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Abstract The transformation of today’s manufactur-

ing lines into truly adaptive systems facilitating indi-

vidualized mass production requires new approaches

for the efficient integration, configuration and control

of robotics and automation components. Recently, var-

ious types of Plug-and-Produce architectures were pro-

posed that support the discovery, integration and con-

figuration of field devices, automation equipment or in-

dustrial robots during commissioning or even operation

of manufacturing systems. However, in many of these

approaches, the configuration possibilities are limited,

which is a particular problem if robots operate in dy-

namic environments with constrained workspaces and

exchangeable automation components as typically re-

quired for flexible manufacturing processes.

In this article, we introduce an extended Plug-and-

Produce concept based on dynamic motion planning,

co-simulation and a collaborative human-robot inter-

action scheme that facilitates the quick adaptation of

robotics behaviors in the context of a modular produc-

tion system. To confirm our hypothesis on the efficiency

and usability of this concept, we carried out a feasibility

study where participants performed a flexible workcell

setup. The results indicate that the assistance and fea-

tures for planning effectively support the users in tasks

of different complexity and that a quick adaption is in-

deed possible. Based on our observations, we identify

further research challenges in the context of Plug, Plan

and Produce applied to smart manufacturing.
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1 Introduction

As the potential driver for smart factories and Inter-

net of Things (IoT) in the shopfloor [1], collaborative

robots and interconnected production devices are key

components to enable flexibility in the production. In

small, medium and large scale companies the products

became more and more customized and specialized to

raise customer satisfaction and to add product variety.

Collaborative robots and interconnected devices sup-

port workers and close automation gaps by being in-

tegrated swiftly and autonomously into the production

system to perform a new task. In recent years there has

been a significant amount of research on smart factories

[2], [3] and the corresponding industrial architectures

[4] with vertical integration [5] from shopfloor to the

business level.

The vision is to transform a conventional production

with isolated automatized applications into a smart and

intelligent factory with a higher grade of automation

and data exchange. A key factor for a smart factory is

the ability to adapt as quickly as possible to new indus-

trial tasks and requirements. In literature this ability is

known as reconfigurability [6]. For a versatile recon-

figuration of an existing production sequence, modular

principles are introduced [7]. The peripheral equipment

such as feeders, boxes and conveyor belts have to be-

come parts of the modular concept. Embedded systems

in the modular components are used for local compu-

tation and task execution, and the ability to connect

with other devices of the factory.

In an automatized factory, physical handling sys-

tems are required to reach a high degree of flexibil-
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Fig. 1: A Smart Assembly Line consisting of Modular Production Systems equipped with collaborative robots and

modular components for the flexible production.

ity to manipulate objects in the factory environment

with purposes like pick-and-place operations or ma-

chine tending tasks. Collaborative robots (co-bots) are

intended to relieve the factory worker from one-sided

actions or hazardous tasks, and to work side-by-side

with the human [8], [9]. An example is shown in Fig. 1.

The challenge is to combine collaborative robots

with other components of the smart factory into one co-

herent system. The efforts to set up a smart and mod-

ular workcell and to program the robot for a certain

application are enormous and expensive. At the same
time, this process involves repetitive and tedious phases

that often require a high grade of specialized knowledge.

Thus, it is necessary to come up with new integration

methods with standardized descriptions and reusable

elements, and with recurring task schema to drastically

reduce efforts and uncertainties during a robot’s setup

and its peripheral equipment for supporting the worker.

In this contribution, we investigate the question how

an integrated system can assist the worker technically

with situation aware, suited information and provide

advice during the setup phase of an assembly workcell.

Further, we investigate if it is possible to use human

sensing and interaction for effective and precise robot

programming and task parameterizing. To this end, we

have developed an assistance system for setting up a

workcell, which assists the worker with purposeful in-

structions. The combination of different modular pe-

ripheral devices is realized with standardized connec-

tors via a Plug-and-Produce concept that allows an easy

integration of components into the workcell.

The Plug-and-Produce method as part of a pro-

duction presented in [10] is extended by an extensive

Plan phase for the integration of robot relevant com-

ponents. During the Plan phase the operator receives

instructions on how to interact with a collaborative and

lightweight robot, how to explore the environment and

how to integrate peripheral equipment into the assem-

bly and production flow. We evaluated the collaborative

system in a user study concerning usability and user-

friendliness to measure the system’s ability to convey

interactive instructions to the user. During the study,

we collected data about the cognitive load of the partic-

ipants to find out if we can improve the system towards

the perceived workload of mental or physical stress.

In Section 2 we present our research goals and the

requirements for a modular production workcell that is

equipped with a collaborative robot. Further, we sur-

vey relevant literature and related work regarding the

collaboration between humans and robots in industrial

applications. Section 3 describes the system capabili-

ties that we developed for an industry-oriented produc-

tion process and introduces a lifecycle and an extended

Plug-and-Produce concept to form a Plug, Plan and

Produce scheme. We evaluate the presented system in

Section 4 in a user study, and we discuss the results.

Section 5 concludes our contribution and sketches an

outlook for future research.
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Requirement Definition

R1 Easy setup of the system
R2 Quick adoption to new tasks
R3 Intuitive usage during runtime
R4 Modularity of components for

flexibility in workspace
R5 Simulation as frontend for interaction

and for internal simulation

Table 1: Requirements for the realization of a smart

production system proposed in this contribution.

2 Research Questions and Goals

For the realization of a smart, easy and fast work-

cell setup combined with a collaborative robot sev-

eral approaches have been investigated in recent years.

The assumption is that Plug-and-Play solutions, which

are denoted in the industrial sector as Plug-and-

Produce (PnP) or Plug-and-Work (PnW), are the es-

sential enablers for a smart production [11], [12], [13].

PnP and PnW is the way to integrate and intercon-

nect automated and peripheral components easily and

quickly with a smart and modular workcell. Flexi-

ble robot workcells that use PnP for and during the

workcell setup are focused in Hennecke et al. [14] and

Pfrommer et al. [15] have shown how to utilize PnP

for service-orientated architectures. Requirements for a

human-centered design in modular production systems

were published in [16].

Using the Plug-and-Produce principles for the me-

chanical setup of the robotic workcell takes the operator

in charge to configure the physical layout. The robot

motion programming is based on the workcell layout,

the position of the peripheral components and the task
to be solved. The operator is responsible for the final

validation of the physical behavior, in particular for the

robot motions, and the approval of the setup. Thus, it

is significant to analyze the interaction between the sys-

tem and the operator. We are investigating the human-

machine interface with respect to the following research

questions:

1. Is the human capable of interpreting interactive

working instructions to perform a complex robot-

based machinery setup along the Plug, Plan and

Produce Phases? (RQ1)

2. Is it possible to use human’s sensing and interaction

for effective robot programming? (RQ2)

The research community has worked and published

exciting content answering these research questions and

providing intuitive programming methods addressing

co-bots in smart workcells. Steinmetz et al. [17] in-

troduced RAZER, a GUI based framework for task-

level programming of robots. The framework addresses

robot experts as well as shopfloor operators and pro-

vides different access levels for the users. Robot experts

are responsible for defining and creating robot skills

(e.g. for screwing, drilling, assembling), which are used

and filled with parameters by shopfloor workers. The

RAZER framework was evaluated in a user study that

can be compared in some regards, such as the IsoNorm

results, with the study presented in Sec. 4.

CoSTAR is a task editor for high-level robot pro-

gramming that is based on Behavior Trees [18], [19].

Behavior Trees are a formalism to design and struc-

ture robot tasks in a hierarchical order. The goal of

CoSTAR is to allow users a natural way to create an

elaborate task plan. He/she is supported visually with a

user interface and by integrated features like a waypoint

manager that guides the user with a mixture of demon-

strations and explicit instructions to compose quickly

complex task plans.

ArtiMinds is a patented Programming Suite that

combines online and offline programming on various

hardware platforms [20], [21]. Programming is per-

formed visually using action blocks, which are com-

bined into task sequences via drag and drop opera-

tions. A wizard for online robot teaching and setting pa-

rameters supports the user during the integration step.

In contrast to conventional robot programming in the

shopfloor with the teach pendant, ArtiMinds provides

3D-Visualization of the environment, collision checking

and simulation of the programmed motions.

Further approaches on smart production include vi-

sion systems for observing the worker and interpreting

gestures to control the robot with play or stop com-

mands [22]. Also Wein et al. have presented a camera-

based system for object recognition in the workspace.

The peripheral components in the workspace are tagged

with two-dimensional data codes used as markers to

achieve a free positioning and recognition of the mod-

ules. The geometrical data is used to perform an offline

robot path planning in simulation and to support exe-

cution in the real world [23].

In smart factories, intuitive and easy robot program-

ming is required for a fast and efficient workcell setup

that doesn’t overwhelm or hinder the user from work.

Rossano et al. [24] have categorized industrial and col-

laborative robot programming into main groups like:

(1) Flow-Based Programming for configuration of data

flow diagrams with functional blocks, and (2) CAD-

Based Programming, where the user imports CAD

data and generates manually, semi-automatically or au-

tomatically a robot program. Further, (3) Wizards-

Based Programming was introduced that guides the

user through a wizard to create a robot program, and

(4) Lead-Through Programming lets the user perform
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manually movements of the robot, which will be stored

and replayed later.

Requirements for a highly automated and integrated

system have been identified by Furman et al. in [25]:

The setup of the system (R1), the adoption to new tasks

(R2) and usage during runtime (R3) must be as simple

as possible (R1-R3) for the machine setters to com-

pete in terms of flexibility and re-usability with non-

automated systems. Regarding the role of the human,

Furman et al. have stated clearly that a machine setter

cares exclusively about the visible and physical system

and doesn’t care about the wiring of physical devices

or deploying of software to the control logic.

Further, modularity is a crucial concept for smart

factories (R4), where the unpredictable real world is

organized in distinct and highly independent modules

that take over particular tasks. It is required that the

modules can be combined easily to create a complete

working system, where the links between the modules

are established by the modules autonomously.

Sauer et al. [26] have identified another requirement

of a smart factory relating to the interface between the

human, machine and robot. According to this contri-

bution, a simulation is utilized as a frontend for inter-

action with the operator and a built-in core is used for

real-time simulation that enables fast reaction in un-

foreseen situations (R5). These essential requirements

are summarized in Tab. 1.

The identified, single requirements (R1-R5) have

been distilled from the related work to compose a col-

laborative system, which assists the user in the config-

uration of an autonomous robotic production cell. The

Plug-and-Produce concept aims to realize an easy setup

of the robotic workcell (R1). A localization method for

easy adoption to new tasks and a setup lifecycle for us-

age during runtime are introduced to meet the require-

ments (R2, R3). The presented Plug-and-Produce sys-

tem is of a modular and standardized shape (R4) and

the user interface embeds a simulation for computing

and validating robot paths, which are simulated before

the execution on the real robot (R5).

3 Plug, Plan and Produce

The intention is to build a system with high diversity

in solving industrial tasks and thus the Plug, Plan and

Produce concept with the self-description of compo-

nents and the interaction lifecycle is introduced in this

section. A smart workcell combined with a collabora-

tive robot is supposed to be used in a wide range of

fabrication processes such as pick-and-place of diverse

parts, machine tending, and assemblies. Typical robotic

tasks, which can be found as part of these processes, are

peg-in-hole operations, screwing, gluing, and challeng-

ing assemblies with snapping pieces.

The human’s interaction with the modular and

smart workcell-system has to be organized with self-

explaining elements to ease the use of the robotic sys-

tem for the operator (R1). The user interface on the

control panel assists the operator with known and re-

curring elements to perform his or her task quicker and

with more confidence (R2). Thus, we are proposing a

scheme (in Fig. 2) consisting of three phases such as the

Plug phase for connecting components to the workcell,

the Plan phase to integrate and localize components

and to calculate robot motions and collision-free paths,

and finally the phase for Produce, once the planned

robot motions and workcell behavior is executed auto-

matically without human presence. To realize such a

concept following the principles of a smart production,

where Plug-and-Produce mechanisms are used to inter-

connect components in hard- and software, the workcell

and its tools are designed in a modular way (R4).

At least two human roles are involved in the con-

figuration process. A production or robot engineer de-

fines in advance process plans for the entire production

down to the component’s services and functionalities.

The workcell operator gets access to these functional-

ities and performs the integration process. Modularity

in the process plans allows a high degree of reuse and

outer parametrization like it is commonly used in skill

architectures [27], [28], [29].

3.1 Self-Description used for the Plug, Plan, and

Produce Process

As shown in Fig. 2 the first step of the integration pro-
cess starts with the manual plug-in of the component

connector in a socket of the workcell. Each component

is equipped with an Identification Module (ID-Module)

containing a Management Shell to organize communi-

cation endpoints and to transmit the self-description of

the hardware component to the workcell. For the self-

description, the Automation Markup Language (AML)

is used to represent the model of the component’s struc-

ture, its functional role, and geometrical information.

The structure of the AML model is presented in

Fig. 3 and consists primarily of the UnitClass, Role-

Class and InterfaceClass. The UnitClass represents a

concrete class of a component that is instantiated for a

distinct production or assembly process when the con-

nector is plugged-in. A storage for items or an inspec-

tion camera might be a UnitClass, for example.

The RoleClass expresses the role of the component

to solve a task, which could be ProofQuality in case

of the camera or ProvidedItem in case of the storage.

The InterfaceClass includes the DeviceConnector, the
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Fig. 2: Plug, Plan and Produce — Plug phase for connecting a component to the workcell, the Plan phase for

localization and dynamic motion planning, and the Produce phase for autonomous manufacturing.

ProcessConnector, an interface for CAD-models and

a FrameProvider for organizing working points. The

DeviceConnector resolves communication endpoints for

automatic discovery purposes while the ProcessConnec-

tor provides services and functions that can be uti-

lized and triggered by a process engine. CAD-models

used in the planning phase (Sec. 3.2) are referenced

by the according interface and provide the visual and

collision models of components and the environment.

These CAD data are used by a path planner to gen-

erate collision-free robot motions, which are simulated

and shown to the operator.

The FrameProvider in the AML model facilitates

the dynamic placement of components in the workspace

during the initial setup and reconfiguration of the work-

cell. A frame describes a point in position and orien-
tation with respect to a reference coordinate system.

The robot aligns the axis of its gripper frame (Fig. 3,

FGripper) with a goal frame for approaching and picking

an object (FApproach, FPick). Component-dependent

task frames like the Base-, Approach-, and Pickframe

FGripper

FWorld

Self-Description
├─UnitClass
│ ├─InspectionCamera      
│ └─Storage         
├─RoleClass
│ ├─ProofQuality
│ └─ProvideItem         
└─InterfaceClass
     ├─DeviceConncetor
     │ ├─CommunicationEndpoints
     │ └─e.g. mDNS
     ├─ProcessConnector     
     │ ├─FunctionDescription   
     │ ├─ServiceProvider
     │ └─e.g. BPMN-Model 
     ├─CAD-Model
     │ ├─Visual    
     │ └─Collision      
     └─FrameProvider
                    ├─WorkingPoint(1)
                    │ ├─BaseFrame
                    │ ├─ApproachFrame
                    │ └─PickFrame
                    │      └─XYZ RPY
                    ├─WorkingPoint(2)
                    └─WorkingPoint(n)

Pick
ApproachT

FApproach

FStorage

FPick

Storage
PickT

World
StorageT

Fig. 3: Model for Self-Description of components using

the AutomationML notation.

are stored as working points in the self-description. The

BaseFrame is defined from the results of the localiza-

tion process (described in Sec. 3.2, LC1) and the first

calibration point sets its origin. If the component is ini-

tially located or moved during the integration process,

the BaseFrame and the transformation for the related

frames (ApproachFrame, PickFrame) are updated and

the component changes its position and orientation in-

ternally in the AML model and externally visible for

the operator in the simulation.

3.2 Plan Phase: The integration lifecycle

A key part for the integration of Plug-and-

Produce components is the human interaction with the

smart and robotic-based production system. Therefore,

we have designed a model for the human-machine in-

teraction organized as a lifecycle. This integration and

interaction lifecycle is shown in Fig. 2 and consists of

the following sequential parts: Measure Components

(LC1), Validate Integration (LC2), Compute and Sim-

ulate (LC3) and Handle Errors (LC4).

To start the integration process, the user interface

instructs the operator to plug-in the connector of a par-

ticular component into a socket of the workcell to es-

tablish the physical connection (see Sec. 3.3). Successful

powering and data exchange between the newly con-

nected component and workcell doesn’t allow an imme-

diate start of an assembly or production task, because

the component’s position and orientation is undefined

in reference to the workspace.

The system is designed and used without image

processing or sensor feedback to avoid possible inac-

curacy, complexity, and noise when localizing compo-

nents. Hence, the operator uses the collaborative robot

as an advanced measuring tool (Fig. 5) and guides the

end-effector of the robot to specific calibration points
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(LC1). The user control panel instructs the operator,

how to insert a measuring tool for this task and how to

perform the measuring. The system benefits from the

manual, cognitive, and spatial capabilities of the human

that are used to localize components and to guide the

robot manipulator through the unknown workspace.

The result of the measuring procedure and the spa-

tial integration of the component have to be validated

by the operator (LC2). Therefore, the user dialog em-

beds a simulation and visualization of the virtual robot

and the static surroundings. In the case of successful lo-

calization, the component is added dynamically to the

virtual representation of the simulation considering the

position and orientation in the real world. The operator

checks and confirms visually the proper placement of

components in the simulation taken from the real world.

The measurement routine must be repeated if the com-

ponent was misplaced in the simulation resulting from

the integration process in LC2. During the production,

small misplacement is compensated by compliant robot

motions that tolerate minor deviations in the position.

So far the system is limited that larger deviations can

only be detected if the process is executed with reduced

speed during a test mode.

The correct placement of the component in the real

world and consequently in the internal representation is

the prerequisite for computing and simulating collision-

free robot motions for the production sequence (LC3).

The robot path planning is computed internally based

on the CAD-model of the static robotic workcell and

the dynamically integrated components. For verifica-

tion purposes by the operator, the resulting robot tra-

jectories are visualized interactively in the embedded

simulation. If the path planning algorithm can’t calcu-

late appropriate and collision-free paths, the user has

to go through an error handling routine (LC4). In this

routine, the system uses a component-dependent and

precomputed heatmap to indicate the user appropriate

positions for the components. A new iteration of the

lifecycle begins, when the component has to be relo-

cated in the workspace. Once all components are suc-

cessfully placed, the integration is finished, and the pro-

duction is ready to start.

3.3 Design and Function of Plug-and-Produce

Components

The idea behind Plug-and-Produce is to integrate mod-

ular components as easily and quickly as possible into

the industrial production of goods. An exemplary com-

ponent is presented in Fig. 4 with an explicit compo-

nent structure regarding the mechanical and electrical

design as well as to the physical and data interfaces.

Fig. 4: Plug-and-Produce component with a unified

hardware connector.

Each component is equipped with a unified connec-

tor that enables the wired connection with the modu-

lar production cell at any available socket. The connec-

tor uses standardized plugs for power transmission and

wired networking, as well as an ID-Module for a unique

identification of the hardware. The ID-Module contains

a self-description of the component, which consists of

geometrical data that describes the shape of the compo-

nent (e.g. boundary box or CAD-model) and the work-

ing points for the robot (e.g. pick or place point). Fur-

ther, the self-description contains a service layer that

provides the component’s functionalities, which can be

used and controlled by workcell or the robot. The ID-

Module was realized with an ARM-based embedded

system, which deploys a runtime container for the Plug-

and-Produce software services. A discovery service de-

tects and registers available components that have been

plugged-in and keeps track of their provided services.

3.4 The Modular Production System in Detail

Three modular production cells combined to an exem-

plary assembly line are depicted in Fig. 1. Each cell

consists of the following parts: a modular production

cell, a collaborative lightweight robot, components such

as storages, a user control panel for interaction, and a

carrier for transporting goods. The human operator re-

ceives instructions from the user control panel and con-

figures the workcell according to the requirements of the

process order. He/she is guided, where to place compo-

nents in the workspace, how to put them into operation

and how to integrate them into the robot process.

Considering the software, the core component of an

automated, robot-based production is the process en-

gine that receives upcoming tasks or outstanding as-

sembly orders. It is responsible for the interpretation

as well as the execution of predefined production plans.

These production plans are represented in our system as

BPMN2.0 process models (Business Process Model and
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Notation). A robot plugin, as part of the process engine,

integrates the robot into the running process instance

and sets up communication ports as needed for further

robot activities. For example, a port might connect the

process engine with the robot controller to transmit a

start and goal frame and to execute a motion command.

The necessary frames are programmed interactively us-

ing kinesthetic teaching before a new production plan

is executed. Detailed work on the architecture and the

technology of the Plug-and-Produce concept was pub-

lished in [30].

Furthermore, a path planner for the robot motion

behavior is provided by the simulation plugin, which

may be triggered by the process engine during the

user-orientated lifecycle processes in LC3. In the pre-

sented system, the Open Motion Planning Library [31]

with the RRTConnect planner was integrated. The

path planner computes collision-free trajectories and

stores these inside the representation of an environment

model, which maintains the frames (position and ori-

entation) of the newly integrated components. For as-

sembling a product, the process engine executes activ-

ities from the production plan using the simulated and

precomputed trajectories derived from the environment

model for performing the collision-free robot motions in

the recently (re)arranged real world environment.

Together the core services address the identification

and integration of components into the modular pro-

duction system to perform localization and dynamic

path planning using a collaborative robot, human in-

put and an environment representation combined with

a simulation.

4 User Study

This section describes the user study with the assisted

and collaborative robotic system and presents the re-

sults of n=17 subjects. The user study is divided into

three main parts, which have to be completed by the

participants: (I) A Tutorial Phase to learn basic func-

tions and to gain proficiency for handling the smart

robotic workcell, (II) Hands-On Phase of two setup sce-

narios with increasing difficulty focusing on the inter-

action with the robot and the Plug, Plan, and Produce

system, (III) Questionnaire Phase to quantify the user

experience and the satisfaction.

The user study is carried out with participants from

the university spectrum and laboratory co-workers with

technical background and average robotics knowledge.

However, the system usage, functionalities and features

are completely unknown for all participants. The tasks,

which have to be solved by study participants, are pick-

and-place operations after a successful setup of the

Fig. 5: (a) Collaborative measuring process with an in-

serted measuring tool at one calibration point. (b)-(d)

the total calibration process of points 1-3.

modular workspace. We are simulating typical situa-

tions in small batched manufacturing like the quick in-

tegration, initial teaching of positions and the reconfig-

uration of components. Considering the research ques-

tions RQ1 and RQ2, we explore in this user study, how

difficult it is to set up a workcell, how the user experi-

ences to receive instructions from the system and how

this affects the mental workload. A detailed video doc-

umentation on the user study is available at [32].

4.1 Phases, Tasks and Conduction

The Tutorial Phase provides basic descriptions of the

robotic workcell, parts and components. The user con-

trol panel introduces general functions using textual de-

scriptions with situation-suited images, animated and

simulated robot movements, and color- and function-

coded buttons at the robot gripper. In general, the op-
erator is taught specific and collaborative interactions

methods, how to plug-in a component’s connector, how

to guide and move the robot, and how to insert the

measuring tool. A further part of the tutorial is a sim-

ple path planning in the embedded simulation followed

by the motion execution on the real robot. Completing

this phase ensures that all participants have a compa-

rable level of knowledge about the workcell, robot and

the Plug-and-Produce mechanisms before solving two

pick-and-place tasks in the Hands-On Phase.

Scenario 1 (S1): The participant performs a full

integration process of a storage component contain-

ing the Plug phase for connecting the component with

the workcell, the Plan phase for component localizing,

followed by the Produce phase, which moves the real

robot along a collision-free path through the constraint

workspace. The task goal is to perform a pick-and-place

operation, where the robot grasps a workpiece from the

storage and places it on the carrier (Fig. 6a, dashed

line). S1 is simplified for the participant in such a way
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that the integration is limited to only one component,

which is fixed beforehand by the study conductors. The

participant gets used to the handling of the Plug, Plan

and Produce system before being confronted to place a

component freely in the workspace.

Scenario 2 (S2): The components that have to be

integrated are a storage component followed by a cam-

era for quality inspection. The participant must place,

screw and connect the components as part of the in-

tegration process. In this task, the camera is used to

design the robot handguiding through the workspace

and the resulting motions more challenging. In this ex-

tended and more difficult task, the robot has to pick

first an object from the storage, show it into the lens

of the quality camera, and finally place it on the car-

rier (Fig. 6a, continuous line). The user control panel

indicates in the virtual workspace of the embedded sim-

ulation, where the component should be placed approx-

imately. A colored rectangle in the simulation highlights

the desired position and the participant decides by him

or herself, where, how and with what kind of orientation

the component has to be placed in the real workspace.

4.2 Methodology and Questionnaire

The user study aims to answer the research questions

from the technical as well as from the user perspective

view. Thus, we evaluate on the one hand the technical

aspects, like the usability of the smart system, and on

the other hand human factors, such as the experienced

task load. For the quantification of the user experience

we have used three questionnaires in total.

Subsequent to the Hands-On Phase, the partici-

pants answered two questionnaires, which measure user

satisfaction for operating the system. The questionnaire

IsoNorm ([33],[34]) measures the usability by asking

the participants questions about Task Suitability, Self-

Descriptiveness, Controllability, Conformity with User

expectations, Error tolerance and Learning Suitability.

The results of the questionnaire show the system per-

formance in these different categories, which is a real

advantage to identify specific categories with bad per-

formance. Categories with performance below the aver-

age can be improved within the next development cycle.

Also the System Usability Scale (SUS) [35] has been

used to collect general indicators about the user satis-

faction. The SUS questionnaire uses the Likert-Scale to

measure the usability and expresses it in one value for

quick comparison with other systems. A suitable system

reaches a score of 68% where 100% expresses the top

score. The SUS value indicates on a high-level, if the

system is ranked as user-friendly or if usability issues

exist. In contrast to the IsoNorm questionnaire, SUS

doesn’t provide any information about the categories

that can be improved through further development.

A questionnaire developed by NASA researchers to

measure the Task Load Index (TLX, [36]) was used in

its raw form as a tool to quantify the experienced cogni-

tive workload by the participant. TLX measures dimen-

sions like mental stress using an unknown system, the

physical workload operating and moving a collabora-

tive robot through the real workspace, and frustration

level if a task hasn’t worked out. The participants rated

the experienced load after each practical phase of the

study, and the result shows the progress of the workload

during the different tasks.

4.3 Results

The user study shows interesting results regarding user-

friendliness, usability and the perceived cognitive work-

load. The SUS questionnaire has resulted in an average

score of 86.2%. Considering the value of 68%, where

a system is already rated as usable, the reached score

is pretty good. Even though, the SUS value reached a

high score, a detailed view on the usability categories of

the IsoNorm questionnaire, helps to improve the robotic

and the Plug, Plan and Produce system.

The users rated the smart and robot-based system

on a scale from -3 (worst) to +3 (best) answering the

IsoNorm questionnaire and Fig. 6b shows the results.

The Task Suitability category aims with questions on

aspects of the user interface. A task suitable interface

is intended to show only those information, which are

related to solve the task effectively and efficiently. In

this category, the resulting data is very dense with a

positive median score of 2.4. This result shows that the

developed system suits the task and fulfills the require-

ments for easy setup (R1) and intuitive usage (R3).

Controllability defines the ability to keep and in-

fluence the direction of the user interaction during the

whole process and reaches from the very beginning of

the task until the user has reached his or her goal. The

result of Controllability of the IsoNorm questionnaire

shows a large variance in the data from -0.8 to +3.0.

The result is an indicator that some participants ex-

perienced the interaction with the system as stiff and

rigid, whereas 50% have felt comfortable being guided

through the system.

The result of the Controllability shows correlations

to the Self-Descriptiveness. The self-descriptiveness is

defined as each step on the user control panel being

immediately comprehensible through feedback from the

system. On the one hand, 50% of the participants rated

the self-descriptiveness with high scores of 2 and above,

and on the other hand, the remaining 50% rated the

system with a negative tendency to -0.8.
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Fig. 6: (a) Interactions with the co-bot and smart system during the user study. (b) IsoNorm questionnaire results

(c) Task Load Index. (d) Average time of all participants performing phases from the integration lifecycle.

Conformity with user expectations show low vari-

ance and a median at 2.4. This means that the in-

structions on user screen correspond to the user’s task

knowledge, experience and common conventions. The

developed system has met the user expectations, and

the requirements for quick adoption (R2) and intuitive

usage during runtime (R3).

Error Tolerance is an important factor in a smart

factory, where the desired result of the interaction can

be achieved with no or minimal corrective action. 50%

of the participants valued the proposed system with

negative scores, whereas 50% have had only small posi-

tive experiences with the system in terms of error toler-

ance. Concerning the error tolerance, the proposed sys-

tem of this contribution shows similar results like the

RAZER system [17]. From the user perspective, it can

be stated that error tolerance is emphasized by users

utilizing a smart and modular robotic system. In con-

trast to this user demand, the development of such sys-

tems focuses much on the successful task performance,

precise motion execution and robust runtime perfor-

mance, whereas the error handling or tolerance plays a

subordinate role in the development of such systems.

The minimization of the learning time is expressed

in the category Suitability for the learning and ad-

dresses directly the requirement for quick adoption to

new tasks (R2), when users are guided through the

learning stages. The results of the questionnaire show

extremely positive results with a median around 2.6 and

relative low variance compared to the other categories.

This result can be explained with the detailed and ver-

ifiable Tutorial Phase at the beginning for introducing

the tasks, components and the Plug, Plan and Produce

concept. It indicates that an extensive and comprehen-

sible introduction phase helps the operators using the

robotic system, even if the learning curve is increasing,

because of more challenging tasks.

The results of the task load questionnaire are shown

in Fig. 6c and indicate that the index is increasing

from the Tutorial Phase to Scenario 2. The study was

designed in such a way that the participants gain in-

creasing experience with the robotic system during the

study, which makes it possible to estimate the diffi-

culty of the tasks. The results show that the demands

of participants during the Tutorial Phase are quite low

with 26.7% on average, when the smart workcell, the in-

volved parts and collaborative robot are explained. The

task load raises about approximately 10% (35.7% total)

after the first scenario was conducted. The participants

are instructed to perform a plug-in of the storage con-

nector and localize the storage. For the localization, the

collaborative robot has to be moved, which resulted in
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some physical and mental demands. Scenario 2 resulted

in the highest task load index (39.2% on average). The

participants have performed a full Plug, Plan and Pro-

duce task sequence, located two components, moved the

collaborative robot in handguide mode, and performed

finally the path planning for three motions in total to

reach two components. A higher task load could be

caused, because some users have faced problems with

the joint limits of the robot. Hitting the joint limits

makes it difficult to move the robot in the handguiding

mode. A challenging robot pose during the localization

of the inspection camera can be seen in 6a.

The Average Time over all study participants for

the distinct lifecycle parts is denoted in Fig. 6d. The

first third of the graph shows the total measuring time

for the localization of a Plug-and-Produce component,

which is broken down to each calibration point intro-

duced in Fig. 5. The average localization time for the

storage shows a reduction by 50% for calibration point 1

including the handguiding of the robot from a de-

fined home position towards the component. Due to the

shorter distance from the first calibration point to point

2 and 3, the average measuring time is lower. However,

it shows a significant reduction between the fixed stor-

age in Scenario 1 and the storage in Scenario 2, which

was fixed by the participant. The increased time for

localizing of the quality inspection camera arises from

the difficulty in arranging the robot pose towards the

calibration points (see Fig. 6a). It indicates that time

for the localization is dependent on the robot pose and

influenced by the hardware design and joint limits. The

average time for the validation (LC2) shows a learning

effect (Fig. 6d, second third) from component to com-

ponent by reducing the time significantly and keeping

a certain time level (approx. 16s) for the path plan-

ning and simulation (LC3) steps (Fig. 6d, last third).

Performing the Tutorial Phase has taken each user in

average 4.6 minutes (278.0s), Scenario 1 6.55 minutes

(393.2s) and the more advanced setup integrating two

components in Scenario 2 11.9 minutes (714.3s).

4.4 Discussion of the Results

The user study has shown interesting results towards

the usability of modular production systems utiliz-

ing a collaborative robot combined with Plug-and-

Produce components. The results, in particular the

score of the IsoNorm questionnaire, indicate from cat-

egories such as Task Suitability, Conformity with User

Expectations, Suitability for Learning that the study

participants in the role as operators are capable to

set up a complex automated and robot-based system

(RQ1). The index for the cognitive task load demon-

strates that the study participants were not overex-

tended physically and mentally during the scenarios

and were able to work on the tasks appropriately.

The participants have performed robot program-

ming and workcell setup by programming the robot in

collaboration and physical interaction, which shows a

positive trend on effectiveness considering the reduc-

tion of average time in the different phases of the life-

cycle. Concerning RQ2, the average time measurement

has shown that effective physical robot programming

is possible even though the real world constraints, like

joint limits, influence this parameter.

Even though the results of the user study were

mostly positive, there is room for improvement of

the proposed system in terms of Controllability, Self-

Descriptiveness and Error Tolerance. A certain amount

of users (>50%) were satisfied with the information

on the screen and the behavior of the system in the

real world considering these categories. However, the

remaining participants valued the system with a neg-

ative trend in the rating. This leads to the assump-

tion that within the participants several user groups

exist. It can be suspected that a distinction between

novel, intermediate and expert users could be helpful

concerning usability and user-friendliness. Experienced

users might need less information, assistance and con-

trollability during the task, whereas a stiff system with

reduced controllability might suit inexperienced users

better. Future systems should be ready to be individu-

alized according to the behavior of each user.

5 Conclusion

This contribution motivates an extended Plug-and-

Produce approach for flexible manufacturing. The
workcell setup with mandatory fabrication components

is challenging and the adaptation of the required robot

behavior is labor-intensive and time-consuming. Our

concept extends existing Plug-and-Produce approaches

with a lifecycle and structured Plan phase to perform

the initial and robot-orientated workcell setup. The

Plug, Plan and Produce approach was evaluated in a

user study where the participants performed the setup

process autonomously and executed an industrial pick-

and-place operation on the real robot. The results have

shown that the users were able to receive, interpret and

execute the guidance from the interactive system.

Future work will focus on the enhancement of the

setup process and the usability of the system, and on

increasing the modeling precision for simulation pro-

cesses. Flexible objects, such as cables, are hard to sim-

ulate and an obstacle for the robot. Virtual and aug-

mented reality might help in the future to model and

react to unpredictable objects, simulating the robot mo-

tion with overlaying information from the real world.
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31. I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open
Motion Planning Library,” IEEE Robotics & Automation
Magazine, vol. 19, no. 4, pp. 72–82, December 2012, http:
//ompl.kavrakilab.org.

32. Video: Plug, Plan and Produce for Collaborative Robot
Programming in Smart Workcells, (accessed on March
30, 2019), https://youtu.be/Mf5iPpiD2NE.

33. K. Figl, “ISONORM 9241/10 und Isometrics: Usability-
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