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Abstract: The transcription factor NF-κB is a key player in inflammation, cancer development, and
progression. NF-κB stimulates cell proliferation, prevents apoptosis, and could promote tumor
angiogenesis as well as metastasis. Extending the commonly accepted role of NF-κB in cancer
formation and progression, different NF-κB subunits have been shown to be active and of particular
importance in distinct types of cancer. Here, we summarize overexpression data of the NF-κB subunits
RELA, RELB, and c-REL (referring to the v-REL, which is the oncogene of Reticuloendotheliosis
virus strain T) as well as of their upstream kinase inhibitor, namely inhibitor of κB kinases (IKK),
in different human cancers, assessed by database mining. These data argue against a universal
mechanism of cancer-mediated activation of NF-κB, and suggest a much more elaborated mode of
NF-κB regulation, indicating a tumor type-specific upregulation of the NF-κB subunits. We further
discuss recent findings showing the diverse roles of NF-κB signaling in cancer development and
metastasis in a subunit-specific manner, emphasizing their specific transcriptional activity and the
role of autoregulation. While non-canonical NF-κB RELB signaling is described to be mostly present
in hematological cancers, solid cancers reveal constitutive canonical NF-κB RELA or c-REL activity.
Providing a linkage to cancer therapy, we discuss the recently described pivotal role of NF-κB c-REL
in regulating cancer-targeting immune responses. In addition, current strategies and ongoing clinical
trials are summarized, which utilize genome editing or drugs to inhibit the NF-κB subunits for
cancer treatment.

Keywords: NF-κB; RELA; cREL; RELB; tumor; cancer; transformation; inflammation; gene expression;
tumor necrosis factor; Treg

1. The NF-κB Family—An Introduction

The transcription factor nuclear factor “kappa-light-chain-enhancer” of activated B-cells
(NF-κB) [1,2] plays a key role in a broad range of cellular processes like cell growth, apoptosis,
inflammation, learning, and memory as well as immunity [3,4]. The transcription factor is ubiquitously
expressed and responds to diverse stimuli, particularly including infectious agents, cytokines, or
growth factors [5,6]. According to its various cellular functions, deregulation of NF-κB signaling is
strongly associated with cancer formation and progression [7,8].

The NF-κB family is composed of five subunits, namely, RELA (p65), RELB, c-REL, p50, and
p52 (Figure 1A), all comprising a conserved REL homology domain (RHD) near the N-terminus.
This domain is crucial for DNA binding (N-terminal part of RHD), dimerization of NF-κB family
members, as well as interaction with the inhibitors of κB (IκBs) (C-terminal part of RHD). Via the RHD,
NF-κB family members can form homo- or heterodimers, like p50/RELAp65, RELB/p50, p52/c-REL,
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or RELA/RELA. In addition, the subunits RELA, RELB, and c-REL contain a C-terminal transactivation
domain (TAD) [9,10].

Figure 1. NF-κB and autoregulation of NF-κB subunits in cancer. (A) Schematic view of the
NF-κB-family ([11]). (B) Principal mechanisms causing overexpression/activation of NF-κB as well
as the cellular effects of NF-κB acitivity leading to cancer development and progression. RHD: REL
homology domain, TAD: transactivation domain. (C) The promoters of NF-κB subunits RELA, RELB,
and c-REL contain various κB sites enabling autoregulation of NF-κB in cancer. Promoter analysis
was done as described in [12]. Briefly, sequences of promoter regions (3000 bp downstream and
100 bp upstream of the respective ATG) of interest were taken from Eukaryotic Promoter Database
(epd.vital-ti.ch) for Homo sapiens. The binding sites for the gene of interest in the chosen promoter
sequence were looked up using the JASPAR Tool [13]) with a relative score threshold of 85%.

Inactive NF-κB dimers are localized within the cytoplasm, since the NLS (nuclear localization
signal) within the RHD is masked by IκBs. During canonical NF-κB signaling, binding of ligands
such as cytokines, growth factors, or lipopolysaccharides to their respective receptors (see below,
Section 2) leads to the phosphorylation of the IκB kinase (IKK) complex comprised of IKK1/IKK2
(IKKα/IKKβ) and NEMO (NF-κB essential modulator). Phosphorylated IKKs, in particular IKK2,
in turn phosphorylate IκBα, which subsequently undergoes proteasome-mediated degradation via
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polyubiquitinylation. Degradation of IκBα leads to demasking of the nuclear translocation site of
the NF-κB p50/RELA heterodimer. In turn, translocation into the nucleus occurs. This results in
the expression of NF-κB-target genes via binding to the respective target sites [4,9]. On the contrary,
non-canonical NF-κB signaling induced by distinct members of the tumor necrosis factor (TNF)
family like lymphotoxin-β relies on the phosphorylation of IKK1 via NIK (NF-κB-inducing kinase).
IKK1 mediates the phosphorylation of p100, associated to RELB, inducing the proteasomal processing
of p100 to p52 [14]. The p52/RELB heterodimer is able to enter the nucleus and activate specific target
genes via binding to selective κB sites. Both the canonical and the non-canonical pathway have been
described to be closely linked to cancer formation and progression [15] (Figure 1B, see also Section 2).
In addition, atypical NF-κB pathways, as in the case of epidermal growth factor receptor (EGFR)
tyrosine kinase-dependent NF-κB activation, were likewise described to promote cancer [16].

2. NF-κB in Inflammation and Cancer

In response to physical or physiological stress, injury, or infection, inflammation takes place as a
key defense process of innate immunity aiming to restore the physiological situation. NF-κB is broadly
described to be one of the key transcription factors regarding pro-inflammatory signaling, particularly
activated by the presence of pro-inflammatory cytokines (like TNFα or IL-1), lipopolysaccharides
(LPS) of the bacterial cell wall [17], or viral and bacterial nucleic acids [18]. Recognition of cytokines
or LPS species is mediated by the respective receptors, such as TNF receptors or Toll-like microbial
pattern recognition receptors (TLRs). As described above, binding of such ligands to their respective
receptors leads to canonical NF-κB signaling, ultimately resulting in the translocation of released
NF-κB p50/RELA into the nucleus and binding onto κB elements located in distinct target genes.
Among the broad range of target genes of NF-κB, the most prominent ones in terms of inflammation
are also pro-inflammatory cytokines, such as TNFα [19,20], IL-1 [21], and T cell regulatory ones,
such as IL-2 [22] (proliferation) or IL-8 [23] (recruitment). The resulting feed-forward loops of
NF-κB-activation, particularly in the case of TNFα, make NF-κB a booster of pro-inflammatory
signaling, which augments the inflammation. In the case of cancer, these signaling cascades and the
resulting production of pro-inflammatory cytokines likewise recruit cytotoxic immune cells targeting
and eliminating the transformed cells [24]. However, the presence of active NF-κB in cancer is a
double-edged sword. Although being a mediator of immune responses eliminating cancer cells,
NF-κB was observed to be constitutively active in many types of cancer arising from a prolonged
chronic inflammatory microenvironment or induced by various oncogenic mutations [8,25]. In a
seminal review, Baud and Karin listed 11 types of blood-born cancers (including frequent ones
such as acute myeloid leukemia (AML)) and 23 solid tumors (including frequent ones such colon
cancer), which showed activated NF-κB signaling [26]. By way of example, elevated NF-κB activity
resulting in the accumulation of pro-inflammatory cytokines in the tumor was reported to directly
contribute to a pro-tumorigenic microenvironment in colon cancer [27]. Despite this close relation
between inflammatory NF-κB signaling and cancer, NF-κB directly mediates vital tumor-promoting
mechanisms. NF-κB activity was shown to stimulate cell proliferation, prevent apoptosis, and promote
tumor angiogenesis, epithelial-to-mesenchymal transition, invasiveness, as well as metastasis [8,28,29]
(Figure 1B). For further details, see a recent review by Taniguchi and Karin [30]. Extending this
commonly accepted role of NF-κB in cancer formation and progression, different NF-κB subunits
have been shown to be active and of particular importance in distinct types of cancers [11]. In the
following, we will discuss the current literature depicting the roles of different NF-κB subunits, their
autoregulation, and specific transcriptional activity in cancer and outline how particular subunits and
upstream kinases contribute to cancer progression.

3. Autoregulation of NF-κB—A Potential Driver on the Road to Cancer Development?

In addition to the canonical, non-canonical, and atypical activation of NF-κB (see also Section 1),
NF-κB RELA, RELB, and c-REL have been described to be activated by autoregulation [31–34].
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Accordingly, the promoter analysis of NF-κB-subunits performed in the present study depicted the
presence of various κB-binding sites for RELA, RELB, and c-REL (Figure 1C). While RELA and c-REL
promoters contain binding sites for all three transactivating subunits RELA, RELB, and c-REL, the
promoter of RELB showed only binding sites for cREL and RELA/c-REL in its proximal region. Next to
the transactivating subunits, p50 and p52 are likewise known to be autoregulated [35,36]. As depicted
in Table 1, several tumor types show various levels of overexpression of the NF-κB-transactivating
subunits. A mechanistic reason for this observation might be a feed-forward autoregulation. In this
line, a broad range of different κB binding sites within the NF-κB promoters shown here suggest NF-κB
feed-forward loops to act as boosters of vital tumor-promoting mechanisms, like cell proliferation,
angiogenesis, invasiveness, and metastasis. In addition, these autoregulatory mechanisms may at least
in part account for the constitutive activity of NF-κB observed in a broad range of cancers [25,26].

Table 1. Overexpression of NF-κB subunits in distinct human cancer tissues. COSMIC was used for
database mining [37]. Parts of this table are published in part [12]). n.a: not assessed.

Cancer Tissue
RELA RELB c-REL

%
Overexpressed

No.
Tested

%
Overexpressed

No.
Tested

%
Overexpressed

No.
Tested

Ovary 11.65 266 3.38 266 7.52 266
Lung 2.36 1019 4.12 1019 7.26 1019

Urinary tract 2.45 408 4.41 408 7.11 408
Endometrium 1.99 602 8.8 602 6.81 602

Pancreas 2.79 179 6.7 179 6.7 179
Haematopoietic and lymphoid 4.07 221 1.36 221 6.33 221

Soft tissue 3.42 263 1.9 263 6.08 263
Cervix 1.3 307 7.17 307 5.86 307

Upper aerodigestive tract 2.49 522 4.02 522 5.75 522
Kidney 2.83 600 4.5 600 5.5 600
Thyroid 1.36 513 3.7 513 5.46 513

Large intestine 1.87 610 5.25 610 4.92 610
Stomach 7.02 285 7.37 285 4.91 285

Liver 3.75 373 6.97 373 4.83 373
Central nervous system(CNS) 4.45 697 3.73 697 4.73 697

Prostate 4.62 498 5.02 498 4.62 498
Breast 4.17 1104 4.26 1104 3.71 1104
Skin 6.34 473 4.23 473 3.59 473

Oesophagus 2.4 125 2.4 125 3.2 125
Adrenal gland 12.66 79 5.06 79 2.53 79

Nervous system (NS) n.a. n.a. n.a. n.a. n.a. n.a.
Bone n.a. n.a. n.a. n.a. n.a. n.a.

4. Activity of Distinct NF-κB Upstream Kinases in Cancer

To investigate the role of the upstream regulators of NF-κB-signaling IKK1 and IKK2 in human
cancers, we applied database mining using COSMIC to determine their levels of overexpression
(Table 2) [37,38].

Here, IKK1 and IKK2 showed distinct levels of overexpression in different types of cancer,
with IKK2 being overexpressed in cancers arising in the large intestine, the oesophagus, and the
lung (Table 2). Accordingly, data from a lung cancer mouse model indicated that tumor cell
proliferation was significantly impaired after deletion of IKK2 [39]. Interestingly, IKK-mediated
phosphorylation of IκB was shown to mainly depend on the IKK2 catalytic subunit of the IKK complex
in mice [40], particularly in terms of prevention of apoptosis [41]. On the contrary, we recently
observed TNF-α-mediated cell death only in human cells lacking IKK1 and IKK2 and not in single
CRISPR/Cas-mediated IKK knockouts, suggesting that both IKK1 and IKK2 are required for functional
TNF-signaling [38] (Figure 2). However, knockout of IKK2 was shown to be associated with about
a one-third reduced number of tumors in a colitis-associated cancer model. Surprisingly, deletion
of IKK2 in enterocytes led to an increased expression of COX-2, IL-6, and MIP-2, whereas TNF-α,
IL-1, and ICAM were not affected. In the myeloid compartment, the number of tumors per mouse
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was reduced by about 50% after deletion of IKK2 [42]. Constitutive IKK2 activation in intestinal
epithelial cells was further demonstrated to induce intestinal tumors in mice [43]. These findings are
in accordance with the profound overexpression of IKK2 observed in cancers of the large intestine
(Table 2) [38]. On the functional level, IKK2 was shown to directly promote the development of lung
cancer in an inflammation-dependent manner triggered by tobacco smoke, which was abrogated by
ablation of IKK2 in myeloid cells [44]. Applying a model of breast cancer progression, Huber and
colleagues showed IKK2-dependent activation of NF-κB to be essential for epithelial-to-mesenchymal
transition and metastasis [45]. Furthermore, the activation of NF-κB by overexpression of constitutively
active IKK-2 in prostate cancer cell lines promoted the growth of prostate cancer cells in bone [46].
Accordingly, IKK1 activated by cytokines was shown to control prostate cancer metastasis, with the
amount of active nuclear IKK1 correlating with metastatic progression of mouse and human prostate
cancer [47].

Table 2. Overexpression of IκB kinases IKK1 and IKK2 in distinct human cancer tissues. COSMIC was
used for database mining [37].

Cancer Tissue
IKK1 IKK2

% Overexpressed No. Tested % Overexpressed No. Tested

Breast 7.07 1104 9.6 1104
Lung 5.1 1019 7.16 1019

Adrenal Gland 5.06 79 1.27 79
Endometrium 4.98 602 13.12 602
Oesophagus 4.8 125 24.8 125

Liver 4.56 373 5.36 373
Pancreas 4.47 179 4.47 179

Urinary tract 4.41 408 4.9 408
Stomach 4.21 285 7.72 285

Ovary 4.14 266 7.52 266
Thyroid 4.09 513 2.34 513
Prostate 3.21 498 5.02 498

Haematopoietic and lymphoid 3.17 221 5.43 221
Upper aerodigestive tract 2.87 522 6.13 522

Large intestine 2.46 610 18.52 610
Central nervous system(CNS) 2.44 697 3.59 697

Cervix 1.95 307 5.54 307
Soft tissue 1.9 263 6.08 263

Kidney 1.83 600 3.33 600
Skin 1.48 473 8.25 473

Biliary tract n.a. n.a. n.a. n.a.
Bone n.a. n.a. n.a. n.a.

Nervous system (NS) n.a. n.a. n.a. n.a.
Pituitary n.a. n.a. n.a. n.a.

Salivary gland n.a. n.a. n.a. n.a.
Testis n.a. n.a. n.a. n.a.

Next to IKKs, downstream signaling of IκBs is likewise associated to cancer development and
progression. Pikarsky and colleagues reported a super-repressor of IκB in hepatocytes to act as
a tumor promoter in inflammation-induced liver cancer [48]. Furthermore, in Hodgkin’s disease,
a hematologic malignancy, the overexpression of a truncated form of IκB is linked to constitutive
NF-κB (p50/RELA) activity [49]. In addition, we observed reduced cell growth and a retarded G1/S
transition in human cercival cancer cells, accompanied by an increase in cyclin D1-dependent kinase
activity after overexpression of IκBα. We further demonstrated a crosstalk of IκBα overexpression
with cell cycle checkpoints via a reduction of transcription factor p53 and elevation of p21WAF [50].

5. Differential Roles of NF-κB Subunits in Cancer

To provide an overview on the occurrences of distinct NF-κB subunits in cancer subtypes, we
assessed the overexpression of the NF-κB subunits RELA, RELB, and c-REL in human cancers by
database mining, using COSMIC (Table 1) [12,37].
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In line with the concept of subunit-specific gene regulation in cancer [11], we found profound
differences in the overexpression of particular NF-κB subunits in distinct types of cancer. On the
contrary, gene amplification and/or mutations within the coding region were only found in neglectable
amounts in the COSMIC database. For instance, RELA is most dominantly overexpressed in ovarian
cancer and cancer of adrenal glands in comparison to RELB and c-REL, while the overexpression of
c-REL is most abundantly found in lung cancers, compared to that of the other subunits (Table 1).
In 2016, Scheidereit and coworkers reported the cell survival of Hodgkin lymphoma (HL) cells to
be predominantly controlled by the non-canonical NF-κB pathway. In particular, knockdown of
p52/RELB in HL cells resulted in 95% reduction of viability. Using combined ChIP-sequencing
and microarray analyses, the authors further showed a low frequency of RELA bound to DNA,
but a high frequency of DNA-bound p50- and p52-containing complexes, also including p50/p52
heterodimers [51]. Non-canonical NF-κB signaling was further reported to be active in 20% of the
samples from 155 multiple myeloma patients. Here, constitutive activation of the non-canonical
RELB/p52 pathway was associated with abnormalities like bi-allelic deletion events, mutations, and
gene rearrangements in the genes NFKB1 (p50/p105) and NFKB2 (p52/p100) [52]. Furthermore ectopic
expression of RELB can inhibit the growth of tumor xenografts in mice [53]. C-REL is frequently
amplified in B cell lymphoma and could function as a tumor-promoting transcription factor, but
c-rel-/-mice also could develop an earlier onset of B cell lymphoma [54]. In summary, non-canonical
NF-κB-signaling seems to predominantly contribute to hematological cancers (Figure 2).

Figure 2. Graphical overview on the differential roles of NF-κB subunits and their transcriptional
activity in distinct types of cancer and in regulatory T cells. While non-canonical signaling is mostly
present in hematological cancer, solid cancer shows predominantly canonical signaling via p50/RELA
or p50/cREL. In addition, CRISPR/Cas-mediated double knockout (KO) of IKK1/2 was recently
shown to result in increased sensitity to TNF-α-mediated cell death [38]. In regulatory T cells (Tregs),
activation of RELA/cREL results in distinct target gene expression leading to active Tregs inhibiting
effector T cells (Teff), which infiltrate the tumor [11,12,52,55–58].

In contrast to its non-canonical counterpart, canonical NF-κB signaling is described to be present
in solid cancers (Figure 2). Shukla and colleagues reported an increased expression of RELA and p50
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in human high-grade prostate adenocarcinomas, leading to constitutive NF-κB activity. Active NF-κB
p50/RELA led to increased expression of NF-κB target genes MMP9 and VEGF, commonly involved
in cell migration and vascularization. Accordingly, NF-κB activity was related to tumor progression
due to transcriptional regulation of these NF-κB target genes [57,59]. An increased NF-κB RELA
signaling was likewise observed in tumor-initiating stem-like cells in human prostate cancer [60].
Applying a set of 1826 fully annotated prostate cancers, Gannon and colleagues showed a significant
association between an increase in the nuclear frequency of NF-κB RELA and Gleason score, which
is used to score prostate cancer grade, although the contribution of NF-κB RELA to a post-surgical
predictive model appears modest [61]. In lung cancer, NF-κB RELA is known to be required for
K-Ras-induced lung tumorigenesis, while lung tumors with RELA deletion show increased apoptosis
accompanied by reduced spread and a lower grade [62]. In addition, Mukhopadhyay and colleagues
showed highly increased levels of NF-κB p50 in nine of 11 non-small-cell lung carcinoma tissues [63].
KrasG12D-induced IKK2/NF-κB activation, resulting in increased expression of IL1-α and p62 and
respective feed-forward loops, was demonstrated to be required for the development of pancreatic
ductal adenocarcinoma [64]. In 2003, Nair and coworkers showed a constitutive activation of NF-κB
RELA during human cervical cancer progression. Here, NF-κB RELA was demonstrated to be
particularly activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas
of the human uterine cervix [65]. Interestingly, NF-κB-dependent transcription was recently shown
to be directly regulated by telomerase. In particular, telomerase directly bound to the NF-κB RELA
subunit, thus regulating NF-κB-dependent gene expression by binding κB sites in the promoter regions
of IL-6 and TNF-α, both critical for inflammation and cancer progression [58] (Figure 2). The effect
of telomerase on the strong activation of colony formation of tumor stem cells could be repressed
by siRNA knockdown of RELA. Given the transcriptional regulation of telomerase by NF-κB RELA,
Gosh and coworkers suggested a feed-forward regulation, linking chronic inflammation to increased
activity of telomerase in human cancer [58]. Next to RELA, the NF-κB subunit c-REL was likewise
shown to possess a key role in tumor formation. In 2000, Cogswell and colleagues revealed the
induction of mammary tumors by c-REL expression in mouse models of breast cancer [66]. Shehata
and coworkers further demonstrated a sixfold slower cell growth in cultivated cervical cancer cells
after expression of the c-REL homolog Xrel3 from Xenopus laevi [67]. We recently investigated the role
of c-REL in human cervical cancer cells using CRISPR/Cas9n-mediated gene editing. Knockout of
c-REL resulted in significantly decreased basal expression levels of Myc, A20, and TGFβ, accompanied
by a significantly reduced proliferative behavior and a significant delay in the prometaphase of
mitosis (see also Figure 2 for overview). Compared to the wild type, an increased resistance against
chemotherapeutic agents was observable in c-REL knockout cells [12]. Next, by directly promoting
cancer cell growth and proliferation, c-REL was very recently shown to possess an important role in
cancer-targeting immune responses with highly promising implications for therapeutic approaches [68].
Enabling tumor progression, activated CD4+Foxp3+ regulatory T cells (Tregs) are known to migrate to
the tumor site and inhibit of CD8 effector T cells (Teffs), which are mainly responsible for anti-tumor
immune responses [69]. In melanoma, large amounts of Tregs have been observed [70] and associated
with impaired prognosis, while a lesser amount of Tregs was associated with increased survival in
stage 4 melanoma patients [71]. In their groundbreaking study, Grindberg-Bleyer and colleagues
demonstrated NF-κB cREL as the critical subunit for identity and function of activated CD4+Foxp3+

Tregs in melanoma (see also Figure 2). Notably, deletion or inhibition of c-REL, but not of RELA, in
Tregs resulted in reduced melanoma growth and potentiated anti-PDL1 therapy, a ligand presented by
cancer cells and dendritic cells to evade the immune system by binding to the immunosuppressive
programmed death (PD) receptor on CD8+ Teff cells [68]. In the following, we will emphasize the
therapeutic implications of these findings as wells current strategies to utilize genome editing or drugs
for targeted deletion/inhibition of NF-κB subunits in cancer therapy.
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6. Targeting NF-κB Subunits via Genome Editing or Drugs—Therapeutic Implications

Given the important roles of distinct NF-κB subunits in cancer development and progression,
we aim to summarize currently used drugs targeting NF-κB subunits for cancer treatment. One drug
utilized in the clinics is the NF-κB inhibitor Bortezomib [72] (developed by Millenium Pharmaceuticals
(Cambridge, MA, USA) as Velcade, also known as Neomib (Getwell Pharmaceuticals, Gurgaon,
Haryana, India) or Bortecad (Cadila Healthcare, Ahmedabad, Gujarat, India), a reversible 26S
proteasome inhibitor of IκB-α degradation. This drug is certified in Europe as monotherapy for
pre-treated adult patients with progressive multiple myeloma. Next to Bortezomib, the NF-κB inhibitor
Thalidomide is also clinically applied. In 2002, Majumdar and colleagues showed Thalidomide to
abrogate TNFα-dependent activation of IKKs and I-Bα [73]. First evaluated in patients with refractory
multiple myeloma in the 1990s, Thalidomide is now known to cause responses in 30–50% of myeloma
patients as a single agent and acts synergistically with corticosteroids and chemotherapy [74,75].
In addition, a phase III clinical trial is presently studying a combination of Aspirin (an IKK inhibitor)
and Esomeprazole (a proton pump inhibitor) to prevent esophageal cancer in patients with Barrett’s
metaplasia (ClinicalTrials.gov Identifier: NCT00357682). Furthermore, a phase 3 clinical trial
is using high-dose ascorbic acid, a well-known NF-κB inhibitor [76], as a pharmaceutical for a
combination therapy for colorectal cancer (ClinicalTrials.gov Identifier: NCT02969681). Recently,
a subunit-specific inhibitor for c-REL was discovered, which might be useful for inhibiting Tregs
(patent filed, IPO: WO2017058881A1). Thus, the inhibition of c-REL might be a new way to treat
tumors pharmacologically. In addition to the application of NF-κB-inhibiting drugs, a recent increase
in clinical studies applying CRISPR/Cas-mediated knockout strategies suggest that gene therapy
might be considered in future therapeutic approaches (e.g., five clinical trials with PD-1 knockout
engineered T cells; information retrieved in February 2018 from ClinicalTrials.gov).

7. Conclusions

Although NF-κB might be considered as a major factor in cancer development and progression,
distinct NF-κB subunits seem to be active in different kinds of cancer. While non-canonical NF-κB RELB
signaling is described to be mostly present in hematological cancers, solid cancers reveal canonical
NF-κB RELA (p65) and/or c-REL activity. These particular subunits contribute to cancer formation
and invasiveness as a result of their specific transcriptional activity, inter alia via feed-forward loops
as in the case of TNFα or telomerase. Currently ongoing clinical trials target NF-κB-dependent
signaling by application of drugs or CRISPR/Cas-mediated genome editing impinging on potentially
NF-κB-driven processes. Thus, although the here summarized data emphasize the importance to assure
subunit specificity, NF-κB seems to be a highly promising target for cancer treatment. Michael Karin
and coworkers suggested over the years a universal activation of NF-κB in cancer by inflammatory
cytokines [30]. It might be important to note that our analysis of the COSMIC database argues
against this universal mechanism of cancer-mediated activation of NF-κB. Here, we suggest a much
more elaborated mode of NF-κB regulation in terms of a tumor type-specific upregulation of the
NF-κB subunits.

Acknowledgments: Studies in own lab were funded in part by the University of Bielefeld, which provides
funds for open access publishing. Further funding was provided by the Thyssen-Stiftung and the European
Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No.
766181, project “DeLIVER”, which also provides funds covering the costs to publish in open access. We thank the
anonymous reviewers for valuable advice.

Conflicts of Interest: The authors declare no conflict of interest.

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov


Biomedicines 2018, 6, 44 9 of 12

References

1. Sen, R.; Baltimore, D. Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappaB by a
posttranslational mechanism. Cell 1986, 47, 921–928. [CrossRef]

2. Sen, R.; Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell
1986, 46, 705–716. [CrossRef]

3. Perkins, N.D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol.
2007, 8, 49–62. [CrossRef] [PubMed]

4. Kaltschmidt, B.; Kaltschmidt, C. NF-kappaB in the nervous system. Cold Spring Harb. Perspect. Biol. 2009, 1,
a001271. [CrossRef] [PubMed]

5. Kaltschmidt, B.; Kaltschmidt, C. NF-kappaB in long-term memory and structural plasticity in the adult
mammalian brain. Front. Mol. Neurosci. 2015, 8, 69. [CrossRef] [PubMed]

6. Hayden, M.S.; Ghosh, S. NF-kappaB, the first quarter-century: Remarkable progress and outstanding
questions. Genes Dev. 2012, 26, 203–234. [CrossRef] [PubMed]

7. Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat. Immunol.
2011, 12, 715–723. [CrossRef] [PubMed]

8. Xia, Y.; Shen, S.; Verma, I.M. NF-kappaB, an active player in human cancers. Cancer Immunol. Res. 2014, 2,
823–830. [CrossRef] [PubMed]

9. Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring
Harb. Perspect. Biol. 2009, 1, a000034. [CrossRef] [PubMed]

10. Chen, F.E.; Huang, D.B.; Chen, Y.Q.; Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription
factor NF-kappaB bound to DNA. Nature 1998, 391, 410–413. [CrossRef] [PubMed]

11. Perkins, N.D. The diverse and complex roles of NF-kappaB subunits in cancer. Nat. Rev. Cancer 2012, 12,
121–132. [CrossRef] [PubMed]

12. Slotta, C.; Schluter, T.; Ruiz-Perera, L.M.; Kadhim, H.M.; Tertel, T.; Henkel, E.; Hubner, W.; Greiner, J.F.W.;
Huser, T.; Kaltschmidt, B.; et al. Crispr/cas9-mediated knockout of c-rel in hela cells results in profound
defects of the cell cycle. PLoS ONE 2017, 12, e0182373. [CrossRef] [PubMed]

13. Khan, A.; Fornes, O.; Stigliani, A.; Gheorghe, M.; Castro-Mondragon, J.A.; van der Lee, R.; Bessy, A.;
Cheneby, J.; Kulkarni, S.R.; Tan, G.; et al. Jaspar 2018: Update of the open-access database of transcription
factor binding profiles and its web framework. Nucleic Acids Res. 2018, 46, D260–D266. [CrossRef] [PubMed]

14. Senftleben, U.; Cao, Y.; Xiao, G.; Greten, F.R.; Krahn, G.; Bonizzi, G.; Chen, Y.; Hu, Y.; Fong, A.; Sun, S.C.;
et al. Activation by ikkalpha of a second, evolutionary conserved, nf-kappa b signaling pathway. Science
2001, 293, 1495–1499. [CrossRef] [PubMed]

15. Hoesel, B.; Schmid, J.A. The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer
2013, 12, 86. [CrossRef] [PubMed]

16. Alberti, C.; Pinciroli, P.; Valeri, B.; Ferri, R.; Ditto, A.; Umezawa, K.; Sensi, M.; Canevari, S.; Tomassetti, A.
Ligand-dependent egfr activation induces the co-expression of il-6 and pai-1 via the nfkb pathway in
advanced-stage epithelial ovarian cancer. Oncogene 2012, 31, 4139–4149. [CrossRef] [PubMed]

17. Greiner, J.F.; Muller, J.; Zeuner, M.T.; Hauser, S.; Seidel, T.; Klenke, C.; Grunwald, L.M.; Schomann, T.;
Widera, D.; Sudhoff, H.; et al. 1,8-cineol inhibits nuclear translocation of NF-kappaB p65 and
NF-kappaB-dependent transcriptional activity. Biochim. Biophys. Acta 2013, 1833, 2866–2878. [CrossRef]
[PubMed]

18. Müller, J.; Greiner, J.F.; Zeuner, M.; Brotzmann, V.; Schafermann, J.; Wieters, F.; Widera, D.; Sudhoff, H.;
Kaltschmidt, B.; Kaltschmidt, C. 1,8-cineole potentiates irf3-mediated antiviral response in human stem cells
and in an ex vivo model of rhinosinusitis. Clin. Sci. 2016, 130, 1339–1352. [CrossRef] [PubMed]

19. Shakhov, A.N.; Collart, M.A.; Vassalli, P.; Nedospasov, S.A.; Jongeneel, C.V. Kappa b-type enhancers are
involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene
in primary macrophages. J. Exp. Med. 1990, 171, 35–47. [CrossRef] [PubMed]

20. Collart, M.A.; Baeuerle, P.; Vassalli, P. Regulation of tumor necrosis factor alpha transcription in
macrophages: Involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappaB.
Mol. Cell. Biol. 1990, 10, 1498–1506. [CrossRef] [PubMed]

21. Mori, N.; Prager, D. Transactivation of the interleukin-1alpha promoter by human t-cell leukemia virus type
i and type ii tax proteins. Blood 1996, 87, 3410–3417. [PubMed]

http://dx.doi.org/10.1016/0092-8674(86)90807-X
http://dx.doi.org/10.1016/0092-8674(86)90346-6
http://dx.doi.org/10.1038/nrm2083
http://www.ncbi.nlm.nih.gov/pubmed/17183360
http://dx.doi.org/10.1101/cshperspect.a001271
http://www.ncbi.nlm.nih.gov/pubmed/20066105
http://dx.doi.org/10.3389/fnmol.2015.00069
http://www.ncbi.nlm.nih.gov/pubmed/26635522
http://dx.doi.org/10.1101/gad.183434.111
http://www.ncbi.nlm.nih.gov/pubmed/22302935
http://dx.doi.org/10.1038/ni.2060
http://www.ncbi.nlm.nih.gov/pubmed/21772280
http://dx.doi.org/10.1158/2326-6066.CIR-14-0112
http://www.ncbi.nlm.nih.gov/pubmed/25187272
http://dx.doi.org/10.1101/cshperspect.a000034
http://www.ncbi.nlm.nih.gov/pubmed/20066092
http://dx.doi.org/10.1038/34956
http://www.ncbi.nlm.nih.gov/pubmed/9450761
http://dx.doi.org/10.1038/nrc3204
http://www.ncbi.nlm.nih.gov/pubmed/22257950
http://dx.doi.org/10.1371/journal.pone.0182373
http://www.ncbi.nlm.nih.gov/pubmed/28767691
http://dx.doi.org/10.1093/nar/gkx1126
http://www.ncbi.nlm.nih.gov/pubmed/29140473
http://dx.doi.org/10.1126/science.1062677
http://www.ncbi.nlm.nih.gov/pubmed/11520989
http://dx.doi.org/10.1186/1476-4598-12-86
http://www.ncbi.nlm.nih.gov/pubmed/23915189
http://dx.doi.org/10.1038/onc.2011.572
http://www.ncbi.nlm.nih.gov/pubmed/22158046
http://dx.doi.org/10.1016/j.bbamcr.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/23872422
http://dx.doi.org/10.1042/CS20160218
http://www.ncbi.nlm.nih.gov/pubmed/27129189
http://dx.doi.org/10.1084/jem.171.1.35
http://www.ncbi.nlm.nih.gov/pubmed/2104921
http://dx.doi.org/10.1128/MCB.10.4.1498
http://www.ncbi.nlm.nih.gov/pubmed/2181276
http://www.ncbi.nlm.nih.gov/pubmed/8605359


Biomedicines 2018, 6, 44 10 of 12

22. Serfling, E.; Barthelmas, R.; Pfeuffer, I.; Schenk, B.; Zarius, S.; Swoboda, R.; Mercurio, F.; Karin, M.
Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin 2 gene in
t lymphocytes. EMBO J. 1989, 8, 465–473. [PubMed]

23. Kunsch, C.; Rosen, C.A. NF-kappaB subunit-specific regulation of the interleukin-8 promoter. Mol. Cell. Biol.
1993, 13, 6137–6146. [CrossRef] [PubMed]

24. Disis, M.L. Immune regulation of cancer. J. Clin. Oncol. 2010, 28, 4531–4538. [CrossRef] [PubMed]
25. Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J., Jr.; Sledge, G.W., Jr. Constitutive activation of

NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol. 1997, 17,
3629–3639. [CrossRef] [PubMed]

26. Baud, V.; Karin, M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov.
2009, 8, 33–40. [CrossRef] [PubMed]

27. Terzic, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology 2010, 138,
2101–2114. [CrossRef] [PubMed]

28. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
[PubMed]

29. Huang, S.; Pettaway, C.A.; Uehara, H.; Bucana, C.D.; Fidler, I.J. Blockade of NF-kappaB activity in human
prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001,
20, 4188–4197. [CrossRef] [PubMed]

30. Taniguchi, K.; Karin, M. NF-kappaB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol.
2018. [CrossRef]

31. Hannink, M.; Temin, H.M. Structure and autoregulation of the c-rel promoter. Oncogene 1990, 5, 1843–1850.
[PubMed]

32. Bren, G.D.; Solan, N.J.; Miyoshi, H.; Pennington, K.N.; Pobst, L.J.; Paya, C.V. Transcription of the relb gene is
regulated by NF-kappaB. Oncogene 2001, 20, 7722–7733. [CrossRef] [PubMed]

33. Linker, R.A.; Baeuerle, P.A.; Kaltschmidt, C. Cloning of the murine rela (p65 nf-kappa b) gene and comparison
to the human gene reveals a distinct first intron. Gene 1996, 176, 119–124. [CrossRef]

34. Capobianco, A.J.; Gilmore, T.D. Repression of the chicken c-rel promoter by vrel in chicken embryo fibroblasts
is not mediated through a consensus NF-kappaB binding site. Oncogene 1991, 6, 2203–2210. [PubMed]

35. Lombardi, L.; Ciana, P.; Cappellini, C.; Trecca, D.; Guerrini, L.; Migliazza, A.; Maiolo, A.T.; Neri, A. Structural
and functional characterization of the promoter regions of the NFKB2 gene. Nucleic Acids Res. 1995, 23,
2328–2336. [CrossRef] [PubMed]

36. Ten, R.M.; Paya, C.V.; Israel, N.; Le Bail, O.; Mattei, M.G.; Virelizier, J.L.; Kourilsky, P.; Israel, A.
The characterization of the promoter of the gene encoding the p50 subunit of NF-kappaB indicates that it
participates in its own regulation. EMBO J. 1992, 11, 195–203. [PubMed]

37. Forbes, S.A.; Beare, D.; Gunasekaran, P.; Leung, K.; Bindal, N.; Boutselakis, H.; Ding, M.; Bamford, S.;
Cole, C.; Ward, S.; et al. Cosmic: Exploring the world’s knowledge of somatic mutations in human cancer.
Nucleic Acids Res. 2015, 43, D805–D811.38. [CrossRef] [PubMed]

38. Slotta, C.; Storm, J.; Pfisterer, N.; Henkel, E.; Kleinwachter, S.; Pieper, M.; Ruiz-Perera, L.M.; Greiner, J.F.W.;
Kaltschmidt, B.; Kaltschmidt, C. Ikk1/2 protect human cells from tnf-mediated ripk1-dependent apoptosis
in an nf-kappab-independent manner. Biochim. Biophys. Acta 2018, in press. [CrossRef] [PubMed]

39. Xia, Y.; Yeddula, N.; Leblanc, M.; Ke, E.; Zhang, Y.; Oldfield, E.; Shaw, R.J.; Verma, I.M. Reduced cell
proliferation by ikk2 depletion in a mouse lung-cancer model. Nat. Cell Biol. 2012, 14, 257–265. [CrossRef]
[PubMed]

40. Li, Q.; Van Antwerp, D.; Mercurio, F.; Lee, K.F.; Verma, I.M. Severe liver degeneration in mice lacking the
ikappab kinase 2 gene. Science 1999, 284, 321–325. [CrossRef] [PubMed]

41. Li, Z.W.; Chu, W.; Hu, Y.; Delhase, M.; Deerinck, T.; Ellisman, M.; Johnson, R.; Karin, M. The ikkbeta
subunit of ikappab kinase (ikk) is essential for nuclear factor kappab activation and prevention of apoptosis.
J. Exp. Med. 1999, 189, 1839–1845. [CrossRef] [PubMed]

42. Greten, F.R.; Eckmann, L.; Greten, T.F.; Park, J.M.; Li, Z.W.; Egan, L.J.; Kagnoff, M.F.; Karin, M. Ikkbeta
links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004, 118, 285–296.
[CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/2542017
http://dx.doi.org/10.1128/MCB.13.10.6137
http://www.ncbi.nlm.nih.gov/pubmed/8413215
http://dx.doi.org/10.1200/JCO.2009.27.2146
http://www.ncbi.nlm.nih.gov/pubmed/20516428
http://dx.doi.org/10.1128/MCB.17.7.3629
http://www.ncbi.nlm.nih.gov/pubmed/9199297
http://dx.doi.org/10.1038/nrd2781
http://www.ncbi.nlm.nih.gov/pubmed/19116625
http://dx.doi.org/10.1053/j.gastro.2010.01.058
http://www.ncbi.nlm.nih.gov/pubmed/20420949
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.1038/sj.onc.1204535
http://www.ncbi.nlm.nih.gov/pubmed/11464285
http://dx.doi.org/10.1038/nri.2017.142
http://www.ncbi.nlm.nih.gov/pubmed/2284104
http://dx.doi.org/10.1038/sj.onc.1204868
http://www.ncbi.nlm.nih.gov/pubmed/11753650
http://dx.doi.org/10.1016/0378-1119(96)00231-4
http://www.ncbi.nlm.nih.gov/pubmed/1766669
http://dx.doi.org/10.1093/nar/23.12.2328
http://www.ncbi.nlm.nih.gov/pubmed/7541912
http://www.ncbi.nlm.nih.gov/pubmed/1740105
http://dx.doi.org/10.1093/nar/gku1075
http://www.ncbi.nlm.nih.gov/pubmed/25355519
http://dx.doi.org/10.1016/j.bbamcr.2018.04.003
http://www.ncbi.nlm.nih.gov/pubmed/29630899
http://dx.doi.org/10.1038/ncb2428
http://www.ncbi.nlm.nih.gov/pubmed/22327365
http://dx.doi.org/10.1126/science.284.5412.321
http://www.ncbi.nlm.nih.gov/pubmed/10195897
http://dx.doi.org/10.1084/jem.189.11.1839
http://www.ncbi.nlm.nih.gov/pubmed/10359587
http://dx.doi.org/10.1016/j.cell.2004.07.013
http://www.ncbi.nlm.nih.gov/pubmed/15294155


Biomedicines 2018, 6, 44 11 of 12

43. Vlantis, K.; Wullaert, A.; Sasaki, Y.; Schmidt-Supprian, M.; Rajewsky, K.; Roskams, T.; Pasparakis, M.
Constitutive ikk2 activation in intestinal epithelial cells induces intestinal tumors in mice. J. Clin. Investig.
2011, 121, 2781–2793. [CrossRef] [PubMed]

44. Takahashi, H.; Ogata, H.; Nishigaki, R.; Broide, D.H.; Karin, M. Tobacco smoke promotes lung tumorigenesis
by triggering ikkbeta- and jnk1-dependent inflammation. Cancer Cell 2010, 17, 89–97. [CrossRef] [PubMed]

45. Huber, M.A.; Azoitei, N.; Baumann, B.; Grunert, S.; Sommer, A.; Pehamberger, H.; Kraut, N.; Beug, H.;
Wirth, T. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast
cancer progression. J. Clin. Investig. 2004, 114, 569–581. [CrossRef] [PubMed]

46. Jin, R.; Sterling, J.A.; Edwards, J.R.; DeGraff, D.J.; Lee, C.; Park, S.I.; Matusik, R.J. Activation of nf-kappa b
signaling promotes growth of prostate cancer cells in bone. PLoS ONE 2013, 8, e60983. [CrossRef] [PubMed]

47. Luo, J.L.; Tan, W.; Ricono, J.M.; Korchynskyi, O.; Zhang, M.; Gonias, S.L.; Cheresh, D.A.; Karin, M. Nuclear
cytokine-activated ikkalpha controls prostate cancer metastasis by repressing maspin. Nature 2007, 446,
690–694. [CrossRef] [PubMed]

48. Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.;
Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer.
Nature 2004, 431, 461–466. [CrossRef] [PubMed]

49. Brandl, C.; Florian, C.; Driemel, O.; Weber, B.H.; Morsczeck, C. Identification of neural crest-derived stem
cell-like cells from the corneal limbus of juvenile mice. Exp. Eye Res. 2009, 89, 209–217. [CrossRef] [PubMed]

50. Kaltschmidt, B.; Kaltschmidt, C.; Hehner, S.P.; Droge, W.; Schmitz, M.L. Repression of NF-kappaB impairs
hela cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene 1999, 18,
3213–3225. [CrossRef] [PubMed]

51. De Oliveira, K.A.; Kaergel, E.; Heinig, M.; Fontaine, J.F.; Patone, G.; Muro, E.M.; Mathas, S.; Hummel, M.;
Andrade-Navarro, M.A.; Hubner, N.; et al. A roadmap of constitutive NF-kappaB activity in hodgkin
lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses. Genome Med. 2016, 8, 28.
[CrossRef] [PubMed]

52. Keats, J.J.; Fonseca, R.; Chesi, M.; Schop, R.; Baker, A.; Chng, W.J.; Van Wier, S.; Tiedemann, R.; Shi, C.X.;
Sebag, M.; et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.
Cancer Cell 2007, 12, 131–144. [CrossRef] [PubMed]

53. Toma, J.G.; Akhavan, M.; Fernandes, K.J.; Barnabe-Heider, F.; Sadikot, A.; Kaplan, D.R.; Miller, F.D. Isolation
of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 2001, 3, 778–784.
[CrossRef] [PubMed]

54. Techawattanawisal, W.; Nakahama, K.; Komaki, M.; Abe, M.; Takagi, Y.; Morita, I. Isolation of multipotent
stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem. Biophys.
Res. Commun. 2007, 357, 917–923. [CrossRef] [PubMed]

55. Ruan, Q.; Kameswaran, V.; Tone, Y.; Li, L.; Liou, H.C.; Greene, M.I.; Tone, M.; Chen, Y.H. Development of
foxp3(+) regulatory T cells is driven by the c-Rel enhanceosome. Immunity 2009, 31, 932–940. [CrossRef]
[PubMed]

56. Libermann, T.A.; Baltimore, D. Activation of interleukin-6 gene expression through the NF-kappaB
transcription factor. Mol. Cell. Biol. 1990, 10, 2327–2334. [CrossRef] [PubMed]

57. Shukla, S.; MacLennan, G.T.; Fu, P.; Patel, J.; Marengo, S.R.; Resnick, M.I.; Gupta, S. Nuclear
factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with
disease progression. Neoplasia 2004, 6, 390–400. [CrossRef] [PubMed]

58. Ghosh, A.; Saginc, G.; Leow, S.C.; Khattar, E.; Shin, E.M.; Yan, T.D.; Wong, M.; Zhang, Z.; Li, G.; Sung, W.K.;
et al. Telomerase directly regulates NF-kappaB-dependent transcription. Nat. Cell Biol. 2012, 14, 1270–1281.
[CrossRef] [PubMed]

59. Widera, D.; Zander, C.; Heidbreder, M.; Kasperek, Y.; Noll, T.; Seitz, O.; Saldamli, B.; Sudhoff, H.; Sader, R.;
Kaltschmidt, C.; et al. Adult palatum as a novel source of neural crest-related stem cells. Stem Cells 2009, 27,
1899–1910. [CrossRef] [PubMed]

60. Rajasekhar, V.K.; Studer, L.; Gerald, W.; Socci, N.D.; Scher, H.I. Tumour-initiating stem-like cells in human
prostate cancer exhibit increased NF-kappaB signalling. Nat. Commun. 2011, 2, 162. [CrossRef] [PubMed]

61. Gannon, P.O.; Lessard, L.; Stevens, L.M.; Forest, V.; Begin, L.R.; Minner, S.; Tennstedt, P.; Schlomm, T.;
Mes-Masson, A.M.; Saad, F. Large-scale independent validation of the nuclear factor-kappaB p65 prognostic
biomarker in prostate cancer. Eur. J. Cancer 2013, 49, 2441–2448. [CrossRef] [PubMed]

http://dx.doi.org/10.1172/JCI45349
http://www.ncbi.nlm.nih.gov/pubmed/21701067
http://dx.doi.org/10.1016/j.ccr.2009.12.008
http://www.ncbi.nlm.nih.gov/pubmed/20129250
http://dx.doi.org/10.1172/JCI200421358
http://www.ncbi.nlm.nih.gov/pubmed/15314694
http://dx.doi.org/10.1371/journal.pone.0060983
http://www.ncbi.nlm.nih.gov/pubmed/23577181
http://dx.doi.org/10.1038/nature05656
http://www.ncbi.nlm.nih.gov/pubmed/17377533
http://dx.doi.org/10.1038/nature02924
http://www.ncbi.nlm.nih.gov/pubmed/15329734
http://dx.doi.org/10.1016/j.exer.2009.03.009
http://www.ncbi.nlm.nih.gov/pubmed/19328783
http://dx.doi.org/10.1038/sj.onc.1202657
http://www.ncbi.nlm.nih.gov/pubmed/10359527
http://dx.doi.org/10.1186/s13073-016-0280-5
http://www.ncbi.nlm.nih.gov/pubmed/26988706
http://dx.doi.org/10.1016/j.ccr.2007.07.003
http://www.ncbi.nlm.nih.gov/pubmed/17692805
http://dx.doi.org/10.1038/ncb0901-778
http://www.ncbi.nlm.nih.gov/pubmed/11533656
http://dx.doi.org/10.1016/j.bbrc.2007.04.031
http://www.ncbi.nlm.nih.gov/pubmed/17459343
http://dx.doi.org/10.1016/j.immuni.2009.10.006
http://www.ncbi.nlm.nih.gov/pubmed/20064450
http://dx.doi.org/10.1128/MCB.10.5.2327
http://www.ncbi.nlm.nih.gov/pubmed/2183031
http://dx.doi.org/10.1593/neo.04112
http://www.ncbi.nlm.nih.gov/pubmed/15256061
http://dx.doi.org/10.1038/ncb2621
http://www.ncbi.nlm.nih.gov/pubmed/23159929
http://dx.doi.org/10.1002/stem.104
http://www.ncbi.nlm.nih.gov/pubmed/19544446
http://dx.doi.org/10.1038/ncomms1159
http://www.ncbi.nlm.nih.gov/pubmed/21245843
http://dx.doi.org/10.1016/j.ejca.2013.02.026
http://www.ncbi.nlm.nih.gov/pubmed/23541563


Biomedicines 2018, 6, 44 12 of 12

62. Basseres, D.S.; Ebbs, A.; Levantini, E.; Baldwin, A.S. Requirement of the NF-kappaB subunit p65/RelA for
K-Ras-induced lung tumorigenesis. Cancer Res. 2010, 70, 3537–3546. [CrossRef] [PubMed]

63. Mukhopadhyay, T.; Roth, J.A.; Maxwell, S.A. Altered expression of the p50 subunit of the NF-kappaB
transcription factor complex in non-small cell lung carcinoma. Oncogene 1995, 11, 999–1003. [PubMed]

64. Ling, J.; Kang, Y.; Zhao, R.; Xia, Q.; Lee, D.F.; Chang, Z.; Li, J.; Peng, B.; Fleming, J.B.; Wang, H.; et al.
Krasg12d-induced ikk2/beta/NF-kappaB activation by il-1alpha and p62 feedforward loops is required for
development of pancreatic ductal adenocarcinoma. Cancer Cell 2012, 21, 105–120. [CrossRef] [PubMed]

65. Nair, A.; Venkatraman, M.; Maliekal, T.T.; Nair, B.; Karunagaran, D. NF-kappaB is constitutively activated in
high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix.
Oncogene 2003, 22, 50–58. [CrossRef] [PubMed]

66. Cogswell, P.C.; Guttridge, D.C.; Funkhouser, W.K.; Baldwin, A.S., Jr. Selective activation of nf-kappa b
subunits in human breast cancer: Potential roles for NF-kappaB2/p52 and for Bcl-3. Oncogene 2000, 19,
1123–1131. [CrossRef] [PubMed]

67. Shehata, M.; Shehata, F.; Pater, A. Apoptosis effects of xrel3 c-Rel/Nuclear factor-kappa B homolog in human
cervical cancer cells. Cell Biol. Int. 2005, 29, 429–440. [CrossRef] [PubMed]

68. Grinberg-Bleyer, Y.; Oh, H.; Desrichard, A.; Bhatt, D.M.; Caron, R.; Chan, T.A.; Schmid, R.M.; Klein, U.;
Hayden, M.S.; Ghosh, S. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer.
Cell 2017, 170, 1096–1108. [CrossRef] [PubMed]

69. Nishikawa, H.; Sakaguchi, S. Regulatory t cells in tumor immunity. Int. J. Cancer 2010, 127, 759–767.
[CrossRef] [PubMed]

70. Jandus, C.; Bioley, G.; Speiser, D.E.; Romero, P. Selective accumulation of differentiated foxp3(+) cd4 (+) T
cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol.
Immunother. 2008, 57, 1795–1805. [CrossRef] [PubMed]

71. Baumgartner, J.M.; Gonzalez, R.; Lewis, K.D.; Robinson, W.A.; Richter, D.A.; Palmer, B.E.; Wilson, C.C.;
McCarter, M.D. Increased survival from stage IV melanoma associated with fewer regulatory T cells.
J. Surg. Res. 2009, 154, 13–20. [CrossRef] [PubMed]

72. Adams, J.; Kauffman, M. Development of the proteasome inhibitor velcade (bortezomib). Cancer Investig.
2004, 22, 304–311. [CrossRef]

73. Majumdar, S.; Lamothe, B.; Aggarwal, B.B. Thalidomide suppresses NF-kappa B activation induced by TNF
and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J. Immunol. 2002, 168,
2644–2651. [CrossRef] [PubMed]

74. Singhal, S.; Mehta, J. Thalidomide in cancer. Biomed. Pharmacother. 2002, 56, 4–12. [CrossRef]
75. Strasser, K.; Ludwig, H. Thalidomide treatment in multiple myeloma. Blood Rev. 2002, 16, 207–215. [CrossRef]
76. Carcamo, J.M.; Pedraza, A.; Borquez-Ojeda, O.; Golde, D.W. Vitamin C suppresses TNF alpha-induced

NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry 2002, 41, 12995–13002.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1158/0008-5472.CAN-09-4290
http://www.ncbi.nlm.nih.gov/pubmed/20406971
http://www.ncbi.nlm.nih.gov/pubmed/7675461
http://dx.doi.org/10.1016/j.ccr.2011.12.006
http://www.ncbi.nlm.nih.gov/pubmed/22264792
http://dx.doi.org/10.1038/sj.onc.1206043
http://www.ncbi.nlm.nih.gov/pubmed/12527907
http://dx.doi.org/10.1038/sj.onc.1203412
http://www.ncbi.nlm.nih.gov/pubmed/10713699
http://dx.doi.org/10.1016/j.cellbi.2004.12.014
http://www.ncbi.nlm.nih.gov/pubmed/16054560
http://dx.doi.org/10.1016/j.cell.2017.08.004
http://www.ncbi.nlm.nih.gov/pubmed/28886380
http://dx.doi.org/10.1002/ijc.25429
http://www.ncbi.nlm.nih.gov/pubmed/20518016
http://dx.doi.org/10.1007/s00262-008-0507-4
http://www.ncbi.nlm.nih.gov/pubmed/18414854
http://dx.doi.org/10.1016/j.jss.2008.04.043
http://www.ncbi.nlm.nih.gov/pubmed/19062042
http://dx.doi.org/10.1081/CNV-120030218
http://dx.doi.org/10.4049/jimmunol.168.6.2644
http://www.ncbi.nlm.nih.gov/pubmed/11884428
http://dx.doi.org/10.1016/S0753-3322(01)00146-9
http://dx.doi.org/10.1016/S0268-960X(02)00031-0
http://dx.doi.org/10.1021/bi0263210
http://www.ncbi.nlm.nih.gov/pubmed/12390026
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	The NF-B Family—An Introduction 
	NF-B in Inflammation and Cancer 
	Autoregulation of NF-B—A Potential Driver on the Road to Cancer Development? 
	Activity of Distinct NF-B Upstream Kinases in Cancer 
	Differential Roles of NF-B Subunits in Cancer 
	Targeting NF-B Subunits via Genome Editing or Drugs—Therapeutic Implications 
	Conclusions 
	References

