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We analyze the mass dependence of the chiral condensate for QCD at nonzero θ angle and find that in
general the discontinuity of the chiral condensate is not on the support of the Dirac spectrum. To understand
this behavior we decompose the spectral density and the chiral condensate into contributions from the zero
modes, the quenched part, and a remainder which is sensitive to the fermion determinant and is referred to
as the dynamical part. We obtain general formulas for the contributions of the zero modes. Expressions for
the quenched part, valid for an arbitrary number of flavors, and for the dynamical part, valid for one and two
flavors, are derived in the microscopic domain of QCD. We find that at nonzero θ angle the quenched and
dynamical parts of the Dirac spectral density are strongly oscillating with an amplitude that increases
exponentially with the volume V and a period of order of 1=V. The quenched part of the chiral condensate
becomes exponentially large at θ ≠ 0, but this divergence is canceled by the contribution from the zero
modes. The oscillatory behavior of the dynamical part of the density is essential for moving the
discontinuity of the chiral condensate away from the support of the Dirac spectrum. As important
by-products of this work we obtain analytical expressions for the microscopic spectral density of the Dirac
operator at nonzero θ angle for both one- and two-flavor QCD with nonzero quark masses.
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I. INTRODUCTION

Topology in the form of instantons and dyons is an
important ingredient of the QCD vacuum [1–3]. The main
reason is that the Dirac operator for field configurations
with nonzero topological charge has a generic number of
exact zero modes, which induce the chiral condensate for
massless quarks. At nonzero quark mass, the total number
of instantons and anti-instantons is even more important.
This number scales with the four-dimensional spacetime
volume V, unlike the topological charge, which scales asffiffiffiffi
V

p
. If instantons and anti-instantons are not strongly

overlapping, they give rise to near-zero modes [4] which
determine the value of the chiral condensate. Given the
importance of topology for the QCD partition function, it is
puzzling that the conjugate parameter, the so-called θ
angle, is consistent with zero according to all available

experimental evidence. Nevertheless, theories with nonzero
θ angle have received a great deal of attention both as
theories beyond the standard model as well as from a purely
theoretical perspective [5–10].
In [11,12] we have resolved an interesting apparent

puzzle for one-flavor QCD at zero θ angle: the chiral
condensate should be independent of the sign of the quark
mass m, but the condensate expressed in terms of the Dirac
eigenvalues appears to be an odd function ofm. The point is
that this function still needs to be averaged over gauge
fields, and this average depends on the quark mass through
the fermion determinant in such a way that the chiral
condensate eventually becomes an even function ofm. This
resolution is reviewed in Sec. II: at negative quark mass, the
statistical weight in the average over gauge fields becomes
negative, which leads to exponentially large oscillations
that can move the discontinuity of the chiral condensate
away from the support of the Dirac spectrum and could be
shown to yield a mass-independent condensate. In the
present paper we extend the work of [11,12] to arbitrary θ
angle and to more than one flavor, as already sketched in
[13]. Let us emphasize that for nonzero θ the statistical
weight is not only negative but becomes complex.
To be able to obtain explicit results, most of our calcu-

lations are performed in the ε domain of QCD (also called
the microscopic domain). In this domain the Compton

*mkieburg@physik.uni-bielefeld.de
†jacobus.verbaarschot@stonybrook.edu
‡tilo.wettig@ur.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 074515 (2019)

2470-0010=2019=99(7)=074515(21) 074515-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.074515&domain=pdf&date_stamp=2019-04-30
https://doi.org/10.1103/PhysRevD.99.074515
https://doi.org/10.1103/PhysRevD.99.074515
https://doi.org/10.1103/PhysRevD.99.074515
https://doi.org/10.1103/PhysRevD.99.074515
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


wavelength of the pion is much larger than the size of the
box so that the kinetic term of the chiral Lagrangian can be
ignored and only the mass term remains. This chiral
Lagrangian can also be obtained from a random matrix
theory with the same global symmetries as QCD [14,15],
which makes it possible to find analytical expressions for the
spectral density of the Dirac operator using powerful random
matrix techniques. Another benefit of working in the ε
domain is that the chiral condensate can be obtained from
the spectral density without any additional regularization.
This is important because the spectral density of the Dirac
operator is renormalization-group and gauge invariant, while
the chiral condensate is only gauge invariant.
The structure of this paper is as follows. In Sec. II we

review the mass dependence of the chiral condensate for
one- and two-flavor QCD. The sign problem for QCD at
nonzero θ angle is discussed in Sec. III. A decomposition of
the spectral density and the chiral condensate is introduced
in Sec. IV. In Sec. V we derive general analytical expres-
sions for the contributions of the zero modes and of the
quenched part of the Dirac spectrum to the chiral con-
densate and show that each of them increases exponentially
with the volume at nonzero θ angle, but that their sum
remains finite. The one-flavor case is worked out in detail
in Sec. VI, where we also obtain an expression for the
spectral density of the Dirac operator at fixed θ angle. The
two-flavor case is discussed in Sec. VII, where we derive
analytical expressions for the spectral density and the chiral
condensate at fixed θ angle. Concluding remarks are made
in Sec. VIII, and technical details are given in several
Appendixes. In particular, in Appendix A we obtain
identities for sums of products of three and four Bessel
functions which, as far as we know, are new.
Some notes on notation: on the macroscopic scale, the

Dirac eigenvalues and the quark masses are denoted by λ
and m, while on the microscopic scale they are denoted
by x and u, respectively. For functions of these variables,
such as the partition function Z, the spectral density ρ or the
chiral condensate Σ, we use the same symbol on the
macroscopic and the microscopic scales to simplify
the notation. The corresponding functions are of course
different, but it should be clear from the arguments of the
function what is meant in every case. Also, when we give
results for partition functions, we drop irrelevant normali-
zation factors.

II. REVIEW OF KNOWN RESULTS

We consider QCD with Nf quark flavors and quark mass
matrix M ¼ diagðm1;…; mNf

Þ, which we allow to be
complex for the time being. The mass matrix appears in
the QCD Lagrangian in the form ψ̄RMψL þ ψ̄LM†ψR,
where ψR=L denotes quark fields of definite chirality. For a
given gauge-field configuration with topological charge ν,
the fermion determinant is

Y
λn>0

detðλ2n þMM†Þ ×
�
detνM; ν ≥ 0;

det−νM†; ν < 0;
ð1Þ

where the λn are the eigenvalues of the Dirac operator, and
the second factor is due to the presence of jνj exact zero
modes. The partition function for fixed topological charge ν
is given by the average of the fermion determinant over
gauge-field configurations with fixed ν. Defining

ẐjνjðjMjÞ ¼
�Y

λn>0

detðλ2n þMM†Þ
�

ν

; ð2Þ

which only depends on jMj ¼ diagðjm1j;…; jmNf
jÞ and

jνj, the partition function reads

ZνðMÞ ¼ ẐjνjðjMjÞ ×
�
detνM; ν ≥ 0;

det−νM†; ν < 0:
ð3Þ

The partition function at fixed θ angle is then given by

ZðM; θÞ ¼
X∞
ν¼−∞

eiνθZνðMÞ

¼
X∞
ν¼−∞

eiνðθþ
PNf

k¼1
φkÞ det jMjjνjẐjνjðjMjÞ; ð4Þ

where mk ¼ jmkjeiφk defines the phase φk of mk. It is clear
that ZðM; θÞ is a periodic function of θ, and if

P
kφk is a

multiple of π, it is also even in θ. It only depends on the
sum of the phases of the quark masses, and this sum can be
absorbed in a redefinition of the θ angle. The same
statement is true for the spectral density, whose mass
dependence comes only from the fermion determinant in
the statistical measure.
Therefore, from a mathematical point of view, it suffices

to derive results for real and non-negative quark masses.
However, we will sometimes consider the “physical”
situation where one of the quark masses is taken to be
negative. This case can be obtained by shifting θ → θ þ π
in the mathematical result. Nevertheless, our results assume
mk ≥ 0 unless stated otherwise.
The chiral condensate of flavor k is defined as

ΣðmkÞ ¼ −hψ̄kψki ¼ −hψ̄kRψkLi − hψ̄kLψkRi

¼ 1

NdV

�
d

dmk
þ d
dm�

k

�
logZðMÞ; ð5Þ

where we have suppressed the dependence of ΣðmkÞ on M
and where Nd (with d for “degenerate”) is the number of
quarks whose mass equals mk. Note that Eq. (5) is valid
both at fixed ν and at fixed θ. Let us make two remarks
here. First, for a real and negative mass, the derivatives in
Eq. (5) simply lead to an extra sign (compared with the
result for a positive mass). Second, for a genuinely complex
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mass mk ¼ jmkjeiφk , one can rewrite the derivatives in
terms of jmkj and φk. For the partition function (4) at fixed
θ the derivative with respect to φk can be rewritten as a
derivative with respect to θ.
Let us begin with the case of one flavor of massm. Since

the free energy is extensive in V, the QCD partition
function, obtained by expanding the action to lowest order
in m, is given by [5]

Zðm; θÞ ¼ Zðm ¼ 0; θÞ exp½mVΣ cos θ þOðm2VÞ�; ð6Þ

where Σ is the absolute value of the chiral condensate in the
limit m ¼ 0 and θ ¼ 0. Since the mass-independent factor
Zðm ¼ 0; θÞ does not contribute to the chiral condensate
we will ignore it below. Equation (6) is valid for both
positive and negative quark masses. This has the conse-
quence that the chiral condensate from Eq. (5),

ΣðmÞ ¼ Σ cos θ; ð7Þ

does not change sign when m becomes negative. Assuming
nonvanishing Σ, at first sight this appears to be in contra-
dictionwith theBanks-Casher formula [16],which expresses
the chiral condensate in terms of the eigenvalues λn of the
Dirac operator starting from the relation

ΣðmÞ ¼
�
1

V

X
n

1

iλn þm

�
; ð8Þ

where the average is over gauge-field configurations.
Equation (8) is valid both at fixed ν and at fixed θ. The
eigenvalues either are zero, giving a term proportional to
1=m, or occur in pairs �λn, which yield terms of the form
2m=ðλ2n þm2Þ. Thus the functionΣðmÞ appears to be odd in
m. The resolution of this puzzle is that the statistical weight
in Eq. (8) contains the fermion determinant, which leads to
an additional mass dependence. This resolution was fully
worked out in Refs. [11,12] by an explicit computation of
the spectral density and the chiral condensate in the ε
domain of QCD. Employing identities for sums of products
of Bessel functions, the expressions could be summed to
give the spectral density at θ ¼ 0. For negative mass the
resulting expression is increasing exponentially withV and
oscillating with a period that scales as 1=V. As we know
fromQCD at nonzero chemical potential [17], exactly such
behavior of the spectral density can eliminate a disconti-
nuity of the chiral condensate. However, as has already
been observed in [18], the contributions of both the zero
modes and the nonzero modes diverge exponentially with
the volume. It turns out [11,12] that these divergent
contributions cancel identically, resulting in a chiral con-
densate that remains constant in the ε domain, i.e., for
mΛQCD

ffiffiffiffi
V

p
≪ 1.

Let us turn to two-flavor QCD. In this case the full flavor
symmetry is Uð2Þ × Uð2Þ, with the axial U(1) group

broken by the anomaly and the SUð2Þ × SUð2Þ subgroup
broken spontaneously by the chiral condensate. In the ε
domain of QCD, the partition function of the resulting
Nambu-Goldstone modes, which interact according to a
chiral Lagrangian, simplifies to [5]

ZðM; θÞ ¼
Z
SUðNfÞ

dU exp½VΣReðeiθ=NfTrMUÞ�; ð9Þ

which actually holds for any Nf. The measure dU is the
normalized Haar measure. In the thermodynamic limit, the
U field aligns itself with the chiral condensate. For Nf ¼ 2,
the simplest case is when the two masses are equal to a
common mass m. For m cosðθ=2Þ > 0 the saddle-point
solution is U ¼ 1, but for m cosðθ=2Þ < 0 it is given by
U ¼ −1. To leading order in the thermodynamic limit this
results in

logZðm;m; θÞ ≈
jmjVΣ≫1

2VΣjm cosðθ=2Þj: ð10Þ

Because of the absolute value, the chiral condensate as
defined in Eq. (5) acquires a discontinuity at m ¼ 0,

ΣðmÞ ≈
jmjVΣ≫1

signðmÞΣj cosðθ=2Þj: ð11Þ

Another simple case is that of unequal quark masses and
θ ¼ 0, where we have in leading order [5]

logZðm1; m2; θ ¼ 0Þ ≈
jmkjVΣ≫1

VΣjm1 þm2j: ð12Þ

The phase diagram of this case is shown in Fig. 1. The two
phases are separated by the line m1 þm2 ¼ 0 on which the
pion mass becomes zero, known as the Dashen phenomenon
[19]. For three flavors, this line changes to a finite region
where pions condense and CP symmetry is spontaneously
broken [20]. It can also become a finite region when pion
condensation occurs in the case of Wilson fermions [21].
The phase diagram at fixed θ has to be contrasted to the

one at fixed topological charge ν, where we have in leading
order [5]

FIG. 1. Phase diagram of the two-flavor theory at θ ¼ 0 in the
plane of the two quark masses.
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logZνðm1; m2Þ ≈
jmkjVΣ≫1

VΣðjm1j þ jm2jÞ: ð13Þ

The sign of the chiral condensate at fixed ν always changes
sign when one of the masses changes its sign, unlike at
fixed θ ¼ 0, where the sign change occurs at the Dashen
line m1 ¼ −m2. One aim of the present work is to under-
stand this difference. In Fig. 2 we highlight the different
behavior of the two-flavor chiral condensate at fixed
topological charge ν (left) and fixed θ angle (right).
Finally, let us mention one particular limit of the two-

flavor case. When one of the quark masses becomes large,
the two-flavor theory reduces to the one-flavor theory. In
the chiral Lagrangian we then have

U →

�
e−iφ 0

0 eiφ

�
ð14Þ

with φ fixed at φ ¼ θ=2, resulting in the one-flavor
partition function (6).

III. SIGN PROBLEM

Generically, QCD at nonzero θ angle has a sign problem,
which originates from the weight factor exp½iνðθ þPkφkÞ�
in Eq. (4). The sign problem is absent only for
cosðθ þPkφkÞ ¼ 1, and it is most severe for
cosðθ þPkφkÞ ¼ −1, in which case the weight factor is
ð−1Þν. For real (but possibly negative) quark masses, these
two conditions translate into cos θ ¼ �sign detM.
While these two extreme cases are already apparent from

Eq. (4), the severity of the sign problem in the general case
can be measured by the ratio of the partition function with a
phase and the phase-quenched partition function. Explicit
analytical results for this ratio can be obtained in the ε
domain.
For one flavor the ratio is given by

exp½−ΔFðm; θÞ� ¼ Zðm; θÞ
Zðjmj; 0Þ ¼ eVΣðm cos θ−jmjÞ: ð15Þ

Therefore exponential cancellations take place at θ ≠ 0. The
function ΔFðm; θÞ ¼ VΣjmjð1 − signðmÞ cos θÞ is shown
in Fig. 3 form > 0. In agreement with the general argument
above, it assumes its maximum at cos θ ¼ −signðmÞ, where
the sign problem is most severe, while the sign problem is
absent for cos θ ¼ signðmÞ. The free energy is a smooth
function of the quarkmass and the θ angle, which reflects the
fact that the one-flavor theory has no phase transition.
For two flavors the ratio is given by

exp½−ΔFðm1; m2; θÞ� ¼
Zðm1; m2; θÞ

Zðjm1j; jm2j; 0Þ
: ð16Þ

The ε-domain result for the two-flavor partition function is
given by the integral over SU(2) in Eq. (9). In terms of the
microscopic variables uk ¼ mkVΣ it becomes [5]

Zðu1; u2; θÞ ¼
2I1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cos θ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21 þ u22 þ 2u1u2 cos θ
p ð17Þ

with Ik the modified Bessel function of the first kind. Again
the difference ΔF assumes its maximum at cos θ ¼
−signðm1m2Þ; see the plots in Fig. 4. Therefore the sign
problem is most severe either at θ ¼ 0 when both masses
have opposite signs or at θ ¼ π when both masses have the

FIG. 2. Mass dependence of the chiral condensate for two-
flavor QCD at fixed topological charge ν (left) and at fixed θ ¼ 0
(right). In the thermodynamic limit all curves become discon-
tinuous. Note that we use the dimensionless masses uk ¼ mkVΣ.
The notation Σ1 indicates that we differentiate with respect to the
first quark mass u1.

FIG. 3. Difference of the free energies of the phase-quenched
and the full theory for one-flavor QCD [see Eq. (15)] divided by
the absolute value of the rescaled quark mass. Here u > 0.

FIG. 4. Free-energy difference as a function of θ for two flavors
and several quark masses. The functions are normalized by the
sum of the quark masses so that the large-mass limit remains
finite. The black curve in the plot on the right is the thermody-
namic limit for equal quark masses; see Eq. (20).
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same sign. This can also be seen in the exponentially
increasing oscillations of the level density when increasing
the θ angle; see Fig. 9 below. The sign problem is absent
only for cos θ ¼ signðm1m2Þ.
We illustrate the free-energy difference in Fig. 4.

The partition function (17) is monotonically decreasing
(increasing) in θ ∈ ½0; π� for quark masses of equal (oppo-
site) signs. This carries over to an increase (decrease) of the
free energy. The free-energy difference is also strictly
increasing (decreasing) with respect to the moduli of the
masses for equal (opposite) signs. For equal masses it
simplifies to

ΔFðu; u; θÞ ¼ log

�
I1ð2uÞ cosðθ=2Þ
I1ð2u cosðθ=2ÞÞ

	
; ð18Þ

where the monotonicity can be checked easily.
The free-energy difference has the thermodynamic limit

lim
ju1j;ju2j≫1

ΔFðu1; u2; θÞ

¼ ju1j þ ju2j −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cos θ

q
; ð19Þ

where only the Bessel functions had to be approximated.
(There are subleading logarithmic corrections to this
result.) For equal masses the thermodynamic limit becomes

lim
juj≫1

ΔFðu; u; θÞ ¼ 2jujð1 − j cosðθ=2ÞjÞ; ð20Þ

which has a kink at the Dashen point θ ¼ π.

IV. DECOMPOSITION OF THE SPECTRAL
DENSITY AND THE CHIRAL

CONDENSATE

In the limit of zero quark masses, the chiral condensate at
fixed topological charge has a discontinuity on the support
of the Dirac spectrum, which is dense in the thermody-
namic limit. We have to understand how this discontinuity
can be moved away from the support of the spectrum at
nonzero θ angle. When the spectral density is positive, this
is certainly not possible. However, the averaging procedure
to obtain the spectral density includes the fermion deter-
minant. This determinant is not positive definite at nonzero
θ angle, and thus the spectral density is generically not
positive definite. Moreover, the spectral density is normal-
ized with respect to the partition function at θ ≠ 0, which is
exponentially smaller than the phase-quenched partition
function, and therefore may result in a spectral density that
increases exponentially with the volume. Indeed, we know
from QCD at nonzero chemical potential [17] and from
QCD-like theories with indefinite measure [18] that the
discontinuity of the chiral condensate can be shifted when
the spectral density oscillates with an amplitude that is
exponentially large in V and with a period that scales as

1=V. As a first step toward understanding this behavior, we
decompose the spectral density and the chiral condensate into
various contributions.
We denote the spectral density of the Dirac operator at

fixed topological charge ν by ρνðλ;MÞ. The spectral density
at fixed θ is defined by

ρðλ;M; θÞ ¼
X
ν

PνðM; θÞρνðλ;MÞ; ð21Þ

where Pν is the statistical weight to find a gauge-field
configuration with topological charge ν,

PνðM; θÞ ¼ ZνðMÞeiνθP
νZνðMÞeiνθ ¼

ZνðMÞeiνθ
ZðM; θÞ : ð22Þ

To obtain a more detailed picture we split the spectral
density into a zero-mode part and a nonzero-mode part,

ρðλ;MÞ ¼ ρzmðλ;MÞ þ ρnzmðλ;MÞ: ð23Þ

This splitting is valid both at fixed ν and at fixed θ.
Equation (21) holds separately for the zero-mode and
nonzero-mode parts.
The zero-mode part of the density at fixed ν is

ρzmν ðλÞ ¼ jνjδðλÞ: ð24Þ

We will see in the next section that ρzm gives a contribution
to the chiral condensate that diverges exponentially if a sign
problem is present. This contribution must be canceled by
a similar contribution of the nonzero-mode part ρnzm to
obtain a finite condensate. The question is what part of ρnzm

is responsible for this cancellation. Obviously there is no
unique answer to this question, but we know that this
cancellation also has to take place in the quenched
approximation. Therefore we decompose ρnzm at fixed ν
into a quenched part (obtained by setting Nf ¼ 0) and a
dynamical part (the remainder),

ρnzmν ðλ;MÞ ¼ ρqνðλÞ þ ρdνðλ;MÞ: ð25Þ

The ε-domain result for the quenched part in terms of the
microscopic variable x ¼ λVΣ reads [22]

ρqνðxÞ ¼ jxj
2
½J2νðxÞ − Jνþ1ðxÞJν−1ðxÞ� ð26Þ

with Jk the Bessel function of the first kind. The dynamical
part depends, in addition to x, also on the quark masses,
which on the microscopic scale we collect in u⃗ ¼
ðu1;…; uNf

Þ. Explicit expressions can be found in [23,24].
An alternative to Eq. (25) would be to split ρnzm at fixed

θ into a phase-quenched part [12], obtained by letting
M → jMj and θ → 0, and an oscillating remainder. The
cancellation is then achieved by the phase-quenched part,
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but this part is more complicated than the quenched part,
and therefore we do not consider it in this paper.
The chiral condensate is obtained from the spectral

density by the relation

Σðm;MÞ ¼ 1

V

Z
∞

−∞
dλ

ρðλ;MÞ
iλþm

; ð27Þ

where m is a valence quark mass. It is convenient to
distinguish m from the sea quark masses in M, but at the
end of the calculation m will usually be set equal to one of
the sea quark masses. Again, Eq. (27) holds both at fixed ν
and at fixed θ. On the macroscopic scale Eq. (27) requires
regularization, but in the ε domain it is valid as it stands.
We now split the condensate into zero-mode, quenched,

and dynamical parts, obtained by replacing ρ in Eq. (27) by
ρzm, ρq, and ρd, respectively. This leads to

Σðm;MÞ ¼ Σzmðm;MÞ þ Σqðm;MÞ þ Σdðm;MÞ ð28Þ

at either fixed ν or fixed θ. As in Eq. (21) we have

Σðm;M; θÞ ¼
X
ν

PνðM; θÞΣνðm;MÞ; ð29Þ

and this holds separately for all three contributions.
All equations in this section can be translated to the

microscopic scale by the replacements λ ¼ x=VΣ and
M ¼ u⃗=VΣ. In Eq. (27), the prefactor 1=V is then replaced
by Σ. For the valence mass on the microscopic scale we will
use the notation û ¼ mVΣ.

V. CANCELLATION OF ZERO-MODE AND
QUENCHED CONTRIBUTIONS

In this section we show, for any number of flavors, that
the exponentially increasing contribution of the zero modes
to the chiral condensate is canceled by an exponentially
increasing contribution from the quenched part of the
spectrum. The expressions for the contribution of the zero
modes are valid without any assumptions, but the other
calculations are performed in the ε domain of QCD.
Using Eqs. (21) and (24), the zero-mode part of the

microscopic spectral density at fixed θ is given by

ρzmðx; u⃗; θÞ ¼ δðxÞ
Zðu⃗; θÞ

X
ν

eiνθjνjZνðu⃗Þ: ð30Þ

Using the Fourier transform of Eq. (4),

Zνðu⃗Þ ¼
Z

π

−π

dθ
2π

e−iνθZðu⃗; θÞ; ð31Þ

the sum on the right-hand side (RHS) can be rewritten in
the form

X
ν

eiνθjνjZνðu⃗Þ ¼ ⨍ π

−π

dφ
2π

AðφÞ½Zðu⃗; θ − φÞ − Zðu⃗; θÞ�;

ð32Þ
where AðφÞ is the Fourier transform

AðφÞ ¼
X
ν

eiνφjνj ð33Þ

and the symbol ⨍ stands for a principal-value integral.
Several comments are in order. (i) The definition (33) is to
be understood as a distribution acting on test functions that
are twice differentiable and vanish at φ ¼ 0, where the sum
over ν is divergent. We always assume φ ∈ ½−π; π� because
of the integral (32). (ii) Since the integral over AðφÞ
vanishes, we could subtract Zðu⃗; θÞ in (32) to end up with
a test function that indeed vanishes at φ ¼ 0. (iii) In the
following we always deal with test functions that are twice
differentiable and vanish at φ ¼ 0. This justifies the
introduction of a regulator ε > 0 which results in a sum
that is pointwise convergent except for φ ¼ 0,

AðφÞ ¼ lim
ε→0

X∞
ν¼−∞

jνjeiνφ−jνjε

¼ lim
ε→0

X∞
ν¼1

νðe−ðεþiφÞν þ e−ðε−iφÞνÞ

¼ lim
ε→0

∂
∂ε

e−ε − cosφ
cosh ε − cosφ

¼ −
1

2sin2 φ
2

ðvalid for φ ≠ 0Þ: ð34Þ

Note that due to the pointwise convergence, the integral
of AðφÞ in the form (34) no longer vanishes so that the
subtractions have to be made before the limit ε → 0 is
taken. For a function f that is twice differentiable at zero we
therefore have

⨍ π

−π
dφAðφÞ½fðφÞ − fð0Þ� ¼ −⨍ π

−π
dφ

fðφÞ − fð0Þ
2sin2 φ

2

: ð35Þ

Finally, we note that −1=2sin2 φ
2
¼ ∂φ cot

φ
2

is a total
derivative which can be integrated by parts on test functions
that vanish at φ ¼ 0.
The zero-mode part of the spectral density thus becomes

ρzmðx; u⃗;θÞ¼ δðxÞ⨍ π

−π

dφ
2π

1

2sin2 φ
2

�
1−

Zðu⃗;θ−φÞ
Zðu⃗;θÞ

	
: ð36Þ

The zero-mode contribution to the chiral condensate
follows trivially from Eq. (27):

Σzmðû; u⃗; θÞ
Σ

¼ 1

û
⨍ π

−π

dφ
2π

1

2sin2 φ
2

�
1 −

Zðu⃗; θ − φÞ
Zðu⃗; θÞ

	
: ð37Þ
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In the derivation of this formula we did not make any
assumptions on the scaling behavior of the quark masses,
and we stress that this result is valid in general.
From the discussion of the sign problem in Sec. III we

know that the ratio Zðu⃗; θÞ=Zðju⃗j; 0Þ takes its maximum at
cos θ ¼ sign detM. Hence, for detM > 0, the integral (37)
is dominated by the region around φ ¼ θ, and for detM < 0
it is dominated by the region around φ ¼ θ − π. For
cos θ ≠ sign detM, the partition function Zðu⃗; θÞ is expo-
nentially smaller (in u⃗) than Zðju⃗j; θ ¼ 0Þ, resulting in a
contribution to the chiral condensate that increases exponen-
tially with the volume.
The quenched part of the spectral density at fixed θ is

ρqðx; u⃗; θÞ ¼ 1

Zðu⃗; θÞ
X
ν

eiνθρqνðxÞZνðu⃗Þ

¼
Z

π

−π

dφ
2π

ρ̃qðx;φÞZðu⃗; θ − φÞ
Zðu⃗; θÞ ð38Þ

with

ρ̃qðx;φÞ ¼
X
ν

eiνφρqνðxÞ ¼ J1ð2jxj sin φ
2
Þ

2 sin φ
2

: ð39Þ

The last equality in Eq. (39) was obtained from Eq. (26)
using Eq. (A7). To avoid confusion, we note that ρ̃qðx; θÞ is
the spectral density of the true quenched theory at fixed θ.
It is convoluted with Zðu⃗; θ − φÞ=Zðu⃗;φÞ as shown in
Eq. (38) to obtain what we have defined as the quenched
part of the spectral density. The convolution introduces the
quark masses into ρqðx; u⃗; θÞ, while ρ̃qðx;φÞ is independent
of the quark masses.
Equation (38) results in the “quenched” contribution to

the chiral condensate

Σqðû; u⃗; θÞ
Σ

¼
Z

∞

0

2dxû
x2 þ û2

Z
π

−π

dφ
2π

J1ð2x sin φ
2
Þ

2 sin φ
2

Zðu⃗; θ − φÞ
Zðu⃗; θÞ

¼
Z

π

−π

dφ
2π

�
1

2ûsin2 φ
2

−
K1ð2jû sin φ

2
jÞ

signðûÞj sin φ
2
j
	
Zðu⃗; θ − φÞ
Zðu⃗; θÞ : ð40Þ

In the last line we have used Eq. (C8) to obtain the modified
Bessel function of the second kind K1. Note that the poles
at φ ¼ 0 cancel so that the integral can be evaluated as an
ordinary integral. Also for the quenched contribution, the
integral is dominated by the region around φ ¼ θ or φ ¼
θ − π (depending on the sign of the product of the quark
masses) where the effective θ angle vanishes. For
θ þ arg detM ≠ 0, this again leads to contributions that
increase exponentially. For Nf ¼ 0 the ratio of partition

functions in Eq. (40) is equal to unity. The integral over φ of
the expression in square brackets is equal to the “quenched”
part of the condensate at topological charge zero, i.e.,
Σq
ν¼0ðûÞ, which follows by writing the RHS of Eq. (39) as

a Fourier sum.
We now show that the two exponentially increasing

contributions to the chiral condensate cancel. The sum of
zero-mode and quenched contributions is given by

Σzmðû; u⃗;θÞ
Σ

þΣqðû; u⃗;θÞ
Σ

¼ ⨍ π

−π

dφ
2π

�
1

2ûsin2 φ
2

−
K1ð2jûsinφ

2
jÞ

signðûÞjsinφ
2
j
Zðu⃗;θ−φÞ
Zðu⃗;θÞ

	

¼Σq
ν¼0

Σ
−⨍ π

−π

dφ
2π

K1ð2jûsinφ
2
jÞ

signðûÞjsinφ
2
j
�
Zðu⃗;θ−φÞ
Zðu⃗;θÞ −1

	
: ð41Þ

This integral converges as a principal-value integral.
The partition function is given in Eq. (9). We write U ∈

SUðNfÞ in the form U ¼ Vdiagðeiφ1 ;…; eiφNf ÞV† with
V ∈ UðNfÞ=Uð1ÞNf and

P
kφk ¼ 0 and perform a change

of variables from U to V and φ⃗ ¼ ðφ1;…;φNf
Þ. The

Jacobian of this transformation is independent of V. If
we assume degenerate quark masses, the integrand is also
independent of V so that the integration over V simply
gives an irrelevant constant. For nondegenerate quark
masses the integral over V is of the Harish-Chandra–
Itzykson-Zuber type [25] and leads to

Zðu⃗; θÞ ∼
Z Y

k

dφk

2π
jΔðeiφ⃗Þj2δ

�X
k

φk

�

×
det ½exp½uk cosðφl þ θ=NfÞ��
Δðu⃗ÞΔðcosðφ⃗þ θ=NfÞÞ

; ð42Þ

where Δðx⃗Þ ¼Qa<bðxb − xaÞ denotes the Vandermonde
determinant. Unless indicated otherwise, a product
or a sum over k is understood to run from 1 to Nf. The
symbol ∼ indicates that we have suppressed the normali-
zation constant.
The integrand in (42) is symmetric under permutations of

the φk. We denote the nonexponential terms by fðu⃗; φ⃗þ
θ=NfÞ ¼ jΔðeiφ⃗Þj2=ðΔðu⃗ÞΔðcosðφ⃗þ θ=NfÞÞÞ and expand
the determinant of exp½uk cosðφl þ θ=NfÞ� to obtain

Zðu⃗; θÞ ∼
Z Y

k

dφk

2π
fðu⃗; φ⃗þ θ=NfÞ

× e
P

k
uk cosðφkþθ=NfÞδ

�X
k

φk

�
: ð43Þ

After shifting each φk by −θ=Nf and performing the
integration over φ1 using the δ function, Eq. (43) becomes
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Zðu⃗; θÞ ∼
Z Y

k≥2

dφk

2π
fðu⃗; ⃗φ̄Þ

× exp

�
u1 cos

�
θ −

X
k≥2

φk

�
þ
X
k≥2

uk cosφk

	
;

ð44Þ

where ⃗φ̄ ¼ ðθ −Pk≥2φk;φ2;…;φkÞ. We will use this
representation for the partition function in the denominator
of Eq. (41).
Next, we consider the integral in the last line of Eq. (41).

For large û, the Bessel function behaves as

Kν

�
2





û sinφ2





�

¼
ffiffiffi
π

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jû sin φ

2
jp e−2jû sin

φ
2
j½1þOð1=ûÞ�:

ð45Þ
Therefore the −1 term in the last line of Eq. (41) cannot
result in exponentially large contributions, but this term
regularizes the integral at φ ¼ 0.
We now combine Eq. (43) with θ replaced by θ − φ and

Eq. (45) and consider the contribution to the chiral
condensate that gives the exponentially large terms.
After shifting each φk by ðφ − θÞ=Nf, we obtain

1

Zðu⃗;θÞ
Z

dφ
2π

Z Y
k

dφk

2π
δ

�X
k

φk−θþφ

�
fðu⃗; φ⃗Þ

×exp

�
−2




ûsinφ2





þX
k

uk cosφk

	

¼ 1

Zðu⃗;θÞ
Z Y

k

dφk

2π
fðu⃗; φ⃗Þ

×exp

�
−2




ûsin12

�
θ−
X
k

φk

�



þX
k

uk cosφk

	
: ð46Þ

We now set the valence mass û equal to one of the sea
quark masses, say u1. Using the trigonometric identity
cos α − cos β ¼ 2 sin½ðβ þ αÞ=2� sin½ðβ − αÞ=2�, the expo-
nent of the last line in (46) can be written as

− 2





u1 sin θ −
P

kφk

2





þ u1 cosφ1 − u1 cos
�
θ −

X
k≥2

φk

�

þ u1 cos

�
θ −

X
k≥2

φk

�
þ
X
k≥2

uk cosφk

¼ −2




u1 sin θ −

P
kφk

2





þ 2u1 sin
θ þ φ1 −

P
k≥2φk

2

× sin
θ −

P
kφk

2
þ u1 cos

�
θ −

X
k≥2

φk

�
þ
X
k≥2

uk cosφk

≤ u1 cos

�
θ −

X
k≥2

φk

�
þ
X
k≥2

uk cosφk; ð47Þ

where in the last line we used the fact that the absolute value
of the second term is always smaller than the absolute value
of the first term. The RHS of this estimate is exactly the
exponent of the integrand for Zðu⃗; θÞ; cf. (44).
We have thus found that in Eq. (41) the exponent of the

numerator is always smaller than or equal to the exponent
of the denominator. Therefore the sum of the zero-mode
and quenched contributions to the chiral condensate does
not increase exponentially for large rescaled masses uk. The
preexponential terms may have (even strong) effects on the
integral. They can be zero, can diverge at the saddle points,
or can prevent us from reaching some of the saddle points.
However, none of these effects can lead to an exponential
increase because the integral in (41) is well defined and
finite at fixed u⃗.
The exponential cancellation is illustrated in Fig. 5 for

Nf ¼ 1 at θ ¼ π=2 and in Fig. 6 for Nf ¼ 2 at θ ¼ 0,
where both Σzm

1 and Σq
1 increase exponentially in the

quadrants where u1u2 < 0. The sum of the two contribu-
tions remains finite. Also shown in Fig. 6 is the dynamical
part of the chiral condensate; see Eq. (82).
Finally, we give a heuristic argument why the cancella-

tion between the zero-mode contribution and the quenched
contribution to the chiral condensate takes place. When we
have jνj zero modes, the nonzero eigenvalues on the
microscopic scale are, on average, shifted from the origin
by jνj; see Ref. [26] [Sec. VIII A]. To find a definitive gap
one needs to assume 1 ≪ ν ≪ VΛ4

QCD. Explicitly, one can
easily show that the asymptotic behavior of the microscopic
quenched density is given by

ρqνðxÞ ≈
jνj≫1 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ν2

p

jxj θðjxj − jνjÞ: ð48Þ

The corresponding chiral condensate Σq
νðûÞ can be calcu-

lated along Eq. (27), i.e.,

FIG. 5. Zero-mode (red curve) and quenched (blue curve)
contribution to the chiral condensate for Nf ¼ 1 and θ ¼ π=2
as a function of the rescaled quark mass. Each contribution
increases exponentially, but their sum (black curve) remains
finite.
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Σq
νðûÞ
Σ

≈
jνj≫1 2û

π

Z
∞

jνj
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ν2

p

xðx2 þ û2Þ

¼ jνj
û

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ û2

ν2

s
− 1

!
: ð49Þ

For large masses at large, fixed topological index, the
quenched chiral condensate has the approximate form

Σq
νðûÞ
Σ

≈
jûj≫jνj≫1

signðûÞ − jνj
û
: ð50Þ

The second term shows that the nonzero-mode spectrum
has been depleted by jνj modes so that the total number of
eigenvalues does not depend on ν. The contribution of the
zero modes is given by Σzm

ν ðûÞ ¼ jνj=û.
At fixed (large) ν we thus find that for large û the 1=û

contribution to the quenched part of the chiral condensate
exactly cancels the contribution from the zero modes. At
fixed θ the contribution of the fermion determinant leads to
exponentially large terms (instead of 1=û terms) at large û,
but as shown in Sec. V we again have a cancellation
between the zero-mode and quenched parts. This cancel-
lation is deeply rooted in topology and spectral flow, which
guarantee that the total number of eigenvalues around zero
remains the same. For chiral random matrix theory, this can
be shown at the technical level [26], but the argument is
much more general: the Dirac spectrum near zero is
depleted by exactly the same number of levels as we have
zero modes. One could argue that the spectral density at
fixed θ angle mainly involves very large ν so that in the
thermodynamic limit the spectrum acquires a gap at zero.
However, since the topological susceptibility is finite in the
thermodynamic limit, the number of zero modes is of orderffiffiffiffi
V

p
, while the eigenvalue density is of order 1=V, resulting

in a gap with a width of order 1=
ffiffiffiffi
V

p
.

VI. ONE-FLAVOR QCD

In this section we derive a number of explicit results for
one-flavor QCD. In the first subsection we compute the
contributions to the spectral density at fixed θ angle. In the
second subsection we use these results to compute the
dynamical contribution to the chiral condensate and show
that a mass-independent total chiral condensate is obtained.

A. One-flavor Dirac spectrum at fixed θ angle

The one-flavor partition function of QCD in the ε
domain at fixed θ is given by

Zðu; θÞ ¼ eu cos θ; ð51Þ
see Eq. (6). At fixed ν we therefore have from Eq. (31)

ZνðuÞ ¼
Z

π

−π

dθ
2π

e−iνθþu cos θ ¼ IνðuÞ: ð52Þ

FIG. 6. Top to bottom: zero-mode (Σzm
1 ) and quenched (Σq

1)
contributions to the chiral condensate, their sum (Σqþzm

1 ¼
Σq
1 þ Σzm

1 ), and dynamical contribution (Σd
1) for Nf ¼ 2 and θ ¼

0 as a function of the rescaled quark masses u1 and u2. The sum of
all contributions, Σtot

1 ¼ Σzm
1 þ Σq

1 þ Σd
1 (bottom), shows a dis-

continuity at u1 þ u2 ¼ 0. The subscript 1 of Σ indicates that the
condensate corresponds to the first quark.
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The spectral density at fixed θ is given by

ρðx; u; θÞ ¼ 1

eu cos θ
X
ν

eiνθIνðuÞρνðx; uÞ: ð53Þ

In the previous section we already obtained the zero-mode
part and the quenched part of the spectral density; see
Eqs. (36) and (38), respectively. Explicitly, the zero-mode
part reads

ρzmðx;u;θÞ¼ δðxÞ⨍ π

−π

dφ
2π

1−eu½cosðθ−φÞ−cosθ�

2sin2 φ
2

¼ δðxÞu⨍ π

−π

dφ
2π

eu½cosðθ−φÞ−cosθ� sinðφ−θÞcotφ
2
;

ð54Þ
where the second line follows after partial integration. The
quenched part is equal to

ρqðx; u; θÞ ¼
Z

π

−π

dφ
2π

J1ð2jxj sin φ
2
Þ

2 sin φ
2

eu½cosðθ−φÞ−cos θ�: ð55Þ

The dynamical part at fixed ν is given by [23,24]

ρdνðx;uÞ¼
−jxj

x2þu2

�
xJνðxÞJνþ1ðxÞþu

Iνþ1ðuÞ
IνðuÞ

J2νðxÞ
	
:

ð56Þ
After performing the sums over ν in Eq. (21) with the help of
Eq. (A12) we obtain for the dynamical part at fixed θ

ρdðx; u; θÞ

¼ −
jxj

x2 þ u2

Z
π

−π

dφ
2π

eu½cosðθ−φÞ−cos θ�

×

�
x sin

φ

2
J1

�
2x sin

φ

2

�
þ u cosðθ − φÞJ0

�
2x sin

φ

2

�	
:

ð57Þ
Note that the imaginary part resulting from (A12) is the
integral of a total derivative and therefore vanishes.
Moreover, the result has to be real since the expression
(56) is invariant under ν ↔ −ν, which can be shown using
the recursion relations (C1) and (C2) of Bessel functions.
Adding the dynamical part to the quenched part and

performing some simplifications, the nonzero-mode part of
the density at fixed θ is given by

ρnzmðx; u; θÞ ¼ jxj
x2 þ u2

Z
π

−π

dφ
2π

eu½cosðθ−φÞ−cos θ�

×

�
ðu2 þ x2 cosφÞ J1ð2x sin

φ
2
Þ

2x sin φ
2

− u cosðθ − φÞJ0
�
2x sin

φ

2

�	
; ð58Þ

which for θ ¼ 0 was already obtained in [11,12].

In Fig. 7 we show the spectral density of the nonzero
modes at fixed θ for rescaled quark masses u ¼ 0.5 and
u ¼ 2. At nonzero θ the amplitude of the oscillations
increases exponentially with u. The only exception is
θ ¼ π, where the spectral density is well behaved for a
large negative mass but increases exponentially with a
positive mass u; see the discussion prior to Eq. (5).
For large mass u, a saddle-point analysis of Eq. (58)

shows that the spectral density behaves as

ρnzmðx; u; θÞ ≈
juj≫1

ejuj−u cos θ
J1ð2jxj sin θ0

2
Þffiffiffiffiffiffiffiffiffiffiffi

8πjujp
sin θ0

2

ð59Þ

with θ0 ¼ θ þ ½1 − signðuÞ�π=2. When the exponent van-
ishes, i.e., for θ ¼ 0 with positive mass or θ ¼ π with
negative mass, the asymptotic expansion is still valid,
resulting in

ρnzmðx; u; 0Þ ≈
juj≫1 jxjffiffiffiffiffiffiffiffiffiffiffi

8πjujp : ð60Þ

B. Chiral condensate

In this subsection we use Eq. (27) to compute the chiral
condensate for one flavor and show that it is mass
independent. Here and in Sec. VI C, the valence quark
mass û is set equal to the sea quark mass u.
The sum of the zero-mode and quenched contributions

was already computed in Eq. (41). It is given by

FIG. 7. Microscopic spectral density (58) of the one-flavor
theory as a function of the θ angle for the two rescaled masses
u ¼ 0.5 and u ¼ 2. The oscillations become stronger with
increasing θ and u and eventually yield an exponentially large
spectral density. The reason for this divergence is the nonpositive
statistical weight due to the θ angle.
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Σzmðu; θÞ
Σ

þ Σqðu; θÞ
Σ

¼ ⨍ π

−π

dφ
2π

�
1

2usin2 φ
2

−
K1ð2ju sin φ

2
jÞ

signðuÞj sinðφ
2
Þj
eu cosðθ−φÞ

eu cos θ

	
: ð61Þ

The contribution from the dynamical part of the density
follows from Eqs. (27) and (57) using Eqs. (C10) and (C12),

Σdðu; θÞ
Σ

¼ −2
Z

π

−π

dφ
2π

eu cosðθ−φÞ

eu cos θ

�
usin2

φ

2
K0

�
2





u sinφ2





�

þ




u sinφ2





 cosðθ − φÞK1

�
2





u sinφ2





�	

: ð62Þ

Since the leading asymptotic behavior of the Kν Bessel
functions [see Eq. (45)] does not depend on the index, we can
use the arguments of Sec. V to show that there are no
exponentially increasing contributions from the dynamical
part. It is noteworthy that this argument holds for an arbitrary
number of flavors Nf. Adding the last two equations we
obtain the total chiral condensate

Σðu; θÞ
Σ

¼ ⨍ π

−π

dφ
2π

�
1

2usin2 φ
2

−
eu cosðθ−φÞ

eu cos θ

×
�
uK2

�
2





u sinφ2





�
− u cosφK0

�
2





u sinφ2





�

þ 2





u sinφ2




 cosðθ − φÞK1

�
2





u sinφ2





�	�

;

ð63Þ

where we used (C4). Using the recursion relations (C4) and
(C5), the Bessel function K2 can be rewritten as

K2

�
2





u sinφ2





�

¼ − cosφK0

�
2





u sinφ2





�
− 2

juj sign
�
sin

φ

2

�

×
∂
∂φ
�
cos

φ

2
K1

�
2





u sinφ2





�	

: ð64Þ

Then the derivative can be integrated by parts, where the
boundary terms of the principal-value integral vanish. Hence
we have

Σðu; θÞ
Σ

¼ 2⨍ π

−π

dφ
2π

eu cosðθ−φÞ

eu cos θ

�
u cosφK0

�
2





u sinφ2





�

− jujsign
�
sin

φ

2

�
sin

�
θ −

φ

2

�
K1

�
2





u sinφ2





�	

:

ð65Þ
To show that the principal-value integral is indeed equal to
cos θ [cf. Eq. (7)], we first note that for u ¼ 0 we indeed
obtain

Σðu ¼ 0; θÞ
Σ

¼ −⨍ π

−π

dφ
2π

sinðθ − φ
2
Þ

sin φ
2

¼ cos θ; ð66Þ

where we used the asymptotics K1ðjxjÞ ≈ 1=jxj for jxj ≪ 1.
In the second step we take the mass derivative of the chiral
condensate, which is an integral of a total derivative and thus
vanishes,

d
du

Σðu; θÞ

¼ 2⨍ π

−π

dφ
2π

eu cosðθ−φÞ

eu cos θ

�
cosφK0

�
2





u sinφ2





�
− 2





u sinφ2




 cosφK1

�
2





u sinφ2





�
þ 2u sin

φ

2
sin

�
θ −

φ

2

�

× K0

�
2





u sinφ2





�
þ 2 sin

�
θ −

φ

2

�
sin

φ

2

�
u cosφK0

�
2





u sinφ2





�
− jujsign

�
sin

φ

2

�
sin

�
θ −

φ

2

�
K1

�
2





u sinφ2





��	

¼ 2

Z
π

−π

dφ
2π

d
dφ

eu cosðθ−φÞ

eu cos θ

�
sinφK0

�
2





u sinφ2





�
− 2signðuÞ sin θ





 sinφ2




K1

�
2





u sinφ2





�	

¼ 0: ð67Þ

Therefore we conclude that Σðu; θÞ does not depend on u so that

Σðu; θÞ
Σ

¼ cos θ: ð68Þ

The derivation above also shows that the nonzero-mode contribution to the chiral condensate can be simplified to

Σnzmðu; θÞ
Σ

¼ cos θ −
Σzmðu; θÞ

Σ
¼ cos θ − ⨍ π

−π

dφ
2π

eu cosðθ−φÞ

eu cos θ
sinðφ − θÞ cotφ

2
; ð69Þ

which follows from Eq. (54).
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The zero-mode and nonzero-mode contributions to the
chiral condensate are plotted as a function of u in Fig. 8 for
θ ¼ 0 and π=2. It becomes obvious that when a nontrivial
phase is present, the contributions of both the zero and
the nonzero modes grow exponentially with the volume
(included in u), but that they add up to a finite result that
gives a mass-independent chiral condensate.

C. Thermodynamic limit

We first consider the case when there is no sign problem,
i.e., cos θ ¼ signu. For this case the thermodynamic limit
u → ∞ can readily be derived for the zero-mode contri-
bution [5] [Eq. (7.3)],

ρzmðx; u > 0; θ ¼ 0Þ ¼ δðxÞjuje−juj½I0ðjujÞ þ I1ðjujÞ�

≈
juj≫1

δðxÞ
ffiffiffiffiffiffiffiffi
2juj
π

r
;

Σzmðu > 0; θ ¼ 0Þ
Σ

≈
juj≫1

ffiffiffiffiffiffiffiffi
2

πjuj

s
: ð70Þ

Therefore the contribution of the zero modes to the chiral
condensate behaves like 1=

ffiffiffiffiffiffijujp
. This can be seen in the

left plot of Fig. 8 for positive masses. For u < 0 and θ ¼ π
we find the same asymptotical spectral density as in
Eq. (70), but the chiral condensate differs by a minus sign.
We now turn to the general case with a sign problem.

In this case we have to perform a saddle-point analysis for
the integral determining the level density and the chiral
condensate. This is most easily done in Eq. (54). Expanding
φ about the point where the exponent is maximized, namely
cosðφ − θÞ ¼ sign u, we obtain

ρzmðx; u; θÞ ¼ δðxÞuΣzmðu; θÞ=Σ;
Σzmðu; θÞ

Σ
≈

juj≫1
−

ejujð1−signðuÞ cos θÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjuj3

p
ðsignðuÞ − cos θÞ : ð71Þ

Here, we notice the main difference between the sign-
quenched result (70) and the result with a sign problem.
The contribution of the zero modes to the chiral condensate
vanishes as 1=

ffiffiffiffiffiffijujp
in the sign-quenched case, while it

diverges exponentially regardless of how small the angle
θ þ arg u is. In particular, the divergence is strongest when
θ þ arg u ¼ �π, which reflects the sign problem observed
in the difference of the free energies (15). Additionally,
the sign of the contribution of the zero modes to the chiral
condensate changes with the sign of the quark mass. Its
behavior for θ ¼ 0 and θ ¼ π=2 is shown in Fig. 8.
Whether a sign problem is present or not present, the

contribution of the nonzero modes to the chiral condensate
is equal to the difference Σ cos θ − Σzm.
We now consider the thermodynamic limit of the

dynamical part Σd [see Eq. (62)], which stays finite for
large masses. Its asymptotic behavior is worked out in
Appendix D, resulting in

Σdðu; θÞ
Σ

≈
juj≫1

8<
:

− 1
2ucos2θ ; u cos θ > 0;

2 cos θ; u cos θ < 0;

− signðuÞΓð5=6Þffiffi
π

p juj1=3 ; u cos θ ¼ 0;

ð72Þ

where Γð5=6Þ in the last case denotes the Γ function.
Finally, to identify the thermodynamic limit of the

quenched contribution we can combine the relation
Σðu; θÞ ¼ Σzmðu; θÞ þ Σqðu; θÞ þ Σdðu; θÞ ¼ Σ cos θ with
the results (70) through (72).

VII. TWO-FLAVOR QCD

In the first subsection we compute the two-flavor spectral
density at fixed θ angle, which is used in the second
subsection to compute the various contributions to the
chiral condensate.

A. Two-flavor Dirac spectrum at fixed θ angle

The spectral density at fixed θ angle is again given by
Eqs. (21) and (22). The two-flavor partition function at
fixed θ angle has already been given in (17). At fixed
topological charge ν it can be written as [27]

Zνðu⃗Þ ¼ 2
u1Iνþ1ðu1ÞIνðu2Þ − u2Iνþ1ðu2ÞIνðu1Þ

u21 − u22
: ð73Þ

The zero-mode contribution to the spectral density is
determined by Eq. (36) with Zðu⃗; θ − φÞ as in Eq. (17).
Next we evaluate the nonzero-mode contribution to the

spectral density. At fixed ν the spectral density is given
by [23,24]

FIG. 8. Chiral condensate for one-flavor QCD and its splitting
into the contributions from zero and nonzero modes. Results are
given for θ ¼ 0 (left) and θ ¼ π=2 (right). While for positive
mass and vanishing θ angle the contributions behave algebrai-
cally, they increase exponentially with the volume otherwise,
regardless of whether the sign/phase comes from the mass or a
nonvanishing θ angle.
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ρνðx; u⃗Þ ¼
jxj

Zνðu⃗Þðx2 þ u21Þðx2 þ u22Þðu22 − u21Þ












Jν−1ðxÞ=x JνðxÞ Iνð−u1Þ Iνð−u2Þ
JνðxÞ xJνþ1ðxÞ u1Iνþ1ð−u1Þ u2Iνþ1ð−u2Þ

xJνþ1ðxÞ x2Jνþ2ðxÞ u21Iνþ2ð−u1Þ u22Iνþ2ð−u2Þ
x2Jνþ2ðxÞ x3Jνþ3ðxÞ u31Iνþ3ð−u1Þ u32Iνþ3ð−u2Þ











; ð74Þ

where j · j denotes the determinant of the matrix. The determinant in Eq. (74) can be rewritten as










x−1Jν−1ðxÞ JνðxÞ Iνð−u1Þ Iνð−u2Þ
JνðxÞ xJνþ1ðxÞ u1Iνþ1ð−u1Þ u2Iνþ1ð−u2Þ

−2JνðxÞ 0 ðu21 þ x2ÞIνð−u1Þ ðu22 þ x2ÞIνð−u2Þ
−2xJνþ1ðxÞ 0 u1ðu21 þ x2ÞIνþ1ð−u1Þ u2ðu22 þ x2ÞIνþ1ð−u2Þ











ð75Þ

by employing the recurrence relations (C1) and (C2) and
the properties of the determinant. In this form the terms
involving the upper left 2 × 2 block yield the quenched
level density (26). The remaining terms represent the
dynamical part and can be simplified to

ρdνðx; u⃗Þ

¼−
2jxj

Zνðu⃗Þðx2þu21Þðx2þu22Þ
×fxJνðxÞJνþ1ðxÞ½u1Iνþ1ðu1ÞIνðu2Þþu2Iνþ1ðu2ÞIνðu1Þ�
þx2J2νþ1ðxÞIνðu1ÞIνðu2Þþu1u2J2νðxÞIνþ1ðu1ÞIνþ1ðu2Þg

ð76Þ

by employing the symmetry Iνð−uÞ ¼ ð−1ÞνIνðuÞ. Note
that the dynamical part ρdν is again symmetric in ν → −ν
because ρν and ρ

q
ν are, so that the sum including the phases

eiνθ yields a real function.
Now we sum over ν as shown in (21). The quenched

contribution ρq was already obtained in (38) with the two-
flavor partition function Zðu1; u2; θÞ; see Eq. (17). The
sum for the dynamical part is more involved, and the
required sums over products of four Bessel functions are
worked out in Eq. (A13). Adding the quenched contri-
bution, this results in the total spectral density of the
nonzero modes,

ρnzmðx; u⃗; θÞ

¼ jxj
Zðu⃗; θÞ

Z
π

−π

dφ
2π

�
J1ð2x sin φ

2
Þ

2x sin φ
2

Zðu⃗; θ − φÞ

þ xð2u1u2eiðφ−θÞ þ u22 þ u21ÞJ1ð2x sin φ
2
Þ

ðx2 þ u21Þðx2 þ u22Þiei
φ
2

Zðu⃗; θ − φÞ

−
2ðu1u2eiðφ−θÞ þ x2e−iφÞJ0ð2x sin φ

2
Þ

ðx2 þ u21Þðx2 þ u22Þ
ζ0ðu⃗; θ − φÞ

	
ð77Þ

FIG. 9. Microscopic level density for two flavors as a function
of the eigenvalue position x and of the θ angle for various quark
masses u1 and u2. When increasing the quark masses the
oscillations become so strong that the level density loses its
positivity.
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with

ζ0ðu⃗; αÞ ¼ I0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21 þ u22 þ 2u1u2 cos α
q 


: ð78Þ

We recognize the first term as the contribution of the
quenched part of the spectral density discussed in Sec. V.
The imaginary part of the integral vanishes, which follows
from the fact that the imaginary part resulting from
applying Eq. (A13) yields a total derivative.
The level density of the nonzero modes, ρnzm ¼ ρq þ ρd,

looks quite complicated. It becomes more presentable when
both masses are equal and the θ angle vanishes,

ρnzmðx; u; u; θ ¼ 0Þ

¼ jxuj
I1ð2jujÞ

Z
π

−π

dφ
π

�
J1ð2x sin φ

2
Þ

2x sin φ
2

×
I1ð2u cos φ2Þ
2u cos φ

2

− cosφ
J0ð2x sin φ

2
ÞI0ð2u cos φ2Þ

x2 þ u2

	
: ð79Þ

The behavior of the level density ρnzm is shown in Fig. 9 for
various masses. As in the one-flavor case, the amplitude of
the level density at nonzero θ angle increases exponentially
with the volume, and its oscillations have a period of
Oð1=VÞ. At nonzero θ angle, oscillations of this type can
shift the original discontinuity of the chiral condensate at
m ¼ 0 for fixed ν.
For large mass u2 we regain the level density

ρnzmNf¼1ðx; u1; θÞ. To obtain this limit we have to approximate

the modified Bessel functions by

Iν
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21 þ u22 þ 2u1u2 cosφ
q 


≈
eju2jþsignðu2Þu1 cosφffiffiffiffiffiffiffiffiffiffiffiffiffi

2πju2j
p : ð80Þ

In contrast, when taking the limit u2 → 0, only the sector
of zero topological charge contributes to the partition
function, resulting in the spectral density ρnzmν¼0ðx; u1; 0Þ.
Because of flavor-topology duality [28] for massless
quarks in the microscopic limit (which is most easily
understood in terms of the joint eigenvalue distribution
of the chiral random matrix theory), this can be written
as ρnzmν¼Nf¼1ðx; u ¼ u1Þ.

B. Chiral condensate

In this subsection we evaluate the chiral condensate from
the spectral density using Eq. (27). We only consider the
chiral condensate of the first quark (which we denote byΣ1);
i.e., we set û ¼ u1. The chiral condensate Σ2 of the second
quark can then be obtained by interchanging u1 ↔ u2.
The zero-mode and quenched contributions to the chiral

condensate are obtained by substituting the two-flavor

result (17) for the partition function in Eqs. (37), (40),
and (41). We do not repeat the corresponding expressions
here. As in the one-flavor case, Σzm

1 ðu⃗; θÞ grows exponen-
tially in the quark masses for θ ≠ 0 or for θ ¼ 0 and
u1u2 < 0. This can be seen nicely in Fig. 10. When the sign
problem is absent, Σzm

1 remains bounded. For vanishing
θ angle we can use −1=2 sin2 φ

2
¼ ∂φ cot

φ
2
and integrate

Eq. (37) by parts such that the integral loses its singularity
and becomes an ordinary integral,

Σzm
1 ðu⃗; 0Þ
Σ

¼ 2u2ju1 þ u2j
I1ðju1 þ u2jÞ

Z
π

−π

dφ
2π

cos2
φ

2

×
I2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cosφ

p
Þ

u21 þ u22 þ 2u1u2 cosφ
: ð81Þ

We employed Eq. (C3) to obtain this result. A similar result
can be derived for θ ¼ π. When the masses are equal, the
integral can be expressed in terms of a hypergeometric
function.
The calculation of the dynamical contribution to the

chiral condensate is performed in Appendix B and yields

FIG. 10. Zero-mode contribution to the chiral condensate for
two flavors as a function of the two quark masses u1 and u2. For
vanishing θ angle we notice two quadrants where this contribu-
tion does not grow exponentially in the masses. For θ ∈ ð0; πÞ we
have only two lines, given by u1u2 ¼ 0, where this contribution
remains finite in the limit of large masses.
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Σd
1ðu⃗; θÞ
Σ

¼ u1

Z
π

−π

dφ
π

��
2u1u2 sin

φ

2
sin

�
φ

2
− θ

�
− ðu21 þ u22Þsin2

φ

2

	�
K0ð2ju1 sin φ

2
jÞ

u22 − u21

þ ju2jK1ð2ju2 sin φ
2
jÞ − ju1jK1ð2ju1 sin φ

2
jÞ

ðu22 − u21Þ2j sin φ
2
j

	
Zðu⃗; θ − φÞ
Zðu⃗; θÞ

þ
�



 sinφ2





signðu1Þ u1 cosφ − u2 cosðθ − φÞ
u22 − u21

K1

�
2





u1 sinφ2





�

þ ðu1u2 cosðθ − φÞ − u22 cosφÞ
K0ð2ju1 sin φ

2
jÞ − K0ð2ju2 sin φ

2
jÞ

ðu22 − u21Þ2
	
2ζ0ðu⃗; θ − φÞ

Zðu⃗; θÞ
�
: ð82Þ

The limit u2 → ∞ yields the one-flavor result (62), i.e.,
Σd
1;Nf¼2ðu1; u2 ¼ ∞; θÞ ¼ Σd

Nf¼1ðu1; θÞ. This can readily

be checked because only two terms of the integral are of
leading order and the Bessel function Iν can be approxi-
mated as in Eq. (80). In the limit u1 → ∞ (at fixed u2) one
can show that Σd

1 is proportional to 1=u1.
We emphasize that Σd

1 remains finite for large masses.
The reason is the same as discussed in Sec. V, namely that
the exponents of the Kν and of the partition function cancel.
Of course this should happen because the total chiral
condensate, which can be obtained from the mass deriva-
tive (5) of the two-flavor partition function,

Σ1ðu⃗; θÞ
Σ

¼ d
du1

logZðu⃗; θÞ ¼ u1 þ u2 cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cos θ

p
×
I2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cos θ

p
Þ

I1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cos θ

p
Þ ; ð83Þ

is finite. Although the expression for Σ1 is quite compli-
cated when derived via Eqs. (41) and (82), we checked
numerically that it agrees with Eq. (83). (We did not
succeed to give a direct analytical proof.) The behavior of
Σ1 is illustrated in Fig. 11 for several masses at the two
angles θ ¼ 0 and π=2. It changes sign at u1=u2 ¼ − cos θ,
which becomes the Dashen point [19,29] for θ ¼ 0, π when
taking the thermodynamic limit.

In Fig. 12 we show the decomposition of the chiral
condensate for θ ¼ 0 with one mass kept fixed at u2 ¼ 20.
The sum of the quenched part and the zero-mode part,
Σq þ Σzm, results in a chiral condensate with a disconti-
nuity in the thermodynamic limit at u1 ¼ 0. Both parts
become exponentially large in the volumewhen the product
of the quark masses is negative, but their sum is finite. The
dynamical part of the spectral density results in a chiral
condensate with a discontinuity at u1 ¼ 0 that cancels the
discontinuity of Σq þ Σzm and creates a new discontinuity
at u1 ¼ −u2.

C. Thermodynamic limit

Before we turn to the general setting, we first consider
the cases θ ¼ 0 with u1u2 > 0 and θ ¼ π with u1u2 < 0, in
which there is no sign problem. In the thermodynamic
limit, the chiral condensate becomes

Σ1ðu⃗; θÞ
Σ

¼ signðu1Þ
I2ðju1j þ ju2jÞ
I1ðju1j þ ju2jÞ

≈
ju1j;ju2j≫1

signðu1Þ ð84Þ

FIG. 11. Chiral condensate of the first quark in the two-flavor
theory [see Eq. (83)] as a function of the first quark mass u1
rescaled with respect to the fixed second quark mass u2. The
black curve is the thermodynamic limit. The jump in the left plot
(θ ¼ 0) is the Dashen point [19,29], which corresponds to a
first-order phase transition.

FIG. 12. Mass dependence of the various contributions to the
chiral condensate for two-flavor QCD at θ ¼ 0. The chiral
condensate of the first quark is shown as a function of
u1 ¼ m1VΣ, while the second mass is kept fixed at u2 ¼ 20.
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because the leading asymptotic behavior of the Bessel
functions does not depend on the index. Hence, its behavior
is not different from the one-flavor case. The difference
between the one- and two-flavor theory shows up in the
zero-mode contribution, which is

Σzm
1 ðu⃗; θÞ
Σ

≈
ju1j;ju2j≫1

signðu1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ju2j
πju1jðju1j þ ju2jÞ

s
: ð85Þ

To obtain this result for θ ¼ 0 and u1u2 > 0 we have
performed a saddle-point expansion of the integrand (81)
about the point φ ¼ 0. Hence, we again have an algebraic
dependence on the quark masses, which has a similar
behavior as in the one-flavor case when both masses are
equal, Σzm

1 ðju1j ¼ ju2j ¼ u; 0Þ=Σ ≈ 1=
ffiffiffiffiffiffi
πu

p
; cf. Eq. (70).

The situation changes drastically when there is a sign
problem, i.e., cos θ ≠ signðu1u2Þ. In this case the zero-
mode contribution again exhibits exponential behavior,

Σzm
1 ðu⃗; θÞ
Σ

≈
1ffiffiffiffiffiffi

8π
p

sin2½θ
2
þ ð1 − signðu1u2ÞÞ π4�

1

u1

×
ðu21 þ u22 þ 2u1u2 cos θÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiju1u2j
p ðju1j þ ju2jÞ

× eju1jþju2j−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1
þu2

2
þ2u1u2 cos θ

p
: ð86Þ

To obtain this result we performed a saddle-point approxi-
mation of Eq. (37) about the point φ ¼ θþ
ð1 − signðu1u2ÞÞπ=2. Note that the derivation of (86) is
only valid for both ju1j ≫ 1 and ju2j ≫ 1 and cannot be
used in the chiral limit of any of the quark masses. For

signðu1u2Þ > 0 and θ → π, the exponential divergence in
Eq. (86) is given by expð2 minfju1j; ju2jgÞ, which changes
drastically at the point ju1j ¼ ju2j from expð2ju1jÞ to
expð2ju2jÞ.
The total chiral condensate still behaves algebraically in

the masses,

Σ1ðu⃗; θÞ
Σ

≈
ju1j;ju2j≫1 u1 þ u2 cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21 þ u22 þ 2u1u2 cos θ
p

¼ signðu2Þ
yþ cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 1þ 2y cos θ
p with y ¼ u1

u2

¼
�
signðu1 þ u2Þ; θ ¼ 0;

signðu1 − u2Þ; θ ¼ π:
ð87Þ

Apart from the factor signðu2Þ, the thermodynamic limit of
the chiral condensate is a function of u1=u2 only and is
shown in Fig. 13 for several values of θ. It changes sign at
u1=u2 ¼ − cos θ. For θ ≠ 0, π this transition is smooth, but
for θ ¼ 0 or θ ¼ π (corresponding to the Dashen point
[19,29]) it is discontinuous.

VIII. CONCLUSIONS

At nonzero θ angle, the discontinuity of the chiral
condensate in general does not coincide with the support
of the Dirac spectrum. In particular, for one-flavor QCD
there is no discontinuity at zero quark mass, and for two-
flavor QCD with quark masses m1 and m2, the chiral
condensate of the first quark does not have a discontinuity
at m1 ¼ 0 but rather at m1 ¼ −m2. We have analyzed this
behavior in terms of the contribution from the zero
modes, the contribution of the mass independent part
of the Dirac spectrum (the “quenched” part), and the
contribution of the remainder of the Dirac spectrum
which is sensitive to the fermion determinant (at fixed
topological charge).
At fixed θ angle, we have obtained a compact general

formula for the contribution of the zero modes and of the
quenched part of the Dirac spectrum to the chiral con-
densate. Both formulas are valid for any number of flavors
and are given by an integral over a flavor independent
kernel times the ratio of Nf flavor partition functions. The
formula for the zero modes is completely general, while
the expression for the quenched part has been obtained in
the microscopic domain of QCD but is also valid for any
number of flavors. Both contributions diverge exponen-
tially with the volume at nonzero θ angle, but the divergent
contributions cancel identically when added, leaving a
result that is finite in the thermodynamic limit. The deeper
reason for the cancellation based on general ideas from
spectral flow and topology is that when we have jνj zero
modes, the spectrum near zero is depleted by jνj modes,
half of them with positive eigenvalues and the
other half with negative eigenvalues. This depletion gives

FIG. 13. Thermodynamic limit of the chiral condensate (87) as
a function of the first quark mass u1 for several θ angles and
u2 > 0. The chiral condensate depends only on the ratio u1=u2 in
this particular limit. The Dashen point exists only for θ ¼ 0, π and
shows up as a jump in the chiral condensate, reflecting the nature
of a first-order phase transition.
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a contribution to the chiral condensate with the opposite
sign. For large u ¼ mVΣ it does not matter whether the
modes are exactly at zero or are close to zero. The fermion
determinant results in an additional eigenvalue repulsion
from zero, which does not depend on ν, and the contribu-
tion to the chiral condensate due to this modification of the
Dirac spectrum is expected to remain finite in the thermo-
dynamical limit.
For one and two flavors, we have also obtained exact

analytical expressions for the dynamical part of the Dirac
spectrum and the chiral condensate in the microscopic or ε
domain of QCD which confirm the above picture.
For θ ≠ 0 both the quenched and the dynamical con-

tributions to the spectral density as well as their sum are
strongly oscillating with an amplitude that diverges expo-
nentially with the volume and a period on the order of 1=V.
From QCD at nonzero chemical potential we have learned
that this behavior may cancel the discontinuity of the chiral
condensate and shift it to a different point. The sum of the
quenched part and the zero mode part retain the disconti-
nuity at m1 ¼ 0, but the oscillations of the dynamical part
cancels this discontinuity and move it tom1 ¼ −m2 for two
flavors or to infinity for one flavor. The effect of the zero
modes is to create a gap at zero but, in the quenched
approximation, the position of the remaining eigenvalues
does not depend very much on ν. Since the condensate is
obtained in the thermodynamical limit, it is not surprising
that the quenched contributions to the chiral condensate
have a discontinuity at m1 ¼ 0. We thus conclude that the
determinant introduces correlations in the Dirac spectrum
that cancel the discontinuity at m1 ¼ 0 and move it to
m1 ¼ −m2. Currently we do not have a good understanding
of the nature of these correlations, but hope to return to this
issue in future work.
We have also seen that the correct computation of the

chiral condensate at nonzero θ angle requires a subtle
balance between zero and nonzero modes. Even the
slightest incompatibilities will give results that are com-
pletely off. This will make lattice QCD simulations at
nonzero θ angle a formidable, and perhaps impossible, task,
and we have to rely on analytical work to make further
progress.
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APPENDIX A: RESUMMATION OF PRODUCTS
OF BESSEL FUNCTIONS

To compute the sums of Bessel functions needed in the
main text we consider the sum

ΞðNÞ
a ðθ; u⃗Þ ¼

X∞
ν¼−∞

eiνθ
YN
j¼1

IνþajðujÞ; ðA1Þ

where Iν is the modified Bessel function of the first kind.
The indices a ¼ ða1;…; aNÞ are chosen to be integers
while the masses u⃗ ¼ ðu1;…; uNÞ can be arbitrary, even
complex valued. Indeed we need imaginary masses u⃗ to
generate the Bessel functions of the first kind via the
relation IνðizÞ ¼ iνJνðzÞ.
Using an integral representation of the Bessel

function we can sum over ν employing the relationP∞
ν¼−∞ eiνφ ¼ 2πδðφÞ. Note that the argument of the

Dirac delta function has to be taken modulo 2π, which
we omit. This sum yields

ΞðNÞ
a ðθ; u⃗Þ ¼ 2π

YN
j¼1

Z
π

−π

dφj

2π
eiajφjþuj cosφjδ

�XN
k¼1

φk þ θ

�
:

ðA2Þ

The simplest case is N ¼ 1, for which

Ξð1Þ
a1 ðθ; u1Þ ¼ e−ia1θeu1 cos θ: ðA3Þ

For a ¼ 0 this corresponds to the one-flavor partition
function

Zðu1; θÞ ¼ Ξð1Þ
0 ðθ; u1Þ ¼ eu1 cos θ: ðA4Þ

For N > 1, we define new variables ϑ1 ¼ φ1 and ϑj ¼
φj þ ϑj−1 for j ¼ 2;…; N. This allows us to evaluate the
delta function, and we end up with a chain of integrals,

ΞðNÞ
a ðθ; u⃗Þ ¼ e−iaNθ

YN−1

j¼1

Z
π

−π

dϑj
2π

eiðaj−ajþ1Þϑj

× eu1 cosϑ1þuN cosðθþϑN−1Þþ
P

N−1
k¼2

uk cosðϑk−ϑk−1Þ:

ðA5Þ

For general even N we set N ¼ 2n with n ∈ N and
integrate over ϑ1; ϑ3;…; ϑ2n−1. This again produces
Bessel functions,
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Ξð2nÞ
a ðθ; u⃗Þ¼ e−ia2nθ

Yn−1
j¼1

Z
π

−π

dϑ2j
2π

eiða2j−a2jþ1Þϑ2j
�
u1þu2eiϑ2

u1þu2e−iϑ2

�ða1−a2Þ=2
Ia1−a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21þu22þ2u1u2 cosϑ2

q �

×

�
u2n−1eiϑ2n−2 þu2ne−iθ

u2n−1e−iϑ2n−2 þu2neiθ

�ða2n−1−a2nÞ=2
Ia2n−1−a2n

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u22n−1þu22nþ2u2n−1u2n cosðϑ2n−2þθÞ

q �

×
Yn−2
k¼1

�
u2kþ1eiϑ2k þu2kþ2eiϑ2kþ2

u2kþ1e−iϑ2k þu2kþ2e−iϑ2kþ2

�ða2kþ1−a2kþ2Þ=2
Ia2kþ1−a2kþ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u22kþ1þu22kþ2þ2u2kþ1u2kþ2 cosðϑ2k−ϑ2kþ2Þ

q 

:

ðA6Þ

In the case of N ¼ 2, which is needed for the partition function of two flavors and can also be used for the quenched level
density, we obtain

Ξð2Þ
a1;a2ðθ; u1; u2Þ ¼ e−iða1þa2Þθ=2

�
u1eiθ þ u2
u2eiθ þ u1

�ða1−a2Þ=2
Ia1−a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cos θ

q �
: ðA7Þ

Then the two-flavor partition function is

Zðu1; u2; θÞ ¼ 2
u2Ξ

ð2Þ
0;1ðθ; u1; u2Þ − u1Ξ

ð2Þ
1;0ðθ; u1; u2Þ

u22 − u21
¼ 2I1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cos θ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21 þ u22 þ 2u1u2 cos θ
p : ðA8Þ

For N ¼ 4, which is needed for the level density with two flavors, the result is a single integral,

Ξð4Þ
a ðθ; u1; u2; u3; u4Þ ¼ e−ia4θ

Z
π

−π

dφ
2π

eiða2−a3Þφ
�
u1 þ u2eiφ

u1 þ u2e−iφ

�ða1−a2Þ=2�u3eiφ þ u4e−iθ

u3e−iφ þ u4eiθ

�ða3−a4Þ=2

× Ia1−a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cosφ

q �
Ia3−a4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u23 þ u24 þ 2u3u4 cosðφþ θÞ

q �
: ðA9Þ

For general oddN we setN ¼ 2nþ 1with n ∈ N and again integrate over ϑ1; ϑ3;…; ϑ2n−1. This leads to a slightly different
result,

Ξð2nþ1Þ
a ðθ; u⃗Þ¼ e−ia2nþ1θ

×
Yn
j¼1

Z
π

−π

dϑ2j
2π

eiða2j−a2jþ1Þϑ2jeu2nþ1 cosðθþϑ2nÞ
�
u1þu2eiϑ2

u1þu2e−iϑ2

�ða1−a2Þ=2
Ia1−a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21þu22þ2u1u2 cosϑ2

q �

×
Yn−1
k¼1

�
u2kþ1eiϑ2k þu2kþ2eiϑ2kþ2

u2kþ1e−iϑ2k þu2kþ2e−iϑ2kþ2

�ða2kþ1−a2kþ2Þ=2
Ia2kþ1−a2kþ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u22kþ1þu22kþ2þ2u2kþ1u2kþ2 cosðϑ2k−ϑ2kþ2Þ

q 

:

ðA10Þ

For N ¼ 3, which is employed for the level density with one flavor, the result is a single integral,

Ξð3Þ
a ðθ; u1; u2; u3Þ ¼ e−ia3θ

Z
π

−π

dφ
2π

eiða2−a3Þφeu3 cosðθþφÞ
�
u1 þ u2eiφ

u1 þ u2e−iφ

�ða1−a2Þ=2
Ia1−a2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cosφ

q �
: ðA11Þ

The results above simplify further for the specific sums we are considering. For the contribution of the nonzero modes to the
two-flavor level density we need N ¼ 3 and 4 with u1 ¼ u2 ¼ ix and θ → θ − π, i.e.,

X∞
ν¼−∞

eiνθJνþa1ðxÞJνþa2ðxÞIνþa3ðuÞ ¼ e−iπða1þa2Þ=2Ξð3Þ
a ðθ − π; ix; ix; uÞ

¼ ð−1Þa2−a3e−ia3θ
Z

π

−π

dφ
2π

eiða1þa2−2a3Þφ=2e−u cosðθþφÞJa1−a2

�
2x cos

φ

2

�
ðA12Þ
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and

X∞
ν¼−∞

eiνθJνþa1ðxÞJνþa2ðxÞIνþa3ðu1ÞIνþa4ðu2Þ ¼ e−iπða1þa2Þ=2Ξð4Þ
a ðθ − π; ix; ix; u1; u2Þ

¼ ð−1Þa2þa4e−iða3þa4Þθ=2
Z

π

−π

dφ
2π

eiða1þa2−a3−a4Þφ=2
�
u1eiðθþφÞ − u2
u1 − u2eiðθþφÞ

�ða3−a4Þ=2

× Ja1−a2

�
2x cos

φ

2

�
Ia3−a4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 − 2u1u2 cosðθ þ φÞ

q �
: ðA13Þ

APPENDIX B: CALCULATION OF THE CONDENSATE Σd
1 FOR TWO FLAVORS

The dynamical part of the level density is given by Eq. (76). We combine this result with Eq. (27). Thus we have to
evaluate the integral

Σd
1ðu⃗; θÞ ¼

Z
∞

0

dx
2u1

x2 þ u21
ρdðx; u⃗; θÞ

¼ −
2u1

Zðu⃗; θÞ
Z

∞

0

dx
Z

π

−π

dφ
2π

x
ðx2 þ u21Þ2ðx2 þ u22Þ

�
x

�
2u1u2 sin

θ − φ

2
þ ðu22 þ u21Þ sin

φ

2

	
J1

�
2x sin

φ

2

�
Zðu⃗; θ − φÞ

þ 2½x2 cosφþ u1u2 cosðθ − φÞ�J0
�
2x sin

φ

2

�
I0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ 2u1u2 cosðθ − φÞ

q ��
: ðB1Þ

As the first step we perform a partial fraction expansion of the ratios

1

ðx2 þ u21Þ2ðx2 þ u22Þ
¼ 1

u22 − u21

�
1

ðx2 þ u21Þ2
−

1

u22 − u21

1

x2 þ u21
þ 1

u22 − u21

1

x2 þ u22

	
;

x2 cosφþ u1u2 cosðθ − φÞ
ðx2 þ u21Þ2ðx2 þ u22Þ

¼ u1u2 cosðθ − φÞ − u21 cosφ
ðu22 − u21Þðx2 þ u21Þ2

þ u22 cosφ − u1u2 cosðθ − φÞ
ðu22 − u21Þ2ðx2 þ u21Þ

−
u22 cosφ − u1u2 cosðθ − φÞ

ðu22 − u21Þ2ðx2 þ u22Þ
ðB2Þ

for the first and second terms in the integral, respectively.
For the integral over the first term we need the integrals
(C9) and (C10) while for the second term we employ (C11)
and (C12). After some algebra we find Eq. (82).

APPENDIX C: INTEGRALS OVER BESSEL
FUNCTIONS

At several places of our work we need recurrence
relations and other identities of Bessel functions which
can be found in [30,31]. We will briefly summarize those
we need here. The ordinary and modified Bessel functions
of the first kind satisfy the recurrence relations

xðJνþ1ðxÞ þ Jν−1ðxÞÞ ¼ 2νJνðxÞ; ðC1Þ

uðIν−1ðuÞ − Iνþ1ðuÞÞ ¼ 2νIνðuÞ; ðC2Þ

∂y
Iνð ffiffiffi

y
p Þ

yν=2
¼ 1

2

Iνþ1ð ffiffiffi
y

p Þ
yðνþ1Þ=2 : ðC3Þ

The modified Bessel function of the second kind also
satisfies two recursion relations [31],

xðKνþ1ðxÞ − Kν−1ðxÞÞ ¼ 2νKνðxÞ; ðC4Þ

Kνþ1ðxÞ þ Kν−1ðxÞ ¼ −2∂xKνðxÞ: ðC5Þ

Specifically, we have

∂xK0ðaxÞ ¼ −aK1ðaxÞ; ðC6Þ

∂x½xK1ðaxÞ� ¼ −axK0ðaxÞ: ðC7Þ

Moreover we need the integral identities

Z
∞

0

dx
J1ð2xtÞ
x2 þ u2

¼ 1

2tu2
−
signðtÞ
juj K1ð2jtujÞ; ðC8Þ
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Z
∞

0

dx
x2J1ð2xtÞ
x2 þ u2

¼ signðtÞjujK1ð2jtujÞ; ðC9Þ
Z

∞

0

dx
x2J1ð2xtÞ
ðx2 þ u2Þ2 ¼ tK0ð2jtujÞ; ðC10Þ

Z
∞

0

dx
xJ0ð2xtÞ
x2 þ u2

¼ K0ð2jtujÞ; ðC11Þ
Z

∞

0

dx
xJ0ð2xtÞ
ðx2 þ u2Þ2 ¼

jtj
jujK1ð2jtujÞ: ðC12Þ

The first, second, and fourth integrals were also given in
[11], where it was implicitly assumed that t > 0.

APPENDIX D: THERMODYNAMIC LIMIT
OF Σd FOR Nf = 1

In this Appendix we derive Eq. (72). We consider the
RHS of (62), which we denote by I. For large argument
the Bessel functions KνðxÞ can be approximated by
e−x

ffiffiffiffiffiffiffiffiffiffi
π=2x

p
. Therefore, in a saddle-point approximation,

the exponent to be analyzed is

fðφÞ ¼ u cosðθ − φÞ − u cos θ − 2



u sinφ

2





¼ −2




u sinφ
2




�1 − sign
�
u sin

φ

2

�
sin
�
θ −

φ

2

�	
;

ðD1Þ

which is always nonpositive and has a maximum of
fmaxðφÞ ¼ 0. A straightforward analysis shows that for
u cos θ > 0 the maximum is assumed only at φ ¼ 0, while
for u cos θ < 0 it is also assumed at φ̄ ¼ 2θ − ð2kþ 1Þπ,
where k ∈ Z has to be chosen such that φ̄ ∈ ½−π; π�. The
latter is a true saddle point and dominates the integral.
Expansion about φ̄ yields to leading order in juj,

I ≈ 2 cos θ ðif u cos θ < 0Þ: ðD2Þ

For u cos θ > 0 we have to expand about φ ¼ 0. This is
not a true saddle point since the derivative of fðφÞ is
nonzero and discontinuous at this point. Furthermore, for
φ → 0 we cannot use the asymptotic expansion of KνðxÞ.

Since the term involving K0 comes with an additional
factor of sin φ

2
it is subleading and can be dropped. Hence, to

leading order in juj,

I ≈ −2
Z

π

−π

dφ
2π

eu cosðθ−φÞ

eu cos θ





u sinφ2




 cos θK1

�
2





u sinφ2





�

≈ −
cos θ
2πjuj

Z
∞

−∞
dt et sin θ signðuÞjtjK1ðjtjÞ

¼ −
cos θ
πjuj

Z
∞

0

dt coshðt sin θÞtK1ðtÞ

¼ −
cos θ

2jucos3θj ¼ −
1

2ucos2θ
ðif u cos θ > 0Þ; ðD3Þ

where the second line was obtained by transforming φ ¼
t=juj and expanding in t. The integral in the third line
equals π=2ð1 − sin2 θÞ3=2 ¼ π=2j cos θj3.
Finally we consider the case of cos θ ¼ 0. It is straight-

forward to show that the same result for I is obtained for
θ ¼ �π=2 and that the result is odd in u. Hence we only
consider θ ¼ π=2 and u > 0 in the following. For θ → π=2
we have φ̄ → 0; i.e., we again have to expand about φ ¼ 0.
In this case we find for the exponent to leading order in φ

fðφÞ ≈
�
− 1

8
uφ3; φ > 0;

2uφ; φ < 0:
ðD4Þ

The dominant contribution to the integral is thus obtained
from the region φ > 0. Since we are expanding for small φ,
the term involving K1 gives twice the result of the term
involving K0. Using the asymptotic expansion of Kν we
obtain to leading order in juj

I ≈ −
3u
π

Z
π

0

dφe−
1
8
uφ3 φ2

4

ffiffiffi
π

pffiffiffiffiffiffiffiffi
2uφ

p

≈ −
3ffiffiffi
π

p
u1=3

Z
∞

0

dt e−t
3

t3=2

¼ −
Γð5=6Þffiffiffi
π

p
u1=3

ðif cos θ ¼ 0 and u > 0Þ: ðD5Þ

Observing that I is odd in u for cos θ ¼ 0 we obtain the last
line of Eq. (72).
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