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We analyze the mass dependence of the chiral condensate for QCD at nonzero € angle and find that in
general the discontinuity of the chiral condensate is not on the support of the Dirac spectrum. To understand
this behavior we decompose the spectral density and the chiral condensate into contributions from the zero
modes, the quenched part, and a remainder which is sensitive to the fermion determinant and is referred to
as the dynamical part. We obtain general formulas for the contributions of the zero modes. Expressions for
the quenched part, valid for an arbitrary number of flavors, and for the dynamical part, valid for one and two
flavors, are derived in the microscopic domain of QCD. We find that at nonzero 6 angle the quenched and
dynamical parts of the Dirac spectral density are strongly oscillating with an amplitude that increases
exponentially with the volume V and a period of order of 1/V. The quenched part of the chiral condensate
becomes exponentially large at 6 # O, but this divergence is canceled by the contribution from the zero
modes. The oscillatory behavior of the dynamical part of the density is essential for moving the
discontinuity of the chiral condensate away from the support of the Dirac spectrum. As important
by-products of this work we obtain analytical expressions for the microscopic spectral density of the Dirac

operator at nonzero € angle for both one- and two-flavor QCD with nonzero quark masses.
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I. INTRODUCTION

Topology in the form of instantons and dyons is an
important ingredient of the QCD vacuum [1-3]. The main
reason is that the Dirac operator for field configurations
with nonzero topological charge has a generic number of
exact zero modes, which induce the chiral condensate for
massless quarks. At nonzero quark mass, the total number
of instantons and anti-instantons is even more important.
This number scales with the four-dimensional spacetime
volume V, unlike the topological charge, which scales as
V/V. If instantons and anti-instantons are not strongly
overlapping, they give rise to near-zero modes [4] which
determine the value of the chiral condensate. Given the
importance of topology for the QCD partition function, it is
puzzling that the conjugate parameter, the so-called 6
angle, is consistent with zero according to all available
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experimental evidence. Nevertheless, theories with nonzero
0 angle have received a great deal of attention both as
theories beyond the standard model as well as from a purely
theoretical perspective [5—-10].

In [11,12] we have resolved an interesting apparent
puzzle for one-flavor QCD at zero 0 angle: the chiral
condensate should be independent of the sign of the quark
mass m, but the condensate expressed in terms of the Dirac
eigenvalues appears to be an odd function of m. The point is
that this function still needs to be averaged over gauge
fields, and this average depends on the quark mass through
the fermion determinant in such a way that the chiral
condensate eventually becomes an even function of m. This
resolution is reviewed in Sec. II: at negative quark mass, the
statistical weight in the average over gauge fields becomes
negative, which leads to exponentially large oscillations
that can move the discontinuity of the chiral condensate
away from the support of the Dirac spectrum and could be
shown to yield a mass-independent condensate. In the
present paper we extend the work of [11,12] to arbitrary 6
angle and to more than one flavor, as already sketched in
[13]. Let us emphasize that for nonzero € the statistical
weight is not only negative but becomes complex.

To be able to obtain explicit results, most of our calcu-
lations are performed in the ¢ domain of QCD (also called
the microscopic domain). In this domain the Compton
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wavelength of the pion is much larger than the size of the
box so that the kinetic term of the chiral Lagrangian can be
ignored and only the mass term remains. This chiral
Lagrangian can also be obtained from a random matrix
theory with the same global symmetries as QCD [14,15],
which makes it possible to find analytical expressions for the
spectral density of the Dirac operator using powerful random
matrix techniques. Another benefit of working in the &
domain is that the chiral condensate can be obtained from
the spectral density without any additional regularization.
This is important because the spectral density of the Dirac
operator is renormalization-group and gauge invariant, while
the chiral condensate is only gauge invariant.

The structure of this paper is as follows. In Sec. Il we
review the mass dependence of the chiral condensate for
one- and two-flavor QCD. The sign problem for QCD at
nonzero 6 angle is discussed in Sec. III. A decomposition of
the spectral density and the chiral condensate is introduced
in Sec. IV. In Sec. V we derive general analytical expres-
sions for the contributions of the zero modes and of the
quenched part of the Dirac spectrum to the chiral con-
densate and show that each of them increases exponentially
with the volume at nonzero 0 angle, but that their sum
remains finite. The one-flavor case is worked out in detail
in Sec. VI, where we also obtain an expression for the
spectral density of the Dirac operator at fixed @ angle. The
two-flavor case is discussed in Sec. VII, where we derive
analytical expressions for the spectral density and the chiral
condensate at fixed @ angle. Concluding remarks are made
in Sec. VIII, and technical details are given in several
Appendixes. In particular, in Appendix A we obtain
identities for sums of products of three and four Bessel
functions which, as far as we know, are new.

Some notes on notation: on the macroscopic scale, the
Dirac eigenvalues and the quark masses are denoted by A
and m, while on the microscopic scale they are denoted
by x and u, respectively. For functions of these variables,
such as the partition function Z, the spectral density p or the
chiral condensate X, we use the same symbol on the
macroscopic and the microscopic scales to simplify
the notation. The corresponding functions are of course
different, but it should be clear from the arguments of the
function what is meant in every case. Also, when we give
results for partition functions, we drop irrelevant normali-
zation factors.

II. REVIEW OF KNOWN RESULTS

We consider QCD with N, quark flavors and quark mass
matrix M = diag(m,....,my ), which we allow to be
complex for the time being. The mass matrix appears in
the QCD Lagrangian in the form WrMy,; + ;M ypg,
where yg/;, denotes quark fields of definite chirality. For a
given gauge-field configuration with topological charge v,
the fermion determinant is

v>0,

H det(22 + MM™) x
v <0,

A,>0

{det”M, (1)

detM",

where the 4, are the eigenvalues of the Dirac operator, and
the second factor is due to the presence of |v| exact zero
modes. The partition function for fixed topological charge v
is given by the average of the fermion determinant over
gauge-field configurations with fixed v. Defining

2D = ([T ootz o)) . @
A,>0 v

which only depends on [M| = diag(|m,|,....|my |) and
|v|, the partition function reads

det’M,
det™*M",

v >0,
v<0.

2,00 = 2, (M) x { 3)
The partition function at fixed 8 angle is then given by

Z(M,0) = f: ez, (M)

o i N A
= Z MO+ 90 det MM Z,(1M]),  (4)

where m; = |m;|e’?* defines the phase ¢y of my. It is clear
that Z(M, 0) is a periodic function of 0, and if ) ¢, is a
multiple of z, it is also even in 6. It only depends on the
sum of the phases of the quark masses, and this sum can be
absorbed in a redefinition of the 6 angle. The same
statement is true for the spectral density, whose mass
dependence comes only from the fermion determinant in
the statistical measure.

Therefore, from a mathematical point of view, it suffices
to derive results for real and non-negative quark masses.
However, we will sometimes consider the “physical”
situation where one of the quark masses is taken to be
negative. This case can be obtained by shifting 0 — 0 4+«
in the mathematical result. Nevertheless, our results assume
my > 0 unless stated otherwise.

The chiral condensate of flavor k is defined as

Z(my) = =) = —Wwwie) — WiWir)

1 (d d
- (-~ log Z(M), 5
N,V (dmk+dm,j> 0gZ(M) ®)

where we have suppressed the dependence of X(m;) on M
and where N, (with d for “degenerate”) is the number of
quarks whose mass equals m,;. Note that Eq. (5) is valid
both at fixed v and at fixed 6. Let us make two remarks
here. First, for a real and negative mass, the derivatives in
Eq. (5) simply lead to an extra sign (compared with the
result for a positive mass). Second, for a genuinely complex
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mass m; = |m;|es, one can rewrite the derivatives in
terms of |m;| and ¢,. For the partition function (4) at fixed
0 the derivative with respect to ¢; can be rewritten as a
derivative with respect to 6.

Let us begin with the case of one flavor of mass m. Since
the free energy is extensive in V, the QCD partition
function, obtained by expanding the action to lowest order
in m, is given by [5]

Z(m,0) = Z(m = 0,0) exp[mVZcos§ + O(m*V)], (6)

where X is the absolute value of the chiral condensate in the
limit m = 0 and 6 = 0. Since the mass-independent factor
Z(m = 0,0) does not contribute to the chiral condensate
we will ignore it below. Equation (6) is valid for both
positive and negative quark masses. This has the conse-
quence that the chiral condensate from Eq. (5),

(m) = Xcos @, (7)

does not change sign when m becomes negative. Assuming
nonvanishing X, at first sight this appears to be in contra-
diction with the Banks-Casher formula [16], which expresses
the chiral condensate in terms of the eigenvalues 4, of the
Dirac operator starting from the relation

E(m) = <‘llz ir, 1+ m>’ ®)

n

where the average is over gauge-field configurations.
Equation (8) is valid both at fixed v and at fixed 6. The
eigenvalues either are zero, giving a term proportional to
1/m, or occur in pairs +4,, which yield terms of the form
2m/ (22 + m?). Thus the function £(m) appears to be odd in
m. The resolution of this puzzle is that the statistical weight
in Eq. (8) contains the fermion determinant, which leads to
an additional mass dependence. This resolution was fully
worked out in Refs. [11,12] by an explicit computation of
the spectral density and the chiral condensate in the ¢
domain of QCD. Employing identities for sums of products
of Bessel functions, the expressions could be summed to
give the spectral density at € = 0. For negative mass the
resulting expression is increasing exponentially with V and
oscillating with a period that scales as 1/V. As we know
from QCD at nonzero chemical potential [17], exactly such
behavior of the spectral density can eliminate a disconti-
nuity of the chiral condensate. However, as has already
been observed in [18], the contributions of both the zero
modes and the nonzero modes diverge exponentially with
the volume. It turns out [11,12] that these divergent
contributions cancel identically, resulting in a chiral con-
densate that remains constant in the & domain, i.e., for
mAQCD\/V < 1.

Let us turn to two-flavor QCD. In this case the full flavor
symmetry is U(2) x U(2), with the axial U(1) group

broken by the anomaly and the SU(2) x SU(2) subgroup
broken spontaneously by the chiral condensate. In the &
domain of QCD, the partition function of the resulting
Nambu-Goldstone modes, which interact according to a
chiral Lagrangian, simplifies to [5]

Z(M,G):/ dU exp[VERe(e/MiTrMU)],  (9)
SU(Ny)

which actually holds for any N;. The measure dU is the
normalized Haar measure. In the thermodynamic limit, the
U field aligns itself with the chiral condensate. For Ny = 2,
the simplest case is when the two masses are equal to a
common mass m. For mcos(6/2) > 0 the saddle-point
solution is U = 1, but for mcos(6/2) < 0 it is given by
U = —1. To leading order in the thermodynamic limit this
results in

[m|VE>1
logZ(m,m,0) =

2VZ|mcos(6/2)]. (10)
Because of the absolute value, the chiral condensate as
defined in Eq. (5) acquires a discontinuity at m = 0,

VEs1
s(m)"%

sign(m)X| cos(6/2)]. (11)
Another simple case is that of unequal quark masses and
6 = 0, where we have in leading order [5]

[my | VES1
InA

logZ(m;,my,0 =0) "~ VZ|m; +my|. (12)
The phase diagram of this case is shown in Fig. 1. The two
phases are separated by the line m; + m, = 0 on which the
pion mass becomes zero, known as the Dashen phenomenon
[19]. For three flavors, this line changes to a finite region
where pions condense and CP symmetry is spontaneously
broken [20]. It can also become a finite region when pion
condensation occurs in the case of Wilson fermions [21].

The phase diagram at fixed € has to be contrasted to the
one at fixed topological charge v, where we have in leading
order [5]

E(ml, mz) =1

E(ml, mz) =1

FIG. 1. Phase diagram of the two-flavor theory at & = 0 in the
plane of the two quark masses.
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FIG. 2. Mass dependence of the chiral condensate for two-
flavor QCD at fixed topological charge v (left) and at fixed 8 = 0
(right). In the thermodynamic limit all curves become discon-
tinuous. Note that we use the dimensionless masses u; = m; VZ.
The notation X, indicates that we differentiate with respect to the
first quark mass u;.

[m [ VES1
logzy(mlva) ~

VE(m| +[mo). (13
The sign of the chiral condensate at fixed v always changes
sign when one of the masses changes its sign, unlike at
fixed @ = 0, where the sign change occurs at the Dashen
line m; = —m,. One aim of the present work is to under-
stand this difference. In Fig. 2 we highlight the different
behavior of the two-flavor chiral condensate at fixed
topological charge v (left) and fixed € angle (right).

Finally, let us mention one particular limit of the two-
flavor case. When one of the quark masses becomes large,
the two-flavor theory reduces to the one-flavor theory. In
the chiral Lagrangian we then have

U— (e;(p 0 > (14)

e'?

with ¢ fixed at ¢ = 6/2, resulting in the one-flavor
partition function (6).

II1. SIGN PROBLEM

Generically, QCD at nonzero € angle has a sign problem,
which originates from the weight factor exp[iv(6 + >, ¢ )]
in Eq. (4). The sign problem is absent only for
cos(@+ > o) =1, and it is most severe for
cos(@ + > @) = —1, in which case the weight factor is
(—1). For real (but possibly negative) quark masses, these
two conditions translate into cos @ = +sign det M.

While these two extreme cases are already apparent from
Eq. (4), the severity of the sign problem in the general case
can be measured by the ratio of the partition function with a
phase and the phase-quenched partition function. Explicit
analytical results for this ratio can be obtained in the ¢
domain.

For one flavor the ratio is given by

exp|—AF(m,0)] = Z(m.6) =e

VE(mcos(J—|m\)' (15)
Z(|m|.0)

T
0 0 2

FIG. 3. Difference of the free energies of the phase-quenched
and the full theory for one-flavor QCD [see Eq. (15)] divided by
the absolute value of the rescaled quark mass. Here u > 0.

Therefore exponential cancellations take place at @ # 0. The
function AF(m,0) = VE|m|(1 — sign(m) cos ) is shown
in Fig. 3 for m > 0. In agreement with the general argument
above, it assumes its maximum at cos & = —sign(m), where
the sign problem is most severe, while the sign problem is
absent for cos@ = sign(m). The free energy is a smooth
function of the quark mass and the 0 angle, which reflects the
fact that the one-flavor theory has no phase transition.
For two flavors the ratio is given by

exp[—AF(my,m,,0)] =

Z(ml5m2»6)
-~ & 7 1

Z(|m, )

The e-domain result for the two-flavor partition function is
given by the integral over SU(2) in Eq. (9). In terms of the
microscopic variables u; = m;VZ it becomes [5]

nmy

’

Z(Ml Uy 9) = 211(\/”!% + u% + 2u,u, cos 9)
o \/u% +u% + 2u u, cos 0

(17)

with I, the modified Bessel function of the first kind. Again
the difference AF assumes its maximum at cosf =
—sign(m;m,); see the plots in Fig. 4. Therefore the sign
problem is most severe either at & = 0 when both masses
have opposite signs or at @ = 7 when both masses have the

AF(uy,ug,0)/(Jur| + |ual) AF(uy,u2,0)/(Jur| + |usl)

T T T T
—_— U1 = U2 — O

— =1
03f V=2 —Zliagvs Jusp Np=2  —w=2 "
up=1 =0 uz =20 —u =

—uy = —35
0.2 4 1F i
0.1 1051 |
0 0
m T
0 9 2m 0 P 2

FIG. 4. Free-energy difference as a function of 6 for two flavors
and several quark masses. The functions are normalized by the
sum of the quark masses so that the large-mass limit remains
finite. The black curve in the plot on the right is the thermody-
namic limit for equal quark masses; see Eq. (20).
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same sign. This can also be seen in the exponentially
increasing oscillations of the level density when increasing
the 6 angle; see Fig. 9 below. The sign problem is absent
only for cos @ = sign(mm,).

We illustrate the free-energy difference in Fig. 4.
The partition function (17) is monotonically decreasing
(increasing) in 8 € [0, x| for quark masses of equal (oppo-
site) signs. This carries over to an increase (decrease) of the
free energy. The free-energy difference is also strictly
increasing (decreasing) with respect to the moduli of the
masses for equal (opposite) signs. For equal masses it
simplifies to

I,(2u) cos(0/2)
AF(u,u,0) =log Ll@u cos(9/2))]’ (18)
where the monotonicity can be checked easily.

The free-energy difference has the thermodynamic limit

lim  AF(uy,u,,0)

[uy ] Jua [>1

= |uy| + |uy| — \/u% + u3 + 2ujuycos 6,  (19)

where only the Bessel functions had to be approximated.
(There are subleading logarithmic corrections to this
result.) For equal masses the thermodynamic limit becomes

lim AF(u, 1, 0) = 2[u|(1 — | cos(8/2)]),  (20)

Ju[>1
which has a kink at the Dashen point 6 = 7.

IV. DECOMPOSITION OF THE SPECTRAL
DENSITY AND THE CHIRAL
CONDENSATE

In the limit of zero quark masses, the chiral condensate at
fixed topological charge has a discontinuity on the support
of the Dirac spectrum, which is dense in the thermody-
namic limit. We have to understand how this discontinuity
can be moved away from the support of the spectrum at
nonzero @ angle. When the spectral density is positive, this
is certainly not possible. However, the averaging procedure
to obtain the spectral density includes the fermion deter-
minant. This determinant is not positive definite at nonzero
0 angle, and thus the spectral density is generically not
positive definite. Moreover, the spectral density is normal-
ized with respect to the partition function at 8 # 0, which is
exponentially smaller than the phase-quenched partition
function, and therefore may result in a spectral density that
increases exponentially with the volume. Indeed, we know
from QCD at nonzero chemical potential [17] and from
QCD-like theories with indefinite measure [18] that the
discontinuity of the chiral condensate can be shifted when
the spectral density oscillates with an amplitude that is
exponentially large in V and with a period that scales as

1/V. As a first step toward understanding this behavior, we
decompose the spectral density and the chiral condensate into
various contributions.

We denote the spectral density of the Dirac operator at
fixed topological charge v by p, (4, M). The spectral density
at fixed € is defined by

p(4.M.0) = "P,(M,0)p, (% M), (21)

where P, is the statistical weight to find a gauge-field
configuration with topological charge v,

Z,(M)e™ _ 7,(M)eH

PM.0) = Yo~ Z(M.0)

(22)

To obtain a more detailed picture we split the spectral
density into a zero-mode part and a nonzero-mode part,

p(4, M) = p™(4, M) + p™™ (2, M). (23)

This splitting is valid both at fixed v and at fixed 6.
Equation (21) holds separately for the zero-mode and
nonzero-mode parts.

The zero-mode part of the density at fixed v is

P (4) = [v]6(4). (24)

We will see in the next section that p*™ gives a contribution
to the chiral condensate that diverges exponentially if a sign
problem is present. This contribution must be canceled by
a similar contribution of the nonzero-mode part p™™ to
obtain a finite condensate. The question is what part of p™™
is responsible for this cancellation. Obviously there is no
unique answer to this question, but we know that this
cancellation also has to take place in the quenched
approximation. Therefore we decompose p™™™ at fixed v
into a quenched part (obtained by setting Ny = 0) and a
dynamical part (the remainder),

PEm (A M) = pl(2) + pl (4. M). (25)

The e-domain result for the quenched part in terms of the
microscopic variable x = AVX reads [22]

x|

pi(x) = >

2(0) = Ju1 (x) -1 ()] (26)
with J, the Bessel function of the first kind. The dynamical
part depends, in addition to x, also on the quark masses,
which on the microscopic scale we collect in u =
(g, ..., uy f). Explicit expressions can be found in [23,24].

An alternative to Eq. (25) would be to split p™™ at fixed
0 into a phase-quenched part [12], obtained by letting
M — |M| and 6 — 0, and an oscillating remainder. The
cancellation is then achieved by the phase-quenched part,
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but this part is more complicated than the quenched part,
and therefore we do not consider it in this paper.

The chiral condensate is obtained from the spectral
density by the relation

1 p(4. M)
=— a’
V/_oo il+m’

where m is a valence quark mass. It is convenient to
distinguish m from the sea quark masses in M, but at the
end of the calculation m will usually be set equal to one of
the sea quark masses. Again, Eq. (27) holds both at fixed v
and at fixed 8. On the macroscopic scale Eq. (27) requires
regularization, but in the ¢ domain it is valid as it stands.

We now split the condensate into zero-mode, quenched,
and dynamical parts, obtained by replacing p in Eq. (27) by
p™, p?, and p?, respectively. This leads to

=(m. M) (27)

(m,M) = Z™(m, M) + X4 (m, M) + = (m, M) (28)
at either fixed v or fixed 0. As in Eq. (21) we have
>(m, M, 0) ZP (M,0)L,(m. M), (29)

and this holds separately for all three contributions.

All equations in this section can be translated to the
microscopic scale by the replacements A = x/VX and
M = ii/VZ. In Eq. (27), the prefactor 1/V is then replaced
by Z. For the valence mass on the microscopic scale we will
use the notation &t = mVZ.

V. CANCELLATION OF ZERO-MODE AND
QUENCHED CONTRIBUTIONS

In this section we show, for any number of flavors, that
the exponentially increasing contribution of the zero modes
to the chiral condensate is canceled by an exponentially
increasing contribution from the quenched part of the
spectrum. The expressions for the contribution of the zero
modes are valid without any assumptions, but the other
calculations are performed in the ¢ domain of QCD.

Using Eqgs. (21) and (24), the zero-mode part of the
microscopic spectral density at fixed @ is given by

ZI ivh
P (x, 1, 0) 0) E w|Z, (i (30)
Using the Fourier transform of Eq. (4),
do
Z,(u) = e 7(u, 6 31
@)= [ 5 ez o), G1)

the sum on the right-hand side (RHS) can be rewritten in
the form

S ey, (@) = ][ N A0~ 9) - 2(3.0))
D (32)
where A(g) is the Fourier transform

A@) =Y e (33

v

and the symbol # stands for a principal-value integral.
Several comments are in order. (i) The definition (33) is to
be understood as a distribution acting on test functions that
are twice differentiable and vanish at ¢ = 0, where the sum
over v is divergent. We always assume ¢ € |-, 7] because
of the integral (32). (ii) Since the integral over A(g)
vanishes, we could subtract Z(, 0) in (32) to end up with
a test function that indeed vanishes at ¢ = 0. (iii) In the
following we always deal with test functions that are twice
differentiable and vanish at ¢ = 0. This justifies the
introduction of a regulator & > 0 which results in a sum
that is pointwise convergent except for ¢ = 0,

[se]
@) = lim g |u|etvelve
e—0
v=—00

= lim y(e_(5+i(/7)l/ + e—(e—i(p)y)

e—0 P

0 e —cosg

im——
e—=0 e cosh e — cos ¢

1
=~ 3av (valid for g # 0).
2

(34)

Note that due to the pointwise convergence, the integral
of A(g) in the form (34) no longer vanishes so that the
subtractions have to be made before the limit € — 0 is
taken. For a function f that is twice differentiable at zero we
therefore have

f” IGRICY

j[_”d(pA(fﬂ)[f(fp) —fO)] ==T_do=—2 -5 (35)

Finally, we note that —1/2sin’% =9, cot% is a total
derivative which can be integrated by parts on test functions

that vanish at ¢ = 0.
The zero-mode part of the spectral density thus becomes

pzm(x,ﬁ,e)za(x)j[ dp 1 [1_

—x 27 2sin*%

Z(ii.0— )
Z(ii.0)

} . (36)

The zero-mode contribution to the chiral condensate
follows trivially from Eq. (27):

B Z(u,0 — @)
Z(u, )

= (i, i, 0) 1%” dp 1
o =

-z 27 2sin* §

} . (37)
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In the derivation of this formula we did not make any
assumptions on the scaling behavior of the quark masses,
and we stress that this result is valid in general.

From the discussion of the sign problem in Sec. III we
know that the ratio Z(u, 0)/Z(|u|,0) takes its maximum at
cos 6§ = sign det M. Hence, for det M > 0, the integral (37)
is dominated by the region around ¢ = 0, and fordet M < 0
it is dominated by the region around ¢ = 6 — z. For
cos 0 # sign det M, the partition function Z(u, 6) is expo-
nentially smaller (in ) than Z(|u ), resulting in a
contribution to the chiral condensate that increases exponen-
tially with the volume.

The quenched part of the spectral density at fixed 8 is

P570) = St ()20

= [t ¢>—Z(§(u,9) ) (ag)

with

J1(2|x|sin%)
2sinf

=Y e rpllx) =

v

P (x, ) (39)

The last equality in Eq. (39) was obtained from Eq. (26)
using Eq. (A7). To avoid confusion, we note that p9(x, ) is
the spectral density of the true quenched theory at fixed 6.
It is convoluted with Z(i,0 — ¢)/Z(u, @) as shown in
Eq. (38) to obtain what we have defined as the quenched
part of the spectral density. The convolution introduces the
quark masses into p?(x, i, 6), while p?(x, ¢) is independent
of the quark masses.

Equation (38) results in the “quenched” contribution to
the chiral condensate

(2, 7, 0)
T

_/oo 2dxii /ﬂd_rpfl(szin%)Z(ﬁﬂ—rp)
0 —

X+ 0% )z 2r 2sing Z(u,0)
_/’fd(p 1 K (2|asin% )] Z(i,0 — ¢)
.2 2asin2§

sign(it)|sing || Z(u,0)
In the last line we have used Eq. (C8) to obtain the modified
Bessel function of the second kind K ;. Note that the poles
at ¢ = 0 cancel so that the integral can be evaluated as an
ordinary integral. Also for the quenched contribution, the
integral is dominated by the region around ¢ = 6 or ¢ =
0 — 7 (depending on the sign of the product of the quark
masses) where the effective 6 angle vanishes. For
0 + argdet M # 0, this again leads to contributions that
increase exponentially. For N, =0 the ratio of partition

(40)

functions in Eq. (40) is equal to unity. The integral over ¢ of
the expression in square brackets is equal to the “quenched”
part of the condensate at topological charge zero, i.e.,
X7 _,(@t), which follows by writing the RHS of Eq. (39) as
a Fourier sum.

We now show that the two exponentially increasing
contributions to the chiral condensate cancel. The sum of
zero-mode and quenched contributions is given by

(0,0, 9)+24(A,ﬁ,9)
z z
_ f do 1
) —x2r 20sin?%

> f” do K, (2|ising]) [Z(i1.0— o)
> -z 2nsign(it)|sing| | Z(u,6)

K, (2|asin%|) Z(i,0 — @)
sign(it)|sing|  Z(u,0)

—1]. (41)

This integral converges as a principal-value integral.

The partition function is given in Eq. (9). We write U €
SU(Ny) in the form U = Vdiag(e™1,...,e"")V" with
V € U(N;)/U(1)"s and "¢, = 0 and perform a change
of variables from U to V and ¢ = (¢y,...,py,). The
Jacobian of this transformation is independent of V. If
we assume degenerate quark masses, the integrand is also
independent of V' so that the integration over V simply
gives an irrelevant constant. For nondegenerate quark
masses the integral over V is of the Harish-Chandra—
Itzykson-Zuber type [25] and leads to

0~ [T aera( )

det [expu cos(¢, + 0/N )]
A(u)A(cos(p +6/Ny))

where A(X) = [],,(x; — x,) denotes the Vandermonde
determinant. Unless indicated otherwise, a product
or a sum over k is understood to run from 1 to N;. The
symbol ~ indicates that we have suppressed the normali-
zation constant.

The integrand in (42) is symmetric under permutations of
the ¢,. We denote the nonexponential terms by f (i, ¢ +
0/Ny) = |A(e?)]*/(A(id)A(cos(@ + 6/N ) and expand
the determinant of exp|u, cos(¢, + 6/Ny)] to obtain

d
/H q)k (4.4 6/Ny)
% eZku" cos((pk+9/Nf)5<Z(pk> . (43)
k

(42)

After shifting each ¢, by —0/N, and performing the
integration over ¢, using the ¢ function, Eq. (43) becomes
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d(Pk >
i, )
k>2

X exp {ul cos( ) + Zuk cos (pk]
k>2

k>2

(44)

where § = (0 — Y ko2 @i P2y - k). We will use this
representation for the partition function in the denominator
of Eq. (41).

Next, we consider the integral in the last line of Eq. (41).
For large ii, the Bessel function behaves as

KD<2 fﬂ) _ v

S Aasin?]
Therefore the —1 term in the last line of Eq. (41) cannot
result in exponentially large contributions, but this term
regularizes the integral at ¢ = 0.

We now combine Eq. (43) with @ replaced by 6 — ¢ and
Eq. (45) and consider the contribution to the chiral
condensate that gives the exponentially large terms.
After shifting each ¢, by (¢ —6)/N, we obtain

1 de - o
s | o T (S e-0+0)1(05)
.0 k
A P
X exp [—2 us1n§‘ + Zuk cosgok]

/Hdcok i)
owo-5)

We now set the valence mass i equal to one of the sea
quark masses, say u;. Using the trigonometric identity
cosa — cos f# = 2sin[(f + a)/2] sin[(f — a)/2], the expo-
nent of the last line in (46) can be written as

e—Z\u sm—\ [

O(1/i)].

(45)

X eXp [ + Zuk cos (pk:| (46)

0—
= 2jm sin V=2 Uy COS ) — Uy COS (9 - Zfﬂk)
g =2
+ u; cos (9 - Z%) + Zuk oS @y
k>2 k>2
0— 0 _
= —2|u, SinM + 2u, sin 01— D ik
2 2
0 —
X sinM + u; cos <9 - Zq)k> + Zuk oS @y,
2 k=2 k=2
<ty 008 (‘9 B Zw) D cos i, (47)
k=2 k=2

T

FIG. 5. Zero-mode (red curve) and quenched (blue curve)
contribution to the chiral condensate for N, =1 and 6 = /2
as a function of the rescaled quark mass. Each contribution
increases exponentially, but their sum (black curve) remains
finite.

where in the last line we used the fact that the absolute value
of the second term is always smaller than the absolute value
of the first term. The RHS of this estimate is exactly the
exponent of the integrand for Z(i, 0); cf. (44).

We have thus found that in Eq. (41) the exponent of the
numerator is always smaller than or equal to the exponent
of the denominator. Therefore the sum of the zero-mode
and quenched contributions to the chiral condensate does
not increase exponentially for large rescaled masses u;. The
preexponential terms may have (even strong) effects on the
integral. They can be zero, can diverge at the saddle points,
or can prevent us from reaching some of the saddle points.
However, none of these effects can lead to an exponential
increase because the integral in (41) is well defined and
finite at fixed u.

The exponential cancellation is illustrated in Fig. 5 for
Ny=1 at @ =r/2 and in Fig. 6 for Ny =2 at =0,
where both %™ and X! increase exponentially in the
quadrants where u;u, < 0. The sum of the two contribu-
tions remains finite. Also shown in Fig. 6 is the dynamical
part of the chiral condensate; see Eq. (82).

Finally, we give a heuristic argument why the cancella-
tion between the zero-mode contribution and the quenched
contribution to the chiral condensate takes place. When we
have |v| zero modes, the nonzero eigenvalues on the
microscopic scale are, on average, shifted from the origin
by |v|; see Ref. [26] [Sec. VIIT A]. To find a definitive gap
one needs to assume 1 K v < VAgCD. Explicitly, one can

easily show that the asymptotic behavior of the microscopic
quenched density is given by

W>11vx2 - 12
~ _—_

pi(x) O(|x| = |¢)- (48)

7 |

The corresponding chiral condensate ¥ (i) can be calcu-
lated along Eq. (27), i.e.,
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FIG. 6. Top to bottom: zero-mode (£f™) and quenched (X7)
contributions to the chiral condensate, their sum (X} =
Z‘f + Xi™), and dynamical contribution (Z‘f) for Ny =2and 0 =
0 as a function of the rescaled quark masses u; and u,. The sum of
all contributions, =t = £ + 37 4 3¢ (bottom), shows a dis-
continuity at u; + u, = 0. The subscript 1 of X indicates that the
condensate corresponds to the first quark.

~

V| ?
=— 1+—-1]. 49
i 12 (49)

For large masses at large, fixed topological index, the
quenched chiral condensate has the approximate form

23@”'51%/“[1)( x? =12

S3(@1) a1
Z(M) St sign(@t) — |%| (50)

The second term shows that the nonzero-mode spectrum
has been depleted by |v| modes so that the total number of
eigenvalues does not depend on v. The contribution of the
zero modes is given by XZ™(i1) = |v|/ i

At fixed (large) v we thus find that for large i the 1/i
contribution to the quenched part of the chiral condensate
exactly cancels the contribution from the zero modes. At
fixed 6 the contribution of the fermion determinant leads to
exponentially large terms (instead of 1/i terms) at large i,
but as shown in Sec. V we again have a cancellation
between the zero-mode and quenched parts. This cancel-
lation is deeply rooted in topology and spectral flow, which
guarantee that the total number of eigenvalues around zero
remains the same. For chiral random matrix theory, this can
be shown at the technical level [26], but the argument is
much more general: the Dirac spectrum near zero is
depleted by exactly the same number of levels as we have
zero modes. One could argue that the spectral density at
fixed € angle mainly involves very large v so that in the
thermodynamic limit the spectrum acquires a gap at zero.
However, since the topological susceptibility is finite in the
thermodynamic limit, the number of zero modes is of order

V'V, while the eigenvalue density is of order 1/V, resulting
in a gap with a width of order 1/+/V.

VI. ONE-FLAVOR QCD

In this section we derive a number of explicit results for
one-flavor QCD. In the first subsection we compute the
contributions to the spectral density at fixed 8 angle. In the
second subsection we use these results to compute the
dynamical contribution to the chiral condensate and show
that a mass-independent total chiral condensate is obtained.

A. One-flavor Dirac spectrum at fixed 6 angle

The one-flavor partition function of QCD in the &
domain at fixed @ is given by

Z(u,0) = e*cs9; (51)
see Eq. (6). At fixed v we therefore have from Eq. (31)
Tdf .
Zy(u) — /_”Ee—zwﬂwose — I,,(u). (52)
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The spectral density at fixed € is given by
1 .
p(x,u,0) = plucosO Zewglu(u)pv(x’ u). (53)

In the previous section we already obtained the zero-mode
part and the quenched part of the spectral density; see
Egs. (36) and (38), respectively. Explicitly, the zero-mode
part reads

T d§01 _ eu[cos(é)—q;)—cosé)]

. 2£
2sin 5

P (xu.0) = 5(X)f

- 21

" d
= é(x)u][ &9 pulcos(0—p)~cos)] sin(¢p—0) cot?,
—n 21 2

(54)

where the second line follows after partial integration. The
quenched part is equal to

*dgp J, (2] sin®
Pq(x,u,Q):/ do 7,2l sing) ,

) 5 T % [cos(6—¢p)—cos 0] ) (55)

The dynamical part at fixed v is given by [23,24]

ulv+1(u)12(x) .

1,(u)

—|x]

22 xJ, (x)J 11 (x) +

pl(x.u) =

(56)

After performing the sums over v in Eq. (21) with the help of
Eq. (A12) we obtain for the dynamical part at fixed 6

p(x,u,0)
— _ |x| /ﬂd(peu[cos(é‘—(p)—cosﬂ]
x> 4u? ), 2n
X {x sin%]l <2x sin%) + ucos(0—)Jy <2x sin%)} .

(57)

Note that the imaginary part resulting from (A12) is the
integral of a total derivative and therefore vanishes.
Moreover, the result has to be real since the expression
(56) is invariant under v <> —v, which can be shown using
the recursion relations (C1) and (C2) of Bessel functions.

Adding the dynamical part to the quenched part and
performing some simplifications, the nonzero-mode part of
the density at fixed 6 is given by

|X| /ﬂdqoeu[cos(é)—(p)—cos 0]
X2 4u? ), 2n

pnzm(x’ u, 9) —

J1(2xsin%)
s (2 + 52 2
[(u + x*cos @) 2xsin?

— ucos(8 — ) J, <2x sin %ﬂ . (58)

which for 8 = 0 was already obtained in [11,12].

FIG. 7. Microscopic spectral density (58) of the one-flavor
theory as a function of the & angle for the two rescaled masses
u=0.5 and u =2. The oscillations become stronger with
increasing € and u and eventually yield an exponentially large
spectral density. The reason for this divergence is the nonpositive
statistical weight due to the € angle.

In Fig. 7 we show the spectral density of the nonzero
modes at fixed @ for rescaled quark masses u = 0.5 and
u ="2. At nonzero 0 the amplitude of the oscillations
increases exponentially with u. The only exception is
0 = z, where the spectral density is well behaved for a
large negative mass but increases exponentially with a
positive mass u; see the discussion prior to Eq. (5).

For large mass u, a saddle-point analysis of Eq. (58)
shows that the spectral density behaves as

[u]>1

nzm(x, u’e) ~ e|u|—ucosé‘ 2

\/87[ul sin%

with 8y = 0 + [1 — sign(u)]z/2. When the exponent van-
ishes, i.e., for # = 0 with positive mass or § = = with
negative mass, the asymptotic expansion is still valid,
resulting in

J1(2|x| sin %)

P (59)

P (x, u, O)Iu";>l e (60)

/8xlu|

B. Chiral condensate

In this subsection we use Eq. (27) to compute the chiral
condensate for one flavor and show that it is mass
independent. Here and in Sec. VIC, the valence quark
mass i is set equal to the sea quark mass u.

The sum of the zero-mode and quenched contributions
was already computed in Eq. (41). It is given by
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=™ (u, ) n 24(u,0)
z z

) K (2usin%]) ecos0-e)

" 1
N ][—n 2n [2usin2 £ ~ sign(u)| sin(§)| evcos?

} (61)

The contribution from the dynamical part of the density
follows from Egs. (27) and (57) using Egs. (C10) and (C12),

vd .0 rd ucos(60—¢)
(; ) = —Zf_”z—jeeuﬁ |:Msin2%K0 <2 MSin%‘)
+ using cos(0 — @)K, (2 usin%’)} (62)

Since the leading asymptotic behavior of the K, Bessel
functions [see Eq. (45)] does not depend on the index, we can
use the arguments of Sec. V to show that there are no
exponentially increasing contributions from the dynamical
part. Itis noteworthy that this argument holds for an arbitrary
number of flavors N;. Adding the last two equations we
obtain the total chiral condensate

Z(u’e) _f” do 1 et cos(6—g)
L ) a2n |2usin?g evesd

X |:MK2 <2 920 ) —ucos gk, <2

u sin —

P
ussz

where we used (C4). Using the recursion relations (C4) and
(C5), the Bessel function K, can be rewritten as

. @
K,|2 —~
2( ustD
2
= —cos ¢K 2us.ing — —sign sing
2 |u] 2
0
x%{congl(Z usin%‘)}

Then the derivative can be integrated by parts, where the
boundary terms of the principal-value integral vanish. Hence

(64)

we have
Z(’/£7 9) z d(p eucos(ﬁ—(/}) )
¥ = Zf_ﬂﬂw u cos (pKO 2 MSIHE

. AN % @
- u|s1gn(s1n§> sm<9—5>K1 <2 usmED}
(65)

To show that the principal-value integral is indeed equal to
cos @ [cf. Eq. (7)], we first note that for u = 0 we indeed
obtain

dg sin(6 — %)

- = cosf
sin% ’

z(u_o,e):_f” )

z - 21

where we used the asymptotics K (|x|) ~ 1/|x| for |x| < 1.

. @ L@
+2|usin 2 cos(0 — ¢)K, <2 usim 2‘)] }’ In the second step we take the mass derivative of the chiral
condensate, which is an integral of a total derivative and thus
(63) vanishes,
|
d
—2(u,0
2y 2. 0)
T do et cos(6-9)
= 2f_ﬂ2—€:eeuw [cos @K, <2 u sin% ) —2u sing cos pK; <2 u sin% ) + 2u sin%sin (9 — %)

x Ky <2 u sin?
P d(p d eucos((i—(p)

=2 _EE%W |:Sin(pK0 <2

u s.ing
2

2 ) +2sin<9—g20) sin% <ucosgoKo (2 usin;oD - |u|sign<singzo> sin<9—[§>K1 <2

> — 2sign(u) sin @

vn]))]

(67)

. @
—IK{(2
Sll’l2’ 1(

. ¢
2 =o.
MSIH2‘>:|

Therefore we conclude that X(u, 8) does not depend on u so that

(u,0)

= cos 6. (68)

The derivation above also shows that the nonzero-mode contribution to the chiral condensate can be simplified to

ynzm (u’ 9)
z

which follows from Eq. (54).

yzm ’9 [
:c059—$:c089—][

d(p eucos(é’—(p) ) ®
PP sin(¢ — 6) cot =,

: (69)

- 21
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FIG. 8.
into the contributions from zero and nonzero modes. Results are
given for @ = 0 (left) and 6 = z/2 (right). While for positive
mass and vanishing € angle the contributions behave algebrai-
cally, they increase exponentially with the volume otherwise,
regardless of whether the sign/phase comes from the mass or a
nonvanishing 6 angle.

Chiral condensate for one-flavor QCD and its splitting

The zero-mode and nonzero-mode contributions to the
chiral condensate are plotted as a function of « in Fig. 8 for
6 = 0 and /2. It becomes obvious that when a nontrivial
phase is present, the contributions of both the zero and
the nonzero modes grow exponentially with the volume
(included in u), but that they add up to a finite result that
gives a mass-independent chiral condensate.

C. Thermodynamic limit

We first consider the case when there is no sign problem,
i.e., cos @ = signu. For this case the thermodynamic limit
u — oo can readily be derived for the zero-mode contri-
bution [5] [Eq. (7.3)],

P (x> 0,0 = 0) = 5(x)|ule I [Io(|ul) + 11(|u])]

|ul>1 2|u|
S —_—,
()

sz(u > 0,0 = 0) Ju[>1 2
~ —_—. 70
p 7|ul (70)

Therefore the contribution of the zero modes to the chiral

condensate behaves like 1/ \/m . This can be seen in the
left plot of Fig. 8 for positive masses. Foru < 0and 0 = =
we find the same asymptotical spectral density as in
Eq. (70), but the chiral condensate differs by a minus sign.

We now turn to the general case with a sign problem.
In this case we have to perform a saddle-point analysis for
the integral determining the level density and the chiral
condensate. This is most easily done in Eq. (54). Expanding
@ about the point where the exponent is maximized, namely
cos(g — 0) = sign u, we obtain

P (x,u,0) = 5(x)uxz™ (u,0)/Z,
sz(u’e) lu>1 elul(1=sign(u) cos 0)

z T /27 [ul? (sign(u) — cos 6) )

Here, we notice the main difference between the sign-
quenched result (70) and the result with a sign problem.
The contribution of the zero modes to the chiral condensate
vanishes as 1/ \/m in the sign-quenched case, while it
diverges exponentially regardless of how small the angle
0 + arg u is. In particular, the divergence is strongest when
0 + arg u = £z, which reflects the sign problem observed
in the difference of the free energies (15). Additionally,
the sign of the contribution of the zero modes to the chiral
condensate changes with the sign of the quark mass. Its
behavior for # = 0 and @ = z/2 is shown in Fig. 8.

Whether a sign problem is present or not present, the
contribution of the nonzero modes to the chiral condensate
is equal to the difference X cos @ — X*™.

We now consider the thermodynamic limit of the
dynamical part ¢ [see Eq. (62)], which stays finite for
large masses. Its asymptotic behavior is worked out in
Appendix D, resulting in

) —5t ucosf >0,
z (;76) ‘“l?l 2 cos 0, ucost <0, (72)
_ sign(w)I'(5/6) =
Ve ucosf =0

where I'(5/6) in the last case denotes the I" function.

Finally, to identify the thermodynamic limit of the
quenched contribution we can combine the relation
(u,0) = Z™(u,0) + 29 (u,0) + Z(u, 0) = ZcosO with
the results (70) through (72).

VII. TWO-FLAVOR QCD

In the first subsection we compute the two-flavor spectral
density at fixed € angle, which is used in the second
subsection to compute the various contributions to the
chiral condensate.

A. Two-flavor Dirac spectrum at fixed 6 angle

The spectral density at fixed 6 angle is again given by
Egs. (21) and (22). The two-flavor partition function at
fixed € angle has already been given in (17). At fixed
topological charge v it can be written as [27]

urdy g ()1, (uy) — updy oy (un)1, (uy) (73

2_ .2
uy — u;

Z,(ii) =2

The zero-mode contribution to the spectral density is
determined by Eq. (36) with Z(ii, 0 — ¢) as in Eq. (17).

Next we evaluate the nonzero-mode contribution to the
spectral density. At fixed v the spectral density is given
by [23,24]
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Joa(x)/x S (x) I,(-u) 1,(=u2)

p(0.7) = |x] J,(x) (%) uldy g (—uy)  undyy(—uy) ’ (74)

’ Z,(it) (o + u}) (2 + u3) (w3 —ui) | X1 (x) X2 0(x) uilo(-w) il o(-uy)

Jya(x) X)) wils(—u) w3l s(—us)

where | - | denotes the determinant of the matrix. The determinant in Eq. (74) can be rewritten as
M) ) 1,(—uy) 1,(—uy)
J,(x) xJyi1(x) urlyy(—uy) url, 4y (—uz) (75)
—2J,(x) 0 (ui +x°)1,(=u)) (u3 + )1, (—uz)

-2xJ,41(x) 0 wy (uf + X)L, (=) up(u3 + x2) 1,0 (—up)

[

by employing the recurrence relations (C1) and (C2) and
the properties of the determinant. In this form the terms
involving the upper left 2 x 2 block yield the quenched
level density (26). The remaining terms represent the
dynamical part and can be simplified to

pi(x, i)
3 2|x|
Z, (i) (x> + u7) (x* + u3)
X {xd, () i1 () [ Ly 1 (ui)1, () + und oy (), (uy)]
22073 QO () () +uqun I3 ()14 () (u2) }
(76)

by employing the symmetry /,(—u) = (—1)"1,(u). Note
that the dynamical part p¢ is again symmetric in v — —v
because p, and p] are, so that the sum including the phases
e™? yields a real function.

Now we sum over v as shown in (21). The quenched
contribution p? was already obtained in (38) with the two-
flavor partition function Z(u;,u,,0); see Eq. (17). The
sum for the dynamical part is more involved, and the
required sums over products of four Bessel functions are
worked out in Eq. (A13). Adding the quenched contri-
bution, this results in the total spectral density of the
nonzero modes,

pnzm(x’ ﬁ’ 9)
|y ~dg {J] (2xsin%)
Z(i,0) |-z 27 | 2xsin%

x(2uyupe’ 0 + uZ + u2)J, (2xsin%)

(% 4 ud) (x* + u)ie™s
i(-0) 5 _; -y FIG. 9. Microscopic level density for two flavors as a function
_ 2(uuye"?™% + x?e7'?)J o (2x sin 5) Colii, 0 — o) of the eigenvalue position x and of the € angle for various quark
(x* + u%) (x> + u%) 0 ¢ masses u; and u,. When increasing the quark masses the

oscillations become so strong that the level density loses its
positivity.

Z(ﬁ79_ (,0)

Z(u,0— @)

(77)
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with

&o(id, @) :IO<\/u%+u%+2uluzcosa). (78)

We recognize the first term as the contribution of the
quenched part of the spectral density discussed in Sec. V.
The imaginary part of the integral vanishes, which follows
from the fact that the imaginary part resulting from
applying Eq. (A13) yields a total derivative.

The level density of the nonzero modes, p"™ = p? 4 p<,
looks quite complicated. It becomes more presentable when
both masses are equal and the 0 angle vanishes,

P (x, u,u,0 =0)

x| /”d_(p {Jl(szin%)

-~ L(2lu)) ) m | 2xsin%
I,(2ucos? Jo(2xsin®)1,(2u cos?
1( 2)—008(,0 0( 22) 0(2 2) ) (79)
2ucos? X +u

The behavior of the level density p"*™ is shown in Fig. 9 for
various masses. As in the one-flavor case, the amplitude of
the level density at nonzero € angle increases exponentially
with the volume, and its oscillations have a period of
O(1/V). At nonzero 6 angle, oscillations of this type can
shift the original discontinuity of the chiral condensate at
m = 0 for fixed v.

For large mass u, we regain the level density
PN (x, uy,0). To obtain this limit we have to approximate

the modified Bessel functions by

e\u2\+sign(u2)Ltl cos ¢
V27 |us|

In contrast, when taking the limit #, — 0, only the sector
of zero topological charge contributes to the partition
function, resulting in the spectral density p"”%(x, uy,0).
Because of flavor-topology duality [28] for massless
quarks in the microscopic limit (which is most easily
understood in terms of the joint eigenvalue distribution

of the chiral random matrix theory), this can be written

as %, (e = u).

I(\/u} +ud+2ujuycosp) ~ 80
1T u;

B. Chiral condensate

In this subsection we evaluate the chiral condensate from
the spectral density using Eq. (27). We only consider the
chiral condensate of the first quark (which we denote by X;);
i.e., we set it = u,. The chiral condensate X, of the second
quark can then be obtained by interchanging u; <> u,.

The zero-mode and quenched contributions to the chiral
condensate are obtained by substituting the two-flavor

FIG. 10. Zero-mode contribution to the chiral condensate for
two flavors as a function of the two quark masses u; and u,. For
vanishing @ angle we notice two quadrants where this contribu-
tion does not grow exponentially in the masses. For 0 € (0, z) we
have only two lines, given by u;u, = 0, where this contribution
remains finite in the limit of large masses.

result (17) for the partition function in Egs. (37), (40),
and (41). We do not repeat the corresponding expressions
here. As in the one-flavor case, me(ﬁ, 0) grows exponen-
tially in the quark masses for @ #0 or for § =0 and
uju, < 0. This can be seen nicely in Fig. 10. When the sign
problem is absent, %™ remains bounded. For vanishing
6 angle we can use —1/2sin?% = 9, cot¥ and integrate
Eq. (37) by parts such that the integral loses its singularity
and becomes an ordinary integral,

ZiM(,0) _ 2up|uy + uy ”@C()Szﬂ

2 L(u twl]) J2m 2
xlz(\/u%—l—u%—l—Zuluzcosgo)
ut +u3 + 2uyuycosp

(81)

We employed Eq. (C3) to obtain this result. A similar result
can be derived for & = z. When the masses are equal, the
integral can be expressed in terms of a hypergeometric
function.

The calculation of the dynamical contribution to the
chiral condensate is performed in Appendix B and yields
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>{(u,0 d Ko(2]u; sin%
it 4 (; ) =u /_ﬂ7(p{ {Zuluz sin%sin(%—&) (u? + u?)sin? ﬂ {_O(J%”l - 5D
_|_|M2|K 1 (2luy sin & [) — |uy|[K (2|uy sin%|)] Z(i, 6 — @)
(u3 — u})?|sin%| Z(i,0)
— (60—
+ { sin% sign(ul)u1 Cosgou2u_2 cb:los ¢) 1(2 u sm—)
2~
Ko(2|uy sinf|) = Ko(2|up sin%|)] 280 (4, 0 = )
+ (uyuy cos(8 — @) — u3 cos @) (=) 2(.0) : (82)

The limit #, — oo yields the one-flavor result (62), i.e.,
Z‘,’.Nfzz(ul, U, = 00,0) = Zf,f_:l(ul,ﬁ). This can readily
be checked because only two terms of the integral are of
leading order and the Bessel function 7, can be approxi-
mated as in Eq. (80). In the limit #; — oo (at fixed u,) one
can show that Z‘f is proportional to 1/u;.

We emphasize that £¢ remains finite for large masses.
The reason is the same as discussed in Sec. V, namely that
the exponents of the K, and of the partition function cancel.
Of course this should happen because the total chiral
condensate, which can be obtained from the mass deriva-
tive (5) of the two-flavor partition function,

(4, 0)
3

d
 du,

u; + u, cosd
Vu} + u3 + 2uu; cos
L (\/u? + u3 + 2u,u, cos 0)
I, (\/uf + 3 + 2uyuy cos )

—log Z(u,0) =

(83)

is finite. Although the expression for %, is quite compli-
cated when derived via Egs. (41) and (82), we checked
numerically that it agrees with Eq. (83). (We did not
succeed to give a direct analytical proof.) The behavior of
%, is illustrated in Fig. 11 for several masses at the two
angles 6 = 0 and /2. It changes sign at u;/u, = —cos @,
which becomes the Dashen point [19,29] for @ = 0, 7 when
taking the thermodynamic limit.

T T T T T T T

Ny=2
o=o ﬁ
0, -
—uy =1
—uy =25
-1 —uy =25 |
—_— g — 00
1 1 1 Il 1 1 1 1 1 1 Il 1 1 1
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
u1/uy uy /uy
FIG. 11. Chiral condensate of the first quark in the two-flavor

theory [see Eq. (83)] as a function of the first quark mass u;
rescaled with respect to the fixed second quark mass u,. The
black curve is the thermodynamic limit. The jump in the left plot
(@ =0) is the Dashen point [19,29], which corresponds to a
first-order phase transition.

In Fig. 12 we show the decomposition of the chiral
condensate for § = 0 with one mass kept fixed at u, = 20.
The sum of the quenched part and the zero-mode part,
249 + ¥*m results in a chiral condensate with a disconti-
nuity in the thermodynamic limit at #; = 0. Both parts
become exponentially large in the volume when the product
of the quark masses is negative, but their sum is finite. The
dynamical part of the spectral density results in a chiral
condensate with a discontinuity at #; = 0 that cancels the
discontinuity of 24 + X*™ and creates a new discontinuity
at u; = —u,.

C. Thermodynamic limit

Before we turn to the general setting, we first consider
the cases @ = 0 with u;u, > 0 and 6 = 7 with u;u, < 0, in
which there is no sign problem. In the thermodynamic
limit, the chiral condensate becomes

I . 1
o]+ o) b
I (fuy | + |us)

= sign(u;) (84)

~

Z1(U1,U2 = 20,0 = 0)
[ [ [ [ [

—20

—10

FIG. 12. Mass dependence of the various contributions to the
chiral condensate for two-flavor QCD at 8 = 0. The chiral
condensate of the first quark is shown as a function of
u; = m; VZ, while the second mass is kept fixed at u, = 20.
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1 [T T T T ]
Ny =2
Q
S o0r i
—6=m/10
—0O0=m/2
—6=97/10
—0O0=n
=1 | \ 1 I I
-2 -1 0 1 2 3
y=u1/uz
FIG. 13. Thermodynamic limit of the chiral condensate (87) as

a function of the first quark mass u; for several 0 angles and
> > 0. The chiral condensate depends only on the ratio u; /u, in
this particular limit. The Dashen point exists only for 8 = 0, z and
shows up as a jump in the chiral condensate, reflecting the nature
of a first-order phase transition.

because the leading asymptotic behavior of the Bessel
functions does not depend on the index. Hence, its behavior
is not different from the one-flavor case. The difference
between the one- and two-flavor theory shows up in the
zero-mode contribution, which is

XA (37, 0) i b1 2|uy |
SR sign(u - (85
T “)\/n|u1|<|ul|+|uz|> (%)

To obtain this result for # =0 and u;u, > 0 we have
performed a saddle-point expansion of the integrand (81)
about the point ¢ = 0. Hence, we again have an algebraic
dependence on the quark masses, which has a similar
behavior as in the one-flavor case when both masses are
equal, Zf"(|u;| = |uy| = u,0)/Z ~ 1//zu; cf. Eq. (70).
The situation changes drastically when there is a sign
problem, i.e., cos@ # sign(u;u,). In this case the zero-
mode contribution again exhibits exponential behavior,

S (id, 0) 1 1
x 8rsin®[§ + (1 — sign(uyuy)) %] uy
(U3 + u3 + 2u u, cos 0)3/?

Vwgus |(lug | + us)
X e‘“lH““Zl_\/W. (86)

To obtain this result we performed a saddle-point approxi-
mation of Eq. (37) about the point ¢ =6+
(1 —sign(u u,))m/2. Note that the derivation of (86) is
only valid for both |u;| > 1 and |u,| > 1 and cannot be
used in the chiral limit of any of the quark masses. For

sign(u;u,) > 0 and 6 — 7, the exponential divergence in
Eq. (86) is given by exp(2 min{|u;|, |u|}), which changes
drastically at the point |u;| = |u,| from exp(2|u;|) to
exp(2]u|)-

The total chiral condensate still behaves algebraically in
the masses,

21 (ﬁ, 9) [y [ |up>1 u + uy cos @

~

z Vu} + u3 + 2uyuy cos 6
0
= sign(u,) Y + cos with y= o
V2 + 14 2ycosd Uy
B { sign(u; +uy), 6=0, (87)
sign(u; —u,), 6=nr.

Apart from the factor sign(u, ), the thermodynamic limit of
the chiral condensate is a function of u;/u, only and is
shown in Fig. 13 for several values of 6. It changes sign at
u,/u, = —cos@. For @ # 0, x this transition is smooth, but
for 8 =0 or 6 =z (corresponding to the Dashen point
[19,29]) it is discontinuous.

VIII. CONCLUSIONS

At nonzero 0 angle, the discontinuity of the chiral
condensate in general does not coincide with the support
of the Dirac spectrum. In particular, for one-flavor QCD
there is no discontinuity at zero quark mass, and for two-
flavor QCD with quark masses m; and m,, the chiral
condensate of the first quark does not have a discontinuity
at m; = 0 but rather at m; = —m,. We have analyzed this
behavior in terms of the contribution from the zero
modes, the contribution of the mass independent part
of the Dirac spectrum (the “quenched” part), and the
contribution of the remainder of the Dirac spectrum
which is sensitive to the fermion determinant (at fixed
topological charge).

At fixed 6 angle, we have obtained a compact general
formula for the contribution of the zero modes and of the
quenched part of the Dirac spectrum to the chiral con-
densate. Both formulas are valid for any number of flavors
and are given by an integral over a flavor independent
kernel times the ratio of N flavor partition functions. The
formula for the zero modes is completely general, while
the expression for the quenched part has been obtained in
the microscopic domain of QCD but is also valid for any
number of flavors. Both contributions diverge exponen-
tially with the volume at nonzero 0 angle, but the divergent
contributions cancel identically when added, leaving a
result that is finite in the thermodynamic limit. The deeper
reason for the cancellation based on general ideas from
spectral flow and topology is that when we have |v| zero
modes, the spectrum near zero is depleted by |v| modes,
half of them with positive eigenvalues and the
other half with negative eigenvalues. This depletion gives
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a contribution to the chiral condensate with the opposite
sign. For large u = mVZ it does not matter whether the
modes are exactly at zero or are close to zero. The fermion
determinant results in an additional eigenvalue repulsion
from zero, which does not depend on v, and the contribu-
tion to the chiral condensate due to this modification of the
Dirac spectrum is expected to remain finite in the thermo-
dynamical limit.

For one and two flavors, we have also obtained exact
analytical expressions for the dynamical part of the Dirac
spectrum and the chiral condensate in the microscopic or €
domain of QCD which confirm the above picture.

For 8 # 0 both the quenched and the dynamical con-
tributions to the spectral density as well as their sum are
strongly oscillating with an amplitude that diverges expo-
nentially with the volume and a period on the order of 1/V.
From QCD at nonzero chemical potential we have learned
that this behavior may cancel the discontinuity of the chiral
condensate and shift it to a different point. The sum of the
quenched part and the zero mode part retain the disconti-
nuity at m; = 0, but the oscillations of the dynamical part
cancels this discontinuity and move it to m; = —m, for two
flavors or to infinity for one flavor. The effect of the zero
modes is to create a gap at zero but, in the quenched
approximation, the position of the remaining eigenvalues
does not depend very much on v. Since the condensate is
obtained in the thermodynamical limit, it is not surprising
that the quenched contributions to the chiral condensate
have a discontinuity at m; = 0. We thus conclude that the
determinant introduces correlations in the Dirac spectrum
that cancel the discontinuity at m; = 0 and move it to
my = —m,. Currently we do not have a good understanding
of the nature of these correlations, but hope to return to this
issue in future work.

We have also seen that the correct computation of the
chiral condensate at nonzero € angle requires a subtle
balance between zero and nonzero modes. Even the
slightest incompatibilities will give results that are com-
pletely off. This will make lattice QCD simulations at
nonzero # angle a formidable, and perhaps impossible, task,
and we have to rely on analytical work to make further
progress.
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APPENDIX A: RESUMMATION OF PRODUCTS
OF BESSEL FUNCTIONS

To compute the sums of Bessel functions needed in the

main text we consider the sum

co N

2V ©0.i) = > e [ Losa,(uy),
j=1

UV=—00

(A1)

where [, is the modified Bessel function of the first kind.
The indices a = (ay,...,ay) are chosen to be integers
while the masses # = (uy, ..., uy) can be arbitrary, even
complex valued. Indeed we need imaginary masses i to
generate the Bessel functions of the first kind via the
relation /,(iz) = i*J,(z).

Using an integral representation of the Bessel
function we can sum over v employing the relation

© e =2z5(p). Note that the argument of the
Dirac delta function has to be taken modulo 2z, which
we omit. This sum yields

N ”d(p N
2 (0.7) =2z [ / el (N " 4+ 0.
=1 /- 2z =1
(A2)

The simplest case is N = 1, for which

(1 _; .
:‘2])(9’ ”1) —e laleeulcmﬁ_

(A3)

For a =0 this corresponds to the one-flavor partition
function

Z(uy,0) = Eél)(H, uy) = e eos?, (A4)
For N > 1, we define new variables 9; = ¢; and 9; =
@;j+9;_ for j=2,...,N. This allows us to evaluate the
delta function, and we end up with a chain of integrals,

N-1
E(N) 0.1) = e—iant /”d_&l i(aj—aj41)9;
o (0,u0)=e ]1:[1 r e

% ' e 9 +uy cos(9+8N_1)+ZkN:_2] Uy cos(&k—ﬁk_l).

(AS)

For general even N we set N =2n with n €N and
integrate over 9;,9s, .. This again produces
Bessel functions,

"’92n—1'
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n-1 i9; \ (a;—ay)/2
=2 o A2 i e, (U1 U’ \ 0
ey n)(e’ u):e ’“2"9| | T pilagjmagi)8y [ TL 2T I, _ u2+u2—|—2u1u2c05192
—id a;—a 1 2
L) g 2w uy+uye”2
j=1 T 1 2

192, —i0\ (ay,_1—az,)/2
Upp—1€"72 + Uy e 2=t 5 5
x ( 7 Loy —ay, | \/ U2py + U3, + 2Up, Uy, COS(85, +0)

n—2 ; . _
« ( Uppa e 4 u2k+ze“92k+2 ) (ask1—a+2)/2

Upp 1€ 0% gy p e P

Upy_r€” 02wy, e

2 2
1112k+1—azk+2 <\/u2k+l + Urg12 + 2u2k+1 Woky2 C05(192k - 192k+2)) .
k=1

(A6)

In the case of N = 2, which is needed for the partition function of two flavors and can also be used for the quenched level
density, we obtain

i0 (a1=ay)/2
5C), (0, 4y, uy) = e-ilartaor2 (17+z> e

v Liy—a <\/u% + u3 + 2u u, cos 9) . (A7)

Then the two-flavor partition function is

— e
Z(uy, 1y, 0) = 2“250,1)(9,”1,@) - ”15(1,3(97%7”2) . 211(\/14% + u% + 2u u; cos 0) (A8)
v U — u Vil ud 4 2uyuycosf

For N = 4, which is needed for the level density with two flavors, the result is a single integral,

=(4) iao [T4P iaray)g (U1 T ure'? \ (@=®)/2 (13610 4 yyei0 (@701)/2
(0, uy, Uy, usy, uy) = e — e\ B — = —_
a ( s Uy, Up, U3, 4) —i —i i0
2 27 uy + ue'? uze™? + uye

X Ly, <\/u% + u3 + 2uyu, cos cp) Li—a, <\/u§ + u2 + 2uzuy cos(p + 9)) ) (A9)

For general odd N we set N = 2n + 1 with n € N and again integrate over &y, 95, ..., 8»,_;. This leads to a slightly different
result,

—(2n+1 — i
=l n )(Q,M) —_ iay, 10

n rdd,. . u +u ei“SZ (a1=ay)/2

X H ) el(“z/'_“zjﬂ )'92je”2n+l cos(0+92,) it Sl S . 1. _ u2 + uz + 2u1 U, COS 192
2n Uy +uye” G b2

]:1 - 1 2

n—1 195, 9
X < Ui 1€ + Uy pe' 22

Uppr1 €™ 0% gy pe™ P2

(a2k+l _a2k+2)/2 2 2
Loy i—ay.s (\/ Uiy T U ip 22U 1 Uk 2 cos(dy — '92k+2)> .
k=1

(A10)

For N = 3, which is employed for the level density with one flavor, the result is a single integral,

A Tdep . ip \ (a1—az)/2
5513)(9, Uy, hy, U3) = e—la3e/ %el(az—ag)(pd@ cos(6+¢) (ubil_:‘bizee_i(ﬂ) L _a, <\/u% + u3 + 2u u, cos (p) . (Al1)
-7

The results above simplify further for the specific sums we are considering. For the contribution of the nonzero modes to the
two-flavor level density we need N = 3 and 4 with u; = u, = ix and § - 0 — =z, i.e.,

c i —ir(a,+a =0 7
Z ¢ Ua"lﬂral (x)']u+az (x)1v+a3 (u) =e et 2)/2:‘1(1 )(9 -7, X, LK, u)

V=—00

— (_1 )az—as e—ia39 /” (21_(p ei(a1+az—2a3>(/7/ze—u COS(9+(/7)Jal_a2 <2x cos %) (A]Z)
g 27
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and

Z ewg‘]vﬂ—m v+az< )Iv+a3(u1)lv+a4(u2) = e—zzr(a1+a2)/ (9 m,ix, ix, ulvu2)

V=—00

= (_1)a2+a4e—i(a3+a4)9/2 /ﬂd_(pel(lllJruz—a%—‘M)(ﬂ/z(

M]e i(0+¢) _ Uy (az—ay)/2
g 2T

uy — uye'0+e)

X Jy—a, (Zx cos g) Lo, (\/u% + u3 — 2uyu, cos(6 + go)) (A13)

APPENDIX B: CALCULATION OF THE CONDENSATE X¢ FOR TWO FLAVORS

The dynamical part of the level density is given by Eq. (76). We combine this result with Eq. (27). Thus we have to
evaluate the integral

2u,
24(i,0) = d u,o
1(7.0) A v 0)
2141 / / x|2uju, sing_—(p—i—(zﬂ—f—uz)sin2 Iy 2xsin? Z(u,0 — @)
) (x + u3) 2 ) 2
+2[x% cos @ + uyu, cos(0 — )] J, <2x sin%) I <\/u% + 3 + 2u uy cos(0 — (p)) } (B1)

As the first step we perform a partial fraction expansion of the ratios

1 1 1 1 1 1 1
<ﬁ+ﬁﬂﬁ+@>u%mj<+u> %—ﬁﬁ+%+%—ﬁﬁ+%}

x%cos @ + uyu, cos(6 — @) _ i cos(6 — @) — urcosp . u3cos @ — uju,cos(6 — @)
R B U R [ N B R
_ u3cos @ — uyuy cos(6 — @) (B2)
(3 — ui)*(x* + u3)
I
for the first and second terms in the integral, respectively. =~ The modified Bessel function of the second kind also
For the integral over the first term we need the integrals satisfies two recursion relations [31],
(C9) and (C10) while for the second term we employ (C11)
and (C12). After some algebra we find Eq. (82). XK,y (x) = K,y (%)) = 20K, (%), (C4)
APPENDIX C: INTEGRALS OVER BESSEL
FUNCTIONS K0+ Ko (x) = 20,00, (CS)

At several places of our work we need recurrence
relations and other identities of Bessel functions which  Specifically, we have
can be found in [30,31]. We will briefly summarize those
we neeq herq. The Qrdinary and modified B;ssel functions 8.Ko(ax) = —aK, (ax), (C6)
of the first kind satisfy the recurrence relations

*(Upa () F () = 200,00, (CD) O,k (ax)] = —axKo(ax). ()
u(l,_y(u) = 1,,.1(u)) =2vl,(u), (C2)  Moreover we need the integral identities
LGY) (V) Ji(2xt) 1 sign(r)

0 =y e (3) |7t - s - Sk ). (o)
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o X2 (2xt) .
|7 a2 = sign(olul &, 2l (c9)

o - x2J,(2xt)
dx———=5 = tKo(2|tu|), C10
7 s T = otaln) (10)
o xJo(2xt)
o xJo(2xt) i
dx———=5 = — K (2]tu|). Cl12
/0 x(x2+u2)2 |u| 1( |u|) ( )

The first, second, and fourth integrals were also given in
[11], where it was implicitly assumed that 7 > 0.

APPENDIX D: THERMODYNAMIC LIMIT
OF X/ FOR N =1

In this Appendix we derive Eq. (72). We consider the
RHS of (62), which we denote by I. For large argument
the Bessel functions K,(x) can be approximated by
e™*\/n/2x. Therefore, in a saddle-point approximation,
the exponent to be analyzed is

f(p) =ucos(6—¢) - uCOSG—2‘usin§‘

= —2‘u sin%‘ [1 — sign(u sin%) sin(é’—%)],

(D1)

which is always nonpositive and has a maximum of
Sfmax(@) = 0. A straightforward analysis shows that for
ucos @ > 0 the maximum is assumed only at ¢ = 0, while
for ucos@ < 0 it is also assumed at ¢ =20 — (2k + 1)z,
where k € Z has to be chosen such that » € [—x, z]. The
latter is a true saddle point and dominates the integral.
Expansion about ¢ yields to leading order in |u/,
I~2cos@ (if ucos@ <0). (D2)
For u cos @ > 0 we have to expand about ¢ = 0. This is
not a true saddle point since the derivative of f(¢) is
nonzero and discontinuous at this point. Furthermore, for
@ — 0 we cannot use the asymptotic expansion of K, (x).

Since the term involving K, comes with an additional
factor of sin % it is subleading and can be dropped. Hence, to
leading order in |ul,

%

2

7 dgp e cos(0—¢)
" s0
—p 2m et

cos @

u sin — u sin —

I ~—

(g cos UK, <2

~— 0 dt tsin 0 sign(u) K (It
ot [ v ()

0 )
_ dt cosh(tsin 0)tK (1)
zlul Jo
cos @ 1
= — — if 0> 0), D3
2|ucos’6| 2ucos*6 (if  cos ) (D3)

where the second line was obtained by transforming ¢ =
t/|u| and expanding in 7. The integral in the third line
equals 7/2(1 —sin? 0)*2 = z/2| cos 0|*.

Finally we consider the case of cos @ = 0. It is straight-
forward to show that the same result for / is obtained for
0 = +x/2 and that the result is odd in . Hence we only
consider @ = z/2 and u > 0 in the following. For 0 — /2
we have p — 0; i.e., we again have to expand about ¢ = 0.
In this case we find for the exponent to leading order in ¢

—%uqﬁ, @ >0,

o)~ { (D4)

2ue, @ <0.

The dominant contribution to the integral is thus obtained
from the region ¢ > 0. Since we are expanding for small ¢,
the term involving K; gives twice the result of the term
involving K. Using the asymptotic expansion of K, we
obtain to leading order in |u|

SEC dpe 7’ ¢ vz

I~

7 Jo 4 \2up

3 00 3
- dte "2
\/Eul/3/o
I'(5/6
= —\/(./1/)3 (if cos@ =0 and u > 0). (D5)

Tu

Observing that [ is odd in u for cos @ = 0 we obtain the last
line of Eq. (72).
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