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The low-energy light-by-light cross section as determined by the nonlinear Euler-Heisenberg QED
Lagrangian is evaluated in the presence of constant magnetic fields in the center-of-mass system of the
colliding photons. This cross section has a complicated dependence on directions and polarizations. The
overall magnitude decreases as the magnetic field is increased from zero, but this trend is reversed for
ultrastrong magnetic fields B≳ Bc, where the cross section eventually grows quadratically with the
magnetic field strength perpendicular to the collision axis. This effect is due to interactions involving the
lowest Landau level of virtual Dirac particles; it is absent in scalar QED. An even more dramatic effect is
found for virtual charged vector mesons where the one-loop cross section diverges at the critical field
strength due to an instability of the lowest Landau level and the possibility of the formation of a
superconducting vacuum state. We also discuss (the absence of) implications for the recent observation of
light-by-light scattering in heavy-ion collisions.
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I. INTRODUCTION

Scattering of light by light is a prediction of quantum
electrodynamics (QED) that has been first calculated in
1935, in fact prior to the full development of QED, in the
low-energy limit by Euler and Kockel [1,2], and in the
ultrarelativistic limit shortly thereafter by Akhiezer,
Landau, and Pomeranchuk [3,4]. The former calculations
were extended by Heisenberg and Euler [5] who obtained
an effective low-energy Lagrangian which includes back-
ground electromagnetic fields to all orders in field strength
(for historical reviews and references see [6–9]; a short list
of further relevant references with regard to applications in
light-by-light scattering is given by [10–17]).
In high-energy ultraperipheral collisions of heavy ions

(HIC) evidence of the quantum mechanical process of
light-by-light scattering has been presented for the first time
by the ATLAS Collaboration at the LHC [18], and more
recently also by the CMS Collaboration [19]. Light-by-
light scattering can be studied through the large (almost)

real photon fluxes available in ultraperipheral hadron-
hadron, best in lead-lead collisions at LHC.
In the noncentral HICs very strong magnetic fields

are created perpendicular to the heavy-ion reaction plane,
which, however, decay rapidly, but are still strong at collision
time τ ≃ 1 fm. The field strength has been estimated to
reach [20–23]

B=Bcðτ ¼ 0 fmÞ ≃Oð105Þ and

B=Bcðτ ¼ 0.6 fmÞ ≃Oð102 − 103Þ; ð1Þ

at RHIC for impact parameters b ≃ 10 fm, with the critical

magnetic field Bc ¼ m2
e
e ≈ 0.86 MeV2 ≈ 4.4 × 1013 G in

terms of the electron mass me. At the LHC the estimated
initial value is about a factor of 10 higher (but decays faster).
Motivated by this, the present paper considers γ þ γ →

γ þ γ scattering in the presence of weak and strong
(constant) magnetic fields in the center-of-mass system
of the colliding photons, from B=Bc ≪ 1 to B=Bc ≫ 1

(but, parametrically, B=Bc ≪ α−1=2 so that higher-loop
corrections as well as the effects from dispersion and
refraction of light in the magnetic field [24] remain
negligible). In the following this process will be studied
in detail in the low-energy approximation provided by the
Euler-Heisenberg Lagrangian. In this regime, the cross
section rises proportional to ω6=m8 with increasing photon
energy ω. At ω ∼m the cross section reaches its maximum
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value ∝ α4=m2 and afterwards decays rapidly like 1=ω2

[3,11,25] until the next heavier charged particle starts to
contribute according to the Euler-Heisenberg Lagrangian
but with a maximum value that is suppressed by the
corresponding lower inverse mass squared. After electrons
and muons, also scalar charged particles such as pions and
kaons contribute, which are described by a variant of the
Euler-Heisenberg Lagrangian first obtained by Weisskopf
[26]. Also working out the effects of magnetic background
fields on virtual scalars, we find that magnetic fields lead to
a monotonic decrease of the light-by-light scattering cross
section in scalar QED, whereas the lowest Landau level of
the Dirac spinors contributes a counteracting effect that
dominates at large magnetic fields where it leads to a
growing cross section. A theoretically particularly interest-
ing case is given by the Euler-Heisenberg Lagrangian for
charged vector bosons [27] for which we find a light-by-
light scattering cross section growing with magnetic field
strength and diverging at the critical magnetic field where it
has been conjectured that a charged vector boson con-
densate may form [28–31].
As discussed further in the concluding section, relatively

more significant effects from magnetic fields are to be
expected for lighter particles as they have smaller critical
Bc ¼ m2=e. At least sufficiently below the mass threshold,
where the cross section steeply rises with energy, the Euler-
Heisenberg Lagrangian permits reliable calculations of the
effects of magnetic fields on light-by-light scattering.

II. EFFECTIVE LAGRANGIAN

The one-loop effective QED Lagrangian for a Dirac
particle with charge e and mass m in the presence of
electromagnetic background fields with negligible gradients
as obtained first by Heisenberg and Euler reads [5,32,33]

Lð1Þ
spinor ¼ −

1

8π2

Z∞
0

ds
s3

e−m
2s

×
h
ðesÞ2jGj coth

�
es
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2 þ G2
p

þ F
�1

2

�
× cot

�
es
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2 þ G2
p

− F
�1

2

�
−
2

3
ðesÞ2F − 1

i
;

ð2Þ

where F and G denote the Lorentz scalar and pseudoscalar

F ≔
1

4
FμνFμν ¼ 1

2
ðB2 − E2Þ; ð3Þ

G ≔
1

4
Fμν

⋆Fμν ¼ E ·B; ð4Þ

that can be built from the field-strength tensor and its dual,

Fμν ¼ ∂μAν − ∂νAμ ð5Þ

⋆Fμν ¼ 1

2
ϵμναβFαβ: ð6Þ

The Maxwell Lagrangian is given by Lð0Þ ¼ −F.
An equivalent version of (2) is

Lð1Þ
spinor ¼ −

1

8π2

Z∞
0

ds
s3

e−m
2s

�
ðesÞ2ab cothðesaÞ cotðesbÞ

−
1

3
ðesÞ2ða2 − b2Þ − 1

�
; ð7Þ

where new variables are introduced1

a≔ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2þG2

p
þF Þ12; b≔ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2þG2

p
−F Þ12; ð8Þ

⇒ jGj ¼ ab; F ¼ 1

2
ða2 − b2Þ: ð9Þ

In terms of the variables a and b, the low-energy one-
loop effective Lagrangian of QED with Dirac spinors
replaced by charged scalars reads [26]

Lð1Þ
scalar ¼

1

16π2

Z
∞

0

ds
s3

e−m
2s

� ðesÞ2ab
sinh ðesaÞ sin ðesbÞ

þ 1

6
ðesÞ2ða2 − b2Þ − 1

�
; ð10Þ

wherem is now the mass of the charged scalar particle. This
is of potential interest for elastic light-by-light scattering
when the photon energy approaches the mass scale of
pions.
The Euler-Heisenberg Lagrangian for massive charged

vector fields has been obtained in Ref. [27] for the case of a
gyromagnetic factor g ¼ 2, which is carried by the electro-
weak W� gauge bosons and (approximately) also by the ρ
meson [35,36]. It reads

Lð1Þ
vector ¼ 3Lð1Þ

scalarþ
e2

4π2

Z
∞

0

ds
s

�
e−im

2sa

�
b
sinðesaÞ
sinhðesbÞ−a

�

− e−m
2sb

�
a
sinðesbÞ
sinhðesaÞ−b

��
; ð11Þ

where m on the right-hand side, including the term 3Lð1Þ
scalar,

is the mass of the charged vector particle.
For hadronic scalar and vector mesons, the effective

Lagrangians (10) and (11) apply as long as they can be

1Here we follow the conventions used in Refs. [33,34] which
differ from the original work of Heisenberg and Euler [5] as well
as the review [6] in the notational reversal a ↔ b.
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treated as pointlike particles, which should be the case at
sufficiently large photon wavelength and sufficiently large
Larmor radius rq ∝ mq=ðeBÞ of the quark constituents,
compared to the mesons’ charge radii.
In the limit of weak fields, the various Euler-Heisenberg

Lagrangians have the form

Lð1Þ ¼ c1F 2 þ c2G2 þ…; ð12Þ

with c1;2 given in Table I. These lowest-order terms are
sufficient to obtain the cross section for low-energy light-
by-light scattering with zero background fields [1] (see
Ref. [15] for detailed results including polarization effects);
in the following the corresponding calculations will be
generalized to a constant magnetic background field of
arbitrary strength.

III. GEOMETRY AND KINEMATICS

The scattering amplitude M for γðk1Þ þ γðk2Þ →
γðk3Þ þ γðk4Þ is evaluated in the center-of-mass system,

k1 ¼ ðω;ωk̂Þ; k2 ¼ ðω;−ωk̂Þ;
k3 ¼ ðω;ωk̂0Þ; k4 ¼ ðω;−ωk̂0Þ: ð13Þ

The scattering plane is defined by

k̂ ¼ ð1; 0; 0Þ; k̂0 ¼ ðcos θ; sin θ; 0Þ: ð14Þ
For linear polarizations the unit vectors ϵ̂i and ϵ̂o denote

the directions in and out of the plane of scattering, such that
they form a right-handed orthogonal basis with the photon
momenta k̂, k̂0, respectively (see Fig. 1),

ϵ̂1i ¼ ð0; 1; 0Þ; ϵ̂1o ¼ ð0; 0; 1Þ;
ϵ̂2i ¼ ð0; 1; 0Þ; ϵ̂2o ¼ ð0; 0;−1Þ;
ϵ̂3i ¼ ð− sin θ; cos θ; 0Þ; ϵ̂3o ¼ ð0; 0; 1Þ;
ϵ̂4i ¼ ð− sin θ; cos θ; 0Þ; ϵ̂4o ¼ ð0; 0;−1Þ: ð15Þ

The radiation field-strength vectors [24] are given by

f1�i;o ¼ ωðk̂ ∧ ϵ̂1i;o � iϵ̂1i;oÞ;
f2�i;o ¼ ωð−k̂ ∧ ϵ̂2i;o � iϵ̂2i;oÞ;
f3�i;o ¼ ωðk̂0 ∧ ϵ̂3i;o � iϵ̂3i;oÞ;
f4�i;o ¼ ωð−k̂0 ∧ ϵ̂4i;o � iϵ̂4i;oÞ: ð16Þ

The external fields are denoted by

F� ¼ B� iE ð17Þ
with components F�

r , r ¼ 1, 2, 3, as for the components f�r
of f�.

IV. LIGHT-BY-LIGHT SCATTERING
AMPLITUDES AND CROSS SECTIONS

Following Adler’s seminal work on photon splitting in a
magnetic field [24] (as reviewed in Sec. 3.4 of Ref. [33]),
the matrix element for the scattering γðk1Þ þ γðk2Þ →
γðk3Þ þ γðk4Þ in the presence of external electromagnetic
fields is given by derivatives of the Euler-Heisenberg
Lagrangian (2) [or its analogue (10) in scalar QED and
(11) for charged vector mesons], which are finally evalu-
ated for finite B and vanishing E ¼ 0. The rather lengthy
expression reads

M¼
�
f1þr ·

∂
∂Fþ

r
þf1−r ·

∂
∂F−

r

��
f2þs ·

∂
∂Fþ

s
þf2−s ·

∂
∂F−

s

��
f3þt ·

∂
∂Fþ

t
þf3−t ·

∂
∂F−

t

��
f4þu ·

∂
∂Fþ

u
þf4−u ·

∂
∂F−

u

�
×Lð1Þ; ð18Þ

and explicitly,

TABLE I. Coefficients c1;2=C and ĉ1;2=C with C ¼ α2=m4.

c1=C c2=C ĉ1=C ĉ2=C

Spinor QED 8=45 14=45 64=315 104=315
Scalar QED 7=90 1=90 31=315 11=315
Supersymmetric QED 1=3 1=3 2=5 2=5
Charged massive vector 29=10 27=10 −137=105 −157=105

FIG. 1. Kinematics of photon-photon collisions in the center-
of-mass system.
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M ¼ f1þr f2þs f3þt f4þu
∂4Lð1Þ

∂Fþ
r ∂Fþ

s ∂Fþ
t ∂Fþ

u
þ ðf1þr f2þs f3þt f4−u þ f1þr f2þs f4þt f3−u

þ f1þr f3þs f4þt f2−u þ f2þr f3þs f4þt f1−u Þ ∂4Lð1Þ

∂Fþ
r ∂Fþ

s ∂Fþ
t ∂F−

u
þ ðf1þr f2þs f3−t f4−u þ f1þr f3þs f2−t f4−u þ f1þr f4þs f2−t f3−u

þ f2þr f3þs f1−t f4−u þ f3þr f4þs f1−t f2−u þ f2þr f4þs f1−t f3−u Þ ∂4Lð1Þ

∂Fþ
r ∂Fþ

s ∂F−
t ∂F−

u
þ ðf1−r f2−s f3−t f4þu þ f1−r f2−s f4−t f3þu

þ f1−r f3−s f4−t f2þu þ f2−r f3−s f4−t f1þu Þ ∂4Lð1Þ

∂F−
r ∂F−

s ∂F−
t ∂Fþ

u
þ f1−r f2−s f3−t f4−u

∂4Lð1Þ

∂F−
r ∂F−

s ∂F−
t ∂F−

u
: ð19Þ

Next the derivatives with respect to F�
r are expressed in terms of derivatives ∂

∂F and ∂
∂G, e.g.,

∂
∂F�

r
¼ 1

2
F�
r

� ∂
∂F ∓ i

∂
∂G

�
; ð20Þ

using

∂F
∂F�

r
¼ 1

2
F�
r ;

∂G
∂F�

r
¼ � 1

2i
F�
r ; ð21Þ

and

∂2

∂Fþ
r ∂Fþ

s
¼ 1

2
δrs

� ∂
∂F − i

∂
∂G

�
þ 1

4
Fþ
r Fþ

s

� ∂2

∂F 2
− 2i

∂2

∂F∂G −
∂2

∂G2

�
; etc: ð22Þ

An important typical derivative is

∂4Lð1Þ

∂Fþ
r ∂Fþ

s ∂Fþ
t ∂Fþ

u
¼ 1

4
ðδrsδtu þ δrtδsu þ δstδruÞ

�∂2Lð1Þ

∂F 2
−
∂2Lð1Þ

∂G2

�

þ 1

8

�
δrsF

þ
t Fþ

s þ δrtFþ
s Fþ

u þ δstFþ
r Fþ

u þ δruFþ
s F

þ
t þ δsuFþ

r F
þ
t þ δtuFþ

r Fþ
s

�

×

�∂3Lð1Þ

∂F 3
− 3

∂3Lð1Þ

∂F∂G2

�

þ 1

16
Fþ
r Fþ

s F
þ
t Fþ

u

�∂4Lð1Þ

∂F 4
− 6

∂4Lð1Þ

∂F 2∂G2
þ ∂4Lð1Þ

∂G4

�
; ð23Þ

noting that odd derivatives with respect to G vanish for E ¼ 0, i.e., at F�
r ¼ Br.

A. Weak magnetic field

In order to obtain the Oðξ2Þ, ξ ¼ B=Bc, correction to the leading-order matrix elementMHE of Eq. (A1) the derivatives
of Eq. (B7) enter, i.e.,

δM ¼ 1

8
Ma

�∂3Lð1Þ

∂F 3
− 3

∂3Lð1Þ

∂F∂G2

�
þ 1

8
Mb

�∂3Lð1Þ

∂F 3
þ ∂3Lð1Þ

∂F∂G2

�
; ð24Þ

evaluated at F ¼ G ¼ 0, where

Ma ¼ ðf1þ · f4þÞðf2þ ·BÞðf3þ ·BÞ þ ðf2þ · f4þÞðf1þ · BÞðf3þ · BÞ þ ðf3þ · f4þÞðf1þ ·BÞðf2þ ·BÞ
þ ðf1þ · f2þÞðf3þ ·BÞðf4þ · BÞ þ ðf1þ · f3þÞðf2þ ·BÞðf4þ ·BÞ þ ðf2þ · f3þÞðf1þ ·BÞðf4þ · BÞ þ ðþ ⇔ −Þ; ð25Þ
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and

Mb ¼ ðf1þ · f2þÞðf3þ ·BÞðf4− ·BÞ þ ðf1þ · f3þÞðf4þ · BÞðf2− ·BÞ þ ðf1þ · f3þÞðf2þ ·BÞðf4− · BÞ
þ ðf1þ · f2þÞðf4þ ·BÞðf3− · BÞ þ ðf2þ · f3þÞðf4þ ·BÞðf1− ·BÞ þ ðf1þ · f4þÞðf2þ · BÞðf3− ·BÞ
þ ðf1þ · f4þÞðf3þ ·BÞðf2− · BÞ þ ðf2þ · f3þÞðf1þ ·BÞðf4− ·BÞ þ ðf3þ · f4þÞðf2þ · BÞðf1− ·BÞ
þ ðf2þ · f4þÞðf3þ ·BÞðf1− · BÞ þ ðf2þ · f4þÞðf1þ ·BÞðf3− ·BÞ þ ðf3þ · f4þÞðf1þ · BÞðf2− ·BÞ
þ ðf3− · f4−Þðf1þ · BÞðf2þ · BÞ þ ðf2− · f4−Þðf1þ ·BÞðf3þ · BÞ þ ðf2− · f3−Þðf1þ ·BÞðf4þ ·BÞ
þ ðf1− · f4−Þðf2þ · BÞðf3þ · BÞ þ ðf1− · f2−Þðf3þ ·BÞðf4þ · BÞ þ ðf1− · f3−Þðf2þ ·BÞðf4þ ·BÞ þ ðþ ⇔ −Þ: ð26Þ

With

Lð1Þ ¼ c1F 2 þ c2G2 − ĉ1
F 3

B2
c
− ĉ2

FG2

B2
c

�…; ð27Þ

and the explicit values derived in Appendix B 1 and
tabulated in Table I, the amplitudes for the linear polar-
izations in and out of the collision plane read2

Moooo

ω4
¼ 4c1ð3þ cos2θÞ þ

8>><
>>:

−30ĉ1
−30ĉ1

−18ĉ1 þ 16ĉ2

9>>=
>>;ξ2

þ

8><
>:

6ĉ1
−42ĉ1
−6ĉ1

9>=
>;ξ2cos2θ; ð28Þ

Miiii

ω4
¼ 4c1ð3þ cos2θÞ þ

8><
>:

−18ĉ1 þ 4ĉ2
−18ĉ1 þ 4ĉ2

−66ĉ1

9>=
>;ξ2

þ

8><
>:

−6ĉ1 − 4ĉ2
−6ĉ1 þ 12ĉ2

−6ĉ1

9>=
>;ξ2cos2θ; ð29Þ

Mooii

ω4
¼ −8c1 þ 4c2ð1þ cos2θÞ þ

8>><
>>:

12ĉ1 − 6ĉ2
24ĉ1 − 2ĉ2
24ĉ1 − 14ĉ2

9>>=
>>;ξ2

þ
8<
:

2ĉ2
−14ĉ2
−2ĉ2

9=
;ξ2cos2θ; ð30Þ

Miioo

ω4
¼ −8c1 þ 4c2ð1þ cos2θÞ þ

8>><
>>:

24ĉ1 − 2ĉ2
12ĉ1 − 6ĉ2
24ĉ1 − 14ĉ2

9>>=
>>;ξ2

þ

8><
>:

−12ĉ1 − 2ĉ2
12ĉ1 − 10ĉ2

−2ĉ2

9>=
>;ξ2cos2θ; ð31Þ

Moioi;ioio

ω4
¼ 4ðc1 þ c2Þð1þ cos θÞ

þ 2ðc2 − c1Þð3þ cos2θÞ þ

8>><
>>:

3ĉ1 − 9ĉ2
3ĉ1 − 9ĉ2
9ĉ1 − 19ĉ2

9>>=
>>;ξ2

þ

8>><
>>:

−6ĉ1 − 2ĉ2
−12ĉ1 − 4ĉ2
−12ĉ1 − 4ĉ2

9>>=
>>;ξ2 cos θ

þ

8>><
>>:

3ðĉ1 þ ĉ2Þ
9ĉ1 − 11ĉ2
3ĉ1 − ĉ2

9>>=
>>;ξ2cos2θ; ð32Þ

Moiio;iooi ¼ Moioi;ioiojcos θ→− cos θ; ð33Þ

where the three entries within the curly brackets refer to B
pointing in x, y, and z direction, respectively. For such B,
the remaining amplitudes with an odd number of i or o
polarizations vanish identically.
While we refrain from listing the unwieldy general case

of oblique orientations of the magnetic field for all
amplitudes, Appendix B 2 gives the general weak-field
result for the resulting unpolarized cross section. The
resulting total unpolarized cross section reads

2For vanishing magnetic background fields, this agrees with
the results given in Ref. [15] except that a factor −i has been
absorbed in the definition of M as done also in Ref. [24].
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σðγγ→ γγÞunpol

¼1

2

Z
dΩ

dσunpol

dΩ

¼7ð3c21−2c1c2þ3c22Þω6

20π

þ ω6

15π

B2
k

B2
c
ð−57c1ĉ1þ18ĉ1c2þ10c1ĉ2−23c2ĉ2Þ

þ ω6

120π

B2⊥
B2
c
ð−717c1ĉ1þ243ĉ1c2þ233c1ĉ2−391c2ĉ2Þ;

ð34Þ

where Bk is the magnetic field component parallel to the
collision axis of the photons and B⊥ the part orthogonal to
it. For spinor QED this yields

σðγγ→ γγÞunpolspinor

¼ 973α4ω6

10125πm8

�
1−

38224B2
k þ65602B2⊥

20433B2
c

þOðξ4Þ
�
; ð35Þ

and for QED with a charged scalar field instead of a Dirac
spinor one has

σðγγ→ γγÞunpolscalar

¼ 119α4ω6

20250πm8

"
1−

11294B2
k þ16802B2⊥

2499B2
c

þOðξ4Þ
#
: ð36Þ

Scalar QED is relevant for light-by-light scattering at
energies below the peak in the cross section produced by
muons, since there charged pions also start to contribute. It is
moreover particularly interesting in that it highlights the
effects of the magnetic moments in spinor QED: In scalar
QED, the total cross section is only about 6% of the result in
spinor QED. (Even with two charged scalars so that scalar
QED has the same number of degrees of freedom (d.o.f.), the
cross section is less than a quarter of that of spinorQED.) This
is reflected by the relatively small coefficients c2 and ĉ2
associated with the terms involving the square of the pseu-
doscalar G ¼ 1

4
Fμν

⋆Fμν (see Table I). Moreover, turning on a
(subcritical) magnetic field decreases the total cross section
more than twice as strongly as is the case in spinor QED. In
fact, aswill be shownbelow, the limit of strongmagnetic fields
is dominated by the lowest Landau level of Dirac spinors
which eventually leads to an increase of the cross section.
As an aside we note that supersymmetric QED, which in

Ref. [15] has been shown to have particularly simple
polarization patterns, gives the slightly simpler result

σðγγ → γγÞunpolsQED ¼ 7α4ω6

45πm8

�
1−

104B2
k þ 158B2⊥
35B2

c
þOðξ4Þ

�
:

ð37Þ
Of potential interest to light-by-light scattering are also

charged vector bosons, in particular at photon energies
between the pion and the ρ meson mass scales. In hadronic
contributions to light-by-light scattering, which is a critical
ingredient in calculations of the anomalous magnetic
moment of muons [37], it is usually assumed that at the
scale of the ρ meson one can switch to quark d.o.f. [11].
However, light-by-light scattering through virtual quarks
differs quite strongly from the one through virtual vector
bosons. In Table I we have also given the coefficients in the
expansion of the Euler-Heisenberg Lagrangian resulting
from vector mesons with gyromagnetic factor g ¼ 2
[27,38,39] corresponding to non-Abelian vector bosons
as well as to vector mesons [36] (see also [35]). The
interactions due to the magnetic moment of the vector
mesons turn out to have the effect of enhancing the light-
by-light cross section already in the weak-field limit:

σðγγ → γγÞunpolvector

¼ 2751 α4ω6

250 πm8

"
1þ

211846B2
k þ 318298B2⊥

173313B2
c

þOðξ4Þ
#
;

ð38Þ
which is a stark difference to both scalar and spinor QED.
As we shall discuss presently, this difference becomes even
more pronounced as ξ approaches unity, where one enters a
regime with possible vector boson condensation [29–31].
Furthermore, already at vanishing magnetic field, the total
cross section for a charged vector boson is very much larger
than that produced by three scalar d.o.f. of the same mass,
to wit, by a factor of 3537=17 ≈ 208.06, underlining the
importance of the magnetic moment of the virtual particles
in light-by-light scattering.

B. Intermediate field strength

For ξ ¼ B=Bc ≳ 0.5, the weak-field expansion breaks
down and one has to resort to numerical evaluations of the
integral representations of the various derivatives of Lc
appearing in (18).
Our numerical results are shown in Figs. 2 and 3 for

magnetic fields perpendicular and parallel to the collision
axis, respectively, where the former case is the one of
potential relevance to HIC. In these plots we compare the
result for spinor QED and scalar QED, where in the latter
case two charged scalar particles are assumed so that the
difference between the two results is entirely due to the
additional interactions of the magnetic moment carried by
Dirac spinors. Also given are the weak-field limits up to
order ξ2 derived above, which are seen to become inaccu-
rate around ξ ≃ 0.5.

R. BAIER, A. REBHAN, and M. WÖDLINGER PHYS. REV. D 98, 056001 (2018)

056001-6



For larger ξ, the results for scalar QED are seen to tend to
zero rapidly (∼ξ−4 for ξ ≫ 1), whereas the spinor QED
result for the case of perpendicular magnetic field has a
minimum at ξ ≃ 1.5 after which it grows quadratically
with ξ.
Further details that show up in differential cross sections

are displayed in Appendix C.

In the case of QEDwith charged vector bosons, for which
the total cross section with magnetic field perpendicular or
longitudinal to the collision axis is evaluated in Fig. 4, we
find an increasewhich is quadratic in ξ for small ξ andwhich
dramatically accelerates for larger ξ with a divergence at
ξ ¼ 1. In fact, at ξ > 1 the lowest Landau level of a charged
vector with g ¼ 2 becomes tachyonic, corresponding to the
conjectured condensation of the charged vector bosons to
form a superconducting vacuum [29–31]. As explained in
AppendixB 3, the calculation of the light-by-light scattering
cross section through the Euler-Heisenberg Lagrangian is
valid only forω2=m2 ≪ 1 − ξ so that the singularity is never
reached.

C. Strong magnetic field

In the limit ξ ¼ B=Bc ≫ 1 (but parametrically
ξ2 ≪ 1=α) the dominant contribution in spinor QED comes
from the derivative ∂4Lð1Þ=∂G4 at G ¼ 0, so that e.g.,

∂4Lð1Þ

∂Fþ
r ∂Fþ

s ∂Fþ
t ∂Fþ

u
→

1

16
BrBsBtBu

∂4Lð1Þ

∂G4

				
G¼0

: ð39Þ

Thus the matrix element in leading order of a strong
magnetic field becomes

FIG. 3. Same as Fig. 2 but with magnetic field parallel to the
collision axis (now dark-blue and light-blue coloring for spinor
and scalar QED, respectively).

FIG. 4. Total unpolarized light-by-light scattering cross section
for virtual charged vector bosons with g ¼ 2 as a function of
ξ ¼ B=Bc with the magnetic field perpendicular (red lines) and
longitudinal (blue lines) to the collision axis (dashed lines give
the corresponding weak-field results). In order to highlight the
effects of the magnetic moment of the charged vector bosons, the
normalization constant N0 is chosen as the B ¼ 0 result for three
charged scalars of the same charge and mass, which is a factor
3537=17 ≈ 208.06 smaller than for one massive charged vector
boson.

FIG. 2. Total cross section for unpolarized photons as a
function of ξ ¼ B=Bc with magnetic field perpendicular to the
collision axis for spinor QED (dark-red line) and for QED with
two charged scalars (light-red line), both normalized to the total
cross section of spinor QED at zero magnetic field. The weak-
field result to order ξ2 is given by the corresponding dashed lines.
The strong-field result (45) for spinor QED is given by the dotted
black line.
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M=

�
1

16

∂4Lð1Þ

∂G4

�
¼ ðf1þ · BÞðf2þ · BÞðf3þ ·BÞðf4þ ·BÞ þ ðf1− ·BÞðf2− ·BÞðf3− · BÞðf4− ·BÞ

− ðf1þ ·BÞðf2þ · BÞðf3þ · BÞðf4− ·BÞ − ðf1þ ·BÞðf2þ ·BÞðf3− · BÞðf4þ ·BÞ
− ðf1þ ·BÞðf2− · BÞðf3þ ·BÞðf4þ ·BÞ − ðf1− ·BÞðf2þ ·BÞðf3þ · BÞðf4þ ·BÞ
þ ðf1þ ·BÞðf2þ ·BÞðf3− · BÞðf4− ·BÞ þ ðf1þ ·BÞðf2− · BÞðf3þ ·BÞðf4− ·BÞ
þ ðf1þ ·BÞðf2− ·BÞðf3− · BÞðf4þ ·BÞ þ ðf1− · BÞðf2þ · BÞðf3þ ·BÞðf4− ·BÞ
þ ðf1− ·BÞðf2− ·BÞðf3þ · BÞðf4þ ·BÞ þ ðf1− · BÞðf2þ · BÞðf3− ·BÞðf4þ ·BÞ
− ðf1− ·BÞðf2− · BÞðf3− ·BÞðf4þ ·BÞ − ðf1− ·BÞðf2− · BÞðf3þ ·BÞðf4− ·BÞ
− ðf1− ·BÞðf2þ · BÞðf3− ·BÞðf4− ·BÞ − ðf1þ ·BÞðf2− · BÞðf3− ·BÞðf4− ·BÞ: ð40Þ

An amplitude with polarization vectors ϵ̂1;2;3;4

[cf. Eq. (15)] is given by

M¼ω4
∂4Lð1Þ

∂4G

Y4
I¼1

ϵ̂I ·B¼ 32α2

15

�
ω

m

�
4

ξ
Y4
I¼1

ϵ̂I · B̂þOðξ0Þ;

ð41Þ

where B̂ is the unit vector in the direction of B. For
example, when B points in the z direction, i.e., orthogonal
to the scattering plane, the only nonvanishing amplitude for
linear polarizations is

MoooojBx¼By¼0 ¼
32α2

15

�
ω

m

�
4

ξþOðξ0Þ; ð42Þ

which is θ independent; when B points in the y direction,
i.e., in the scattering plane and orthogonal to the incoming
photons, the only nonvanishing amplitude is

MiiiijBx¼Bz¼0 ¼
32α2

15

�
ω

m

�
4

ξcos2θ þOðξ0Þ; ð43Þ

which vanishes for outgoing photon momenta in the
direction of B.
The low-energy unpolarized cross section averaged over

initial and summed over final polarizations for ξ ≫ 1 and
arbitrary orientation of B reads

dσunpolspinor

dΩ
¼ 1

ð16πÞ2ω2

1

4
jMj2 ¼ α4ω6

225π2m8
ξ2 sin4 β sin4 β0;

ð44Þ

where β is the angle between B and the direction of the
incoming photon k̂, and β0 is the angle between B and the
outgoing direction k̂0. Notice that this differential cross
section has the form of the square of a dipole radiation
pattern, with emission maximal in the plane orthogonal to
the magnetic field.

The resulting unpolarized total cross section for ξ ≫ 1 is

σðγγ → γγÞunpolspinor ¼
1

2

Z
dΩ

dσunpol

dΩ
¼ 16α4ω6

3375πm8
ξ2 sin4 β:

ð45Þ

Thus, for ultra-strong magnetic fields, the Euler-
Heisenberg photon scattering cross section grows quad-
ratically with field strength. As shown in Appendix B 3,
this feature is absent in scalar QED. It is entirely due to the
magnetic moments of the virtual Dirac spinors which in the
lowest Landau level lead to a cancellation of magnetic
interaction energy.

V. DISCUSSION

In this paper we have investigated the effect of sizable
background magnetic fields on the light-by-light scatter-
ing cross section in QED with charged scalar, spinor, or
massive vector fields. We have found that the one-loop
contribution of charged scalars to the Euler-Heisenberg
Lagrangian lead to a strong suppression of the light-by-
light scattering cross section for B≳ 0.5Bc. For spinor
QED, the cross section initially also decreases with
increasing magnetic field, but this trend is reversed at
B ≃ 1.5Bc after which the cross section grows quadrati-
cally with B.
Although at HIC the magnetic field reaches extremely

large values with respect to the critical one in terms of the
electron mass me, so that the light-by-light scattering cross
section would become correspondingly large, this applies
only at low photon energies ω≲me.
In the recent ATLAS measurement [18] of light-by-light

scattering the characteristic energy of the scattered photons
is in the range of several GeV, with peak values of the
background magnetic field B ∼ 105 MeV2. Because the
cross section decreases as α4=ω2 for ω ≫ m, only massive
loops can contribute effects due to external magnetic fields.
The critical magnetic field corresponding to the bottom
and the charm quarks with mass mb ≈ 4.2 GeV and
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mc ≈ 1.25 GeV is BcðmbÞ ∼ 6 × 107 MeV2 and BcðmcÞ∼
5 × 106 MeV2, respectively. Effects fromexternalmagnetic
fields at ω≲mb are therefore completely negligible. For
energiesω≲mc, such effects would still be tiny; noticeable
effects on light-by-light scattering would seem to require
photon energies ω≲ 0.1 GeV, at or below the maximal
contribution to the cross section from virtual muons for
which BcðmμÞ ∼ 4 × 104 MeV2. However, with respect to
the corresponding time scale ω−1, the magnetic field in HIC
is then probably decaying too fast to leave measurable
effects.
A case of particular theoretical interest is that of charged

ρ mesons which have an unstable lowest Landau level at
B ≥ BcðmρÞ ∼ 2 × 106 MeV2, where a superconducting
vacuum state formed by a condensate of ρ� mesons has
been conjectured to arise [29].3 In this paper we have
also determined the contribution of charged vector mesons
to light-by-light scattering for photon energies ω≲mρ

as determined by the corresponding Euler-Heisenberg
Lagrangian derived in [27]. This turns out to be enhanced

by relatively large numerical prefactors compared to
scalar and spinor loops. Moreover, the cross section grows
as the magnetic field strength is increased from zero.
Unfortunately, even the peak values of the magnetic field
reached in HIC would give only effects below the percent
level to light-by-light scattering cross sections from virtual
ρ mesons (if the latter are included at all despite the large
width of the ρ meson).
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APPENDIX A: MATRIX ELEMENT FOR B= 0

For completeness the matrix element for γðk1Þ þ
γðk2Þ → γðk3Þ þ γðk4Þ for vanishing external fields is given
to fix the notation (see e.g., [10,11]),

M ¼ c1
2
M1 −

c2
2
M2;

M1 ¼ ðf1þ · f2þÞðf3þ · f4þÞ þ ðf1þ · f3þÞðf2þ · f4þÞ þ ðf2þ · f3þÞðf1þ · f4þÞ þ ðf1− · f2−Þðf3− · f4−Þ
þ ðf1− · f3−Þðf2− · f4−Þ þ ðf2− · f3−Þðf1− · f4−Þ þ ðf1þ · f2þÞðf3− · f4−Þ þ ðf1þ · f3þÞðf2− · f4−Þ
þ ðf1þ · f4þÞðf2− · f3−Þ þ ðf2þ · f3þÞðf1− · f4−Þ þ ðf3þ · f4þÞðf1− · f2−Þ þ ðf2þ · f4þÞðf1− · f3−Þ; ðA1Þ

and

M2¼ðf1þ ·f2þÞðf3þ · f4þÞþðf1þ · f3þÞðf2þ · f4þÞþðf2þ · f3þÞðf1þ · f4þÞþðf1− · f2−Þðf3− · f4−Þ
þðf1− · f3−Þðf2− · f4−Þþðf2− · f3−Þðf1− · f4−Þ− ðf1þ · f2þÞðf3− · f4−Þ− ðf1þ · f3þÞðf2− ·f4−Þ− ðf1þ · f4þÞðf2− · f3−Þ
− ðf2þ · f3þÞðf1− · f4−Þ− ðf3þ · f4þÞðf1− · f2−Þ− ðf2þ ·f4þÞðf1− · f3−Þ:

For comparison the cross section is quoted (for
references and a detailed evaluation see [15]). For low
energies ω ≤ m it is

dσunpol

dΩ
¼ ω6

64π2
ð3c21 − 2c1c2 þ 3c22Þð3þ cos2 θÞ2: ðA2Þ

In the high energy limit it decreases like

dσunpol

dΩ
∼
α4

ω2
; ðA3Þ

beyond its maximum at ω ≃ 1.5m [4].

APPENDIX B: EXPANSIONS FOR WEAK AND
STRONG BACKGROUND FIELDS

1. Weak-field limit of Lð1Þ

The weak-field limit of the Euler-Heisenberg Lagrangian
for spinors and scalars, Eqs. (7) and (10), respectively, up to
order ξ2 ¼ ð BBc

Þ2 is obtained by starting with the Taylor
expansion for

cothz¼1

z
þz
3
−
z3

45
�…; 1=sinhz¼1

z
−
z
6
þ 7z3

360
∓…; ðB1Þ

and

cotz¼1

z
−
z
3
−
z3

45
−…; 1=sinz¼1

z
þ z
6
þ 7z3

360
þ…; ðB2Þ3Evidence in favor of this scenario from lattice gauge theory

has been presented in [40,41]; see however [42,43].
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4The results obtained for charged vector mesons are in agreement with those given in [44].

leading in terms of the variables a and b to

Lð1Þ
spinor ¼

e4

8π2

Z
∞

0

dsse−m
2s

�
a4þ5a2b2þb4

45

− ðesÞ2 2a
6þ7a4b2−7a2b4−2b6

945

�
�…; ðB3Þ

Lð1Þ
scalar ¼

e4

16π2

Z
∞

0

ds s e−m
2s

�
7a4 − 10a2b2 þ 7b4

360

− ðesÞ2 31a
6 − 49a4b2 þ 49a2b4 − 31b6

15120

�
�…:

ðB4Þ
For a < m2 one can write the Euler-Heisenberg

Lagrangian for charged vector bosons (11) also as

Lð1Þ
vector ¼ −

1

16π2

Z
∞

0

ds
s3

e−m
2s

�
ðesÞ2ab 1 − 2 coshð2esaÞ − 2 cosð2esbÞ

sinh ðesaÞ sin ðesbÞ þ 7

2
ðesÞ2ða2 − b2Þ þ 3

�

¼ e4

16π2

Z
∞

0

dss e−m
2s

�
29a4 þ 50a2b2 þ 29b4

40
þ ðesÞ2 137a

6 þ 217a4b2 − 217a2b4 − 137b6

15120

�
�…: ðB5Þ

After performing the s integration one obtains

Lð1Þ ¼ c1F 2 þ c2G2 − ĉ1
F 3

B2
c
− ĉ2

FG2

B2
c

þ…; ðB6Þ

in terms of the variables F and G [cf. Eq. (9)], with
coefficients as given in Table I.4 (Supersymmetric QED

has Lð1Þ
sQED ¼ Lð1Þ

spinor þ 2Lð1Þ
scalar.)

The contributions to the light-by-light scattering
amplitudes to order ξ2 are obtained with F → B2

2
and

G → 0 from

∂2Lð1Þ

∂F 2
¼ 2c1−3ĉ1ξ2þ…;

∂2Lð1Þ

∂G2
¼ 2c2− ĉ2ξ2þ…;

∂3Lð1Þ

∂F 3
¼−

6ĉ1
B2
c
þ…;

∂3Lð1Þ

∂F∂G2
¼−

2ĉ2
B2
c
þ…: ðB7Þ

2. General expression for the unpolarized
cross section to order ξ2

In Sec. IVA the weak-field limit of the scattering
amplitudes for linearly polarized photons has been given
for three cases of the orientation of themagnetic background
field. The case of general orientation is rather unwieldy for
the various polarized cross sections, but a comparatively
compact expression is obtained for the unpolarized cross
section, which reads

dσunpol

dΩ
¼ ω6

256π2
ð3c21−2c1c2þ3c22Þð7þ cos2θÞ2þ ω6

512π2B2
c
fB2

x½−1017c1ĉ1þ327ĉ1c2þ161c1ĉ2−391c2ĉ2

þ4c2ð15ĉ1þ ĉ2Þcos2θ−4c1ð33ĉ1þ7ĉ2Þcos2θ−3c2ðĉ1− ĉ2Þcos4θ−c1ð3ĉ1þ5ĉ2Þcos4θ�
þB2

y½−1563c1ĉ1þ501ĉ1c2þ459c1ĉ2−813c2ĉ2−4c1ð177ĉ1−73ĉ2Þcos2θþ12c2ð21ĉ1−37ĉ2Þcos2θ
þc2ð15ĉ1−23ĉ2Þcos4θ−c1ð33ĉ1−17ĉ2Þcos4θ�þB2

z ½−1875c1ĉ1þ657ĉ1c2þ667c1ĉ2−1073c2ĉ2

−420c1ĉ1 cos2θþ12c2ð9ĉ1−17ĉ2Þcos2θþ100c1ĉ2 cos2θ−9c1ĉ1 cos4θþ3c2ðĉ1− ĉ2Þcos4θþc1ĉ2 cos4θ�
þBxBy½ð516c1ĉ1−156ĉ1c2−276c1ĉ2þ396c2ĉ2Þsin2θþð30c1ĉ1−18ĉ1c2−22c1ĉ2þ26c2ĉ2Þsin4θ�gþOðξ4Þ:

ðB8Þ

For the particularly important case of spinor QED this yields
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dσunpolspinor

dΩ
¼ α4ω6

64ð45πÞ2m8



139ð7þ cos 2θÞ2 − 2

7

B2
x

B2
c
ð41441þ 1956 cos 2θ þ 251 cos 4θÞ

−
2

7

B2
y

B2
c
ð72075þ 33764 cos 2θ þ 1425 cos 4θÞ − 2

7

B2
z

B2
c
ð86167þ 20756 cos 2θ þ 341 cos 4θÞ

þ 4

7

BxBy

B2
c

ð14730 sin 2θ þ 587 sin 4θÞ
�
þOðξ4Þ: ðB9Þ

3. Strong-field limit of ∂4L(1)=∂G4

In spinor QED, the asymptotic behavior for
ξ ¼ B

Bc
≫ 1 and G → 0 is determined by the terms in

the integrand of the Euler-Heisenberg Lagrangian (2)
proportional to

cothðesð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
þ F Þ1=2Þ ¼ cothðesaÞ≡ coth t;

ðB10Þ

with t ¼ esa → esB.
Performing the Taylor expansion

G cotðesbÞ ¼ G
esb

�
1 −

ðesbÞ2
3

−
ðesbÞ4
45

þ…

�

≃
B
es

�
1 −

ðesÞ2
3B2

G2 −
ðesÞ4
45B4

G4 þ…

�
; ðB11Þ

for G → 0 with b ≃ G=B, esb ≃ esG=B, one obtains

∂4Lð1Þ
spinor

∂G4
≃

1

8π2
24

45B3

Z
∞

0

ds
s3

ðesÞ5e−m2s cothðesBÞ

≃
e2

8π2B6

8

15

Z
∞

0

dt e−t=ξt2 coth t; ðB12Þ

i.e., asymptotically for ξ ≫ 1,

∂4Lð1Þ
spinor

∂G4
≃

e2

8π2B6

16

15
ξ3; ðB13Þ

in agreement with the results derived in [45]. Since in the
scattering amplitude (41) this is combined with four powers
of the magnetic field, one has M ∝ B in the limit of
ultrastrong fields.
This result is, however, a special feature of spinor QED.

The Euler-Heisenberg Lagrangian for scalar QED (10) as
obtained originally by Weisskopf [26] differs by the
absence of the interaction term e

2
σμνFμν. This has the effect

that instead of the functions cothðesaÞ and cotðesbÞ in (2)
one has 1= sinhðesaÞ and 1= sinðesbÞ [6]. In place of (B12)
one obtains

Z
∞

0

dte−t=ξt2=sinht¼ 7

2
ζð3ÞþOðξ−1Þ≈4.207…þOðξ−1Þ

ðB14Þ
in the large-ξ limit. This leads to contributions to M that
are suppressed ∝ B−2 at large B.
As is particularly clear in the derivation of the Euler-

Heisenberg Lagrangian due to Schwinger [32], the inter-
action with a spin magnetic moment gμB=2 contributes the
factor coshðgesa=2Þ cosðgesb=2Þ, which for g ¼ 2 com-
pensates the exponential decay of 1= sinhðesaÞ, corre-
sponding to the fact that then the magnetic interaction
energy of a Dirac spinor cancels in the lowest Landau level.
This in fact suggests that also for Dirac spinors the rise of
the photon-photon scattering amplitude ∼ξ will be modi-
fied eventually by higher-order effects at ξ≳ α−1, when
ðg − 2ÞeB≳m2. However, already at the parametrically
smaller order ξ≳ α−1=2 our calculations would need to be
modified by including dispersion effects from nontrivial
indices of refraction and birefringence [24].
In the case of the Euler-Heisenberg Lagrangian for

charged vector bosons with g ¼ 2 obtained in [27] the
effects of the magnetic moment at high magnetic fields are
even more dramatic. The magnetic interaction energy,
which leads to a modified mass

m2 → m2
eff ¼ m2 þ ð2n − gsz þ 1ÞeB; n ≥ 0; ðB15Þ

for spin projection sz along the magnetic field, now reduces
the effective mass of the lowest Landau level, such that it
becomes imaginary for eB > m2, corresponding to the
potential instability of the vacuum against formation of a
superconducting condensate of charged vector bosons [29].
In the light-by-light scattering cross section as derived

from the Euler-Heisenberg Lagrangian, the vanishing of the
effective mass in the lowest Landau level leads to a
divergence, shown in Fig. 5, indicating a breakdown of
perturbation theory. Indeed, the range of validity of the
calculation changes from ω ≪ m to ω ≪ meff , i.e.,
ω2=m2 ≪ 1 − ξ, for charged vector bosons with g ¼ 2.
The divergence of the light-by-light scattering amplitude

caused by charged vector bosons can be traced to the spin
contribution in (11). Expanding the integrand on the right-
hand side of (11) in powers of b, the integral can be
evaluated with result
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where m2 is to be understood as having an infinitesimal
negative imaginary part, m2 → m2 − iϵ, when ea ≥ m2.
Evidently, there is a singularity at ea ¼ m2 which leads to a
multiple pole in the scattering amplitude at B ¼ Bc. For
ea > m2, a finite result is obtained, but the Lagrangian then
has an imaginary part at b ¼ 0, i.e., for a purely magnetic
background field, which corresponds to the possibility
[29–31] of the decay of the vacuum into a superconducting
state of condensed charged vector bosons.

APPENDIX C: POLAR DIAGRAMS FOR
UNPOLARIZED CROSS SECTIONS

In Fig. 6 we display the unpolarized differential cross
section of spinor QED5 as a function of the strength of the
background magnetic field for three orientations of the
magnetic field with respect to the scattering plane (chosen
as the xy plane, see Fig. 1). For small to medium field
strength, the cross section decreases with B=Bc in all
directions, but at high field strength it rises again in
directions orthogonal to B.
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FIG. 6. Polar diagrams of the unpolarized cross section dσ=dΩ in
the scattering plane for spinor QED with various background
magnetic field strength (in units of Bc) and three orientations of
the magnetic field (coordinates as in Fig. 1, cross section normalized
to forward scattering atB ¼ 0). Top:B in x direction, i.e., parallel to
the collision axis; center:B in y direction, in the scattering plane and
orthogonal to the collision axis; bottom:B in z direction, orthogonal
to the scattering plane. (Only one quadrant of the polar plot is shown.)

FIG. 5. Total unpolarized light-by-light scattering cross section
for virtual charged vector bosons with g ¼ 2 as a function of
ξ ¼ B=Bc with the magnetic field perpendicular (red lines) and
longitudinal (blue lines) to the collision axis, normalized as in
Fig. 4, but now plotted up to ξ ¼ 5 in logarithmic scale. At the
critical field strength, B ¼ Bc, the cross section diverges and
perturbation theory breaks down. The latter is also the case for
B > Bc, as the Lagrangian density has an imaginary part,
signaling instability against vector meson condensation.
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