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Abstract

One essential task in proteomics analysis is to explore the functions of proteins in conducting
and regulating the activities at the subcellular level. Compartmentalization of cells allows
proteins to perform their activities efficiently. A protein functions correctly only if it occurs
at the right place, at the right time, and interacts with the right molecules. Therefore,
the knowledge of protein subcellular localization (SCL) can provide valuable insights for
understanding protein functions and related cellular mechanisms. Thus, the systematic study
of the subcellular distribution of human proteins is an essential task for fully characterizing
the human proteome.

The context-specific analysis is an important and challenging task in systems biology
research. Proteins may perform different functions at different subcellular compartments
(SCCs). Hence, the dynamic and context-specific alterations of the subcellular spatial
distribution of proteins are essential in identifying cellular function. While this important
feature is well-known in molecular and cell biology, most large-scale protein annotation
studies to-date have ignored it.

Tissue is one particularly crucial biological context for human biology. Proteins show
their tissue specificity at the subcellular level by localizing to different SCCs in different
tissues. For example, glutamine synthetase localizes in mitochondria in liver cells while
in the cytoplasm in brain cells. The knowledge of the tissue-specific SCLs can enrich the
human protein annotation, and thus will increase our understanding of human biology.

Conventional wet-lab experiments are used to determine the SCL of proteins. Due to the
expense and low-throughput of wet-lab experimental approaches, various algorithms and
tools have been developed for predicting protein SCLs by integrating biological background
knowledge into machine learning methods. Most of the existing approaches are designed
for handling general genome-wide large-scale analysis. Thus, they cannot be used for
context-specific analysis of protein SCL.

The focus of this work is to develop new methods to perform tissue-specific SCL pre-
diction. (1) First, we developed Bayesian collective Markov Random Fields (BCMRFs) to
address the general multi-SCL problem. BCMRFs integrate both protein-protein interaction
network (PPIN) features and the protein sequence features, consider the spatial adjacency of
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SCCs, and employ transductive learning on imbalanced SCL data sets. Our experimental
results show that BCMRFs achieve higher performance in comparison with the state-of-art
protein-protein interaction (PPI)-based method in SCL prediction. (2) We then integrated
BCMRFs into a novel end-to-end computational approach to perform tissue-specific SCL pre-
diction on tissue-specific PPINs. In total, 1314 proteins which SCLs were previously proven
cell lines dependent were successfully localized based on nine tissue-specific PPINs. Fur-
thermore, 549 new tissue-specific localized candidate proteins were predicted and confirmed
by scientific literature. Due to the high performance of BCMRFs on known tissue-specific
proteins, these are excellent candidates for further wet-lab experimental validation. (3) In
addition to the proteomics data, the existing scientific literature contains an abundance of
tissue-specific SCL data. To collect these data, we developed a scoring-based text mining
system and extracted tissue-specific SCL associations from the abstracts of a large number of
biomedical papers. The obtained data are accessible from the web based database TS-SCL
DB. (4) We concluded the study with an application case study of the tissue-specific subcel-
lular distribution of human argonaute-2 (AGO2) protein. We demonstrated how to perform
tissue-specific SCL prediction on AGO2-related PPINs. Most of the resulting tissue-specific
SCLs are confirmed by literature results available in TS-SCL DB.
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Chapter 1

Introduction

1.1 Understanding protein subcellular localizations

One essential task in proteomics analysis is to explore the functions of protein in conducting
and regulating the activities at the subcellular level [1]. As the eukaryotic cells and particularly
the mammalian cells are highly compartmentalized, most protein activities can be assigned
to particular cellular compartments. It is well known that protein functional activities highly
correspond with their subcellular distribution and molecular complexing interactions [2]. A
protein functions correctly only if it occurs at the right place, at the right time, and interacts
with the right molecules. In other words, the functions of protein and protein interactions
rely greatly on the proper localization of each protein component [3, 4]. On the other
hand, the aberrant translocalization of proteins often correlates with pathological changes in
cell physiology and accounts for a variety of human diseases such as Alzheimer’s disease,
Swyer syndrome, and various type of cancer. Hence, the mislocalization of protein makes
protein translocalization a promising target for the development of therapeutic agents [5].
Therefore, the knowledge of protein SCL can provide valuable insights for understanding
protein functions and related cellular mechanisms. Hence, the systematic study of protein
SCLs is essential for fully characterizing the human proteome, and a major research topic in
biology.

After synthesis of protein, protein can be transported into different subcellular com-
partments (SCCs) depending on the roles within the cell. Such translocalization of protein
accomplishes the transport of material and information within and between cells. Thus, it
is essential for the normal functioning of the cell. Some proteins are even transported to
multiple sites simultaneously or once at the time when the protein is needed, e.g. moon-
lighting proteins [6] and circadian clock proteins [7]. Some of the multi-localizing proteins
(MLPs) are also multi-functional proteins (MFPs), e.g. Enolase 1 fulfills different functions
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in the cytosol and plasma membrane. The existence of MFPs and MLPs increases the
cellular complexity because they can participate in multiple pathways or serve as regulators
of transcription.

1.2 The importance of the context-specific subcellular dis-
tribution of proteins

The context-specific analysis is an important and challenging task in systems biology research,
such as study on tissue-specific expression of protein of human body [8], identification
of disease-specific protein-protein interaction (PPI) [9, 10], prediction of the temporal
organization of cellular functions using the dynamic circadian protein-protein interaction
networks (PPINs) [11], the analysis the SCL of protein under stress condition [12].

The protein function is highly dependent on the spatial distribution of many cellular com-
ponents under various types of biological event, e.g. tumorigenesis [13], cellular apoptotic
activity [14], and environments, e.g. stress [12], different tissues [15–17]. An example of
crucial subcellular distribution is breast cancer type 1 susceptibility protein (BRCA1), well
known for its nuclear, cytoplasmic trafficking in breast cancer [18]; recently, its redistribu-
tion to the cytoplasm in malignant breast cancer tissues has been supposed to be a defense
mechanism of the cell probably associated with a more intense cellular apoptotic activity
[19]. Moreover, glutamine synthetase (GS) is mitochondrial in liver cells and cytoplasmic
in brain cells [15]. In the human tissue adrenal gland, pituitary gland and pancreas, the
absence of adracalin (ALADIN) in nuclear membrane causes human triple A syndrome [16].
The dynamic alterations of subcellular spatial distribution of proteins are at least equally
important to changes in total protein abundance in cellular function. However, this essential
feature is long known from molecular and cell biology, but so far is often ignored in many
large-scale studies. The emerging theme, which is the focus of this work, is to understand
the dynamic and context specific subcellular distribution of protein.

1.3 Computational prediction of protein subcellular local-
ization

Conventional wet-lab experiments are used to determine the SCLs of protein. The most
popular wet-lab approaches such as electron microscopy, quantitative mass-spectrometric,
and immunofluorescence (IF) combined with confocal microscopy are expensive and time-
consuming. Unfortunately, the SCLs of a majority of proteome still remains unknown.
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Owing to the automated and high-throughput nature, computational methods are appeal-
ing for the large-scale assignment of protein SCLs. Scientists have made extensive efforts
to develop efficient approaches for analyzing the SCL of protein. Various algorithms and
tools have been developed for predicting protein SCLs by integrating biological background
knowledge into machine learning methods. Those predictions are made from the information
such as protein amino acid sequence, functional domains, and motifs, protein-protein interac-
tion (PPI), Gene Ontology (GO) annotations of protein, protein homology, key information
in scientific texts, either unitarily or combined.

The existing methods have their unique strengths and disadvantages. The common
limitation is that they mainly focus on the static studies of the tissue-generic subcellular
distribution of the protein. Sequence-based prediction methods have been successfully used
in genome-wide large-scale protein SCL annotation. However, the primary sequence of
protein always reminds the same, even though the protein could have been translocated
by binding to other molecules. Thus, those methods can not be applied to determine the
translocalization of protein. It was shown that using the protein annotation information and
protein interactions can increase the accuracy of protein SCL prediction [20, 21]. However,
the existing approaches are lack of context specificity. For instance, the PPI which occurs
only in brain tissue should not be used for predicting the SCL in the other tissue. The
SCLs which were determined in a healthy sample might be not applicable to a study in
cancer context. Using unspecified data in a context-specific study can produce unreliable
results in SCL prediction. Hence, there is still room to improve in protein SCL prediction.
Furthermore, the blankness of the computational approach for the systematic analysis of the
protein context-specific SCL is required to be filled.

Argonaute-2 (AGO2) protein is a key player in gene-silencing pathways. It has been
mostly known as a cytoplasmic protein [22]. However, more recent studies and data sug-
gested that AGO2 is a MLP [23–26]. AGO2 is also a MFP which is involved in different
biological events such as mRNAs degradation, mRNA splicing event, translation repression.
Furthermore, Sharma et al. [17] demonstrated that the nuclear distribution of AGO2 occurs
in a cell type- and tissue context-dependent manner. Hence, we believe that the various func-
tions of AGO2 may correlate to its SCLs and the tissue where it expresses. A tissue-specific
analysis of the subcellular distribution of AGO2 protein helps to understand its functions
better.
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1.4 The aim of this work

This work aims to develop efficient methods for protein tissue-specific SCLs analysis. The
major components of this research are summarized in below.

• First, we developed BCMRFs to address the general multi-SCL problem. BCMRFs
integrate both PPIN features and the protein features, consider the spatial adjacency
of SCCs, and employ transductive learning on imbalanced SCL data sets. Our experi-
mental results show that BCMRFs achieve higher performance in comparison with the
state-of-art PPI-based method in SCL prediction.

• We then integrated BCMRFs into a novel end-to-end computational approach to per-
form tissue-specific SCL prediction on tissue-specific PPINs. In total, 1314 proteins
which were known to localize to different SCCs in different tissues and cell lines
were successfully localized. Furthermore, 549 new tissue-specific localized candi-
date proteins were predicted. Due to the high performance of BCMRFs on known
tissue-specific proteins, these are excellent candidates for further wet-lab experimental
validation.

• In addition to the proteomics data, the existing scientific literature contains an abun-
dance of tissue-specific SCL data. To collect these data, we developed a scoring model
based text mining system and extracted tissue-specific SCL associations from the
abstracts of a large number of biomedical papers. The obtained data are accessible
from our web-based TS-SCL database.

• We concluded the study with an application case study of the tissue-specific subcellular
distribution of human AGO2 protein. We demonstrated how to perform tissue-specific
SCL prediction on AGO2-related PPINs. Most of the resulting tissue-specific SCLs
are confirmed by literature results available in our TS-SCL database.

1.5 Structure of this work

The dissertation is organized as follows. In Chapter 2, we begin with the fundamental
knowledge which is necessary to understand this thesis. The first section introduces the
cellular compartmentalization, the significance of proteins SCLs, protein translocalization
event for the understanding of cellular mechanisms. One of the important tasks of this work
is the prediction of protein SCLs by leveraging the PPI data using probabilistic graphical
model. Thus, we explained the definition of PPI, PPIN, and major data resource and the data
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reliability. Furthermore, to better understand our approaches, we recalled the basic concept
of graph theory including Markov random field (MRF), Bayesian inference, Gibbs sampler,
and the multi-label classification problem. In the last part of this chapter, we elucidated the
data curation process using text mining technology in a nutshell.

Chapter 3 reviews the existing popular methods for experimentally detecting and compu-
tationally predicting protein SCLs. These approaches were compared from the perspectives
of biological concepts, machine learning method. The limitations were also discussed includ-
ing the issue of multi-label classification and the challenge of performing context-specific
prediction. We described the rationale of using MRF on PPINs for protein SCL prediction.
Finally, we brought out the importance of understanding the tissue-specific SCL of human
proteins, and the current absence of a computational solution.

The next chapter, Chapter 4, illustrates how to improve the prediction performance of
predicting multi-SCL of human MLPs in general. At first, we explained the motivation and
the general idea of the approach using multi-label MRF. Next, we introduced our BCMRFs
algorithm and the corresponding learning procedure. Section 4.2 details the experimental
design and Section 4.3 shows the experimental results. At last, we summarized this task
along with the discussion and limitations.

Chapter 5 demonstrates how to apply BCMRFs to tissue-specific PPINs for tissue-
specific SCL prediction. We discussed the rationale of using tissue-specific PPINs for
predicting protein tissue-specificSCL. This chapter also points out the challenge of lacking
tissue-specific SCL original (’ground truth’) dataset for evaluation, and provide the detailed
solution. After the evaluation of the method, a large-scale analysis of tissue-specific SCL
prediction for human proteome was performed.

Next, Chapter 6 presents the text mining system which is able to extract the tissue-specific
SCL from scientific literature. It demonstrates a method which uses a dictionary-based
approach to extract and score the triple association of tissue, protein, and SCL. The method
was validated with the manually curated gold standard corpus. Thereafter, we performed a
large-scale extraction against PubMed abstracts. The resulting protein tissue-specific SCL
data were stored in the web-based database, TS-SCL DB, together with the experimental,
knowledge-based and predicted tissue-specific SCL data.

Additionally, as important as large-scale analysis, Chapter 7 illustrates how to perform
tissue-specific analysis focusing on a protein of interest. In Chapter 7, we profoundly
analyzed the subcellular distribution of human AGO2 based on tissue-specific PPIs and
scientific literature . The resulting tissue-specific SCLs help us to understand the specific
function of AGO2 across tissues and cell types.



6 Introduction

In the end, all the achievements and the limitations were concluded in Chapter 8. The
final chapters ends by addressing further directions for the work.



Chapter 2

Background

2.1 Subcellular localization

2.1.1 Cell and cellular compartmentalization

Cells are the basic units of life that facilitate and sustain every single process within a living
organism. Cells are not an unstructured mixture of proteins, lipids, ions and other molecules.
Instead, the cell creates subregions, each of which allows certain cell functions to operate
more effectively. As such, the subdivision of cells into discrete subcellular compartments
(SCCs) enables the cell to create specialized environments for specific functions.

Despite the morphological and functional variety of cells from different tissue types, all
cells share essential similarities in their compartmental organization, such as the common
SCCs plasma membrane, cytoplasm, and ribosomes. The plasma membrane is a phospholipid
bilayer with proteins that separates the cell from the surrounding environment and functions
as a selective barrier for the import and export of materials. The plasma membrane also
helps contain the cytoplasm of the cell, which provides a gel-like environment for the cell’s
organelles. The cytoplasm is the location for most cellular processes, including metabolism,
protein folding, and internal transportation.

Unlike prokaryotic cells, eukaryotic cells (see Figure 2.1) have a nucleus enclosed within
membranes. The nucleus houses the cell’s genetic material DNA that determines the entire
structure and function of that cell. Ribosomes are responsible for protein synthesis. Often the
distinction of SCCs is made between membrane-bound and non-membrane bound organelles.
The membrane-bound organelles create a physical boundary thus separating the intra-and
extra-organelle space.

• Mitochondria are oval-shaped, double membrane organelles that have their own ri-
bosomes and DNA. These organelles are often called the “energy factories” of a cell
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because they are responsible for making adenosine triphosphate (ATP), the cell’s
primary energy-carrying molecule, by conducting cellular respiration.

• endoplasmic reticulum (ER) modifies proteins and synthesizes lipids, while the Golgi
apparatus is where the sorting, tagging, packaging, and distribution of lipids and
proteins takes place.

• Golgi apparatus is where the sorting, tagging, packaging, and distribution of lipids and
proteins takes place. Golgi apparatus receives the entire output of de novo synthesized
polypeptides from the ER and functions to posttranslationally process and sort them
within vesicles destined to their proper final destination (e.g. plasma membrane,
endosomes, lysosomes).

• Vesicles and vacuoles are membrane-bound organelles that function in storage and
transport. Vacuoles are somewhat larger than vesicles, while the membranes of vesicles
can fuse with either the plasma membrane or other membrane systems within the cell.

• Lysosomes which contains a large number of hydrolytic enzymes that are used for
degrading almost any kind of cellular constituent, including entire organelles.

• Endosomes are involved in transport within the cell. They receive endocytosed cell
membrane molecules and sort them for either degradation or recycling back to the cell
surface. They also receive newly synthesized proteins destined for vacuolar/lysosomal.

• Peroxisomes are small, round organelles enclosed by single membranes which carry
out oxidation reactions that break down fatty acids and amino acids.

In contrast, there are also non-membrane bound organelles such as the cytoskeleton and
nucleoli.

• Cytoskeleton, including intermediate filaments, microfilaments, microtubules, the mi-
crotrabecular lattice, and other structures not only serve in the maintenance of cellular
shape but also have roles in other cellular functions, including cellular movement, cell
division, endocytosis, and movement of organelles [27].

• The most prominent substructure within the nucleus is the nucleolus which is the site
of ribosomal ribonucleic acid (rRNA) transcription and processing, and of ribosome
assembly.
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Fig. 2.1 Schematic overview of the animal cell. Eight primary SCCs, including Plasma
membrane, Nucleus, Cytoplasm, Versicles, Mitochondria, Cytoskeleton, Endoplasmic
reticulum, Golgi apparatus, and their substructures. Figure is adapted from Thul et al.
[28].

2.1.2 Protein subcellular localization

For subcellular processes to be carried out within defined SCCs, mechanisms must exist to
ensure the required protein components are present at the sites, at an adequate concentration
and the correct timing. The accumulation of a protein at a given site is known as protein
SCL.

One challenge in cell biology is how does the cell get materials (such as proteins,
messenger ribonucleic acid (mRNA), ion) in and out across the membranes, and each
compartment has its solution. The study of SCL and the transportation of the materials
implicates many questions, such as: What controls the movement of a protein from one
region to another? What does the protein-import material consist of? Which proteins are
involved in mitochondria for instance (organelle proteome)?

The spatial partitioning of biological processes is a phenomenon fundamental to life
that enables multiple processes to occur in parallel. SCLs direct the access of proteins
to its interacting partners, such as other molecules and the post-translational modification
machinery. Moreover, SCL is essential to protein function and its functional diversity [5].
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Hence, resolving protein SCL, and the spatial distribution of the human proteome at a
subcellular level can significantly increase our understanding of human biology.

2.1.3 Protein translocation

Protein translocation is a process by which proteins move between SCCs. It is a fundamental
requirement for proteins to be able to exert their functions in different organelles. Short amino-
acid sequences within a protein, known as signal peptides or signal sequences, can direct
its localization, although translocation also occurs in the absence of these signal sequences.
Protein translocation can occur co-translationally or post-translationally. Approximately half
of the proteins generated by a cell have to be transported into or across at least one cellular
membrane to reach their functional destination [29]. As a post-transcriptional process, some
proteins translocate to the mitochondria, peroxisomes or the nucleus [30]. Whereas many
proteins, including those destined for the secretory pathway and integral membrane proteins,
are transported into the ER during synthesis, as the co-translational translocation [31].

Protein translocation accomplishes the movement of material and information within
the eukaryotic cell and is essential for the normal activity of the cell. The protein transport
machinery of cells ensures that the right amount of protein is present at the right time and
place. Hung and Link [5] summarized an overview of intracellular protein trafficking and an
example of protein translocation induced by peptide signal, see Figure 2.2.

2.1.4 Multi-localizing protein

Owing to the translocation, proteins which are often localized to more than one organelle,
which are called multi-localizing proteins (MLPs). MLPs present several advantages for the
cell, some which are crucial for cellular survival.

The multilocation of protein often happens in the following translocation scenarios.
Shuttle proteins continuously switch their SCL to transport other proteins between SCCs.
For instance, importin α transports protein from the cytosol to the nucleus and thus is
found in both SCCs [32]. The proteins are involved in the reactions which take place in
more than a single SCC, e.g. mitochondria and peroxisomes share some enzymes in their
lipid metabolism [33]. Proteins translocate as a quick cellular response due to a changing
environment. For example, ERBB2 protein in the plasma membrane moves to the nucleus
after stimulation and change the expression pattern [34].

Furthermore, Some of the MLPs are also multi-functional proteins (MFPs). These
proteins have more than one function, which might depend on the different SCLs where
they are localized. These MLPs may have context-specific functions which increases the
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Fig. 2.2 Schematic overview of intracellular protein trafficking.The major components of
the eukaryotic cell are the cytosol, the nucleus, the nucleolus, the ER, the Golgi apparatus,
mitochondria and the peroxisome. Whereas gene transcription takes place within the
nucleus (1), protein synthesis is confined to the cytosol and takes place either on free
RNA ribosomes (2) or on ribosomes associated with the ER (3). Most proteins destined
to be secreted from the cell (4), or to reside in the plasma membrane, the lysosomes (5),
the Golgi apparatus or the ER, follow the secretory pathway and enter the ER before the
end of translation. Proteins targeted to the mitochondria (6), peroxisome (7) and nucleus
(8) are translocated after their synthesis is complete. Subnuclear localization signals
include nucleolar retention signals (9), nuclear-matrix-targeting signals and signals that
target proteins to splicing speckles. Figure reprinted from Hung and Link [5].
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functionality of the proteome as a result. The existence of MFPs adds another dimension
to the cellular complexity and offers new starting points in systems biology, because they
might be involved in multiple pathways or serve as regulators of transcription. For example,
a moonlighting protein alpha-enolase that acts in the cytosol as well as in plasma membrane
fulfilling different functions [6].

2.1.5 Protein mislocalization

The right amount of protein presenting at the right time and place is of paramount importance
for a protein to gain access to appropriate molecular interaction partners and ensures the
normal operation of the cell. Abnormalities in the SCL of proteins that are important for
the signaling, metabolic or structural properties of the cell can cause disorders that involve
biogenesis, protein aggregation, cell metabolism or signaling [5].

Aberrantly, mislocalized proteins have been linked to human diseases as diverse as
Alzheimer’s disease, kidney stones, various type of cancer. The mechanisms that can lead
to protein mislocalization include (i) the alterations of the protein trafficking machinery,
(ii) protein targeting signals, and (iii) the changes in protein interaction or modification. More
mislocalized protein associated with human disease are summarized by Hung and Link [5].

Accordingly, the cellular processes which associate events such as protein folding, cell
signaling, and import and export to SCLs of proteins have been proposed as targets for
therapeutic intervention. Some agents have been reported their success in influencing protein
subcellular distribution in disease states. For instance, in patients with neurodegenerative
diseases, affected neurons exhibit a striking redistribution of TAR DNA-binding protein
(TARDBP) from the nucleus to the cytoplasm. The drug rapamycin which has been used for
targeting mTOR (an essential protein kinase) can regulate and restore TARDBP SCL to the
nuclear [35].

2.2 Protein-protein interaction

Protein-protein interactions (PPIs) are understood as physical contacts between proteins that
occur in a cell or in a living organism in vivo. These physical contacts of high specificity are
established between two or more protein molecules as a result of biochemical events steered
by electrostatic forces including the hydrophobic effect (Figure 2.3). Indubitably, identifica-
tion of other types of protein interactions (protein–DNA, protein–RNA, protein–cofactor, or
protein–ligand) is also crucial for a comprehensive study of the interactome [36], but these
types of data should not be mixed or confused with physical PPI data.
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Fig. 2.3 Physical contact between two proteins. The physical PPI is the biochemical
events steered by electrostatic forces (red dotted lines) between the molecules of two
proteins (blue spheres and yellow spheres). Figure is reprinted from Jimwoo Leem.

2.2.1 Types of protein-protein interactions

PPIs are fundamentally characterized as stable or transient, and both types of interactions
can be either strong or weak (see Figure 2.4). Stable interactions are those associated with
proteins that are purified as multi-subunit complexes, and the subunits of these complexes
can be identical or different [37]. Transient PPIs are expected to control the majority of
cellular processes. As the name implies, transient interactions are temporary in nature and
typically require a set of conditions that promote the interaction, such as phosphorylation,
conformational changes or localization to discrete areas of the cell. While in contact with
their binding partners, transiently interacting proteins are involved in a wide range of cellular
processes, including protein modification, transport, folding, signaling, apoptosis and cell
cycling [37].

2.2.2 Databases for protein-protein interactions

The repositories and databases for PPI data can be broadly classified into two types based on
the content: i) Those containing interactions supported by experimental evidence, and, ii)
those containing interactions derived from in silico predictions alone, or, mixed with experi-
mentally derived PPIs. Some of the primary databases that exclusively contain experimentally
derived PPI data in humans are listed here. They are Human Protein Reference Database
(HPRD) [39], Reactome Knowledgebase [40], Alliance For Cellular Signaling (AfCS), DIP
[41], IntAct [42], BioGRID [43],and MINT [44]. The last four are the core founders of
IMEx, the international consortium of molecular interaction (MI) database providers [45].
This consortium, together with HUPO Proteomics Standards Initiative (PSI), has defined the
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Fig. 2.4 Relation of types based on affinity and stability. Non-obligate interactions are
transient but there are some examples of permanent non-obligate interactions such as
enzyme-inhibitor interactions. Figure reprinted from Acuner Ozbabacan et al. [38].

standard MIMIx (minimal information about a molecular interaction), which is proposed to
improve data quality and curation of MIs [46].

2.2.3 Reliability of PPI data

Owing to technological advances, it has become increasingly feasible to detect large-scale
PPI data experimentally. However, it is important to emphasize the limitations of available
PPI data. Our current knowledge of the interactome is both incomplete and noisy. PPI
detection methods have limitations as to how many truly physiological interactions they can
detect and they all find false positives and negatives. With the accumulation of PPIs, more
and more studies show the existence of a considerable amount of redundant data and false
positive PPI data in the databases [47].

Because of the diversity of techniques for experimental detection, computational predic-
tion and curation of PPI data, adequate quality assessment methods have to account for the
different evidence associated with each reported interaction. An interaction of two proteins
can be supported, for example, by a single concurrent mention in a scientific publication
or by multiple independent experimental observations, including details such as the protein
binding interface or assay parameters [48].

MINT was one of the first PPI databases to associate to each interaction a score estimating
the reliability of the interaction, given the available experimental evidence [44]. The MINT
score is based on a heuristic integration of the available evidence into a ‘combined experimen-
tal evidence’ x which is then mapped in the [0,1] interval via the formula Score = 1−a−x. x
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(a) Undirected graph (b) Directed graph

Fig. 2.5 Example of simple graphs.

is computed by adding up all the evidence according to the formula

x = ∑
i

diei +
n

10
(2.1)

where d reflects the size of the experiment. Experiments are defined on the large scale if
the article reporting them reports more than 50 interactions otherwise they are defined on a
small scale. This coefficient is set to 1 for small-scale and 0.5 for large-scale experiments.
e depends on the type of experiment supporting the interaction and emphasizes evidence
of direct interaction (e = 1) concerning experimental support that does not provide obvious
evidence of direct interaction, i.e. Co-Immunoprecipitation (Co-IP), Pull-Down Assay, etc.
(e = 0.5). x takes into account the number of different publications (n) supporting the
interaction [49].

The MINT scoring function assigns a score close to 1 only to interactions supported
by many different reports and experimental approaches while an interaction supported, for
instance, by a single high throughput pull-down experiment will receive a score of 0.2.

2.2.4 Protein-protein interaction network

Protein-protein interaction networks are the networks of protein complexes formed by
biochemical events and electrostatic forces that serve a distinct biological function as a
complex. The protein interactome describes the full repertoire of a biological system’s
PPIs. In several PPI repositories, it is a straightforward process to obtain all the proteins
that interact with a given query protein and from those to build a corresponding network of
molecular interactions [50, 49]. Several bioinformatic tools have been developed to represent
and explore such PPINs including Cytoscape [51], CELLmicrocosmos [52], VANESA [53]
and many more tools are summarized in Pavlopoulos et al. [54].
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2.3 Basic concepts in graph theory

Graph A simple graph G consists of a nonempty set V , called the vertices (nodes) of G,
and a set E of two-element subsets of V . The members of E are called the edges (arcs) of
G, and the graph can be written as G = (V,E). The vertices correspond to the circles in
Figure 2.5, and the edges correspond to the lines. A graph consists of vertices connected by
edges. The two main categories of graphs are undirected graphs that edges do not have any
particular direction (see Figure 2.5a), and directed graphs (see Figure 2.5b), where edges
have direction - for example, there may be an edge from node A to node B, but no edge from
node B to node A.

Graphs can be represented as a two-dimensional boolean adjacency matrix, in which the
rows and columns are the sources and destination vertices, and entries in the array indicate
whether an edge exists between the vertices, as in below:

Adjacent Matrix A =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


where a non-zero value at Ai j indicates that node i is connected to node j.

Distance The distance between two vertices in a graph is the number of edges on the
shortest path between them. In Figure 2.5, the distance from A to E is 2, whereas it is 1 from
A to C.

2.4 Gene co-expression network analysis

Gene co-expression network analysis (GCNA) is a popular approach to analyze a collection
of gene expression profiles. GCNA yields an assignment of genes to gene co-expression
modules, a list of gene sets statistically over-represented in these modules, and a gene-
to-gene network. Figure 2.6 shows the pipeline of construction of gene co-expression
network. Constructing a network of genes from expression data generally consists of the
following steps: 1. Prior knowledge can be used to identify guide-genes, and co-expression
databases can be queried to investigate gene co-expression patterns across multiple conditions.
2. Similarity in gene expression patterns is calculated using correlation coefficients (e.g.
Pearson, Spearman). A user-defined threshold (in this example set at 0.8) enables the selection
of genes with high co-expression scores. Significantly co-expressed genes are reported in the
binary adjacency matrix as 1. 3. A clustering algorithm is applied on the adjacency matrix to
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infer networks of significantly co-expressed genes. In the resulting network, significantly
co-expressed genes are depicted as numbered vertices linked by edges. A widely used
approach to attach biological meaning to modules is to determine functional enrichment
among the genes within a module using GCNA tools. Assuming that co-expressed gene are
functionally related, enriched functions can be assigned to poorly annotated genes within the
same co-expression module, and an approach commonly referred to as ’guilt by association’
(GBA). GBA approaches are also widely used to identify tissue or cell type specific genes if
a substantial proportion of the genes within a module are associated with a particular tissue
or cell type, such as the tissue-specific interaction network database, GIANT [10].

2.5 Bayesian inference and Gibbs sampling

The Bayesian interpretation of probability is one of two broad categories of interpretations.
Bayesian inference updates knowledge about unknowns, parameters, with information from
data. The basis for Bayesian inference is derived from Bayes’ theorem.

p(θ | y) = p(y | θ) · p(θ)
p(y)

(2.2)

with observations y and parameter set θ . p(y) will be discussed below, p(θ) is the set of
prior distributions of parameter set θ before y is observed. p(y|θ) is the likelihood function,
in which all variables are related in a full probability model. p(θ |y) is the joint posterior
distribution of parameter set θ that expresses uncertainty about parameter set θ after taking
both the prior and data into account. Since there are usually multiple parameters, θ represents
a set of j parameters as θ = θ1, . . .θ j.

The goal of Bayesian inference is to maintain a full posterior probability distribution
over a set of random variables. Sampling algorithms based on Monte Carlo Markov Chain
(MCMC) techniques [56] are one possible way to maintain and use this distribution in the
inference models. The underlying logic of MCMC sampling is the estimation of any desired
expectation by ergodic averages. Any statistic of a posterior distribution can be computed as
long as N samples are simulated from that distribution [57].

Gibbs sampling is one MCMC technique suitable for the task. The idea of Gibbs
sampling is to generate posterior samples by sweeping through each variable (or block of
variables) to sample from its conditional distribution with the remaining variables fixed to
their current values. For instance, consider the random variables X1, X2, and X3. We start
by setting these variables to their initial values x(0)1 , x(0)2 and x(0)3 . At iteration i, we sample
x(i)1 ∼ p(X1 = x1|X2 = x(i−1)

2 ,X3 = x(i−1)
3 ), sample x2 ∼ p(X2 = x2|X1 = x(i)1 ,X3 = x(i−1)

3 ),



18 Background

and sample x3 ∼ p(X3 = x3|X1 = x(i)1 ,X2 = x(i)2 ). This process continues until “convergence”
(the sample values have the same distribution as if they were sampled from the true posterior
joint distribution). Algorithm 1 describes a generic Gibbs sampler.

Algorithm 1: Gibbs sampler

1 Initialize x(0) ∼ x(0)1 ,x(0)2 , . . . ,x(0)D .
for iteration i = 1,2, . . . do

2 x(i)1 ∼ p(X1 = x1|X2 = x(i−1)
2 ,X3 = x(i−1)

3 , . . . ,XD = x(i−1)
D )

x(i)2 ∼ p(X2 = x2|X1 = x(i)1 ,X3 = x(i)3 , . . . ,XD = x(i−1)
D )

...
x(i)D ∼ p(XD = xD|X1 = x(i)1 ,X2 = x(i)2 , . . . ,XD−1 = x(i)D−1)

3 end

In Algorithm 1, the posterior distribution is sampled by sweeping through all the posterior
conditionals, one random variable at a time. The samples simulated based on this algorithm
at early iterations may not necessarily be representative of the actual posterior distribution
due to the initialization with random values. However, the theory of MCMC guarantees
that the stationary distribution of the samples generated under Algorithm 1 is the target
joint posterior. For this reason, MCMC algorithms are typically run for a large number of
iterations (in the hope that convergence to the target posterior will be achieved). Because
samples from the early iterations are not from the target posterior, it is common to discard
these samples. The discarded iterations are often referred to as the “burn-in” period [58].

2.6 Markov random field

A MRF is an probabilistic graphical model that efficiently represents the joint probability
distribution of a set of random variables by encoding dependencies between them. Such
dependencies can be learned from data or derived from prior knowledge about the domain
which is modeled. Unlike a standard classifier, an MRF enables collective inference over the
entire set of known and unknown variables. MRF models have been widely used in image
analysis in order to account for the local dependency of the observed pixel intensities [59].
It was also used to solve issues in system biology such as identification of differentially
expressed genes [60], protein function prediction [61] involve the solution of a probability
distribution defined by a discrete MRF. The concept of MRF model which is helpful for
understand this thesis is briefly introduced in below. More detailed knowledge on MRF and
probabilistic graphical model can be found in Koller and Friedman [62].
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MRF is a undirected graph model of a joint probability distribution. It consists of an
undirected graph G= (ν ,ε). Consider all the nodes on graph as a set of random variables X=

X1,X2, . . . ,Xn, where each variable Xi ∈ X takes a value from the label set L = l1, l2, . . . , lk.
A labeling x refers to any possible assignment of labels to the random variables and takes
values from the set Ln. The label set corresponds to segments in the case of the segmentation
problem and protein function in case of the protein function prediction problem.

The corresponding Gibbs energy function E: Ln −→ R maps any labeling x ∈ Ln to
a real number E(x) called its energy. Energy function are the negative logarithm of the
posterior probability distribution of the labeling. Maximizing the posterior probability equals
to minimizing the energy function and leads to the maximum likelihood estimation (MLE) or
maximum a posteriori (MAP) solution.

The unary potential φ(xi) represents the cost of the assignment: Xi = xi , while the
pairwise potential φi j(xi,x j) represents that of the assignment: Xi = xi and X j = x j. Energy
functions can be decomposed into sum over unary(φi) and pairwise(φi j) potentials as:

E(x) = ∑
i∈V

φi(xi)+ ∑
(i, j)∈E

φi j(xi,x j) (2.3)

where ν is the set of all random variables (the nodes on G) and ε is the set of all pairs of
interacting variables (the edges on G). Furthermore, the potential functions could be with
three or more variables [63].

2.7 Multi-label dataset and classification

In many application domains each data sample is associated with a set of labels, instead
of only one class label as in traditional classification. Therefore, with Y being the total
set of labels in an multi-labeled dataset (MLD) D and xi a sample in dataset D, a multi-
label classifier must produce as output a set Zi ⊆ Y with the predicted labels for the i-th
sample. As each distinct label in Y could appear in Zi, the total number of potential different
combinations would be 2|Y | . Each one of these combinations is called a label set. The same
label set can appear in several instances of D.

Imbalance of dataset In binary classification, the imbalance level is measured taking into
account only two classes: the majority class and the minority class. For an imbalanced MLD,
meaning that some of the labels are very frequent whereas others are quite rare, the level of
imbalance of a determinate label can be measured by the imbalance ratio, IRLbl, defined
in Equation (2.4). To know how imbalance is dataset D, the MeanIR measure is calculated
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as the mean imbalance ratio among all labels, as shown in Equation (2.5). To know the
significance of this last measure, the standard CV (Coefficient of Variation, Section 2.7) can
be used. The SCUMBLE measure in Section 2.7 aims to quantify the imbalance variance
among the labels present in each data sample [64].

IRLbl(y) =

argmax
y′∈L

(
∑
|D|
i=1 h(y′,Yi)

)
∑
|D|
i=1 h(y,Yi)

(2.4)

MeanIR =
1
|L| ∑y∈L

(IRLbl(y)) (2.5)

CV IR =
IRLblσ
MeanIR

(2.6)

IRLblσ =

√√√√ Y|Y |

∑
y=Y1

(IRLbl(y)−MeanIR)2

|Y |−1
(2.7)

SCUMBLE(D) =
1
|D|

|D|

∑
i=1

[1− 1
IRLbli

(
|L|

∏
l=1

IRLblil)(1/|L|)] (2.8)

This characteristic makes this task even more challenging. Generally, the imbalance
problem has been faced with three different approaches: data re-sampling, algorithmic
adaptations, and cost-sensitive classification [65].

2.8 Text mining data curation

Text mining is also known as knowledge discovery in text data mining. It is the process of
extracting previously unknown, understandable, potential and practical patterns or knowledge
from a collection of massive and unstructured text data. It is a combining technique from data
mining, machine learning, natural language processing, information retrieval, and knowledge
management [66, 67]. Numerous text mining techniques and tools were applied in life
science, e.g. mapping of genes diseases and drug discovery [68, 69], in social media, e.g.
recommendation system on Facebook and Twitter [70], business intelligence, e.g. analysis of
the customer satisfaction [71].
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A generic overview of text mining process is illustrated in Figure 2.7 which was sum-
marized by Rebholz-Schuhmann et al. [68]. The larger text-analytical approaches typically
include:

1. Information retrieval. The tasks include data selection, document retrieval, classifica-
tion, and feature extraction generally convert the documents into intermediate forms,
which should be suitable for different mining purpose.

2. Information extraction from the text and are the central part of a text mining system.
Information extraction comprises the identification of entities, such as genes or diseases,
as well as the identification of complex relationships between those entities, including
protein-protein interactions and gene-disease associations by using the algorithms
including clustering, association rule discovery, trend analysis, pattern discovery and
other knowledge discovery algorithms.

3. Post-processing. These tasks manipulate data or knowledge coming from information
extraction step. These scientific facts can then either be used to populate databases
directly or to assist the work of curation teams including the evaluation and selection
of knowledge, interpretation, and visualization of knowledge. The text mining results
are used to suggest hypotheses that can then be used to shape or to plan experiments to
validate or to disprove the proposed hypotheses.
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Fig. 2.6 Co-expression network inference pipeline. Figure reprinted from Serin et al.
[55]
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Fig. 2.7 Pipeline of text mining solution. Figure reprinted from Rebholz-Schuhmann
et al. [68].





Chapter 3

Overview of protein subcellular
localization prediction

Understanding of the SCLs of proteins has always been an essential aspect to discover the
novel function of the protein, the primary mechanisms of the cell. We are interested in where
is a protein localized in the cell? How is a MLP distributed in the cell simultaneously, or
exclusively? How does the protein move from one SCC to another? Under which biological
context the translocalization of protein is induced? Furthermore, how is the protein interacting
with the other molecules in the cell? How to collect and access this SCL data? How to
analyze the SCL data? How to interpret them along with protein functions? In this chapter,
we discuss the current situation of protein SCL analysis and prediction.

3.1 Access to the protein SCL data

3.1.1 Experimental data

Conventional wet-lab experiments are used to access the SCL of proteins and also as the gold
standard for validating SCL. Several wet-lab approaches for systematic analysis of protein
SCLs have been developed.

• Initial research was done with specific staining and light microscopy. Closer scrutiny
of micrometer- and nanometer-sized subcellular structures was later enabled by the
rise of electron microscopy, which illuminated the complexity of organelles and their
various positions within the cell [72].

• Quantitative mass-spectrometric readouts allow identification of proteins with simi-
lar distribution profiles across fractionation gradients [73–75] or enzyme-mediated
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proximity-labeled proteins in cells [75–77]. These techniques make it possible to
understand what is each component doing at the molecular level.

• Imaging-based approaches enable the exploration of the subcellular distribution of
proteins in situ in a single cell and have the advantage of also effectively identifying
single-cell variability and multi-organelle localization. Imaging-based approaches
can be performed using tagged proteins [78] or affinity reagents [28]. Such as the
immunofluorescence (IF) based approach can be combined with confocal microscopy
was utilized to perform the high-resolution investigation of the spatial distribution of
each protein.

Finally, genetics, in all its forms, has allowed us to dissect the structure and function of
these SCLs by selective disruption of individual cell components. These experimental data
can be retrieved from databases such as Human Protein Atlas (HPA) [28], LocDB [79] and
ENCODE [80].

3.1.2 Knowledge-bases of protein SCLs

However, not all the experimental data are collected and accessible in databases. A vast
amount of data are spread over the scientific research for various purposes. Such data re-
quire to be integrated, interpreted, standardized and enriched from literature and numerous
resources to a knowledge base. UniProt Knowledgebase (UniProtKB) leads the world in
providing full and comprehensive curation of the experimental data in the literature and
does this in a mutually beneficial collaboration with other specialized resources. Literature-
based expert curation of UniProtKB provides high-quality information for experimentally
characterized proteins in a standardized and structured way using widely accepted con-
trolled vocabularies and ontologies. Other knowledgebases of protein SCL include the
Reactome Knowledgebase [40], Human Protein Reference Database [81] and Gene Ontology
annotations [82].

3.1.3 Limitations

Experimentally determining the SCLs of a protein can be a laborious, expensive and time-
consuming task, and manually annotating a protein, particularly identifying the massive SCL
data from heterogeneous sources, is always a challenging and low-throughput task.
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3.2 Computational prediction method

Over the last decades, a variety of computational methods have been developed for predicting
the SCL of proteins for various organisms [83, 84], which allows us to tackle the exponentially
growing number of ’omics’ data and access the protein SCL data in a large scale. Predicted
localization data, in particular, offer numerous insights that can assist in the prioritization of
proteins for downstream analysis. Because localization and function depend on each other, a
protein’s localization can provide clues to its role in the cell when other information is not
available.

3.2.1 Sequence feature based methods

With the rapid growth in publicly available sequence data, the computational prediction of
such sequence features has become an essential aspect of biological research. By computa-
tionally identifying one or more of the signals that are known to influence protein targeting,
or sequence features that correlate with a specific SCL, a protein’s probable SCL can be
deduced automatically using protein sequence information. These predictors utilized various
methods which can be categorized into the following types:

Homology-based methods compare the SCLs of known proteins with unknown proteins.
If a certain degree of similarity is found in the sequence, then it can be inferred that the
unknown protein’s SCL may be the same as the known protein, such as SCLpredT [85] and
GOASVM [86].

Sorting-signal-based methods are more specific which recognizes the signal peptides
which are responsible for protein translocation [87]. Most of the signal-based predictors aim
to predict only one particular SCL, such as NucPred [88] and ChloroP [89].

Composition-based methods depend on information about the primary amino acid
sequence of proteins used for information technology operations or discovery of hidden
information, commonly including amino acid composition [90, 91], pseudo amino acid
composition [92–94], and n-gram [95, 96]. Prediction results from this approach are typically
less informative than those for homology- and functional domain-based methods, but in
predicting SCL of unknown proteins, it is still a feasible approach.

Functional domain-based methods rely on known structures or functional data, such
as protein functional domains [97–99] and motifs [100, 101], as well as information in the
GO database [97, 102]. There are many learning models of research methods are used to
establish the relevance of GO terms and SCL. It has been shown that GO terms can be used
to advance the performance of SCL prediction. These functional data regarded as domain
knowledge are highly accurate and reliable, but this approach requires manual verification of
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each annotation and cannot be applied to the entirely new protein. Therefore it is usually
combined with the homology-based approach [103].

Combined methods, as the name implies, these methods combine the above-mentioned
protein sequence features [97, 104]. Zhou et al. incorporate multiple features, such as context
vocabulary annotation-based GO terms, peptide-based functional domains, and residue-based
statistical features, and use a hidden correlation modeling as a feature representation protocol
which creates more compact and discriminative feature vectors by modeling the hidden
correlations between annotation terms. Briesemeister et al. presented an algorithm YLoc
which is based on the simple, naive Bayes classifier. They selected up to 30 most significant
features from about 30 000 features from protein sequences including sorting signal, amino
acid composition, and pseudo composition as well as properties such as hydrophobicity,
charge, and volume of amino acids. Also, they included PROSITE motifs [105] and GO
terms from close homologs. Another remarkable advantage of YLoc is that YLoc provides
the details of how a prediction was made and which biological property and features of
the protein was mainly responsible for it [104], whereas most of SCL prediction tools are
designed as ’black box’ from which the results are hard to interpret.

3.2.2 Protein-protein interaction network-based approaches

Many biological processes are mediated by dynamic interactions between proteins. Two
proteins can interact with each other only if they co-occur spatially and temporally. As PPI
and SCL are often discovered via separate empirical approaches, the annotations of PPI and
SCL are independent and might complement each other in helping us to understand the role
of individual proteins in cellular networks. We expect reliable PPI annotations to show that
proteins interacting in vivo are co-localized in the same SCC.

Many studies based on high-throughput technologies have confirmed that interacting
proteins tend to be localized within the same SCC, or in the physically adjacent SCCs, in
various types of species. [106] reported that 76% of interactions in their yeast PPI set are
localized in the same SCL, whereas a review of human PPIs based on public databases and
literature curation found 52% to involve co-localized proteins plus others involving adjacent
SCC [107]. These studies strengthen the assertion that a pair of interacting proteins is more
likely to be co-localized in the eukaryotic cell.

The existing protein-protein interaction network (PPIN)-based methods of protein SCL
prediction can be classified into three categories.
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Neighborhood counting & probabilistic methods

Neighborhood counting-based approach proposed by Shin et al. [21] is the most straightfor-
ward algorithm that determines the SCL of a protein based on the known SCL of proteins
lying in its neighborhood. One of the variants is the majority method, which takes the most
annotated SCL terms as the prediction result. In the merged variant, for each protein, a SCL
is assigned based on the union of annotations for all its interaction partners. In contrast, for
the common variant method, when a protein interacts with more than one other protein only
those SCL common to all its interaction partners are employed as a prediction.

Lee et al. [108] explore protein features in combination with PPINs to predict the SCLs
for unknown proteins (i.e. the proteins which have no SCL information). They consider
the impact of not only direct interacting neighbors but also all proteins at network distances
up to five and including distance (see Section 2.3). They generated a weighted network
feature vector based on each neighbor’s significance and the conditional probabilities of
interactions between localization pairs. Afterward, a model of SCL selection was constructed
by using the supervised learning method k nearest neighbor (kNN) classifier based on both
the protein feature dataset and the localization-interaction dataset to support the prediction of
an unknown protein.

Du and Wang propose to use PPIN as an infrastructure integrated with the existing
sequence-based predictors (Hum-mPloc 2.0 [110], Y-Loc [111]). They calculate the prob-
ability based on the neighbor protein’s SCL annotation and the membership degree (see
Section 2.3) of a protein in a probable SCC. In their approach, the topology of the PPIN is
taken into account. Edge clustering coefficient (ECC) was firstly used for the selection of
essential nodes in the context of a PPI network and was proven to be a potential indicator to
whether two interacting proteins tend to have common SCC [109].

Graph theory methods

As a PPIN can be considered as a graph G = (V,E) in which the nodes V represent the
proteins and the edges E serve as the PPIs. The nodes V are associated with the variables
X which stand for the probable SCLs label of proteins. Hence, it is natural to apply graph
algorithms for the SCL assignment problem.

In contrast to the local neighborhood counting methods, the graph-based approaches
are global and consider the full topology of the network. Jiang and Wu [112] applied
different graph-based semi-supervised learning algorithms to assign SCL to proteins. These
algorithms include χ2-score, GenMultiCut, and Functional Flow which are initially used
for protein function prediction [113]. To predict the possible SCLs of protein x, they used
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Labelled

Unlabelled

Edges

Fig. 3.1 Protein-protein interaction network as an undirected graph.The nodes represent
the proteins and the edges represent the PPIs. The colors of the nodes serve as the
available SCL label of proteins. Grey color indicates that the SCL information is
unknown for this protein.

χ2-score algorithm to determine the over-represented SCL from all available annotated SCL
information of the neighborhood of x with a distance up to three. Whereas the GeneMultiCut
algorithm [114] utilizes a cut-based methodology to maximize the number of times the same
SCL annotations are associated with neighboring proteins. The task is to partition a graph in
a way that each of k nodes belongs to a different subset of the partition to assign a unique
SCL to all the unannotated nodes. The assignment is made by minimizing the sum of the
costs (which is defined in their score function) of interacting nodes with no SCL in common.

Besides, a flow-based algorithm that simulates functional flow between proteins is applied
to predict protein SCL. The proteins which the SCL information are known are treated as a
‘source’ of ‘functional flow’. After simulating the spread of this functional flow through the
neighborhoods surrounding the sources, each protein in the neighborhood is assigned with a
score. This score corresponds to the amount of ‘flow’ that the protein has received for that
function, over the course of the simulation which determines the SCL of the protein.

Methods which integrates multiple information sources

Moreover, several authors have extended the PPI data by integrating different data sources for
SCL prediction. Mintz-Oron et al. [115] introduced a constraint-based method for predicting
SCL of enzymes based on the embedding metabolic network, relying on a parsimony principle
of a minimal number of cross-membrane metabolite transporters.
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Mondal and Hu [116] integrate PPI, genetic interactions, co-expression networks. They
utilize a diffusion kernel-based logistic regression (KLR) algorithm for predicting SCL using
these types of protein networks. For each network, they present the data in a square matrix
as well as an annotation location matrix for annotated proteins in this network. KLR model
is developed based using logistic regression for predictions of un-annotated proteins.

3.2.3 Limitation of existing methods

Limitation of the sequence-based methods

Each type of sequence-based methods has pushed forward the progress on protein SCL
prediction. Nevertheless, the drawbacks still exist. When the similarity between the unknown
protein and the database is low, the homology-based method has a poor predictive ability. The
sorting-signal-based method can only handle the proteins which carry these signal sequences.
Most of the existing methods described above only predict mono-SCL proteins, those that
localize to a single SCL, and they do not consider MLP. As we discussed in Section 2.1.4,
identifying MLPs has high value to understanding biological functions, and there is still
significant room for continued development in this area.

Stepping back to the biological point of view, the protein, to carry out different functions,
can be localized in different SCCs simultaneously or at different times during various
biological processes, e.g. protein translocalization (see Section 2.1.3). Although sequence-
based prediction methods have been successfully applied to genome-wide large-scale protein
annotations and analysis, it is hard to apply these methods to detect the translocalization
of proteins because the primary sequences of the translocated protein are always about
the same. The results predicted by those methods are ’static’. For the same reason, those
sequence-based predictors are powerless facing the scenario of protein mislocalization and
context-specific SCL.

Limitations of the PPI-based methods

The existing PPI-based prediction methods with various techniques have contributed to
protein SCL assignment problem. Nevertheless, each approach has its unique advantages
and drawbacks. The shortcoming of Lee et al. [117]’s approach is that each pair of proteins
(direct and indirect neighbors) in the PPIs are equally treated. The χ2 score algorithm does
not consider any aspect of network topology within the local neighborhood, and cannot
extend naturally to the case of weighted interaction graphs. While GenMultiCut takes more
global properties of interaction maps into account, it does not reward local proximity in the
graph. For example, if only two proteins have annotations in a particular network, all other
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proteins will be labeled by one of these annotations, regardless of the size of the network.
The metabolic network-based method is computationally more demanding and challenging to
incorporate other information into their prediction model. Furthermore, an inherent limitation
of metabolic network-based prediction is that it is strictly limited to metabolic enzymes.
The method using diffusion KLR model is impractical for large networks because of the
expensive computational cost of the required matrix exponentiation [61].

Although including various types of interactions might potentially gain more information
for the SCL prediction, the expanded network would consist of a lot of unrelated proteins
and interactions. The most complicated cases are protein hubs which interact widely with
many other proteins without any specificity, like chaperones and ubiquitin. Mondal and
Hu [116]’s result also suggests that physical PPI outperforms genetic PPI that is better than
co-expression data for protein SCL prediction.

3.3 Spatial adjacency of subcellular compartments

It is worth to remind again that two physically interacting proteins must necessarily share
a common SCC or an interface between physically adjacent SCCs transiently or condi-
tionally. The SCL of a protein can, therefore, be inferred from the SCL of its interacting
partners. Nonetheless, the existing PPI-based approaches only focus on the former concept
(co-localizing in a common SCC). The importance of the spatial adjacency among SCCs
have been underestimated. It has not been investigated whether a protein SCL (e.g. plasma
membrane) can also be inferred by its interacting partners in the adjacent SCLs (e.g. Extra-
cellular and Cytoplasm). Secondly, for the proteins whose interacting partners are poorly
annotated, the information of the adjacent SCLs would be crucial as the primary resource
for prediction. In this dissertation, whether the spatial adjacency among SCCs can improve
PPI-based SCL prediction was discussed in Chapter 4.

3.4 Direct neighbors and indirect neighbors

Among the methods above-mentioned for protein SCL prediction, some of them consider
the direct neighbors only, the others take the indirect neighbors within certain distance into
account, see Figure 3.2. The concept of co-localization of the interacting neighbors in same
SCC for predict SCL prediction has been well established. The indirect neighbors were often
used in protein function prediction under the assumption that proteins which interact with the
same proteins (i.e. distance two neighbors) may also have a higher likelihood of sharing same
physics, characters and carry same functionality. However, whether the indirect neighbors
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Topology A Topology B

Fig. 3.2 Indirect neighbors in protein-protein interaction network. a−b is direct interact-
ing neighbor, whereas a− e is indirect neighbor. Colored nodes correspond to proteins
that the SCL are known, whereas the SCL of gray nodes are unknown which is to be
inferred from the SCLs neighborhood. The node a are inferred from nodes c,d,e in both
graphs.

are helpful to the SCL prediction is rather debatable. The proteins which temporally interact
with the same protein are not necessarily localized in the same SCC at the same time. For
example, we observe that protein a interacts with protein b in ER whereas protein c interacts
with protein b in nucleus. The inference of the SCL of protein c from the SCL of the indirect
interacting partner protein a is incorrect.

In the neighbor counting-based approaches, the information from the indirect neighbors
is helpful when the neighborhood is poorly annotated. However, this issue has less impact on
the graph theory based algorithms which take global properties of the network into account
including the topology and annotation information. On the contrary, when the neighborhood
is well annotated, involving indirect neighbors would accumulate too many annotations, and
therefore reduce the sensitivity and increase the false positive of the prediction. Furthermore,
using indirect neighbors is insensitive to network topology within the local neighborhood
[113]. For instance, as shown in Figure 3.2, to infer the SCL of protein a from the neighbor-
hood with a distance of up to two, the two PPI graphs with different topologies are treated
identically (a: c,d,e).
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3.5 Markov random field for protein function prediction

The algorithms for protein function prediction originally inspire many of the previously
discussed approaches for protein SCL prediction. These methods can be distinguished as
two types. Direct annotation schemes, which infer the function of a protein based on its
connections in the network, and module-assisted schemes, which first identify modules of
related proteins and then annotate each module based on the known functions of its members.
When using the only PPIN data, the direct methods were slightly superior to module-assisted
ones, with MRF and Markov clustering (MCL) being the leading techniques for direct and
module-assisted function prediction, respectively [118].

Deng et al. [119] pioneer to use MRF for protein function prediction based on PPIN.
Later, the parameter estimation task of this method was improved by Kourmpetis et al. [61].
The MRF model provides a probabilistic framework for simulating the mutual influence of
random variables via a neighborhood system. Given a network of influence, the state of
any random variable is assumed to be independent of all other random variable states given
those of its immediate neighbors. In the function prediction setting, each random variable
corresponds to a protein, and its states correspond to certain functional annotations. The joint
distribution of the random variables can be shown to factorize over the cliques of the network.
Therefore, the probability of a certain assignment of discrete states X = (x1, . . . ,xN) can be
written as in below.

p(x) =
1
Z

exp(−H(x)) =
1
Z

exp

{
−∑

c∈C
Hc(xc)

}
(3.1)

where N is the total number of variables, Z is a normalizing constant, C is the set of all cliques
in the network, Hc is a potential function associated with clique c, and xc is the assignment
of states to the members of c. Inference in this general model is computationally intractable.
Hence it is common to assign 0 potentials to all cliques of size greater than 2, and further
homogenize the model by associating the same potential function with all cliques of the same
size. For such a homogeneous second-order MRF, we have the following equation.

H(x) = ∑
v∈V

H1(xv)+ ∑
(u,v)∈E

H2(x(u,v)) (3.2)

To obtain a second-order MRF model, they assumed that the probability of the binary
annotation [0,1] over the entire network is proportional to eαN01+βN11+N00 , where α,β are
parameters for weighting the contributions of the different terms and Ni j is the number of
interacting pairs with assignment i, j (unordered). Combining the a priori probability of an
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assignment with N1, which depends on the frequency f of the function and N1 is proportional
to ( f

1− f )
N1 . A homogeneous second-order MRF is therefore

H(x) =− log
f

1− f ∑
v∈V

xv−β ∑
(u,v)∈E

xuxv

−α ∑
(u,v)∈E

[xu(1− xv)+(1− xu)xv]

− ∑
(u,v)∈E

(1− xu)(1− xv)

(3.3)

Hence, the probability that protein v is assigned with the function given the annotations
of its neighbors N(v) is

P(xv = 1|xN(v)) = logit(log
f

1− f
+βN(v,1)

+α(N(v,1)−N(v,0))−N(v,0))
(3.4)

where N(v, i) is the number of neighbors of v that are assigned with i ∈ {0,1} and logit is
the logistic function logit(x) = 1/(1+ ex). [119] estimate the two parameters of the model
using a quasi-likelihood method [120] and apply Gibbs sampling (see Section 2.5) to infer
the unknown functional annotations. In the field of protein function prediction, the MRF
showed its superior owing to the use of a more sophisticated probabilistic model [118].

Rationale of using MRF for protein SCL prediction

MRF had success in solving various problems, such as image segmentation, image restoration
in computer vision [121], the identification of differentially expressed genes in systems
biology [60], and the protein function prediction which was discussed above. Over and above
than that, MRF is especially suitable for protein SCL prediction due to the following reasons:

• Interacting proteins share a common SCC or physically adjacent SCCs. Therefore,
the biological reasoning and the dependency of SCLs between interacting proteins are
more substantial than their functions.

• Potentially better precision due to the fewer annotation terms in comparison with
protein function categories.

• The protein SCL prediction is a much broader classification issue than the protein
function, which means that the network topology may provide sufficient evidence for
its inference using neighborhood-based approach.
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3.6 From mono-SCL prediction to multi-SCL prediction

In Section 2.1.4, we show the significance of MLPs. Efficient prediction of multi-localization
(ML) of proteins has always been a challenging task in protein SCL prediction which is a
multi-label classification (MLC) problem.

There are two main approaches to tackle the MLC problem: Data transformation and
algorithm adaptation. The former approach aims to produce from a MLD to another dataset
or group of datasets that can be processed with traditional classifiers, while the objective
of the latter is to adapt existent classification algorithms to work with MLDs. Among
the transformation methods, the most popular are those based on the binarization of the
MLD. It includes the binary relevance (BR) [122], also known as ’one vs. all’, the pairwise
comparison [123], and the label powerset (LP) transformation [124], which produces a
multi-class dataset from an MLD considering each label set as one class. In the algorithm
adaptation approach there are proposals of algorithms based on nearest neighbors such as
multi-label kNNs [125], multi-label neural networks [126], multi-label decision tree [127],
and multi-label support vector machines (SVMs) [128].

Recently, several multi-label classification methods have been employed for SCL pre-
diction in different species, such as methods using multi-label ensemble classifier [92],
multi-label kNNs [129] multi-label SVMs [130], with feature construction of protein se-
quences, such as n-gram, Chou’s PseAAC representation, and GO.

However, as the most of MLD, the datasets containing MLPs are typically heavily
imbalanced (see Section 2.7 ). The learning from an imbalanced multi-label classification is
a well-known challenge in data mining [64]. The imbalance issue occurred in protein SCL
problems have not been profoundly addressed.

Learning from imbalanced multi-labeled dataset

The learning from imbalanced data problem is founded on the different distributions of class
labels in the data, and it has been thoroughly studied in traditional classification. Generally,
the imbalance problem in MLD has been faced with two different approaches:

• Resampling algorithms. It consists of the label powerset based resampling algorithms,
the individual label evaluation resampling algorithm [64], and the inverse random
undersampling proposed by [131]. These algorithms rely on the rebalancing of class
distributions through either deleting instances of the most frequent class (undersam-
pling) or adding new instances of the least frequent one (oversampling). The advantage
of this approach is that it can be applied as a general method to solve the imbalance
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problem, independently of the classification algorithms used once the datasets have
been preprocessed.

• Algorithmic adaptations. Most of the published algorithms aim to deal with the
imbalance problem through the algorithmic adaptation of their MLC classifiers or the
use of ensembles of classifiers. Those approaches are classifier-dependent, instead
of general application methods able to work with other MLC learning algorithms.
Ensemble multi-label learning is a method based on the use of various algorithms to
build an ensemble of MLC classifiers. It exits two problems simultaneously, learning
from imbalanced data and capturing correlation information among labels. He et al.
[132] proposed an algorithm which is based on the use of Gaussian Process, a Bayesian
method used to build non-parametric probabilistic models. Utilizing a covariance
matrix the correlations among labels are obtained, and the imbalance is fixed to
associate a weight coefficient to each sample.

3.7 From generic SCL prediction to context-specific SCL
prediction

This section discusses another critical problem in protein SCL prediction which has so far
received little attention: how to annotate protein SCL in a context-specific manner? The
context means the research background of the study which could be disease, tissue, culture
environment, stage of cancer and so on. An increasing number of examples indicate that in
higher organisms, functional plasticity may be the rule rather than the exception [6, 133]. A
protein may localize in different SCCs, which acquires different functions under different
endogenous or exogenous conditions. Pinto et al. [134] showed that dynamic redistribution
of multitudinous proteins to different SCCs in response to cellular functional state is a crucial
characteristic of cellular function that seems to be at least as important as overall changes in
protein abundance [134].

However, current SCL databases, such as UniProtKB, all annotate protein SCLs without
specifying the necessary context. Notably, all of these previously discussed methods have
difficulty predicting the context-specific or dynamic behavior of protein SCL. The main
difficulty in predicting such dynamics is the lack of known protein SCL and functions under
the specific condition(s), which are required for generating a prediction model in the training
stage (ground truth dataset).

One possible solution is to find dynamic network modules in gene expression networks
constructed under specific conditions. In the field of protein function prediction, Wallach et al.
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[11] constructed a dynamic circadian PPI network predicting the PPI timing using circadian
expression data. They predict that circadian PPIs dynamically connect many critical cellular
processes (signal transduction, cell cycle, etc.) contributing to the temporal organization of
cellular physiology in an unprecedented manner. Lee et al. [117] proposed an integrative
computational framework for mapping stress-induced localization and mislocalization of
proteins on a proteome-wide scale. They mapped the locations of over 10,000 proteins in
the healthy human brain and glioma, out of which over 150 have a substantial likelihood
of mislocalization under glioma. Fifteen of these mislocalizations have been confirmed.
The most common type of mislocalization occurs between the endoplasmic reticulum and
the nucleus [117]. A surprising number of proteins translocate from the mitochondria to
the nucleus or from endoplasmic reticulum to Golgi apparatus under stress [12]. Later,
similar research was carried out by Liu and Hu [135]. They developed an approach for
discovering mislocalization related disease/cancer genes based on aberrant gene expression
data (co-expression data) and diffusion kernel-based logistic regression for SCL prediction.
Their approach has identified several cancer genes reported by genomic study, through which
cancer may be related to their mislocalization within the cell [135].

3.8 Significance of tissue specificity in human biology

Although all human cells carry out common processes that are essential for survival, in the
physical context of their tissue environment, they also exhibit unique functions that help
define their phenotype. The tissue-specific genes with elevated expression in a particular
tissue are interesting as a starting point to understand the biology and the function of this part
of the human body [8], whereas housekeeping genes are involved in basic cell maintenance
and, therefore, are expected to maintain constant expression levels globally [136].

Protein molecules constitute the primary building blocks of cells and mediate most
cellular processes. In human, they are encoded by over 22,000 different genes, which
give rise to many more proteins through alternative splicing mechanisms. These numerous
proteins do not work in isolation: instead, they interact with each other and with other types
of molecules to form complex cellular machines and to pass signals within cells and across
tissues.

While knowledge of context-specific PPIs is limited, we are witnessing a rapid accumu-
lation of context-specific molecular expression profiles. Many studies revert to identifying
PPIs that are feasible in these contexts with the assumption that a PPI is possible within
a specific context if the corresponding proteins are expressed in that context, especially
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the tissue-specific PPIs [10, 137]. The tissue-specific PPIs of human protein have been
intensively studied and well explored [9].

3.8.1 Tissue-specific SCL of proteins

The lack of context-specificity also exists in protein SCL annotation data that were measured
in different tissues and cell types. The human protein atlas (HPA) has reported that more than
50% of the analyzed proteins in their database were identified to localize to more than one
compartment at the same time. These MLPs may have context-specific functions increasing
the functionality of the proteome [28]. Furthermore, from some proteins, we do observe
the tissue specificity at the subcellular level. First of all, some particular SCCs exist only in
specific tissues. For instance, the sarcolemma is a unique SCC in muscle tissue. Moreover,
the spatial distribution of the SCLs of the protein in a cell could be different from one
tissue to another, which depends on the functions of the protein in the specific tissue. For
example, glutamine synthetase (GS) is mitochondrial in liver cells and cytoplasmic in brain
cells [15]. In the human tissue adrenal gland, pituitary gland and pancreas, the absence of
adracalin (ALADIN) in nuclear membrane causes human triple A syndrome [16]. Therefore,
understanding the specific SCLs of human protein in different tissues and organs of the
human body would significantly increase our knowledge of human biology.

3.8.2 Bring computational approaches to the study of tissue-specific
SCL of proteins

Despite the growing understanding of the tissue-specific proteome, to the best of our knowl-
edge, there is not yet a computational method for predicting tissue-specific SCL. The success
of the studies in protein mislocalization [135, 117] and the protein circadian-specific func-
tion prediction [11], which are based the disease-specific and circadian PPINs respectively,
indicate the potentials to use dynamic tissue-specific PPIN to solve the tissue-specific SCL
prediction problem.

Given the lack of tissue-specific PPIs that were measured in different tissues and cell
types, many studies revert to identifying PPIs that are possible in that tissue. Their underlying
assumption is that a PPI is feasible within a specific tissue if the corresponding proteins
are expressed in that tissue. Additionally, co-expression has often been based on RNA
levels, as protein expression levels were rarely available. This approach had been used
extensively for analyzing tissue interactomes [138, 10, 139]. A study shows that PPIN that
appear to be tissue-specific or global expressed have distinct topological features relative to
the generic human interactome or each other [9]. Bossi and Lehner [140] found extensive
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direct interactions between globally expressed proteins and tissue-specific proteins and
demonstrated the evolution of tissue-specific functions through the modification of core
cellular processes [140]. Regarding how to realize the prediction tissue-specific SCL of
human proteins based on dynamic tissue-specific PPINs, the experiments and evaluations
can be found in Chapter 5 of this dissertation.

3.9 Summary

This chapter rolled out a profound analysis of the related works of the analysis and prediction
of protein SCLs.

In the general protein SCL prediction using computational approach, the protein sequence,
the physicalPPI data two crucial data resource to protein SCL prediction. However, there is
room to improve the performance of the general protein SCL prediction. Taking the spatial
adjacency of SCCs into account, using a more sophisticated machine learning method on the
high imbalance MLD seems promising starting point.

The knowledge of the tissue-specific SCLs can enrich the human protein annotation, and
thus will increase our understanding of human biology. The blankness of computational
approach to performing tissue-specific SCL prediction should be filled. Exploration of the
tissue-specific PPINs is one of the potential solutions of the tissue-specific SCL prediction
problem.

Therefore, the two major goals of this work are to improve the protein SCLs prediction
and to develop methods for performing tissue-specific SCL prediction and analysis.



Chapter 4

Generic SCL prediction

Detailed molecular knowledge of the human proteome has become an important asset
in the understanding of human biology and disease. Rapid advances in biotechnology
have made available a variety of high-throughput experimentally obtained proteomics and
interactomics datasets [39, 141], and knowledge of SCL of proteins can provide important
insights for understanding their functions in cells and the mechanism of disease [5]. Owing
to the annotation efforts of model organism databases, high-quality subcellular localization
information for human proteins can be obtained from various curated sources. However,
manually annotating a protein, especially determining the subcellular localization using the
enormous data from heterogeneous source, is always a challenging and low-throughput task.
A variety of computational methods have been developed for predicting the SCL of proteins
for various organisms [83, 84] in the past decade. Nevertheless, there are relatively few
efficient specific prediction tools for human proteins in the face of rapidly increasing numbers
of newly identified proteins.

Protein features, especially the sequence-based features, are always the essential part
in various protein SCL predictors [142, 111, 92]. To carry out different functions, one
protein can be located in different SCCs simultaneously or at different times during different
biological processes, e.g. protein trafficking. Sequence-based prediction methods have been
successfully applied to genome-wide large-scale protein annotations and analysis. However
it is hard to apply these methods to detect the translocalization of proteins due to the fact that
the primary sequences of the translocated protein are always about the same. The biological
functions of proteins are carried out by interacting with other proteins. To interact, proteins
(or any other molecules) must necessarily share a common SCC, or an interface between
physically adjacent SCCs, transiently or conditionally. The SCL of a protein can therefore be
inferred from the SCL of its interacting partners. Hence biological network information can
complement feature-based approaches to SCL prediction.
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Several methods have been developed which take advantage of PPINs to predict the
SCL of proteins for different organisms using data integration from multiple data sources
[112, 21, 108]. However, these approaches mainly focus on the co-localization (in the same
SCL) of interacting proteins. The importance of the spatial adjacency among SCCs was
underestimated. It was not investigated whether a protein SCL (e.g. Plasma membrane)
can be also inferred by its interacting partners in the adjacent SCLs (e.g. Extracellular and
Cytoplasm). Secondly, for the proteins whose interacting partners are poorly annotated,
the information of the adjacent SCLs can be used as the major prediction resource. In this
chapter, whether the spatial adjacency among SCLs can improve PPI-based SCL prediction
performance was investigated.

Conventional machine-learning approaches, such as supervised learning, predict protein
SCLs by extracting information only from existing annotation. However, the number of unre-
viewed proteins increases at a remarkably faster rate than that of experimentally-annotated
ones. It was shown that transductive leaning approaches are able to take advantage of the
large number of available unknown data to improve the accuracy of classification [143, 144].
On the other hand, proteins are often annotated with multiple SCLs. The MLDs of pro-
tein SCLs are typically heavily imbalanced. The learning from an imbalanced multi-label
classification is a well-known challenge in classification [64].

A MRF is a graphical model of a joint probability distribution. Many problems in
computer vision such as image segmentation, image restoration and systems biology such as
identification of differentially expressed genes [60], protein function prediction [61] involve
the solution of a probability distribution defined by a discrete MRF. This chapter describes
the algorithm BCMRFs for predicting the multi-SCLs of human proteins considering features
of PPINs, the proteins features, the spatial adjacency of SCCs and the imbalance of the
dataset.

The rest of the chapter is organized as follows: Section 4.1 introduces the MRFs and
the corresponding learning procedure. Section 4.2 details the experiment protocol and
Section 4.3 shows the experimental results. The conclusion this task along with the discussion
of directions of future work is in the end of the chapter.

4.1 The Bayesian Collective MRF Model

The basic definitions and notations of MRF can be found in Section 2.6. The rationale of
using MRFs for protein SCL prediction and the BCMRFs for predicting the multi-SCLs of
human proteins are proposed in below.
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Fig. 4.1 Binarization of multi-label MRFs. The graph with multi-colored nodes on the
top represents the general PPIN. Each node on the graph represents a protein associated
with in total M SCL annotation terms. This network can be derived to M PPI networks
for each single SCL term. The nodes are colored or in grey which represent 1 and 0
respectively if the SCL annotation of the protein is available for any of the M SCL terms.
Otherwise, the node is not colored. The nodes (proteins) are in need to be assigned with
SCLs.

As previously discussed above and in Chapter 3, the SCLs of a protein can be inferred by
the SCLs of its physically interacting proteins. A physical PPIN G = (P, I) with N proteins,
N = |P|, that are assigned in M different SCLs in total fullfills the definition and properties
of a MRF. It’s reasonable to apply MRFs on PPIN to predict the SCLs of a set of proteins in
the network. Moreover, a PPIN in which each protein is labeled by single SCL or multi SCLs
can be considered as multi-label MRFs. Inspired by the statistical power of MRF models,
MRFs were applied on PPIN for solving protein SCL prediction problem.

Using the binary reference approach [122], for the SCL noted as lm,1≤ m≤M, the
network is encoded in an N-dimensional vector x = {x1, . . . ,xN}, where xi = 1 if the protein
pi,1 ≤ i ≤ |P| is assigned with lm, else xi = 0. The multi-label classification problem is
thus reduced to multiple binary classification problems (Figure 4.1). For each SCL, a
corresponding binary MRFs was built to predict SCL labeling of unknown proteins by
maximizing the posterior probability distribution of the SCL labeling of proteins. The
following elements are used in the MRFs model: 1. prior probability of any protein being
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located in lm, 2. the number of interacting neighbors being located in lm, 3. the number of
interacting neighbors being located in the adjacent SCLs of lm, and 4. the sequence-based
features of protein.

Meanwhile, the quality of PPI data and the connectivity of PPIN is crucial for inferring
the SCL of a protein by its interacting neighbors. However the confidence of PPIs varies
from one to another depending on the method, and the size of experiment etc. [49]. To
balance of having a high quality of PPIN and reduce the risk of losing valuable information
by removing too many edges, the confidence scores of the PPIs was employed to weighted
MRFs. The detailed method is described in the following sections.

4.1.1 The weighted markov random field model

By definition (see Section 2.6), the posterior distribution Pr(x) over the SCL labelings of the
MRF is a Gibbs distribution which can be written in the form:

Pr(x) =
1
Z

exp(−E(x)) (4.1)

where Z is a normalizing constant known as the partition function. E(x) is the energy function
of the MRFs which is defined as follows:

E(x) =− (∑
i∈ν

φ
S
i (xi)+∑

i∈ν

φ
F
i (xi,Fi)+ ∑

i, j∈ε

ωi, jφ
P
i j(xi,x j)

+ ∑
i, j∈ε

ωi, jφ
A
i j(xi,x j,Ai j))

(4.2)

with the unary potential

φ
S
i =

0 xi = 0

α xi = 1
(4.3)

where α is the probability of a protein located in lm. φ F
i (xi,Fi) is feature-based potential. Fi

is a vector that includes the features for protein i. Conditional probability of a protein pi

being located in lm given its features Pr(xi = 1|Fi).

φ
F
i (xi,Fi) =

0 xi = 0

ηPr(xi = 1|Fi) xi = 1
(4.4)

with

Pr(xi = 1|Fi) = Pr(xi = 1)
F

∏
f=1

Pr(F f
i |xi = 1) (4.5)
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It includes thirty features which are generated from previous widely used sequence-based
protein SCL predictor YLoc [111] into the BCMRFs models. These features include various
types from simple amino acid composition to annotation information. Certain features
are general such as protein size, number of small residues etc., while others specifically
describing one certain SCL only. η is an unknown parameter associate to the ensemble of
the 30 features Fi for protein i. The class priors and the feature probability distributions are
estimated using the entropy-based supervised discretization of the training data. The final
probabilities are obtained by normalizing the posterior such that the sum of all posterior is
one. η together with other unknown parameters are estimated during parameters learning
process.
φ P is the pairwise potential of two proteins locating in lm.

φ
P
i j(xi,x j) =


0 (i, j) /∈ ε

0 (i, j) ∈ ε & xi = x j = 0

β 11 (i, j) ∈ ε & xi = x j = 1

β 10 (i, j) ∈ ε & xi = 1− x j

(4.6)

where ωi, j is a constant parameter, the confidential score of the interaction between Pi and Pj.
φ A

i j(xi,x j,Ai j) is the potential which depends on if the protein pi interacts with the proteins
locating in the adjacent SCLs of lm,

φ
A
i j(xi,x j,Ai j) =

0 i, j /∈ ε

∑
H
h=1 µhAh

i j (i, j) ∈ ε & xi = 1
(4.7)

where H is the total number of adjacent SCLs of SCL lm. Given a set of H adjacent SCLs
of SCL lm, for each protein pi which has Nne of neighbors, an Nne×H binary matrix A was
constructed, where the element Ah

i j is equal to 1 if protein pi has an interacting neighbor p j

located in the adjacent SCL lh and 0 otherwise. µh is an unknown parameter for the adjacent
SCL lh. The parameters α,η ,β 11,β 10, and µ are estimated during optimization.

4.1.2 Gibbs sampler and likelihood estimation

Energy functions are the negative logarithm of the posterior probability distribution of the
SCL labeling. Maximizing the posterior probability equals to minimizing the energy function,
which is defined as x = argminx∈LE(x). In this study, the approximation method maximum
pseudo-likelihood estimation (MPLE) was used to solve the maximization problem. The
general idea of this approach is to learn model parameters by maximizing the pseudo-
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likelihood, which replaces the likelihood with a tractable product of conditional probabilities
[145, 61]. Since the SCL datasets are usually highly imbalanced, the posterior Prθ (xi|x−i)

will tend to be overwhelmed by the majority classes (in this case negative examples in
individual binary classifier). In order to deal with this problem, an imbalance coefficient is
used to re-balance the influence on the joint likelihood by enhancing the minority classes
[132]. Thus the re-balanced pseudo-likelihood function (PLF) can be written as

PLF(x) =
N

∏
i=1

(Pr(xi|x−i))
cm

i (4.8)

where ci is the imbalance coefficient

cm
i =

n−
n+ xi = 1

1 xi = 0
(4.9)

where n+ and n− denote the numbers of positive samples and negative samples for the SCL
lm, respectively.

Assuming that the parameter set θ is given, for a given protein conditional on the SCL
labels of all of the other proteins Prθ (xi|x−i)≈ Prθ (xi). Therefore, we can use MPLE with
Prθ (xi|x−i) to generate samples to update the SCL labels of protein pi as follows:

Prθ (xi = 1|x−i) =
Pθ (xi = 1,x−i)

Pθ (xi = 1,x−i)+Pθ (xi = 0,x−i)
(4.10)

with

Prθ (xi = 1,x−i) =
1

Z(θ) exp(−E(xi = 1,x−i))

and Prθ (xi = 0,x−i) =
1

Z(θ) exp(−E(xi = 0,x−i))

Prθ (xi = 1|x−i) =
1

1+ exp(E(xi = 1,x−i)−E(xi = 0,x−i)
) (4.11)

Given θ , the conditional probability of xi has the SCL given its neighbors

Prθ (xi = 1|x−i) =
1

1+ evi
(4.12)

where

vi = α +(β 11−β
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i +β
10K0

i +
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(4.13)



4.1 The Bayesian Collective MRF Model 47

Algorithm 2: Gibbs sampling
Data: PPIN partially annotated with SCL; Temperature: T ; Cooling rate: R.

Maximum iteration: I. Cooling iteration: Ic.
Result: Fully annotated PPIN with predicted SCL which associated with probability

values.
1 Initialize the parameter set θc using linear logistic regression based on known proteins.
2 Initialize the xi value of unlabeled proteins.
3 Calculate PLF(x,θc)
4 Sample θp← θc
5 while Ic <= I do
6 Ic = Ic +1
7 Sample θp← θc, Equation (4.16);
8 Calculate PLF(x,θp), Equation (4.8);
9 Calculate acceptance Probability r = P(PLFc,PLFp,T ), Equation (4.17);

10 if r > runi f then
11 θc = θp;
12 Update the value of xi based on Equation (4.12);
13 end
14 T = T · (1−R)
15 end

K1
i is the weighted number of neighbors of protein pi which are assigned to the SCL,

and K0
i is the weighted number for neighbors of pi which are not. Likewise, Kh

i ,h∈H is the
number of neighbors of pi which are assigned to the adjacent SCL lh factorized by Sh and
ωi j. x−i is the set of proteins without the i-th protein. PF

i is the probabilities that protein pi

locates in the SCL lm depends on this feature. PA
i is the probability that protein pi locates in

the SCL lm depends on if the protein interact or not with proteins in its adjacent SCLs.
And

Prθ (xi = 0|x−i) = 1−Prθ (xi = 1|x−i) (4.14)

Repeating this procedure many times generates samples for the SCL of all of the unanno-
tated proteins. Considering the computational complexity, simulated annealing searching
algorithm was applied to find the local optimal solution, see Algorithm 2.

The PLF is the product of the conditional probabilities across all proteins using Equa-
tion (4.12) and Equation (4.14).

PLFθ (x) =
N

∏
i=1

Prθ (xi|x−i) (4.15)
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4.1.3 Parameter learning

The estimation of the parameters is realized by maximizing the PLF in Equation (4.8).

Parameter initialization

Prθ (xi = 1|x−i) is a logistic function on a linear function (see Equation (4.12) and Equa-
tion (4.13)). With the sub-network of all of the annotated proteins, the parameter set θ can
be initiated using linear logistic regression based on the SCLs of these annotated proteins.

Parameter update

Instead of sampling each parameter of θ separately, for each iteration a parameter set θp was
estimated using MCMC DEMC algorithm [146, 61].

θp = θc + γ(Z1−Z2)+ e (4.16)

where θc denotes the current state of the parameter vector, γ follows the uniform distribution
U(γ∗/2,γ∗) is the scaling parameter and γ∗ = 2.38√

2d
is the optimal step size, where d is the

parameter dimension. Z1, Z2 are uniformly selected from past samples of the Markov Chain
as stored in a matrix Z and e ∼ Multivariate Normal Distribution MV N(0,10−4). θp is
accepted using a metropolis step with simulated annealing:

r = exp
PLF(xt |θp)−PLF(xt |θc)

T
> runi f (4.17)

where runi f ∼ uni f (0,1), T is the temperature initialized with 150 and the cooling rate is
0.008 per iteration.

4.1.4 Collective MRFs

In the MRFs, each variable xi in vector x = {x1, . . . ,xN}, represents whether a protein being
located to lm or not. For protein pi, it is possible that its neighbors located in adjacent SCLs
are also unknown. To respect the property of MRF, the labels of unknown proteins were
initialized by the labeling results from the MRFs model without considering the adjacent
SCLs. The results from the previous MRFs MRF − lt

m are collected and used in the next
MRFs, such as MRF− lt

m+1, . . . , MRF− lt
M. This process is repeated iteratively until the

convergence of the pseudo-likelihood Equation (4.8). These MRFs are therefore named as
BCMRFs (see Figure 4.2 and Line 13). BCMRFs approach is similar to the α-expansion
algorithm [147], which is a popular for solving the multi-label MRFs in imaging processing.
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Algorithm 3: Collective MRFs
Input: M partial labeled network for the M SCL terms
Output: M fully assigned network for the M SCL terms

1 for each SCL terms do
2 Initialize the xi values of unknown proteins using MRF model without adjacent

SCLs potential φ A (Equation (4.7)).
3 end
4 while PLF(x) not converge do
5 for each SCL terms do
6 Optimize the PLF t(x).
7 Calculate acceptance probability r comparing with the PLF t−1(x).
8 if r > r∗uni f then
9 Update the labeling of x according to PLF t(x).

10 end
11 end
12 end
13 ∗: runi f is a random variable follows uniform distribution.

4.1.5 Computational complexity

Given the number of SCL m, number of the protein in the PPIN n, the estimation of the
running time of BCMRFs f (n) can be written as follows:

f (n) = m · I1 ·g(n) (4.18)

with maximum iteration limit I1 in which the optimization can converge, and the running
time of Algorithm 2 g(n):

g(n) =

(c1 + c2 · I2) ·n+(c3 + I2) ·n2 best case

(c1 + c2 · I2) ·n+(m+(m+ c3) · I2) ·n2 worst case
(4.19)

with the costs c1, c2, c3 and maximum iteration limit I2. The best case is that the number
of proteins which SCL are unknown nunknownis as small as 1, number of proteins which
SCL are known is as close to the total number of proteins n. The number of adjacent
SCCs nad j and number of features n f eat are zero, whereas the worst case is nunknown ≈ n,
nknown = 1, nad j = m, and n f eat = m. Since c1, c2, c3, I1, I2 and m are constants, the estimated
computational complexity is therefore O(n2).
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Fig. 4.2 Overview of the collective MRFs. Each colored eclipse represents a MRF for
one SCL term. The different shades of color represent the joint likelihood value. The
deeper the color, the higher the likelihood calculated from this MRF. The dotted line
between eclipses represents the spatial relationship of SCLs.

4.1.6 Implementation

The BCMRFs algorithm is implemented in R language. The source code can be found at
https://github.com/zhu0619/BCMRFs. The program is mainly divided into two parts.
1. Preprocessing part contains scripts which either generate the protein SCL dataset, acid
amino sequences, and the PPI dataset from a list of proteins or import customized datasets and
process the datasets to match the format of BCMRFs program. 2. Main programs process the
BCMRFs analysis on the given partially annotated PPIN and return the predicted SCL results
of the protein which were unknown. The results are associated with posteriori probabilities.
An overview of the implementation and program parameters is given in Figure 4.3.

4.2 Experimental setup

4.2.1 Dataset

A recently published high-quality human protein SCL benchmark set from the subcellular
localization database Compartments [148] was used to evaluate the performance of BCMRFs
method. In total nine SCLs including Cytosol, Endoplasmic Reticulum, Lysosome, Extracel-
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lular space, Golgi apparatus, Mitochondrion, Nucleus, Peroxisome and Plasma membrane
are used for evaluation. The dataset was created from UniProtKB and HPA.

The corresponding protein sequences for generating the features from YLoc were re-
trieved from UniProtKB (version 2016.08). The PPI data were retrieved from the interactom
browser - Mentha [49] (version 2016.09). It limits itself to direct physical PPIs curated by
members of the International Molecular Exchange consortium (IMEx) [45]. Each PPI is
associated with a reliability score which takes the evidences such as experimental method,
size of experiments and relevant literature into account [49]. In Figure 4.5, there is a dramatic
reduction of PPIN size with a cutoff of reliability score 0.25. It indicates that most of the low
quality PPIs in the network can be removed by using this cutoff value. The remaining PPIs
are weighted by the reliability scores for the MFRs. In the filtered connected PPIN, 5496
proteins are SCL-known while 1299 protein have no SCL annotation available. Figure 4.4
further shows the distribution of the SCLs of our human proteins data set. As can be seen, of
the 5496 proteins, 4367 are single-SCL located proteins, 1129 have from two to seven SCL
annotations. As shown in the pie chart, the almost 50% of of single-SCL proteins locate in
the nucleus which is consistent with the distribution of the overall proteins. For the proteins
locate in two or more SCLs, nucleus shows less and less portion in the distribution. Therefore,
the single-SCL protein plays more significant roles in shaping the overall distribution of the
data set. Nevertheless, the multi-SCLs proteins which takes big percentage of the population
can not be ignored.

4.2.2 Evaluation

To evaluate the prediction performance of the proposed method, a six fold cross validation
was performed. For 1000 out of 5496 proteins, their SCL labels were masked, and treated
as unknown protein. Hence, 2299 proteins in the network are unlabeled. And the predicted
label of these masked protein are used for performance evaluation. The dataset stratification
was done by using R package "utiml" [149].

The traditional performance measures are difficult to apply for multiple SCL prediction.
To better reflect the multi-label capabilities of classifiers, the popular multi-label measures
were used including Precision (PRC), Recall (RCL), F-measure (F1 score), Average Precision
(AP) and Hamming Loss (HL) [149]. Except HL, for all the rest of performance measures,
the higher the measures, the better the prediction performance. To keep the consistency, the
1-HL was shown instead of HL for the evaluation.
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(4.23)
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4.2.3 Comparison partners

In the experiments, in order to investigate the effects of different potentials described in
section Section 4.1, four versions of MRFs which include different combinations of potentials,
such as MRFs with PPI only (M1) ,with PPI and SCL spatial adjacency (M2), with PPI and
protein features (M3), and the MRFs with all three defined as Equation (4.2) (M4) were built
and compared.

Moreover, the MRFs were also compared with state-of-art SCL prediction methods,
including:

• DC-kNN proposed by [108] provides the best SCLs predicting result for human
proteins based on PPIs. In their study, they reported the SCLs for 4366 human proteins
with no SCL previously known at the time in 2008 predicted by their method. From
then to 2016, 1704 of these proteins has been reported in various SCLs. The SCL
annotations were collected following the same criteria as their benchmark [108].

• Hum-mPLoc 3.0 is a most recent protein feature-based SCL predictor for human
proteins [97]. The predicted SCLs of 5390 human proteins from their database are
used for the comparison.
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4.3 Results

4.3.1 Likelihood and prediction performance

In the proposed method, the protein SCLs were predicted by minimizing the energy function.
In other words, the higher the calculated conditional probability of a protein given its
interacting neighbors for a certain SCL lm, 1≤ m≤M, the more confident that this protein
locates in lm, which infers that the overall prediction performance achieves for lm should be
positively correlated with the data likelihood. Figure 4.6 shows that the lower the energy
(the negative logarithm of the likelihood) is, the higher the F1 score is which confirms the
concept.

4.3.2 Effects of different potentials

To investigate the effect of the potential described for the prediction, the performances
including of the four versions of MRFs M1, M2, M3, M4 were compared.

Single-SCL prediction

At first, the performance of the four models for each SCL class were compare individually.
M2 VS M1 : Figure 4.9a shows that the spatial SCL adjacency relation of interacting
proteins can improve the prediction for the majority of the SCL classes, except Lysosome
and Peroxisome, which even the decrease in prediction performance. Firstly, these two
SCL classes are highly imbalanced with few positive labels (see Figure 4.8 ). Moreover,
the prediction on the SCL Cytosol is quite poor. Therefore, the MRFs of Lysosome and
Peroxisome can not gain the correct information from their only spatial adjacent SCL Cytosol
to increase their prediction performance. In order to put the spatial adjacency to good use, it
is necessary to firstly improve the overall performance. Therefore, it is necessary to integrate
the potential based on protein features into MRF model (M3). With regard of Cytosol, it is
an intracellular fluid which comprises most of the cellular organelles, and involved in many
biological processes. The low performance could be due to its complexity. The features can
not improve the prediction performance. Finally, adding the SCL adjacency potential above
on M3, the prediction performances were improved on most of the SCL classes.

Multi-SCLs prediction

As can be seen from Figure 4.9b, M2 outperforms M1 which means additional spatial
adjacency can improve the performance comparing with the simple SCL inference based on
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PPI only. However, the improvement is limited due to that M2 cannot efficiently gain correct
knowledge from the adjacent SCLs which are poorly predicted. As expected, M3 significantly
improve of prediction performance by adding the features of proteins on the model of M1.
M4 can achieve the best performance of all. Comparing with M3 in particular, together with
the observations of single-SCL predictions, it can be concluded that the improvement is
owing to that the model can efficiently gain the correct knowledge from the adjacent SCLs.
However, in order to show a larger improvement of performance of the multi-SCLs prediction
by adding the spatial adjacency on the proteins features in the model (M4 against M3), an
additioanl tuning of parameters would be necessary.

4.3.3 A collective process improves the performance

To demonstrate how the collective MRFs can help to improve the performance of the SCL
prediction, the changes of performances of M4 during the 21 iterations is shown in Figure 4.7.
Overall, the F1 scores gradually increase from initialization (iteration 1), single MRFs
(iteration 2) and collective MRFs (from the 3rd iteration). The performances stay stable as
the pseudo likelihood value of BCMRFs converge.

4.3.4 Transductive learning from imbalanced MLDs

The human protein dataset is highly imbalanced since some of the labels are very frequent
whereas most others are rarely used. The imbalance level of a MLD can be effectively
measured by the imbalance ratio (IRLbl) [64]. Figure 4.8 shows that the SCLs such as
Lysosome and Peroxisome are highly imbalanced compared to the other SCLs, with IRLbl
of 22.4 and 44.18 respectively.

Facing the imbalance problem, the popular solution is data resampling including under-
sampling and over-sampling [64]. However, in the case of SCL prediction, the re-sampling
techniques cannot be applied due to the proposed method being highly sensitive to the
topology of PPIN. The inference of SCL in this approach depends on the number of physical
interactions. Under-sampling and over-sampling are based on the deletion of true interactions
or repetition of existing interactions which can largely change the topology of the network and
thus mislead the MRFs. Therefore, in this study the imbalanced MLD problem was handled
by introducing imbalance coefficient (see Equation (4.9)). The prediction performances
of the BCMRFs with and without the imbalance coefficient was compared. The results in
Table 4.1 shows that the MRFs with the imbalance coefficient can improve the performance.

Furthermore, a comparison of the prediction results of the BCMRFs built on the complete
PPIN including the unknown proteins against the BCMRFs built only on the sub-network
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Table 4.1 F1 scores with/without imbalance correction.

Model M1 M2 M3 M4

With imbalance coefficient 0.637 0.641 0.71 0.732
Without imbalance coefficient 0.616 0.632 0.701 0.722

Table 4.2 F1 scores for transductive VS conventional.

Model M1 M2 M3 M4

Transductive learning 0.648 0.652 0.743 0.759
Conventional learning 0.602 0.647 0.684 0.692

of the annotated proteins was performed. Table 4.2 shows that the MRFs of transductive
learning outperforms the MRFs of the conventional learning.

4.3.5 Comparison with existing methods

To further demonstrate the performance of the method, the BCMRFs was compared with the
only available PPI-based approach for predicting human protein SCLs, DC-kNN [108] and
the protein feature-based method Hum-mPLoc 3.0 [97]. DC-kNN is a physical PPI-based
prediction method using a k-nearest neighbors classification with binary reference approach.
Due to the unavailability of the program and of its prediction results, the dataset which were
used to compare BCMRFs methods only contains 1704 human proteins (see Section 4.2.3).
For these 1704 human proteins, an evaluation of the prediction results of DC-kNN and
the results of BCMRFs method was carried out. Table 4.3 shows that BCMRFs method
significantly outperforms DC-kNN overall.

Hum-mPLoc 3.0 [97] is the state-of-the-art feature-based SCL predictor specifically for
human proteins. It predicts SCLs based on the amino acid sequence of proteins through
modeling the hidden correlations of gene ontology and functional domain features. The
comparison of multi-SCL prediction results from Table 4.4 demonstrate that BCMRFs
method achieves better performance.

4.4 Summary

Protein SCL prediction is an imbalanced multi-label classification problem. This chapter
described a bayesian collective MRFs algorithm to predict multi-SCLs of human proteins.
This is done by building the weighted MRFs based on the PPIN and then performing SCL
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Table 4.3 Comparison with the method of DC-kNN - Multi-SCL prediction.

Method Precision Recall F1 score Average precision Hamming loss

DC-kNN 0.502 0.472 0.474 0.672 0.119
BCMRFs 0.674 0.621 0.633 0.899 0.073

Table 4.4 Comparison with the method of Hum-mPLoc 3.0 - Multi-SCL prediction.

Method Precision Recall F1 score Average precision Hamming loss

Hum-mPLoc 3.0 0.68 0.688 0.660 0.735 0.090
BCMRFs 0.702 0.67 0.673 0.862 0.078

label propagation to predict the SCLs of unknown proteins. The comprehensive experiments
were performed to evaluate the performance on human protein SCL datasets. The transductive
learning from the re-balanced MLD proved to be more efficient to correctly assign SCLs.
Owing to the collective MRFs which connect the binary MRFs by their spatial adjacency
among SCLs, BCMRFs can achieve a higher performance for predicting the multi-SCLs
comparing with the state-of-the-art methods of DC-kNN and Hum-mPLoc 3.0.

Interestingly, neither the present approach nor the previous state-of-the-art method for
SCL prediction perform as effectively for human as for other organisms (such as bacteria:
precision > 0.95 and recall > 0.93 for single-SCL prediction) [150]. One explanation could
be that the cell structures of the bacteria (5 and 6 SCC in total) are much simpler than
mammalian cells. The the activities of human cells, such as the interactions among proteins
and with other molecules, the translocalization of proteins, the functions of proteins, and the
biological environment of the cell are also more complicated. Therefore, there may still be
room for improvement of the SCL prediction of human proteins.

All PPI data used in this task are static data reported from different studies and techniques
with a huge diversity. During different biological processes, one protein can play different
roles and functions, for instance by interacting with different target proteins. However,
the available PPI datasets do not differentiate them according to the biological contexts.
Since a single protein cannot physically interact with tens or hundreds of partners at the
same time, this presents a future challenge: How to determine which interactions occur
simultaneously and which are mutually exclusive? And how to explore this knowledge to
make tissue-specific SCL predictions? The answers are presented in the next chapter, see
Chapter 5.
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Optimization

Input List of proteins

Output

Customized PPI network, SCL 
annotations, protein sequences, 
and posteriori probability 
threshold

Preprocess
PPI network

Mentha

SCL annotations

UniprotKB

Protein FASTA

UniprotKB

Protein sequence features
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BCMRFs 

R implementation

Collective solution

Simulated annealing

Posteriori probability threshold, 
by default 0.5

Output
Fully annotated PPI network with predicted results. 
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• GML file format

Fig. 4.3 The overview of implementation of BCMRFs method. The proposed method
is implemented in R and divided into the preprocessing and the optimization part. The
R scripts for the preprocessing compute Furthermore, the user can also customize the
PPIN, the SCL annotation, the protein sequences according to their research of interest.
All the dataset are then preprocessed to match further computing. User can also improve
precision or recall by setting the cutoff value for the posteriori probability value. As
output a Geography Markup Language (GML) formated file is provided for further
visualization and modeling.
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Fig. 4.4 Summarization of descriptive data from the human protein dataset. A. SCL
annotation of proteins; B. Overall distribution of protein in SCL classes; C. Distribution
of single-SCL protein; D. Distribution of multi-SCLs proteins.

Fig. 4.5 Protein-protein interactions of test dataset controlled by the confidential scores.
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Fig. 4.6 Relationship between the likelihood and prediction performance.

Fig. 4.7 Performances of BCMRFs during iterations.
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Fig. 4.8 Imbalance level of each SCL class.
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Chapter 5

Tissue-specific SCL prediction

Proteins interact with each other or with other types of molecules to carry out the specific
functions and the dynamic activities, such as form cellular machines and to pass signals
within cells and across tissues. To interact, proteins (or any other molecules) must necessarily
share a common SCC, or an interface between physically adjacent SCCs, transiently or
conditionally. Hence, the SCL of a protein can therefore be inferred from the SCL of its
interacting partners. Previous chapter described the algorithm BCMRFs which uses physcial
PPINs for protein SCL prediction.

However, the character of the generic PPI data shows that one protein can be observed
having tens to hundreds interacting partners which apparently exceeds the physical limits of
a protein’s contact surface. The reason is that these data are collected and accumulated from
different studies and a diverse ranges of biological contexts.

Thus, some of the generic PPIs can be considered as ’false positive’ interactions for one
biological context to another. For instance, an interaction which can only occur in brain
tissue would not appear in skin tissue. Hence, an SCL of a protein in brain tissue should not
be inferred from the SCL can be only observed in skin tissue of that protein using the skin
tissue specific PPI .

While knowledge of context-specific PPIs is limited, there is a rapid accumulation of
context-specific molecular expression profiles. Many studies revert to identifying PPIs that
are feasible in these contexts with the assumption that a PPI is possible within a specific
context if the corresponding proteins are expressed in that context, such as disease-specific
PPIs [151] and tissue-specific PPIs [10, 137]. The tissue-specific PPIs of human protein have
been intensively studied and well explored [9]. Among all of the research on context-specific
PPI, the data of tissue-specific PPI have been well studied last decade.

Similar to PPI data, the lack of context-specificity also exists in protein SCL data that
were measured in different tissues and cell lines. The HPA has reported that more than
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50% of the analyzed proteins in their database were identified to localize to more than one
compartment at the same time. These MLP may have context-specific functions increasing
the functionality of the proteome. Among these MLPs, 3546 proteins showed cell line
dependent properties [28]. These cell lines were derived from corresponding tissue types and
often used as model systems in human biology and diseases.

Furthermore, some proteins indeed show their tissue specificity at the subcellular level.
First of all, some particular SCCs exist only in specific tissues. For instance, the sarcolemma
is a unique subcellular compartment in muscle tissue. Moreover, the spatial distribution of
the SCLs of the protein in a cell could be different from one tissue to another, which depends
on the functions of the protein in the specific tissue. For example, glutamine synthetase
(GS) is mitochondrial in liver cells and cytoplasmic in brain cells [15]. In the human tissue
adrenal gland, pituitary gland and pancreas, the absence of adracalin (ALADIN) in nuclear
membrane causes human triple A syndrome [16]. Therefore, understanding the specific SCLs
of human proteins in different tissues and organs of the human body would significantly
increase our knowledge of human biology and disease.

Despite the growing understanding of the tissue-specific proteome, to the best of our
knowledge, there is not yet a computational method for predicting tissue-specific SCLs. For
this purpose, a new approach using a probabilistic graphical model integrating tissue-specific
functional associations and physical PPINs to predict tissue-specific SCL are described in
this chapter.

To reveal a landscape of dynamic changes in SCLs across tissues, the previously in-
troduced BCMRFs model can be applied to predict tissue-specific SCLs by integrating
tissue-specific physical PPIN. The rest of this chapter is organized as follows: In Section 5.1
we remind our BCMRFs model, the corresponding learning procedure, the experimental
protocol and data sources. Section 5.2 shows the statistics and the analyses on both tissue-
specific physical PPI and tissue-specific SCLs of human proteins, and the experimental
results. At last, we summarized our work and the discussion of directions for future work.

5.1 Methods

At first, the general ideas of the method for tissue-specific SCL prediction are introduced,
and followed with the detailed description of the MRFs model and the data sources which
were used in this study.
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5.1.1 BCMRFs for predicting tissue-specific SCLs

As illustrated in Figure 5.1, to perform tissue-specific SCL prediction, our first step is
to construct a tissue-specific PPIN. Both the generic physical PPINs and tissue-specific
functional associations were integrated (Figure 5.1 A). Although the tissue specificity is
demonstrated by the functional association of pairwise proteins, only the physical PPIs
provide the direct evidence of SCL dependency. Thus, the generic physical PPINs were
filtered using the tissue-specific functional associations to construct tissue-specific PPINs
for each tissue (Figure 5.1 B). Afterwards, each TP-PPI network is annotated by the generic
protein SCL annotations (Figure 5.1 C). Due to the tissue-specific expressed proteins are
different from one tissue to the other, the topology of the tissue-specific PPINs are also
different. For each tissue-specific PPIN, a corresponding multi-label MRFs was built to
predict tissue-specific multiple SCLs of unknown proteins by inferring from the interacting
proteins of which the SCL are already known. The tissue-specificity of protein SCLs depends
on the topology and the edge weights of the tissue-specific PPINs.

In a protein SCL dataset, a protein is generally associated with a set of SCL labels which
makes the protein SCL prediction a multi-label classification problem. Previously, Chapter 4
introduced BCMRFs to predict the multiple SCLs of proteins based on a physical PPIN. The
general idea is to solve the multi-label MRF by reducing it to multiple binary MRFs using
the binary reference approach. The final optimal solution for the mutli-label MRFs can be
obtained by merging the solutions from binary MRFs.

The only modification compared to the MRF model for generic SCL prediction is the
edge weight parameter. In addition to the reliability score of the physical interaction, the
tissue-specific functional associations was integrated that each pair of PPI is associated with
the probability of the tissue-specificity. The final edge weight is the product of tissue-specific
probability and the physical interaction reliability score. In the following, the definition of
MRF model is reminded.

The posterior distribution Pr(x) over the SCL labelings of the muti-label MRF is a Gibbs
distribution which is defined as below:

Pr(x) =
1
Z

exp(−E(x)) (5.1)

where Z is a normalizing constant known as the partition function. E(x) is the energy function
of the MRFs. A series of changes are made to the current solution to decrease its energy. A
set of label changes is called a move. In one iteration of the algorithm, it makes moves with
respect to each SCL label ’m’ (∈L ). It finds the optimal changes to be made by minimizing
a binary energy function. The binary energy function corresponding to a particular ’m’ move
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will be denoted by Em(xm). It is defined
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(5.2)

where ωi, j is a constant parameter. It is the product of the confidential score of the physical
PPI and the probability of tissue-specificity of the functional associations between Pi and Pj.

Moreover, the estimated computational complexity is also O(n2), with running time
e(n) = t · f (n) while t is number for tissues, f (n) see Section 4.1.5. The detailed method and
formulas are described in Chapter 4 Section 4.1.

5.1.2 Implementation

The implementation tissue-specific BCMRFs method was based on the implementation of
BCMRFs which were described in previous chapter. Additional R scripts were implemented
to retrieve tissue-specific functional associations via API and generate tissue-specific physical
PPIN. An overview of the modified implementation is given in Figure 5.2. The source code
and an example can be found at https://github.com/zhu0619/BCMRFs.

5.1.3 Data resources

SCL of human protein datasets

Generic SCL dataset In this study, the generic SCL annotations of human proteins are
retrieved from the SCL database COMPARTMENTS [148] which includes the data from
UniProtKB [152] and HPA [141] with the updates from their recent publication Thul et al.
[28].

tissue-specific SCL dataset So far, there is not yet a tissue-specific SCL dataset in public
databases. Therefore, the collection of ground truth data and the corresponding evaluation are
a challenge of this study. However, HPA provides the cell line information in which the SCLs
of protein were detected in the cellular atlas [28]. As mentioned, cell lines were derived
from corresponding tissue types. These cell line specific SCL data are expected to reflect
some aspects of tissue-specific characters. The SCL data of human proteins were detected in
different cell lines, and were validated by antibodies and IF microscopic images. It covers
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Fig. 5.2 The method is implemented in R and divided into the preprocessing and the
optimization part. The R scripts for the preprocessing compute Furthermore, the user can
also customize the PPIN, the SCL annotation, the protein sequences according to their
research of interest. All the dataset are then preprocessed to match further computing.
User can also improve precision or recall by setting the cutoff value for the posteriori
probability value. The program is parallelized if multiple tissues are selected. As output
GML formated files are provided for further visualization and modeling.
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Table 5.1 Mapping table from cell lines to tissues.

CellLine Tissue

SH-SY5Y Brain
U-251 MG Brain
AF22 Brain
A-431 Skin
HaCaT Skin
SK-MEL-30 Skin
U-2 OS Bone
RT4 Bladder
HeLa Cervix
SiHa Cervix
CACO-2 Colon
A549 Lung
HEK 293 Kidney
Hep G2 Liver

9841 human proteins in thirty SCLs for eighteen cell lines. All the SCLs of human proteins
are assigned with a fluorescent intensity of ’Strong’, ’Moderate’ and ’Weak’. To increase the
quality of the dataset, the ’Weak’ intensity data were not considered. The cell lines and the
detected SCLs data in these cell lines are mapped and grouped into corresponding tissues,
see Table 5.1.

Protein-protein interaction network datasets

Physical protein-protein interaction network of human protein The generic physical
PPI data were collected following the same criteria as described in Chapter 4. The data
were retrieved from the interactome browser Mentha (version 2017.06) which limits itself to
direct physical PPIs curated by members of IMEx. Each PPI is associated with a reliability
score which is calculated based on the evidence such as experimental method, the size of
experiments and relevant literature [49]. The PPIs which have a reliability score less than
0.25 were removed.

Tissue-specific functional associations Previously, Greene et al. [10] have studied human
tissue-specific networks for understanding the multicellular function and disease of the human
protein. They generated the genome-wide functional interaction networks for 144 human
tissues and cell lines using a data-driven Bayesian methodology that integrates thousands
of experiments spanning various tissue and disease states using both gene expression data
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and ontology annotations. These networks were constructed using functional networks from
genome-scale data by performing a tissue-specific Bayesian integration based on gene expres-
sion data of various types of human tissues and cell lines [10]. They estimated the probability
of tissue-specific functional interaction between all pairs of genes. Only the top scored interac-
tions were used in our study. The tissue-specific functional associations were downloaded via
their HumanBase web services RESTful API http://hb.flatironinstitute.org/api/.

5.1.4 Performance measures

In the human protein SCL dataset, a protein might be associated with a set of SCL labels.
Such a multi-label dataset is often imbalanced, meaning that some of the labels are very
frequent whereas others are quite rare. The level of imbalance of a determinate label can
be measured by the imbalance ratio, IRLbl Equation (2.4). The imbalance level of our
multi-label dataset of human proteins is represented by Mean Imbalance Rate (MeanIR)
among all labels, see Equation (2.5).

To evaluate the prediction performance of our method, the SCL labels of one-third of
the proteins from the protein pool, which have SCLs annotation, were masked and treated
as unknown proteins. We keep the labelings of the remaining proteins for training which
are typically called ’seed’. The predicted labels of these masked proteins are later used for
performance evaluation.

The traditional performance measures are difficult to apply for multiple SCL prediction.
To better reflect the multi-label capabilities of classifiers, multi-label classification requires
more sophisticated performance metrics than single-label classification. Popular multi-
label measures include Accuracy, Precision, Recall, and F1-score and Hamming loss, see
Section 4.2.2. Except for Hamming Loss, for all the remaining performance measures, the
higher the measures, the better the prediction performance.

5.2 Results

5.2.1 Statistics of the tissue-specific physical PPINs

At first, the analysis of the characters of tissue-specific physical PPINs were conducted.
Figure 5.3a demonstrates that both the size of the tissue-specific PPINs and the average
degree of networks dramatically decrease to less than the half of these values of the generic
physical PPI networks. It confirms that a big amount of PPIs are mutually exclusive across
the listed tissues.
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Each physical PPI is associated with a reliability score which takes the evidences such
as experimental method, size of experiments and relevant literature into account [49]. Fig-
ure 5.3b shows the average of the reliability score of the networks. The reliability scores of
all the tissue-specific PPINs are higher than these of the generic PPI network. That means the
filtering process can remove spurious PPIs and improve the quality of the networks which is
very important to have better SCL prediction.

Moreover, by computing the overlap of PPIs occurring in each tissue-specific PPIN,
the similarity of different tissue-specific PPINs can be investigated (Figure 5.3c). Some
tissue-specific PPINs have very high similarity, such as Liver, Kidney and Lung tissue. It
indicates that tissues with similar functions tend to contain more common interactions. By
contrast, the Bladder and Cervix tissue show the least similarities with all the other tissues,
which indicates that they have high tissue specificity. Figure 5.3d shows that, in general,
there is a relatively high percentage of common interactions across different tissues (above
67% overall), indicating different tissues share similar interactions or working mechanism
despite their different functions. These interactions might occur among the proteins encoded
by the housekeeping genes which maintenance of basic cellular function for cellular survival.

5.2.2 Statistics of the tissue-specific SCLs

When take a closer look at each SCL class of each tissue, the imbalance level of SCL differs
from one tissue to another . Bladder, Cervix, and Kidney are more imbalanced in protein
SCLs than the rest of listed tissues (Table 5.2). Table 5.3 shows the details of the distribution
of proteins SCLs in nine tissues. The majority of proteins are localizing in the Nucleus for
all the tissues. Proteins which access to the Nucleus are often highly regulated and controls
critical steps in development, stress response, and general cell signaling [153]. The next
large number of proteins was identified in the Cytosol, Vesicle and Plasma membrane which
are the key participants of the secretory pathway in the cell.

The comparison of the tissue-specific SCL of each protein with the generic SCL data
for the listed tissues shows that the ER-proteome and Plasma membraneproteome vary
dramatically among the tissues. Next, the Golgi apparatus proteome of the bone tissue and
the Cytoskeleton proteome of the brain tissue differ a lot. On the other hand, for all the
tissues, the Nucleus- and Cytosol-locating proteins are similar, see Figure 5.4b.

The human proteome shows a variance of their cell-to-cell spatial distribution, as well of
their cell line-dependent location with different localization in the three cell lines tested [28].
The tissue specificity of protein SCL can be investigated by computing the agreement of
SCLs of each protein occurring in each tissue (Figure 5.4a). Skin and Brain show the highest
similarity (59%), while Bladder and Brain show the lowest similarity (52%). The tissue pairs
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Colon-Liver, Bone-Brain and Bone-Skin share more common spatial distribution of proteins
in the cell than the other tissues. When we compare the agreement of SCLs across all the
nine human tissues, it shows a low similarity of protein SCL with the average similarity of
8.45%. A low similarity indicates typically a high tissue specificity of protein SCLs. One
explanation would be that the number of proteins which have SCLs across tissues varies
from 431 to 8873 (Table 5.3). The overlap of proteins itself is rather low. The most of the
proteins whose SCLs are detected are expressed in Bone, Skin and Brain tissue. However,
within these highly annotated tissues, the level of tissue specificity on protein SCsL is still
rather high. Afterwards, the tissue-specific SCL dataset was compared against the generic
SCL dataset of the human protein (Figure 5.4b). The result shows that tissue specificity
exists for the proteomes in most of the SCLs. The Cytoskeleton proteome, Plasma membrane
proteome, and ER proteome are significantly different across tissues. The Cytosol proteome
shows its specificity in Colon and Bladder tissue. On the other hand, there is nearly no
difference of the Nucleus-proteome across nine tissues.

5.2.3 The impact of the noisy tissue-specific functional associations on
tissue-specific SCL prediction

The proposed prediction method for tissue-specific SCL highly relies on the tissue-specific
functional associations. However, the tissue-specific functional association data which are
used in this study were generated by a Bayesian approach on tissue-specific gene expression
data [10]. In this section, we analyze the impact of the noise of these predicted data effecting
the prediction of the tissue-specific SCL.

To address this question, we performed the experiments based on the tissue-specific
PPINs with false interactions. To generate such PPINs, we employed the published specific
gold standard tissue-specific functional associations from Greene et al. [10] for each tissue
including positive and negative functional associations. The gold standard dataset includes

• True tissue-specific functional associations: the positive functional edges between
genes specifically co-expressed in the tissue.

• False tissue-specific functional associations include three scenarios. To construct com-
parable networks across tissues, we used a negative set composed of equal proportions
of edges from the three scenarios.

– the positive functional edges between a gene expressed in the tissue and another
specifically expressed in an unrelated tissue.



74 Tissue-specific SCL prediction

– the negative functional edges between genes specifically co-expressed in the
tissue.

– the negative functional edges between one gene expressed in the tissue and
another specifically expressed in an unrelated tissue.

The number of the tissue-specific functional associations in the golden standard dataset
vary across tissues according to the specificity of the tissue, the depth of the study, and
how well curated from literature the data are [10]. The size of the association set differs
across tissues due to the incompleteness of the tissue-specific SCL data from HPA. Because
of the size of golden standard dataset, we limited the percentage of noise to 50% to have
enough number of proteins to evaluate the performance. Following the above criterion,
the tissue-specific PPINs with noise across tissues were constructed. We performed the
tissue-specific SCL predictions using those protein-protein interaction network and evaluated
the results against the tissue-specific SCL ground truth dataset.

The resulting changes of prediction performance along increasing rate of noise are shown
in Figure 5.5. In general, the proposed prediction method is sensitive to the topology of
the tissue-specific PPINs. We assume the lower the quality of PPINs, the less accurate the
prediction. This is confirmed from the significant decline of performance of Lung (0.8 to
0.6) and Liver (0.75 to 0.6), and slight decrease of Skin (0.75 to 0.7) and Colon (0.65 to
0.57). However, the curves of Kidney, Bone, and Brain appear slight ups and downs. The
performances with and without noise PPI remain rather still. On average, the performances
tend to decrease while increasing the noise in the PPIN. However, the average change (0.77
to 0.68) is not strikingly large, because the tissue-specific PPI networks were constructed
from the filtered functional associations by physical protein-protein interaction. Thus, a
number of the noise PPI were already filtered out by physical PPIs.

To ensure the quality of the tissue-specific functional associations and reduce the impact
of the noise, we used two ways to extract meaningful protein-protein interaction.

1. Only the associations with evidence supporting a tissue-specific functional interaction
are used in SCL prediction.

2. The posterior probability of tissue-specific functional associations was used addition-
ally to weight the edges in the tissue-specific PPINs. The edge weight is the product
of the reliability score of physical interaction and the posterior probability of tissue-
specific functional associations. Thus, the less reliable associations which have low
probability values would have less impact on the model.
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5.2.4 Genome-wide tissue-specific SCLs prediction

As described in Section 5.1 and illustrated in Figure 5.1, to predict tissue-specific SCL,
the BCMRFs algorithm was applied to tissue-specific physical PPINs to predict human
proteins on nine tissues (including Brain, Bone, Skin, Bladder, Lung, Colon, Liver, Cervix
and Kidney) focusing on eight major SCLs (including Cytoskeleton, Cytosol, Endoplasmic
reticulum, Golgi apparatus, Mitochondrion, Nucleus, Plasma membrane and Vesicle). By
comparing the predicted SCLs among each tissue, and with the generic SCLs, a landscape of
dynamic changes in SCLs across tissues can be revealed.

To test the performance of the tissue-specific SCL predictions, an evaluation of the
prediction results against the only available tissue-specific SCL which were generated based
on the cell line-specific SCLs as ground truth was performed using multi-label classification
metrics (see Section 5.1).

BCMRFs associates each protein in the PPIN with an estimated probability value for
each SCL. Typically, the final SCL labels are generated by thresholding the probabilities. A
threshold of 0.5 (logistic distribution) was used as a baseline for the evaluation. As it can be
seen in Table 5.4 (values in brackets), the prediction performances of tissue-specific SCL are
fair. The best performance is achieved on Kidney tissue (F1 score 0.718), while the weakest
prediction is on Bladder (F1 score 0.616). Although it obtains a good recalls (from 0.825 to
0.898), the precisions are relatively low (from 0.539 to 0.655), which decreases the overall
F1 scores.

This is not surprising since that generic SCL data was used as input and the tissue-specific
PPINs share on average 50% PPIs. Moreover, the protein SCL datasets are highly imbalanced,
especially for SCL such as ER, and a threshold of 0.5 is an arbitrary decision which cannot
always produce the correct labeling result. Therefore, the optimal threshold were estimated
for each SCL class according to the probabilities of the ’seed’ proteins, which were used for
determining the SCL labeling on the graph. Most of the thresholds increased to about 0.6,
except for Nucleus which is about 0.4. Table 5.4 shows the evaluation results on the ’masked’
proteins (see Section 5.1). As expected, the precision increased with the higher thresholds
which increases the F1 scores overall.

It is important to remember that the prediction performances do not reflect the real
strength of our approach. Because the quality of our ground truth datasets is limited. These
ground truth data are generated based on detected protein SCL in cell lines. First of all, these
cell lines are chosen for SCL experiments because of the easier manipulation procedure and
the better results, especially for U2-OS cells [28]. In addition, some of the cell lines are
cancerous cell lines, and some are immortalized cell lines. The tissue-specific functional
associations were also generated based on various types of datasets using both tissues and
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cell lines. Hence, the healthy and the diseased tissues were not distinguished in this study. In
general, cell lines cannot represent all the tissue-specific features due to down-regulation of
tissue-enriched genes [8].

5.2.5 Predictions for novel tissue-specific protein candidate validated
by text mining

In total, 1863 proteins which show tissue specificity on SCL across nine listed tissues were
identified. 1314 of these proteins had previously been found to show cell line dependency by
Thul et al. [28].

The remaining 549 proteins which were newly found differentially localizing across
nine tissues, were evaluated by text-mining. 243 of the candidate proteins and their SCLs
in corresponding tissues are found in 724 publications in total. In the following, several
illustrative examples which were validated by literature were shown. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was proven that it participates in nuclear events
including transcription, RNA transport, DNA replication, and apoptosis. However, its over-
expression and the increased enzymatic activity in proliferating cells, with preservation of
its cytoplasmic localization, would occur in response to the elevated energy requirements
of dividing hepatocytes [154]. Exocyst complex component SEC10 (Sec10) is a crucial
component of the exocyst complex. It was previously proven that in renal tubular epithelial
cells, Sec10 colocalizes with Cdc42 at the primary cilium which is bounded by an extrusion
of the plasma membrane [155]. Synapsin-1 protein (SYN1) together with CA1 and CA3
synaptosomes are co-localized on the same synaptic vesicles in mossy fiber nerve terminals of
the hippocampus [156]. Ubiquitin-like protein 5 (UBL5) was found localized in the nucleus,
partially associates with Cajal bodies in human embryonic kidney cells [157]. Furthermore,
it was found that Nuclear factor erythroid 2-related factor 2 (Nrf2) was expressed both in
the cytoplasm and nuclear of glomeruli and tubules [158]. These results demonstrate that
the tissue specificity of protein SCL is essential to carry out their specific functions across
tissues.

5.3 Summary

This chapter described an approach that allows predicting protein SCL on tissue specificity
through the use of tissue-specific functional associations. To the best knowledge, this is
the first computational approach addressed the tissue-specific SCL of a large number of
human proteins. It is an extension study of previously developed multi-SCL prediction
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method BCMRFs on tissue-specific SCL prediction. In this chapter, both tissue-specific
physical PPINs and tissue-specific SCLs ground truth data were analyzed and proved their
particular characters across different tissues. The BCMRFs algorithm was applied on physical
PPINs filtered by tissue-specific functional associations for nine types of tissue focusing on
eight high-level SCLs. The evaluated results demonstrate the strength of our approach on
predicting tissue-specific SCLs. In total, 1314 proteins which were previously proven cell line
dependent on SCL level were successfully identified. Furthermore, 549 novel tissue-specific
localized candidate proteins were predicted and some of them were validated via text-mining.
These candidates should be verified experimentally in the future.

Knowing the tissue specificity of protein on subcellular level would provide the insights
for identifying the changing functional roles of genes across tissues and illuminate relation-
ships among diseases. There is clear gap of the research area given the intensive research
on tissue-specificity proteome and SCL-specific proteome, and the lack of ground truth data
of tissue-specific protein SCLs. Although some efforts have been made to collect such data
by the Encyclopedia of DNA Elements project (ENCODE) [80], the quantity of data is very
limited to several SCL for human proteins. It is highly recommend that researchers specify
the tissues/cell lines where their experimentally detected protein SCL and PPIs occurred in,
and this information should be differentiated in the public databases such as UniProtKB,
HPDB, which would make it easier to model and understand context-related phenotypes. On
the other hand, an alternative would be using text-mining approach to collect the data from
diverse literature.
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Fig. 5.3 The property of the tissue-specific physical PPINs. (a) Comparison of generic
PPI network and tissue-specific PPINs on the size of the network and the degree of
the network. (b) Comparison of the generic PPI network and tissue-specific PPINs on
the reliability score of physical PPIs. (c) The heatmap for the similarity among all the
tissue-specific PPINs. The brighter the color, the more similar of a pair of tissues. (d)
The percentage of the common PPIs of all tissues.
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Fig. 5.4 Comparison of protein SCLs across tissues. (a) The similarity of protein SCL
datasets among nine tissues. The brighter the color, the more similar between two tissues.
(b) The changes of protein SCL across 9 tissues in comparison with generic protein
SCL dataset. The color and the size of circle positively correlate to the difference and
specificity of the SCL.
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Chapter 6

Tissue-specific SCL Data Curation using
Text mining

Knowing the tissue specificity of protein on the subcellular level can provide the insights
for identifying the protein functions across tissues, illuminate the fundamental mechanisms
of the human cells. In the previous chapter, we discussed the necessity of knowing tissue-
specific SCL of protein for human biology. Facing the fact that there is not yet any protein
tissue-specific SCL dataset available in public databases, the alternative to having such data
collection is to extract the data from the scientific literature which is the challenge of the
research in this chapter. The biomedical literature is the key distribution channel for novel
findings and hypotheses from biochemical and biomedical research worldwide.

The automated literature analysis, text mining approach, is now frequently a part of
sophisticated biomedical research which retrieves relevant information and identifies the
connections between pieces of knowledge from numerous publications. Such automated
analysis of literature complements the reading of scientific literature by individual researchers
as it allows rapid access to information from a large number of documents and may increase
the reproducibility of literature research.

Text mining approaches have been successfully applied to the identification of molecular
causes of diseases [159], PPIs [160, 161], the interactions of small molecules and proteins,
the influences of genetic variation on drug responses [162] and many other types of research.
This chapter describes how to apply text mining approaches to extract the information of
protein tissue-specific SCLs. The primary tasks include the information extraction of proteins,
the expressed tissue, and their spatial distribution in the cell in the tissue.

Before introducing the approach, it is necessary to mention the related works. Previously,
some contribution has been made to the extraction of protein SCL from text, such as Text-
presso [163] and COMPARTMENT [148]. The tissue-specificity of genes and the encoded
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proteins have been addressed using text mining approaches as well [164]. However, the
above data curation on protein SCL and tissue-specificity of protein were studied individually
as the paired association between protein and SCL, and protein and tissue. Therefore, the
information extraction on the triple association of tissue, protein, and SCL remains as an
open question in systems biology and a challenge for text mining.

To date, there are only a few studies which have addressed the information extraction on
the triple association. In 2016, Mahmood et al. [165] and Singhal et al. [166] both published
the works on the extraction of triple association of disease, gene, and mutation using the text
mining system. The former work extracts the information of mutation, paired association
<mutation, gene> and <mutation, disease> on three steps, and later link these three elements
to create the triple association of <disease, gene, mutation>. In addition to the co-occurrence-
based approach, they use sentence structure together with other textual features to increase
the confidence of the information extraction [165]. Differently than Mahmood et al. [165],
[166] performed the information extraction on gene and the paired association <mutation,
gene> followed by gene sequence validation to identify an exact gene match for the mutation
[166].

In general, the underlying mechanisms used for hypothesis generation and knowledge dis-
covery range from basic co-occurrence techniques to complex machine-learning algorithms
for identifying meaningful relationships among the extracted scientific facts. Co-occurrence
analysis identifies named entities that are mentioned together in a portion of text, such as
a sentence, a paragraph, a section or a whole document. Co-occurrences are then analyzed
using statistical approaches and methods from information theory to identify important novel
related terms. Co-occurrence can be indicative of a biological relationship between the
identified entities and therefore leads to a novel hypothesis that can be examined in the future.
Both of the above studies have used the co-occurrence approach as the baseline method.

In contrast to the complicated relationship between gene and mutation and the mentions
in the text, in the case of the triple relationship of tissue, protein, and SCL, it is rather
straightforward. In addition to the previous work which applies co-occurrence approach to
extracting <protein, SCL> and <protein, tissue>, we are confident to succeed in the extraction
of triple association <tissue, protein, SCL> using a co-occurrence based text mining approach.
The general idea is to use a scoring system which takes into account the co-occurrences
within sentences and whole documents. Later we combine them through an optimized
weighting scheme to distinguish the true positive triplet from the false positives.
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6.1 Methods

Figure 6.1 shows the schema of the overall architecture of the system is shown. The system
can be divided into eight main tasks, namely from A to G. Task A retrieves the abstracts of the
relevant publications fetched from MEDLINE abstract which contains gene/protein, tissue,
and SCL in the text. Task B applies some primary text preprocessing on these abstracts,
such as tokenization. Then, the various types of mention of tissue, gene/protein and SCL
terms in the text are recognized and linked to the appropriate, unique identifiers, such as
identifiers as Entrez gene ID in NCBI, the BRENDA Tissue Ontology (BTO) identifier in
BRANDA and GO identifier (Task C and D). In Task E, information extraction, in addition
to the co-occurrence of above three types of mentions, we applied a scoring function for
identifying the important relevant associations. The extraction of the information such as
the position of above mentions in the text and across all the abstracts was conducted as well.
The scoring system was implemented in Python 3 [167]. The following subsections describe
the details of each task.

6.1.1 A. Retrieving relevant abstracts

A set of abstracts that were potentially useful for identifying tissue, gene/protein, SCL was
retrieved from MEDLINE via PubMed search engine. The MEDLINE index of abstracts
contains Medical Subject Headings (MeSH) which are humanly curated annotations for a
controlled vocabulary of biomedical concepts. Thus, we can restrict the retrieved abstract set
to a specific species, tissue and SCL of interest using the ‘E-utilities’ programming interface
[168]. For example, we can submit the query

"kidney"[MeSH Terms] OR "kidney"[All Fields]) AND "human"[MeSH Terms]

to access all the abstracts which are related to human kidney tissue and do not necessarily
have to contain the exact search term.

6.1.2 B. Text preprocessing

Before any specific text processing was initiated, the identification of the individual sentences
of documents was performed. The following step is to ’tokenize’ the document which is
for identifying the constituents of the text (which are called ’tokens’), such as single words,
numbers or punctuation. Consecutive tokens can be combined to form named entities of
tissue, gene/protein, and SCL.
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Fig. 6.2 The overview of GNormPlus method from Wei et al. [170]

6.1.3 C. Mamed entity recognition

The follow-up step is to identify the named-entities of tissue, protein, and SCL in the text.
The identification of the correct boundaries of composed terms and the disambiguation of
terms is a complicated process. In this task, different approaches to identify the three types
of named entities were employed.

Identification of protein mentions

The NER of gene mention in the text is always an essential part of solving various hypotheses
in biology using text mining. For that matter, many algorithms and tools have been developed
and successfully applied in natural language processing (NLP) research. In this task, we
included the state-of-art text mining tool PubTator [169] which can tag various biological
entities. PubTator employs the high performance (F1-score 86.7%) entity recognition tools
including GNormPlus [170] for the identification of gene/proteins from a given text, see
Figure 6.2. The gene/protein entity mentions are recognized using a conditional random field
based module in combination with the species recognition module SR4GN [171]. Next, the
gene/protein mention are normalized using their previously developed tool GenNorm [172]
in combination with the composite mention simplification tool - SimConcept [173] and an
abbreviation resolution tool Ab3P [174].
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Identification of SCL and tissue mentions

Unlike the NER process for gene/protein, there is no ready-to-use NER tool available for
neither SCL nor tissue, yet. Therefore, for these two types of entity, we apply the tissue
and SCL detector developed in-house. The detector uses a dictionary-based approach which
relays on matching a dictionary of names against the text. For this purpose, the carefully
curated dictionaries for tissue and SCL are essential for the good performance of mining the
important associations.

Dictionary construction Ontologies which are used in life science represent classification
systems that provide a controlled vocabulary for a biological or biomedical knowledge
domain. An important pioneering effort in the field of biological ontologies, probably being
the most widely used, is theGO project (http://www.geneontology.org) that is a collab-
orative effort to develop and use ontologies to support biologically meaningful annotation of
genes and their products. GO contains a set of terms for describing the activity and actions
of gene products. Each of these activities is executed in a SCC or a location outside in the
vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the
cellular component ontology (GO-CCO). The GO-CCO describes subcellular structures and
macromolecular complexes. Moreover, BTO (http://www.BTO.brenda-enzymes.org)
represents a comprehensive structured encyclopedia of tissue terms which is a connection be-
tween the enzyme data collection of the BRENDA enzyme database and a structured network
of source tissues and cell types. BTOcontains different anatomical structures, tissues, cell
types and cell lines, classified under generic categories corresponding to the rules and formats
of the Gene Ontology Consortium and organized as a directed acyclic graph (DAG) [175].
Likewise, Uber-anatomy ontology (Uberon) (https://uberon.github.io/about.html)
is an anatomical ontology that represents body parts, organs and tissues in a variety of animal
species, with a focus on vertebrates [176].

The dictionaries were automatically generated based on the annotations and the synonyms
contained in the cellular component terms from GO for SCL, and terms from BTO and Uberon
for tissue respectively. To reach better recall, the variants of term which include

• the conversion of the upper case and lower case of the first letter of the term, except
the abbreviations.

• the pluralization of terms.

• remove highly repeated common patterns across all terms, unless this would cause
ambiguity, such as ’inner’, ’channel’.
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• removal the brackets, parentheses, and hyphens.

were automatically generated as well.
Afterwards, the dictionaries are manually curated, such as to eliminate synonyms that

give rise to many false positives. The ambiguous terms which occur in other categories
were removed from the dictionaries. For example, ’spindle’ (GO:0005819) is the array of
microtubules and associated molecules that forms between opposite poles of a eukaryotic cell
during mitosis or meiosis and serves to move the duplicated chromosomes apart. Whereas
’spindle’ in spindle cell (BTO:0003651) represent the fusiform cell, such as those in the
deeper layers of the cerebral cortex.

6.1.4 D. Term normalization

The term normalization, which is also known as Named-entity Linking, process contributes
to the integration of literature with data contained in biomedical resources. Dictionary-based
methods have the crucial advantage of being able to normalize names. Each annotation
terms from GO, BTO and Uberon corresponds to a unique identifier in the ontology. While
constructing dictionaries, the identifiers are already included which facilitates the term
normalization step.

The texts were subsequently parsed into individual sentences, tokenized words to match
against the dictionary. Afterward, by string matching of the dictionaries against the text,
the entities of SCL and tissue is, thus, recognized. In dictionary-based approach, the SCL
entities and tissue entities which are mentioned in the text are fitted to the best match from
the dictionary resources and then immediately linked to database entries of GO and BTO,
respectively.

6.1.5 E. Extraction and scoring of tissue-protein-SCL associations

The next task is to extract information of tissue, gene/protein, and SCL and identify their triple
relations. The identification of relations is a more complicated task and can be accomplished
with different methods. One popular NLP approach is to use a grammar to parse the syntax
of each sentence. In this study, we used a statistical co-occurrence based analysis, which
determines triplets of named entities that are mentioned together in a portion of text.

Previously, Franceschini et al. [160] successfully applied a scoring schema for determin-
ing associations between paired proteins derived from their co-occurrence. They found the
co-occurrence based method is much more flexible and gave better recall in their study. This
scoring schema takes into account co-occurrences within sentences, within paragraphs, and
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within whole documents and combines them through an optimized weighting scheme. Later,
this schema was implemented to determine disease–gene associations [177] and protein SCL
[148].

Motivated by the previous success on the extraction of paired associations, for the first
time, the scoring schema was modified and applied to solve the triple association extraction
problem in this thesis. The detailed formulation is explained in the following subsection.

Co-occurrence scoring function

An important feature of the co-occurrence scoring scheme is that it simultaneously takes into
account co-occurrences at the level of abstracts as well as individual sentences. As shown in
Algorithm 4, to score the co-occurring tissue, gene/protein, and SCL triplet, we first calculate
the weighted count C(T,P,L) of the triplets appearing over the n abstracts in the text corpus.
C(T,P,L) is defined in below:

C(T,P,L) =
n

∑
k=1

wsδsk(T,P,L)+waδak(T,P,L) (6.1)

where n is the number of abstracts, ws and wa are the weights for co-occurrence within the
same sentence, and within the same abstract, respectively. If P ,T and L are mentioned
together in a sentence or in abstract k, the delta functions δak(T,P,L), δpk(T,P,L) and
δsk(T,P,L) are 1, and 0 otherwise. Thus, an abstract that mentions P ,T and L in the same
sentence will give a score contribution of ws +wa, whereas an abstract that mentions them in
different sentences will give a score contribution of wa only. The scoring function is therefore
defined as

S(T,P,L) =C(T,P,L)αCoP1−α (6.2)

where α is the partition parameter.

CoP =
Pr∗(T,P,L)

Pr∗(P) ·Pr∗(T ) ·Pr∗(L)
(6.3)

with

Pr∗(T,P,L) =
C(T,P,L)
C(⋆,⋆,⋆)

Pr∗(P) =
C(P,⋆,⋆)
C(⋆,⋆,⋆)

Pr∗(T ) =
C(⋆,T,⋆)
C(⋆,⋆,⋆)

Pr∗(L) =
C(⋆,⋆,L)
C(⋆,⋆,⋆)

(6.4)
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Pr∗(T,P,L), Pr∗(P), Pr∗(T ), Pr∗(L) are the observed probability of triplet, protein, tissue
and SCL based on weighted count, respectively.

Therefore, the co-occurrence score of triple association S(T,P,L) can be written as fol-
lows :

S(T,P,L) =C(T,P,L)α

(
C(T,P,L)C(⋆,⋆,⋆)2

C(P,⋆,⋆) ·C(⋆,T,⋆) ·C(⋆,⋆,L)

)1−α

(6.5)

where C(P,⋆,⋆) is the sums over all the possible tissue and SCL pairs associated with
protein P. Likewise, C(⋆,T,⋆) is the sum over all the possible protein and SCL pairs
associated with tissue T , and C(⋆,⋆,L) is the sum over all the possible protein and tissue
pairs associated with SCL L. Moreover, C(⋆,⋆,⋆) is the sum over all possible triplet of
proteins,tissues and SCL. The parameters were optimized on the benchmark set which are
shown in the result section in this chapter.

Normalized Z-scores

The score S(T,P,L) depends on the number of triplets < T,P,L > identified in the abstract
pools, which changes as the number of abstracts grows, see Equation (6.1). To get a more
robust measure, therefore, the scores are converted into the normalized z-scores Z(T,P,L)
relative to a background distribution.

Assume that the empirically observed score distribution is a mixture of lower-scoring
random background and the higher-scoring true signal. We model the background distribution
as a Gaussian and estimate its mean as the mode of the mixture distribution. We empirically
observed that the 40th percentile, in this case, coincides with the mode which is accord with
the observation from Binder et al.’s work. The variance of the background is estimated from
the difference between the 20th and the 40th percentiles, −1.282 and −0.842 respectively.

z = (x−µ)/σ (6.6)

that µ is the mean of the score population, σ is the standard deviation of the score population.

σ =

√
∑

N
i=1 (xi−µ)2

N−1
(6.7)

with

µ =
∑

N
i=1 xi

N
(6.8)

where {x1,x2, . . . ,xN} are the observed score values of present triplets.
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The absolute value of z represents the distance between the raw score and the population
mean in units of the standard deviation. z is negative when the raw score is below the mean,
positive when above.

Algorithm 4: Triplet association extraction
Input: Abstracts tagged with three entities, T, P, L with their position in the text
Output: Extracted <T,P,L> triplets associated with the co-occurrence Z-scores

1 for each abstract do
2 Extract the all tagged terms for Protein, SCL, Tissue.
3 end
4 Generate a list of all possible triplet combinations D.
5 for each triplet combination in D do
6 for each abstract do
7 Count co-occurrence δak(T,P,L).
8 end
9 for each sentence do

10 Count co-occurrence δsk(T,P,L).
11 end
12 end
13 for each triplet combination in T do
14 Calculate the weighted co-occurrence score, Equation (6.5).
15 end
16 Convert Co-occurrence score to Z-scores, Equation (6.6).

6.1.6 Experimental design and evaluation

To access the performance of our text mining system on the extraction of the protein tissue-
specific SCL, we conducted two types of analysis.

• to assess the validity of our approach, we performed an intrinsic evaluation using a
gold- standard benchmark dataset of protein tissue-specific SCL of ten tissues.

• to assess the utility of our text mining tool, we compared the results of our approach
with entries in a popular experimental database for fourteen cell lines.

Mappings of tissue terms and SCL terms

In the literature, the information of tissues, cell lines, and protein SCLs are mentioned and
unified in different details which depend on the interest of researcher and the power of
experimental detections. For example, the SCL of protein C-terminal binding protein 1
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(CTBP1) has been detected locating in Nucleoplasm whereas the SCL was mentioned in
more generic term Nucleus in the literature [178]. To efficiently assess the performance
of our text mining information extraction system, we imported the annotations from BTO,
Entrez Gene[179] and GO cellular component, for tissue, gene/protein, and SCL annotations
respectively. Due to the hierarchical nature of the ontology, it is necessary to select a subset
of terms to be used as the basis for the assessment. In case one term was a child term of
another, we selected the broader parent term through is_a and part_o f relationships, see
Figure 6.3. In practice, the relations among SCLs accessed by the parental relation of gene
ontology. These relations are represented in a graph structure. We use the QuickGO REST
application programming interface (API) which provides access to the ancestors of a GO
term of interest from QuickGO.

https://www.ebi.ac.uk/QuickGO/services/ontology/go/terms/[query
GO identifier] /ancestors?relations=is_a%2Cpart_of

In the end, ten representative SCL terms were chosen to use as the final assessment and
later for evaluation.

A similar process was performed to the various types of tissue and summarized ten tissues
for the evaluation. To tackle on the relations of tissues and cell lines via BTO, we used an
in-house script to query the relation from the BTO XML file at https://bioportal.bio
ontology.org/ontologies/BTO.

Establishing gold standards

Following the above text preprocessing, a reference set based on the manually curated MED-
LINE abstracts were collected. The abstracts are lacking information about the relationship
between tissue, gene and SCL were excluded from the benchmarking set, as well as the
abstracts with incomplete information about one of them were excluded. The reference set
comprises 170 diverse biomedical publications which contain tissue, gene, and SCL. The
curation produced a positive reference set of 220 associations between 132 genes and ten
tissues and ten SCLs. We defined the negative set as all other 12980 possible triplets of the
same genes, tissue and SCL in the benchmark.

Integration of experimental data resource

So far, there is not yet a tissue-specific SCL dataset in public databases. Hence, we are
not able to perform an extinct evaluation of the text-mined results of protein tissue-specific
SCL. However, HPA provides the cell line information in which the SCLs of protein were
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Fig. 6.3 SCL mapping along the GO tree. An example of the mapping from the specific
GO-CCO term Nucleoplasm to the generic but representative GO-CCO term Nucleus
along the GO Ancestor Chart.
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detected in the cellular atlas [6]. To demonstrate the utility of our approach, we perform the
information extraction of protein cell line-specific SCL. For that purpose, we generated a
dictionary of human cell lines using the same approach as for the dictionary of human tissue.
Thirty SCL terms listed in HPA was summarized to the ten SCLs and their GO identifiers
Section 6.1.6. Whereas, we take directly the fourteen specific cell lines which are listed in
HPA for the final evaluation.

Performance metric

The text-mined triple associations are associated with a normalized score Equation (6.6). We
next ranked these association by descending scores and compared them to the reference set.
The results were presented in receiver operating characteristic (ROC) curves by plotting the
true positive (TP) rate as the function of false positive (FP).

Besides, we also evaluated our text mining system using the following standard informa-
tion retrieval metrics: recall, precision, and F measure (F1 score) defined in below:

Recall =
T P

T P+FN

Precision =
T P

T P+FP

F1 =
2 ·Precision ·Recall
Precision+Recall

(6.9)

where T P, FP and FN stand for the number of true positives, false positives and false
negatives, respectively. The true positives and false positives in the text mining results are
the correct and wrong triplets based on the text corpus, respectively. The false negatives are
the true triplets occur in the text corpus which do not occur in the text mining results.

6.2 Results

6.2.1 Dictionary-based tagger

Since the number of abstracts in MEDLINE is quickly growing every year, an efficient
tagging component for genes, tissues, and SCLs are necessary. The tagging component in
this work is implemented in Java 8 and accessible via API. Given a PubMed identifier PMID,
it returns annotations in the JavaScript Object Notation (JSON) format.

The tagging component combines PubTator which is the state-of-the-art tool for tag-
ging gene mentions (see Section 6.1.3) and the dictionary-based method for identifying
the tissueSCL in the text. Since the dictionaries already contain all relevant synonyms and
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morphologic variations of terms from the dictionary construction, it is sufficient to exactly
match parts of the text to existing dictionary entries. For this purpose, all dictionary en-
tries were tokenized and organized into trie structure (prefix tree) for quick lookups. The
well-established NLP tool, the Stanford CoreNLP toolkit [180], was used to perform the
tokenizations. The same tokenization process was also applied to the retrieved abstracts from
MEDLINE. For each textual token in the text, a lookup in the trie is performed to search for
the possible matches. If multiple matches are found in the same location, the tagger selects
the longest subsequence to avoid ambiguous tagging results (e.g. "skin fibroblast" would be
tagged as "skin fibroblast" [BTO:0001255], instead of "skin" [BTO:0001253]).

The tagger is then applied to automatically annotate a large number of MEDLINE
abstracts, generating annotations on tissues, genes, and SCLs. The annotated corpus is
formatted in JSON for further analysis.

6.2.2 Evaluation against manual curated corpus - Tissue

The performance of the proposed approach is first evaluated for tissue-protein-SCL triplet
extraction from the biomedical literature on the manually curated benchmark datasets,
described in Section 6.1.6. This dataset consists of a manually annotated list of tissue-protein-
SCL triplets from 170 MEDLINE abstracts which contain 220 ground truth triplets for ten
tissues and ten summarized SCLs. Using these benchmark datasets, we report the accuracy
of our approach with standard measures (precision, recall and F-measure Equation (6.9)).

Here we focus on benchmarking effort on accessing the quality of the result of extracting
tissue-protein-SCL triple associations from given literature. We, therefore, compare the
text-mined triplets to the manually curated corpus, considering all detected and top scored
triple associations.

Figure 6.4 show that our text mining system can extract tissue-gene-SCL associations
with high specificity (low false positive rate) and sensitivity, 0.88 and 0.84 respectively. The
optimal threshold to define the positive triplet is −0.034 according to our benchmark dataset.
Since our co-occurrence approach utilizes different entity tagging tools, we obtain rather high
recall 0.724, fair precision 0.65, and F1 score 0.724, see Table 6.1. From the distribution
of the normalized z-scores of all text-mined triplets, shown in Figure 6.5, with the higher
threshold score, the high precision (more true positive triplets) can be achieved.

Table 6.1 Performance of text mining system for triplet prediction

Optimal threshold Accuracy Precision Recall F1 score ROC-AUC

-0.034 0.830 0.650 0.818 0.724 0.820
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Fig. 6.6 Tuning the scoring parameters.
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6.2.3 Evaluation against experimental dataset - Cell lines

To assess the potential of our approach in assisting database curation, we performed an extrin-
sic analysis by comparing our text-mined results against experimentally curated relationships
for a total of fourteen cell lines. HPA, the human protein atlas, is a database of human
annotation data produced by wet-lab experiment. Its scope includes the pathology of human
cancer transcriptome, tissue-restricted expression of proteome and transcriptome in the major
tissues of the human body, and the spatial distribution of proteome at the subcellular level
detected by the immunohistochemical staining using antibody [28]. Data collection from
HPA is explained in detail in Section 6.1.

The mined results were compared with the cell line specific experimental data from HPA.
As shown in Figure 6.7, the red bars denote the counts of text-mined results for each cell line,
and the blue bars denote the counts of curated variants for each tissue in the HPA dataset.
From HPA, we collected 44000 individual cell line-protein-SCL triplets for seventeen cell
lines. We extracted 32350 cell line-protein-SCL from the literature using our text mining
approach 6736 human proteins locating in eleven SCCs. As is apparent in the figure, for
most of cell lines, the proposed text mining system extracts a significantly larger number of
triplets than the existing triplets in HPA. However, for the cell lines U2-OS, U-251 MG, and
A-431, many associations cannot be found by the proposed text-mining approach.

Evaluation of overlapping triplets First, we evaluated the accuracy of the <cell line,
protein, SCL> triplets which can be found in both HPA database and our text-mining system.
902 triplets are overlapped from two data sources. In this category, a correct association has
already been confirmed by the presence of this association in HPA. Thus, the remaining step
to confirm the correctness of the full triplet is to assess whether our threshold (−0.034) (see
Figure 6.8) can efficiently distinguish the positive associations from the background noises.
In the end, we were able to match triplets with an average accuracy of 0.83 for 667 proteins
in ten SCLs expressed over fourteen cell lines, see Table 6.2.

The un-curated triplets HPA has reported 10658 human proteins and their subcellular
distribution in different cell lines. Our text mining approach returned 31468 triplets that were
not found in HPA. It includes 20158 new triplets for 4043 proteins occurring in HPA and
11732 new triplets for 2812 human proteins which have no experimental detection data in
HPA. These associations and their supporting literature references are potential candidates
for curation. On the other hand, it is possible that these results also contain false positives.
Thus further manual curation is required.
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Table 6.2 Accuracy of overlapped triplets.

Cell lines (BTO identifier) Accuracy

A-431 (BTO:0000017) 0.842
U-2 OS (BTO:0001938 0.915
U-251 MG (BTO:0002035 0.880
MCF7 (BTO:0000093) 0.738
CACO-2 (BTO:0000195) 0.871
HEK 293 (BTO:0000007) 0.667
RH-30 (BTO:0005379) 1.000
Hep G2 (BTO:0000599) 0.873
PC-3 (BTO:0001061) 0.833
SH-SY5Y (BTO:0000793) 0.950
A549 (BTO:0000018) 0.780
HeLa (BTO:0000567) 0.863
HaCaT (BTO:0000552) 0.875
SiHa (BTO:0002210) 1.000

Average 0.863

The triplets present only in HPA However, 41256 triplets detected in HPA were not
returned by our text mining approach. The reason why these triplets were not returned by our
text mining approach is likely that they are not mentioned in the abstract, and more likely are
mentioned in ’Material’ section in the full text. We assume that most of the experimentally
validated triplet published in HPA was not mentioned in literature, especially the cell lines.
Although the proteins could be specifically expressed in a certain number of tissues and cell
lines, the HPA mainly use U2OS cell line for the convenience of experimental manipulation
to access the possible SCL of protein in the cell.

6.2.4 Creation of TS-SCL database

A large-scale text mining was performed against 127,7785 abstracts. A database based
on the top scored predicted results, and integrated tissue-protein-SCL associations from
HPA experimental resource was therefore established. Although we mostly emphasis on
the text mining aspects in this chapter, the TS-SCL database integrates <Tissue, Protein,
SCL> associations from several data sources. The data sources include the triple associations
from 1. the large scale text mining for human tissues and cell lines (Text mining channel);
2. the manually curated data (Knowledge channel); 3. the experimental data from HPA
database (Experiment channel); 4. the prediction results using tissue-specific-BCMRFs
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Table 6.3 Overview of TS-SCL database.

Data resource Reliability Cell line Proteins SCLs Associations
& Tissue

Experiment channel

Human Protein Atlas Approved 19 5626 11 21461
Supported 19 3492 11 13914
Validated 17 1540 11 6763

Total 19 10658 11 42138

Text mining channel

Tissue > 3 10 538 11 982
1∼ 3 10 1971 11 3591
0.5∼ 1 10 3591 11 5834
0∼ 0.5 10 4019 11 11608
< 0* 10 11222 11 83688

Total 10 5925 11 22015(105703**)

Cell line > 3 18 303 11 486
1∼ 3 17 1841 11 2942
0.5∼ 1 17 1007 11 1686
0∼ 0.5 19 440 11 725
< 0* 18 2844 12 28044

Total 19 2521 11 5838 (33883**)

Knowledge channel 10 132 10 220

Prediction channel 9 243 8 1643

Total 71854(183587**)
* Low confident associations which are not included in the database.
** Number of total mined associations.
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algorithm (Prediction channel). The integration of heterogeneous data sources overcomes
the shortcomings of each resource.

Table 6.3 provides an overview of the total evidence landscape of the database, showing
that the both experimental data and text mining pipeline are the largest contributors of
associations. However, it is important to note that this number depends strongly on the
confidence cutoff of Z score. We use a modest cutoff value of 0 to ensure the precision. Table
Table 6.3 lists some of the key characteristics of the extractions from the 127,7785 PMIDs.
It is noteworthy that triplets were extracted from only 19190 of the abstracts. This low
coverage is often due to that the ’abstract’ hints to a possible tissue and SCL association, but
the specific details are contained in the full-length article. 73436 triplets were found across
all abstracts, among which 31072 was unique. All associations from all evidence sources are
available for download in tab-delimited format at http://agbi.techfak.uni-bielefeld.
de/tsscldb/.

6.2.5 TS-SCL database web interface

Although the tab-delimited text files are convenient enough to manipulate for bioinfor-
maticians for large-scale analyses, a web interface is much more intuitive for researchers
interested in individual gene/protein, tissue or SCL. For this purpose, we developed a user-
friendly interface for the TS-SCL database resource to support various types of searches. It
allows users to either query for a gene/protein identifier to find associated tissue and SCL
or query for a tissue to find associated genes, see Figure 6.9a. In either case, the results are
displayed in two different ways: the triplet-view and the PMID-view. The triplet-view (see
Figure 6.9b) shows the extracted triplets and additional information for these triplets. A
table of triplet associations indicating data resource (Knowledge, Experiments, Text mining
and Predictions) is presented to users. Besides summarizing the imported information, it
provides direct hyperlinks to the source entries in the external databases. The PMID-view
(see Figure 6.9c) shows the information at an abstract level with detailed annotation of
matching tissue, protein/gene, and SCL.

Currently, the stored results and the web interface can be found at: https://agbi.
techfak.uni-bielefeld.de/tsscldb/. We have conducted the following query into our
database to demonstrate the usability of the system. Search the database for the protein via
its gene name TP53. A search for TP53 retrieved all available <Tissue,Protein,SCL> triplets
across tissues in TS DB. Figure 6.9b shows a screen shot of the displayed results. The tissue,
protein, SCL extraction zone and the estimated Z scores are shown in a tabular format. The
entire result table can be downloaded as a spreadsheet with the Download results link. The
last column shows the number of the publications which support this triple associations. By

http://agbi.techfak.uni-bielefeld.de/tsscldb/
http://agbi.techfak.uni-bielefeld.de/tsscldb/
https://agbi.techfak.uni-bielefeld.de/tsscldb/
https://agbi.techfak.uni-bielefeld.de/tsscldb/


104 Tissue-specific SCL Data Curation using Text mining

clicking on the button, a new window tab is opened up, and shows the list of abstracts. The
actual abstract text with tagged keywords for tissue, protein, and SCL can be shown and be
hidden by clicking on the title, see Figure 6.9c.

The web services was implemented in Python 3 [167] using Django web framework
[181] integrating SQLite [182].

6.2.6 Generality of the approach

The approach of text mining described in this paper is readily applicable to recognize the
named entities of tissue and SCL in different detailed level to fulfill researcher’s interest
by adjusting the dictionaries and defining the mapping files. For instance, the information
extraction of SCL can be general, such as ’Nucleus’, and be specific to the sub-unit, such
as ’Nuclear membrane’, ’Nucleoli’, ’Nucleoli fibrillar center’. Similarly, the information
extraction of tissue can be general, such as the connective tissue, and be as detailed as
’bone’, ’fibroblast’, ’adipose’ tissue, etc. Combining the tagger with the co-occurrence
scoring scheme for information extraction (IE) is equally flexible. As previously mentioned,
the scoring function was initially developed to extract functional associations between
paired proteins for use in the STRING database based on co-occurrence of gene names
within biomedical literature [160]. The scoring schema has been successfully applied in
disease–gene associations and so on [183, 148, 177]. Together with our results, we are
very confident that our adapted scoring schema for triple association can be applied to other
biological contexts, such as disease-specific SCL.

6.2.7 Limitation and future direction

In this section, we discuss the limitations of our approach, identify areas of work that may
enhance our approach and improve its utility for future research and other applications.

One drawback of co-occurrence methods is that they are unable to extract the direction
of an association and have difficulty distinguishing between direct and indirect associations,
and the negative association. Another significant limitation of the current approach is that it
mines information only from abstracts and not full text or supplementary material, which
have been shown to be an important source of tissue/cell line and SCL information. An
extension to full text will require more advanced systems to overcome the additional noise in
the full text and tables.

During the process of literature manual curation, and evaluation, we observe that the
research of protein SCL is often carried out with a focus on a particular disease. Moreover,
a set of cell lines are suitable to use for studying one disease, and some cell lines are used
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(a) Three search fields.

(b) View of available triple associations.
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(c) View of the annotated document.

Fig. 6.9 Illustration of web interface.

in more general manner. A defective translocation of protein (mislocalization) is one of the
reasons which causes disease. We have an insight into the necessity of the data curation of
protein disease-specific SCL. Our flexible dictionary-based text mining system can be used
to curate such data by integrating a dictionary of disease and adjusting dictionary of tissue.

6.3 Summary

In conclusion, we have shown that our dictionary-based approach for extraction of <tissue,
protein, SCL> from MEDLINE abstracts is successful. The intrinsic evaluation shows
that our approach achieves good precision and recall. Our comparative analysis of the
experimental data confirms the accuracy of our approach and demonstrates that text-mined
results may be potentially useful for expanding the coverage of curation and improving
curation quality.

The proposed text mining system was validated by applying to extract tissue-specific SCL
associations from a broad set of abstracts in MEDLINE. The extracted tissue-specific SCL
associations are stored together with the abstracts from which they were extracted, as well as
with additional relevant information that was obtained from these abstracts. A web-based
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database for the obtained data was established. Finally, we would like to extend our system
to run on full-length articles in the further.





Chapter 7

Tissue-specific subcellular distribution of
the human AGO2 protein

In the previous chapters, we introduced BCMRFs algorithm to address the general multi-SCL
problem. BCMRFs integrates the factors of the physical interactions among proteins, the
physical spacial adjacency of SCCs and the protein sequence , see Chapter 4. In Chapter 5, we
discussed the importance of understanding the tissue-specific SCLs of protein. We applied
the BCMRFs on tissue-specific PPINs to predict tissue-specific SCL of human proteins.
Furthermore, we developed a scoring model based text mining system and extracted tissue-
specific SCL associations from the abstracts of a large number of biomedical papers, see
Chapter 6.

For each task mentioned-above, we have already evaluated and validated with benchmark
sets. Also, we performed large-scale prediction on human proteome and generated a signifi-
cant amount of results. However, for the researcher who often focuses on the small number
of proteins, a small-scale analysis would be more precise and accessible. In this chapter, we
demonstrate how to use our methods to analyze the tissue-specific subcellular distribution
of a protein of interest. The computationally predicted tissue-specific SCL results can be
helpful to generate assumptions about the novel function of the protein, and to understand
the cellular mechanisms. Besides, the TS-SCL DB which contains text-mined data can be
used to validate the previous prediction, search for other possible tissue-specific SCLs, and
retrieve the relevant literature supports.

The members of Argonaute (AGO) protein family are the key players in gene-silencing
pathways guided by small noncoding RNAs, including short interfering RNAs (siRNAs),
micro RNAs (miRNAs) and Piwi-interacting RNAs (piRNAs). AGO proteins are universally
expressed in many organisms. Human AGO1, AGO3, and AGO4 genes are clustered on
chromosome 1, whereas the AGO2 gene is localized on chromosome 8 [22]. It has been
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reported that human AGO2 protein is an endonuclease and a major component of the RNA-
induced silencing complex (RISC). Ago2 binds miRNAs, siRNAs, and Piwi-interacting
RNAs and mediates the loading of these small RNAs onto RISC to recognize specific targets
through base-pairing, ultimately leading to mRNA translation inhibition or degradation [17].

AGO2 has been mostly known as a cytoplasmic protein due to its ectopic expression in
the cytoplasm and is distributed in the cytoplasmic RNA granules, including P-bodies and
stress granules [22]. However, later studies and data suggested that AGO2 might be a nuclear-
cytoplasmic shuttling protein in cells and may be involved in various nuclear processes [25].
Recent evidence demonstrates that the nuclear distribution of AGO2 occurs in a cell type-
and tissue context-dependent manner and may correlate with its various functions in the
regulation of gene expression [17].

To date, the subcellular distribution of the human AGO2 protein, its tissue specificity and
its function remains as essential subjects of scientific debate. In next sections show how to
use the tissue-specific SCL prediction workflow (see Figure 5.1) to analyze the subcellular
distribution of the human AGO2 proteins in various cell lines and tissues.

7.1 Tissue-specific PPI networks of the human AGO2 pro-
tein

Following the workflow in Figure 5.1, seven tissue-specific PPINs on which the human
AGO2 protein shows significant expression are generated. The seven human tissues include
skin, brain, uterine cervix, liver, colon, lung and kidney. The tissue-specific networks can
be used to unravel the distinct functions of MFP by examining the neighbors of the protein
of interest [10]. Thus, seven tissue-specific PPINs were analyzed and compared to reveal
the tissue-specific function of AGO2 across the seven tissues. The Figure 7.1 shows that the
interacting neighbors of human AGO2 protein are notably different in the seven tissues. The
various interacting partners across human tissues suggests that AGO2 might carry multiple
functions in different tissues.

The seven tissue-specific (tissue-specific) PPINs are restricted to the physical protein
interactions which can be used to infer the SCLs of protein from the SCLs of the interacting
neighborhood. Thus, the clear difference between the interacting partners across seven
tissue can imply that AGO2 might be a tissue-specific MLP. In Figure 7.2, we observed
the significant difference of the subcellular distributions of all SCLs of the neighborhood of
AGO2 protein across tissues. Among thirteen different SCLs in the interacting neighborhood,
the nuclear distribution, and cytoplasmic distribution take a large proportion in the most of
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Table 7.1 Interacting partners of AGO2

Gene symbol Function Co-expressed tissues

DICER1 Small RNA generation and RISC loading
[184]

skin, lung, liver, colon,
kidney, cervix, brain

MTDH Facilitation RISC activity [185] cervix
PRKRA Regulate Dicer-mediated dsRNA process-

ing [186]
colon, kidney

TNRC6A GW protein family. Coordination of
downstream silencing events [186]

liver, kidney
TNRC6B colon
UBR5 Help in the recruitment of downstream fac-

tors by binding to GW proteins [187]
liver, kidney, lung

UPF1 Support AGO complexes in target associa-
tion [187]

skin, liver, kidney,
cervix

IPO8 Stabilization of AGO–mRNA interactions
[188]

lung, cervix

the tissues. The difference of the SCL distributions indicates again that the potential multi-
localization and the distribution are tissue dependent. Furthermore, the multi-localization of
AGO2 also implies its multi-functional role.

7.2 Characterization of the tissue-specific networks

Proteins often interact with other molecules to carry out their specific functions under various
context. The interactions might induce the potential translocation of protein or protein
complex. In this section, we discuss the relationship between the human AGO2 protein and
its interacting partners, and the relevance of their biological functions.

Proteins in the network neighborhood that directly interact with AGO2 are relevant
for regulating RNA silencing event, and can also include proteins essential for regulating
RNA silencing machinery or other functions. Table 7.1 shows some examples of the direct
interacting partners of AGO2 functions, and the co-expressed tissues. Below, we categorize
the essential interacting partners of AGO2 regarding their functions together with AGO2.

7.2.1 Roles in RNA silencing event

endoribonuclease dicer protein (DICER1) is an RNase III family endonuclease that pro-
cesses double-stranded RNA and precursor miRNAs into siRNAs and miRNAs, respectively.
DICER1 is universally expressed in all seven tissues and interacts directly with AGO2
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through the Piwi domain of AGO2. DICER1, AGO2, heat shock protein 90 (HS90) and
RISC-loading complex subunit TARBP2 (TARBP2) constitute the trimeric RISC loading
complex (RLC) [186, 189].

HS90 is another interacting partner of AGO2. The general function of HS90 is a molecular
chaperon that promotes the maturation, structural maintenance and proper regulation of
specific target proteins involved for instance in cell cycle control and signal transduction. The
stable binding between AGO2 and DICER1 was dependent on the activity of HS90 protein
by binding AGO2 [190, 191].

interferon-inducible double-stranded RNA-dependent protein kinase activator A (PRKRA),
is also known as PACT. In mammals, PRKRA interact with DICER1 and AGO2, and have
been implicated in miRNA biogenesis [192].

LYRIC protein (MTDH), also known as AEG-1, is required for optimum RISC activity
facilitating small interfering RNA and micro RNA-mediated silencing of luciferase reporter
gene. Previous coimmunoprecipitation and colocalization studies confirmed that MTDH is
also a component of RISC [185].

GW proteins (including TNRC6A, TNRC6B and TNRC6C) are characterized by an N
domain containing multiple glycine–tryptophan (GW) repeats. This domain directly interacts
with AGO proteins and is therefore referred to as the AGO-binding domain. GW proteins
play a role in RNA-mediated gene silencing by both miRNAs and siRNAs [186, 184].

importin 8 (IPO8) is a gene silencing factor that targets AGO2 to distinct mRNAs and
stabilize AGO–mRNA interactions [188]. Likewise, protein regulator of nonsense transcripts
1 (UPF1) participates in RNA silencing by facilitating the binding of the RISC to the target
and by accelerating the decay of the mRNA [187]. Furthermore, IPO8 mediates the import
of human AGO2 along with associated microRNAs into the nucleus via [193].

Most of the interacting partners of AGO2 mentioned-above play roles in RNA silencing
event. However, some interactions universally happen across seven tissues, such as the
interaction with DICER1. The other interactions are, by contrast, tissue-dependent, such as
the interaction with MTDH which only takes place in uterine cervix tissue, whereas PRKRA
in colon and kidney. Moreover, Eystathioy [194] revealed that TNRC6A (GW protein)
is ubiquitously expressed in different tissues including heart, brain, placenta, lung, liver,
skeletal muscle, kidney, and pancreas. However, the tissue-specific networks suggest that the
interaction between AGO2 and TNRC6A might occur only in liver and kidney tissue but not
brain tissue. Another explanation would be that such interaction has not been experimentally
proven yet in the other tissues.
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7.2.2 Roles in mRNA splice and translation

probable ATP-dependent RNA helicase DDX20 (DDX20) and Gem-associated protein 4
(GEMI4) are members of the the survival of motor neurons complex (SMN complex) which
plays a catalyst role in the assembly of small nuclear ribonucleo proteinss (snRNPs), the
building blocks of the spliceosome. Therefore, it plays a crucial role in the splicing of
cellular pre-mRNAs. Moreover, AGO2 also interacts with pre-mRNA processing factor pre-
mRNA-splicing factor ATP-dependent RNA helicase DHX15 (DHX15) which is involved in
disassembly of spliceosomes after the release of mature mRNA. The interactions between
AGO2 and SMN complex proteins and DHX15 indicate that AGO2 plays a role in the
regulation of mRNA splicing event. Furthermore, both AGO2 and interactor eIF-2-alpha
kinase activator GCN1 (GCN1) has demonstrated their roles in the regulation and activation
of mRNA translation [26, 195].

7.2.3 Roles in tumorigenesis

The p53-related protein p63 has pleiotropic functions, including cell proliferation, survival,
apoptosis, differentiation, senescence, and aging [196]. The involvement in the tumor-
suppressive mechanism of apoptosis made p63 be recognized as one of the most important
tumor suppressor protein. Since miRNAs/oncogenes/tumor suppressive genes are critical in
tumorigenesis. The association of AGO2 and p63 protein imply that as an essential mediator
of miRNAs function and maturation, AGO2 can undoubtedly affect tumorigenesis.

7.3 Analysis of the prediction results

The seven tissue-specific PPINs in Section 7.1 were used to perform tissue-specific SCL
prediction as shown in Figure 5.1 for AGO2 protein. For each tissue, we obtain the a set of
confident SCLs propositions. Following that, we compare the tissue-specific SCL prediction
results with the generic SCL annotations of AGO2. In addition, we use our text mining
system to validate, and search for more possible tissue-specific SCLs of human AGO2 protein
which are not captured by our previous prediction.

7.3.1 Generic SCLs

Both the knowledge-based and the experimentally detected SCL annotations of human AGO2
protein from various data resources can be retrieved via UniProt API interface. Table 7.2
shows the SCL annotations of AGO2. However, during the prediction and evaluation, we
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exclude the particular annotations such as ’complex’, and only consider the subcellular
compartment related annotation. The major SCLs of AGO2 are therefore nucleus, nucleo-
plasm, cytoplasm, cytosol, cytoplasmic P-body, polysome, cell junction and extracellular
exosome. We summarize the nucleoplasm which is sub-unit of the nucleus as nucleus for
the prediction. Likewise, cytosol and extracellular exosome are summarized as cytoplasm
and extracellular space respectively. Polysome is a multi ribosomal structure representing
a linear array of ribosomes held together by messenger RNA. The summary results in six
distinct SCL annotations for AGO2 protein.

Figure 7.3 shows the predicted subcellular distribution of AGO2 across seven tissues.
Despite the tissue specificity, our prediction results propose ten SCLs from thirteen possible
SCLs from the neighborhood in the networks. Among the summarized SCL annotations from
Table 7.2, five are correctly predicted based on the ground truth which mentioned above,
which are the nucleus, cytoplasm, P-body and extracellular space and polysome.

7.3.2 Tissue-specific SCLs

From Figure 7.3, we can easily see the distinct subcellular distribution of AGO2 in different
tissues. In below, we discuss the roles of AGO2 in different tissues or cell type according
to the subcellular distributions. Also, the text mining system can help us to collect the
corresponding literature supports and suggest other tissue-specific SCLs which are missed by
the prediction. For doing so, we query our database using protein symbol ’AGO2’ as input,
while the ’Tissue’ and ’SCL’ option remain unspecified to retrieve all possible SCLs in all
possible tissues.

Nucleus and cytoplasm

The nuclear distribution of AGO2 protein is ubiquitously expressed in all seven tissues.
Among them, the nuclear distributions in the skin, uterine cervix, and kidney tissue have
been experimentally proven using normal tissue cells and the immortalized cell lines HaCaT,
HeLa and HEK293 respectively, which are derived from those three tissues respectively [17].

Likewise, we observe the cytoplasmic distribution of AGO2 in all the seven tissues,
which agree with the previous studies that AGO2 is primarily expressed in the cytoplasm
in HEK293 cells (origin from kidney tissue) [22, 213], H358 cells (origin from lung tissue)
[214].

Sharma et al. [17] have experimentally proven that AGO2 is distributed primarily as a
nuclear protein in skin, normal cervix, and cervical cancer tissues, whereas the majority of
AGO2 is cytoplasmic in HaCaT cells (origin from skin). Moreover, double immunofluores-
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cence analysis for MTDH and AGO2 co-localization in nucleus and cytoplasm in QGY-7703
cells which is from liver tissue in Yoo et al. [185]’s study.

Endoplasmic reticulum and polyosome

Detzer et al. [215] provides strong evidence for the view that co-localization of siRNA and
Ago2 in the vicinity of the rough ER in ECV-304 cells (bladder) is related to target inhibition.
Nevertheless, the density gradient fractionation of cell organelles experiment shows a lack of
co-localization in SKRC-35 cells (kidney) in which RNA interference does not occur after the
PS-mediated delivery. Dual cell system to identify important steps of intracellular trafficking
of siRNA after polysome mediated delivery that is crucial for its biological activity and
which seem to be of general importance for the understanding of the intracellular trafficking
and release of siRNA in different cell types.

It was elucidated by Barman and Bhattacharyya [216] that AGO2 protein binds on the
cytoplasmic side of ER during the miRNA-driven translation repression event in HEK 293
cells (kidney).

Barman and Bhattacharyya [216] found polysome targeting precedes Ago2 and miRNA
interaction and repression of target mRNAs on ER using HEK 293 cells (kidney).

P-body

P-body is currently believed to form as a consequence of miRNA-mediated silencing and are
sites where repressed mRNAs accumulate and are subject to degradation or storage [217].
James et al. [202] demonstrated the co-localization of the know RISC protein components
including AGO2 into P-body structures in U2OS cells. Hubstenberger et al. [218] also
observed that mRNAs bound to AGO2 and strongly accumulate in P-bodies.

Argonaute localization to P-bodies was reported to be controlled by two post-translational
modifications (phosphorylation and hydroxylation) and the steady-state level of endogenous
AGO2 [219] and uncovered involved in mRNAs repression.

Vesicle and Golgi apparus

The endomembrane system of eukaryotic cells allows the spatial and temporal compart-
mentalization of macromolecule synthesis, sorting, delivery, and degradation. The main
organelles of the endomembrane system are the endoplasmic reticulum, the Golgi complex,
trans-Golgi network, endosomes, and lysosomes or vacuoles.

Noticeably, our predicting results reveal AGO2 protein’s distribution in Golgi apparatus,
ER and vesicles (including endosomes and exosomes) in colon tissue. This result suggests
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the possible involvement of AGO2 in the endomembrane system and related intracellular
transfer. Several previous research supports this assumption. McKenzie et al. [220] revealed
that KRAS regulates Ago2’s SCL to multivesicular endosomes in colon cancer cell lines.

The distribution of AGO2 in Golgi apparatus is consistent with previous publications of
Cikaluk et al. [221], Tahbaz et al. [222]. Furthermore, Stalder et al. [223] summarized that
during siRNAs-mediated RNA silencing event, the ’consumed’ RISC might dissociate from
the mRNP after slicing and recycle back to the rough ER via the Golgi apparatus in HeLa
cells.

Cytoskeleton

Moser et al. [224] showed that AGO2 is localized in the centrosome (cytoskeleton) and in
the basal body of primary cilia (brain tissue).

Plasma membrane

According to our results, AGO2 is localized in the plasma membrane in skin, liver, colon and
kidney tissue which there is no experimental evidence nor literature support available yet.
However, Ghosh et al. [225] has proven that AGO2 protein is a member of cell membrane
proteins in YTS cells (blood). However, the role of AGO2 in the plasma membrane and the
trafficking of AGO2 to the plasma membrane is not yet clear.

Cell junction

Although we have good coverage of predicted tissue-specific SCLs of AGO2 protein and
the ones through text mining, there are still experimental detected SCL which are missed by
both approaches. The immunofluorescent experiments from HPA have detected the in cell
junction distribution of AGO2 in both A-431 cells (skin) and U-251 MG cells (brain), but not
in U-2 OS cells (sarcoma). To date, the function of AGO2 localizing in cell junction of skin
and brain tissue is not yet clear. However, together with the evidence of AGO2 localizing in
Golgi apparatus, endosome, exosome and plasma membrane, we assume that AGO2 might
play an essential role of intracellular trafficking and secretion with siRNA in brain and skin
tissue, and probably not in sarcoma tissue.

7.4 Summary

The MLPs may have context-specific functions increasing the functionality of the proteome.
These multifunctional genes that participate in distinct cellular processes in different SCCs
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in a various tissue context. In this chapter, we focused on the human AGO2 protein which is
a major component of RNA-induced silencing complex.

We predict the tissue-specific SCLs of AGO2 protein by applying BCMRFs algorithm to
the tissue-specific PPINs. The results help us to understand the subcellular distribution of
AGO2 protein across seven tissues. We profoundly analyzed the subcellular distribution of
AGO2 which occurs in a cell type- and tissue context-dependent manner and the correlation
of its various functions in the regulation of gene expression.

Together with the predicting results of tissue-specific SCLs, the evidence from scientific
literature and experiments, the functions of AGO2 protein regarding its tissue-specificity can
be concluded as in below.

(1) mRNAs degradation. As a core element of RISC complex, AGO2 could directly
initiate the degradation of target mRNAs through its catalytic activity in gene silencing
processes guided by siRNAs or miRNAs (Universal)

(2) Regulator of miRNAs maturation (DICER universal)

(3) mRNA splicing: Translocation of AGO2 from the nucleus to cytoplasm, polysome
(lung and colon, cervix)

(4) Translation repression: AGO2 interacts with GW proteins and localizes in ER, P-body,
Golgi apparatus mainly in the uterine cervix, kidney.

(5) Intracellular trafficking and secretion with siRNA: The distribution of AGO2 in the
cytoskeleton, vesicle, plasma membrane, cell junction and extracellular space in colon,
skin, lung, and liver.

Our text mining system can validate the majority of the prediction results of AGO2 SCLs.
However, there are still some prediction results which has no literature support through our
text mining system. This might be due to the limitation that the data extraction is only used
on abstracts in our text mining system, whereas the tissue, especially the cell line and SCL
information might only occur in the main text in the publications. The other explanations
would be that the proposed tissue-specific (tissue-specific) SCL is not yet experimentally
determine, or that the predicted result is simply a false positive. Either way, these results
require further experimental examination.
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(a) Skin (b) Brain (c) Uterine cervix

(d) Liver (e) Colon

(f) Lung (g) Kidney

Fig. 7.1 Best connected tissue-specific PPINs of human AGO2 protein. The tissue-
specific (tissue-specific) PPINs of MLP AGO2 in seven human tissues, including skin,
brain,uterine cervix, liver, colon, lung and kidney. The retrieved interacting neighbors
of human AGO2 protein (black circle in the graphs) are notably different in the seven
tissues. Edge thickness corresponds to the reliability score of the PPI interaction.
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Fig. 7.2 The subcellular distribution of the interacting proteins of AGO2 across tissues.
The pie charts show the proportions of SCLs of interacting proteins of AGO2 protein.
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Table 7.2 The SCL annotations of AGO2 protein.

SCL Literature support Assigned by

Nucleus Zhang et al. [197] BHF-UCL

Nucleoplasm
(part of Nucleus) HPA

Cytoplasm Hu et al. [198], Meister et al. [199], BHF-UCL, MGI

Cytosol (in Cytoplasm) Reactome [40]

P-body (in Cytoplasm) Blake et al. [24], Loedige et al.
[200], Phalora et al. [201], James
et al. [202],

MGI, UniProt

Polysome Höck et al. [26] UniProt

Cell junction HPA

Extracellular exosome Beltrami et al. [23] BHF-UCL
(Extracelluar space)

mRNA cap binding
complex

Ryu et al. [203], Kiriakidou et al.
[204]

Parkinson’s UK-UCL,
UniProt

RISC James et al. [202], Yoda et al. [205],
Maida et al. [206], Meister et al.
[199]

BHF-UCL, MGI

RISC-loading complex Lee et al. [207], Yoda et al. [205],
Wang et al. [208], MacRae et al.
[209], Robb and Rana [210], Chen-
drimada et al. [211]

UniProt, BHF-UCL

Intracellular ribonucleo
protein complex

Höck et al. [26] UniProt

Micro-ribonucleo pro-
tein complex

Höck et al. [26], Wakiyama et al.
[212], Robb and Rana [210],

UniProt
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Fig. 7.3 The predicting subcellular distribution of human AGO2 across tissues.





Chapter 8

Conclusion and discussion

8.1 Conclusion

One essential task in the proteomics analysis is to explore the function of proteins in con-
ducting and regulating the activities at the subcellular level [1]. Protein functional activities
highly correspond with their subcellular distribution and molecular complexing interactions
[2]. The translocalization, multi-localization, and mislocalization of protein are essential
for understanding the protein functions and the mechanism of the cell. The subcellular
distribution of proteins is dynamic and tissue-specific that proteins may have different roles
at different SCLs in different tissue which adds another dimension of complexity in cell
biology, which is the focus of this work.

Scientists have made extensive efforts to develop programs to predict the SCL of proteins.
Numerous algorithms and tools have been developed in this field, based on various biological
concepts and machine learning methods. Although few studies have made efforts to disease-
related SCL prediction and stress derived SCL prediction, none of the existing techniques
have addressed and be used for tissue-specific SCL prediction.

The first contribution of this work is the development of a new algorithm BCMRFs which
improve the general multi-SCL prediction, see Chapter 4. This is accomplished by building
the weighted MRFs based on the PPI network and then performing SCL label propagation
to predict the SCLs of unknown proteins. We performed comprehensive experiments to
evaluate the performance of human protein SCL datasets. The transductive learning from
the re-balanced MLD proved to be more efficient to assign SCLs correctly. Owing to the
collective MRFs which connect the binary MRFs by their spatial adjacency among SCLs,
our method can achieve higher performance for predicting the multi-SCLs comparing with
the state-of-the-art methods of DC-kNN and Hum-mPLoc 3.0. A published version of this
work task can be found in Zhu and Ester [226].
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The second major achievement in this work is that the tissue-specific SCLs prediction is
addressed the first time. Instead of using generic physical PPINs, the tissue-specific PPINs
were applied to the BCMRFs algorithm. The evaluated results demonstrated the strength of
this approach on predicting tissue-specific SCLs. We successfully identified 1314 proteins
which were previously proven cell line dependent on subcellular level (see Chapter 5).

Another significant contribution of this work is the development of a text mining system
for mining tissue-specific SCL, see Chapter 6. It was shown the success of our dictionary-
based approach on the extraction of <tissue, protein, SCL> association from PubMed ab-
stracts. The evaluation results showed that our method achieves good precision and recall.
All the data are accessible from a TS database web server via different types of search.

Finally, the application case of analysis of tissue-specific SCL of human AGO2 protein
demonstrated how to use our approaches to study the dynamic SCLs of a protein of interest
in different tissues and cell types, see Chapter 7. The prediction results using TS-BCMRFs
showed the high accuracy in comparison with the SCL annotations from knowledge-based
curation databases and manually curated tissue-specific SCL. The TS Database provides the
relevant tissue-specific SCL with literature supports, and potentially complete the tissue-
specific BCMRFs approach.

8.2 Discussion

The physical PPI datasets in most of the PPI databases such as IntAct [42] and BioGRID
[43] are reported from different studies and techniques with huge diversity. These databases
do not differentiate PPIs according to their biological contexts whereas, during different
biological processes, one protein can play various roles and functions by interacting with
different target proteins. When using PPINs to infer the SCLs of proteins by propagating the
PPIs, the context-specific distinction of PPIs becomes crucial.

Impact on context-specific prediction.

The interactions which only occur in a specific context should not be used for the prediction
of any other context. In this thesis, we focused on tissue-specific SCL of human protein
which were previous proven. In Chapter 5 and Chapter 7, we performed tissue-specific
SCL prediction using only the tissue-specific PPIN for the corresponding tissue. The
predicted SCLs showed the significant difference from one tissue to another, which meets
our expectation that the subcellular distribution of protein are tissue dependent.
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Impact on generic prediction.

In the comparison of context-specific PPIN, the generic PPIN can be considered as the
union of many context-specific PPINs which are connected by the proteins and interactions
occurring in multiple contexts, e.g., the universal expressed proteins. However, many context-
specific PPIs are exclusive to each other. When propagating the generic PPIN, the analyses
can be misdirected by these ’false connections’ and produces an inaccurate result. The
analyses rely on context-specific PPINs should be more precise. Moreover, the union of
results from the context-specific analyses supposes to be more accurate in comparison with
the analyses based on the generic PPIN. It is necessary to mention that tissue-specificity
which is the focus of this study, is just one aspect of the concept of context-specificity.
It exists disease-specificity, condition-specificity, time-series-specificity and many other
contexts which have been studied or need to be addressed in the further. Moreover, in
this thesis, we mainly focus on a set of human tissues to demonstrate the strength of our
approaches. Therefore, a comparison between the predicted result of a set of tissue with the
generic one would be biased and not representative. Nevertheless, in Chapter 7, the predicted
tissue-specific SCLs of human AGO2 protein reached high accuracy in comparison with the
generic SCL annotations.

The lack of ground truth data of context-specific protein SCLs.

Although the gene/protein tissue-specificity are intensively studied, until this work was
accomplished, there was not yet any tissue-specific SCL dataset available. Therefore, the
collection of ground truth data and the corresponding evaluation are a challenge of this study.
In Chapter 5, the SCL data detected in cell lines which were derived from corresponding
tissues were used. We expect that these cell line specific SCL data reflect some aspects of
tissue-specific characters. However, the quality of these datasets is limited. First of all, these
cell lines are chosen for SCL experiments because of the easier manipulation procedure
and the better results, especially for U2-OS cells [28]. Also, some of the cell lines are
cancerous cell lines, and some are immortalized cell lines. The tissue-specific functional
associations were also generated based on various types of datasets using both tissues and
cell lines. Hence, we did not distinguish between healthy and diseased tissues in our study.
In general, cell lines cannot represent all the tissue-specific features due to down-regulation
of tissue-enriched genes [8].

It is highly recommended that researchers specify all the biological context details where
their experimentally detected protein SCLs and PPIs occurred in, and this information should
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be differentiated in the public databases such as UniProt, HPDB, which would make it easier
to model and understand context-related phenotypes.

8.3 Future work

Recent advances in the characterization of the SCL of proteins now indicate that dynamic
trafficking of multitudinous proteins over many SCLs is a central mechanism in cellular
function. The major achievement of this work is the success of computational prediction
of tissue-specific SCL of human proteins. In the next several years there will be significant
improvements in methodology and collection of massive amounts of global data on the
dynamics of protein SCL in cells under all kinds of biological context. This section discusses
the further directions of dynamic protein SCL prediction standing on this work.

Extension of text mining on full text

In Chapter 6, the proposed text mining system only perform on the information extraction
on the abstracts of literature. However, the full text or supplementary material, which have
seemed to be an important source of tissue, cell line, and protein SCL information. Therefore,
an extension to full text is one the future works which require more advanced systems to
overcome the additional noise in the full text and tables.

Dynamic protein SCLs in time-series

Biological processes are often dynamic, and time sensitive. Therefore, researchers monitor
the dynamic activity in a time-series manner. The time-series gene expression data were
used to identify the complete set of activated genes in a biological process, to infer their
rates of change, their order and their causal effects and to model dynamic systems in the
cell [227, 11]. The dynamic changes of protein SCL in a time-series can accurately capture
the trafficking of the protein, and thus understand the fundamental role of protein in time
regulation, e.g., circadian rhythms. With the experience of tissue-specific SCL prediction,
the BCMRFs algorithm and workflow in Chapter 5 can be applied on dynamic time-series
PPINs to predict the SCL changes of proteins over time. However, the collection of ground
truth dataset reminds as a challenge.

Isoform-specificity in SCL prediction

Some cell biology studies demonstrated functionally relevant subcellular translocation of
proteins could be achieved by protein isoforms [228, 134, 229]. Two isoforms of pyruvate
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kinases, PKM1 and PKM2, have diverse involvement in metabolic pathways. The cytoplas-
mic PKM2 isoform is essential in tumor progression. The translocation of PKM2 into the
nucleus as a response to different apoptotic stimuli and PKM2 also participate in nuclear
transcription complexes in response to hypoxia.

It was also suggested that a considerable part of tissue-specificity is likely to be achieved
by alternative splicing and interactions involving protein isoforms [9, 230]. While the PKM2
is often considered as the embryonic isoform, the M1 isoform is expressed in differentiated
cells that are actively dependent upon a high rate of energy regeneration, such as muscle and
brain [231, 232].

A recent study used an image-based approach for analyzing the isoform-specificity SCL
of several proteins [228]. Therefore, isoform-specificity should be an essential aspect in
developing computational SCL prediction approach in the future.

Extract meaningful PPI

One benefit of understanding protein SCLs is to help to discover the function of the protein.
When we use PPINs for SCL prediction, the physical contact considered in PPIN should
be specific, such as tissue-specificity, time-series-specificity, disease-specificity which we
have already studied or discussed in this work. However, whether the interactions that
a protein experiences when it is being made (translation), folded, quality checked (post-
translational modification), or degraded (post degradation) should be considered as specific
and meaningful is still in doubt. For example, all proteins at one point “touch” the ribosome,
many touch chaperones, and most make contact with the degradation machinery [36]. This is
a critical aspect of protein function assignment issue for which the protein SCL serve as well.
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Notation

Abbreviation

MTDH LYRIC protein

AGO2 argonaute-2

API application programming interface

ATP adenosine triphosphate

BCMRFs Bayesian collective Markov Random Fields

BR binary relevance

BTO BRENDA Tissue Ontology

DDX20 probable ATP-dependent RNA helicase DDX20

DHX15 pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15

DICER1 endoribonuclease dicer protein

ECC edge clustering coefficient

ER endoplasmic reticulum

FP false positive

GCN1 eIF-2-alpha kinase activator GCN1

GCNA gene co-expression network analysis

GEMI4 Gem-associated protein 4

GO Gene Ontology
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GO-CCO cellular component ontology

HPA Human Protein Atlas

HS90 heat shock protein 90

IE information extraction

IF immunofluorescence

IPO8 importin 8

JSON JavaScript Object Notation

KLR kernel-based logistic regression

kNN k nearest neighbor

LP label powerset

MAP maximum a posteriori

MC mitochondria

MCL Markov clustering

MCMC Monte Carlo Markov Chain

MFP multi-functional protein

miRNA micro RNA

MLC multi-label classification

MLD multi-labeled dataset

MLE maximum likelihood estimation

ML multi-localization

MLP multi-localizing protein

MPLE maximum pseudo-likelihood estimation

MRF Markov random field

mRNA messenger ribonucleic acid
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NER mamed entity recognition

NLP natural language processing

PRKRA interferon-inducible double-stranded RNA-dependent protein kinase activator A

PLF pseudo-likelihood function

PMID PubMed-Indexed for MEDLINE

PPI protein-protein interaction

PPIN protein-protein interaction network

RISC RNA-induced silencing complex

RLC RISC loading complex

RNA ribonucleic acid

ROC receiver operating characteristic

rRNA ribosomal ribonucleic acid

SCC subcellular compartment

SCL subcellular localization

siRNA short interfering RNA

SMN complex the survival of motor neurons complex

snRNP small nuclear ribonucleo proteins

SVM support vector machine

TARBP2 RISC-loading complex subunit TARBP2

TP true positive

tissue-specific tissue-specific

Uberon Uber-anatomy ontology

UniProtKB UniProt Knowledgebase

UPF1 protein regulator of nonsense transcripts 1
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Nomenclature

α prior probability of protein localized in a SCL

β parameter for potential of interacting proteins

η parameter for potential of protein features

µ parameter for potential of spatial adjacency

ω confidential score of the interaction

φ potential

θ parameter set

C count of extracted association

D data set

E energy function

F a vector of protein features

I iteration

i, j protein index

L label set

r random variable follows uniform distribution

R cooling rate

T temperature

wa,ws weight for co-occurrence within abstract and sentence

z normalized score

A adjacent matrix

G graph

V vertex
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