improved, 

the latest one is given. 

In 100 µl reaction batches, 100-200 µM peptide were mixed with either ADAM8 solution 

containing 2-5 µg protein, ConA sepharose pellets or cell pellets, protease inhibitor cocktail 

and HEPES assay buffer. For the brain tumour activity assays, 20 µl ConA sepharose pellets 

and 500 µM CD23 peptide and 1 mM CRDA19, respectively, were used.  

Where necessary, inhibitors were added (EDTA 10 mM, TIMP1 40 nM, TIMP3 40 nM, OPT 

10 mM, hydroxamates 200 nM). Peptides were added to reaction batches after preincubation 

of protease with inhibitors which was performed for 90 minutes at 37 °C. Immediately and 

after 1, 2 and 3 hours incubation time at 37 °C, 25 µl of the reaction batches were removed 

and mixed with 70 µl HEPES assay buffer and 5 µl 1 % fluorescamine in DMSO. 

Fluorescence (excitation: 386 nm, emission: 477 nm) was measured with a Perkin-Elmer 

LS50B Luminescence spectrometer in black-coated 96 well plates (Nunc, Wiesbaden, 

Germany).  

 

HEPES assay buffer 

 20 mM HEPES, pH 7.4 

 0.015 % Brij-35 



  MATERIALS AND METHODS 

 51 

2.4 Cell culture methods 

 

2.4.1 Working with sterile material 

Glass bottles, phosphate buffer and endotoxin-free Milli-Q-water were sterilised by 

autoclaving before use. Glass pipettes were sterilised for 4 hours at 160 °C. Culture plates, 

flasks, pipette tips and further plastic ware were obtained as expendable products. Dulbecco’s 

Modified Eagle Medium (DMEM) and additives for media (fetal calf serum (FCS), 

glutamine, non-essential amino acids (NEAS), Trypsin-EDTA) were obtained as sterile 

products from PAA Laboratories (Linz, Austria). Further additives like antibiotics were 

dissolved in Milli-Q-water and were sterilised by filtration with syringe filter units with a pore 

size of 0.2 µm (Schleicher und Schüll, Dassel, Germany). Cell culture work was performed at 

a class II cell culture workbench (SterilGuard, Baker, USA). 

 

2.4.2 Cultivation of cell culture cells 

COS7 and COS1 cells were cultivated in growth medium containing DMEM, 10 % FCS, 

NEAS and 2 mM L-glutamine (PAA Laboratories, Linz, Austria) at 37 °C in 7.5 % CO2-

atmosphere. To avoid bacterial contamination, 5 µl of a penicillin-streptomycin stock solution 

per ml medium were added (0.4 g penicillin and 1.28 mg streptomycin in 20 ml Milli-Q-

water). For splitting, seeding and freezing, cells were washed with PBS (2.3.1) and incubated 

with Trypsin-EDTA for 2 minutes at 37° C. When cells detached from the bottom, tryptic 

reaction was stopped with 10 volumes growth medium compared to the used Trypsin-EDTA 

and cells were resuspended by pipetting up and down. For counting cells, a Neubauer 

counting chamber was used. 

For freezing, trypsinised cells were spun and the supernatants were discarded. About 106 cells 

were resuspended in 1 ml freezing medium containing 50 % fetal calf serum, 45 % DMEM 

and 5 % DMSO and were filled into cryo tubes. Cells were frozen immediately in a Nalgene 

Cryo 1 °C Freezing container (Nunc, Wiesbaden, Germany) to -80 °C. Long-term storing was 

performed in a tank with liquid nitrogen. To avoid osmotic damage caused by cytotoxic 

DMSO, defrosting of frozen cells was performed quickly. Cryo tubes were incubated in a 37 

°C water bath and thawed cell suspension was mixed with 9 ml warm growth medium. 
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2.4.3 Transient transfections 

Transient transfections of COS7 cells were performed with LipofectAMINETM Plus 

(Invitrogen, Groningen, NL) and transient transfections of COS1 cells according to the 

DEAE/Dextran transfection method (Seed and Aruffo, 1987).  

For the liposome transfection with LipofectAMINETM Plus, COS7 cells were seeded one day 

before transfection to achieve 70 % confluency on target day. On target day, DNA and PLUS 

reagent were diluted in serum-free medium according to table 2.4.3-1 and were incubated for 

15 minutes at room temperature. LipofectAMINETM diluted in medium was added to the 

mixture and incubated another 15 minutes. The transfection mixture was dropped onto the 

cells after exchange of medium by serum-free DMEM. After incubation of 3 hours, the 

medium was exchanged against serum-containing DMEM. 

 

Plate 
size 

Cells 
seeded 

DNA 
 
 

(step1) 

PLUS 
reagent 

 
(step1) 

Medium 
for 

dilution 
(step1+2) 

Lipofect 
AMINE 
reagent 
(step2) 

Transfection 
medium 

Transfection 
volume 

30 mm 1 x 105 1 µg 6 µl 100 µl 4 µl 0.8 ml 1 ml 

60 mm 5 x 105 2 µg 8 µl 250 µl 12 µl 2 ml 2.5 ml 

90 mm 1 x 106 4 µg 20 µl 750 µl 30 µl 4 ml 6.5 ml 

140 mm 3 x 106 14 µg 50 µl 1800 µl 75 µl 8 ml 12 ml 

 

 

For the DEAE/Dextran transfection, COS1 cells were seeded one day before target day to 

achieve 80 % confluency for transfection. On target day, cells were washed with ice cold PBS 

and were subsequently incubated with a transfection mix containing DNA, DMEM + 10 % 

fetal bovine serum PAA clone (PAA Laboratories, Linz, Austria), 400 µg/ml DEAE Dextran 

and 100 µM chloroquine according to details in table 2.4.3-2. After 3 hours incubation, the 

transfection mix was removed and a DMSO-shock was performed. Cells were incubated at 

room temperature for 2 minutes with PBS containing 10 % DMSO. Afterwards, the 

PBS/DMSO mix was exchanged by growth medium.  

 

Plate size Cells seeded DNA 
Transfection mix / 

PBS/DMSO mix 

30 mm 1 x 105 1 µg 1 ml 

60 mm 5 x 105 2 µg 2 ml 

90 mm 1 x 106 5 µg 5 ml 

140 mm 3 x 106 20 µg 10 ml 

 Table 2.4.3-2: DEAE/Dextran transfection 

Table 2.4.3-1: LipofectAMINETM Plus transfection 
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The medium used after transfection depended on further treatment of cells. Usually, growth 

medium was used. But as fetal calf serum contains an undefined concentration of various 

proteins, it was not appropriate for the isolation of proteins from supernatants and for 

stimulation studies. For those cases, medium was either changed to serum-free conditions on 

the day after transfection or to DMEM with 10 % SerExTM (PAA Laboratories, Linz, Austria) 

– an additive for serum-free media. 

In shedding experiments with CHL1, co-transfected cells were kept under different conditions 

by either adding activators of protein kinase C or 10 mM β-mercaptoethanol as a reducing 

agent to media. Media were changed to serum-free conditions the day after transfection and 

cells were incubated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, 50 

and 500 ng/ml) and pervanadate (77 and 770 µM) for six hours before harvesting the cells. 

TPA was obtained from Sigma (Taufkirchen, Germany). Pervanadate, a phosphatase 

inhibitor, had to be prepared by mixing 100 µl of 50 mM Na3VO4 with 30 µl of 30 % H2O2 

for 5 minutes at room temperature, followed by adding 520 µl distilled water to obtain a 7.7 

mM pervanadate solution.  

 

2.4.4 Poly-L-Lysine (PLL) coating of coverslips 

Coverslips were treated for 30 minutes with 3 M HCl at room temperature and were 

subsequently washed twice for 10 minutes with distilled water. Coverslips were then treated 

with acetone for 2 hours at room temperature and washed 5 times with distilled water and 

twice for 10 minutes with ethanol. All these steps were carried out under gentle shaking in a 

beaker. The coverslips were then sterilised for 2 hours at 160 °C with the beaker covered with 

aluminium foil. All further steps were carried out sterile under the workbench. After cooling 

down to room temperature, coverslips were incubated with sterile 0.01 % PLL (mol wt. 

70000-150000, Sigma, Taufkirchen, Germany) for 2 hours at room temperature. 

Subsequently, they were washed three times with distilled water, dried and incubated under 

UV light for at least 30 minutes. Until use, they were stored sterile. 

 

2.4.5 Preparation and cultivation of primary cerebellar granule cells 

For cerebellum preparation, sterile scissors and forceps were used. 1-4 day old mice were held 

over petri dishes containing ice cold HBSS, and the head was cut off behind the ears. The 

head was fixed with a sharp curved forceps. Skin, flesh and ears were cut away from back and 

middle of the skull. A small scissor was inserted into the spinal cord opening, and the skull 

was cut low on either side in order to be able to pull back the skull and to expose the brain. 
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The cerebellum was pinched of with a fine curved forceps and placed into ice cold HBSS. 

Foreign tissue, blood vessels and membrane surrounding the cerebellum were carefully 

pinched off under the stereomicroscope. Clean cerebella were put into new petri dishes with 

chilled HBSS and cut into several pieces. 

Cell preparation steps were carried out under sterile conditions under the workbench and 

centrifugation steps with 100 x g. The cerebella pieces were put into a 15 ml Greiner tube and 

washed with 5 ml HBSS. After centrifugation for 2 minutes, HBSS was discarded. Each three 

prepared cerebella were incubated with 1 ml Trypsin/DNase solution for 15 minutes at room 

temperature. Samples were spun down, Trypsin/DNase solutions were discarded, and 

cerebella were washed three times with ice cold HBSS. 1 ml DNAse solution was added and 

cerebella were homogenised by pipetting up and down approximately 10 times using a larger 

rounded Pasteur pipette, then a smaller and then a very small one. Then, 5 ml ice cold HBSS 

were added. The supernatants with separated cells were filled into a new Greiner tube and 

were centrifuged for 15 minutes at 4 °C. The supernatants were aspirated with small amounts 

of solution left. Cells were resuspended in 2 ml X1 medium and the numbers of living cells 

were determined by trypan blue exclusion method. Subsequently, 1 x 105 living cells were 

seeded per 10 mm diameter well. 

 

X1 Medium 

 BME-Earle medium containing 2.2 mg/ml NaHCO3 (Biochrom, Berlin, Germany) 

10 % FCS 

penicillin, streptomycin (see 2.4.2) 

NEAS (see 2.4.2) 

2 mM L-glutamine  

0.1 % BSA 

10 µg/ml insulin 

4 nM L-thyroxine 

100 µg/ml holo-transferrin 

30 nM sodium selenite 

1 mM sodium pyruvate 

protease inhibitor cocktail 
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HBSS (pH 7.4) 

 185 mg/l CaCl2 x 2 H2O 

 97.57 mg/l MgSO4 

 8 g/l NaCl 

 400 mg/l KCl 

 60 mg/l KH2PO4 

 350 mg/l NaHCO3 

 47.88 mg/l Na2HPO4 

 1 g/l D-Glucose 

  

Trypsin/DNAse solution (pH 7.8) 

 HBSS  

1 % Trypsin 

 0.05 % DNAse I 

  

DNAse solution 

 HBSS 

0.05 % DNAse I 

 

2.4.6 Neurite outgrowth assay 

Cerebellar granule neurons were prepared from 1-4 day old CD1 mice as described previously 

(2.4.5). Cells were seeded onto PLL coated coverslips (2.4.4) and were maintained in serum-

free medium. To determine neurite outgrowth in the presence of supernatants from transfected 

COS7 cells, supernatants were applied 12 hours after co-transfection of COS7 cells with 

CHL1/ADAM constructs and 1-2 hours after seeding the neurons. CHL1-Fc protein was 

added to the medium as a positive control. 18 hours after addition of either CHL1-Fc protein 

or supernatants of transfected COS7 cells, neurite outgrowth was determined. To visualise 

neurite outgrowth, cells were fixed with 4 % glutaraldehyde for 5 minutes and stained with 

either Richardsons Blue or with anti-NF200 antibody (see 2.1.6). For each experimental 

setup, neurites of at least 50 cells with processes longer than the cell body diameter were 

measured using a Zeiss Axiophote microscope with digital equipment.  

Neurite outgrowth assays in co-cultures of cerebellar neurons with transfected COS7 cells 

were performed by plating 5x104 COS7 cells in 30 mm plates on PLL coated coverslips. One 

day after transfection of COS7 cells, freshly prepared cerebellar neurons were added at 
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densities of 105 cells per plate. The co-culture was maintained in serum-free medium. After 

24 hours, the number of attached neurons per visual field and neurite lengths were determined 

as described above. Each neurite outgrowth experiment was performed with cerebella from 3 

mice and each condition was determined in triplicates. The experiments were repeated at least 

3 (n=9) or 4 (n=12) times as indicated. Data were given as mean values ± standard error of the 

mean (S.E.M.). 

 

2.4.7 Cell survival assay 

Cerebellar granule neurons were seeded in 96 well plates coated with PLL at densities of 105 

cells per well. After cell attachment, either serum-free medium or supernatants from 

transfected COS7 cells were applied. After day 1, 3, and 5, the numbers of surviving cells 

were counted by Trypan blue exclusion staining. Data are from three independent experiments 

in triplicates and as mean values ± standard error of the mean (S.E.M.). A Student t test was 

used to determine the significance and a p value < 0.01 was considered as highly significant. 
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3. Results 

 

3.1 Expression and catalytic activity of recombinant ADAM8 

For in vitro cleavage assays, a soluble, catalytically active form of ADAM8 was required. 

Initially, cDNA comprising the pro and the metalloprotease domain (A8-ProMP) was 

expressed in cell culture, and the secreted protease was isolated from cell culture supernatants. 

In order to scale up the amount of isolated protease, a respective cDNA construct was 

expressed in E.coli. Cloning of the corresponding cDNA construct as well as improvement of 

expression conditions and purification methods of ADAM8 from E.coli was performed by the 

diploma student Simone Reipschläger. The determination of proteolytic activity of soluble 

ADAM8 was performed either by using recombinant MBP or by using specific peptides.  

 

3.1.1 Expression of recombinant, catalytically active ADAM8 in cell culture 

For expression of soluble ADAM8 in cell culture, a cDNA comprising the pro and 

metalloprotease domain of mouse ADAM8 was amplified by polymerase chain reaction with 

the primers mA8MPSec.s and mA8MPSec.as. The reverse primer contained the sequence 

encoding a birch pollen profilin (BiPro) tag at the 3’-end for detection in immunoblots with a 

monoclonal antibody. The resulting PCR product was ligated into the respective cloning sites 

– EcoRI and XhoI – of the expression vector pSecTag2 B. This vector expressed ADAM8 as 

a fusion protein with a Sec-tag at the N-terminus and a His-tag at the C-terminus. The Sec-tag 

encoded for a secretion signal for secretion of expressed proteins into the extracellular space. 

The His-tag encoded 6 histidine residues required for purification with Nickel-NTA. In two 

clones sequenced, a point mutation afar from the consensus sequence caused an exchange 

from serine to glycine. From later analysis, it was inferred that this mutation did not affect 

catalytic activity. 

Expression of A8-ProMP was analysed by immunoblotting using a monoclonal antibody 

against the BiPro-tag cloned to the 3’-end of the cDNA construct. Initially, COS7 cells were 

transfected with LipofectAMINETM. Supernatants were concentrated by ultrafiltration and 

applied to SDS-PAGE and immunoblotting. A8-ProMP was detectable as two bands – a 60 

kDa fragment corresponding to the entire A8-ProMP, and a fragment with 35-40 kDa 

corresponding to the metalloprotease domain after prodomain removal. However, in many 

purification experiments only the smaller band was detectable indicating activation of 

ADAM8 by prodomain removal (Figure 3.1.1A).  
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 As a control for proteolytic activity, cleavage assays with MBP were performed. 

Recombinant MBP was incubated overnight with protease solution in the presence or absence 

of metalloprotease inhibitors. Cleavage was analysed by SDS-PAGE using 15 % gels which 

were subsequently silver stained. The 20 kDa protein was cleaved by ADAM8 to several 

smaller fragments, and cleavage was inhibited in the presence of the metalloprotease 

inhibitors EDTA and 1,10 ortho-phenanthroline (OPT) or the hydroxamate inhibitor 

batimastat (BB-94) (Schlomann et al., 2002), Figure 3.1.1B, Figure 3.2.1B). A more sensitive 

method for detection of catalytic activity was a peptide cleavage assay with a peptide derived 

from the MBP cleavage site (Schlomann et al., 2002). This peptide Suc-H-(Mcp)-

GSLPQKSH-K-(Dpa)-R-amide had the fluorophor Mcp bound to the N-terminal end and the 

quencher Dpa to a lysine residue at the C-terminal end. After cleavage, the fluorescence of the 

fluorophor was detectable. For the assay, peptide and protease solution were incubated in the 

presence or absence of metalloprotease inhibitors. Fluorescence increase was monitored over 

a time course of 2 hours (Figure 3.1.1C). The MBP peptide was obtained from a collaborating 

group, synthesised by an organic chemist, who is now retired. After we ran out of the peptide, 

alternative peptides had to be examined, as a Dpa modified lysine residue was not 

commercially available. Different proposed ADAM peptide substrates were tested according 

to the fluorescamine method to get alternative peptides for determination of catalytic activities 

(see 3.1.3). 

 When only small amounts of recombinant, catalytically active ADAM8 were needed, 

transfection of cells in small scales and concentration of catalytic activities by ultrafiltration 

was sufficient. For systematic in vitro assays, larger amounts of purified, catalytically active 

ADAM8 were required. In order to scale up A8-ProMP expression, different cells and 

transfection methods were used. Initially, cells were transfected with the green fluorescent 

protein (GFP) encoding the expression vector peGFP-N3. Transfection efficiencies were 

determined by estimating the ratio of GFP containing cells and the total number of transfected 

cells using a fluorescence microscope. Finally, COS1 cells were transfected according to the 

DEAE/Dextran transfection method with an efficiency of about 60 %. Liposome transfections 

with LipofectAMINETM were even more effective, but were not performed due to the high 

price of the transfection reagent. HEK293T cells constitutively expressing another soluble 

ADAM8 construct had seemed to express less protease in comparison to transiently 

transfected cells. For that reason, a stable cell line constitutively expressing the A8-ProMP 

cDNA construct in pSecTag2 B vector was not generated but transient transfections were 

performed. For purification of A8-ProMP from cell culture supernatants either 
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chromatography with ConA sepharose or Nickel-NTA was performed (Figure 3.1.1A). 

Instead of 60 mm cell culture plates, several 140 mm plates were used for transfection in 

order to get larger volumes of A8-ProMP containing supernatants. 

The lectin concanavalin A (ConA) is a metalloprotein used for separation and purification of 

glycoproteins. As A8-ProMP contained glycosylation sites, it was purified with conA 

sepharose. A8-ProMP bound tightly to ConA sephorose and was not completely eluted from 

the matrix under native conditions at concentrations of α-D-methylmannoside up to 0.4 M. 

Therefore, in cleavage assays ConA pellets with bound protease were used instead of eluted 

protease solution (see also 3.4). 

A8-ProMP was expressed as a fusion protein with a His-tag consisting of 6 histidine residues 

at the C-terminal end. For enrichment of proteins with a His-tag, chromatography with 

Nickel-NTA was performed under native conditions in a batchwise procedure. The chelate 

nitrilotriacetic acid (NTA) was bound to a matrix and charged with nickel for specific binding 

of histidine containing proteins. After elution from the matrix with an imidazole containing 

buffer, the A8-ProMP containing solution was dialysed against a HEPES buffer and 

concentrated by ultrafiltration depending on the elution volume. 

 

  
 
Figure 3.1.1: Expression and catalytic activity of soluble ADAM8 in cell culture. A COS1 cells were 
transfected with cDNA encoding A8-ProMP. 20 µl of untreated (SN), ultrafiltrated (UF, 10 x concentrated) and 
purified supernatants (~ 50 x concentrated) either with ConA sepharose (ConA) or Nickel-NTA (NTA) were 
subjected to 7.5 % SDS-PAGE and immunodetected with an anti-BiPro antibody. A8-ProMP was expressed in 
low concentrations, and was not detectable in untreated (SN) and only the processed form in 10 x concentrated 
supernatants (UF). The proform and the processed form were detected in affinity purified, 50 x concentrated 
supernatants (ConA, NTA) with most of the protease present in its activated form. Β MBP protein was incubated 
with A8-ProMP purified with Nickel-NTA. MBP was cleaved to fragments of 9 and 11 kDa, whereas cleavage 
was inhibited by OPT. C A fluorogenic peptide derived from the MBP cleavage site was incubated with 
ultrafiltrated supernatants of cells transfected with A8-ProMP (COS7+A8) and of untransfected COS7 cells 
(COS7). Fluorescence increase which corresponded to peptide cleavage was monitored over a time course of two 
hours. ADAM8 from supernatants of transfected cells significantly cleaved the peptide (left panel). In an 
equivalent cleavage assay, inhibitors were added to the samples. The right panel shows fluorescence increase 
after two hours. Supernatants from cells transfected with A8-ProMP cleaved the MBP-peptide, whereas OPT 
inhibited cleavage. In accordance with published data, TIMP1 did not inhibit ADAM8 activity. 
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In figure 3.1.1, an example for A8-ProMP isolation from cell culture supernatants and for 

determination of ADAM8 catalytic activity is shown. Supernatants of COS1 cells transiently 

transfected with cDNA encoding A8-ProMP were subjected to ultrafiltration, to purification 

with ConA sepharose or Nickel-NTA and analysed in immunoblots with an anti-BiPro 

antibody. No specific ADAM8 bands were detected in corresponding silver stained gels 

indicating low amounts of ADAM8. It was not possible to scale up ADAM8 expression 

significantly by cloning a new cDNA construct encoding a Sec-tag for additional secretion of 

expressed protein or by improving the cell system and transfection method. Isolation of larger 

amounts of protease was only possible by increasing the number of transfected cells. 

 

3.1.2 Expression of ADAM8 in E.coli 

Parallel to expression in cell culture, ADAM8 was expressed in bacteria in order to scale up 

protease expression. cDNA encoding for A8-ProMP was amplified by polymerase chain 

reaction with primers containing cleavage sites for the endonucleases EcoRI and XhoI. The 

reverse primer contained the sequence encoding the BiPro-tag for detection in immunoblots. 

The resulting PCR product was ligated into respective cloning sites of a pASK-3+ vector. 

This vector contained a tetA promoter for induction of protein expression with 

anhydrotetracyclin. A8-ProMP was expressed as a fusion protein with a Strep-tag at the C-

terminal end for purification by affinity chromatography. The vector was transformed into the 

E.coli strain BL21(DE3)pLysS. Bacteria were grown at 30 °C and induced at OD 0.5 with 0.2 

µg/ml anhydrotetracyclin. Six hours after induction, cells were harvested. A8-ProMP was 

extracted from the cytoplasms of bacteria and purified with the Strep-tag®/Strep-Tactin® 

system. Samples were analysed by immunoblotting and Coomassie-Brilliant-Blue stained 

SDS gels (Diploma thesis, Simone Reipschläger). 

In agreement with the results from cell culture, A8-ProMP was present in its proform and in 

the processed form indicating that autocatalytic prodomain removal occurs also in bacteria. 

The processed form detected with ~35 kDa was smaller than that isolated from cell culture, 

probably because of slightly different length of cloned cDNA constructs and because of 

glycosylation of the metalloprotease domain from cell culture. Catalytic activity of the 

isolated A8-ProMP was determined by cleavage of MBP or ADAM8 specific peptides 

according to the fluorescamine method (3.1.3). According to published data for ADAM8 from 

cell culture (Amour et al., 2002, Schlomann et al., 2002), MBP cleavage by A8-ProMP from 

E.coli was inhibited by EDTA, OPT and BB-94 (Figure 3.1.2B). However, cleavage was not 

inhibited by the hydroxamate inhibitor marimastat (BB-5216). Although A8-ProMP 
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expression in E.coli was increased upon induction with anhydrotetracyclin, the amount of 

isolated protein was still low with a maximal yield of 800 µg per litre bacterial culture.  

 

 

 

 

 

 

 

Figure 3.1.2: Expression and catalytic activity of soluble ADAM8 in E.coli. A. Different elution fractions 
from purified A8-ProMP from E.coli were analysed in immunoblots with an antibody detecting the BiPro-tag at 
the C-terminal end. The proform and the processed form were detected with 60 kDa (black arrow) and 35 kDa 
(grey arrow) indicating autocatalytic prodomain removal in E.coli. The function of an additional fragment 
detected with ~ 20 kDa was unknown. B. MBP was incubated with soluble A8-ProMP isolated from bacteria and 
purified with the Strep-tag®/Strep-Tactin® system in the presence and absence of inhibitors. Cleavage of MBP by 
A8-ProMP was inhibited in the presence of OPT, EDTA, BB-94, but not by BB-5216.  
 

 

 

3.1.3 Determination of catalytic activity using peptides and fluorescamine 

In order to have a peptide substrate in addition to the quenched peptide derived from MBP for 

the determination of ADAM8 catalytic activity, a peptide cleavage assay with fluorescamine 

was established and several peptides were examined as ADAM8 peptide substrates.  

Schlomann et al. (2002) found that the ADAM8 prodomain is removed by autocatalysis. 

Within the hinge region between the prodomain and the metalloprotease domain, three 

different autocatalytic cleavage sites were determined in a sequence comprising 13 amino 

acids (Figure 3.1.3A). Three 10mer peptides each containing one of these cleavage sites in the 

central sequence were synthesised. The peptides NH2-NDLGPRALEI-COOH (A8.1), NH2-

PRALEIYRAQ-COOH (A8.2) and NH2-RAQPRNWLIP-COOH (A8.3) were synthesised 

with an automatic peptide synthesiser by Fmoc/tBu strategy in a batchwise procedure. In case 

of peptides A8.1 and A8.2 Wang resin was used and in case of peptide A8.3 2-Chlorotrityl-

resin. Correct synthesis was confirmed by MALDI-TOF MS and reverse phase HPLC. The 

cleavage assay method with the fluorophor fluorescamine is based on binding of the 

fluorophor to alpha amino groups of new N-terminal ends resulting from peptide cleavage. 

Disadvantage of this assay method is low selectivity, as it binds to all N-terminal amino 

groups as well as to epsilon amino groups of lysine residues in a sample. Depending on the 

purity of the protease solution, large background fluorescence can be detected which can 

mask fluorescence increase from peptide cleavage.  
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As the synthesised peptides had free N-terminal ends, they were expected to bind 

fluorescamine. Therefore, buffer conditions and fluorescamine concentrations as well as 

peptide concentrations were tested with these peptides alone and an initial protocol for the 

cleavage assay was set up. Initially, 150 µl reaction batches containing protease solution, 

ConA or cell pellets, 50-100 µM peptide and a buffer containing protease inhibitor cocktail, 

50 mM HEPES (pH 7.4), 0.2 M NaCl, 0.01 M CaCl2 and 0.01 % Brij-35 were mixed. 

Immediately, and after 1 and 2 hours, 25 µl were mixed with 5 µl 1 % fluorescamine and 70 

µl buffer. 50 µl of this mixture were mixed with 150 µl buffer, and fluorescence was 

measured in black-coated 96 well plates. Later on, the protocol for the cleavage assay was 

modified by leaving out the second dilution step and decreasing the sample volume to 100 µl. 

For 100 µl samples, protease solution, ConA or cell pellets were mixed with 100-200 µM 

peptide, protease inhibitor cocktail and a buffer only containing 20 mM HEPES and 0.015 % 

Brij-35. Immediately, after 1, 2 and 3 hours, 25 µl of the sample were mixed with 5 µl 1 % 

fluorescamine and 70 µl HEPES buffer, and fluorescence was directly measured. According 

to this protocol, soluble peptides derived from CD23, IL-6R, L-Selectin, TGF-α, TNF-α and 

TNF-R1 were tested as ADAM8 substrates (Diploma thesis, Simone Reipschläger). For both 

protocols, assays were performed several times because of the sensitivity of the test method 

resulting in large variations of fluorescence values.  

For the three peptides derived from the ADAM8 autocatalytic cleavage site, approximately 

linear increase of fluorescence with increase of available N-terminal amino groups was 

expected. Indeed, for peptides A8.1 and A8.3, a constant increase of fluorescence with 

increasing peptide concentrations was observed, whereas fluorescence did not increase in case 

of peptide A8.2. Probably, fluorescamine could only bind to free amino groups but not to 

secondary amino groups such as the proline residue at the N-terminal end in peptide A8.2 

(Figure 3.1.3C). The peptides cleavage assays were performed several times with recombinant 

ADAM8 from cell culture. Protease and peptides were incubated in the presence or absence of 

the metalloprotease inhibitor EDTA (10 mM). Even if the absolute fluorescence values 

differed between several cleavage assays, tendencies were similar. The peptides A8.1 and 

A8.2 were significantly cleaved, whereas peptide A8.3 was not (Figure 3.1.3D). Although two 

peptide substrates were determined, for determination of catalytic activity, a peptide derived 

from CD23 was preferred as it seemed to be cleaved with higher specificity and as it had a 

modified N-terminal amino group. 

In order to design peptides with cleavage sites located in the centre, peptides A8.1 and A8.2 

contained two cleavage sites: a “main” one in the central sequence and a second one either at 
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the N-terminal side (A8.2) or at the C-terminal side (A8.1) (Figure 3.1.3B). As both peptides 

were cleaved, it was not clear if the two different “main” cleavage sites in the centres were 

cleaved or if in both peptides one cleavage site was preferred independent from the position. 

Thus, it is not possible to draw a conclusion about a preferred autocatalytic cleavage site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1.3: Determination of catalytic activity. A. The fluorophor fluorescamine binding to N-terminal alpha 
amino groups and to epsilon amino groups of lysine residues was used for determination of ADAM catalytic 
activities. B. Three peptides derived from different autocatalytic cleavage sites of ADAM8 were synthesised and 
examined as new ADAM8 peptide substrates. C. Different peptide concentrations were mixed with 
fluorescamine and fluorescence was measured. In case of peptides A8.1 and A8.3, fluorescence increased with 
increasing peptide concentrations as a result of increased number of available N-terminal amino groups. 
Fluorescamine did not bind to the secondary amino group of proline in peptide A8.2. D. In peptide cleavage 
assays, the peptides A8.1 and A8.2 were cleaved. In all experiments, no fluorescence increase was detected for 
peptide A8.3. As in most cases fluorescence even decreased with time, results for A8.3 are not included into the 
figure. For A8.1 and A8.2, average values from two measurements were taken into account.  
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3.2 Detection of CHL1 as a physiological substrate of ADAM8 

The neuronal cell adhesion molecule Close Homologue of L1 (CHL1) was found as an 

ADAM8 substrate in an in vitro cleavage assay with recombinant proteins. On the basis of 

this result, the protease-substrate relationship between ADAM8 and CHL1 was examined for 

its physiological relevance in further in vivo experiments. The results of these experiments are 

published in the Journal of Biological Chemistry (Naus et al., 2004). In the following chapter, 

I summarised the results. Some figures are equal to those in the publication, others were 

slightly modified. 

 

3.2.1 Cleavage of recombinant CHL1 by ADAM8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In in vitro cleavage assays, the extracellular 

domains of three different neuronal cell 

adhesion molecules, NCAM, L1 and CHL1 

(Figure 3.2.1-1), were incubated with 

recombinant, catalytically active ADAM8. The 

extracellular domains of these molecules were 

fused to immunoglobulin G Fc-tags for detection 

with a monoclonal antibody in immunoblots. 

After incubation, samples were analysed in 

silver stained gels and in immunoblots. The 

silver stained gels showed that the CHL1-Fc 

protein was cleaved into two products in the 

presence of ADAM8 – a prominent 165 kDa 

fragment corresponding to the entire 

extracellular portion of CHL1 and a less 

prominent of 125 kDa, whereas NCAM and L1 

were not cleaved Figure 3.2.1-2A). The CHL1 

cleavage was confirmed in immunoblots using 

an antibody against the extracellular portion of 

CHL1. Non-cleaved CHL-Fc protein was 

detectable with a size of about 200 kDa. For the 

cleaved CHL1-Fc protein, the fragments with 

125 kDa and 165 kDa were detected together 

with additional bands of 40 kDa and 80 kDa.          

Figure 3.2.1-1: Structure of CHL1. CHL1 
has five fibronectin type III (FNIII) domains 
(black boxes) of which the fifth is only 
partially conserved and six immunoglobulin-
like domains (roman numerals). Full length 
membrane-bound CHL1 (left) has a 
molecular mass of 185 kDa and the fusion 
protein CHL1-Fc a mass of 200 kDa. Two 
cleavage sites within the FNIII domains 
resulting in fragments of 125 kDa and 165 
kDa were determined in this work (black 
arrows). From: Naus et al., 2004. 
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These smaller fragments corresponded to the larger cleavage fragments of CHL1-Fc 

containing the residual Fc-portion (Figure 3.2.1-2B). The processing of A8-ProMP into active 

protease by autocatalytic prodomain removal was confirmed by immunostaining with an 

antibody against the BiPro-tag at the C-terminal end. In the immunoblot, two forms of 

ADAM8 corresponding to proform and processed form were detected in approximately equal 

amounts (Figure 3.2.1-2C).  

Extensive cleavage of CHL1-Fc protein by soluble ADAM8 was inhibited by broad-range 

inhibitors of metalloproteases, BB-94 and OPT, but not by excess concentrations of tissue 

inhibitors of metalloproteases (TIMP) 1, 2, 3, and 4, as demonstrated by a silver stained gel 

and by quantitative analysis of the stained gels (Figure 3.2.1-2D). For the quantitative 

analysis, the band intensities of uncleaved CHL1-Fc were determined for each cleavage 

condition. These intensities were compared to 1 µg of uncleaved CHL1-Fc protein which 

intensity was set to 100 % and were given as means. The observed inhibition profile was in 

accordance with previous cleavage studies on ADAM8 (Amour et al., 2002; Schlomann et al., 

2002).  

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1-2: Cleavage analysis of 
CHL1-Fc, NCAM-Fc and L1-Fc.   
A. The silver stained gel shows that CHL1-
Fc was cleaved into fragments of 165 kDa 
and 125 kDa in the presence of ADAM8 
(+A8-MP), whereas NCAM-Fc and L1-Fc 
were not cleaved. Cleavage of CHL1-Fc 
was inhibited in the presence of the 
inhibitor BB-94 (+A8-MP/BB-94).  
B. In the corresponding immunoblot, 
complementary smaller fragments were 
detected in addition to the 165 kDa and 
125 kDa fragments. The double arrow 
indicates the 125 kDa and the 
corresponding ~80 kDa fragment. C. The 
proform (Pro-A8) and the processed form 
of ADAM8 (A8-MP) isolated from 
supernatants of transfected cells were 
detected in immunoblots. D. Quantification 
of CHL1-Fc cleavage in the presence of 
inhibitors. From: Naus et al., 2004 
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The smaller cleavage fragments of CHL1-Fc with about 40 kDa and 80 kDa were subjected to 

amino terminal sequencing. For the 165 kD fragment, the cleavage site was determined at 

LVP↓GAEHIV located within the fifth FN III-like domain at amino acid position 1040. For 

the 125 kD fragment, the cleavage site within the second FN III-type domain was determined 

at amino acid position 753 in the sequence WKP↓QGAPE.  

 

3.2.2 Cleavage of CHL1 by ADAM8 in cell culture  

The ectodomain shedding of CHL1 was further analysed in cell culture experiments. CHL1 

was co-transfected into COS7 cells either with wild type ADAM8 or the catalytically inactive 

EQ-ADAM8, in which the glutamate residue Glu330 was exchanged by a glutamine 

(Schlomann et al., 2002). In addition, ADAM10 and ADAM17 were co-transfected with 

CHL1 in order to examine the specificity of CHL1 cleavage. Cell lysates as well as cell 

supernatants of transfected cells were analysed in immunoblots. 

In advance, peptide cleavage assays with cells transiently transfected with cDNAs encoding 

full length ADAM8, EQ-ADAM8, ADAM10 and ADAM17 were performed in order to 

determine catalytic activities of the expressed proteases (Figure 3.2.2A). In cell lysates, 

protease activities were determined for ADAM8 and ADAM10, but not for mock transfected 

cells, EQ-ADAM8 and ADAM17 using a MBP derived peptide substrate. A TNF-α peptide 

substrate was used to monitor ADAM17 activity. This peptide was significantly cleaved by 

ADAM17 but not by cell lysates of mock transfected cells. These data indicated that the 

mouse cDNAs used to express ADAM8, ADAM10 and ADAM17 encoded functional 

proteases in COS7 cells.  

In immunoblots, the full length CHL1 transmembrane protein was detectable as 185 kD band, 

slightly more in cells transfected with EQ-ADAM8 than in cells transfected with ADAM8 

with an antibody against the extracellular portion of CHL1. Co-transfection of ADAM8 

significantly increased the amount of soluble 165 kD and 125 kD fragments of CHL1 in 

supernatants of cells transfected with ADAM8, but not in supernatants of cells transfected 

with EQ-ADAM8, ADAM10 and ADAM17 (Figure .3.2.2B, upper panels). It was concluded 

from that experiment, that ADAM8 expression in CHL1 transfected COS7 cells resulted in 

significantly higher amounts of soluble CHL1 compared to the basal CHL1 shedding and that 

CHL1 cleavage was specific for ADAM8 as demonstrated by co-transfection experiments 

with cDNAs for CHL1 and ADAM10 or CHL1 and ADAM17. 

In addition, the supernatants of ADAM8/CHL1 co-transfected cells were analysed after high 

speed spin (spin) and under non-reducing conditions without mercaptoethanol (nr). Under 
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both conditions the 125 kDa band as well as the corresponding membrane stub fragment with 

~60 kDa was not detectable in the immunoblot (Figure 3.2.2B, upper panels). To analyse the 

dependence of ADAM8 mediated shedding on activators of protein kinase C, well described 

for ADAM17, the co-transfection experiments were performed in the presence of phorbol 

ester TPA and pervanadate, a phosphatase inhibitor. No significant effect on CHL1 shedding 

was observed, even when applied in high concentrations (Figure 3.2.2C). 

The presence of ADAM8, EQ-ADAM8, ADAM10 and ADAM17 in the co-transfected cells 

was confirmed by immunoblot analysis using an anti-BiPro antibody or a polyclonal anti-

ADAM10 antibody. For ADAM8 and ADAM17, two forms corresponding to proforms and 

catalytically active processed forms were detected, whereas for ADAM10 mainly the 

processed form was detectable. EQ-ADAM8 was present as catalytically inactive proform. 

Equal loading was confirmed by detection of the house-keeping protein GAPDH (Figure 

3.2.2B, lower panels). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2: Cleavage of CHL1 by ADAM8 in COS7 cells. A. Peptide cleavage assays were performed with 
cells transfected with different full length ADAM cDNAs. Catalytic activities were determined for ADAM8 and 
ADAM10 with a MBP derived peptide and for ADAM17 with a TNF-α derived peptide. B. CHL1 was co-
transfected with different ADAM constructs, and shedding was analysed in immunoblots. The 165 kDa, the 125 
kDa and a complementary 60 kDa fragment were detected in supernatants of CHL1/ADAM8 co-transfected 
cells. After high spin and under non-reducing conditions, the 125 kDa fragment and the membrane stub fragment 
were absent. Co-transfections with EQ-ADAM8, ADAM10 or ADAM17 did not result in CHL1 cleavage. The 
upper panel shows a short exposure of the blot with the 185 kDa form, whereas the panel beneath shows the 
smaller forms after longer exposure. ADAM proteases were detected in immunoblots. Black arrowheads indicate 
proforms and grey arrowheads processed forms of ADAM proteins. Equal loading was confirmed with detection 
of GAPDH. C. In cells co-transfected with CHL1/ADAM8, no significant effect of shedding was observed when 
activators TPA and pervanadate were applied. From: Naus et al., 2004 
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3.2.3 CHL1 shedding in ADAM8 overexpressing WR and in ADAM8 KO mice  

The correlation between ADAM8 expression and CHL1 shedding was further analysed in 

situ. Proteolytic processing of CHL1 in brain extracts from 30 day Wobbler (WR) mutant 

mice, and from mice deficient in ADAM8 was compared to wild type litter mates (Figure 

3.2.3). Brain homogenates prepared from cerebellum and brain stem were subjected to SDS-

PAGE and immunoblotting. For ADAM8 detection with an antibody against the cytoplasmic 

domain, ConA preparations were used. CHL1 was detected with an antibody against the 

extracellular domain.  

In cerebellum/brain stem from wild type mice, ADAM8 was present in its catalytically active 

form, and CHL1 processing into the 125 kD and 165 kD fragments was observed. In 

cerebellum/brain stem from Wobbler mice, an upregulation of ADAM8 was demonstrated as 

a consequence of neurodegeneration and astrogliosis (Schlomann et al., 2002; Figure 3.2.3A). 

Consistently, an increased proteolytic processing of the 185 kD form of CHL1 into both 

soluble fragments was detected (Figure 3.2.3A). In homozygous ADAM8 deficient mice, the 

ADAM8 protein was not detectable. Processing of CHL1 in brain extracts of these mice was 

dramatically reduced, emphasising a significant contribution of ADAM8 to the proteolytic 

processing of CHL1 in this particular brain region in situ (Figure 3.2.3B). Equal loading was 

confirmed by detection of the house-keeping protein GAPDH. 

 

 
 

 

 

 

 

 

Figure 3.2.3: Cleavage of CHL1 in WR mutant 
mice (A) and ADAM8 deficient mice (B). A. In 
brain homogenates from WR mice, ADAM8 
expression as well as CHL1 cleavage was increased 
in comparison to wild type mice brain homogenates. 
The upper panel shows a short exposure of the blot 
with 185 kDa and 165 kDa forms of CHL1, whereas 
the panel beneath shows the 125 kDa form after 
longer exposure of the blot. B. In brain 
homogenates of ADAM8 deficient mice, CHL1 
cleavage was significantly reduced in comparison to 
that in wildtype litter mates. From: Naus et al., 2004 
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3.2.4 Effect of CHL1 shedding on neurite outgrowth in neuronal cell cultures  

To analyse the physiological function of soluble CHL1 generated by ADAM8-dependent 

ectodomain shedding, neurite outgrowth and cell survival assays with mouse cerebellar 

neurons in the presence of conditioned media from CHL1 and ADAM8 co-transfected COS7 

cells were performed. As described previously, recombinant L1-Fc or CHL1-Fc proteins were 

able to stimulate neurite outgrowth from cerebellar or hippocampal neurons (Chen et al., 

1999).  

COS7 cells were transfected with ADAM protease, CHL1 or both and maintained in serum-

free medium for 24 hours. Protease expression was determined in lysates by immunostaining 

as shown in 3.2.2. The COS7 supernatants were applied to cerebellar neurons and 18 hours 

later, neurite outgrowth was quantified by determination of neurite length of at least 50 

individual neurons after staining with Richardson’s blue. Supernatants from ADAM8 or 

CHL1 transfected cells caused a basal level of neurite outgrowth (20 µm ± 1.6 for ADAM8, 

22 µm ± 1.9 for CHL1). In contrast, supernatants from cells co-transfected with ADAM8 and 

CHL1 induced significantly increased neurite outgrowth up to 43 µm ± 4. A comparable rate 

to the basal level of neurite outgrowth was achieved with EQ-ADAM8/CHL1 (21 µm ± 2), 

ADAM10/CHL1 (19.5 µm ± 2.5) or ADAM17/CHL1 (21 µm ± 3). In corresponding 

micrographs of cerebellar granule neurons stained with neurofilament NF200 antibody, 

increased neurite outgrowth caused by supernatants from ADAM8/CHL1 co-transfected cells 

was apparent. Supernatants were immunostained with anti-CHL1 antibody to detect the 

soluble 165 kDa form of CHL1. This form was mainly present in supernatants from cells co-

transfected with CHL1 and ADAM8.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.4: Effect of supernatants from 
transfected COS7 cells on neurite outgrowth. 
Cerebellar granule cells were treated with 
supernatants of COS7 transfected with CHL1 
and/or ADAM protease as indicated. Neurite 
outgrowth was strikingly increased when 
neurons were applied with supernatants from 
cells transfected with CHL1 and ADAM8. In 
these supernatants, the concentration of the 
soluble 165 kDa form of CHL1 was increased. 
From: Naus et al., 2004 
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3.2.5 Enhancement of neurite outgrowth by substrate-coated soluble CHL1  

In order to determine whether CHL1 proteolysis enhances neurite outgrowth when offered as 

a substrate, co-culture experiments were performed. COS7 cells were transfected with full 

length ADAM protease, CHL1 or both. One day after transfection, freshly prepared cerebellar 

granule neurons were plated on top of the cells. To one co-culture co-transfected with 

ADAM8 and CHL1, BB-94 (200 nM) was repeatedly added to inhibit catalytic activity of 

ADAM8. After 24 hours, the number of substrate-attached cells with neurite length longer 

than their diameter was determined in at least 50 randomly chosen visual fields by phase-

contrast microscopy. Furthermore, neurite outgrowth was determined as described for the 

previous experiment (Figure 3.2.5). 

In accordance with the previous experiment, the number of substrate-attached cells was 

significantly larger when granule neurons were plated together with COS7 cells transfected 

with ADAM8 and CHL1 (375 ± 20). A lower number of substrate-attached cells and 

significantly lower levels of neurite outgrowth were observed when either ADAM8 or CHL1 

were transfected alone (100 ±5 and 180 ± 7, respectively), or when ADAM10 (160 ± 10) and 

ADAM17 (168 ± 3) were co-transfected with CHL1. In this experiment, EQ-ADAM8 was not 

used. Instead, BB-94 was used for inhibition of CHL1 cleavage in CHL1/ADAM8 co-

transfected cells (170 ±15). When shedding of CHL1 was inhibited by BB-94, substrate 

attachment was reduced slightly below the level obtained with CHL1 alone. This difference 

suggests that in addition to ADAM8, another protease which is inhibited by BB-94 could be 

involved in ectodomain shedding of CHL1, although at a much lower level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.5: Effect of CHL1 shedding on 
neuronal survival and neurite outgrowth in 
co-culture with COS7 cells.  Freshly prepared 
cerebellar granule neurons were plated on top 
of COS7 cells one day after transfection with 
CHL1 and/or ADAM protease as indicated. The 
number of substrate-attached neurons and 
neurite length was significantly increased in co-
culture with COS7 cells transfected with CHL1 
and ADAM8 in comparison to co-cultures with 
COS7 cells transfected with CHL1 and other 
ADAM constructs. From: Naus et al., 2004 
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3.2.6 Reduction of cell death by soluble CHL1  

To determine the time course of cell death, cerebellar granule neurons were maintained in 

serum-free media from COS7 cells transfected either with CHL1 alone or co-transfected with 

CHL1/ADAM8 or CHL1/EQ-ADAM8 (Figure 3.2.6). After 1, 3 and 5 days, the numbers of 

surviving cells were determined by trypan blue exclusion method.  

The number of surviving cells declined to 19% ± 1.5% after 5 days in culture when the 

conditioned medium was derived from either only CHL1 or CHL1/EQ-A8 transfected cells. 

Similar values were obtained when neurons were treated with supernatants from 

CHL1/ADAM10 and CHL1/ADAM17 co-transfected cells (data not shown). In contrast, a 

significantly higher proportion (36% ± 1.8%) of cells survived when conditioned medium 

from COS7 cells co-transfected with ADAM8 and CHL1 was applied to neuronal cultures. 

Thus, survival of neurons was increased by ~50% due to the presence of soluble CHL1 

derived by proteolytic processing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.6: Effect of supernatants 
from COS7 cells on cell death. 
Granule neurons were maintained in 
supernatants of COS7 cells transfected 
with either CHL1, CHL1/ADAM8 or 
CHL1/EQ-ADAM8. Strikingly more 
cells survived in supernatants from 
CHL1/ADAM8 co-transfected cells. 
From: Naus et al., 2004 
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3.3 Peptide substrate screening 

In order to determine new ADAM8 substrates, a collection of fluorogenic peptides was 

designed and incubated with soluble forms of ADAM8. This assay provided indications for 

new ADAM8 substrates and furthermore information about a possible ADAM8 cleavage site 

or at least minimal amino acid requirements for ADAM8 cleavage. On the basis of the results 

of the cleavage assay, corresponding proteins of new peptide substrates are examined in 

further physiological studies – similar to those performed for CHL1 – for their biological 

relevance as ADAM8 substrates. A manuscript about the peptide screening and in vivo studies 

examining APP as a biological substrate is in preparation (Naus et al., in preparation). 

 

3.3.1 Peptide screening for new ADAM8 substrates 

Peptides were tested as peptide substrates of soluble forms of mouse ADAM8 protease. These 

peptides were derived from mouse proteins and included sequences of other metalloprotease 

peptide substrates as well as sequences from membrane proximal regions of proteins 

supposed to be released from the cell surface by metalloproteases. Peptides were synthesised 

on continuous cellulose membranes using the SPOT-synthesis technique with an amino-

benzoic fluorescent moiety at the N-terminal end. Punched out as disks for microtiter plates, 

they were incubated with protease solution. Proteolytic cleavage of a peptide resulted in 

release of the N-terminal part with the fluorophor and therefore with an increase in 

fluorescence in the reaction solution. After incubation, the reaction solution was transferred 

into a 96 well plate for detection of the N-terminally labelled peptide fragment measured in a 

fluorescence microtiter plate reader. The peptides were provided by JPT Peptide Technologies 

GmbH (Berlin)(http://www.jerini.de/content/pep/protease_profiling/proteasespots.htm).  

My initial interest was in characterising the role of proteolytically active ADAM8 in 

inflammation with a focus on the nervous system. Therefore, most of the peptides tested were 

derived from proteins involved in inflammatory processes and immune response. Among the 

chosen proteins were cytokines (CD40L, CX3CL1, KL, TGF-α, TNF-α, TRANCE), cytokine 

receptors (IL-1R-2, TNF-R1, TNF-R2), cell adhesion molecules (L-Selectin, PSGL-1) and 

immunoglobulin receptors (Fc-γ-RIII, CD23). The amyloid beta A4 protein precursor (APP) 

was also taken into the set of tested proteins as involved in Alzheimer’s disease, a dementia 

type of neurodegenerative disorders involving inflammatory processes. In table 3.3.1 chosen 

peptides with corresponding proteins and their accession numbers in the Swiss-Prot/TrEMBL 

protein database were listed as well as the proteases supposed to cleave the proteins and 

corresponding references. For synonyms of protein names see 6.5.  
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Table 3.3.1: Peptide substrate collection 

 

Protein Accession 
Number 

Peptide 
substrate  

Proteases 
involved References 

APP, amyloid beta (A4) 
protein precursor  P12023 EVRHQKLVFF  

ADAM8, 9, 10 
ADAM17 
ADAM33 

(Amour et al., 2002) 
(Buxbaum et al., 1998) 
(Zou et al., 2004)  

CD23, low affinity 
immunoglobulin ε Fc 
receptor precursor 

P20693 

SNQLAQKSQV 
AEQKQMKAQD  
LRNAQSQNSK 
VAKLWIEILI  

MP          
ADAM8 

(Marolewski et al., 1998) 
(Mayer et al., 2002) 
(Fourie et al., 2003) 

CD40-L, CD40 ligand P27548 NSFEMQRGDE ADAM10 (Amour et al., 2002) 
Swissprot 

CD163, macrophage 
hemoglobin scavenger 
receptor precursor 

Q99MX8 

HGTGHPTLTA  
PKMTSESHGT  
DASIQCLPKM 
SDCGHKEDAS  
PAKPWSHSDC  
ESSLWDCPAK  

MP (Droste et al., 1999) 

CX3CL1, fractalkine  O35188 QAATRRQAVG ADAM17 (Garton et al., 2001) 
Swissprot 

Fc-γ R-III, low affinity 
immunoglobulin gamma Fc 
receptor III  

P08508 

SLVWYHTAFS 
PATTSSISLV  
VTITVQDPAT  
TQHQSKPVTI  

MP (Harrison et al., 1991) 

IL-1R-2, interleukin-1 
receptor type II precursor P27931 TTVKEVSSTF ADAM8 (Amour et al., 2002) 

KL, kit ligand precursor P20826 PPVAASSLRN ADAM8, 9 
ADAM33 

(Amour et al., 2002)      
(Zou et al., 2004) 

L-selectin precursor  P18337 QETNRSFSKI ADAM17 (Peschon et al., 1998),  

MBP, myelin basic protein P04370 
 

YGSLPQKAQG 
ADAM8 
ADAM10 
ADAM28 

(Schlomann et al., 2002) 
(Chantry et al., 1989) 
(Howard et al., 2001) 

PSGL-1, P-selectin 
glycoprotein ligand 1 
precursor 

Q62170 

LIPVKQCLLI  
TLPGSSDLIP 
PGNSPAPTLP 
KKGLIVTPGN  
HLPDSGLKKG  

MP (Davenpeck et al., 2000) 

TGF-α, transforming growth 
factor alpha P48030 AVVAASQKKQ MP        

ADAM17 
(Arribas et al., 1997) 
(Peschon et al., 1998) 

TNF-α, tumour necrosis 
factor alpha 

P06804 AQTLTLRSSS ADAM8, 9, 10 
ADAM17 

(Amour et al., 2002)    
(Black et al., 1997)  
(Moss et al., 1997) 

TNF-R1, tumour necrosis 
factor receptor 1 P25118 

NPQDSGTAVL 
PPLANVTNPQ 
CMKLCLPPPL  

MP        
ADAM17 

(Peschon et al., 1998) 
(Pinckard et al., 1997) 
(Cui et al., 2002) 

TNF-R2, tumour necrosis 
factor receptor 2 P25119 PTLSAIPRTL 

APESPTLSAI 
MP        
ADAM17 

(Pinckard et al., 1997) 
(Reddy et al., 2000) 

TRANCE, TNF-related 
activation-induced cytokine O35235 VGPQRFSGAP  ADAM17 

ADAM19 

(Lum et al., 1999)  
(Chesneau et al., 2003) 
Swissprot 
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The peptide assays were performed at least twice. In most experiments bacterial soluble A8-

ProMP was used, and in several cases as controls soluble A8-ProMP from cell culture 

supernatants. Protease and peptides platelets were incubated in the presence and absence of 

the metalloprotease inhibitor EDTA (10 mM). The solution was monitored immediately (t=0) 

and after 2, 6 and 24 hours. In case of constant increase of fluorescence and none in the 

presence of EDTA, a protease specific cleavage was presumed. The peptide for MBP was 

used as a control and for normalisation, as this peptide was already known as an ADAM8 

peptide substrate (Schlomann et al., 2002). According to Amour et al. (2002), homologues 

peptides derived from human APP, IL-1R-2 and KL were cleaved by mouse ADAM8, 

whereas a CD40-L peptide was not. Because of the close homology of tested mouse and 

human peptides for APP, IL-1R-2, KL and CD40-L, these also served as controls. As a 

control for selectivity of the test method, several peptides containing arginine or lysine 

residues and several peptides not containing these amino acids were incubated with trypsin. 

As expected, only for those peptides containing arginine or lysine residues fluorescence 

increase was observed. 

The average fluorescence increases after 24 hours were compared (Figure 3.3.1). The 

fluorescence increase which corresponded to protease activities was expressed in units 

normalised with MBP set to 1 unit. As the manufacturers of the peptide platelets claimed that 

differences up to 25 % could be observed between results obtained for spots with the same 

sequences as a result of errors in synthesis, pipetting, evaporation, bleaching and 

measurement, the results were not interpreted quantitatively. They were rather indicative for 

further in vivo analysis of potential ADAM8 substrates.  

Relative fluorescence increase of 1 unit and more was supposed to signify a protease specific 

peptide cleavage, whereas increase of less than 0.5 units indicated no protease-substrate 

relationship. Fluorescence increases of 0.5 to 1 units were assessed more carefully even if 

they probably indicated cleavage at lower levels. Low average increases up to 0.2 units the 

most were observed for the negative controls with EDTA. Only for the APP peptide, an 

average increase of 0.48 for the negative controls was observed (data not shown). Therefore, 

increases of more than 0.5 units probably indicated specific cleavage. But the possibility that 

these indicated false positive peptide substrates could not be excluded completely. 

In agreement with data published in Amour et al. (2002), the APP peptide was significantly 

cleaved by ADAM8 and the IL-1R-2 peptide with lower specificity, whereas CD40-L peptide 

was not. In contrast to their results, the peptide derived from KL was not cleaved. This was 

not expected, as the used peptides were very similar. The mouse KL peptide used in this assay 
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had an additional asparagine residue at the C-terminus, whereas a leucine residue at the N-

terminal end was missing (LPPVAASSLR, Amour et al., 2002). Summarising the results, 15 

of 34 tested peptides were cleaved by ADAM8, with four of them at lower levels, and 19 

peptides were not. Peptides derived from APP, CD23, CX3CL1, Fc-γ-RIII, L-Selectin, PSGL-

1, TGF-α and TNF-α were cleaved significantly, and peptides derived from CD163, IL-1R-2, 

TNF-R1 and TRANCE were probably cleaved with lower specificity. In case of PSGL-1 and 

CD23, two peptides were cleaved. As the two peptides for PSGL-1 shared overlapping amino 

acids, a cleavage site might be located in this overlapping region. CD23 was known to be 

released from the cell surface by cleavage at three different cleavage sites (Mayer et al., 

2002). Possibly, ADAM8 cleaves at two of these sites. This peptide screening was an in vitro 

approach not taking into account in vivo conditions. Therefore, this approach was only 

indicative for further analyses which are necessary to assess the corresponding proteins of 

peptide substrates as physiologically relevant ADAM8 substrates. 
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Figure 3.3.1: Peptide screening for new ADAM8 substrates. Average fluorescence increases of tested 
peptides measured after 24 hours were compared. Fluorescence increases corresponded to protease activity and 
were given as units normalised with MBP peptide set to 1. Fluorescence increase > 1 was assumed to indicate 
significant cleavage and increase 0.5-1 to indicate cleavage with lower specificity. Increase < 0.5 (grey) 
indicated no protease-substrate relationship. Peptides derived from APP, CD23, CX3CL1, Fc-γ-RIII, L-Selectin, 
PSGL-1, TGF-α and TNF-α were cleaved significantly. 



  RESULTS 

 76 

3.3.2 Screening of ADAM8 catalytic specificity 

Mutant MBP peptides derived from the MBP cleavage site (Schlomann et al., 2002) were 

tested as ADAM8 substrates in order to find specific amino acids necessary for substrate 

cleavage. According to the wild type peptide substrate, peptides with mutated amino acids 

close to the cleavage site from position P3 to position P3’ were designed (Figure 3.3.2A). The 

experimental procedure was equal to the previous peptide screening (see 3.3.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3.2: Screening of MBP mutant peptides. A. A peptide derived from the MBP cleavage site and 7 
mutant peptides were incubated with catalytically active ADAM8. Mutated amino acids are given in bold letters. 
B. Average fluorescence increases of tested peptides measured after 24 hours were compared. Fluorescence 
increases corresponded to protease activity and were given as units normalised with fluorescence increase of the 
wild type MBP peptide set to 1. The peptides with mutations in the positions P1’ and P2’ were cleaved at 
significantly lower levels. 
 

Based on variable fluorescence increases, it was concluded that ADAM8 cleaved the MBP 

mutant peptides with different efficiencies depending on the amino acid exchange (Figure 

3.3.2B). The mutant peptides with an exchanged leucine for a serine in position P3 (peptide 

2), an exchanged threonine for a leucine in position P3’ (peptide 8) and basic residues – either 

arginine or lysine – for a proline in position P1 (peptides 3, 4) were cleaved by ADAM8. 

Possibly, there was a slightly enhanced cleavage for the mutants with basic amino acids in 
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position P1 in comparison to the MBP wild type peptide. Mutations in positions P1’ and P2’ 

had significant effects on peptide cleavage (peptides 5, 6, 7). An exchange of a glutamine 

residue to an acetic glutamate residue in position P1’ as well as the exchange of the basic 

lysine residue in position P2’ to either an acetic (glutamate) or a neutral, aliphatic amino acid 

(valine) resulted in decreased levels of peptide cleavage. From these results, it was 

hypothesised for the MBP peptide that basic residues in positions P1 and P2’ increased the 

efficiency of ADAM8 cleavage, whereas an acetic residue in position P1’ and P2’ decreased 

it. Experiments with further mutant MBP peptides are necessary to support this hypothesis.  

So far, no consensus sequence is known for ADAM8 substrates, partly because only a few 

cleavage sites are known. Assuming that the cleavage sites of the MBP mutant peptides were 

equal to that of the wild type peptide, and that other cleavage sites of screened peptide 

substrates were equal to those of the human homologues or to data in the Swissprot/TrEMBL 

database, a number of ADAM8 substrate cleavage sites can be compared (Table 3.3.2). From 

these sequences, no obvious consensus cleavage site can be deduced but some regularity is 

observed. There are no methionine, cysteine, tryptophan residues in the positions P3 to P3’, 

and only in case of IL-1R-2 with a glutamate in position P3 an acetic residue. In the 

respective region, several basic residues are located.  

A QK motif at positions P1’ and P2’ in the peptides derived from APP, CD23 and MBP was 

also present in the TGF-α peptide (AVVAASQKKQ) suggesting cleavage next to this motif. 

Examination of other cleaved peptides with unknown cleavage sites stated previous 

observations. In these peptides, there were also no methionine, cysteine and tryptophan 

residues present. Only in three peptides derived from L-Selectin (QETNRSFSKI), TNF-R1 

(NPQDSGTAVL) and PSGL-1 (HLPDSGLKKG) acetic residues occurred, whereas it was 

possible that they were not located within positions P3 to P3’ of the cleavage site. For the 

PSGL-1 peptide (HLPDSGLKKG) a cleavage site within the C-terminal amino acids afar 

from the aspartate residue was probable, as another PSGL-1 peptide overlapping with this 

region (KKGLIVTPGN) was also cleaved.  

Examination of sequences of the non-cleaved peptides (see 3.3.1) supports the observed 

regularity. The peptides derived from KL (PPVAASSLRN) and from TNF-R2 (PTLSAIPRT) 

were the only non-cleaved peptides fulfilling the “criteria” of the cleaved peptides: absence of 

acetic, methionine, cysteine, tryptophan residues and presence of basic amino acids. 
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Protein Cleaved peptides Reference   
APP     EVRH↓QKLVFF     YEVHH↓QKLVFF (Amour et al., 2002)  
CD23.1    SNQLA↓QKSQV     GDQMA↓QKSQS (Mayer et al., 2002)  
CD23.1    LRNAQ↓SQNSK    DLSSFK↓SQELNE (Mayer et al., 2002)  
CX3CL1    QAATR↓RQAVG     QAATR↓RQAVG Swissprot 
IL-1R-2  TTVKEVS↓STF    TVKEAS↓STFSWG (Amour et al., 2002) 
MBP    YGSLP↓QKAQG     YGSLP↓QKAQG (Schlomann et al., 2002) 
MBP   YGSLR↓QKAQG    YGSLP↓QKAQG (Schlomann et al., 2002) 
MBP   YGSLK↓QKAQG    YGSLP↓QKAQG (Schlomann et al., 2002) 
MBP   YGSLP↓QKTQG    YGSLP↓QKAQG (Schlomann et al., 2002) 
MBP   YGLLP↓QKAQG    YGSLP↓QKAQG (Schlomann et al., 2002) 
TNF-α        A↓QTLTLRSSS      SPLA↓QAVRSSSRK  (Amour et al., 2002)  
TNF-α    AQTLT↓LRSSS    SPLAQA↓VRSSSRK (Amour et al., 2002)  
TNF-α AQTLTLRS↓SS SPLAQAVRS↓SSRK (Fourie et al., 2003) 
TRANCE    VGPQR↓FSGAP     VGPQR↓FSGAP Swissprot 

 

Table 3.3.2: Proposed cleavage sites of new substrate peptides. Some cleavage sites were derived from 
human homologous sites. MBP wild type and MBP mutant peptides were supposed to be cleaved equally. A QK 
motif at the cleavage site in positions P1’ and P2’ is present in APP, CD23.1 and MBP. The listed peptides do 
not contain methionine, cysteine and tryptophan residues in positions P3 to P3’ and only IL-1R-2 contains an 
acetic residue in this region. 
 
 
3.3.3 Search for physiological ADAM8 substrates  

Peptides cleaved in the in vitro peptide screening assays do not necessarily mean that 

corresponding proteins are biologically relevant substrates in vivo. Based on results of the 

peptide assays, the full length proteins are examined in further experiments as physiologically 

relevant substrates. So far, this analysis was initiated for APP, TNF-R1 und PSGL-1. In a 

collaboration with Dr. Stefan Lichtenthaler (MPI für Biochemie, München), APP cleavage by 

ADAM8 was tested in transfected cells. TNF-R1 cleavage was analysed in mouse tissues as 

well as in different primary cells with ELISA test assays which were mostly performed by 

Dirk Wildeboer (Doctoral thesis, Universität Bielefeld). The PSGL-1 cDNA cloning is in 

progress and subsequent co-transfection experiments with PSGL-1 and ADAM8 will be 

performed. 

 

APP 

In the group of Stefan Lichtenthaler, cDNAs encoding ADAM8, catalytically inactive EQ-

ADAM8 or ADAM10, and the control vector pTarget were transfected into cells expressing 

APP. The cell lysates were analysed in immunoblots in order to detect ADAM8 or EQ-

ADAM8, respectively. The effect of ADAM expression on APP shedding and release from 

the cell surface was determined by ELISA tests detecting soluble forms of APP in the cell 

supernatants. Basal levels of APP release were detected in supernatants of EQ-ADAM8 and 

pTarget transfected cells, whereas APP release was significantly increased in supernatants of 
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cells transfected with ADAM8 and ADAM10 at comparable levels. These results indicated a 

physiological role of ADAM8 in APP shedding in addition to ADAM10 (data not shown). 

 

TNF-R1 

For analysis of TNF-R1 shedding, tissues of wobbler and ADAM8 KO mice were used. In 

cerebellum and brain stem of WR mice, ADAM8 is increasingly expressed upon 

neurodegeneration. Therefore, these tissues and cortex tissue as control for an unaffected 

brain region were used for analysis of TNF-R1 shedding by ADAM8. Tissues prepared of 30 

day-old mice were subjected to ELISA tests detecting soluble TNF-R1 (sTNF-R1, Figure 

3.3.3). In cerebellum and brain stem of wobbler mice (A8+/+, wr/wr), TNF-R1 release was 

strikingly increased in comparison to both cortex of WR mice (A8+/+, wr/wr) and 

cerebellum/brainstem of wild type mice (A8+/+, wt). In ADAM8 KO mice without the WR 

phenotype (A8-/-, wr/+), TNF-R1 release in cortex as well as in cerebellum/brain stem was 

comparable to that in the corresponding wild type (A8+/+, wt), whereas levels were slightly 

increased in ADAM8 KO mice with WR background (A8-/-, wr/wr). These data indicated that 

ADAM8 upregulated upon neurodegeneration enhanced TNF-R1 release (A8+/+, wr/wr vs. 

A8-/-, wr/wr). Furthermore, it can be hypothesised that under inflammatory conditions TNF-

R1 is also released by another protease, as release was increased in ADAM8 KO/WR mice 

(A8-/-, wr/wr) in comparison to ADAM8 KO mice without WR phenotype (A8-/-, wr/+).  
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Figure 3.3.3: Effect of ADAM8 on TNF-R1 shedding. 
TNF-R1 release was analysed in cerebellum/brain stem 
and cortex of mice with different genetic WR and 
ADAM8 backgrounds. In cerebellum/brain stem of 
wobbler mice (A8+/+, wr/wr) increased ADAM8 
expression resulted in significantly increased release of 
TNF-R1 from the cell surface in comparison to the 
release in cortex of wobbler mice (A8+/+, wr/wr) and in 
tested brain tissues of wildtype mice (A8+/+, wt).  
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3.4 ADAM8 and ADAM19 activities in primary human brain tumours 

As ADAMs are markers for different kinds of tumours, the analysis of their expression 

patterns as well as the definition of their proteolytic activities in tumours is a challenging task. 

In a parallel project in which the doctoral student Dirk Wildeboer determined ADAM 

expression patterns in different kinds of primary human brain tumours, I have worked out a 

method for the detection of ADAM activities in protein extracts from these tumours. A 

manuscript about the distinct expression levels and activities of human ADAMs in primary 

brain tumours was submitted to the American Journal of Pathology (Wildeboer, D., Naus, S., 

Sang, Q.X., Bartsch, J.W., Pagenstecher, A., submitted). 

 

Gliomas are the most common primary brain tumours with diffuse infiltrative growth 

regularly preventing complete resection of the tumour. Most low grade gliomas over time 

develop into malignant tumours that present cell anaplasia, neovascularisation and finally 

necrosis (Kleihues and Ohgaki, 2000). In a project of Dirk Wildeboer, expression levels of 

human ADAMs known to be expressed in the brain were determined in primary brain 

tumours (astrocytoma WHO grade I-III (AI-III), glioblastoma (GBM), oligoastrocytoma II 

(OAII), oligodendroglioma WHO grade II and III (OII/III), ependymoma WHO grade II and 

III (EII/III) and primitive neuroectodermal tumour (PNET)). With RT-PCR, significantly 

increased mRNA levels of ADAMs 8, 11, 15, 17, 19 and 28 were determined. Subsequent 

quantification by real-time PCR revealed only weak mRNA changes for ADAM11, 15 and 

17, whereas ADAM8, 19 and 28 were significantly upregulated in respective tumours. 

Strongest upregulation of gene expression was detected in GBM and OIII for ADAM8, in 

GBM and AIII for ADAM19 and in GBM for ADAM28. Expression of ADAM28 was 

strikingly increased in many of the tested tumours. ADAM8 and 19 expressions were further 

examined. Immunoblotting revealed low expression levels of ADAM8 in normal brain and 

mainly of the remnant 60 kDa form, whereas the amounts of proform and processed forms 

were strikingly increased in the examined tumour tissues. The proform of ADAM19 was 

detected in most of the samples but levels of the processed form were significantly increased 

in malignant tumours. 

In order to determine whether increased mRNA and protein levels of ADAM8 and ADAM19 

in different human primary brain tumours corresponded to increased proteolytic activity, 

peptide cleavage assays with human brain tumour homogenates and peptides for ADAM8 and 

ADAM19, respectively, were performed. The peptide Dnp-SHHGDQMAQKSQSTQI-COOH 

derived from CD23 and obtained from M. Moss was used for determination of ADAM8 
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catalytic activity. This peptide was significantly cleaved by recombinant ADAM8 (Diploma 

thesis, Simone Reipschläger) as well as a peptide derived from the homologues murine 

sequence (see 3.3.1, CD23.1). For determination of ADAM19 catalytic activity, the peptide 

substrate Ac-RPLESNAV-COOH (CRDA19) representing an autocleavage site within the 

cysteine-rich domain of human ADAM19 was used (Kang et al., 2002).  

Peptide cleavage assays with fluorescamine were performed (see 3.1.3) Protease activities 

were extracted from the brain tissue samples. Membrane preparations were either not 

effective or too time-consuming to maintain proteolytic activity. Finally, to purify the sample 

and to enrich protease activity, ConA sepharose chromatography was performed immediately 

after lysis. ConA pellets with bound proteins were used for peptide assays providing low 

levels of enriched proteins and corresponding amino groups in solution. ConA pellets and 

peptides were incubated in the presence of inhibitor cocktail containing inhibitors for 

complete inhibition of serine and cysteine proteases. As aspartic proteases with pH optima at 

acetic pH exhibit no or only little catalytic activity under physiological conditions, no specific 

inhibitors for these proteases were added. Remaining proteolytic activity was assumed to be 

metalloprotease activity. EDTA was used as an unspecific metalloprotease inhibitor proving 

metalloprotease activity. To distinguish ADAM activities from those of MMPs, a combination 

of recombinant human TIMP1 and human TIMP3 was used and preincubated with the tumour 

homogenates. Immediately and after 1, 2 and 3 hours incubation, samples of the reaction 

batches were mixed with fluorescamine and fluorescence was measured. Fluorescence 

increases after three hours were normalised with samples containing peptides and normal 

brain extracts without inhibitors which were set to 1 (Figure 3.4).  

Cleavage assays were performed with homogenates of normal brain (NB), pilocytic 

astrocytoma (AI), anaplastic astrocytoma (AIII), glioblastoma (GBM) and oligoastrocytoma II 

(OAII) (Figure 3.4). CD23 peptide cleavage was increased in all tested tumour tissue 

homogenates compared to normal brain. EDTA strongly inhibited CD23 cleavage indicating 

metalloprotease activity. Preincubation with the TIMP1/3 combination inhibited CD23 

peptide cleavage in the OAII sample, whereas it did not affect cleavage in extracts from AI, 

AIII and GBM. As ADAM8 is not inhibited by any of the four known TIMPs (Amour et al., 

2002; Schlomann et al., 2002), decreased cleavage in OAII indicated the presence of another 

metalloprotease which was inhibited by TIMP1 and/or TIMP3. Cleavage of the CRDA19 

peptide was detected in AIII and GBM. EDTA inhibited cleavage indicating metalloprotease 

activity. TIMP1/3 inhibited CRDA19 cleavage in GBM but not in AIII indicating an 

additional metalloprotease activity which was inhibited by TIMP1 and/or by TIMP3. The 
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results of the peptide cleavage assay obtained with ADAM19 corresponded to results of the 

real-time PCR in which ADAM19 expression was increased in AIII and GBM. 

 

 

 

 

 

 

 

 
 
 
Figure 3.4: Cleavage of CD23 (A) and CRDA19 (B) peptides by human primary brain tumour 
homogenates. Fluorescence increase of samples with normal brain tissue and peptides was set to 1. A. The 
CD23 peptide was cleaved in all tested tumour tissues compared to normal brain. EDTA inhibited cleavage 
indicating metalloprotease activity. TIMP1/3 did not affect cleavage in AI, AIII and GBM, but inhibited CD23 
cleavage in OAII indicating activity of another metalloprotease which is inhibited by TIMP1 and/or TIMP3. B. 
The CRDA19 peptide was cleaved in AIII and GBM. EDTA inhibition indicated metalloprotease activity. In 
AIII cleavage was not inhibited by TIMP1/3, but peptide cleavage in GBM was affected indicating an additional 
metalloprotease activity which is inhibited by TIMP1 and/or TIMP3.  
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4. Discussion 

 

4.1 Expression of soluble, catalytically active ADAM8 

A soluble form of ADAM8 comprising the pro and metalloprotease domain was expressed in 

cell culture as well as in bacteria and was isolated and purified either from cell culture 

supernatants or from cytoplasma of E.coli. ADAM8 from cell culture as well as from E.coli 

was catalytically active as shown either by MBP protein cleavage or by peptide cleavage 

assays with peptides derived from MBP, CD23 and the ADAM8 autocatalytic cleavage site. 

ADAM8 as all other ADAMs is expressed as a catalytically inactive zymogen and is activated 

by prodomain removal. In contrast to other ADAMs, ADAM8 does not contain the consensus 

sequence RX(K/R)R between pro and metalloprotease domain, a consensus cleavage site for 

furin-like convertases. Instead, ADAM8 is activated by autocatalysis. The full length form of 

catalytically inactive EQ-ADAM8 expressed on cells was not activated. The EQ-ADAM8 

prodomain was released when the complete extracellular domain of active ADAM8 was co-

expressed by the same cells. It was neither activated by a co-expressed soluble form of 

ADAM8 comprising the pro and metalloprotease domain nor by the complete extracellular 

domain applied to supernatants of transfected cells (Schlomann et al., 2002) indicating 

activation in cis in the Trans-Golgi network and the disintegrin and cysteine-rich domains 

being important for activation. It was suggested that homophilic interactions of disintegrin 

domains, e.g. by two ADAM8 molecules, might be necessary for autocatalysis bringing two 

molecules in close proximity. Schlomann et al. (2002) observed complete processing of the 

entire extracellular domain transfected into COS7 cells, whereas the soluble form of ADAM8 

comprising pro and metalloprotease domain was only partially processed. In the work 

presented here, A8-ProMP from cell culture was also partially processed, but the relative 

amounts of proform (60 kDa) and processed form (35-40 kDa) varied. In some experiments, 

the predominant portion was the processed form, whereas prodomain removal was much 

weaker in other experiments. Possibly, prodomain removal is also dependent on ADAM8 

concentrations arguing for activation independent from the disintegrin and cysteine-rich 

domains when ADAM8 is present in high concentrations. This could also explain A8-ProMP 

prodomain removal in E.coli. As the prodomain removal was supposed to take place in the 

Trans-Golgi network, it was not clear whether A8-ProMP expressed by E.coli would be 

activated. Nevertheless, proform and activated processed form were present in different 

relative amounts in the cytoplasmic fractions of induced bacterial cultures (Diploma thesis, 

Simone Reipschläger). From these results we conclude that activation of A8-ProMP in E.coli 
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is independent from the Trans-Golgi network, from the disintegrin domain and furthermore, 

from glycosylations. Possibly, autocatalytic prodomain removal requires chaperones, and 

similar proteins present in E.coli can act as chaperones. 

For structural analysis of interaction of the prodomain with the catalytic site, A8-ProMP is not 

suitable, as it is autocatalytically processed. Therefore, a catalytically inactive form should be 

used, e.g. a soluble form comprising the EQ mutation. 

Soluble forms of ADAMs have been expressed in different cellular systems. Similarly to the 

work presented here, a cDNA construct encoding the extracellular domain of ADAM19 with 

a MycHis-tag was transiently transfected into COS7 cells, and supernatants were purified via 

the His-tag (Chesneau et al., 2003). For other work, CHO, COS1 or COS7 cells were used to 

express soluble forms of ADAMs either containing the complete extracellular portion or the 

pro and metalloprotease domains. For purification either IgG-Fc, FLAG or Myc-tags were 

used (Amour et al., 2002; Chesneau et al., 2003; Fourie et al., 2003; Kang et al., 2002). 

Moreover, Sf9 insect cells were infected with recombinant bacculovirus for expression of 

ADAM19 extracellular domain and pro and metalloprotease domains of ADAM8, 15, 17 and 

28 (Chesneau et al., 2003; Fourie et al., 2003). ADAM metalloprotease domains were so far 

not expressed in E.coli, probably for the reason of inefficiency. As the prodomain is supposed 

to be important for proper folding, recombinant metalloprotease domains have to be expressed 

with the prodomain. For most ADAMs, additional recombinant furin-like convertases would 

be required for prodomain removal converting the proform into an active ADAM protease.  

Concerning ADAM expression, bacteria were used to express the disintegrin and cystein-rich 

domain of ADAM8 (Schlomann et al., 2002) and the prodomains of ADAM17 (Gonzales et 

al., 2004), ADAM8 and ADAM10 (personal communication, M.Moss, Biozyme Inc., NC, 

USA). Several MMPs such as MMP7, MMP9, MMP12 and MMP13 were expressed in 

bacteria (Kroger and Tschesche, 1997; Oneda and Inouye, 1999; Parkar et al., 2000; Pathak et 

al., 1998). The ADAM prodomains as well as the MMPs were isolated from inclusion bodies 

and were refolded. The expression rates for the MMPs expressed in bacteria were much 

higher than those observed for A8-ProMP. As ADAM8 was also expressed at low levels in 

cell culture, high expression of soluble forms of ADAM8 is possibly a general problem and 

could be due to a short half-life of the protein itself. 
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4.2 Peptides as tools for systematic search for new ADAM substrates 

A peptide cleavage assay with fluorogenic peptides was established in order to perform a 

systematic search for new ADAM8 substrates. The peptides were derived from known peptide 

substrates of other metalloproteases or from juxtamembraneous regions of supposed 

metalloprotease substrates. This approach was indicative for further analysis which would be 

necessary to assess the corresponding proteins of peptide substrates, as physiological 

relevance of ADAM8 substrates might be dependent on exposure of cleavage sites, 

posttranslational regulation, interactions with binding partners, and localisation in the cell 

membrane in addition to a specific cleavage site.  

So far, only a few publications exist in which peptides were used for systematic search for 

ADAM substrates. In order to determine catalytic properties, peptide assays with synthetic 

peptides derived from proteins known to be cleaved by other ADAMs or metalloproteases 

were performed with recombinant ADAM9, ADAM19 and ADAM33 (Chesneau et al., 2003; 

Roghani et al., 1999; Zou et al., 2004). In another study, synthetic peptides were used to 

compare catalytic properties of ADAM8 with those of other ADAMs and MT-MMPs. From 

six tested peptides, ADAM8 cleaved peptides derived from APP, IL-1R, KL and TNF-α 

(Amour et al., 2002), whereas ADAM10 cleaved peptides derived from APP, CD40-L and 

TNF-α (Amour et al., 2000). In the specified examples, peptide cleavage was analysed by 

chromatography and mass spectrometry. Corresponding proteins of some peptide substrates 

were further examined in co-transfection experiments. So far, only one work using 

fluorogenic peptides for systematic search of ADAM substrates was published (Fourie et al., 

2003). A collection of about 50 peptides was labelled at the C-terminal end with a quencher 

and at the N-terminal end with a fluorophor, so that cleavage of the peptide could be 

monitored by an increase in fluorescence. These peptides were incubated with ADAM8, 

ADAM15, ADAM17 and ADAM28 in order to examine different specificities of these 

proteases. ADAM17 specificity seemed to differ from that of the other analysed ADAMs. In 

subsequent in vivo studies, CD23 and CD27-L were also cleaved by ADAM8 in co-

transfection experiments.  

Most publications cited here were published in the last three years. The approach of using 

peptides for determination of ADAM catalytic specificity is quit new and was hardly used for 

systematic search for new potential ADAM substrates. The fact that in recent studies some of 

the corresponding proteins of peptide substrates which were further examined were also 

cleaved in vivo in cell culture experiments supports the efficiency of this approach. However, 

there were differences in peptide cleavage in vitro and cleavage of the full length protein in 
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vivo. Therefore, these studies also show that further analysis is necessary as some proteins 

such as TNF-α, KL and APP were not cleaved in vivo, although derived peptides were 

cleaved by ADAM19 and ADAM33, respectively (Chesneau et al., 2003; Zou et al., 2004).  

In the work presented here, peptides derived from APP, CD23, CX3CL1, Fc-γ-RIII, L-

Selectin, PSGL-1, TGF-α and TNF-α were significantly cleaved by ADAM8 and peptides 

derived from CD163, IL-1R-2, TNF-R1 and TRANCE at lower levels. Therewith, CX3CL1, 

Fc-γ-RIII, L-Selectin, PSGL-1, TGF-α, CD163, IL-1R-2 and TRANCE were determined as 

potential new substrates of ADAM8, whereas APP, CD23, IL-1R-2 and TNF-α were stated as 

those (Amour et al., 2002; Fourie et al., 2003). Further studies have to examine the 

physiological role of these proteins as potential ADAM8 substrates. 

 

4.3 Substrate specificity of ADAMs 

In order to examine regularities in the amino acid composition of ADAM8 peptide substrates, 

mutant MBP peptides derived from the MBP cleavage site were designed. These peptides had 

point mutations in a region of 6 amino acids around the cleavage site. According to 

Schlomann et al. (2002) the disintegrin domain influenced autocatalytic prodomain removal 

of ADAM8, e.g. by mediating the interaction of at least two ADAM8 monomers. In addition, 

interaction of other substrates with the disintegrin domain of ADAM8 might be important for 

physiological cleavage. In this assay a soluble protease lacking the disintegrin domain and 

short peptide substrates probably only interacting with the catalytic centre were used. The fact 

that peptide substrates were cleaved specifically supports the importance of a consensus 

sequence or at least preferred amino acids around the cleavage site. A specific cleavage site 

might be essential for cleavage but not sufficient.  

The mutant MBP peptides were cleaved with different efficiencies. Assuming that cleavage 

occurred at the same sites in all peptides it could be concluded for the MBP peptide that 

ADAM8 preferred a cleavage site with basic residues in positions P1 and/or P2’ and one 

without acetic residues around the cleavage site, basically not in position P1’. Mayer et al. 

(2002) suggested a similar hypothetical consensus sequence XXR/K↓XKX from human 

CD23 cleavage sites. A QK motif at positions P1’ and P2’ in the peptides derived from APP, 

CD23 and MBP was also present in the TGF-α peptide (AVVAASQKKQ) suggesting 

cleavage next to this motif.  

Examination of the screened peptide collection revealed regularity for cleaved peptides, 

which were not applicable for most of the non-cleaved ones. The cleaved peptides contained 

basic amino acid residues, whereas they did not contain cysteine, methionine or tryptophan 
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residues. Only five of the cleaved peptides contained acetic residues which were possibly not 

located in positions P3 to P3’ of proposed cleavage sites. In contrast, only two peptides did 

contain basic residues, but no acetic, cysteine, methionine or tryptophan residues and were not 

cleaved – peptides derived from KL and TNF-R2. In this work, the KL peptide 

LPPVAASSLR was not cleaved by mouse A8-ProMP, whereas in another work the similar 

peptide PPVAASSLRN was cleaved by an equivalent ADAM8 form at the cleavage sites 

A↓A and A↓S (Amour et al., 2002). The reason for this contradictory result is not clear as 

there were hardly any differences in the ADAM8 forms and peptides used. The soluble forms 

of ADAM8 comprised the pro and metalloprotease domain and had either a His-tag or a 

human IgG-Fc-tag. The peptides used shared 9 amino acids and differed by only one amino 

acid.  

It is possible that peptides are cleaved specifically by ADAM8 at QK motifs in positions 

P1’/P2’, but others also with less specificity when sufficient criteria are fulfilled such as the 

presence of basic amino acids and the absence of acetic, cysteine, methionine or tryptophan 

residues. For several peptide substrates, different cleavage sites were determined depending 

on the ADAM protease used (Table 4.3). This supports the notion that substrate interaction 

with the ADAM catalytic sites and subsequent cleavage is not totally dependent on a specific 

consensus sequence. In peptides derived from TNF-α, three different cleavage sites for 

ADAM8, and two different cleavage sites for ADAM9 and ADAM19, respectively, were 

determined. Three different cleavage sites were sequenced for ADAM9 in a KL peptide. For 

MBP, only one motif next to the QK motif was determined for ADAM8, ADAM10, 

ADAM28 and ADAM33 emphasising the importance of this motif. ADAM8, ADAM9 and 

ADAM33 cleaved an APP peptide also at the QK motif, whereas ADAM10 cleaved the APP 

peptide two amino acids closer to the C-terminus. Comparison of ADAM cleavage sites in 

different substrate peptides also shows that different ADAMs cleave the same substrate 

peptides with the cleavage sites being the same or in close proximity. This could indicate that 

ADAM catalytic activities towards peptides are similar, although kinetic properties could be 

different. Molecular interactions of either ADAM disintegrin or ADAM cytoplasmic domains 

with substrates or cellular localisation of protease and substrate might be more important for 

substrate specificity. Possibly, adapter molecules play a role by bringing protease and 

substrate into close proximity. Cleavage might then occur in exposed loop regions with amino 

acid sequences meeting minimal criteria. Further studies are necessary to determine substrate 

specificities of ADAMs. In addition to testing ADAM specificities towards systematically 

mutated peptides, it will be important to examine further criteria besides consensus sequences. 
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 Protein Sequence A8 A9 A10 A19 A28 A33 
APP YEVHH↓QK↓LVFF H↓Qa H↓Qe K↓La   H↓Qg 

KL LPPVA↓A↓S↓SLR A↓Sa A↓Ae 

A↓Se 

S↓Se 

NCa A↓Sb  A↓Sg 

MBP YGSLP↓QKAQG P↓Qe*  P↓Qd*  P↓Qd* P↓Qg 
TNF-α PLA↓QA↓VR↓S↓SS A↓Qa 

A↓Va 
S↓Sc 

A↓Qe 

S↓Se 

 

A↓Va R↓Sb 

S↓Sb 
  

Table 4.3: ADAM cleavage sites in APP, KL, MBP and TNF-α. aAmour et al., 2002; bChesneau et al., 2003; 
cFourie et al., 2003; dHoward et al., 2001; eRoghani et al., 1999; fSchlomann et al., 2002; gZou et al., 2003; 
*cleavage site determined from cleavage of recombinant protein 
 
 

4.4 Physiological relevance of new ADAM8 substrates 

 

4.4.1 ADAM8 in nerve regeneration  

Data shown in the publication (Naus et al., 2004) were the first evidence that shedding of 

CHL1 by ADAM8 had a physiological role in the nervous system. ADAM8 proteolytic 

activity was specific for CHL1, whereas NCAM and L1 were not cleaved. Furthermore, 

CHL1 cleavage was specific for ADAM8. ADAM10 and ADAM17 did not cleave CHL1, 

although both ADAMs are expressed at higher levels in the nervous system and also under 

healthy conditions. ADAM10 is responsible for ectodomain shedding of other neuronal cell 

adhesion molecules in the CNS such as L1 and N-Cadherin (Mechtersheimer et al., 2001; 

Reiss et al., 2005), but not for CHL1 shedding.  

Specificity of ADAM8 for CHL1 is possibly defined by structural differences between CHL1 

and other cell adhesion molecules. The cleavage site for the 165 kDa fragment is located in 

the fifth FNII domain which is not conserved in NCAM and L1. Shedding of CHL1 by 

ADAM8 was performed under reducing and non-reducing conditions. As under non-reducing 

conditions the 125 kDa band was absent, it was supposed that the cleavage site was located 

between two cysteine residues forming a cysteine bridge under non-reducing conditions. This 

would argue for the 165 kDa fragment as the physiologically more important one. In this case, 

the unconserved fifth FNII domain might be essential for determining ADAM8 specificity. 

CHL1 release by ADAM8 was not enhanced by activators of protein kinase C such as TPA or 

the phosphatase inhibitor pervanadate, whereas a number of publications report induction of 

ADAM17 ectodomain shedding by both these activators. These results indicated that ADAM8 

intracellular regulation differed from that of ADAM17 involving protein kinase C epsilon 

(Wheeler et al., 2003) and furthermore, that ADAM17 was not responsible for CHL1 
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shedding. These findings underline the clear cut specificity of the protease-substrate 

relationship between ADAM8 and CHL1. 

In the CNS, CHL1 and ADAM8 are expressed in neurons and oligodendrocytes arguing for 

CHL1 cleavage occurring in cis on the same cell surface. CHL1 expression was highly 

upregulated in injured and regenerating central and peripheral neurons and was additionally 

expressed in reactive astrocytes of the optic nerve (Chaisuksunt et al., 2000a; Chaisuksunt et 

al., 2000b; Rolf et al., 2003; Zhang et al., 2000). Under pathological conditions, ADAM8 is 

additionally expressed by astrocytes and microglia induced by the cytokine TNF-α 

(Schlomann et al., 2000). Thus, under pathological conditions cleavage of CHL1 could also 

occur in cis on astrocytes. Soluble forms of CHL1 promoted neuronal cell survival and 

controlled neurite outgrowth (Chen et al., 1999; Naus et al., 2004) indicating involvement of 

CHL1 in nerve regeneration or remodelling with an unknown functional role. In cell 

migration assays, CHL1 mediated enhanced cell migration towards collagen I via integrins 

α(1)β(1) and α(2)β(1) (Buhusi et al., 2003). Similar to L1, integrin-dependent cell migration 

could be enhanced by fragments released from membrane-bound CHL1 (Thelen et al., 2002). 

As ADAM8 specifically cleaved CHL1, ADAM8 might affect cell adhesion by cleavage of 

CHL1, but also by direct binding to integrins via the disintegrin domain (Schlomann et al., 

2002) thereby activating intracellular signalling pathways.  

Under pathological conditions, cleavage of CHL1 by ADAM8 on astrocytes can lead to 

enhanced ECM remodelling by reactive astrocytes, e.g. by extension of processes, an 

important characteristic of many neuropathological states. Based on pathological conditions in 

the nervous system of the wobbler mouse, it is likely that CHL1 shedding is also important 

for activation of glial cells. As the pro-inflammatory cytokine TNF-α induced ADAM8 

expression in the brain stem and spinal cord of the wobbler mouse, which in turn lead to 

enhanced CHL1 cleavage, TNF-α indirectly regulated CHL1 release via upregulation of 

ADAM8 (Naus et al., 2004). 

 

4.4.2 Possible role of ADAM8 as an α-secretase in Alzheimer’s disease  

Amyloid beta A4 protein precursor (APP) is cleaved proteolytically in two distinct pathways. 

It is cleaved in the amyloidogenic pathway by β- and γ-secretases to release amyloid β (Aβ) 

peptide forming non-soluble plaques. In a non-amyloidogenic pathway, APP is cleaved within 

the amyloidogenic Aβ domain by an α-secretase to release a non-amyloidogenic p3 peptide 

and, furthermore, a large ectodomain of APP (sAPPα) with neuroprotective and memory-

enhancing function (Furukawa et al., 1996; Mattson et al., 1999; Meziane et al., 1998). 
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Figure 4.4.2: Amyloidogenic and non-amyloidogenic processing pathways of APP. The amino acid sequence 
depicts a part of the extracellular domain of human APP (normal letters) and a part of the transmembrane region 
(bold letters). In the amyloidogenic pathway, APP is cleaved by the β-secretase BACE (beta-site APP-cleaving 
enzyme) and by γ-secretases to release amyloid Aβ peptides of mainly 40 and 42 amino acid residues (γ40 and 
γ42). The γ-secretase is a complex of proteins including presenilin 1 cleaving APP in the transmembrane region. 
In the non-amyloidogenic pathway, cleavage by α-secretases in the amyloidogenic Aβ domain precludes the 
generation of Aβ peptides and enables the generation of a non-amyloidogenic p3 peptide and a large sAPP with 
neuroprotective function (De Strooper and Annaert, 2000). 
 

Based on cleavage of a peptide derived from APP by ADAM8, in vivo studies were 

performed showing that ADAM8 transfected into APP expressing cells released APP from the 

cell surface. These results indicated that ADAM8 is an α-secretase for APP shedding. 

ADAM9, 10 and 17 are known as α-secretases cleaving APP into non-amyloidogenic forms 

(Buxbaum et al., 1998; Koike et al., 1999; Lammich et al., 1999) preventing accumulation of 

amyloidogenic Aβ peptides to cerebral plaques that cause Alzheimer’s disease. In addition, 

ADAM8 and ADAM33 were shown to cleave a peptide derived from the α-secretase 

cleavage site (Amour et al., 2002; Zou et al., 2004). But in co-transfection experiments, 

ADAM33 did not cleave APP but worked as a negative regulator of APP shedding (Zou et al., 

2004). Moreover, no difference in production of APP cleavage products in cultured 

hippocampal neurons from ADAM9 KO mice was detected compared to wild type neurons, 

arguing against an important role of ADAM9 as α-secretase (Weskamp et al., 2002). 

However, mice slightly overexpressing ADAM10 produced more neurotrophic sAPP and less 

amyloidogenic Aβ peptides suggesting that activation of ADAM10 α-secretase activity might 

be a therapeutic target for treatment of Alzheimer’s disease (Postina et al., 2004).  

Therefore, analysis of the exact roles of different ADAMs as potential α-secretases or as 

negative regulators is of medical interest. Possibly, endogenous α-secretase is composed of 

several ADAM enzymes (Asai et al., 2003). The upregulation of ADAM8 expression in the 

nervous system under inflammatory conditions argues for ADAM8 belonging to this set of α- 

secretases (Schlomann et al., 2000). ADAM8 might contribute to enhanced production of 

neuroprotective sAPP under pathological conditions in order to compensate 

neurodegeneration as an additional α-secretase. This could mean that ADAM8 has a 

neuroprotective function in the CNS during inflammation.  
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4.4.3 ADAM8 in immune and inflammatory response  

TNF-α is a potent cytokine with critical functions in the activation and regulation of immune 

and inflammatory responses via two different membrane-type TNF receptors. TNF-R1 and 

TNF-R2 share similarities in the extracellular domains but differ in the intracellular domains 

and their signal transduction. Upon binding of TNF-α to TNF-R1, a caspase cascade as well 

as nuclear factor-κB (NF-κB) is activated via the intracellular “death domain” of TNF-R1. 

The activation of caspases leads to apoptosis, the NF-κB pathway to the production of 

cytokines and proteins with potential anti-apoptotic activity. Thus, the activation of TNF-R1 

by TNF-α induces potential inflammatory and anti-inflammatory pathways (Hehlgans and 

Mannel, 2002). 

In order to determine the role of TNF-α in brain injury, TNF-R1-KO mice were generated. 

Damage to neurons caused by focal cerebral ischemia and epileptic seizures was enhanced in 

TNF-R1-KO mice, and activation of microglial cells was suppressed (Bruce et al., 1996). 

These findings demonstrated that there was a potent effect of TNF-α on the injured CNS. 

TNF-receptor-associated periodic syndrome (TRAPS) is a hereditary autoinflammatory 

disease with periodic fever attacks and severe localised inflammation. It is likely that TRAPS 

is caused by mutations in the extracellular domain of TNF-R1 leading to impaired shedding of 

TNF-R1 possibly because of conformational changes in TNF-R1 (Galon et al., 2000). Knock-

in mice expressing a mutated non-sheddable TNF-R1 developed Toll-like receptor dependent 

innate immune hyperreactivity leading to efficient reactions against intracellular bacterial 

infections but also to disbalanced, pathological inflammatory reactions such as spontaneous 

hepatitis, enhanced susceptibility to endotoxic shock, exacerbated TNF-dependent arthritis, 

and experimental autoimmune encephalomyelitis (Xanthoulea et al., 2004).  

Therefore, TNF-α was supposed to serve function in neuroprotection and regulation of 

immune response via TNF-R1 by activation of intracellular signalling pathways upon binding 

to this receptor. Furthermore, soluble TNF-R1 might have antagonistic function by acting as a 

new ligand for other receptors or by capturing TNF-α. ADAMs might be involved in these 

processes either directly by shedding of TNF-α or its receptors or indirectly by their 

activation induced by TNF-α. ADAM17 was shown to act as a sheddase for TNF-α and for 

the receptors TNF-R1 and TNF-R2 (Black et al., 1997; Moss et al., 1997; Peschon et al., 

1998). The results of the peptide assay presented in this work indicate that ADAM8 can act as 

a sheddase for TNF-α and the receptor TNF-R1. Furthermore, ADAM8 was shown to be 

involved in TNF-α response as a target gene of TNF-α induction. ADAM8 detected in 
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neurons and oligodendrocytes in the CNS under normal conditions was up-regulated in the 

CNS upon neurodegeneration followed by activation of glia cells, astrocytes and microglia. 

The inducer for enhanced transcription was the cytokine TNF-α (Schlomann et al., 2000).   

In in vivo experiments, it was examined whether ADAM8 is involved in immune response as 

a sheddase of TNF-R1. In ADAM8 overexpressing brain tissues of WR mice, enhanced 

soluble TNF-R1 release was detected in comparison to normal brain tissues and also to brain 

tissues of ADAM8 deficient WR mice indicating ADAM8 acting as a TNF-R1 sheddase. The 

neurodegenerative phenotype of ADAM8 deficient mice with a genetic WR background was 

enhanced. These results argue for neuroprotective functions of ADAM8 in the nervous system 

which are in accordance with the observations made in the TNF-R1-KO mice. The following 

scenario is possible (see figure 4.4.3): TNF-α released from the cell surface binds to TNF-R1 

inducing ADAM8 transcription by intracellular signalling. Expressed ADAM8 protein on the 

cell surface is able to cleave TNF-R1. Released, soluble forms of TNF-R1 capture soluble 

TNF-α and act as antagonistic ligands inducing anti-inflammatory signalling pathways. 

Thereby, target cells are desensitised to high TNF-α concentration under inflammational 

conditions and a dose-dependent cellular response is maintained (Moss and Bartsch, 2004).  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.4.3: Hypothetical feedback mechanism for TNF-α response. TNF-α is released from the cell surface 
by ADAM17 with soluble forms of TNF-α mediating inflammatory response. Via the receptor TNF-R1, TNF-α 
stimulates ADAM8 transcription. Under pathological conditions increased concentrations of soluble TNF-α lead 
to enhanced ADAM8 expression. We hypothesise that TNF-R1 is released from the cell surface by ADAM8. By 
a feedback mechanism, the inflammatory response via TNF-R1 signalling would be blocked. Soluble TNF-R1 
could capture TNF-α or act as anti-inflammatory signalling molecule (modified from Moss and Bartsch, 2004). 
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TNF-R1 shedding involved interactions with regulatory ectoproteins. The amino peptidase 

regulator of TNF-R1 shedding (ARTS-1) – a type II integral membrane protein – bound to the 

TNFR1 extracellular domain. The formation of a TNF-R1-ARTS-1 molecular complex with 

respective proteases might represent a mechanism for regulation of TNF-R1 shedding (Cui et 

al., 2002). Possibly, ARTS-1 interacts with ADAM8 recruiting TNF-R1 into a complex, 

thereby regulating shedding of TNF-R1. 

Der P1 is the major allergen of the house dust mite Dermatophagoides pteronymssinus. It is a 

cysteine protease known to initiate allergic reactions in some people upon inhalation via 

cleavage of CD23 on B-cells leading to up-regulated IgE synthesis (Schulz et al., 1995). As 

peptides derived from CD23 were shown to be cleaved by ADAM8 (Fourie et al., 2003), 

ADAM8 was supposed to be involved in allergic diseases in the lungs such as asthma (King 

et al., 2004). Possibly, Der P1 is also able to enhance IgE production indirectly via ADAM8. 

It is hypothesised that Der P1 can release the prodomain of ADAM8 and thereby converting it 

to its active form. This could lead to enhanced CD23 cleavage and increasing IgE production 

(personal communication, F. Shakib, Nottingham University, UK). 

 

4.4.4 ADAM8 in growth regulation 

The epidermal growth factor receptor (EGF-R) is a tyrosine kinase receptor with important 

function in development and in diseases such as cancer. EGF-R signalling via G-protein-

coupled receptors (GPCR) requires activation of EGF-R ligands (Fischer et al., 2003) and 

dimerisation of EGF-R. For TGF-α and EGF, it was shown that two EGF-R dimerise through 

peptide loops that are only exposed upon ligand binding. Thus, two separate binding events 

must occur for dimerisation of EGF-R and for forming a functional signalling dimer. With 

limited concentration of EGF-R ligands, dimerisation is more probable when soluble forms of 

ligands bind to EGF-R, as the receptors are less mobile when ligands are still tethered to 

adjacent cells. Therefore, EGF-R signalling might be regulated via shedding of EGF-R 

ligands (Blobel, 2005). Several ADAMs, including ADAM10, 12 and 17 have been reported, 

to be implicated in shedding of at least six of the seven known EGF-R ligands TGF-α, 

amphiregulin, HB-EGF, epiregulin, EGF, betacellulin and epigen (Sahin et al., 2004).  

ADAM17 deficient mice resembled mice lacking TGF-α or EGF-R and had defects in 

maturation and morphogenesis of endothelial cells (Peschon et al., 1998). HB-EGF is 

expressed in the developing heart in monolayers of endocardial cells overlaying the 

endocardial cushion. HB-EGF and ADAM17 deficient mice as well as knock-in mice with an 

uncleavable HB-EGF had similar defects in heart development. Severe defects in 
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morphogenesis in the endocardial cushion resulted in enlarged heart valves. EGF-R was 

supposed to have an inhibitory effect on the proliferation of the endocardial cushion. 

Therefore, HB-EGF released from the cell surface by ADAM17 might block proliferation of 

cells in the endocardial cushion (Jackson et al., 2003; Yamazaki et al., 2003). 

Based on the peptide assays presented in this work ADAM8 is a potential TGF-α sheddase. In 

the ADAM8 deficient mouse no major defects or abnormalities were evident during 

development arguing against an important role of ADAM8 as an EGF-R ligand sheddase 

during development. As upregulated in several kinds of cancers, ADAM8 might be involved 

in regulation of EGF-R signalling in cancer tissues by TGF-α release (Ishikawa et al., 2004). 

Soluble TGF-α might stimulate cell proliferation and therefore tumour growth via EGF-R. 

However, the effect of soluble TGF-α could also be inhibitory for cell proliferation similar to 

the effect of soluble HB-EGF in endocardial cushion.  

 

4.4.5 Possible involvement of ADAM8 in leukocyte extravasation 

Leukocyte extravasation from blood into underlying tissues to sites of infection and 

inflammation is a multistep process involving leukocyte tethering and rolling on endothelial 

cells, tight adhesion and migration into endothelial tissue. P-Selectin and P-Selectin 

glycoprotein ligand-1 (PSGL-1) are important proteins mediating leukocyte rolling. P-

Selectin is a cell adhesion molecule located in intracellular vesicles in normal endothelial 

cells. Upon induction by paracrine inflammatory signals, P-Selectin is secreted to the cell 

surface of endothelial cells. PSGL-1 is constitutively expressed on most circulating 

leukocytes and a ligand for P-Selectin, thereby mediating tethering of leukocytes to 

endothelial cells. To ensure cell adhesion, expression of integrin subunits on leucocytes is 

induced by platelet activating factor (PAF) (McEver and Cummings, 1997; Figure 4.4.5). 

PSGL-1 was shown to be less present on the cell surface of human neutrophils, monocytes, 

and eosinophils upon stimulation with PAF and phorbol ester PMA. This was supposed to be 

the result of enhanced release from the cell surface, as soluble forms were detected in 

supernatants of activated neutrophils and in human bronchoalveolar lavage fluids upon 

induction with allergic asthmatic subjects. PSGL-1 release was inhibited by EDTA, but not by 

phenanthroline, batimastat and marimastat. The activation-induced down-regulation of PSGL-

1 resulted in significant reductions in binding of neutrophils to immobilised P-Selectin. It was 

discussed whether a divalent cation-dependent sheddase or another mechanism was 

responsible for PSGL-1 release (Davenpeck et al., 2000).  
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If a metalloprotease was responsible for PSGL-1 cleavage, the broad-range MMP inhibitor 

phenanthroline should also inhibit release in addition to EDTA. ADAM8 catalytic activity is 

inhibited by EDTA, phenanthroline and batimastat, but not by marimastat as shown in the 

presented work and by Schlomann et al. (2002). Furthermore, ADAM8 shedding activity is 

not induced by PMA. Nevertheless, the expression profiles of ADAM8 and PSGL-1 in the 

same cell types argue for a distinct protease-substrate relationship. ADAM8 mRNA was 

detected in different hematopoietic cell lines like macrophages, granulocytes, monocytes and 

B-cells (Yoshiyama et al., 1997) and was upregulated under inflammatory conditions 

(Schlomann et al., 2000). Therefore, release of PSGL-1 by ADAM8 might be possible in cis 

on leukocytes in an enhanced manner under inflammatory conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.4.5: Possible roles of ADAM8 in leucocyte extravasation. Leukocytes normally circulate in the blood 
unattached to the cells. Upon inflammational signals, release of P-Selectin to the cell surface of endothelial cells, 
PAF expression in epithelial cells as well as ADAM8 expression in leukocytes is induced. Weak adhesion 
between P-Selectin on endothelial cells and PSGL-1 on leukocytes causes tethering and rolling of leukocytes. By 
interaction of PAF on endothelial cells with a receptor on leukocytes, integrin expression in leukocytes is 
induced. The interactions of these integrins with cell adhesion molecules on endothelial cells enable firm 
adhesion and subsequent extravasation of leukocytes into tissues. PSGL-1 is a potential substrate for ADAM8. 
Cleavage of PSGL-1 before tethering to endothelial cells would decrease attachment of leukocytes to endothelial 
cells and extravasation to sites of inflammation. Cleavage of PSGL-1 after firm adhesion of leukocytes to 
endothelial cells possibly enables easier extravasation. 
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Release of PSGL-1 from the cell surface of monocytes before binding to P-Selectin on 

epithelial cells could decrease tethering, binding and extravasation into tissue to sites of 

inflammation. ADAM8 mediating this shedding would have anti-inflammatory function. 

However, it is more likely that shedding would occur after PSGL-1 had bound to P-Selectin 

as secretion of P-Selectin to the cell surface upon paracrine inflammatory stimuli is faster than 

activation of monocytes and upregulation of ADAM8 expression. Cleavage of a PSGL-1/P-

Selectin complex might occur when monocytes are already attached to epithelial cells via 

induced integrins. PSGL-1 is not expressed on mature macrophages arguing against a role of 

the PSGL-1/P-Selectin complex for further extravasation. Therefore, it can be hypothesised 

that cleavage of this complex is necessary for further migration of macrophages into tissues. 

In that case, ADAM8 would have pro-inflammatory functions. 

 

4.5 Role of ADAMs in malignant brain tumours 

In several studies, increased levels of ADAMs were detected in cancer cells indicating 

involvement of ADAMs in cancer. ADAMs have potential implication for metastasis of 

cancer cells via cell adhesion and protease activity. Besides identification of ADAMs as 

molecular markers for diagnosis and prognosis of cancer, little work was done on 

characterising the role of ADAMs in cancer progression. In the work presented here 

(Wildeboer et al., submitted), ADAM expression and catalytic activities of ADAMs were 

examined in primary brain tumours with different grades of malignancy.  

From twelve cerebrally expressed ADAM genes examined, strong upregulation of gene 

expression was observed for ADAM8 and ADAM19 in malignant brain tumour tissues, 

whereas ADAM28 expression was upregulated in most examined tumour tissues. 

Immunoblotting revealed processed forms of ADAM8 and ADAM19 in tissues with 

upregulated gene expression. The CD23 peptide was increasingly cleaved by all tested tumour 

tissue homogenates compared to normal brain as a result of increased ADAM8 expression. In 

homogenates of oligoastrocytoma, grade II, an additional protease which was not inhibited by 

TIMP1 or TIMP3 was supposed to cleave the CD23 peptide. Cleavage of the CRDA19 

peptide was detected in the malignant glioma tumours AIII and GBM. Cleavage in GBM was 

supposed to be specific for ADAM19, whereas in AIII another metalloprotease did probably 

also cleave the peptide. Thus, the role of ADAMs in the progression of brain tumours can be 

based on catalytic activity towards proteins that are involved in the biological behaviour of 

brain tumours. Shedding of immune-mediating receptors or ligands such as TNF-α and TGF-

α could lead to tumour induced immunosuppression. Cleavage of molecules involved in 
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growth control such as neuregulin or EGF receptors could influence progressive malignancy 

of astrocytic brain tumours. EGF receptors were upregulated in malignant astrocytomas 

(Kleihues et al., 2002). NRG-1 shed by ADAM19 was shown to activate erbB-2/erbB-3 

receptors (Gollamudi et al., 2004), and erbB-2 was detected in highly malignant gliomas 

(Andersson et al., 2004).  

Characteristic for gliomas is the diffuse infiltration of surrounding brain tissue. As a number 

of MMPs have been shown to contribute to diffuse infiltration of astrocytic tumour cells (e.g. 

Belien et al., 1999; Deryugina et al., 1997; Lakka et al., 2002), related ADAMs are also 

candidates to contribute to infiltration. ADAM28 showed strong upregulation in infiltrative 

astrocytic tumours, whereas ADAM8 and 19 were predominantly upregulated in malignant 

tumours while infiltrative low grade astrocytoma and oligoastrocytoma only showed modest 

upregulation. In migration experiments with matrigel as a substrate, ADAM8 cDNA 

transfected to either COS7 or NIH3T3 cells enhanced invasive activity in comparison to mock 

transfected cells (Ishikawa et al., 2004). Similar experiments with transfected glioma cells 

could demonstrate, whether ADAM8 contributes to migration and infiltration of glioma cells. 

Some MMPs and also membrane-type proteases such as MT-MMPs and ADAMs have been 

shown to be implicated in the angiogenic switch that occurs in the course of progressive 

malignancy (Bauvois, 2004; Deryugina et al., 2002; Fang et al., 2000). ADAM19 expression 

correlated to neovascularisation suggests that it can be involved in this process e.g. by 

shedding of pro-angiogenic factors such as TGF-α or TNF-α.  

 

4.6 Conclusion and perspective 

In the work presented here, several new potential ADAM8 substrates were determined and for 

some the physiological relevance has been proven. In future, the remaining potential 

substrates identified on the basis of peptide assays will be further examined in in vivo studies 

to validate the biological relevance as ADAM8 substrates.  

The identification of ADAM substrate is a prerequisite for understanding the biological role 

of ADAMs in development, homeostasis and diseases. Ectodomain shedding by ADAMs has 

been recognised to be important in several signalling pathways such as EGF-R signalling or 

TNF-signalling and also in neuronal diseases such as Alzheimer’s disease and MS making 

ADAMs to potential drug targets in treatment of different diseases. Enhancing ADAM8 

catalytic activity in Alzheimer’s disease could increase α-secretase activity which could have 

a positive effect on slowing down the accumulation of amyloidogenic peptides to plaques 

causing dementia. The EGF-R signalling pathway can be a target for cancer treatment. 
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Knowledge about the exact roles of ADAMs in general or of ADAM8 in particular in EGF-R 

signalling could help to find potential drug targets for treatment of cancer progression. As 

ADAM8 is involved in TNF-α signalling and CD23 cleavage, ADAM8 is implicated in 

allergic reaction such as in asthma and could serve as a drug target. 

Although catalytic activity of ADAM8 is a potential drug target for several diseases, its exact 

substrate repertoire and regulation mechanisms need to be analysed in order to design drugs – 

either activators or inhibitors of catalytic activity – specifically for ADAM8 and for specific 

pathways. Broad range metalloprotease inhibitors such as batimastat were used in clinical 

trials treating tumours and metastasis. Batimastat influenced activities of several 

metalloproteases in an unspecific manner with too many side effects. Thus, it is of importance 

to design more specific inhibitors. Structural analysis will be helpful to determine differences 

in the catalytic sites and to design specific inhibitors. From recent data, we know that the 

ADAM8 prodomain is an effective inhibitor of ADAM8, ADAM10 and ADAM17 catalytic 

activities (personal communication, M.Moss, Biozyme Inc., NC, USA). A derivative of the 

respective inhibitory amino acid sequence would be a promising inhibitor for in vivo studies.  
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6. Appendix 
 
 
6.1 DNA sequences 
 
6.1.1 Mouse ADAM8 
GTGCTCCAGATCCCATCATGCTTGGCCTCTGGCTGCTCAGCGTCTTATGGACACCAGCAGTAGCCCCTGGACCTC
CTTTGCCCCATGTGAAACAGTATGAAGTGGTTTGGCCTCGGCGCCTAGCTGCATCCCGCTCCCGCAGAGCCCTGC
CCTCCCACTGGGGCCAGTACCCAGAGAGTCTGAGCTATGCTCTTGGGACCAGCGGGCACGTTTTCACCCTGCACC
TTCGAAAGAACAGGGACCTGCTGGGCTCAAGCTACACAGAGACCTACTCAGCTGCCAATGGCTCTGAGGTGACAG
AGCAACTGCAGGAGCAGGACCATTGCCTCTACCAAGGCCATGTGGAAGGGTACGAGGGCTCAGCTGCCAGTATTA
GCACCTGTGCTGGCCTCAGGGGCTTTTTCCGAGTTGGGTCCACTGTCCACTTGATTGAGCCTCTGGATGCTGATG
AAGAGGGGCAACATGCGATGTATCAGGCAAAGCATCTGCAACAGAAGGCTGGGACCTGTGGGGTCAAAGATACCA
ACCTGAATGACCTAGGGCCTCGGGCATTAGAAATATACAGGGCTCAGCCACGGAACTGGCTGATACCCAGAGAAA
CCCGCTATGTGGAGTTGTATGTGGTTGCAGACAGCCAAGAGTTCCAGAAGTTGGGGAGCAGAGAGGCCGTGCGCC
AGCGAGTGCTGGAGGTTGTAAACCACGTGGACAAGCTTTATCAGGAACTCAGTTTTCGAGTTGTCCTGGTGGGCC
TGGAGATCTGGAACAAGGACAAATTCTACATCAGCCGCTATGCCAACGTGACACTGGAGAACTTCTTGTCCTGGA
GGGAACAGAACTTGCAAGGGCAGCACCCACATGACAACGTGCAACTTATCACGGGGGTTGATTTCATTGGGAGCA
CTGTTGGACTGGCTAAGGTGTCTGCCCTGTGTTCCCGTCACTCCGGAGCTGTGAATCAGGACCACTCCAAGAACT
CCATTGGTGTAGCCTCCACCATGGCCCATGAGCTGGGCCACAACCTGGGCATGAGCCATGATGAGGACATTCCAG 
GATGCTACTGTCCTGAACCACGGGAGGGTGGTGGCTGCATCATGACCGAAAGCATCGGCTCCAAGTTCCCCAGGA
TATTCAGCAGGTGTAGCAAGATTGACCTAGAGTCATTCGTGACAAAACCCCAGACAGGCTGCCTGACCAATGTTC
CAGATGTCAACCGGTTCGTGGGTGGCCCTGTGTGTGGAAACCTGTTTGTGGAGCATGGAGAGCAGTGTGACTGTG
GCACACCTCAGGACTGTCAAAACCCCTGCTGCAATGCCACCACTTGCCAGCTGGTCAAGGGGGCAGAGTGTGCCA
GTGGTACCTGTTGTCATGAATGCAAGGTGAAGCCAGCTGGAGAGGTGTGTCGTCTCAGTAAGGACAAATGTGACC
TGGAGGAGTTCTGTGATGGCCGGAAGCCAACATGTCCCGAAGATGCCTTCCAACAGAATGGCACTCCCTGCCCAG
GGGGCTACTGCTTTGATGGGAGCTGTCCCACCCTGGCACAGCAGTGCCGGGATCTGTGGGGGCCAGGTGCTCGGG
TAGCAGCCGACTCCTGCTATACCTTTAGCATCCCTCCGGGCTGCAATGGGAGGATGTACTCTGGCAGGATCAACC
GGTGTGGAGCGCTGTACTGTGAGGGAGGCCAGAAGCCCCTTGAACGCTCCTTCTGCACTTTCTCCTCCAACCATG
GAGTCTGCCATGCTCTTGGCACAGGCAGCAACATTGACACCTTTGAGCTGGTATTGCAGGGCACCAAGTGCGAGG
AGGGAAAGGTTTGCATGGATGGAAGCTGCCAGGACCTCCGTGTATACAGATCTGAAAACTGCTCTGCTAAATGCA
ACAACCATGGGGTATGCAACCACAAGAGGGAGTGCCACTGTCACAAGGGCTGGGCACCACCCAACTGTGTACAGC
GGCTGGCAGATGTATCAGATGAACAAGCAGCGTCTACGAGCCTCCCAGTCAGTGTGGTTGTGGTCTTGGTGATCC
TGGTGGCTGCGATGGTCATCGTGGCAGGCATCGTCATCTACCGAAAGGCTCCGAGACAAATCCAGAGGAGGAGTG 
TGGCACCCAAGCCTATCTCGGGGCTCTCCAACCCCCTATTCTACACAAGGGACAGCAGCCTGCCAGCTAAGAACA
GGCCTCCAGACCCTTCTGAGACAGTTTCTACCAACCAGCCCCCAAGACCCATAGTGAAACCAAAGAGGCCTCCCC
CTGCACCTCCAGGTGCTGTGTCCAGTTCACCACTCCCAGTTCCTGTTTATGCCCCAAAGATACCAAATCAGTTTA
GACCTGATCCTCCCACCAAGCCCCTCCCAGAGCTGAAACCCAAGCAGGTCAAGCCAACCTTTGCACCCCCGACAC
CACCAGTCAAGCCCGGGACTGGAGGGACGGTGCCTGGAGCAACTCAGGGAGCTGGTGAGCCAAAGGTTGCTCTGA
AGGTCCCCATCCAGAAGAGGTGACCAGCTAGGGCACCCCAGGGCCATCGTTTGTGGACGTTTGGAGATACCACTG
CTCCTATAAATGTGTTCCTTCAGCAACACCACAACCACCACCCAGGCTGGACCTGCACACGCTGTTCCTACCTCA
GGAATAATCTTTCTGTGGCTCTTGCTGTCCAGATGCCCTCATGAACCAGTGGCCTCTCACTGGCCTTGGCCAGCT
TAGACCATACATCAGCGTATGCTAGTTGCTAGGCAGGGGCGGTGTACCCTGCAGTGGGCGTGATCAAGTCTGTCT
GTCTCTGGGTGGACAGAATGCCAGGAGTCCCCTCCCAGCAACTTCTGCACTGGCCCTCACACAGTGACCTCTCTC
CAAGGCACAGTTCCTGTATCTACATCCCACTCGTGTATGAGACTTAGGAAAGGAAAAGACGTCGTTCTTGGGGTG
TTGGGACAAGAAGTTGCCGTCATCTCCGGATTGAAACAGATTAGTTGTTGAAATTATGACTAAACACTATTCACT
AATAAAGATTCTATTTTATCAATAGATTATAGAT 
 
 

DNA region cloned into pSecTag 2B vector encoding the pro and metalloprotease 
domain 
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6.2 Protein sequences 
 
6.2.1 Mouse ADAM8  
MLGLWLLSVLWTPAVAPGPPLPHVKQYEVVWPRRLAASRSRRALPSHWGQYPESLSYALGTSGHVFTLHLRKNRD
LLGSSYTETYSAANGSEVTEQLQEQDHCLYQGHVEGYEGSAASISTCAGLRGFFRVGSTVHLIEPLDADEEGQHA
MYQAKHLQQKAGTCGVKDTNLNDLGPRALEIYRAQPRNWLIPRETRYVELYVVADSQEFQKLGSREAVRQRVLEV
VNHVDKLYQELSFRVVLVGLEIWNKDKFYISRYANVTLENFLSWREQNLQGQHPHDNVQLITGVDFIGSTVGLAK 
VSALCSRHSGAVNQDHSKNSIGVASTMAHELGHNLGMSHDEDIPGCYCPEPREGGGCIMTESIGSKFPRIFSRCS
KIDLESFVTKPQTGCLTNVPDVNRFVGGPVCGNLFVEHGEQCDCGTPQDCQNPCCNATTCQLVKGAECASGTCCH
ECKVKPAGEVCRLSKDKCDLEEFCDGRKPTCPEDAFQQNGTPCPGGYCFDGSCPTLAQQCRDLWGPGARVAADSC
YTFSIPPGCNGRMYSGRINRCGALYCEGGQKPLERSFCTFSSNHGVCHALGTGSNIDTFELVLQGTKCEEGKVCM 
DGSCQDLRVYRSENCSAKCNNHGVCNHKRECHCHKGWAPPNCVQRLADVSDEQAASTSLPVSVVVVLVILVAAMV
IVAGIVIYRKAPRQIQRRSVAPKPISGLSNPLFYTRDSSLPAKNRPPDPSETVSTNQPPRPIVKPKRPPPAPPGA
VSSSPLPVPVYAPKIPNQFRPDPPTKPLPELKPKQVKPTFAPPTPPVKPGTGGTVPGATQGAGEPKVALKVPIQK
R 

transmembrane domain 
 region covered by synthetic peptides 
 autocatalytic cleavage sites (Schlomann et al., 2002) 
 
 
6.2.2 Mouse APP  
MLPSLALLLLAAWTVRALEVPTDGNAGLLAEPQIAMFCGKLNMHMNVQNGKWESDPSGTKTCIGTKEGILQYCQE
VYPELQITNVVEANQPVTIQNWCKRGRKQCKTHTHIVIPYRCLVGEFVSDALLVPDKCKFLHQERMDVCETHLHW
HTVAKETCSEKSTNLHDYGMLLPCGIDKFRGVEFVCCPLAEESDSVDSADAEEDDSDVWWGGADTDYADGGEDKV
VEVAEEEEVADVEEEEADDDEDVEDGDEVEEEAEEPYEEATERTTSTATTTTTTTESVEEVVREVCSEQAETGPC 
RAMISRWYFDVTEGKCVPFFYGGCGGNRNNFDTEEYCMAVCGSVSTQSLLKTTSEPLPQDPDKLPTTAASTPDAV
DKYLETPGDENEHAHFQKAKERLEAKHRERMSQVMREWEEAERQAKNLPKADKKAVIQHFQEKVESLEQEAANER
QQLVETHMARVEAMLNDRRRLALENYITALQAVPPRPHHVFNMLKKYVRAEQKDRQHTLKHFEHVRMVDPKKAAQ
IRSQVMTHLRVIYERMNQSLSLLYNVPAVAEEIQDEVDELLQKEQNYSDDVLANMISEPRISYGNDALMPSLTET 
KTTVELLPVNGEFSLDDLQPWHPFGVDSVPANTENEVEPVDARPAADRGLTTRPGSGLTNIKTEEISEVKMDAEF
GHDSGFEVRHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYTSIHHGVVEVDAAVTPEERHLS
KMQQNGYENPTYKFFEQMQN 
 

transmembrane domain 
 region covered by synthetic peptides 
 α-secretase cleavage sites (e.g. Amour et al., 2002; Roghani et al., 1999) 
 alternative α-secretase cleavage site for ADAM10 (Amour et al., 2002) 
  
 
6.2.3 Mouse CHL1  
MMELPLCGRGLILSLIFLLLKLSAAEIPLSVQQVPTIVKQSYVQVAFPFDEYFQIECEAKGNPEPIFSWTKDDKP
FDLSDPRIIAANNSGTFKIPNEGHISHFQGKYRCFASNRLGTAVSEEIEFIVPGVPKFPKEKIEPIDVEEGDSIV
LPCNPPKGLPPLHIYWMNIELEHIEQDERVYMSQRGDLYFANVEENDSRNDYCCFAAFPKLRTIVQKMPMKLTVN
SSNSIKQRKPKLLLPPAQMGSLSAKTVLKGDTLLLECFAEGLPTPHIQWSKPGSELPEGRATIEVHEKTLKIENI 
SYQDRGNYRCTANNLLGKASHDFHVTVEEPPRWKKKPQSAVYSTGSSGILLCEAEGEPQPTIKWRLNGLPIEKHP
FPGDFMFPREISFTNLLPNHTGVYQCEASNIHGTILANANIDVIDVIPLIKTKNEENYATVVGYSAFLHCEYFAS
PKATVVWEVADETHPLEGDRYHTHENGTLEIYRTTEEDAGSYSCWVDNAMGKAVITANLDIRNATKLRVSPKNPR
IPKSHVLELYCESQCDSHLKHSLKLSWSKDGEAFEMNGTEDGRIVIDGAYLTISNITAEDQGVYSCSAQTSLDST 
SKKTQVTVLGVGDPPETFTCQKDKNRSVRLLREAGDDHNSKSASTIVEFEGNREEPGKWEELTRVQGEETDVVLS
LAPYVRYQFRVTAVNEVGRSHASLPSDHHETPPAAPDKNPQNIRVQASQPKEMIIKWEPLKSMEQNGPGLEYKVS
WKPQGAPEEWEEEIVTNHTLRVMTPTVYAPYDVKVQAINQLGSSPDPQPVTLYSGEDYPSTAPVIQRVDVMNSTL
VKVTWSSIPKETVHGLLRGYQINWWKTKSLLDGRTHPKEVNILRFSGQRNSGMVPSLDPFSEFHLTVLAYNSKGA 
GPESEPYIFQTPEGVPEQPSFLKVIKVDKDTATLSWGLPKKLNGNLTGYLLQYQIINDTYELGELNEINVTTPSK
SSWHLSNLNSTTKYKFYLRACTSRGCGKPISEEGATLGEGSKGIRKITEGVNVTQKIHPVEVLVPGAEHIVHLMT
KNWGDNDSIFQDVIETRGREYAGLYDDISTQGWFIGLMCAIALLTLILLTICFVKRNRGGKYSVKEKEDLHPDPE
VQSAKDETFGEYSDSDEKPLKGSLRSLNRNMQPTESADSLVEYGEGDQSIFNEDGSFIGAYTGAKEKGSVESNGS 
STATFPLRA 
 
 cleavage site resulting in 125 kDa fragment (Naus et al., 2004) 
 cleavage site resulting in 165 kDa fragment (Naus et al., 2004) 
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6.2.4 Mouse TNF-R1 
MGLPTVPGLLLSLVLLALLMGIHPSGVTGLVPSLGDREKRDSLCPQGKYVHSKNNSICCTKCHKGTYLVSDCPSP
GRDTVCRECEKGTFTASQNYLRQCLSCKTCRKEMSQVEISPCQADKDTVCGCKENQFQRYLSETHFQCVDCSPCF
NGTVTIPCKETQNTVCNCHAGFFLRESECVPCSHCKKNEECMKLCLPPPLANVTNPQDSGTAVLLPLVILLGLCL
LSFIFISLMCRYPRWRPEVYSIICRDPVPVKEEKAGKPLTPAPSPAFSPTSGFNPTLGFSTPGFSSPVSSTPISP 
IFGPSNWHFMPPVSEVVPTQGADPLLYESLCSVPAPTSVQKWEDSAHPQRPDNADLAILYAVVDGVPPARWKEFM
RFMGLSEHEIERLEMQNGRCLREAQYSMLEAWRRRTPRHEDTLEVVGLVLSKMNLAGCLENILEALRNPAPSSTT
RLPR 
 

transmembrane domain 
 region covered by synthetic peptides 
 
 
 
 
6.3 DNA nucleotide letter code  
 
A  deoxyadenylate 
C  deoxycytidylate 
G  deoxyguanylate 
T  thymidylate 
 
 
 
6.4 Amino acid letter code 
 
A  alanine 
C  cysteine 
D  asparatic acid 
E  glutamic acid 
F  phenylalanine 
G  glycine 
H  histidine 
I  isoleucine 
K  lysine 
L  leucine 
M  methionine  
N  asparagine 
P  proline  
Q  glutamine  
R  arginine  
S  serine 
T  threonine  
V  valine 
W  trytophan  
X  any amino acid  
Y  tyrosine   
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6.5 Abbreviations  

 

AI pilocytic astrocytoma, astrocytoma WHO grade I 

AIII  anaplastic astrocytoma, astrocytoma WHO grade III  

AA amino acid 

A8-EC soluble, recombinant form of ADAM8 containing the whole extracellular 
portion of ADAM8 

A8-ProMP soluble, recombinant form of ADAM8 containing the pro and metalloprotease 
domain 

Aβ  amyloid β peptide; depending on the protease cleaving the amyloid beta A4 
protein precursor (APP), either an amyloidogenic Aβ peptide or a non-
amyloidogenic p3 peptide is generated; Aβ forms accumulate in the brain to 
non-cleavable plaques causing Alzheimer’s disease 

Abl  proto-oncogene tyrosine-protein kinase ABL1; synonyms: p150, c-ABL 

ADAM a disintegrin and metalloprotease 

ADAM-TS a disintegrin and metalloproteinase with thrombospondin motifs 

ALS  amyotrophic lateral sclerosis 

APP  amyloid beta A4 protein precursor; synonyms: APP, ABPP, Alzheimer's 
disease amyloid protein homolog, amyloidogenic glycoprotein (AG) 

APS ammonium persulfate 

AR  amphiregulin precursor; synonyms: AR, schwannoma-derived growth factor 
(SDGF) 

ARTS-1 amino peptidase regulator of TNFR1 shedding 

BB-5216 marimastat 

BB-94  batimastat 

bp  base pairs 

BSA  bovine serum albumin 

BTC  betacellulin precursor 

CD  clusters of differentiation; groups of monoclonal antibodies that identify the 
same cell surface molecule; the cell surface molecule is designated CD 
followed by a number; 

CD23  low affinity immunoglobulin epsilon Fc receptor; synonyms: lymphocyte IGE 
receptor, Fc-epsilon-RII, CD23 antigen 

CD36 platelet glycoprotein IV, synonyms : GPIV, GPIIIB, CD36 antigen, PAS IV, 
PAS-4 protein 
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CD163 macrophage hemoglobin scavenger receptor precursor  

CD27-L tumour necrosis factor ligand superfamily member 7; synonyms: CD27 ligand, 
CD27-L, CD70 antigen 

CD30-L tumour necrosis factor ligand superfamily member 8; synonyms: CD30 ligand, 
CD30-L 

CD40-L tumour necrosis factor ligand superfamily member 5; synonyms: CD40 ligand 
CD40-L, TNF-related activation protein (TRAP), T cell antigen GP39 

CHAPS 3-[(3-cholamidopropyl)- dimethylammonio]-1-propanesulfonate 

CHL1  close homologue of L1 

CNS  central nervous system 

CSF-1-R macrophage colony stimulating factor I receptor precursor; synonyms: CSF-1-
R; Fms proto-oncogene, c-fms, CD115 antigen 

CX3CL1 fractalkine precursor; synonyms: CX3CL1, neurotactin, CX3C membrane-
anchored chemokine, small inducible cytokine D1 

CXCL16 small inducible cytokine B16 precursor; synonyms: transmembrane 
chemokine, CXCL16, scavenger receptor for phosphatidylserine and oxidised 
low density lipoprotein (SR-PSOX) 

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene 

DEAE  diethylaminoethyl- 

DIPEA ethyldiisopropylamine 

DMEM Dulbecco’s modified eagle medium 

DMF  N,N-dimethylformamide 

DMSO  dimethylsulfoxide 

DNA  desoxyribonucleic acid 

Dnp  di nitro phenol 

Dpa   L-2-amino-3-(2,4-dinitrophenyl) aminopropionic acid 

ECL  enhanced chemiluminescence 

E.coli  Escherichia coli 

EDTA  ethylene diamine-N,N,N’,N’-tetraacedic acid 

EGF  pro-epidermal growth factor precursor 

EGF-R  epidermal growth factor receptor 

EGTA  ethylene glycol bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid 

ELISA enzyme-linked immunosorbent assay 
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Ephrin A2 ephrin-A2 precursor; synonyms: EPH-related receptor tyrosine kinase ligand 6, 
LERK-6, ELF-1, CEK7-ligand, CEK7-L 

EQ-ADAM8 catalytically inactive full length form of ADAM8 with an E/Q exchange in the 
catalytic centre 

erbB-2  receptor tyrosine-protein kinase erbB-2; synonyms: p185erbB2, c-erbB-2 

erbB-3 receptor tyrosine-protein kinase erbB-3; synonym: c-erbB3 

F farad; unit of electric capacitance  

Fc-γ RIII low affinity immunoglobulin gamma Fc region receptor III precursor; 
synonyms: IgG Fc receptor III, Fc-gamma RIII, FcRIII 

FCS fetal calf serum 

Fmoc 9-fluorenylmethyloxycarbonyl 

Fyn proto-oncogene tyrosine-protein kinase FYN; synonym: P59-FYN 

GBM  glioblastoma  

GHS-R growth hormone secretagogue receptor type 1; synonyms: GHS-R 
GH-releasing peptide receptor (GHRP), ghrelin receptor 

GPI glycosylphosphatidylinositol 

GPV platelet glycoprotein V precursor; synonyms: GPV, CD42D 

Grb2 growth factor receptor-bound protein 2; synonyms: GRB2 adapter protein, 
SH2/SH3 adapter GRB2 

GPIb-α platelet glycoprotein Ib alpha chain precursor; synonyms: glycoprotein Ibalpha, 
GP-Ib alpha, GPIbA, GPIb-alpha, CD42B-alpha, CD42B 

HB-EGF  heparin-binding EGF-like growth factor precursor 

HBSS hanks balanced salt solution  

HEPES N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) 

HER-4 receptor tyrosine-protein kinase erbB-4 precursor; synonyms: p180erbB4 
tyrosine kinase-type cell surface receptor HER4 

HPLC high pressure liquid chromatography 

IFN-γ interferon gamma precursor 

Ig immunoglobulin  

IGFBP insulin-like growth factor binding protein precursor; synonyms: IGFBP, IGF-
binding protein (IBP) 

IL-4 interleukin-4 precursor; synonyms: IL-4, B-cell stimulatory factor 1 
BSF-1, lymphocyte stimulatory factor 1, IGG1 induction factor, B-cell IGG 
differentiation factor, B-cell growth factor 1 
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IL-13  interleukin-13 precursor; synonyms: IL-13, T-cell activation protein, P600  

IL-1R-2 interleukin-1 receptor, type II precursor; synonyms: IL-1R-2, IL-1R-beta  

IL-6R-1 interleukin-6 receptor alpha chain precursor; synonyms: IL-6R-alpha 
IL-6R 1 

IL-15R-α interleukin-15 receptor alpha chain precursor; synonyms: IL-15Ralpha,  
IL-15RA  

IPTG isopropyl-ß-thiogalactopyranosid  

IRF-1 interferon regulatory factor 1; synonym: IRF-1 

Da dalton; unit of molecular mass approximately equal to the mass of a hydrogen 
atom (1.66 x 10-24 g) 

KL kit ligand precursor; synonyms: c-kit ligand, stem cell factor (SCF), mast cell 
growth factor (MGF), hematopoietic growth factor KL, steel factor 

L1 neural cell adhesion molecule L1 precursor; synonym: N-CAM L1 

LB Luria Bertani 

Lck proto-oncogene tyrosine-protein kinase LCK; synonyms: P56-LCK, LSK, T 
cell-specific protein-tyrosine kinase 

LPS lipopolysaccharide 

L-Selectin L-selectin precursor; synonyms: lymph node homing receptor, leukocyte 
adhesion molecule-1 (LAM-1), lymphocyte antigen 22 (Ly-22), lymphocyte 
surface MEL-14 antigen, leukocyte-endothelial cell adhesion molecule 1 
(LECAM1), CD62L antigen 

MALDI TOF matrix-assisted laser desorption ionisation time of flight 

MBP myelin basic protein; synonyms: myelin A1 protein 

Mcp   DL-2-amino-3-(7-methoxycoumaryl)-propionic acid 

MMP matrix metalloprotease 

MS multiple sclerosis 

MT-MMP membrane-type matrix metalloprotease 

Mucin 1 mucin 1 precursor; synonyms: polymorphic epithelial mucin (PEMT), episialin 

N1 non-toxic ectodomain of PrP generated by proteolytic cleavage 

NB normal brain  

N-Cadherin neural-cadherin precursor; synonyms: N-cadherin, cadherin-2 

NCAM neuronal cell adhesion molecule 1 

NEAS non-essential amino acids 
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Notch1 neurogenic locus notch homolog protein 1 precursor; synonyms: Notch 1,  
Notch, A, mT14, p300 

NRG-1  pro-neuregulin-1 precursor; synonym: pro-NRG1 

NTA nitrilotriacetic acid 

Ω Ohm; unit of electric resistance 

OAII oligoastrocytoma II, WHO grade II 

OPT 1,10-ortho-phenanthroline 

p75NTR tumour necrosis factor receptor superfamily member 16 precursor; synonyms: 
low-affinity nerve growth factor receptor, NGF receptor, low affinity 
neurotrophin receptor p75NTR 

PAF platelet activating factor 

PAR-1 proteinase activated receptor 1 precursor; synonyms: PAR-1, thrombin receptor 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PFARγ peroxisome proliferator-activated receptor gamma binding protein 

PI phosphatidylinositol 

PKC δ Protein kinase C δ 

PKT Protein tyrosine kinase 

P-LAP Leucyl-cystinyl aminopeptidase; synonyms: cystinyl aminopeptidase 
oxytocinase, OTase, Insulin-regulated membrane amino peptidase, insulin-
responsive amino peptidase (IRAP), placental leucine amino peptidase (P-
LAP) 

PLL poly-L-lysine 

PMA phorbol 12-myristate13-acetate; phorbol ester 

PMSF phenylmethylsulfofluoride 

PrP major prion protein precursor; synonyms: PrP, PrP27-30, PrP33-35C 

PSGL-1 P-selectin glycoprotein ligand 1 precursor; synonyms: PSGL-1, selectin P 
ligand 

PVDF polyvinylidene fluoride 

RIPA radio-immunoprecipitation assay 

RNA ribonucleic acid 

sAAPα ectodomain of APP with neuroprotective and memory-enhancing function 
generated by α-secretase cleavage 

SDS sodiumdodecylsulfate 
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SDS-PAGE sodiumdodecylsulfate polyacrylamid gel electrophoresis 

SH2 Src homology 2 

SH3 Src homology 3 

Src proto-oncogene tyrosine-protein kinase Src; synonyms: p60-Src, c-Src 

STAT signal transducer and activator of transcription 

SVMP snake venome metalloprotease 

TBS tris buffered saline 

TBTU O-benzotriazol-1-yl-N,N,N’,N’-tetramethyluroniumtetra-fluoroborate 

TEMED N,N,N’,N’-tetramethylethylendiamin 

TFA trifluoroacetic acid 

TGF-α transforming growth factor alpha precursor; synonyms: TGF-alpha, EGF-like 
TGF (ETGF), TGF type 1 

TIMP tissue inhibitor of metalloproteases 

TIPS triisopropylsilane 

TNF-α tumour necrosis factor precursor; synonyms: TNF-alpha, tumour necrosis 
factor ligand superfamily member 2, TNF-a, Cachectin  

TNF-R1 tumour necrosis factor receptor superfamily member 1A precursor; synonyms: 
tumour necrosis factor receptor 2 (TNF-R2), p60, TNF-R1, TNF-RI, p55 

TNF-R2 tumour necrosis factor receptor superfamily member 1B precursor; synonyms: 
tumour necrosis factor receptor 2 (TNF-R2), tumour necrosis factor receptor 
type II, p75, p80 TNF-alpha receptor 

TPA 12-O-tetradecanoylphorbol-13-acetate; phorbol ester 

TRANCE tumour necrosis factor ligand superfamily member 11; synonyms: receptor 
activator of nuclear factor kappa B ligand (RANKL), TNF-related activation-
induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), osteoclast 
differentiation factor (ODF), osteoclastogenesis-inhibitory factor (OCIF) 

TRAPS TNF-receptor-associated periodic syndrome  

Tween20 polyoxyethylenesorbitan monolaurate 

U unit; unit for activity of restriction enzymes defined as the amount of enzyme 
required to digest 1 µg of bacterial virus lambda DNA in 1 hour in a 50 µl 
reaction 

WR wobbler 

X-Gal 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 
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