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A B S T R A C T

Short-Term Plasticity (STP) is the ability of the synapse to modify its strength for a

short time. Despite several silicon implementations, STP remains one of the least ex-

plored topics in the neuromorphic computing research. One form of STP implementa-

tion called Short-Term Depression (STD) is available to use in our mixed-signal sub-

threshold neuromorphic chip. However, the design lacks an independent control over

recovery rate of STD. This limitation prevents the circuit to execute a particular synap-

tic dynamics, such as a strong depression followed by a fast recovery. Another variant

of STP called Short-Term Facilitation (STF) is possible to implement in our neuromor-

phic chip by operating the synapse circuit available, in a speci�c regime. This operation

prevents the time-constant of the synapse to be tuned independently from that of STF

implementation. We designed novel STD and STF circuits to solve these problems. The

STP circuits are compact in design, but the responses of one of the STP circuits (STF)

reached the steady-state values only for certain input frequencies. Therefore, we de-

signed another set of STP circuits by adding a negative feedback loop to our previous

design. All these STP circuits are designed and fabricated in a standard Complementary

Metal Oxide Semiconductor (CMOS) 180 nm technology and characterized. Alongside

the Very Large Scale Integration (VLSI) design, we also demonstrated the role of the

STP in a network to recognize the calling songs of crickets. We chose this network

due to its small size and the auditory neurons involved in recognition are electrophys-

iologically studied in the literature. Although several research groups proposed the

connectivity of these neurons, the functional structure of the network remains un-

clear. Therefore, we modeled a spiking neural network using STF in our neuromorphic

hardware based on the neurophysiological evidence. Our network model selects the

attractive frequencies comparable to the observations in female crickets and gives an

idea about the connectivity scheme. Overall, through this research on Short-Term Plas-

ticity (STP), we contributed to two active research �elds: neuromorphic computing and

computational neuroscience.
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1
I N T R O D U C T I O N

1.1 motivation of this study

Deep neural networks, the state-of-art in arti�cial intelligence have been proven to

show high accuracy in solving classi�cation problems. However, the number of compu-

tational resources utilized by these deep networks are signi�cantly high. Recently, the

bio-derived class of neural networks called spiking neural networks are gaining a lot

of attention from the computing research community due to its energy e�ciency trait.

The main ingredient of spiking neural networks are spikes, whose sparse nature min-

imizes the computational power required to process them. Time is inherently repre-

sented in spiking networks, meaning that no additional resource is needed to compute

the time. This aspect paved the way for the development of an energy-e�cient spike-

communication protocol called the Address Event Representation (AER), in which the

neurons communicate to each other concerning ‘spike-times’ and ‘neuron-addresses’.

The spiking networks can e�ciently model the time-varying dynamics of the bio-

inspired systems. In recent years, more and more dedicated hardware for running spik-

ing neural networks are being developed. This class of dedicated hardware is called

the neuromorphic hardware, and their design/architecture are optimized to implement

spike-based algorithms. In this research, we model one such spiking network that rec-

ognizes the arti�cial calling songs of crickets, in the neuromorphic hardware.

We aim to model a system in the hardware that genuinely implements the biophys-

ical models in silicon. Several kinds of neuromorphic hardware exist. Amongst all,

the mixed-signal sub-threshold neuromorphic hardware adequately captures the dy-

namics of the bio-inspired neuron models and operates in biologically realistic time-

constants. The hardware runs asynchronously and executes the computation in en-

tirely parallel fashion. This system uses low-power and can be integrated with event-

based sensors to be used in real-time closed-loop robotic applications. This type of

neuromorphic hardware can also be used to explore the properties of computational

neuroscience models. Therefore, the mixed-signal sub-threshold neuromorphic hard-

ware is the best suitable choice to implement our network of auditory pattern recog-

nition in crickets.
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1.2 objectives of this research

The neuromorphic chips are designed to be served as general purpose hardware to em-

ulate the spiking neuron models. However, the silicon models are unchangeable after

fabrication. Therefore, the designed system must implement the necessary aspects of

the neuron models as much as possible. It is feasible to capture the �ne details of the

biophysical models by modeling a small-scale system. Therefore, the small-scale de-

sign minimizes the risk involved to miss out any aspect in a large-scale system design.

It is also important to mention here that the fabrication costs are high to design a cus-

tom chip. The chip design has to be updated accordingly because bio-physical models

are regularly improving. In this case, small-scale systems are ideal to be designed in

dedicated hardware concerning design costs and the chip can be redesigned faster com-

pared to the large-scale hardware. The small-scale system also serves as a prototype

for the large-scale design. Considering the advantages mentioned above, we model a

small-scale system inspired by the auditory system of crickets in this research.

1.2 objectives of this research

We aim to understand insects with neural structures that are several orders of magni-

tude smaller than the mammalian brain yet display a variety of complex behavior. For

example, crickets are exciting for neuroscientists due to their acoustic-oriented behav-

ior. Male crickets produce calling songs, and female crickets respond to these calling

songs by approaching the males. This phenomenon is called a cricket phonotaxis. The

studies on phonotaxis suggest that females are attracted to certain types of male call-

ing songs with speci�c temporal features. The electrophysiological recordings of the

auditory neurons of a cricket brain validate this proof of principle. However, the un-

derlying neural network responsible for the recognition of the calling songs is not

evident in the literature. Understanding these small systems can give an insight into

the computations occurring in tiny brains. An elementary network of cricket phono-

taxis is modeled in [96] based on the neurophysiological evidence. This network model

laid the foundation for this research. The model consists of four neurons with Short-

Term Plasticity (STP) synapses in between. STP is one of the short and quick learning

mechanisms of the synapses of the brain which is used in speech recognition, motor

control, etc. Considering the small size, we implemented this network in the existing

mixed-signal sub-threshold neuromorphic hardware designed by Prof. E. Chicca and

Prof. G. Indiveri, at the Institute of Neuroinformatics, University of Zürich and ETH

Zürich. Neuromorphic systems aim at emulating the biophysical mechanisms of the

neural elements in the silicon substrate. Calling song recognition network of crickets

is compact to study through the neuromorphic chips. During the implementation, we

discovered that we cannot implement speci�c temporal dynamics of STP with the cir-

3



introduction

cuit present in the neuromorphic chip. Therefore we designed a series of STP circuits

to perform particular computations of the STP such as the detection of bursts of spikes.

To summarise, we redesign the STP circuit that can be tuned to emulate speci�c tem-

poral dynamics to detect bursts. We also demonstrate the STP by modeling the calling

song recognition network of crickets in the neuromorphic hardware.

1.3 main contribution of this work

With this interdisciplinary research, we aimed to contribute to both the computational

neuroscience and the neuromorphic engineering. We designed and fabricated four neu-

romorphic STP circuits that are capable of detecting bursts of spikes. The proposed STP

circuits can be integrated with the existing mixed-signal subthreshold neuromorphic

system. Due to its compact design, the STP blocks can be used in large synaptic ar-

rays. A novel calling song recognition network of crickets is modeled using STP. The

model selectively chooses the attractive stimuli comparable to the neurophysiological

evidence. It also suggests the connection scheme of auditory neurons in cricket brain.

This model can be exported to perform acoustic-based tasks in neuro-robots.

1.4 structure of the thesis

The structure of this thesis is de�ned as follows:

Chapter 1 gives the general introduction which includes the motivation, aims, and the

contribution of this research.

Chapter 2 is a literature review on short-term plasticity from the computational neu-

roscience perspective. The biophysical mechanisms of the STP and the commonly used

STP models along with examples of the computational roles of the STP in neural circuits

are discussed.

Chapter 3 provides an overview of neuromorphic hardware circuits used in this re-

search. A wide variety of topics, ranging from the basic operations of transistors to

the complex neuromorphic synapse and neuron circuits are reviewed, and di�erent

types of neuromorphic hardware, in particular, the hardware used for this research

are covered.

Chapter 4 is dedicated to the neuromorphic circuits of the STP. The existing STP circuits

are examined, and the novel STP circuits are proposed. The design of these STP circuits
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1.4 structure of the thesis

are explained, and their operations are analyzed using simulations and hardware im-

plementations.

Chapter 5 demonstrates the STP in a calling song recognition network of crickets. The

network is modeled using the neuromorphic hardware, and the responses of the in-

dividual neurons are tuned based on the neurophysiological evidence. The network

responses are presented along with the deviations resulting from device mismatch ef-

fects, across a group of same networks.

Chapter 6 is the conclusion of this research. Future directions of this study and outlook

of the neuromorphic engineering are discussed.
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2
S H O R T-T E R M S Y N A P T I C P L A S T I C I T Y

2.1 introduction

Plasticity in synapses postulates learning in biology. Synaptic plasticity helps to re-

member the history of activity between the neurons. Neural systems of animals in

various developmental stages exhibit di�erent forms of synaptic plasticity. For exam-

ple, the calyx of Held synapse, located in the mammalian auditory brainstem shows a

rapid type of synaptic learning mechanism called Short-Term Plasticity (STP). STP is a

type of synaptic plasticity that lasts for a short period ranging from milliseconds to sec-

onds and even minutes. STP relies only on the pre-synaptic activity that modi�es the

release of the neurotransmitters from the synaptic bouton. Structural changes of the

synapse are instead involved in long-term plasticity. Pre- and post-synaptic activities

in�uence long-term plasticity, which supports the formation of lifelong memory [13]

as well as working memory [77]. In vivo [110] and in vitro [3] stimulations suggest

long-term modi�cations of synaptic strength lasting for hours or longer. Both short-

and long-term plasticities a�ect the strength of the synapse in two distinct ways: po-

tentiation (or facilitation) strengthens the synapse, depression weakens the synapse.

STP is the key element of this research. We built circuits that emulate the temporal

dynamics of the STP (in chapter 4). We also demonstrated the STP in a small neural

network, which recognizes the calling songs of crickets (in chapter 5). In this chapter,

we discuss the two types of STP, its computational properties and the theoretical mod-

els of STP. We aim to provide an understanding of the STP, from the perspective of a

neuroscientist.

One form of STP called the Short-Term Facilitation (STF) is an enhancement of synap-

tic e�cacy for a short period in the order of tens to hundreds of milliseconds. STF

has been reported in neuro-muscular junctions [6], hippo-campus [94], synapses be-

tween pyramidal cells, and bi-tufted inter-neurons [95]. Facilitation occurs due to the

additive in�ux of calcium ions following the pre-synaptic spikes, thereby increasing

the probability of release of neurotransmitters into the synapse cleft. Many types of

synaptic enhancement exist, and they occur on several short timescales. For instance,

a type of facilitation called augmentation increases the synaptic strength for a few sec-
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2.2 models of short-term plasticity

onds. Others include Post-Tetanic Potentiation (PTP) that strengthens the synapse for

several seconds to minutes and Short-Term Synaptic Potentiation (STSP) that enhances

the synapse for several minutes. According to [93], it is often unclear to distinguish

augmentation from the PTP.

Another form of STP called the Short-Term Depression (STD) exists in the synapses

between the pyramidal cells and the multi-polar inter-neurons [95], synapses in layer

2/3 of rat primary visual cortex [108], and neuro-muscular junctions [18]. STD is the

short-time reduction in strength of a synapse due to the depletion of neurotransmitters

caused by the pre-synaptic activity. In the pre-synaptic terminal, several sites (or pools)

contain the neurotransmitters. They are reserved pool, readily releasable pool, and

immediately releasable pool. Depletion of neurotransmitters in the readily releasable

pool determines the STD.

Short-term depression and facilitation may coexist at the same synapse. The balance

between the two depends on the number of the available vesicles of neurotransmit-

ters, that is, the quantal content. High probability of release of neurotransmitter per

action potential favors depression [114] (because the most readily releasable quanta

are released �rst). The remaining quanta are less quickly released (due to the slow

replenishment of quantal store). The low probability of neurotransmitter release per

action potential favors facilitation [114]. Facilitation does not depend on the release

of the neurotransmitter during the pre-synaptic spike. Only the entry of calcium after

the �rst pre-synaptic spike causes facilitation. The residual calcium exists always after

every pre-synaptic spike. Over repeated spike activity increases the amount of remain-

ing calcium thereby favors facilitation. Both STD and STF turn the static synapse into

a dynamic synapse. The adaptive strength of the STP ensures the synapses to display

various temporal dynamics. Few of them will be discussed in the next sections of this

chapter.

2.2 models of short-term plasticity

Several models based on the bio-physical mechanisms of Short-Term Plasticity (STP)

have been proposed in the literature [108, 71, 107]. STP models from [108] and [71]

will be brie�y discussed in this section as they are commonly used in neuroscience

research.

Abbott and his colleagues proposed a STP model in [108]. They �t the recordings from

the excitatory synapses (in layer 2/3) of rat primary visual cortex with the STP model.
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short-term synaptic plasticity

The parameters from the �ts are then used to predict the responses of the STP model

to arbitrary stimuli. This STP model provides a tool to understand the role of synaptic

processes in the sensory responses of cortical neurons. In biology, STP is characterized

by the change in the amplitude of the Excitatory Post-Synaptic Potential (EPSP) due

to the modi�cation in the synaptic strength. In the model, the change in the response

amplitude A results from the product of an initial amplitude and dynamic variables

representing facilitation and depression. The EPSP amplitude A is de�ned as:

A = A0 · F ·D (1)

whereA0 is the initial value of EPSP amplitude. F is the facilitation variable which is >

1, and D is the depression variable which is 6 1. The dynamic variables are updated

for each incoming pulse by the following equations:

D← D · d (2)

F← F+ f (3)

where d and f are constant factors. They represent the amount of depression and fa-

cilitation per pre-synaptic action potential. The depression is updated multiplicatively,

whereas the facilitation is updated additively, to limit the substantial e�ects of facilita-

tion, especially during the high-input frequencies.

During Inter-Spike intervals (ISIs), depression and facilitation variables recover toward

their initial values exponentially, as given by the following �rst-order di�erential equa-

tions:

τD ·
dD

dt
= 1−D (4)

τF ·
dF

dt
= 1− F (5)

8



2.2 models of short-term plasticity

where τD and τF are the time-constants of depression and facilitation.

For simplicity reasons, we considered only the two-compartment model with one de-

pression variable D, as proposed in the original model in [108]. On the contrary, the

four-compartment model has several depression variables D1, D2, and D3 and di�er-

ent time-constants. This simple model can capture the main features of the short-term

temporal dynamics that a�ect the strength of the synapse during and between input

pulses. The model also predicts the complex stimulation patterns such as Excitatory

Post-Synaptic Current (EPSC) responses to random stimulus trains, similar to those

occurring in vivo. However, the model lacks the precision to predict the response to

speci�c stimuli within the spike train (due to the increase in the error of the �ts that

follows the trial-to-trial variability in the data).

We look into another phenomenological model of STP proposed by Markram and his

colleagues in [71]. The model was used to analyze the transmission of essential synap-

tic features to the post-synaptic neuron during STP. The following equations charac-

terize the model:

dR

dt
=
1− R

D
(6)

du

dt
=
U− u

F
(7)

where STD and STF are represented as two independent variables R and u respectively.

U corresponds to the utilization of synaptic e�cacy which is determined by the prob-

ability of release of neurotransmitters. D represents the time-constant of depression,

and F represents the time-constant of facilitation. This is also a simple model with

only three parameters, U,D and F the values of which are 6 1. The model is updated

for every incoming pre-synaptic action potential by the following equations in the

preserved order:

R← R · (1− u) (8)

u← u+U · (1− u) (9)
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short-term synaptic plasticity

The parameter U determines the peak value of the �rst action potential. A small U

favors facilitation and a signi�cant U results in depression. Features that get trans-

ferred from the pre-synaptic neuron to the post-synaptic neuron during the STP are

investigated using this model in [71]. This model suggests the change in the input fre-

quencies is the most signi�cant feature that gets transferred across the neurons. The

above mentioned STP models are commonly used by the neuroscientists to demon-

strate the computational role of STP in individual neurons as well as in large networks

(which will be discussed in the following section). These models laid the foundation

of designing STP circuits in silicon [15].

2.3 computational role of stp

Several scienti�c works explain the computational signi�cance of STP at the level of

single neurons as well as in large networks. This section will be useful in understand-

ing the fundamental properties of the STP based on which our circuits and the network

are designed. Few of the primary computational roles of STP synapses will be discussed

in the following.

2.3.1 Temporal �ltering

Synapses of a brain act as temporal �lters to the incoming neuronal signals. STP im-

plements one such �ltering mechanism that a�ects the strength of the synapse. The

strength of the synapse with STD is gradually decreased in response to a continuous

stream of pre-synaptic spikes. This e�ect makes the post-synaptic neuron less respon-

sive to a sustained stimuli. At the same time, the synaptic strength is recovered during

the ISIs. An example, describing the �ltering properties of STD presented in [107] is

shown in Fig. 1.

In case of a low-frequency stimulus, su�cient time is available for STD to recover the

synaptic strength back to its initial value. On the other hand, the synaptic strength is

reduced quickly, to a high-frequency stimulus. Hence, STD tunes the synapse as a low-

pass �lter given that the high-frequency components of the stimulus are suppressed,

and the low-frequency components are transmitted with the highest strength.

Opposite behavior is observed in the case of STF, during which the strength of the

synapse increases in response to incoming spikes. Initially, the post-synaptic neuron

does not respond to the incoming spikes, due to the weak synapse. Over repeated

10



2.3 computational role of stp

Figure 1: Temporal �ltering properties of STD measured at the neocortical pyramidal neurons,

presented in [107]. The EPSPs responses of the same neuron, averaged over 20 trials,

to a 10 Hz (top) and 20 Hz (bottom) spike train stimuli are shown in (A). In both the

frequencies, the amplitude of the EPSP is decreased and eventually reached a steady-

state value (stationary EPSP) over repeated stimulation, due to the presence of STD.

The EPSPs amplitude recovers towards its resting value during the ISIs. The magnitude

of the stationary EPSP in response to the 20Hz stimulus is smaller than that of 10Hz

stimulus. The EPSP amplitudes (stationary) plotted against the pre-synaptic stimulus

frequencies are shown in (B). The solid line shows the inverse relationship of the EPSP

amplitude to (stationary) the pre-synaptic input frequency. Filled ‘O’ marks denote

the responses to the high concentration of calcium, and �lled ‘X’ marks denote the

responses to low calcium concentration (at the same synapse). The release probability

is reduced by lowering calcium concentration (see �lled ‘O’ and �lled ‘X’), which

slows the rate of synaptic depression. The low-pass �lter characteristics of the neuron

towards its pre-synaptic input frequencies are visible from this plot.

stimulations, the number of input spikes is increased, and as a result, the synapse

becomes strong, due to the presence of STF.

The strength of the synapse recovers back to its weak initial value for a low-frequency

stimulus due to large ISIs. However, the synaptic strength is increased in response

to the high-frequency stimuli. Therefore, STF tunes the synapse as a high-pass �lter

given that the low-frequency components of the input are suppressed, and the high-

frequency components are transmitted with full strength. It is to be noted that the

synaptic strengths are always limited by the highest and the lowest possible values.
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Figure 2: Selective communication between the neurons through STP using neuronal bursts,

as shown in [71]. (A) displays the image of three biocytin-�lled neurons pictured

through the light microscope. Top right of the �gure shows the connectivity diagram.

The pyramidal neuron (left) is connected to the pyramidal neuron (right) and the bipo-

lar inter-neuron (right). (B) shows the single-trial responses of all three neurons to the

same input spike train with 30 Hz frequency. The left pyramidal neuron projects to

the right bipolar inter-neuron through the STF synapse. The EPSPs of the inter-neuron

builds-up and spikes at the end of the input burst, as a result of the increase in synap-

tic strength by STF. The left pyramidal neuron projects to the right pyramidal neuron

through the STD synapse. The right neuron marks the onset of the burst with a spike,

because of the high initial synaptic strength. Eventually, the amplitude of the EPSP is

decreased, and no spike is elicited during the burst due to STD. After a long ISI which

followed after the burst, the right pyramidal neuron responds again with a spike to a

single spike input, as the strength of the synapse is recovered back to its high initial

strength.

2.3.2 Burst detection

Short-Term Plasticity (STP) in the synapse enables the post-synaptic neuron to detect

bursts from the pre-synaptic neuron. ‘Bursts’ are strictly timed spikes with short ISIs.

Following example explains the role of STP in identifying the neuronal bursts. Consider

a burst of spikes stimulates a neuron through the STD synapse. Assume the strength

of the STD synapse is high when the �rst spike of the burst arrives at the synapse.

The incoming spikes reduce the synaptic strength (due to STD), because of insu�cient
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time available to recover back to its original strength during a burst. In this way, the

post-synaptic neuron can detect the onset of bursts due to the high initial synaptic

strength.

On the contrary, imagine the post-synaptic neuron with the STF synapse is tuned for a

speci�c frequency and duration of the burst, such that the neuron slowly builds up its

Excitatory Post-Synaptic Potential (EPSP) during the burst without eliciting any spike.

When the EPSP crosses the threshold, the neuron eventually spikes marking the end of

the burst. Therefore, the STD and the STF makes the post-synaptic neuron to detect the

onset and o�set of the bursts. These burst detection properties enable the neurons to

communicate to other neurons of the network [71] selectively.

An example to demonstrate the selective communication through STP is adapted from

[71] and shown in Fig. 2. The light microscopic image of the three biocytin-�lled neo-

cortical neurons is shown in the left half of �gure (A). The connectivity pattern of the

three neurons is shown in the top right corner of �gure (B), which shows that the

left pyramidal neuron innervated the right pyramidal neuron as well as the bipolar

inter-neuron (right). The synapse between the left pyramidal neuron and the right

pyramidal neuron has STD. The synapse between the left pyramidal neuron and the

bipolar inter-neuron has STF. The responses of all three neurons to the same spike

train stimulus of 30 Hz frequency are shown in the bottom right part of the �gure.

When the left pyramidal neuron emits a mixture of spike bursts followed by a single

spike with a large ISIs, the bipolar inter-neuron responds only to the bursts (due to the

high-pass �lter property of the STF). The right pyramidal neuron with the STD synapse

responds to both the single spike input and the bursts (due to the high initial synaptic

strength). In this way, a single neuron can communicate in di�erent ways to other

neurons through the STP synapses and the neuronal bursts.

2.3.3 Gain control

STD implements a gain control mechanism in the synapses. An example of this prin-

ciple is demonstrated in [2] using an integrate-and-�re model. The setup consists of

two neuron groups connected to one post-synaptic neuron. This neuron receives a

low-frequency stimulus (10 Hz) through 100 synapses from one neuron group and a

high-frequency stimulus (100Hz) through another 100 synapses from the other group.

A random spike train stimulus is presented to the network. Three experiments are per-

formed by modulating the input frequency as shown in each column of the Fig. 3.
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Figure 3: The gain control established by STP, as demonstrated in [2]. (A) shows three in-

put frequency modulations. (B) shows the post-synaptic neuron output without STD

synapses. (C) shows the post-synaptic neuron output with STD synapses. Refer to

the text for details about the network. Large high-frequency modulations are shown

in the left, large low-frequency modulations in the middle and small high-frequency

modulations in the right. Neuron without STD in (B) is unable to di�erentiate between

the large low-frequency modulations (middle) and the small high-frequency modula-

tions (right). Neuron with STD in (C) captures the large percentage modulations for

the low-frequency stimulus (middle).

• Scenario-1: The high-frequency stimulus is modulated by 50% (i.e., 100± 50Hz)

without changing its mean-frequency over time.

• Scenario-2: The low-frequency stimulus is modulated by 50% (i.e., 10 ± 5 Hz).

• Scenario-3: The high-frequency stimulus is modulated by 5% (i.e., 100 ± 5 Hz).

Two di�erent cases are considered for each scenario of this experiment. In the �rst case

(Fig. 3 middle), the neuron has STD synapses and in the second case (Fig. 3 bottom), the

neuron does not have STD in its synapses.

Let us start by discussing the case-1. Since there is no depression in the synapses, the

strength of the synapses remains unchanged.
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• Scenario-1: The post-synaptic neuron can capture the signi�cant modulations

of the high-frequency inputs in its output.

• Scenario-2: Large modulations of the low-frequency inputs do not a�ect the out-

put.

• Scenario-3: The responses to small modulations of the high-frequency inputs

look similar to the ones from scenario-2.

Let us proceed to the case-2. In this case, the synaptic weights adapt due to STD.

• Scenario-1: The post-synaptic neuron shows signi�cant high-frequency modula-

tions in its response. Meanwhile, the spike count drops due to STD. However, the

synapses are tuned in such a way, that the synaptic weights are restored back

before the input modulation completes its cycle.

• Scenario-2: STD ampli�es the output of large low-frequency modulations with a

high gain and suppresses the domination of high-frequency modulations with a

low gain.

• Scenario-3: Unlike the case-1, responses to small high-frequency modulations

are distinguishable from the responses to large low-frequency input modula-

tions.

It is important to note in both the cases, the output of the post-synaptic neuron is a

result of a combination of the low-frequency and the high-frequency inputs. However,

with the presence of STD (case-2), the post-synaptic neuron can capture the modu-

lations both in low- and high-frequencies. This way, STD controls the gain in large

networks.

2.3.4 Direction selectivity

The role of STD in direction selection is demonstrated in [19] and their implementa-

tion is discussed here. A small network of the visual cortex is modeled using the STD

synapses. The network is shown in Fig. 4(A). Each circle represents a subset of a�er-

ent neurons in the ON-OFF receptive �eld. The ON a�erent neurons stimulate the

post-synaptic neuron called the V1 cell when the central region of the receptive �eld

alone is exposed to luminance without the outer surrounding region. The OFF a�er-
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Figure 4: Demonstration of the role of STP in direction selectivity in vision, presented in [19].

(A) The network model of simple cells in the primary visual cortex. The top row

represents a�erent neurons without the STD, and the bottom row represents a�erent

neurons with STD synapses. The ON (or the OFF cells) in each row stimulate the

V1 cell when the central region (or the surrounding region) of the receptive �eld is

exposed to luminance. The EPSPs of the V1 cell is shown by presenting a sinusoidal

signal on each row of the network separately (B and C) and on both the rows of the

network simultaneously (D and E). EPSP of the V1 cell, when stimulated in a preferred

direction, is shown in (B) and non-preferred direction in (C). Solid curves in (B and

C) represents the EPSP of the V1 cell when stimulated through the STD synapses, and

the dotted lines (B and C) denote the EPSPs when stimulated through the non-STD

synapses. (B) The EPSPs are in phase when stimulated in a preferred direction. (D)

The spiking behavior of the V1 cell when stimulated in a preferred direction. (C) The

membrane potentials are out of phase when stimulated in a non-preferred direction.

(E) The non-spiking behavior of the V1 cell when stimulated in a non-preferred di-

rection.
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ent neurons stimulate the same V1 cell only when the surrounding region around the

central region of the receptive �eld is exposed to luminance without the center. The

ON and OFF a�erent neurons are arranged in two rows, all converging into the V1

cell. In the top row, the synapses between the a�erent neurons and the V1 cell have

no STD, while in the bottom row, the synapses have STD.

A sinusoidal luminance signal is presented separately to stimulate the two rows of the

network. The network is arranged in a spatially distinct manner, such that the stimulus

reaches the non-STD a�erent neurons row �rst when it comes from one direction, and

the stimulus hits the STD a�erent neurons when it comes from the other direction (see

Fig. 4(A) for clarity). This arrangement provides a spatially distinguishable response,

and STD o�ers a temporal variability in the output response.

By stimulating the non-STD a�erents separately, the V1 cell shows oscillations in its

EPSP (see Fig. 4(B) and (C) dotted lines).

When stimulated the STD a�erents alone, the V1 cell shows saw-tooth-like waveforms

(with a phase-advance) in its EPSP (see Fig. 4(B) and (C) solid lines).

Let us discuss the outcome of presenting the stimulus to both the rows simultaneously.

Two directions are possible in this scenario: Either the signal hits the non-STD a�erents

�rst (non-preferred direction) or the other (preferred direction).

By presenting the stimulus in a non-preferred direction, even when both the rows

responds, the V1 cell fails to evoke a spike, because the a�erent outputs are out of phase

(see Fig. 4(D)). However, when both the rows are stimulated in the other direction,

the two a�erent outputs are in phase, thanks to the phase-advancement by STD (see

Fig. 4(E)). Therefore, the V1 cell responds with a maximum number of spikes for the

preferred direction.

The output of the V1 cell depends on where the signal reaches �rst. Hence, STD can be

used to implement direction selection in networks.

2.3.5 Encoding sound intensity

[69] presents the evidence of the STP in synapses of the auditory nerve in the audi-

tory brainstem of the chick. Fig. 5 shows the averaged EPSP responses in response

to eight input pulses that are provided for six di�erent pulse frequencies [69]. The
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Figure 5: Evidence of STP in the synapses of an auditory nerve in the auditory brainstem of the

chick, as presented in [69]. The traces show the average responses of EPSPs to input

trains of 8 pulses provided at six di�erent pulse frequencies. The EPSP responses to 10

Hz and 33 Hz stimuli indicate the presence of the STD, as the maximum amplitude of

the second EPSP is smaller compared to the �rst EPSP. In the responses shown from the

100 Hz stimulus to the 250 Hz stimulus, the magnitude of the second EPSP is higher

compared to the �rst EPSP, which shows the presence of the STF with a faster time-

constant than the STD. The amplitudes of the EPSP responses to the high-frequency

stimuli start decreasing after receiving a certain number of input spikes. This fall

in amplitude indicates the presence of the STD with a slow time-constant. The rise

and the fall of the EPSP amplitudes in response to the high-frequency stimulus are

postulated due to the interplay between the STD and the STF in the same synapse.

EPSPs in response to a low-frequency stimulus shows the presence of the STD, which

is evident from the maximum amplitude of the second spikes of the 10 Hz and the

33 Hz stimuli. During intermediate frequencies starting from the second spike of the

100 Hz stimulus up to the 250 Hz stimulus, the e�ect of the STF is visible in the in-

crease in their maximum amplitudes. At the same time, the maximum amplitudes of

the EPSPs start decreasing after the enhancement of a few spikes in response to the

high-frequency stimuli due to the STD. The competition between the STF and the STD

at the same synapse results in the band-pass �lter response of the neuron. Therefore,

the presence of STP is evident in the audition, which plays a role in selecting particular

frequencies that encode the preferred sound intensities. This kind of temporal band-

pass �lter is modeled using STP in an auditory network of female crickets to recognize

the male calling songs. More details of this model and implementation can be found

in see Chapter 5.
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2.4 conclusion

2.4 conclusion

So far, we discussed various computational roles of the STP such as temporal �ltering,

detecting bursts and controlling gain in this chapter. These temporal �ltering prop-

erties are useful in shaping the network activity. We learned that the synapses with

STP are relevant in sensory processing and higher-order cortical processing. The exam-

ples we discussed in this chapter justify the importance of modeling STP synapses in

a single neuron as well as in large networks. The temporal �ltering property of STP is

the crucial element of this research. We used STP as a temporal �lter in a small neural

network, that selects the attractive stimuli (see Chapter 5 for more details). We also

characterized the temporal �ltering properties of the neuromorphic STP circuits that

we designed (refer Chapter 4 for further information).
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3
S U B -T H R E S H O L D N E U R O M O R P H I C H A R D WA R E

3.1 introduction

Neuromorphic engineering is a term coined by Carver Mead in the late 80’s, which

describes the use of the Very Large Scale Integration (VLSI) technology to implement

the neural computations [72]. VLSI is a process of manufacturing integrated circuits or

chips using many transistors. A transistor is a semiconductor device which acts as a

voltage controlled current source, depending on the operation region (for example, it

acts as a resistor in the ohmic region, see Sec. 3.3 for further explanation). The idea of

neuromorphic engineering originated from building silicon neuron circuits by exploit-

ing an equivalence between neuroscience and electronics. The ionic conductance of

a biological neuron depends exponentially on the membrane potential of the neuron.

Similarly, when the transistor is operating in the sub-threshold regime, the amount of

�ow of charge carriers in the channel of the transistor is exponentially dependent on

the applied gate voltage of the transistor. The de�nition of the term ‘neuromorphic’

has been changed over the last two decades. Now any dedicated analog, digital, or

mixed-signal hardware that emulates or simulates the computations of neurobiology

is referred to as neuromorphic hardware. In the recent years, neuromorphic hardware

has gained a lot of attention from the electronics community considering the power

e�ciency, processing speed, and scalability factor. Mixed-signal (analog/digital) neuro-

morphic platforms such as the sub-threshold neuromorphic system and ‘BrainScales’

perform parallel asynchronous computations. Therefore the speed of the operation

does not scale with the network size. The power consumption of the sub-threshold

hardware is low because the transistors are operated in a sub-threshold regime, dur-

ing which the magnitude of the currents is in the order of nano- or pico-Ampere. The

digital neuromorphic hardware also has its design optimised for power e�ciency. For

example, IBM’s ‘TrueNorth’ neuromorphic chip is capable of classifying images at 6000

frames per second [32] per watt in comparison to NVIDIA’s Tesla P4 which classi�es

images at 160 frames per second per watt. Therefore, the term ‘neuromorphic’ refers

to the silicon implementation of the powerful and parallel computing elements of the

brain. Neuromorphic systems o�er a platform to emulate the neural networks directly

on the hardware. The size of the network does not in�uence the speed of this neuro-
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morphic hardware. In contrast to the Von-Neumann architecture of the conventional

digital systems, memories are co-localized in the neuromorphic design of the analog

systems. This feature makes the neuromorphic systems best-suited for computation-

ally intensive tasks which involve extensive (write and) read operations (to and) from

memory. For example, updating the synaptic weights in a network. There are di�erent

types of brain-like neural computing systems proposed in the literature, and we will

discuss a few of them.

The Stanford University desinged a real-time neuromorphic system known as ‘Neuro-

grid’ [12]. Their chip is made of analog sub-threshold circuits that consume a small

amount of power. A quadratic integrate-and-�re model is used to implement silicon

neurons. The chip has an inbuilt router that communicates to other chips through

spike packets. Neurogrid is aimed to be used in neuro-prosthesis and robotic applica-

tions.

The Institute of Neuroinformatics, University of Zürich and ETH Zürich designed two

variants of full-custom mixed-signal neuromorphic chips called ‘Dynap-se’ for con-

structing spiking neural networks with dense connections and ‘Dynap-le’ optimized

for online learning [51]. Currently, both the chips are prototypes, and they comprise

low-power analog sub-threshold circuits that operate in real-time. These neuromor-

phic systems aim to reproduce the computations of the brain from the biophysics of

the real neurons to the silicon neurons. The applications of this hardware cover a broad

scope of possibilities, ranging from brain-machine interfaces to robotic applications.

Recently, a neuromorphic processor called ‘ROLLS’ is designed in ETH Zürich using

180 nm CMOS process [88]. The chip consists of 256 neurons and 128k synapses. The

chip is re-con�gurable and supports online learning. The chip also supports the im-

plementation of attractor neural networks. The analog neuromorphic hardware o�ers

low-power consumption in contrast to their digital counterparts. The hardware o�ers

real-time (or accelerated) parallel computations. However, the models are �xed in the

analog hardware and it is prone to issues such as variability in the responses and re-

producability of the parameters.

The Heidelberg University developed a multi-scale wafer system called ‘BrainScaleS’

[99]. BrainScaleS is made of real analog circuits that operate transistors in the above-

threshold regime. The wafer-scale system delivers a speed of 10,000 times faster than

the real-time. The basic communication is implemented within the wafer, and the

wafer-to-wafer communication is implemented through the Field-Programmable Gate

Array (FPGA). FPGA is an integrated circuit which consists of programmable logic gates
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and I/O circuitry. BrainScaleS is designed with the aim to understand time-consuming

factors of biological systems such as long-term training tasks. The models of learning

synapses are continually evolving due to the recent advancements in neuroscience.

Therefore, an on-chip plasticity processor is designed in the latest revision of the Brain-

Scales called the ‘HICANN-DLS’, in which the learning rules are programmable [37].

The chip consists of 2k synapses and 64 neuron blocks and operates at a speed-up

factor of 1000 compared to the biological real-time. Currently this chip is a prototype,

and in the long run, it is aimed to be scaled-up to implement large-scale networks.

The University of Manchester developed a massively parallel digital computing ma-

chine known as ‘SpiNNaker’ [38]. SpiNNaker is a multi-core system made of ARM

core processors that provide a real-time simulation environment for running synapse

and neuron software models. The routing between the cores is based on the packet-

switched Address Event Representation (AER) protocol, where the spikes are sent as

packets. This system is developed with the goal of modeling large-scale spiking neural

networks. The digital neuromorphic hardware o�ers several advantages such as the

�exibility of the neural models and the portability of the parameters. However, the

hardware has limitations for successful real-time operations.

Despite the university research groups, the silicon industries are also developing ded-

icated hardware to implement spiking neural networks, considering the promising

outcomes of the neuromorphic computing research. IBM launched a fully digital neu-

romorphic chip called ‘TrueNorth’ [76]. Their chip consists of 5.4 million transistors

fabricated in 28 nm technology made up of 4096 cores. Each core consists of 256 neu-

rons and 256 synapses. TrueNorth is power-e�cient and is used in real-time cognitive

applications such as processing high-dimensional visual data.

The selection of the neuromorphic hardware varies with the target application. In this

research, we aimed to model the synaptic computations at the level of single neuron in

silicon. Given the small size of our network and the need for the biologically realistic

time-constants (50-200ms [89]), our best choice for this research is the sub-threshold

mixed-signal hardware developed by Prof. E. Chicca and Prof. G. Indiveri at the Insti-

tute of Neuroinformatics, University of Zürich and ETH Zürich. We will start with a

basic understanding of the transistors and the building blocks of sub-threshold neuro-

morphic circuits. Knowledge of these circuits is helpful in uncovering operation of STP

circuits proposed in the next chapter. The working principles of silicon synapses and

silicon neurons present in our neuromorphic hardware are explained. These synapses

and neurons are used in constructing the calling song recognition network (see Chap-
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(a) nMOS (b) pMOS

Figure 6: Transistor symbols presented in [64], showing the four terminals: source (S), drain

(D), gate (G) and bulk (B). The bubble is used to denote the hole as a majority charge

carrier in the pMOS.

ter 5 for more details). The setup of our neuromorphic hardware is covered towards

the end of the chapter.

3.2 mosfet

Transistors form the basic building block of modern electronics. Invented in 1947 at

Bell Laboratories, transistors revolutionized the �eld of electronics. In modern technol-

ogy, transistors are present in almost all electronic devices ranging from calculators to

mobile phones we use every day. Transistors are commonly used in digital circuits to

construct logic circuits and switches. The process of the fabrication has been improved

a lot over the years, allowing to produce smaller devices. The semiconductor fabrica-

tion process de�nes the technology node based on the size of the smallest transistors

that are commercially available. The size of the next technology node is expected to

be 10 nm by 2017 in contrast to the 10 µm sized node in the 70’s.

Based on the structure, transistors are classi�ed into Bipolar Junction Transistors (BJTs)

and Field E�ect Transistors (FETs). BJTs use both electron and hole charge carriers in

their channels, whereas FETs are uni-polar transistors that are operated by a single-

carrier-type in their channels. Junction gate Field E�ect Transistors (JFETs) are purely

voltage-controlled devices without any need for bias currents to turn themON. Metal-

Oxide-Semiconductor Field-E�ect Transistors (MOSFETs) need a minimal current to
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(a) nMOS

(b) pMOS

Figure 7: Cross-section view of the nMOS (a) and the pMOS (b) transistors (source: Neuro-

morphic Engineering I lecture by Dr. Elisabetta Chicca). The nMOS transistor has

the n-type di�usion for the source and the drain. The pMOS transistor has the p-

type di�usion for the source and the drain. In both thenMOS and pMOS transistors

the semiconductor substrate is p-type and a layer of oxide are present between the

substrate and the gate. The n-well is implanted on the substrate of the pMOS tran-

sistor which serves as bulk for the pMOS.

turn ON, and they can source high currents to the load. MOSFETs is one of the tran-

sistor types that are most commonly used in the VLSI design. The word metal (M) in

the MOSFET is given because the gate of the transistor is used to be made from the

aluminum in the earlier days, whereas now the gates of the transistors are made of

poly-silicon. Traditionally, silicon-oxide (O) is deposited on the surface of the semicon-

ductor (S) substrate to isolate the gate from the channel. The term (FET) corresponds

to the �eld-e�ect transistor. An electric �eld is applied to alter the conductivity of the

channel in the substrate of the MOSFETs. MOSFETs are divided into n-type and p-type

based on their majority charge carriers. Fig. 6 shows the symbols of nMOS (a) and

pMOS (b). MOSFETs consist of four terminals: source, drain, gate, and bulk. In this

chapter, we describe the transistor design based on the single-tub process, because

the transistors of the neuromorphic chips we use are manufactured using the same

process. In this fabrication process, a separate n-tub or n-well is placed within the

p-substrate to implant a pMOS.
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The cross-section view of thenMOS and thepMOS transistors are shown in the Fig. 7.

In case of both the nMOS and the pMOS transistors, polycrystalline silicon doped

with a p-type semiconductor material forms the substrate of the transistors. The gate

of the nMOS and the pMOS transistors do not conduct any charge because of the

insulator oxide deposited between the gate and the substrate. The bulk is a reference

terminal for the transistors.

In the case of an nMOS transistor, the source is an n-type doped material on the p-

substrate that serves as a source of electrons which is at a lower potential compared

to the gate voltage of the transistor. The drain of the nMOS transistor is at a higher

potential than the source and serves as the drain for the electrons. In nMOS, the

bulk is the substrate, connected to the Ground. The movement of electrons results in

a current �ow across the nMOS transistor from its source to the drain through the

channel.

The �ow of holes (electron-holes) results in a current of pMOS transistors. The source

of a pMOS is at a higher potential than the gate and serves as a source of holes.

The drain of a pMOS is at a lower potential than the source and serves as the drain

to holes. In pMOS, the bulk is a separate ‘n’-well (see Fig. 7: top), connected to the

power supply (VDD), to the source, or to any arbitrary voltage. According to the

standard layout design rules provided by the manufacturer, a proper n-well placed for

the pMOS occupies an ample space in the silicon and makes the pMOS design costly

[64]. Nevertheless, pMOS is used as widely as nMOS transistors in the analog circuit

designs.

3.3 sub-threshold characteristics of a transistor

Both the nMOS and pMOS transistors can be operated in two regimes: the sub-

threshold and the above-threshold, based on the applied gate voltage. Transistors are

used in the above-threshold regime in standard digital electronics as well as in con-

ventional analog electronics such as Operational Transconductance Ampli�ers (OTAs).

In the digital domain, the transistors operating in the sub-threshold regime are consid-

ered to beOFF. Transistors are operated in the above-threshold regime, during which

the currents are in the range of micro to milli-Ampere based on the fabrication pro-

cess.

The operation of a transistor is shown in Fig. 8. When a positive voltage is applied

to the gate of an nMOS, the holes in the channel are repelled towards the substrate
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Figure 8: Cross-section of an nMOS transistor (source: Neuromorphic Engineering I lecture

by Dr. Elisabetta Chicca). The n-type source and drain di�usion are visible in the

p-substrate. The poly-silicon represented a black bar on top of the substrate is used

as the gate. The oxide between the gate and the substrate is shown as white space.

A depletion region is formed on the p-substrate below the gate between the source

and the drain when a positive voltage is applied to the gate of an nMOS. Due to

this positive voltage, the holes in the channel are repelled, and a depletion layer of

negatively charged ions is formed. A thin inversion layer of free electrons called a

channel is formed between the gate and the depletion layer when the gate voltage

exceeds a certain threshold.

and a depletion layer of negatively charged ions is formed between the source and

the drain below the gate. When the gate voltage exceeds a certain threshold, a thin

inversion layer (or channel) of free electrons is also formed between the gate and the

depletion layer. Hence, the above-threshold regime is also called a strong inversion

mode. When the electric �eld is applied to the transistor, the drift-currents are created

due to the movement of the free electrons. The drift current is the major component

of the current source in the above-threshold regime.

In case of the sub-threshold regime, the inversion layer (or channel) is not formed

when the gate voltage stays below the threshold. Hence, the sub-threshold regime is

also called a weak-inversion mode. The di�usion of charges from source to drain re-

sults in di�usion currents. In the sub-threshold regime, the di�usion current is the

major component of the current �ow. The sub-threshold currents are tiny compared

to the above-threshold currents and are in the order of pico- or nano-Ampere. The

sub-threshold currents are in similar orders of magnitude (pico-Ampere), as measured

in electro-physiology [52]. Small currents result in less power consumption of cir-

cuits which makes the sub-threshold transistors ideal choice for developing neuro-
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3.3 sub-threshold characteristics of a transistor

Figure 9: Sub-threshold Current-Voltage (IV) characteristics of the transistor presented in [64].

For a given gate-source voltage Vgs, transistor current raises linearly, when Vds is

6 UT , and gets saturated, when Vds is > 4UT , by changing Vds.

morphic chips. These low-power chips are potentially useful in power-hungry compu-

tations: for example, real-time object recognition in mobile robots. We also used the

sub-threshold transistors in our design of the STP neuromorphic circuits (see Chap-

ter 4).

Current-Voltage (IV) characteristics of a transistor, for the gate-source voltage (gate

voltage with respect to the source voltage) Vgs sweep is shown in Fig. 9. Both sub-

threshold and the above-threshold regimes are visible in the plot. In both the regimes,

the transistor is operating in the saturation region, which will be discussed in the

following section. Current-Voltage (IV) characteristics of a sub-threshold transistor is

shown in Fig. 10. There are two regions of sub-threshold operation called linear (or

ohmic) and saturation, depending on the applied drain-source voltage (drain voltage

with respect to the source voltage) Vds. Let us look into the behaviour of the transistor

current in all these regions in the following.
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Figure 10: IV characteristics of the sub-threshold nMOS transistor for various gate voltages,

presented in [64]. The current increases exponentially for every 100 mV increase in

gate-source voltage. Hence, the log y scale is used that spans the entire sub-threshold

transistor currents, ranging from pico-Ampere to hundreds of micro-Ampere. There-

fore linear increase denotes the exponential rise, and the saturation region denotes

the linear rise in currents. It can be seen from the plots, that the transitions from the

linear region to the saturation regions are independent of the applied gate-source

voltages.

3.3.1 Sub-threshold ohmic operation

For small Vds, the current Ids is approximately linear with Vds as shown in Fig. 10.

Therefore, it is called the ohmic or linear region of the sub-threshold transistor. The

following equations describe the current-voltage (IV) characteristics of the nMOS

and the pMOS operating in the sub-threshold linear region.

nMOS

Ids = In0e
κnVg/UT

(
e−Vs/UT − e−Vd/UT

)
(10)
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Ids = In0e
(κnVg−Vs)/UT

(
1− e−Vds/UT

)
(11)

For Vds 6 4UT ,

Ids ' In0e(κnVg−Vs)/UT (Vds/UT ) (12)

pMOS

Isd = Ip0e
κp(Vdd−Vg)/UT

(
e−(Vdd−Vs)/UT − e−(Vdd−Vd)/UT

)
(13)

Isd = Ip0e
(−κpVg+Vs)/UT

(
1− eVds/UT

)
(14)

For Vsd 6 4UT ,

Isd ' −Ip0e
(−κpVg+Vs)/UT (Vds/UT ) (15)

where

• In0 and Ip0 denote the transistor dark-currents. The dark-current comes from

the random generation of electrons and holes in the depletion region. The dark-

current contributes to leakage and serves as the source of noise in the transistor.

• κn and κp denote the capacitive coupling ratio that determines the transistor

sub-threshold slope factor. κ can be calculated from the slope of the log of IV

characteristics of the sub-threshold transistor operating in the saturation region.

There is a basic analog circuit called the source follower (explained in next sec-

tion), the output of which depends on this slope factor.
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• UT the thermal voltage.

• Vg the gate voltage, Vs the source voltage, and Vd the drain voltage.

• Vdd is the power supply voltage provided to the bulk.

3.3.2 Sub-threshold saturation operation

For Vds > 4UT , the concentration of electrons at the drain end of the channel becomes

negligible concerning the concentration at the source end. The di�usion current be-

comes independent of the drain voltage and depends only on the source voltage. It

is called the saturation operation of the sub-threshold transistor as shown in Fig. 10.

An ideal sub-threshold transistor operates in a saturation region. The equations of the

saturated sub-threshold transistors are as follows.

nMOS

Ids = In0e
(κnVg−Vs)/UT

(
1− e−Vds/UT

)
(16)

For Vds > 4UT ,

Ids = In0e
(κnVg−Vs)/UT

(17)

pMOS

Isd = Ip0e
(−κpVg+Vs)/UT

(
1− eVds/UT

)
(18)

For Vsd > 4UT ,

Isd = Ip0e
(−κpVg+Vs)/UT

(19)

where
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• In0 and Ip0 denote the transistor dark currents.

• κn and κp denote the capacitive coupling ratio.

• UT the thermal voltage.

• Vg the gate voltage, Vs the source voltage, and Vd the drain voltage.

Ideally, in this region, the currents are exponential to the applied gate voltage. There-

fore, this exponential characteristic is useful to model the biologically realistic tem-

poral dynamics, which are also exponential. Mostly we operate all the circuits in our

neuromorphic chip (mixed-signal hardware) in this region of the transistor. Therefore,

the parameter choices are signi�cant for the ideal operation of these circuits. The fol-

lowing section provides a better understanding of the subthreshold operation of these

circuits.

3.4 basic building blocks of analog vlsi circuits

Complex neuromorphic circuits, such as silicon synapse and silicon neuron circuits,

are constructed based on analog building blocks. Few of these basic building blocks

will be discussed in this section. The STP circuits we designed in this research are built

based on these elements. These circuits are also used in developing general analog

circuits outside the neuromorphic domain.

3.4.1 Diode-connected transistor

The schematic of the diode-connected transistor is shown in Fig. 11. The transistor

itself is a voltage controlled current source. The current is an exponential function

of the gate voltage when the transistor is operated in the sub-threshold saturation

region. A sub-threshold transistor can be used as an exponential current-to-voltage

converter by merely �xing the source voltage and providing the input current through

the drain. However, the gate is isolated from the channel, and the input current does

not have any e�ect on the gate. Therefore, the gate is shorted to the drain terminal,

to see the change in the gate voltage for the given input current. In this con�guration,

the input node stays in a positive feedback loop with the gate terminal. As long as a

su�cient amount of the current �ows, the diode-connected transistor always operates

in the saturation region (as the drain is reverse-biased with respect to the channel). The
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Vs

Vg

I

M1

Figure 11: Schematic of an n-type diode-connected transistor, presented in [64]. The positive

feedback loop from the drain to the gate is needed to operate the diode-connected

transistor in the saturation region.

transistor operates as a diode, allowing the current to �ow from drain to source, at the

same time, blocking the current �ow in the opposite direction. The diode-connected

transistor is used in building the current-mirror circuit (see next subsection).

3.4.2 Current mirror

The schematic of a current-mirror circuit is shown in Fig. 12. The current-mirror is

a two transistor circuit that mirrors the input current into a scaled output current.

The circuit consists of two transistors of the same type, where one of them is a diode-

connected transistor, and the gates of the two transistors are shorted. The input is

the current supplied through the drain of the diode-connected transistor. The output

is the scaled version of the input current available at the drain of the other transis-

tor. There are two con�gurations of the current mirror. In the �rst con�guration, the

source voltages are �xed. The transistor dimensions determine the linear scaling factor

of the output currents. In the second con�guration, the dimensions of both the transis-

tors are identical. The source voltages are varied to determine the current-mirror gain

which is exponential in this case. Based on the required type of gain, either the tran-

sistors width-and-length ratios or the source voltages are varied. In case of linear gain

con�guration, the transistor dimensions are �xed after fabrication. Therefore the gain

is also non-modi�able. The current-mirror circuits are used in providing a positive-

feedback loop, for example, in opamps or in silicon neuron circuits (to generate spikes
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Vs2
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Figure 12: Schematic of an n-type current-mirror circuit, presented in [64]. The input current

Iin is supplied through the drain of the diode-connected transistor. The gates of

two transistorsM1 andM2 are shorted. Therefore the input current is mirrored at

the drain of the output transistor with a scaling factor. The scaling factor is decided

either by the di�erence between the source voltages or the width-and-length ratios,

depending on the current mirror con�guration.

at a low-power). Current-mirrors can also be used to amplify small sub-threshold cur-

rents.

3.4.3 Source follower

The schematic of a n-type source-follower circuit is shown in Fig. 13. The source fol-

lower is another type of the two-transistor circuit, the output voltage of which follows

the input voltage with the gain. Two nMOS transistors are connected in series as

shown in the �gure. The bias voltage Vbn sets the total current �owing through the

circuit. The input voltage Vin is provided to the input transistor. Output voltage Vout

is measured at the connecting node of the transistors. The output voltage is the dif-

ference between the input and the bias voltages, multiplied by a scalar κ. The source

follower can be used to provide an adjustable o�set to a voltage, for example, a thresh-

old in the silicon neuron circuit. It is also used in the neuromorphic dynamic vision
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M1

Vin

Vout

Figure 13: Schematic of an n-type source-follower circuit, presented in [64]. Vin is the input

voltage andVbn is the bias voltage that sets the total current �owing in the branch of

the source follower. The output voltage Vout follows the input voltage Vin (source)

with a gain κn.

sensor together with the photo-diode. In this research, we used the source-follower to

provide a negative-feedback loop in the STP circuits (refer Sec. 4.4 for more details).

3.4.4 Di�erential pair

The schematic of a di�erential-pair circuit is shown in Fig. 14. The circuit consists of

three transistors (in two branches), the output currents of which depend on the di�er-

ence of two input voltages. The design of the circuit follows the same structure as the

source follower, with an additional transistor connected to the source follower’s com-

mon voltage node. The bias voltage Vb sets the whole current through the circuit. By

Kircho�’s law, the sum of the output currents �owing through two input transistors is

equal to the bias current. For a di�erential input voltage δV = V1 − V2, the resulting

currents I1 and I2 are sigmoidal in shape. This non-linearity is useful in implementing

several neural functions, for example, the activation function of a node in arti�cial neu-
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Figure 14: Schematic of an n-type di�erential-pair circuit, presented in [64]. The di�erential

pair shares the same basic structure as the source follower, except that the bias cur-

rent Ib fromMb is shared by two input transistorsM1 andM2. When a di�erential

voltage V1 −V2 is applied to the input transistors, the resulting output currents I1

and I2 will be sigmoidal in shape.

ral networks. The di�erential-pair circuit is used to build ampli�ers, silicon synapses,

and neuron circuits.

All these essential analog building blocks we discussed until now, are used in the design

of the vital neuromorphic circuits, which will be detailed in the following sections.

3.5 silicon synapse

A synapse is a junction through which a neuron communicates with other neurons.

The synapse is a fundamental processing unit of neural computation. An average mam-

malian neuron spans around 1000 synaptic connections with the post-synaptic neuron,

at the same time, a pre-synaptic neuron receives input spikes through approximately

10,000 synaptic links (for example, the Purkinje cell of the cerebellum [56]). Two types

of synaptic connections exist. They are electrical and chemical synapses. The electrical

synapses are also called gap junctions which are useful for short-range transmission of

spikes between the neurons. The chemical synapses are used in long-range communi-
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cations between the neurons and are capable of producing complex synaptic behavior

such as amplifying the signals with a high gain. Silicon synapses presented here imple-

ment the conductance-based transmission model of the chemical synapses [27]. These

synapses integrate the incoming spikes spatiotemporally from the pre-synaptic neu-

rons. Simpli�ed synaptic models describe the Excitatory Post-Synaptic Current (EPSC)

as a step increase during the onset of the pre-synaptic spike. The EPSC decays expo-

nentially after the pre-synaptic spike. This rise-and-fall dynamics of the EPSC has been

implemented in many silicon synapses. Few of these synapse circuits designed using

sub-threshold transistors will be discussed in this section.

Several analog synapses are proposed in the neuromorphic literature. One of the old-

est sub-threshold transistor based ‘pulsed current-source’ synapse circuit is proposed

by Carver Mead in [72]. The circuit consists of two transistors and outputs the synap-

tic current. The post-synaptic neuron connected to this synapse integrates the current

and shows a rise in its membrane potential. The advantage of this circuit is compact de-

sign. However, the circuit cannot integrate the input pulses into continuous currents.

Another drawback is, when the input spike trains with same mean rate arrive at di�er-

ent times to this synapse, it is not possible for the post-synaptic neuron to distinguish

between the two input spike trains. Nevertheless, this synapse is widely used in [79],

[39], and [22] due to its compactness.

Another compact synapse circuit called ‘reset-and-discharge’ was proposed by [61] in

the early 1990s. For a given input voltage pulse, the synaptic current is produced. The

duration of the output current can be modi�ed by a tunable recovery. However, the cir-

cuit response depends on the last input spike only. Therefore, the linear summation of

the post-synaptic currents is not possible at the neuron, which is an essential property

in the theoretical analysis of neural networks.

A modi�ed version of the ‘reset-and-discharge’ synapse called the ‘linear charge-and-

discharge’ synapse circuit is proposed in [5]. It is one of the commonly used synapse

circuits in neuromorphic chips. However, the EPSC of the circuit saturates exponen-

tially during which the input frequencies cannot be encoded by the synapse.

The third variant of the linear charge-and-discharge synapse circuit called the Current-

Mirror Integrator (CMI) synapse circuit is proposed in [14]. The circuit has a diode-

connected transistor that determines the recovery rate of the EPSC. This circuit is also

widely used in [47, 66]. However, this circuit can produce large EPSCs amplitudes only

for long EPSC durations.
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The fourth variant of the ‘linear charge-and-discharge’ synapse is the ‘log-domain

integrator’ synapse circuit proposed in [5]. One of the transistors of this circuit has its

bulk connected to its source terminal instead of Vdd (usual case scenario). Therefore,

the voltage is logarithmic to the channel currents (hence the name). The circuit has

linear �ltering properties and can be used to implement large arrays of synapses. These

currents can be summed up in a single neuron to elicit a spike. However, this synapse

occupies a large silicon area due to the separate bulk connection. Another limitation is

the input pulse-width which is usually short, resulting in small currents. This problem

can be tackled by having an additional pulse-extender circuit, and it makes the area

of the synapse even bigger. All the problems mentioned above are solved by the new

design of the synapse circuit called the Di�erential-Pair Integrator (DPI) synapse. We

will discuss this synapse in detail as this circuit implements the silicon synapse in the

neuromorphic chip, we used to carry out the experiments in this research.

The DPI synapse circuit was proposed in [9]. The schematic of the DPI synapse is shown

in Fig. 15. The synapse consists of fournMOS transistors, two pMOS transistors, and

a capacitor. The transistorsMw,Mthr andMτ are arranged in a di�erential pair con-

�guration along with a diode-connected transistorMin. Spikes from the pre-synaptic

neurons (or event-based sensors) are sent as digital input pulses to the gate of the

transistor Mpre. M3 acts a digital switch that turns on the path for the capacitor to

charge. The weight of the synapse is determined by the currents Iw and Ithr (shown

in blue) �owing through the transistorsMw andMthr that charge the capacitor Csyn

within the duration of the input pulse. The time-constant of the synapse is determined

by the current Iτ (shown in blue) through the transistor Mτ, which discharges the

capacitor in between the input pulses. The voltage across the capacitor controls the

gate of the output transistorMpost which sources EPSC to the following post-synaptic

neuron. Therefore, the currents through the weight and the threshold transistors de-

termine the amplitude of the EPSC (within the input pulse duration) and the current

through the time-constant or recovery transistor determines the speed of recovery of

the EPSC (in between the pulses). The EPSC shows exponential dynamics (shown in

red) in response to the digital input pulse (shown in red). It is worthwhile to mention

here that the EPSCs observed in the biological synapses show exponential temporal

dynamics as well [27]. Therefore, the DPI synapse captures the biologically motivated

computational properties of the synapse.

The EPSC responses of the DPI synapse presented in [9] are shown in Fig. 16. In this

experiment, the DPI synapse is stimulated with a digital input pulse. Then, the EPSC

responses are recorded for two values of the weight voltage (left) and two values of
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Figure 15: Schematic of the neuromorphic Di�erential-Pair Integrator (DPI) synapse circuit,

proposed in [9]. The circuit consists of six transistors and one capacitor. The circuit

is arranged in a di�erential pair with a diode-connected transistor con�guration.

Digital input pulses (red) are provided through the gate of the transistorMpre. The

capacitorCsyn is charged by the currents Iw and Ithr (blue) through the transistors

Mw and Mthr, for the duration of the input pulse. The capacitor is discharged by

the current Iτ (blue) through the transistor Mτ in between the pulses. The voltage

across the capacitor controls the gate of the transistorMpost which determines the

output EPSC Isyn (blue). The dynamics of the EPSC (red) is exponential in response

to the digital input pulse (red), exhibiting low-pass �lter characteristics.

the threshold voltage (right). The time-constant voltage is �xed, and the experiment is

repeated over ten trials. The mean (black lines) and the Standard Deviations (SDs) (grey

shaded region) are plotted in the �gure. The lower curves in dotted line (left and right)

shows the EPSC for �xed bias voltages. In the left-plot, weight voltage is increased, that

is marked by a large amplitude of the EPSC (continuous line). In the right plot, a similar

increase in the EPSC amplitude is observed by decreasing the threshold voltage. The

threshold voltage of the DPI synapse can be used as a global parameter. For instance,

an external homeostasis circuit can be used to modify the weight (EPSC amplitude) of

the synapse [8].

We have seen that the EPSC responses (in Fig. 16) show the exponential dynamics sim-

ilar to the synaptic currents observed in the neurobiology. Next, we characterize the

EPSC by the following equation.
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Figure 16: EPSCs of the neuromorphic DPI synapse circuit, proposed in [9], in response to one

input pulse. Responses to two variants of the weight voltage (left) and two variants

of the threshold voltage (right) are shown. The time-constant voltage is �xed to the

experiment. The curves denote the mean (black lines) and the Standard Deviation

(SD) (grey shaded region) over ten repeated trials of the experiment. The lower curve

(in dotted line - left, right) shows the responses before changing the bias voltages.

The plots show that the EPSC amplitude (continuous line) can be increased by either

increasing the weight voltage (left) or the threshold voltage (right).

During a spike:

Isyn(t) =
IthrIw

Iτ

(
1− e−

(t−t0)
τ

)
+ Isyn(t0)e

−
(t−t0)
τ (20)

In between the spikes:

Isyn(t) = Isyn(t0)e
−

(t−t0)
τ (21)

It is clear from the equations above that during the spike Ithr and Iw scales up the EPSC

amplitude and Iτ scales it down. It is also evident that the EPSC recovers exponentially

in between the spikes.

Several computations observed in biology can be implemented in the DPI synapse,

through additional blocks of circuitry that can be attached to it [9]. Few examples

of these computational blocks are discussed in the following.

The N-methyl-D-aspartate (NMDA) receptor is a glutamate receptor and ion chan-

nel protein present in the nerve cells. This channel is activated only when the mem-

brane potential is depolarized above a certain threshold by binding glutamate and

glycine to it. This behavior can be phenomenologically implemented by attaching a p-

type di�erential-pair circuit to the output transistor of the DPI synapse. A bias called
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NMDA is provided to the gate of the transistor at one end of the di�erential-pair,

the drain of which is connected to the membrane potential node of the neuron. The

membrane potential is provided to the gate of the transistor at the other end of the

di�erential-pair, the drain of which is grounded. Therefore, the circuit implements

a threshold mechanism that is activated only when the membrane potential crosses

the threshold set by the NMDA parameter. As a result, more synaptic current �ows

into the membrane potential of the neuron, thereby implementing the voltage-gated

NMDA mechanism.

Another example is the Short-Term Depression (STD) block, which is connected to the

gate of the weight transistor of the DPI synapse [9]. The details of this circuit will

be explained in the next chapter. The STP circuits we modeled in this research (see

next chapter) can also be externally attached and used to alter the weight of the DPI

synapse.

The long-term plasticity circuit block can be attached to the DPI synapse [23]. But the

explanation of this block is out of the scope of this research. In the currently avail-

able sub-threshold neuromorphic chips, a complementary version (pMOS replaced

by nMOS transistor and vice versa) of the DPI synapse is used to implement the in-

hibitory synapse.

Above all, the DPI synapse itself can implement a type of Short-Term Plasticity (STP)

called the Short-Term Facilitation (STF) (see Chapter 2 for more details), without any ex-

tra circuitry. The parameters of the synapse such as the weight and the time-constant

voltages are tuned to be small values. The EPSC of the synapse displays the STF dy-

namics if Isyn << Ithr [23]. During this condition, the amplitude of Isyn increases in

response to every input spike, as long as the condition is valid. As Isyn increases, even-

tually this condition is crossed and Isyn becomes >> Ithr. Given this condition, the

DPI synapse operates as a �rst-order low-pass �lter. The STF implementation of the DPI

synapse is crucial for this research, and it is used to model the calling song recognition

network (refer Chapter 5).

The design of the DPI synapse (excitatory) allows a simple modi�cation in its design

to implement the inhibitory synapse. For instance, by adding a current mirror to the

output transistor. The mirrored EPSC �ows in the opposite direction to the actual EPSC.

When connected to the same node at the neuron, then by Kircho�’s law, the resulting

current will be the di�erence between them. Therefore, the Inhibitory Post-Synaptic

Current (IPSC) can also be generated with the DPI synapse.
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The DPI synapse is highly re-con�gurable and is used as the central synaptic element

in designing various synaptic components inspired by the biology. The DPI synapse

circuit has linear �ltering properties towards incoming spikes. It is also capable of

multiplexing the incoming spikes that arrive at di�erent times from di�erent neurons.

The size of the synapse layout is an essential factor in designing neuromorphic chips.

The synapse size and count determine most of the chip area because a large number of

synapses connect multiple neurons in the chip. However, the DPI synapse is compact,

and the only space consuming component is its capacitor. The size of the capacitor is

chosen based on the time-constant to be modeled. This synapse is aimed to operate

with a biologically relevant time-constant (50-200 ms [89]), which makes the design

bulky. Nevertheless, considering the advantages mentioned above, DPI synapse has

been fabricated in large arrays in several neuromorphic chips.

3.6 silicon neuron

A neuron is the fundamental unit of the nervous system. Typically, a neuron consists

of the dendrites, the soma, and the axon. Each region of the neuron has a distinct func-

tion such as to receive, to generate and to transmit the action potential. The dendrites

branch out to receive inputs from many pre-synaptic neurons. The action potential

(or the spike) is generated at the ‘axon-hillock’ and conveyed through the axon to

the synapse of the following neurons. This spiking behavior of biological neurons has

been emulated in silicon to build neuromorphic chips. Silicon neurons mimic the elec-

trophysiological characteristics of the biological neurons by exploiting the physics of

the silicon substrate. There are several types of neuron circuits proposed in the neuro-

morphic literature that implement the behavior of the spiking neuron models ranging

from an elaborate conductance-based or Hodgkin-Huxley neuron model to a simple

Integrate-and-Fire (IF) model.

The IF neuron is one of the simplest models that represents the electrical properties of

the neurons in terms of a resistor and a capacitor. The input currents from the synapses

are integrated by the resitor-capacitor circuitry and the output voltage of the capaci-

tor with the threshold. The neuron �res when the capacitor is charged above a certain

threshold. Otherwise, the input currents decay through the circuit. The summation

property of the neurons is taken into account in the IF model, in which the membrane

capacitor integrates the input synaptic currents. The neurons designed in the neuro-

morphic hardware we used in this research, are based on the leaky IF model. Therefore,

the literature discussed in this section is restricted to the silicon neuron implementa-

tions of the IF model.
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Figure 17: Schematics of the low-power silicon neuron circuit proposed in [49] is shown. The

circuit consists of a leak, adaptation, threshold, positive-feedback, and refractory pe-

riod blocks (color-coded). The input current Iin is injected into the neuron from the

synapses. As a result, the membrane potential builds up across the capacitor Cmem.

The leak is controlled by the leak transistor with the gate voltage Vlk. When the

membrane potential crosses the threshold, set by the source follower bias Vsf, the

positive-feedback loop is activated. The feedback loop consists of the current-mirror

circuit that injects the current back into the neuron. As a result, the �rst inverter

switches fast, and only a small amount of power is consumed. The refractory period

is set by the voltage Vrf which determines the rate of discharge of the capacitor in

the refractory period block. The current through the transistor, the gate of which

is connected to this capacitor discharges the membrane capacitor after every spike,

implementing the refractory period behavior. When the �rst inverter switches to the

low output during the positive-feedback of spike generation, the adaptation block

is turned on. The adaptation capacitor Cadap is charged at the rate set by the adap-

tation voltage Vadap and the adaptation leak voltage Valk. When the �rst inverter

switches to high output, the Cadap is discharged at the rate set by the Valk. The

build-up of charge across the Cadap provides an additional leak to the neuron cir-

cuit. This charge builds-up over time (after many output spikes), resulting in Spike

Frequency Adaptation (SFA). A pMOS transistor is also present (not shown) to ex-

ternally inject current to the neuron circuit.

The classical neuron circuit, called the ‘Axon-Hillock’ circuit, was proposed by Carver

Mead in the late 80’s [70]. The circuit integrates the incoming current and emits a
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Figure 18: Sample membrane potential plot of the low-power silicon neuron proposed in [49].

A constant input current is injected into the neuron, and the spikes result from

integrating the input current by the capacitor.

spike when its membrane voltage crosses the threshold. The design of the circuit is

highly compact, as it consists of just six transistors and two capacitors. Four of those

transistors are used in two inverters of the circuit. The inverters switch their output

voltages when the input voltage crosses the inverter threshold, emulating the spiking

threshold behavior. However, the circuits dissipate high power, as the switching time

of the inverters is long, and both the transistors of the inverter are ON (draw currents)

while switching.

Another sub-threshold integrate-and-�re neuron, called ‘Tau-cell’, was proposed in

[31]. The tau-cell is a current mode circuit. Hence the membrane potential state vari-

able is represented as a current. This circuit operates in low-power and is also used to

implement the Mihalas-Niebur as well as the Izhikevich neuron models. However, the

circuit lacks a prominent property of neuron, which is the Spike Frequency Adapta-

tion (SFA).

A ‘Log domain integrate-and-�re’ neuron was proposed in [5]. The circuit The circuit

operates in low-power and implements a low-pass �lter. This circuit can also perform
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various types of spiking behavior such as regular spikes, bursts, and SFA. There are 2

pMOS transistors in the circuit, the bulks of which are connected to the membrane

potential. Supplying an arbitrary voltage to the n-well increases the size of the layout

design. Therefore, fabrication of the chip becomes expensive with this design.

A ‘Low-power integrate-and-�re’ silicon neuron circuit was proposed in [49]. This neu-

ron implements the SFA, the threshold function, and the refractory period. This circuit

is fabricated in the sub-threshold mixed-signal neuromorphic hardware. A variant of

this neuron circuit, called the Di�erential-Pair Integrator (DPI) neuron with the SFA,

the refractory period and the threshold functionalities (discussed in [50]) is fabricated

in the other variant of the sub-threshold mixed-signal neuromorphic hardware we use.

Despite the presence of the di�erential-pair circuitry in the DPI neuron, this neuron op-

erates similarly to the low-power neuron. The ‘low-power integrate-and-�re’ neuron

circuit is used in this research to model the calling song recognition network of crick-

ets (Chapter 5). Therefore, we will discuss only the low-power IF neuron’s operation

in this section.

These synapses receive digital input spikes either from several pre-synaptic silicon

neurons or digital events from any event-based neuromorphic sensors (for, eg. silicon

retina [62]) (as discussed in the previous section). These neurons integrate the input

EPSCs (and the IPSCs) from the DPI synapses and emit a spike if the membrane potential

crosses the threshold as shown in the Fig. 18.

The schematics of the low-power IF neuron circuit is shown in Fig. 17. The leaky be-

havior of the membrane potential is implemented in the design. The current through

the ‘leak’ transistor (with the gate voltage Vleak) discharges the membrane capacitor

slowly and ensures the neuron to be leaky.

The neuron �res when the membrane potential crosses the threshold. A ‘source fol-

lower’ circuit with the bias voltage Vthr is used to implement the thresholding func-

tion. The spike is generated by activating a positive feedback loop. A ‘current-mirror’

circuit provides a positive feedback, resulting in a faster rise of the membrane poten-

tial [49]. This positive feedback loop ensures the neuron low-power compared to its

predecessor Axon-Hillock. In the low-power circuit, the inverters switch faster due to

the positive feedback currents.

The refractory period after the spike is also implemented. The current through the

transistor (with a bias voltage Vref) discharges the refractory period capacitor. Then,
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the refractory period capacitor is connected to the gate of annMOS transistor, and the

current through this transistor discharges the membrane capacitor after every spike.

Therefore, a high Vref voltage shortens the refractory period.

The Spike Frequency Adaptation (SFA) is implemented in the design. The adaptation is

turned on when the �rst inverter switches to low output during the positive-feedback

of spike generation. The adaptation capacitor Cadap is charged by the sum of the

currents through the transistors with the gate voltages Vadap and Valk. When the

�rst inverter output reaches high, the Cadap is discharged by the current through the

transistor with the gate voltage Valk. The build-up of the charge across the Cadap

provides an additional leak to the neuron circuit during the spike generation. Over

continuous generation of spikes, the charge across the adaptation capacitor builds-up

and results in Spike Frequency Adaptation (SFA).

A pMOS transistor is available in the design (not shown in the �gure) to inject cur-

rents external to the synaptic currents. These external currents are useful in testing

the neuron independent from the synapse.

The low-power neuron is compact, able to show various neural dynamics, and is ca-

pable of capturing the sub-threshold oscillations [59]. Considering the fact, that the

neuron consumes signi�cantly low-power, the earlier version of the same circuit (pro-

posed in [46]) has been integrated into the design of the neuromorphic event-based

sensors [7]. This low-power neuron has been replicated into several units to form large

arrays of neurons in the neuromorphic chip. More details of this neuron array will be

discussed in the next section. In this research, the silicon neuron is used to model the

auditory neurons of crickets to recognize their calling songs (refer Chapter 5 for more

details).

3.7 neuron array

Arrays of the above mentioned synapse and neurons circuits are fabricated in the neu-

romorphic chips. The spike outputs of these arrays are discussed in time and frequency

domains in this section.

Let us start by discussing the time-domain responses of the neurons of the neuromor-

phic chip, presented in [49]. Raster plots provide the information about the neurons

that spiked for a given time duration. The raster plots of the above-discussed neuron

array are also presented in [49], which is shown in Fig. 19. Four raster subplots are
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Figure 19: Raster plots presented in [49], obtained for the same four values of the refractory

period voltages chosen in Fig. 20. In this �gure, a particular amount of the bias

voltage Vgs of the injection transistor is picked. The e�ect of the refractory period

voltage reducing the total number of spikes from the neurons is visible from the four

subplots. Within each subplot, the neurons of the array spike at di�erent times due

to the device mismatch from the fabrication process.

drawn for four values of refractory period voltages of the Fig. 20. A particular value of

the injection voltage (Vgs) is used to inject the same amount of current in all the four

subplots. The e�ect of refractory period is evident from these subplots, which reduces

the total number of output spikes from all the neurons. However, within each subplot,

the spike-times of the neurons are inconsistent across the array for a given gate volt-

age. These deviations in the responses among the neurons occur due to the e�ects of

device mismatch.

Device mismatch is an inherent property of the transistors resulting from the fabrica-

tion process. According to [84], “Mismatch is the process that causes time-independent

random variations in physical quantities of identically designed devices”. The mis-

match in transistors generates deviations from the expected behavior, especially in

sub-threshold analog circuits. These variations can be controlled by e�cient chip de-

sign techniques. However, the device variations still exist after fabrication. Many re-

searchers in the neuromorphic community consider the device mismatch a feature.

For instance, in [104], the device mismatch is used to model the axonal delays of the

neurons. In our research, we used the device mismatch to model di�erent pro�les of
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Figure 20: Frequency-Current (F-I) curves presented in [49], obtained from the neuron array

of the IFSLWTA neuromorphic chip for four values of refractory period voltage. Each

curve in the �gure shows the �ring rates of the neurons computed for increasing

amounts of injection current through the pMOS transistor set by the bias voltage

Vgs (negative because of pMOS). The circles represent the mean �ring rates, and

the error-bars denote the SDs. The linear increase of the �ring rates with the input

currents and reaching steady-state values due to the refractory period are visible in

the F-I curves.

the band-pass �lters, in the network to recognize cricket calling songs. For more de-

tails refer Chapter 5. This mismatch property can be used to test the robustness of the

networks (designed using these systems) to noise. In this aspect, silicon neurons share

the common question with the biological neurons, “do all neurons behave the same?”.

The answer is “No”. One way to compensate the mismatch e�ects is demonstrated in

[81], in which the authors built a recurrent neural network and selectively change the

connectivity pro�le through the AER scheme to normalize the network response. An-

other approach is to pick the neurons from the chip, whose spikes are aligned in time

(as close as possible) with the given parameter sets. Despite these methods to tolerate

the mismatch, tuning the parameters of individual neurons to obtain similar responses

remains a challenge.

Next, we look into the frequency of the spikes from the neurons of the chip perform

in response to the input currents. Let us start by discussing the frequency responses
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of the neurons. The Frequency-Current (F-I) curves are obtained by increasing the

input currents and measuring the output spike frequencies of the neurons. The F-I

curves obtained from the neuron array of the neuromorphic chip Integrate-and-Fire

Soft-Learning Winner-Take-All (IFSLWTA), presented in [49] is shown in Fig. 20. Four

F-I curves are plotted for the same four values of refractory period bias as mentioned

above. The circles represent the mean �ring rates of the neurons, and the error-bars

represent the SDs. The deviations in the responses occur due to the device mismatch

as mentioned above. Note that the x-axis represents the gate voltage Vgs (negative

because of the pMOS) of the ‘current injection’ pMOS transistor. Therefore, the in-

jected currents are exponential to the linear increase in the gate voltage as discussed

earlier in this chapter. Also, note that the y-axis is in log-scale. Therefore, the linear

rise of the curves (for Vgs 6 0.5V) represents the exponential increase. The saturation

of the curves (for Vgs > 0.7V) denotes the linear increase in a non-log scale.

These F-I curves suggest the implementation of the Leaky Integrate-and-Fire (LIF) neu-

ron model in silicon: the �ring rates increase linearly with the increase of the input

currents and reach the steady-state values due to the refractory period.

3.8 neuromorphic architecture

So far, we have seen the responses of the arrays of neurons from the neuromorphic

chip. In this section, we are going to discuss, how these neuron arrays are organized

within the chip. The architecture of the neuromorphic chip Integrate-and-Fire Soft-

Learning Winner-Take-All (IFSLWTA) presented in [49] is shown in Fig. 21.

The chip consists of 128 neurons with two excitatory, two inhibitory, and 28 learning

synapses each. The neurons are arranged in one-dimensional columns and hence this

chip is also re�ered to as ‘1D’ chip. Each neuron column is shown as a small central

trapezoid. Each column consists of stacks of excitatory and inhibitory synapses, which

are shown as squares, marked with ‘E’ and ‘I’ respectively. The row and the column en-

coders are shown as trapezoids in the left and the top. An AER digital input turns on the

column and row encoders to stimulate an input pulse on the speci�c synapse address.

The output spikes from the neurons are sent to the AER output circuits that generate

digital address-events, which are shown in the bottom trapezoid. The AER protocol

is explained in detail in the following paragraph. The parameters of the neurons and

synapses are shared across the columns within the chip. The pin-outs from the chip

are limited due to the design-cost constraints. The chip was designed with the aim of

serving as a general purpose neuromorphic computing hardware. Therefore the biases
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Figure 21: Block diagram of the neuromorphic IFSLWTA chip architecture presented in [49]. The

chip contains a total of 128 neurons with two excitatory, two inhibitory synapses,

and 128 learning synapses each. Each column in the �gure represents the individual

neuron block (shown as a small central trapezoid) which consists of stacks of excita-

tory and inhibitory synapses (shown as squares) marked with ‘E’ and ‘I’ respectively.

The AER digital input turns on the column (top trapezoid) and row (left trapezoid)

encoders to generate an input pulse on the speci�c synapse address. The output

spikes from the neurons are sent to the AER output circuits (bottom trapezoid) that

create digital address-events.

are shared across the synapses as well as the neuron arrays. However, they are inde-

pendent between the excitatory, the inhibitory and the learning synapses within the

columns, thereby o�ering �exibility in tuning the synapses. The post-synaptic neuron

integrates the total current from all these synapses. However, note that the synapses

that do not receive the events are not turned ON, meaning the chip operates in low-

power.

The events are transmitted to (or from) the chip through an asynchronous handshak-

ing protocol called AER. An example of the AER communication scheme is shown in

Fig. 22. The output events from the source chip are shown in the left. The neuronal

spikes from this chip are encoded into address events with the time-stamps (event =

spiking neuron address, time of spike). These events are redirected asynchronously to

the destination chip through the AER bus. The direction is based on the look-up table

programmed in the mapper. The lookup table consists of the source and the destination

addresses of the neurons. The mapper routes the events across the chips accordingly.

Encoder and decoder are used for on-chip routing without specifying the neuron ad-
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Figure 22: Block diagram of the AER communication protocol between two neuromorphic chips

presented in [48]. The left part of the �gure shows the output events of the source

chip, the neuronal spikes of which are encoded into addresses with the time-stamps

of spikes. These events are redirected to the destination chip through the AER bus

with the help of the look-up table of the connectivity matrix programmed in the ex-

ternal mapper (not shown). The mapper is used to route the events across the chips

through the look-up table. Encoder and decoder are used for the on-chip communi-

cation without the neuron addresses. The events are decoded in the destination chip

into input pulses that reach the corresponding addresses of the synapses.

dresses. The events are �nally decoded in the destination chip. These decoded events

are used as input pulses to stimulate the corresponding addresses of the synapses. This

asynchronous communication allows the real-time operation of the hardware, without

depending on any external clock. So far, we discussed the external architecture of the

setup.

Our setup consists of three neuromorphic chips designed by Prof. E. Chicca and Prof.

G. Indiveri at the Institute of Neuroinformatics, University of Zürich and ETH Zürich,

and connected as shown in Fig. 23 from [104]. Two are called Integrate-and-Fire 2-

Dimensional Winner-Take-All (IF2DWTA) chips with 2048 neurons, and each neuron

has two excitatory synapses and two inhibitory synapses. The third is the Integrate-

and-Fire Soft-Learning Winner-Take-All (IFSLWTA) chip. The excitatory synapses of

the above mentioned chips support Short-Term Plasticity (STP), which we will discuss
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Figure 23: Schematic representation of our neuromorphic hardware setup presented in [104].

The hardware setup consists of three chips connected in a loop through SATAwith

the external AER mapper board. There are two IF2DWTA chips and one IFSLWTA chip.

The IF2DWTA chip consists of 2048 neurons with two excitatory and two inhibitory

synapses each. The IFSLWTA chip consists of 128 neurons with two excitatory, two in-

hibitory and 28 learning synapses each. Multiple chips are used to increase available

neuron and independently tunable synapse count. The neurons and the populations

are selected from the PC. The connectivity between the neurons is recon�gurable

within the chip and across the chips. The connectivity matrix for connections be-

tween the chips is stored in the look-up table of the external mapper. One of the

chips is connected to the PC through USB, through which the programmed spike

events are sent from the PC. The output spikes are recorded from the chip through

USB. Analog membrane voltage can be measured through an oscilloscope from the

respective PCB of the chip and the neuron to be measured is programmable.

in detail in the next chapter. The term ‘2D’ suggest the arrangement of the neural

arrays within the chip. Both the chips are capable of implementing a ‘Winner-Take-

All’ network, a computational paradigm of spiking neural network [80]. All these chips

were fabricated in a standard Austria Micro Systems (AMS) 350 nm CMOS process.

Multiple chips are used in the setup to increase the number of neurons as well as

independently tunable synapses available. The three chips are connected in a loop

and this multi-chip architecture is analogous to have separate cortical regions of the

brain. This architecture allows us to freely pick the neurons from any chip and connect

them in any possible ways within the chip and across the chips. An external mapper is

used to connect the neurons between the chips using a look-up table to build a spiking
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neural network. Encoder and decoder are used to communicate within the chip. One

of the chips is connected to communicate to the PC through USB. The spike events

are programmed in the PC and are sent from the computer as input spikes to the

DPI synapse (one or many synapses) in the chip. In response to the input spikes, the

synapse produces a current which is propagated to the neuron attached. The output

spikes are recorded from the chip throughUSB. Analog membrane voltage can also be

measured through an oscilloscope, directly from the respective PCB of the chip. The

neuron to be measured is programmable.

In our research, we used two IF2DWTA chips of the above discussed multi-chip neuro-

morphic hardware setup to construct the calling song recognition network of crickets.

The size of the network implemented using this architecture can be scaled-up with

the latest CMOS technology. The new fabrication technologies o�er more design area

in silicon given the size of the transistors are small. Nevertheless, the multi-chip archi-

tecture is useful to design small-scale networks to emulate neo-cortical computations.

The available hardware o�ers real-time and parallel operation of such network imple-

mentations.

3.9 conclusion

In this chapter, we covered a wide range of literature beginning from a single transistor

to existing neuromorphic systems. We also discussed the basic analog building blocks

used in the design of silicon synapses and neurons. These building blocks are used

in the design of our neuromorphic STP circuits. We will discuss in detail about these

circuits in the next chapter. From the responses of the silicon synapses and neurons,

we can deduce that it is possible to emulate the biologically realistic computations,

thanks to the sub-threshold operation of a transistor. The exponential characteristics

of the sub-threshold domain are useful in modeling the neural dynamics inspired by

the biology. The neuromorphic chips designed using the sub-threshold transistors of-

fer low-power consumption and real-time operation. Despite the presence of device

mismatch e�ects, we showed in this research, that it is possible to design a network by

tuning the responses at a single neuron level, using our sub-threshold neuromorphic

hardware. We will discuss the implementation of this network in Chapter 5.

52





4
N E U R O M O R P H I C D E S I G N O F S H O R T-T E R M P L A S T I C I T Y

C I R C U I T S

4.1 introduction

We discussed in Chapter 1 that Short-Term Plasticity (STP) serves several functional

roles at the synapse. STP dynamically in�uences the e�ect of a pre-synaptic neuron on

its post-synaptic targets. The resulting synaptic �ltering properties lead to a plethora

of computational primitives in neural systems such as burst detection, transient en-

hancement, adaptation to sustained stimulus, synchrony detection and many more

[2]. Specialized circuit designs are required to embed these useful computational primi-

tives into large-scale neuromorphic hardware. Relatively few attempts have been made

in this direction. Rasche and Hahnloser proposed a short-term adaptation circuit in

2001 [91]. It is an analog circuit, and it is most commonly used in the sub-threshold

neuromorphic chips. The circuit outputs the synaptic weight in the form of an analog

voltage in response to the input pulses. The output voltage (weight) is decreased dur-

ing the input pulse and recovers toward a resting value in between the pulses. This

circuit was further analyzed theoretically by Boegerhausen and colleagues in 2003 [15].

This STD circuit is implemented in our neuromorphic chips, and this forms the founda-

tion of the design of our STP circuits. However, the circuit has few limitations, and we

will discuss them later in this chapter. We proposed novel STP circuits to overcome the

limitations. This chapter aims to present the design and the analysis of the proposed

STP circuits. We will start with an overview of device level implementations of the STP.

Later, we will move on to the circuit level STP implementations.

The inherent characteristics of the device (device physics) are exploited in device level

STP implementations. Regarding emerging technologies, the use of memristors has

raised interest in the neuromorphic community since the pioneering work of Leon

Chua [24]. A memristor is a resistor with the memory. The resistance of the mem-

ristor can be modi�ed based on the biases applied to its terminals. A memristor can

be treated as a non-volatile analog memory device. It is suitable for low-power nano-

scale integration. Memristors are the ideal candidates for building synapses, as they

o�er permanent storage of weights and plasticity of synapses in the neuromorphic
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systems. Several memristor based STP circuits have been recently proposed [20, 111,

98, 63, 4]. We will discuss a few of them in the following.

Memristors proposed in [20] are based on the movement of oxygen vacancies in a

thin �lm of Tungsten oxides (WOx). The oxygen vacancies form the conducting chan-

nels. By redistributing these channels, the conductance of the device can be changed.

The conductance of a memristor is increased by repeatedly providing input pulses

to the memristor. The conductance decays spontaneously in between the pulses. The

change in the conductance can be comparable to the di�erence in the release probabil-

ity of neurotransmitters that occurs during the STP. The conductance quickly reaches

its maximum in response to the high-frequency stimuli. Therefore, the memristor re-

sponds to input pulse frequencies with high-pass �lter characteristics similar to the STF

(as discussed in Subsection 2.3.1). Another property of the memristor is that a repeated

stimulation increases the retention time of the conductance change. Hence, short-term

memories can be easily converted to long-term memories.

Memristors presented in [111] are based on the di�usion of oxygen ions from oxygen-

de�cient regions to oxygen-rich regions in an amorphous Indium Gallium Zinc oxide

(InGaZnO) electrode. The top and bottom electrodes of the memristor are considered

as pre-synaptic and post-synaptic neurons. The conductivity of the device is taken as

the synaptic weight. Pulses with large amplitude and long duration cause a signi�cant

rise in the conductivity of the device. The conductance non-linearly decays in between

the pulses. Learning mechanisms such as the Spike-Timing Dependent Plasticity (STDP)

and the STP are demonstrated using this device.

Nano-ionic memristive devices called electrochemical capacitors are proposed in [63].

The top electrode of these devices is created by depositing reactive metals on top of the

titanium-di-oxide TiO2 layer. The bottom electrode is made up of an inert platinum

(Pt). The device exhibit STF characteristics in response to a repeated stimulation of

triangular pulses at the top electrode (in negative polarity). The device shows the STD

dynamics when the polarity of the stimulus is reversed. Despite the STP characteristics,

the physical phenomenon generating this behavior in these devices is unclear in the

literature.

More recently, switched-capacitor based STP circuits were proposed by Noack and col-

leagues [82, 83]. As the name suggests, the switched-capacitors consists of capacitors

and switches. They are commonly used in the signal processing domain. They are also

used in the neuromorphic research [109, 35, 36] by exploiting their capability of imple-
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menting state-driven models in a mixed-signal realization. For instance, the value of

the model variables is stored as a charge on a capacitor. The charge can be maintained

by decoupling the capacitor from the actual circuit (open switch), thereby minimizing

the leakage currents. The charging and the discharging of the capacitor (closed switch)

are used to update the value of the model variables. This approach has also been used

in the implementation of the STP models. In contrast to the standard neuromorphic

implementations (e.g., [91]) these switched-capacitor based circuits consist mostly of

digital building blocks. They support the use of standard digital synthesis and rapid

prototyping. Large time-constants are achievable using these circuits, given that the

leakage currents are negligible compared to the operating currents. Furthermore, the

switched-capacitors impose the need for additional design techniques to minimize the

leakage e�ects, especially when deep-sub-micron technologies are used to fabricate

them.

In this research, we aim to empower the neuromorphic systems, as described in [23],

with the short-term �ltering properties. Given a speci�c system choice, the analog sub-

threshold approach used by Rasche and Hahnloser [91] is best suited in our case. Like

digital systems, switched-capacitors based circuits follow the building-block approach

using standard elements such as ampli�ers, switches, etc. These circuits can, therefore,

be easily ported to small-scale technologies as soon as they are available, as opposed

to full-custom analog VLSI circuits which require extensive re-design. Unfortunately,

switched-capacitors are not a good choice for the integration with sub-threshold cir-

cuits due to the high impact of leakage currents in this operating regime of transis-

tors. On the other hand, memristors show promising behavior given their size (few

nanometers). However, there is no memristor compatible CMOS fabrication process

commercially available yet, thereby making their immediate use unfeasible.

The STD circuit proposed in [91] is compatible with the design of sub-threshold neu-

romorphic circuits. But, the circuit lacks a tunable recovery rate of its output voltage

(synaptic weight). As explained in the subsequent section, the rate of recovery of the

output voltage is dynamic, and it depends on the instantaneous synaptic weight. This

limitation imposes strong constraints on the attainable temporal dynamics and hin-

ders a more general use of the circuit as a module for implementing a plethora of STP

features. For example, strong synaptic depression followed by fast recovery cannot be

achieved in this context. This temporal dynamic is essential to implement the burst-

detection property of the STD. That is, when a burst of pulses is used to stimulate a STD

synapse, the initial weight of the synapse causes a high post-synaptic current to mark

the onset of the bursts. During the burst, the synaptic weight is reduced due to the
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STD. As a result, the post-synaptic current becomes small, and no spike is generated at

the post-synaptic neuron. The response to the onset of the next burst is mediated by

a fast recovery of the synaptic weight during the inter-burst interval. In this way, the

STD synapse can identify the onset of the bursts of spikes (digital pulses).

The novel circuits proposed in this research extend the state-of-the-art of STP neuro-

morphic circuits. We provided an external control over the recovery rate of the output

voltage (synaptic weight) in the absence of input pulses. The cost of the improved

functionality is low, given that the circuit designed in [91] and the STD circuit pro-

posed here share the same number of transistors. Furthermore, the pMOS transistor

of the circuit in [91] occupies a large silicon area because the bulk is not connected

to the Vdd. A separate ‘n’-well is needed to provide the bulk voltage. However, we

minimized the design area of our STP circuit, by connecting the bulk to the Vdd.

4.2 analog sub-threshold neuromorphic std circuits

Now we move on to the circuit level implementations, in which circuit blocks are

designed to implement the STP dynamics. To faithfully highlight the novelty of our

circuits, we must �rst describe the prior comparable works. Given a choice reported

in the above section, we restrict our literature review to sub-threshold analog circuits

that implement the synaptic STP. The sub-threshold STP circuits are having a high

impact on this research, are discussed in the following.

A set of STD and STF circuits were presented in [60]. These circuits receive input cur-

rents from various synapses and output the scaled currents. We will discuss the op-

eration of the STD circuit only, as the function of the STF circuit is analogous to its

counterpart. The schematic of the STD circuit is shown in the Fig. 24. The input to the

circuit is the sum of synaptic current Ii and the output of the circuit is the scaled ver-

sion of the current Io. An external digital pulse (inverted) turns on the circuit. During

the pulse, the capacitor is charged at a rate set by the di�erence between the currents

through the transistors with bias voltages Vu and Vd. In between the pulses, the ca-

pacitor is discharged at a rate set by the current through the transistor with the bias

voltage Vd. The voltage across the capacitor is called the depression voltage. The de-

pression voltage is supplied to the gate of the pMOS transistor which is connected in

series with the current-mirror circuit (see Sec. 3.4). The depression voltage increases

the source voltage of the output transistor of the current-mirror, thereby resulting in

a reduced output current. The working principle of the STF circuit is similar to that

of the STD circuit, except for the di�erent scaling factor. The STF circuit has an addi-
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Figure 24: Schematic of the sub-threshold neuromorphic STD circuit proposed in [60] consist-

ing of seven transistors and a capacitor. Ii is the sum of synaptic currents provided

as input and Io is the scaled output current. Digital input pulses (inverted) are ap-

plied to turn on the depression branch. During the pulse, the capacitor is charged

by the di�erence between the currents set by the transistors with the bias voltages

Vu and Vd. In between the pulses, the capacitor is discharged by the current set by

Vd. The voltage across the capacitor called the depression voltage is supplied to a

pMOS transistor, which is connected in series with the current-mirror. The depres-

sion voltage increases the source voltage of the current-mirror output, resulting in

a reduced output current.

tional nMOS transistor placed in between the transistors with Vu and Vd voltages.

This transistor limits the maximum scaling of the output current. The circuit is capa-

ble of reaching time-constants in the order of seconds. It can also be integrated with

our DPI synapse with minor modi�cations in the design, for instance, by replacing the

synapse’s weight branch. However, the layout size of these STP circuits is big, consid-

ering the total number of transistors. It is true especially in case of the pMOS which

occupy more space than the nMOS transistors. Better results regarding compactness

and power consumption, can be achieved by designing a STP circuit, which is small in

size and compatible with the DPI synapse.

A �oating-gate based stochastic synaptic circuit was proposed in [112]. Floating-gates

are widely used to implement digital memories (as for commercially available �ash

memories). Floating-gates are CMOS transistors with an electrically isolated (�oating)

gate. The common gate of the CMOS is referred to as ‘control gate’ in these devices.

A positive charge at the �oating-gate of an n-type transistor results in the channel
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formation between the source and the drain, whereas a negative voltage suppresses

the channel formation. Two mechanisms can modify the charge of the �oating-gate:

tunneling and injection. Tunneling is a quantum-mechanical process during which an

electric �eld is applied to ensure the electric charge dig through the potential barrier

(between the �oating-gate and the control gate). Hot-electron injection is the phe-

nomenon in which the electric charge gains su�cient kinetic energy to inject over

the surface of the potential barrier. Capacitors are used to access the �oating node,

and there is no discharge path for the current, thereby providing an extended charge-

retention time. The �oating-gates can also be used as analog memories, and several

research groups have been proposing their integration with neuromorphic circuits

[10, 16].

Peng and his colleagues proposed a STP circuit by using the �oating-gate. For every

input pulse, the capacitor (which is not a part of the �oating-gate) is discharged by

a sub-threshold current set by the weight control transistor. Therefore, the voltage

across the capacitor drops. In between the pulses, the voltage recovers with an ex-

ponential recovery dynamics implemented by a resistor and a �oating-gate circuitry.

The charge at the capacitor is not fully restored when the input pulses arrive faster

than the charge rate of the capacitor. As a result, the voltage across the capacitor is

recovered to a smaller value than the resulting value from the previous spike. In this

way, the circuit emulates the STD dynamics through the capacitor voltage. The circuit

is compact regarding transistor count. However, the resistor is implemented by a sub-

threshold pMOS transistor operated in the ohmic region. The operating range of the

sub-threshold transistor is minimal in the ohmic region. Therefore, the biases should

be precisely tuned to obtain the required recovery dynamics. Furthermore, high volt-

ages are used for tunneling and injection at the �oating-gates, which requires a dedi-

cated power supply. The �oating-gates are bulky in size compared to the conventional

CMOS transistors due to the added �oating-gates in their design which are used to

store the charge for an extended period. All these constraints hinder the use of these

circuits in large synaptic arrays of neuromorphic systems.

A depressing synapse circuit was proposed in [29]. The circuit is designed by utilizing

the parasitic capacitance. Parasitic capacitance is usually an unwanted capacitance

that exists within and between the components due to their proximity to the design.

In this circuit, a parasitic capacitor is used to store the charges, whose amount varies

during the operation of the circuit. The circuit consists of three nMOS transistors

connected in series and a diode-connected pMOS transistor (see Sec. 3.4). The input

pulses are provided to the �rst transistor. During the input pulse, the charge stored be-
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Figure 25: Schematic of the neuromorphic STD circuit proposed in [91] is shown. The circuit

has two nMOS transistors, a diode-connected pMOS transistor and a capacitor C.

Input pulses are applied at the gate of the transistorM3. The bias voltageVd sets the

current �owing through the transistor M2 in presence of an input pulse, therefore

setting the discharge rate of the capacitor and consequent drop of the output voltage

Vx. During the inter-pulse intervals, Vx recovers toward its resting value at a rate

set by Vx itself due to the current �owing through the transistorM1.

neath the gate-oxide of the second transistor (connected in series with the �rst transis-

tor) is transferred to the parasitic capacitor (existing at the node of the diode-connected

transistor and the �rst transistor). In between the pulses, the charge beneath the gate

of this transistor is restored at a rate set by the third transistor (connected in series

with the second transistor). For fast input pulses, the charge at the parasitic capacitor

is incompletely restored resulting in a reduced voltage. Whereas for slow input pulses,

the charge replenishment is complete. This mechanism is analogous to the neurotrans-

mitter release in depressing synapses. The advantage of this circuit is the absence of a

physical capacitor leading to a reduced silicon area. The parasitic capacitance is min-

imal and only fast time-constants in the range of 2-4 ms can be achievable with this

circuit. However, the time-constants observed in biology are in the range of 50-200ms

[89]. This constraint limits the use of this circuit in biologically plausible implementa-

tions.
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Rasche and Hahnloser [91] proposed a sub-threshold neuromorphic implementation

of the STD model described in [2]. As already discussed in Sec. 2.2, this model captures

the biologically realistic cortical gain-control properties of STP, and it has been widely

used in computational neuroscience [1]. The schematic of the STD circuit presented in

[15] is shown in Fig. 25. The circuit consists of two nMOS transistors, one pMOS

transistor, and a capacitor. Digital pulses are provided as the input to the circuit. The

output is the analog STD voltage measured across the capacitor. The output voltage

of the circuit is depressed for the duration of digital pulses and attempts to recover in

between the input pulses. The neuromorphic STD circuit proposed in [91] is compatible

with the DPI synapse circuit (described in detail in Sec. 3.5) and it is implemented in

the neural arrays of our neuromorphic chips (see Sec. 3.8). We discuss this circuit in

detail in this section, as it forms the foundation of our STP circuit design.

The digital input signal Vpre is applied to the gate of transistor M3 which acts as a

switch. When the digital pulse reaches its maximum amplitude, the switchM3 closes.

The di�erence between the sub-threshold currents through the transistorsM1 andM2

discharges the capacitor C. The consequent drop in the output voltage Vx depends

on the bias voltage Vd, the duration of the pulse, the capacitance C and on itself (Vx).

Therefore, for a �xed pulse duration and a capacitance, the bias voltageVd controls the

strength of the depression. In between the input pulses (i.e., the digital pulse reaches

its minimum amplitude), the switch M3 is opened. The output voltage Vx tries to

recover towards its resting voltage. The transistorM1 is diode-connected (gate shorted

to its drain terminal, see Sec. 3.4 for more details). The diode-connected transistor

always operates in saturation (Vsd > 4UT ) as long as su�cient current �ows through

it. Therefore, the drain voltage Vx of M1 is always smaller than the source voltage

Va due to its saturation region of operation. In other words, the output voltage Vx

stays lower than the voltage Va during the resting state. The rate to reach the resting

voltage state is determined by the current �owing through the transistor M1, which

is an exponential function of the voltage Vx (the gate voltage of M1). Therefore, this

rate varies depending on the Vx value.

Next, let us discuss the circuit response to the pulse-train input. In [15], the transient

response of this STD circuit was characterized for three values of the bias voltageVd, as

shown in blue, magenta and black curves in Fig. 26. The strength of depression marked

by the size of the voltage drop is small for a small Vd (blue) and high for a large Vd

(black). It can be seen for all three simulations, the output voltage Vx decreases with

each input pulse and tries to recover towards its resting value in between the pulses.

For Time 6 0.06s, the recovery is slow when the output voltage Vx is close to Va due
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Figure 26: Output voltage responses of the STD circuit (blue, magenta and black traces) pre-

sented in [15] for di�erent values of the depression (strength) voltage Vd. The red

trace shows the input pulse train stimulus provided as Vpre to the STD circuit. The

voltage Vd determines the amplitude of the output voltage Vx depressed during the

pulse. In all blue, magenta and black traces, the recovery rate of the output volt-

age Vx towards its resting value is slow in between the �rst few input pulses for

Time 6 0.06s. Over repeated stimulation for Time > 0.1s, the Vx recovers faster

with non-linear temporal dynamics.

to the smallVgs on transistorM1. For Time > 0.1s, the recovery becomes faster when

Vx moves away from Va (bigger Vgs on transistorM1). The non-linearity arises due to

variable regions of operation of the transistor M1. For a large Vax, the transistor M1

shifts from a non-saturated region to a saturated region of the sub-threshold operation.

In all three simulations, the output voltage reaches the steady-state for 0.14 6 Time 6
0.16s. It is important to note that the steady-state voltage is di�erent from the resting-

state voltage. The output voltage remains resting (close to Va) when there is no input

pulse. However, when there is a continuous stream of input pulses, the output voltage

drops continuously and reaches the saturation value which is the steady-state value.

For Time > 0.16s, it is shown that the output voltage Vx attempts to recover towards

to its resting value in the absence of input pulses.
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The advantage of this circuit is its compact design with just three transistors and only

one capacitor, which is one of the space-consuming components during the fabrication

of the circuit. Biologically realistic time-constants in the order of tens of milliseconds to

hundred milliseconds can be achievable with this circuit. The steady-state responses

of the STD circuit are characterized for various input frequencies [91]. The stimulus

consists of an input pulse train. The pulse frequency is varied from 1 to 200 Hz and

presented to the circuit. The steady-state amplitudes of the output voltage are ana-

lyzed. The results suggest that the STD circuit exhibit low-pass �lter characteristics

analogous to the results presented in [107] (see Sec. 1). The same STD circuit responses

are quantitatively compared to the Abbot’s STP model as well in [15].

The drawback of the above mentioned neuromorphic STD circuit (schematics is shown

in Fig. 25) from [91] is the lack of control over the rate of recovery of depression

voltage, in between the input pulses. It is the design constraint because the transistor

M1 responsible for controlling the recovery rate is diode-connected. This limitation

prevents the supply of an external bias voltage to the gate terminal of this transistor.

In this case, the output voltage Vx controls the gate. Therefore, the output voltage Vx

itself determines the transistor’s current value, which controls its rate of recovery.

For example, it is evident from the Fig. 26, that the output voltage Vx recovers at a

faster rate if the di�erence between the voltages Vx and Va is high, in comparison

to the recovery rate when Vx is closer to Va. The circuit misses the precise control

over its recovery, which might be useful in certain applications (See Sec. 5.3.2) that

demand a strong depression followed by a fast recovery (for example, the STD model

presented in [96]). On the other hand, these temporal dynamics are achievable using

the phenomenological models of the STP [2, 71]. Therefore, the need for a new design

of the neuromorphic STD circuit is irresistible.

So far, we only focused on the Short-Term Depression (STD) circuit. We will continue

by discussing the implementation of the Short-Term Facilitation (STF) (another type of

Short-Term Plasticity (STP)) in neuromorphic circuits.

A complementary variant of the STD circuit is proposed in [92] in which the STF cir-

cuitry is integrated together with the CMI synapse (see Sec. 3.5 for more details about

CMI synapse), in their design. However, in the latest versions of the neuromorphic

chips, the CMI synapses are replaced by the DPI synapses. This synapse can be tuned to

operate in a speci�c regime to implement the STF as discussed in the last chapter (see

Sec. 3.5). When the DPI synapse is biased with a small weight voltage and a slow time-
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constant voltage for a �xed threshold voltage, the output current becomes smaller than

the threshold current. In this condition, the output current (EPSCs) builds-up slowly in

response to the input spikes, resulting in the STF dynamics. Though the STF dynamics

can be implemented by the DPI synapse, a dedicated STF circuit allows the DPI synapse

to operate with a time-constant independent from the time-constant of the STF cir-

cuit. It allows more �exibility in tuning to implement both STD and STF with di�erent

time-constants at the same synapse.

To tackle the issues mentioned above, we designed a set of STD and STF circuits based

on the design of [91], and we published in [90]. In our circuits, we implemented an

independent control over the recovery rate for the output voltage in between the in-

put pulses. The output voltage of the newly designed STF did not always reach the

steady-state value, in response to the pulse train stimulus. Therefore, another set of

STP circuits are designed with a negative feedback loop. All these circuits will be dis-

cussed in the next sections.

4.3 stp circuits with recovery control

In this section, we will discuss our design of the neuromorphic STP circuits with a

tunable recovery rate of the depression/facilitation output voltage.

4.3.1 STD circuit

Let us start by discussing the design of the STD circuit. Fig. 27 shows the schematic of

the STD circuit (published in [90]). The STD circuit has a similar structure of the STD

circuit proposed in [91], except for the diode-connected transistor. The circuit consists

of three transistors and a capacitor. The digital input pulses Vpre are provided to the

gate of the transistor M1. These digital pulses represent the digital output spikes of

the pre-synaptic neuron. The digital pulse turns ON the transistorM1 for the duration

of the pulse, which creates a path through the transistor M2, for the capacitor Cw to

charge. During the pulse, the capacitor Cw is charged at a rate set by the di�erence

between the currents through M2 and M3 transistors, resulting in a decrease of the

output voltage Vout. The gate voltages Vwei and Vtau determine the currents through

M2 andM3. The capacitor is discharged in between the pulses at a rate set by the cur-

rent through M3, which is controlled by the gate voltage Vtau. Therefore, the output

voltage Vout recovers with the tunable recovery rate, towards its initial value set by

the voltage Vup.
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Figure 27: Schematic of a simple STD circuit (published in [90]) is shown. The circuit consists

of two nMOS transistors, one pMOS transistor, and a capacitor. The digital input

pulsesVpre are provided to the gate of the transistorM1. The digital pulse turns ON

the transistorM1, which creates a path for the capacitorCw to charge. The capacitor

Cw is charged at a rate set by the di�erence between the currents throughM2 and

M3, thereby, decreasing the output voltage Vout. The capacitor Cw is discharged

in between the pulses at a rate set by the current through M3, which is controlled

by the gate voltage Vtau. The output voltage Vout recovers with the tuned rate,

towards its initial value set by the voltage Vup. The voltage Vup sets an upper

boundary to the depression voltage to remain within the sub-threshold region, to

bias a sub-threshold voltage to the weight transistor of the synapse, that follows the

STP circuit in the design (not shown). The voltage Vlow sets the lower boundary to

the depression voltage to prevent the synapse from turning OFF.

The operation of this circuit is analogous to the working of the circuit proposed in

[91]. The di�erence is that the diode-connected transistor of the STD circuit in [91], is

replaced with a regular pMOS transistorM3. This design allows the user to tune the

external bias voltage Vtau (applied to the transistor gate terminal), which controls the

rate of recovery. The voltages Vup and Vlow set the upper and the lower limits of the

output voltage. The upper voltage limit is necessary to bias a sub-threshold voltage to

the weight transistor of the DPI synapse, which follows the STP circuit in the design

(not shown). The lower voltage limit sets the lower-limit of the steady-state output

voltage.

65



neuromorphic design of short-term plasticity circuits

We derive the circuit response in the following, for a better understanding of the circuit

operation. During the stimulus onset, it is safe to assume that thenMOS transistorM2

operates in a sub-threshold saturated region for the given Vup and Vlow voltages.

At the point of arrival of the �rst input pulse, we can assume that IM3 << IM2 . Then

the output voltage becomes:

Cw
Vout(t)

dt
= −In0e

κnVwei−Vlow
UT (22)

After the pulse, only the positive current is active at the output voltage node. Therefore,

the output voltage is driven towards its resting state:

Cw
Vout(t)

dt
= Ip0e

−κpVtau+Vup
UT

(
1− e

Vout(t)−Vup
UT

)
(23)

The proposed STD circuit is designed using the standard CMOS Austria Micro Sys-

tems (AMS) 350nm technology. The transient responses of the circuit are characterized

using the Spectre
®

simulator. To analyze the temporal dynamics of the depression volt-

age of the circuit, we performed two experiments with the STD circuit. During the �rst

experiment, the depression voltage is plotted for various sub-threshold values of the

voltage Vwei, for a given input pulse train and a constant Vtau. In the second experi-

ment, the depression voltage is plotted for various sub-threshold values of the voltage

Vtau for the same stimulus and a constant Vwei. The stimulus consists of a train of in-

put pulses (not shown) of 100 µ seconds in pulse-width and 100 Hz in frequency. The

stimulus is provided for a 0.5-second duration. The total simulation run-time is 1 sec-

ond. The pause of 0.5 seconds after the stimulus duration allows the output voltage to

recover completely within the simulation time. The parameters of the STD circuit are

chosen such that the weight transistor of the following DPI synapse (not shown) oper-

ates in the sub-threshold region. The transistor source voltages (the limiting voltages)

to the circuits, Vup and Vlow, are set to 0.8 V and 0.4 V respectively.

The output voltage responses of the STD circuit for both the experiments are shown in

Fig. 28. The top plot shows the output voltage responses to theVwei voltage sweep. The

bottom plot shows the output voltage responses to the Vtau voltage sweep. The Vwei

changes the amplitude of the update of the output voltage Vout during the input spike
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Figure 28: The output voltages of the proposed STD circuit of Sec. 4.3 (published in [90]) in

response to the input pulse train stimulus (not shown). The stimulus presented is

similar to the one shown in Fig. 26. The top plot shows the output voltages in re-

sponse to the sweep of the Vwei voltage. The bottom plot shows the output voltages

in response to the sweep of the Vtau voltage. The parameter values are chosen from

the sub-threshold region. In the top plot, the size of the update of the depression out-

put voltage Vout increases (from blue to yellow curve), in the order of increasing

Vwei voltage. In the bottom plot, the speed of the recovery of the output voltage

Vout drops (from blue to yellow), by increasing the Vtau voltage. In both the plots,

the output voltages reach the steady-state values for the given parameter sets within

the stimulus duration, except for the ones shown in red and green.

(not shown), in the order of the increasing magnitude of Vwei voltage (blue to yellow),

as seen in the Fig. 28 (top). The Vtau voltage speeds up the recovery of the output

voltage Vout in between the pulses (not shown), in the order of the decreasing Vtau

voltage (blue to yellow), as seen in the Fig. 28 (bottom). Please note that Vtau is the

gate voltage of the pMOS transistor. When no stimulus is presented (Time > 0.5s),
the output voltage Vout recovers toward to its initial value Vup completely (blue to

yellow curves, in both the experiments). All output voltages except the ‘red’ in both
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the tests, reach the steady-state values (see Time > 0.4s) for the given choice of the

parameters. Reaching the steady-state condition is crucial for the circuit because it sets

the maximum amount of synaptic depression for the synapse.

The steady-state condition is reached when the charge accumulated during a spike

is equal to the charge removed during the inter-spike interval. It occurs due to the

following reasons:

I. The voltage Vds of the transistorM2 decreases, reducing the charging current.

II. The voltage Vds of the transistor M3 increases, increasing the discharging cur-

rent.

In [91], a non-linear p-type diode-connected transistor (the bulk of which is connected

to its source) is used for controlling the temporal dynamics of the STD. In our design,

we replaced the diode-connected transistor by a conventional transistor with a tunable

gate voltage. This simple design modi�cation o�ers complete control over the tempo-

ral dynamics and allows the circuit to perform speci�c computations which were not

possible using the previous design. For example, the recovery of the STP can be set at

a rate independent from the strength of the STP. Our design is compact compared to

the previous design, which required a separate n-well for the bulk. Though not all out-

put voltages (red curve in Fig. 28:top and bottom) of the STD circuit reached the value

within the stimulus duration, the circuit can still be used as the STD circuit alongside

the DPI synapse, considering the compactness of the design. We solved this minor limi-

tation by adding a negative-feedback control to this circuit. We will discuss the details

of this modi�ed design in the next section.

4.3.2 STF circuit

Next, we discuss the design of the STF circuit. The STF circuit shown in Fig. 29 is the

complementary version of the STD circuit (published in [90]). The nMOS transistors

of the STD circuit are replaced by the pMOS transistors and vice-versa. The circuit

consists of two pMOS transistors, one nMOS transistor, and a capacitor. The circuit

has an additional circuit (inverter) to invert the digital input pulses. The presence of

multiple pMOS transistors makes the STF circuit bulky concerning the silicon area

occupied compared to the STD circuit, which has only one pMOS transistor.
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Figure 29: Schematic of the proposed STF circuit (published in [90]). Inverted pulses are sent as

input to the STF circuit. During the inverted pulse, the capacitor Cw is discharged at

a rate set by the di�erence between the currents through the transistorsM2 andM1,

thereby increasing the output voltage. In between the inverted pulses, the capacitor

Cw is charged at a rate set by the current through the transistorM1. Therefore, the

output voltage recovers towards its resting voltage value Vlow. A high value of the

voltageVup is supplied to operate thepMOS transistors in sub-threshold saturation

region. A small value of the voltage Vlow is supplied to keeps the following DPI

synapse (not shown) always ON.

The operation of the STF circuit will be discussed now. The inverted input pulses pro-

vided to the gate terminal of the transistorM3, turns ON the path for the capacitorCw

to discharge. The capacitor is discharged through the transistors M2 and M3, during

the onset of the inverted pulses. The discharge rate is set by the di�erence between the

currents throughM2 andM1. During the onset of the inverted pulse, we can assume

that the transistorM2 operates in a sub-threshold saturated region by adequately set-

ting the voltage Vup to a high value. The voltage Vup of the STF circuit is much larger

than the voltage Vup of the STD circuit to operate the pMOS transistors in the sub-

threshold region. The capacitor is charged in between the inverted pulses at a rate set

by the current throughM1, with the gate voltage Vtau. This time, the facilitation out-

put voltage recovers towards its initial resting voltage value (close to Vlow). The small

value of Vlow prevents the DPI synapse from being completely turned OFF.
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Figure 30: The output voltages of the proposed STF circuit of Sec. 4.3 (published in [90]) in re-

sponse to the input pulse train stimulus (not shown). The top plot shows the output

voltages in response to the sweep of the voltage Vwei. The bottom plot shows the

output voltages in response to the sweep of the voltage Vtau. The voltage values

are chosen from the sub-threshold region for both the p-type and the n-type tran-

sistors. In the top plot, the size of the update of the output voltage Vout decreases

(from blue to yellow curve), in the order of increasing Vwei voltage (as the abso-

lute voltage decreases). In the bottom plot, the speed of the recovery of the output

voltage Vout increases (from blue to yellow), by increasing the Vtau voltage. In the

top plot, no output voltage reaches the steady-state value within the stimulus dura-

tion. In the bottom plot, except for the voltages in red and blue, all the other output

voltages reach the steady-state values.

The proposed STF circuit is designed using the standard CMOS 350 nm Austria Mi-

cro Systems (AMS) technology. The transient responses of the circuit are characterized

using the Spectre
®

simulator. The same experiments as discussed in the previous sub-

section are carried out in the STF circuit as well. The circuit’s output voltage responses

are shown in Fig. 30. The top subplot shows the output voltage responses to the Vwei
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voltage sweep. The bottom subplot shows the output voltage responses to the Vtau

voltage sweep.

The amplitude of the update of the output voltage Vout increases (blue to yellow) dur-

ing the pulse, in the increasing order of the Vwei voltage (blue to yellow), as shown

in Fig. 30 (top). The speed of the recovery of the output voltage Vout increases (blue

to yellow) in the increasing order of the Vtau voltage (blue to yellow), as shown in

Fig. 30 (bottom). Unlike the STD, only a few of the output voltage responses reaches

the steady-state values (yellow in top; yellow, cyan, and green in the bottom). The

steady-state values are not achieved due to the linearity in the recovery of the output

voltage resulting from the saturated transistors, which is explained in the following.

The output of the STF circuit has to be in the sub-threshold range to provide a sub-

threshold bias to the input nMOS weight transistor of the DPI synapse [9]. However,

the upper limit voltageVup is high (forpMOS) as mentioned earlier, so that the transis-

torM2 is always saturated. Due to this condition, the output voltage of the STF circuit

does not reach the steady-state voltage within the sub-threshold range for many of

its parameters. If the transistor M3 gets saturated after an inverted input pulse, and,

if the charge per inter-pulse interval provided through the transistor M2 is smaller

than the charge per pulse removed through the transistorM1, then the output voltage

Vout cannot reach the steady-state value. To tackle this issue, we designed another set

of the STP circuits by adding a negative feedback loop to the current STF design. This

feedback loop allows the output voltage of the STF circuit to reach steady-state values.

These feedback STP circuits are discussed in the next section.

Nevertheless, the STF circuit can still be used with di�erent bias settings. For instance,

the sub-threshold condition of the pMOSweight transistor can be satis�ed by shifting

the boundary voltages Vup and Vlow towards Vdd. With this setting, the circuit can

be used to control the ‘threshold’ transistor of the DPI synapse which requires the

high bias voltage to operate. In this case, the STF circuit is used as the STD circuit,

that controls the ‘threshold’ transistor of the synapse. At the same time, a long-term

learning circuit can be used to control the ‘weight’ transistor of the synapse. Thus,

implementing two forms of synaptic plasticity at the same synapse is feasible with

our STP circuits design.
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Figure 31: Schematic of the STF circuit with the feedback control (published in [90]). The design

is an extension of the proposed STF circuit by adding a source-follower circuit. The

output voltage Vout is supplied to the gate of the source-follower’s input transistor

M6. The voltage Vlim is provided as the bias voltage to the source-follower’s tran-

sistorM5. The output voltage of the source-follower is connected to the gate of the

(additional recovery) transistorM4, which is connected in parallel to the transistor

M1. The voltage Vlim a�ects the source-follower output voltage (feedback-control

voltage) depending on the facilitation output voltage Vout. The feedback-control

voltage provides an additional control over the recovery rate of the voltage Vout

set by the current through the transistorM4, in between the inverted input pulses.

4.4 stp circuits with feedback recovery control

The problems for the circuits presented in Sec. 4.3 are more pronounced for the case

of facilitation. Therefore we will start with the e�ect of the feedback on the STF circuit.

Then, we will brie�y discuss the STD circuit with feedback, to avoid redundancy in the

text.

4.4.1 STF circuit

Fig. 31 shows the schematic of the STF circuit with a feedback control (published in

[90]). Transistors of the previously discussed STF circuit did not always operate in the

saturation region. Therefore the steady-state was reached only for a few parameter

72



4.4 stp circuits with feedback recovery control

sets. A negative-feedback loop is used to tackle this issue. A source-follower circuit

(refer Sec. 3.4 for more details on the source follower circuit) is added to the previous

STF circuit design, implementing the feedback loop. The working of the STF circuit with

a feedback control is similar to the working of the STF circuit without the feedback, ex-

cept for the additional feedback loop. We covered the operation of the STF circuit in the

last section. Therefore, we restrict our explanations to the in�uence of the additional

negative-feedback loop on the STF circuit.

The bias voltagesVup,Vlow,Vwei andVtau are tuned to be the same values as discussed

in the last section. The inverted-input pulses are provided to the gate of the transistor

M3. The output voltage of the STF circuit is supplied to the gate of the source-follower’s

input transistorM6. The feedback-control voltage Vlim sets the voltage of the source-

follower’s bias transistor M5. The output of the source-follower is connected to the

gate of the transistorM4. The transistorM4 o�ers an additional path for the capacitor

charging current during the recovery of the facilitation output voltage in between the

inverted input pulses. The voltageVlim in�uences the recovery rate of the voltageVout

through the transistor M4, by discharging the capacitor at a rate depending on the

output voltage Vout. This negative-feedback loop enables the output voltage to reach

a steady-state value. A theoretical understanding of this circuit’s working principle is

discussed in the following.

The source follower of the feedback STF circuit has two nMOS transistors which oper-

ate in the sub-threshold saturation region. The transfer function of the source follower

is:

Vout = κn(VInput − Vbias) (24)

According to our circuit design, this function can be rewritten as:

Vg = κn(Vout − Vlim) (25)

where Vg is the output voltage provided to the gate of the transistorM4.

The current through the transistor M4 rises exponentially with the charge of the ca-

pacitor, limited by an o�set, set by the voltage Vlim, thus forming a negative-feedback
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loop. This new path enables the voltage Vout to reach the steady-state value even with

fully saturated sub-threshold transistors.

If the transistorsM1,M2, andM4 are operated in saturation, the equation describing

the voltage Vout, following one pulse of duration tpw and an arbitrary recovery time

t, is:

CVout(t) = CV(0) + IM2tpw − IM1t−

∫ t
0
IM4(Vout(t

′))dt ′ (26)

Steady-state value is reached when Vout(
1
fin

) = V(0).

The integral is not analytically solvable without further assumptions. However, it pro-

vides an intuitive understanding of the qualitative dynamics of the circuit. Assuming

a constant positive inter spike charge di�erence:

(IM2tpw −
IM1
fin

) > 0 (27)

The output voltage rises linearly per spike until:

∫ 1
fin

0
IM4(Vout(t

′))dt ′ =

∫ 1
fin

0
In0e

κn(Vout(t
′)−Vlim)−Vy
UT dt ′ (28)

This value is high enough to settle the di�erence. The saturation condition is not nec-

essarily ful�lled, but it should be in the regular case as the feedback is provided by the

transistorM4.

If the input charge per spike IM2tpw is signi�cantly greater than the constant

IM1
fin

,

the steady-state value is determined by the voltage Vlim. We can use the voltage Vlim

to limit the highest steady-state value. In this con�guration, the voltage Vup sets the

recovery for small frequencies. It also provides a smoother feedback than the sudden

cut-o� given by the non-saturation transistors in both Sec. 4.3 and [91], resulting in

a wider bandwidth of intermediate states between the lowest and the highest steady-

state values.
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Figure 32: The output voltages of the STF circuit with the feedback recovery control of Sec. 4.4

(published in [90]) in response to the input pulse train stimulus (not shown). The

feedback-control voltage Vlim is swept and each curve in the plots shows the cor-

responding change in the output voltage. The voltage Vlim determines the o�set

of the steady-state values. All the output voltages (curves) in both the plots reach

the steady-state values. The non-linearity in the recovery rate responsible for the

steady-state behavior is clearly visible in the magenta curve of the top plot.

The proposed STF circuit with a feedback recovery control is designed using the stan-

dard CMOS Austria Micro Systems (AMS) 350 nm technology. The transient responses

of the circuit are characterized using the Spectre
®

simulator. An experiment is con-

ducted to analyze the in�uence of the Vlim over the steady-state values of the output

voltage of the updated STP circuit. The responses are not characterized for Vwei and

Vtau to avoid redundancy in the results. The input pulse train is provided for 1 second

(same as the simulation time). The input frequency is 100 Hz, and the pulse width is

100 µ seconds. Vwei and Vtau voltages are �xed within the sub-threshold range. Only

the feedback-control voltage Vlim is varied in this experiment. The output voltage of

the STF feedback circuit is plotted in Fig. 32. The output voltage of this new STF cir-

cuit reach the steady-state values (blue to magenta for Time > 0.3s) for all values of

Vlim in the experiment. The steady-state condition is achieved by the non-saturated

operation of the sub-threshold transistors and a non-linear recovery rate. The speed

of the non-linear change in the recovery rate is controlled by the voltage Vlim. There-

fore, the bias Vlim determines the steady-state values. The transient responses of the

output voltage (Time 6 0.1s) remain the same due to the �xed voltages of Vwei and

Vtau.

The output voltage of the STF circuit with a feedback recovery control can reach the

steady-state values. This modi�ed STF circuit is still compact regarding the silicon area

because we used a simple n-type source-follower and a nMOS transistor to imple-
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Figure 33: Schematic of the STD circuit with the feedback recovery control (published in [90]).

The negative-feedback loop is implemented using the source-follower. The feedback-

control voltage Vlim is provided to the source-follower’s input transistor M6. The

output voltage Vout of the STD circuit is supplied as the bias voltage to the source-

follower’s bias transistor M5. The output voltage of the source-follower is used

to bias the (additional recovery) transistor M4. The voltage Vlim controls the ad-

ditional recovery path of the depression output voltage Vout set by the current

through the transistorM4.

ment the feedback loop. Therefore this STF circuit can be directly integrated with the

vast arrays of the DPI synapse. A dedicated STF circuit also o�ers an independent tun-

ing of the facilitation time-constant in contrast to the implementation of STF using the

DPI synapse itself.

4.4.2 STD circuit

The operation of the STD circuit with a feedback recovery control is analogous to

the STF circuit with a feedback recovery control as discussed above. This variant of

the STD circuit is brie�y discussed in this section to avoid redundancy in the text.

Fig. 33 shows the schematic of this STD circuit (published in [90]). Again, the source-

follower is used to provide the negative-feedback loop. The major di�erence is that

the feedback-control voltage Vlim is provided to the gate of the input transistor of

the source-follower (instead of the bias transistor in the STF circuit with a feedback

recovery control). The output voltage Vout of the feedback STD circuit is supplied to
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Figure 34: The steady-state values of the output voltage of the STD circuit with a feedback

recovery control (published in [90]) in response to the input pulse train stimulus

(not shown). The feedback-control voltage Vlim is swept, and each curve in the

plots shows the corresponding change in the output voltage. The voltage Vlim de-

termines the o�set of the steady-state voltage. All the output voltages (curves) in

both the plots reach the steady-state values. The non-linearity in the recovery rate

responsible for the steady-state behavior is visible in the magenta curve of the top

plot.

the bias transistor of the source-follower. The output voltage of the source-follower

is connected to the gate of the (additional recovery) transistor M4. The voltage Vlim

controls the recovery rate of the output voltage Vout through the transistor M4, by

discharging the capacitor at a rate set by the output voltage Vout itself. This way, the

output voltage of the STD circuit reaches the steady-state value.

The proposed STD circuit with a feedback recovery control is designed using the stan-

dard CMOS Austria Micro Systems (AMS) 350 nm technology. The transient responses

of the circuit are characterized using the Spectre
®

simulator. The same experiment

conducted to analyze the steady-state values of the output voltage of the STF circuit

with a feedback recovery control for di�erent values of Vlim is performed for the STD

circuit with a feedback recovery control as well. Sub-threshold bias values are cho-

sen for all the parameters. The results of the experiment are plotted in Fig. 34. From

the plots, we can conclude that the Vlim voltage determines the steady-state values

of the output voltage (red to magenta: for Time > 0.3s). The transient responses of

the output voltage are the same for all the curves, due to the constant Vwei and Vtau

voltages.

Though the STD circuit without a feedback control performs right, there are few pa-

rameters, for which the steady-state value is not reached (red curve in Fig. 28:top and
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bottom). The STD circuit with a feedback recovery control solves this limitation by

allowing all the output voltages to reach the steady-state values (red to magenta) us-

ing Vlim. However, the modi�ed STD circuit occupies a more extensive design area

with three additionalnMOS transistors, compared to the STD circuit without feedback.

Therefore, depending on the design space available, the speci�c type of the circuit can

be used to implement the Short-Term Depression (STD).

4.5 simulations of stp circuits

As mentioned earlier in Sec. 2.3.1, the STP exhibits �ltering properties. To validate this

concept in silicon, we characterized the �ltering properties of the proposed STP circuits,

by plotting the steady-state values of their output voltages. All four STP circuits are

designed using the standard CMOS Austria Micro Systems (AMS) 350 nm technology.

The steady-state responses of the circuits are characterized by the Spectre
®

simulator.

This experiment is comparable to the one performed in biology, mentioned earlier in

Sec. 2.3.

The stimulus to the circuits was kept the same as described in the previous experiments.

The frequency of the input pulses are varied, and the steady-state voltage responses of

the circuits are plotted in Fig. 35. The biases (Vwei,Vtau,Vlim,Vup andVlow) are tuned

in such a way, that the output voltage of these circuits reaches the steady-state value

within the stimulation time. We discussed already that the output voltage of the STF

circuit without a feedback recovery control could not achieve the steady-state values

for most of the input stimulus frequencies (see Fig. 30). Therefore, the value of the

output voltage at the end of the stimulus train is taken as the steady-state value just to

compare the circuit’s �ltering characteristics with the other circuits’ characteristics.

The output voltage oscillates between two amplitudes during the steady-state (see the

circuits’ responses in Fig. 28, Fig. 30, Fig. 32, Fig. 34). Vup (or Vlow) determines one end

of the steady-state amplitude. The speed of recovery determines the value at the other

end of the amplitude. Therefore, mean and SD of these two steady-state amplitudes is

obtained. The output voltage remains in the steady-state for a certain period. There-

fore, a small time-window is chosen towards the end of the simulation time. The mean

and the SDs of the steady-state amplitudes are averaged within this time-window and

plotted in Fig. 35. The �lter characteristics of the responses of the STF circuit without

the feedback recovery control are shown in top-left; the STF circuit with the feedback

recovery control in bottom-left; the STD circuit without the feedback recovery control

in top-right; the STD circuit with the feedback recovery control in bottom-right.
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Figure 35: The �lter characteristics of the STP are demonstrated using the STP circuits (pub-

lished in [90]): the STF without the feedback (a); the STD without the feedback (b);

the STF with the feedback (c); the STD with the feedback (d). A digital pulse train of

�xed pulse-width is used as an input stimulus. The frequency of the input stimu-

lus is varied, and the output steady-state voltage responses are plotted. Each point

in the curve represents the mean of the steady-state output voltages averaged over

a small time-window of the steady-state voltages. The error-bars denote the aver-

aged SDs of the steady-state voltages within the time-window. All circuits are tuned

to achieve the steady-state responses by choosing the appropriate parameters, ex-

cept for the STF circuit without the feedback, which did not show the steady-state

responses within the stimulus duration, for all input frequencies. In this case, the

value of the output voltage at the end of the stimulus (0.5 s) is arbitrarily taken for

visual comparison to the other plots. Analogous to the observations from the mod-

els of the STP (see Sec. 2.3), the STD circuits responses (right: top and bottom) show

low-pass �lter characteristics, while the STF circuits responses (left: top and bottom)

show high-pass �lter characteristics to varying input frequencies.

Each dot in the plot is the averaged mean of the steady-state amplitudes, over a small

time-window. The error bars represent the averaged SDs of the steady-state amplitudes
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within the same time-window. As expected from the models of the STP (see Sec. 2.3),

the averaged mean steady-state responses of the STD circuits show low-pass �lter char-

acteristics (Fig. 35: right) and the responses of the STF circuits exhibit high-pass �lter

characteristics (Fig. 35: left), in response to the input frequencies. The STP �lter curves

(averaged mean) can be shifted in either direction by choosing the appropriate param-

eters of the circuits. In all these plots, the averaged SDs remain almost constant for all

input frequencies. The size of the SD of the steady-state amplitudes depends on the

choice of the parameters. Please refer table 3 in Chapter 7 for details of the parameters

used to obtain the temporal �lters in Fig. 35.

Next, we present a simulation result in Fig. 36 to verify that our STP circuits can be

used to detect bursts. In this experiment, the STD circuit without the feedback control

(see Fig. 27), is stimulated with the bursts of pulses of 200 Hz burst frequency and 25

ms interval between the bursts for 500ms duration. The stimulus (input voltage) Vpre

is shown as a green trace in the �gure. The parameters Vwei and Vtau are chosen to

be high values. The parameters Vup and Vlow are �xed as 800mV and 300mV respec-

tively, which is the optimum range to operate the DPI synapse that follows this circuit.

The output voltage Vout−std is shown as a red trace in the �gure. The output voltage

of the STD circuit decreases fast in response to the �rst pulse of the burst. The pulses

within the bursts are too soon for the output voltage to be wholly recovered towards

its initial value. However, during the inter-burst interval, the output voltage recovers

entirely towards its initial value. These dynamics of strong depression followed by a

fast recovery of the STD output voltage is only possible by adding the independent

control over the recovery-rate to the STD circuit we designed in this research. There-

fore, our STD circuit can be used as a burst onset detector which is a useful property

in modeling bio-inspired temporal �lters.

The �ltering properties of the STP as observed in the biology can be achieved using the

STP circuits proposed in this research. These �ltering features are used to model the

neuron (synapse) as a �lter, as in the case of implementing calling song recognition

network of crickets in the neuromorphic hardware. It is the other half of this research,

which we will discuss in detail in the following chapter.

4.6 fabrication and testing of stp circuits

To faithfully realize the computations of Short-Term Plasticity (STP) in silicon, the pro-

posed STP circuits were fabricated in a neuromorphic test chip. We call it a testchip-1

and the block diagram of the STP blocks in this chip is shown in Fig. 37. The testchip
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Figure 36: The output voltage Vout−std of the STD circuit without a feedback recovery con-

trol (shown in red) in response to the input bursts of pulses Vpre (shown in green).

The output voltage is decreased fast to Vlow during the onset of the burst due to

the strong depression set by Vwei. During the burst, the output voltage does not

entirely recover towards its initial value due to the high frequency of the pulses

within the burst. After the burst, the output voltage completely recovers towards its

initial valueVup due to the fast recovery rate set byVtau. These dynamics of strong

depression followed by quick recovery can be used to detect bursts in a stimulus.

consists of four STP circuits (STD and STF - with and without feedback), a band-pass

�lter circuit, a calcium-based plasticity circuit and a DPI synapse circuit (refer Sec. 3.5

for more details). The band-pass �lter circuit is an additional �lter circuit which is

explained in detail in Chapter 7. The calcium-based plasticity circuit is not a part of

this research. A multiplexer is used to select the STD and STF circuits without feedback

and an another multiplexer for the STD and the STF circuits with feedback. The control

signal S2 is shared between these two multiplexers. The output of these two multiplex-

ers are fed into the third multiplexer which selects between the STP circuit with and

without feedback. The outputs of the band-pass �lter circuit and the calcium circuit

are multiplexed and its control signal S1 is shared with the third multiplexer which

is mentioned earlier. The output of these two multiplexers are fed into the �nal multi-

plexer which selects between the STP circuits and the rest. The output voltage of the
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Figure 37: Block diagram of the STP circuits block designed in testchip-1 is shown. The design

consists of four STP circuits (STD and STF - with and without feedback), a band-pass

�lter circuit, a calcium-based plasticity circuit and a DPI synapse circuit. The input

pulses are sent to all STP circuits. Multiplexers are used to select the corresponding

circuit block through the control signals S2, S1 and S0. The output voltage of the

selected STP circuit is bu�ered and routed to the output pad, and also sent to the gate

of the weight transistor of the DPI synapse. The output voltage of the DPI synapse is

also bu�ered and routed to the output pad, and the output current shows the e�ect

of STP on its amplitude.

multiplexer is bu�ered through an opamp bu�er to decouple the output voltage from

the output pad. The output voltage of the multiplexer is also supplied to the gate of

the weight transistor of the DPI synapse. The input pulses are provided to stimulate all

the STP circuits. However, due to the multiplexing only one of the STP circuits is active

at a particular time. Therefore, the DPI synapse receives only one of the STP output

voltages. The output voltage of the DPI synapse is also bu�ered, and the output cur-

rent of the synapse is also routed to the pad. For a given input pulses, the e�ect of STP

on the synaptic weight in terms of can be estimated through the change in amplitude

of the synaptic currents, in our design. Given the limited design area of the testchip,

neurons are not included in the design. Therefore, the AER communication protocol is

not included in the design of our part of the testchip.

The layout design of the STP block consisting of four STP circuits is shown in Fig. 38.

The circuits were designed and laid-out using a standard CMOS AMS 180 nm tech-

nology. Conventional transistors of width: 1 µm and length: 0.36 µm are used in the
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Figure 38: The layout of the proposed STP circuits designed using the standard CMOS AMS 180

nm technology. The circuits (with the design area) organized from the top are as fol-

lows: STD with the feedback (62.74*7.0 µm2); STF with the feedback (62.74*7.0 µm2);

STD without the feedback (62.74*7.59 µm2); STF without the feedback (62.74*8.44

µm2). The transistors are located at the left of the layout and occupy a small area.

The capacitors on the right half of the layour occupy most of the silicon area. Further

design aspects are provided in the table 1

.

design. The capacitor occupies the area of 50*3.76 µm2
and it is designed using the

four ‘Metal’ metal-insulator-metal (MIM) for a total capacitance of 100 fF. In total, six

layers of ‘Metal’ are used in the design. The biases are shared across the STP circuits,

due to the limitation of the total count of the I/O pins that need to be bonded from

the chip. The layout of the circuits (with the design area) organized (Fig. 38) from the

top are as follows: the STD circuit with a feedback recovery control (62.74*7.0 µm2
),

the STF circuit with a feedback recovery control (62.74*7.0 µm2
), the STD circuit with-

out the feedback (62.74*7.59 µm2
) and the STF circuit without the feedback (62.74*8.44

µm2
). Please refer the table 1 for more details about the dimensions used in the layout

design.

The STD circuit proposed by C. Rasche and R. Hahnloser in [91] (see Fig. 25 of Sec. 4.2

for more details) was fabricated using 1.2 µm technology. The transistors were 5 µm

in width and 5 µm in length, and the capacitor was 0.2 pF. Compared to this circuit,

the transistors of our STP circuits fabricated using 180 nm technology occupy 70

times the smaller area and the capacitor is 2 times smaller in its capacitance value.

The transistors located on the left of the design occupy a small area compared to the

capacitors on the right, which consume most of the silicon area of the circuits. It is true
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Block Type Length Width Value

STD

without

feedback

M1-M4 Cap 50µ 3.76µ 96.2fF

Transistor 0.36µ 1µ -

Silicon occ. 62.74µ 7.59µ -

STF

without

feedback

M1-M4 Cap 50µ 3.76µ 96.2fF

Transistor 0.36µ 1µ -

Silicon occ. 62.74µ 8.44µ -

STD with

feedback

M1-M4 Cap 50µ 3.76µ 96.2fF

Transistor 0.36µ 1µ -

Silicon occ. 62.74µ 7µ -

STF with

feedback

M1-M4 Cap 50µ 3.76µ 96.2fF

Transistor 0.36µ 1µ -

Silicon occ. 62.74µ 7µ -

Table 1: Dimensions of the STP circuit blocks designed in testchip-1.

for all four STP circuits. The layout of the STP circuits with a feedback recovery control

is slightly larger than that of the STP circuits without the feedback. It is due to the

presence of three additional transistors of the negative feedback circuit. The output

voltage node of these STP circuits is connected to the operational-ampli�er bu�er (not

shown in the layout), which decouples the output voltage of these circuits from the

pads. The pads are used to safely measure (or supply) the voltages (or currents) from

(or to) the chip.

We tested the STP circuits fabricated in the neuromorphic test chip. During testing,

we analyzed the output voltage of all four STP circuits by presenting the pulse train

stimulus. The waveform generator provides the input pulses of 100 µ seconds in pulse-

width and 150 Hz in frequency for a duration of 250 milliseconds. The biases Vlim,

Vtau, and Vwei are tuned in such a way, that the output voltages of the STP circuits

reach their steady-state values within the stimulus duration. The voltages Vup and

Vlow are set to 0.8 V and 0.3 V respectively, such that the weight transistor of the DPI

synapse stays in the sub-threshold region. The output voltages of the STP circuits are

recorded through the oscilloscope. The recorded data are plotted in Fig. 39. The top

plots show the output voltages measured from the STP circuits without the feedback.

The bottom plots show the responses from the STP circuits with the feedback. The left

half of the �gure shows the STD circuit responses, and the right plots show the STF
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Figure 39: The output voltage responses of the fabricated STP circuits recorded through the

oscilloscope are shown. Top-left: STD circuit without the feedback; Top-right: STF

circuit without the feedback; Bottom-left: STD circuit with the feedback; Bottom-

right: STF circuit with the feedback. A train of input pulses of 150Hz frequency and

250 milliseconds in duration is provided as a stimulus to these circuits through the

waveform generator. The voltage biases are tuned, such that the output voltages of

these circuits reach the steady-state values within the stimulus duration. The traces

show that all of the STP circuit responses reach the steady-state values within the

stimulus duration, except for the STF circuit without the feedback. This behavior is

expected from the simulation results (as discussed in the previous section).

circuit responses. As expected from the simulations, all except the output voltage of

the STF circuit without the feedback reach the steady-state values within the duration

of the stimulus.
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Figure 40: The �ltering properties of the fabricated STP circuits are shown. Top-left: STD circuit

without the feedback; Top-right: STF circuit without the feedback; Bottom-left: STD

circuit with the feedback; Bottom-right: STF circuit with the feedback. The input is a

train of pulses with a �xed pulse-interval of 100 µ seconds sent from the waveform

generator. The input pulse frequency is varied in this experiment. The stimulus du-

ration is varied based on the input frequencies, such that the output voltage reaches

the steady-state values within the stimulus duration. This variation in the stimulus

duration is consistent for all the circuits. Each point in the curve is the mean of the

steady-state amplitudes, and the error bars represent the SDs of those amplitudes. As

expected, the STF circuit without the feedback did not achieve the steady-state re-

sponses within the stimulus duration. Therefore, the mean of the amplitudes at the

end of the stimulus is plotted as the steady-state values. As expected from the sim-

ulation results, the STD circuits responses show low-pass �lter characteristics and

the STF circuits responses show high-pass �lter characteristics. The absolute peak-

to-peak amplitudes of the steady-state output voltages decrease for high-frequency

inputs, due to the short ISIs, resulting in small SD values.

We also tested the �ltering characteristics of the fabricated STP circuits responses. In

this experiment, a train of input pulses is sent through the waveform generator to the

chip. The input pulses have a pulse-width of 100 µ seconds, and the input frequency is
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varied from 10Hz to 150Hz in steps of 10Hz. The duration of the stimulus is changed

during the experiment depending on the frequency of the input pulse. The length of the

stimulus is varied, such that the output voltage reaches the steady-state value within

the stimulus duration. The biases are kept the same as the previous experiment. The

output voltages from the chip are recorded through the oscilloscope.

The mean and the SDs of the steady-state amplitudes are computed for each circuit in

response to each stimulus frequency. As expected, the output voltage of the STF circuit

did not reach the steady-state value for most of its input frequencies. Therefore, the

mean of the output voltage amplitudes at the end of the stimulus is taken as the steady-

state value to compare one-to-one with the circuits’ responses.

The steady-state responses of the four STP circuits to the input frequencies are shown

in Fig. 40. Every point in the plot is the mean of the steady-state amplitudes. The error

bars represent the SDs of the steady-state amplitudes.

As expected from the simulations, the responses of both the STD circuits (top: left and

right) show low-pass �lter characteristics and the responses of both the STF circuits

(top: left and right) exhibit high-pass �lter characteristics. The top-right plot shows

a sharp rise in the high-pass �lter pro�le, due to the non-steady-state responses of

the STF circuit without the feedback control. The shape of the �lter curves can be al-

tered by choosing another set of the parameters. For instance, the parameters can be

tuned further for a better low-pass �lter response of the feedback STD circuit. The

time-constant of recovery of the output STP voltage is �xed to all inputs. During high-

frequency stimulation, the absolute peak-to-peak amplitude of the steady-state out-

put voltage of the STD circuit without the feedback, recovers to a small value com-

pared to the low-frequency inputs, due to the short ISIs and this applies to all four

STP circuits. Therefore, the SDs of their steady-state output voltages decrease during

high-frequencies. However, the output voltage of the STF circuit without the feedback,

recover entirely towards the resting voltage for speci�c frequencies. Therefore, the cor-

responding SDs of the steady-state amplitudes are signi�cant for low-frequencies (see

50 6 Freq 6 100Hz). Please refer table 4 in Chapter 7 for details of the parameters

used to obtain the temporal �lters in Fig. 40.

The results presented here are analogous to the circuit simulations and are comparable

to the STP �lters characterized in [1]. The �lters of the STP can be used to model the

post-synaptic neuron responses to select speci�c pre-synaptic input frequencies. This
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idea is implemented in the model of the calling song recognition network of crickets.

More details of this implementation can be found in the next chapter.

The individual STP circuits are functioning as expected, in the fabricated test chip.

These STP circuits are laid-out again in another test chip (using the same technology)

and are used as computational STP �lter blocks in a small neural array. The purpose

of this neural array is to implement the calling song recognition network of crickets

in a dedicated neuromorphic chip. The characterization of this new test chip is out of

the scope of this research. Please refer Chapter 7 for more information on this neural

array implementation.

4.7 conclusion

The STD circuit proposed here is identical to the linear charge-and-discharge synapse

circuit proposed in [5]. The main di�erence is the usage of this circuit. In [5], the circuit

is used as a synapse, whereas in our implementation, the output of the circuit is voltage-

limited and used to bias the ‘weight’ transistor of the DPI synapse. The advantage of

these new STD circuits is the independent control over the recovery dynamics which

was missing in the previous design of [15]. With the explicit recovery control, the

circuit can detect the bursts, a property of the Short-Term Plasticity (STP) as discussed

in Sec. 2.3.2. If the bursts of spikes are presented to the synapse, the circuit identi�es

the onset of bursts by the strong STD voltage, which recovers fast before the arrival of

the next burst. These temporal dynamics are possible only with the tunable recovery

of our STD circuit. The STP circuits without the feedback are compact in design, but

the steady-state non-convergence in the STF circuits leads to another design by adding

a negative feedback loop. The STF circuits, provide more �exibility to the DPI synapse,

especially the STF circuit with the feedback recovery control. The STF circuit allows

the DPI synapse to operate with large currents during the STF implementation, which

is not the case if DPI synapse is used to implement the STF. The STF circuit also provides

independent time-constant of the STF without limiting the operating range of the DPI

synapse. The usefulness of the neuromorphic STP is demonstrated in the next chapter.

We also combined the STD and STF circuits in the design, to obtain band-pass �lter

characteristics. This variant of the STP circuit might be useful to �lter out speci�c

frequencies. The circuit is discussed in detail in the Chapter 7.

88





5
N E U R O M O R P H I C M O D E L F O R C R I C K E T C A L L I N G S O N G

R E C O G N I T I O N N E T W O R K

5.1 introduction

Timing is a crucial factor in sensory processing. For instance, spatiotemporal cues are

the essential components of object recognition in human vision [68]. Temporal struc-

tures of audio signals are also crucial in sound recognition. The auditory neurons of the

brain encode these temporal patterns of the sound. Understanding this neural coding

scheme is a key to the speech-recognition research. A simple neural sound recognition

system is found on grasshoppers [74], crickets [101], drosophila [25]. These systems

can be used as an object of study considering the simple architecture of their neural net-

works. Insects have relatively small nervous systems with a small number of neurons

compared to vertebrates. For example, an adult Drosophila brain has approximately

100 thousand neurons [21], whereas the mouse brain is estimated to have around 75

million neurons [78]. This quality ensures insects model organisms to study. In our

research, we study ‘crickets’, a class of insects that have been extensively studied for

their acoustic communication abilities [100].

Crickets display a variety of acoustic-oriented behavior such as singing (or responding

to) rivalry songs, courtship songs and calling songs. Males produce calling songs by

rubbing their wings against each other to attract females. Females respond to these

species-speci�c calling songs by positioning (rotating) and moving in the direction of

their preferred source of the sound. This behavior of female crickets is called phono-

taxis [105]. It is crucial for the survival of their species because the females evaluate

the �tness of the male through the quality of the calling song and mate the �ttest male

in the �eld.

In this research, we study the neural network that is responsible for recognizing calling

songs during cricket phonotaxis. The network o�ers the understanding of the prin-

ciples of auditory processing of the individual neurons. We modeled a calling-song

recognition network in the neuromorphic hardware using the STP synapses. The net-

work is modeled based on the neurophysiological evidence of crickets’ auditory neu-
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rons. This model provides an understanding of the network architecture constructed

in the neuromorphic hardware. The model also demonstrates the temporal �ltering

properties of the STP (as discussed in Sec. 2.3.1) during calling song recognition. The

details of the model will be explained in the ‘methods’ section of this chapter. The bi-

ological evidence of phonotaxis will be discussed �rst in this chapter, followed by the

implementation of the model, the results obtained from the neuromorphic hardware

and �nally, the discussion about the results will be presented.

5.2 neurobiology of cricket phonotaxis

Several behavioral experiments on phonotaxis have been carried out across various

species of crickets [105], [43], [57]. In all these experiments, an arti�cial stimulus, re-

producing the main features of original songs were presented to the crickets, and their

response was tested. A typical arti�cial stimulus (see Fig. 43 black waveform) lasts

for a duration of 300-500 milliseconds (Chirp Duration (CD)) and separated by inter-

vals (Chirp Intervals (CIs)) of approximately 500 milliseconds in duration. These values

were chosen following the characteristics of the natural calling songs. For instance, the

CI of the male calling song ranges from 300 ms to 700 ms. Each CD is further divided

into pulses and pauses of short duration de�ned as Pulse Duration (PD) and Pulse In-

terval (PI). The combinations of PD and PI are referred to as Pulse Periods (PPs). The

pulses (within the PD) are made of an amplitude modulated sinusoidal carrier wave of

5 kHz frequency and 80 dB intensity (the preferable range for female crickets).

In [105], the behavioral response of crickets was measured in response to the arti�cial

calling songs. During the experiment, the female cricket was clamped on a trackball,

called the walking compensator. The trackball moves in the opposite direction of the

insect’s movement, such that the actual position of the subject always stays constant.

The trackball was placed in a chamber with two loud-speakers on each side, placed

at di�erent angles. Arti�cial calling songs ranging from 10 ms to 98 ms of PPs were

presented through the loud-speakers. The songs are shown in Fig. 41 (top). In response

to these songs, the female crickets start walking towards the source of sound (corre-

sponding speaker). The values of the angle and the velocity of walking were extracted

from the trackball. Based on the collected data, phonotaxis scores were computed for

few seconds of tracking per minute of a trial. The score is de�ned by the speed of the

alignment of the animal and the speed of the movement on the trackball, towards the

right sound source. The resulting scores of the behavior were plotted in Fig. 41. The

scores were plotted for various PPs. The overall pro�le of the scores resembles a band-

pass �lter with the highest response, around 30-50 milliseconds PPs. Therefore, female
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crickets prefer these values of the PPs, possibly revealing a good �tness of the singing

male.

Neuroscientists have been studying the cricket brain with the goal of elucidating the

neural substrate triggering this behavior. In the seminal work of Schildberger [101],

six types of auditory neurons were identi�ed in Gryllus bimaculatus. The neural re-

sponses were again characterized as a function of the PPs and interpreted regarding

temporal �lter properties (e.g., high/low/bandpass). The auditory system of crickets

begins with the hearing organs (ears) in their front legs. Approximately 70 sensory re-

ceptor �bers (or a�erent neurons) are identi�ed in each ear of the cricket. The auditory

a�erents have small axons that terminate in the pro-thoracic ganglion. The auditory

neurons originating from the pro-thoracic ganglion were grouped into three classes

based on their anatomy [101]. They are Ascending Neurons (ANs), Central Brain Neu-

rons 1s (BNC1s) and Central Brain Neurons 2s (BNC2s). Ascending neurons (Ascending

Neuron 1 (AN1) and Ascending Neuron 2 (AN2)) ascend from the pro-thoracic ganglion

to the brain. BNC1 are located in the brain, and their dendrites are physically co-located

with the axons of ascending neurons. Anatomical evidence supports the hypothesis of

ascending neurons being the primary input to BNC1 [101], but the synaptic connections

have not been reported. BNC2 are also located in the brain, but they do not arborize

in the projection �eld of the ascending neurons. Based on the frequency tuning, the

Brain Neurons are further classi�ed into four types namely a, b, c and d. The a and

the b neuron types respond to the low-frequency stimuli, while the c and the d neuron

types respond to the high-frequency stimuli.

Next, let us analyze the responses of these identi�ed neurons as they form the basis of

our model. AN1 neurons are highly sensitive to low-frequencies (approximately 5 kHz),

in the range of the carrier frequency of the calling songs of crickets. On the other hand,

AN2 neurons respond only to high frequencies (in the range of 10-20 kHz, which are

the lowest frequencies of bats’ sonar [30]), thus providing a detection signal to avoid

predators. Since AN2 neurons respond only to high input frequencies, they do not play

a role in calling songs recognition which is low-frequency signals. During calling song

recognition, the latency of the onset of the spiking response increases from AN1 neu-

rons to BNC1 and BNC2. The latency provides a clue about the feed-forward topology

of the network.

The role of these neurons in cricket phonotaxis was characterized in [101], by studying

their responses to chirps with various temporal structures (similar to the previously

mentioned behavioral experiments). The neural responses were normalized, and the
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percentages of the measures were computed. These percentages are called the relative

magnitude of the responses. For the given CDs and the duty-cycle, the PP of the chirp

was increased from 10ms to 98ms as shown in Fig. 41 (top). The relative magnitude of

responses was averaged over twelve stimulus presentations per neuron for three sen-

sory brain neurons. These responses are shown in Fig. 41 (bottom). The �gure shows

the responses of BNC1d (�lled squares), BNC2b (�lled triangles) and BNC2a (�lled circles).

The neural responses measured from other crickets are also shown (empty shapes) to

demonstrate the degree of variability across di�erent crickets. The shaded region rep-

resents the phonotaxis scores (as mentioned earlier) re-plotted from [105].

Few neurons of the BNC1 group did not spike for a 10 ms PP stimulus, but they re-

sponded to the stimulus with long PPs (70-100ms). This response resembles the char-

acteristics of a low-pass �lter [101]. Similarly, high-pass and band-pass �lter charac-

teristics were found in the responses of BNC2 neuron group. It is postulated in [101],

that the low-pass response might be due to the summing up of graded potentials, es-

pecially during the long PP (70-100ms) stimuli. In other words, a small change in the

EPSP occurs for short PPs. However, the EPSP builds up to the threshold to elicit spikes

for long PPs. Another hypothesis was proposed in [101], which stated the band-pass

response might be a result of the logicalAND operation of the low-pass and the high-

pass responses. The neurons with low-pass and high-pass responses converge onto

the neuron with a band-pass response, which functions as a coincidence detector of

the incoming responses. That is, the neuron responds only if both the input responses

are high. This neurophysiological evidence presented in [101] matches the cricket’s be-

havior measured in [105]. This neural data also con�rm that the female crickets prefer

a speci�c type of the calling songs.

Many researchers continued the work of Schildberger, often using similar method-

ologies. Speci�cally, in [58] more auditory local inter-neurons were identi�ed. Their

responses were characterized for various PPs and duty-cycles of the calling song. The

data presented in [58] gives a good insight into the recognition mechanisms of calling

songs. A set of local neurons, namely B-LI2, B-LC3, B-LI3, and B-LI4, were identi�ed

alongside the previously discussed ascending neuron AN1 which is called TH1-AC1.

The naming scheme is changed in their work, and it is explained as follows: B refers

to the brain, TH1 refers to the 1st thoracic ganglion,A to ascending, L to local, I to ip-

silateral and C to the contra-lateral position of the axons. The auditory neurons were

stimulated for various PDs, PIs and PPs and their responses were measured. The exper-

iments conducted by Schildberger in [101] and Kostarakos and colleagues in [58] are

di�erent. For instance, the duty-cycle of the stimuli was �xed to 50% in Schildberger’s
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Figure 41: Responses of the auditory brain neurons of crickets to various PPs of the stimulus

presented in [101]. Di�erent types of arti�cial songs consisting of a chirp of 250

ms CD (top) with increasing PPs (top: left to right) are shown. The relative magni-

tude of the responses of three auditory neurons averaged across twelve trials are

shown (bottom). Refer text for details of this measure. The �lled shapes denote the

responses from one cricket. The empty shapes denote the responses of the corre-

sponding neurons in other crickets. The squares denote the BNC1d responses that

resemble a low-pass �lter pro�le. The triangles denote the BNC2b responses resem-

bling a high-pass �lter. The circles denote the band-pass pro�le of the BNC2a neuron

responses. The shaded region in the middle shows the phonotaxis scores of two

species of cricket presented in [105]: Gryllus campestris (single stripes) and Gryl-

lus bimaculatus (cross stripes). Refer text for details about the calculation of these

scores.

work [101], whereas in Kostarakos and colleagues’ work [58], the duty-cycle was also

varied along with the PPs of the chirps. The change in the duty-cycle is essential, as

the duty-cycle of the natural calling songs are not �xed.
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The neural responses presented in [58] is shown in the Fig. 42. The relative response of

the neurons was computed by summing up the total number of spikes within a chirp

and averaging across di�erent animals. These averaged values were normalized, and

the percentages were computed. The x-axis represents the PDs, and the y-axis repre-

sents the PIs. The secondary diagonal represents the responses to increasing PPs with

a constant duty-cycle, similar to Fig. 41. The peak responses are marked with aster-

isks. The color-code of the responses is shown below the subplots. The �rst subplot of

Fig. 42 shows the behavioral data of cricket phonotaxis obtained from the track-ball

experiment, similar to the one mentioned earlier [105]. The phonotaxis scores are high,

in response to the stimulus with 34 ms PP and nearby region. The TH1-AC1 and the

B-LI2 neurons showed unspeci�c response patterns compared to other neurons. The

B-LC3 and the B-LI3 neurons showed band-pass �lter like responses, whose peaks are

centered around 34 ms PP stimulus. These two local neurons were responsive to the

PPs other than 34 ms as well, meaning that their responses are not strictly band-pass.

However, the B-LI4 neuron showed a �ne-tuned band-pass �lter like responses, which

are centered around 34ms PP. In [58], the authors showed that the B-LI4 neuron’s re-

sponses (bottom-right subplot) were highly correlated with the phonotaxis behavior

(top-left subplot). Therefore, the authors conclude that the B-LI4 neuron might tune

the behavior to respond selectively to calling songs. They suggested that the B-LI4 is

a ‘feature detector’ neuron, which detects the attractive stimulus when the temporal

pattern of the stimulus coincides with an internal template.

Various theories on pattern recognition of the calling songs have been proposed. Match-

ing or cross-correlation between the temporal pattern of the stimulus and the internal

neural template were suggested as possible mechanisms for temporal selectivity in

cricket brain in [44, 41]. In [17], the authors proposed that the temporal selectivity

might be the result of intrinsic membrane-potential oscillations in resonance with the

frequency of the stimulus. As aforementioned, Schildberger proposed in [101], that

the band-pass temporal selectivity might be a result of the logical AND operation

of low-pass and high-pass �lter responses. However, Kostarakos and colleagues sug-

gested that coincidence detection might play a role in calling song recognition [58].

On considering these available theories, we can conclude that the auditory neurons of

crickets exhibit band-pass �lter like selectivity. At the same time, the neural mecha-

nisms responsible for the selection process are still unveri�ed.

Studying the auditory neurons of crickets has the potential to uncover the computa-

tional principles of temporal processing in the brain. The encoding mechanisms of the

auditory neurons associated with the temporal structure of the stimulus are not fully
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Figure 42: Relative responses of cricket brain neurons along with the relative phonotaxis scores

(top left) presented in [58], corresponding to a chirp stimulus varying in the PP and

the duty-cycles. Refer text for details of the relative response measure. The asterisks

denote the activity peaks.The color-code is shown below the plots. TH1-AC1 and

B-LI2 respond high to almost all PPs. B-LC3 and B-LI3 respond to all PPs and showed

high responses to 34 ms PP region. B-LI4 respond high to 34 ms PP region and re-

spond minimum to other PPs. The behavioral responses showed a selective response

to the 34ms PP region.

understood in phonotaxis literature. The computational phenomenon underlying the

temporal selectivity of sensory neurons can be uncovered by following how neurons

recognize the speci�c pattern of calling songs when putting together in a network.

Since we propose that the recognition occurs at the network level, it is essential to un-

derstand the structure of the network. Two kinds of networks have been introduced

in neuroscience literature stemming from the neurophysiological evidence. In [113],

a calling song recognition network was proposed, based on the anatomy of auditory

neurons and the latency of their spikes (the �ow of information). Another calling song

recognition network was introduced in [103], based on the latencies of the spikes of the

auditory neurons. Despite the previous works, computational principles of individual
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neurons within the calling song recognition network is not yet achieved. That is, the

algorithm of the network to recognize the calling songs that respond with a maximum

number of spikes has not been found. Therefore, we built a spiking model of calling

song recognition network in the neuromorphic hardware that recognizes the arti�cial

calling songs. As we discussed earlier in Chapter 3, the neuromorphic hardware o�ers

a silicon model of the neurons and the synapses operating in real-time with biologically

realistic time-constants. These features enable us to model the temporal computation

of each auditory neuron individually and allow us to construct a functional network.

The neurons of the network are tuned, such that the output responses of the network

qualitatively match the behavioral data. Besides the computational principles of indi-

vidual neurons are analyzed in this research, the computational architecture of the

whole system is also revealed. We will cover the implementation of this model in the

next section.

5.3 experimental methods

In this section, we will discuss the experimental methods used in this research, which

include the computational principles of the model, the structure of our network, the

stimulus presented to our network, and the details of the neuromorphic hardware

implementation. In this section, we characterize the computational paradigms used

in the network. Later, we test the tuned network with di�erent input spike patterns.

Please refer table 5 in Chapter 7 for the details of the parameters used to emulate the

networks. We will start with the stimulus used in our experiment.

5.3.1 Stimulus

In biological experiments [43, 73], arti�cial chirps resembling the male cricket calling

songs are presented to the female crickets (see Fig. 43). Meckenhäuser and colleagues

in [73] analyzed the structural features of the calling songs that a�ect the phonotaxis

behavior. The calling songs were presented by varying the temporal features of the

song, and the behavioral responses were recorded. An arti�cial neural network was

trained by using this data for eight combinations of six temporal features, to predict

the phonotaxis scores for the new data. From this model of [73], Meckenhäuser and col-

leagues proposed that four temporal features were su�cient to represent the arti�cial

calling song: two from a short time-scale (5-50 milliseconds) and two from a long time-

scale (300-800 milliseconds). The short-time features are the Pulse Duration (PD), and

the Pulse Interval (PI), while the long-time features are the Chirp Duration (CD) and
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Figure 43: Arti�cial stimulus used in our experiments that represents a chirp of the cricket

calling song. The chirp is provided for a particular duration (Chirp Duration (CD))

with the intervals in-between (Chirp Interval (CI)). The total duration of the Chirp

Duration (CD) and the Chirp Interval (CI) is called the Chirp Period (CP). Each Chirp

Duration (CD) consists of short pulses of speci�c Pulse Durations (PDs). The pauses

within the Chirp Duration (CD) are called the Pulse Intervals (PIs). The sum of the

PD and the Pulse Interval (PI) is called the Pulse Period (PP). In our experiments, we

used digital pulses (shown as blue dots) of 800Hz frequency to represent the sound

signal, and the Pulse Duration (PD) are made of these digital pulses.

the Chirp Period (CP). These features are typically used in the biological experiments

of cricket phonotaxis.

To faithfully model the neural responses analogous to the biology, we used the stimu-

lus similar to the one used in the neurophysiological and the behavioral experiments.

A chirp with various combinations of the PD and the PI was used in [58]. The PDs and

the PIs used in one of the experiments in [58] were adopted in our stimulus. The be-

havioral and the neuronal responses in [58] suggest that the band-pass selectivity of

phonotaxis occurs within the PD of 50ms and the PI of 50ms. Therefore, we adopted

this scale in our experiments. However, in [58], the maximum of the PI (100 ms) was

twice the duration of the PD (50ms). Our arti�cial stimulus consists of a chirp that lasts

for 260 ms. The temporal selectivity of neurons reported in [101, 58], occurs within

one chirp. Therefore, only single chirps (and no CIs) are considered in our experiments.

The chirps are further divided into the PDs and the PIs, as shown in Fig. 43. The PDs

and the PIs used in the experiments are: (5, 9, 13, 17, 21, 25, 29, 34, 38, 42, 46 and 50

ms). All combinations of these PDs and PIs are employed, to obtain all PPs. Unlike in
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[101], we did not �x the duty-cycle. From the Fig. 42, we can conclude that the duty-

cycle variations can signi�cantly capture the band-pass �lter like responses. The PD

is made of bursts of digital pulses (shown as blue dots in Fig. 43) of 800 Hz frequency.

These digital pulses represent the output spikes of the sensory neurons that project

into the ascending neurons. The structure of these digital pulses resembles the shape

of the calling song. The frequency of these pulses is regular, meaning that the pulses

(spikes) are spaced at uniform intervals, to capture the inherent noise of the neuromor-

phic hardware e�ectively. As mentioned earlier in Sec. 3.7, the responses of the neural

circuits vary from one another, due to the e�ects of ‘device-mismatch’ resulting from

the fabrication process. Therefore, (non-uniform) responses to the uniform inputs al-

low us to characterize the mismatch in the hardware. The inherent noise of the analog

hardware is used to show the deviations in the responses across the networks. The

networks are �ne-tuned in four stages to respond to a regular spiking input. The neu-

rons of the network use a sparse number of spikes. The model also relies on speci�c

spike-times within the PDs during a chirp. The number of the output neurons showing

desired responses is already limited due to the in�uence of device-mismatch. Using

a time-variant noise such as poisson spikes would drastically a�ect the performance

of the system. To avoid this problem, we instead use a uniform spike-train input to

demonstrate the STP in our network.

5.3.2 Network model

We have modeled the calling song recognition twice in this research. We will start by

discussing our �rst model followed by the recent implementation. Our �rst model is

an extension of Rost’s Master thesis [96]. In his thesis, Rost has modeled four auditory

neurons using STP synapses in a Brian Simulator, based on the physiological evidence

by Schildberger in [101]. Together with Rost, we modeled a calling song recognition

network in our neuromorphic hardware and published in [97]. The network consisted

of an ascending neuron and neurons with low-pass, high-pass and band-pass �lter

characteristics. The ascending neuron projects to low-pass and high-pass �lter neu-

rons, through the STF and the STD synapses. These two neurons converge to the band-

pass �lter neuron through the STD synapses. The structure of the �rst network is not

shown to avoid ambiguity. The details of the STP implementation can be found in [97].

The network was simulated using a Brian Simulator [40] and emulated using a ‘Neu-

roP’ hardware (see Sec. 3.8 for more details of this hardware). Chirps of various PPs

were presented with the �xed duty-cycles of 50% (similar to the one presented in the

Fig. 41). The neurons were tuned to respond to the attractive PPs of the chirp. This

implementation con�rmed that the STP could be used to model the temporal �ltering
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Figure 44: The spiking neural network modeled in the neuromorphic hardware to recognize

the calling songs of crickets. The network consists of four neurons: the AN1, the LN2,

the LN3 and the LN4. The bars at the end of the synapse between the neurons repre-

sent the excitatory synapse type. The circle at the end of the synapse represents the

inhibitory synapse. The ascending neuron AN1 exhibits the SFA which is modeled

using a feedback inhibitory synapse. Other local neurons: the LN2, and the LN4, ex-

hibit the STF in their synapses which is modeled using the speci�c dynamics of the

(DPI) synapse itself. The input pulses used to stimulate the network are generated

o�-chip. The output spikes are measured directly from the chip.

properties of the silicon neurons, similar to the observations reported in [101]. How-

ever, during the implementation of the high-pass �lter response of a neuron, we found

out that certain dynamics of STP cannot be achieved by the neuromorphic circuit. This

�nding led to the design of a new series of the STP circuits, proposed in [90]. The details

of the problem and these circuits can be found in the previous chapter.

Next, we discuss the model of our latest network. A more recent work by Kostarakos

and colleagues in [58], have shown the band-pass selectivity of the auditory neurons

exists in response to duty-cycles variations of the PPs. Evidence of the neuron with

high-pass �lter properties to the duty-cycle variations of the chirp is unavailable in

the neuroscience literature. Therefore, our previous network is redesigned based on

the recent neurophysiological evidence [58]. We modeled our network using four types

of neurons: the Ascending Neuron 1 (AN1), the Local Neuron 2 (LN2), the Local Neuron

3 (LN3), and the Local Neuron 4 (LN4). We used a simple naming scheme because the

naming schemes of cricket auditory neurons are inconsistent in the literature [101, 58,

103].

We constructed a feed-forward spiking neural network shown in Fig. 44, based on the

latencies and the �ring rates of the cricket auditory neurons. These two features rep-

resent the �ow of information in the network. Based on these features two networks

were proposed in the literature [113, 103], as discussed in the previous section. The

neurons of our network shown in Fig. 44 are color-coded: AN1 (green), LN2 (cyan), LN3
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(yellow) and LN4 (purple). The excitatory synapses are represented as lines ending with

bars, and the inhibitory synapse is shown as a line with a �lled circle at the end. In our

network, the �ltering properties of the auditory neurons of crickets are modeled as

computations in their synapses. We chose the auditory neurons of crickets reported in

[58], to model in our network because their responses were characterized by various

combinations of the PDs and the PIs with several duty-cycles, in [58]. The AN1 neurons

exhibit the Spike Frequency Adaptation (SFA) (explained later in this section), and this

is modeled by a feedback inhibitory synapse. The LN2, the LN3, and the LN4 are inspired

by the local neurons B-LI2, B-LI3, and B-LI4 of crickets. The �ltering properties of the

LN2 and the LN4 neurons are modeled using the Short-Term Facilitation (STF) in their

synapses. The �ltering property of the LN3 is modeled using a conventional excitatory

synapse without any plasticity.

The analog neuromorphic chips have inherent variability among the circuits called

the ‘device-mismatch’ resulting from the fabrication process (refer Sec. 3.7 for more

details). Special design techniques can be employed to reduce the device-mismatch. On

the contrary, the device-mismatch can be utilized as well. Schmuker and his colleagues

[102] analyzed the e�ect of the device mismatch and the temporal noise (due to the

temperature e�ects on analog circuits) in the accelerated neuromorphic hardware dur-

ing the implementation of a spiking neural network. They caliberated the hardware

to reduce the mismatch and quanti�ed the temporal noise by measuring the variabil-

ity in the output spike count. They exploited the resulting variations as stochasticity

in their network. Nevertheless, these mismatch e�ects di�er across the neuromorphic

chips. To demonstrate this variability across the neurons, we modeled twenty individ-

ual networks in our sub-threshold mixed-signal neuromorphic hardware (see Sec. 3.8

for further details of the hardware) as shown in Fig. 45. The networks are built us-

ing the same four types of auditory neurons as discussed before. Therefore, eighty

neurons are used to form these networks, with twenty neurons of each type. The con-

nection scheme (see Fig. 44) is preserved for each kind of neuron. Therefore, twenty

independent networks were created.

The resulting feed-forward networks were constructed using the neuromorphic multi-

chip setup (see Sec. 3.8 for more details). To be more precise, we used two 2DIFWTA

chips in our implementation. The synapses were implemented using the DPI synapses

[9] (refer Sec. 3.5 for more details) and the neurons were implemented using the low-

power integrate-and-�re neurons [49] (refer Sec. 3.6 for further details) of the neuro-

morphic chip. The parameters are global and are shared across the arrays of neurons

and synapse types in the chip. Therefore, the synapses and neurons cannot be tuned
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Figure 45: The architecture of the calling song recognition networks. Twenty independent net-

works are implemented in the neuromorphic hardware. All these networks are op-

erated parallel in real-time. This arrangement exploits the mismatch e�ects of the

hardware, making every network distinct.

individually. Four neuron types with one distinct synapse each are required to build

our network. Each ‘2D’ chip has two distinct excitatory synapse arrays that do not

share their parameters. Therefore, we used two ‘2D’ chips to implement four types of

non-identical synapses.

Though the parameters are shared within each chip, the responses of the circuits vary

within each chip due to the e�ects of ‘device-mismatch’, as we discussed earlier in this

section. In this context, we consider the degree of variability in silicon circuits is analo-

gous to the variability among testing di�erent animals in biological experiments. The

neurons from both the chips were calibrated beforehand to have the minimal mismatch

in their responses. A chirp of 300ms PD and 300ms CD (not shown) is used to calibrate

the neurons. 100 neurons (arbitrarily chosen) were picked from each chip. The param-

eters of the synapses were �xed. The neuron parameters (from both the chips) were

tuned to match their mean �ring-rates to a maximal extent. Despite this calibration,

it is signi�cant to mention here that the spike-times and the spike frequencies of the
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neurons always vary within the chip and across the chips. However, the calibration

can be useful for exporting the network to other neuromorphic ‘2D’ chips (provided

that the chips are fabricated with the same technology).

In this research, the neuromorphic hardware is used to model the temporal dynam-

ics of the synapses and to model the neurons. Biologically realistic time-constants in

the order of 50 - 200 milliseconds [89] are necessary to model the temporal dynamics

precisely. These time-constants are achievable in our neuromorphic chips, thanks to

the sub-threshold operation of the transistors (see Sec. 3.3 for more details). Our neuro-

morphic chips operate in real-time and consume low-power compared to conventional

processors. For instance, a typical silicon neuron with a 100 Hz �ring rate consumes

few µW of power [49]. The real-time operation of our neuromorphic hardware is use-

ful, especially when the system is integrated with any real-time sensor (e.g., silicon

retina [62] or silicon cochlea [65]) or used in a robot. On the other hand, it is di�-

cult to incorporate any real-time sensor with the accelerated neuromorphic hardware

due to the scaling of operating times. Nevertheless, all these neuromorphic platforms

o�er brain-like parallel computations in silicon and faithfully capture the temporal

dynamics of the computational elements such as neurons and synapses. The silicon

implementation of neurons and synapses provides the advantage of full parallelism.

We take advantage of this property by simulating the twenty networks in parallel.

Building a neuromorphic system that emulates the phonotaxis behavior of crickets

can serve as a dedicated computational module for sound guided tasks, especially in

bio-inspired robots.

5.3.3 Computational primitives

One of the goals of this research is to demonstrate the use of Short-Term Plasticity (STP)

and Spike Frequency Adaptation (SFA) as computational primitives leading to the tem-

poral �ltering properties observed in biology. To this end, we designed a neural net-

work by modeling the temporal dynamics found in the vital biological neurons re-

ported in the literature. We provide an educated guess about the neural substrate of

the cricket behavior in response to original songs and elucidate the role of the chosen

computational primitives in producing the biological dynamics. The computational

primitives are basic signal-processing mechanisms involved in recognition of the call-

ing songs. In our network, this identi�cation can be achieved by adequately tuning the

Spike Frequency Adaptation (SFA) of a neuron and the STF of the synapses, the details

of which will be discussed in the following subsections.
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5.3.3.1 Spike frequency adaptation

Many neurons adapt their spiking responses to a sustained stimulation. Initially, their

�ring-rates are high which are subsequently reduced, and �nally, the steady-state val-

ues are reached. This phenomenon is called SFA which may result from any of the fol-

lowing biophysical mechanisms: inactivating sodium channels; activating voltage de-

pendent potassium currents during depolarization; enabling calcium dependent potas-

sium currents following the hyperpolarization. In a network, the SFA can result from

a negative feedback to the neuron, through the inhibitory synapse. Adaptation plays

a signi�cant role in bursting behavior of neurons. The adaptation currents can deter-

mine the neurons to act as resonators or integrators [45]. Combined with the Short-

Term Depression (STD), SFA ensures the neurons sensitive to the temporal derivative

of the stimulus [87]. SFA can also improve the reliability of information encoding [33,

34].

Among the auditory neurons of crickets, the AN1 neuron exhibits SFA in response to

a continuous stimulation of pulses within the chirp [101, 113, 58]. The slow stimulus

components depending on the intensity variance, are suppressed by the SFA. Therefore,

the SFA of the AN1 creates an intensity invariance in the auditory pathway [11]. The SFA

was implemented in our network through an inhibitory synapse, which is connected in

a negative feedback loop with the silicon neuron. The number of the output spikes start

decreasing after the onset of the SFA and stay constant after the SFA reaches the steady-

state value. The SFA adds the high-pass �lter characteristics to the transfer function of

the AN1 neuron of our network. As a result, the AN1 neuron becomes less responsive

to a sustained stimulus. For example, a chirp with a long PD equal to the CD and no PIs

in between. The SFA property of the AN1 neuron is characterized as follows.

We characterized the Spike Frequency Adaptation (SFA) of the AN1 neuron during our

�rst implementation of the network in [97]. We aimed to characterize the SFA using

both the software and the hardware. However, the goal of the work is not to match

the hardware results and the simulation results. The neuron is modeled in the software

(using the BRIAN simulator) as well as in the hardware (using the IFSLWTA neuromor-

phic chip). A leaky IF neuron with SFA is used in the simulations. The parameters of

the AN1 neuron are tuned to obtain the output �ring-rate and the time-constant of the

Spike Frequency Adaptation (SFA) based on the neurophysiological evidence. A step

input current is used to stimulate the AN1 neuron. A small variability is introduced to

the neuron by adding a �ltered noise (modeled as an Ornstein-Uhlenbeck process) as

an additional input current, and the simulations are repeated over 100 trials. Before
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Figure 46: The SFA of the AN1 neuron characterized using BRIAN simulations (blue) and neuro-

morphic hardware emulations (red), published in [97]. The neurons are stimulated

with a chirp of 300ms duration (CD), consisting of only one PD without a PI (shown

as the gray region). The mean �ring rates (λ) (dark lines) are computed for 100

neurons in the hardware and 100 repeated trials during the simulation. The shaded

region denotes the SD. (A) An ideal set of parameters are chosen to implement the

SFA of the AN1. (B - D) Di�erent adaptation behavior obtained during the simulation

and from the hardware by varying the parameters of the synaptic weight and the

time-constant.

we discuss the outcome of this model, let us �rst explain the hardware implemen-

tation. The SFA is implemented in the neuromorphic hardware, through a feedback

inhibitory synapse to the neuron. When stimulated with the pulses (digital), the in-

hibitory synapse produces a negative current that is proportional to the output �ring

rate of the neuron [9]. In our implementation, the inhibitory synapse receives the neu-

ron’s output spikes and injects its output current back into the neuron. To characterize

the response variability of the neurons of our hardware, we stimulated an array of 100

low-power leaky IF neurons with a 560Hz input spike train for 300ms in duration. The

parameters of the neuromorphic chip are chosen to match the simulation results, con-

cerning the peak �ring rate and the adaptation characteristics, such as time-constants

and steady-state frequencies.

The results of the characterization of the SFA (published in [97]) is shown in Fig. 46.

The SFA pro�le of the neurons is analyzed for four sets of weight and time-constant
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values of the synapse. The results obtained both from the simulations (blue), and the

hardware (red) are shown in the �gure. The thick lines represent the mean of the

�ring rates, and the shaded region denotes the SD of the �ring rates. These statistical

measures are computed across di�erent trials in the simulations. However, they are

computed across the neuron array in the hardware. The time-constant of the feedback

inhibitory synapse is long in the hardware. Therefore, the SFA pro�le of the hardware

is slower compared to the simulations (see 0 6 Time 6 100ms in all subplots). The

SDs of the SFA pro�le from the software and the hardware are also di�erent. The SDs

of the SFA simulation is almost absent at the peak of the mean frequencies and high

at the low frequencies of the steady-state values. Unlike simulation results, the SDs

from the hardware are high at the peak of the mean frequencies and are low during

the steady-state values. This e�ect is visible in Fig. 46(B). The strong adaptation led to

a decrease in the Standard Deviation (SD) due to the reduction in the total number of

spikes. This way, the SFA �lters out the low-frequencies in our network.

We characterized the AN1 neuron in our �rst model published in [97]. The function

of the AN1 neuron remains the same in our latest network. Therefore, this character-

ization is still valid, despite the di�erences in parameter settings of the AN1 between

these implementations.

5.3.3.2 Short-term facilitation

The Short-Term Facilitation (STF) is a synaptic enhancement process, during which the

probability of release of the neurotransmitters is increased for a short period. The STF

occurs due to the in�ux of calcium ions into the axon terminal, after the generation

of a spike [115]. The STP in�uences the interaction of the pre-synaptic neuron with

the post-synaptic one, resulting in a selective communication between the neurons

[54]. The STP tunes the synapse to be a low-pass or a high-pass �lter by changing

the release probability of the neurotransmitters [1]. For more computational proper-

ties of the STP, refer Sec. 2.3. The STP has been reported in the primary visual cortex

of the mammalian brain [108], and the avian auditory system [69] (see Subsec. 2.3.5

for more details). The STP was also reported in insects, especially the mushroom bod-

ies of fruit �ies (Drosophila) [106] and honeybees [75]. However, the presence of STP

in crickets’ auditory system is not evident from the literature. Nevertheless, this re-

search provides a bottom-up approach to verify the presence of STP in cricket brain

by demonstrating the computations of the auditory system in the neuromorphic hard-

ware. We implemented the STF in the synapses of the LN2 and the LN4 neurons. The
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Figure 47: The response of the EPSP of a neuron with the STF synapse to two input pulses stim-

ulated at 10ms ISI and recorded from the oscilloscope. The synapse and the neuron

are tuned in a way, that the EPSP stays below the spiking threshold. The red dot de-

notes the �rst peak (A1) of the initial rise in the EPSP, responding to the �rst input

pulse. The blue dot denotes the second peak (A2) in the EPSP, responding to the sec-

ond input pulse. The A2 is larger than the A1 due to the STF synapse. The response

is time-shifted (moved to the right) to avoid a negative time in the trace, caused by

the oscilloscope trigger.

STF is implemented using the neuromorphic Di�erential-Pair Integrator (DPI) synapse

(refer Sec. 3.5 for more details of the synapse). The synapse implements STF by op-

erating with the parameter setting of a small weight and a long time-constant. The

time-constants of the STF synapses di�er between the LN2 and the LN4. We used the

STF to model the band-pass �lter characteristics of the LN2 and the LN4 neurons.

We characterized the STF in the neuromorphic hardware. As mentioned earlier, STF is

implemented by choosing a small-weight and a long time-constant of the DPI synapse.

This parameter setting results in a build-up of EPSC (see Sec. 3.5 for more details of the

EPSC response). An array of twenty low-power integrate-and-�re neurons are stimu-

lated in the hardware, to characterize the response variability. The stimulus consisted

of two digital input pulses. The ISIs are varied from 10ms to 100ms in steps of 10ms.
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Figure 48: The ratio ofA2/A1 of Fig. 47, called the PPR, is computed and plotted as a function of

the ISI ∆T of the input pulses. Two input pulses of varying ISIs are used to stimulate

twenty neurons. Out of twenty, two neurons are spiking, and the responses of those

two neurons are omitted in the plot. Each point in the plot represents the mean PPR

across the neuron array, and the error bar represents the Standard Deviation (SD).

The PPR is high for short ISIs due to the build-up of the increasing EPSCs’ amplitudes.

The EPSCs almost recover back to their initial values during the long ISIs resulting in

small PPR. The pro�le of the PPR shows high-pass characteristics of the STF to input

frequencies.

The neurons are tuned such that their EPSPs rise in response to the incoming synaptic

currents. At the same time the EPSPs stay below the spiking-threshold of the neurons.

The EPSPs of the neurons are recorded directly from the chip using the oscilloscope. A

sample trace of the EPSP is shown in Fig. 47. The EPSP trace is recorded from one of the

neurons with the STF synapse when stimulated with two input pulses of 10ms ISI. The

onset delay due to the oscilloscope trigger is compensated by o�setting the response

in time to avoid the negative time in the trace. The e�ect of the STF is evident from the

amount of increase in the size of the EPSP peak of a neuron.

The PPRs are computed for each ISI of the stimulus. A PPR is the ratio between the

second peak of the EPSP and the �rst peak. Out of twenty neurons of the array, two
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neurons are spiking during the presentation of the stimulus. Therefore, the PPRs are not

computed for those two neurons. The PPRs of the remaining non-spiking neurons (18)

are plotted as a function of the ISIs (∆T ) in Fig. 48. Each point in the plot represents

the mean PPR, averaged across the neuron array. The error-bars denote the SDs. In

response to a stimulus with the shortest ISI of 10ms, the synapse is highly facilitated.

The strong facilitation strength results from the slow build-up of increasing amplitudes

of EPSC (with a long time-constant). The absolute amplitude of the second EPSP peak

is much higher than the absolute amplitude of the �rst peak. Therefore, the mean

PPR is substantial during this ISI. The amount of increase in the EPSP is not uniform

throughout the neuronal array due to the device-mismatch. As a result, the SD of PPR

for this ISI is large.

In response to a stimulus with the longest ISI of 100 ms, the amplitude of the EPSCs

recovers completely from being high (due to the facilitation), before the onset of the

second pulse. As a result, the amplitude of the second EPSP peak is almost equal to

the amplitude of the �rst peak. Hence, the mean PPR almost reached the value of one.

More interestingly, irrespective of the device mismatch e�ects, the EPSCs are recovered

to their initial values almost completely. As a result, the SD for the 100ms ISI decreases.

From the characterization of the STF (see Fig. 48), we can conclude that the STF exhibits

high-pass �lter characteristics to the input frequencies, similar to the characterization

of the STF using a software model presented in [107]. This property is useful in shaping

the responses of the neuron in our network.

5.4 results

To analyze the response of our network, we presented a chirp consisting of 800 Hz

digital pulses to stimulate all twenty networks (see Fig. 43),. The Chirp Duration (CD)

was �xed to 260ms. The Pulse Durations (PDs) and the Pulse Intervals (PIs) were varied

from 5 to 49 ms, in steps of 4 ms. The neuron parameters were calibrated and �xed.

The synapses were tuned for each neuron type, to obtain the desired �lter responses

of the neurons based on the neurophysiological evidence from [58]. The responses of

each neuron type are presented in this section. We present the neural dynamics regard-

ing membrane potentials recorded from one of the networks and the spiking responses

from all the neurons of all the networks in the raster-plots. Finally, we show the �lter-

like responses concerning spike-count of the neurons from one of the networks and

the variability in the �lter responses by plotting the spike-count of one neuron type

(LN4) from all the networks.
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Figure 49: The membrane potentials recorded from the neurons of one of the networks. The

stimulus is a chirp of 260ms CD made of 800Hz evenly distributed pulses of 20ms

PD and 20ms PI (stimulus not shown in the �gure). The AN1 neuron responded with

8 pulses to each PD. The SFA of the AN1 is visible at the last AN1 spike of every PD.

The LN2 neuron responded to every third spike of the AN1 through the facilitating

(STF) synapse. The amplitude of the second peak of LN2’s EPSP is higher than its �rst

due to the STF. The LN3 responded to every second spike of the LN2 through a regular

excitatory synapse. The LN4 responded from the second input spike of the LN3 with

the ISI of a PI, due to the slow STF. The slow rise in the EPSP after the spike is the result

of integration of the EPSC by the neuron because the EPSC did not recover during the

PIs due to the slow STF.

Let us start by discussing the neural dynamics of the network, shown in Fig. 49. We pre-

sented a 20 ms PP stimulus (not shown), and the membrane potentials were recorded

for all neurons of one of the networks. This speci�c PP is chosen, as it evokes one of the

high responses of the network. The AN1 synapses were tuned with low-weight values

to output a 200 Hz spike frequency to the high-frequency input. The high-frequency

input was used to tune the inhibitory synapse to invoke a strong feedback to imple-

ment the SFA of the AN1. In other words, it is a constraint posed by the inhibitory

synapse circuit to operate in the desired regime. The time-constant of adaptation is

slower than the given PD. Therefore, the AN1 neuron shows a minimal adaptation to-

wards the end of every PD. The LN2 neuron integrates the EPSC through its STF synapse

from the AN1. The result is a rise in the absolute amplitude of the LN2’s EPSP to every

input spike during the PDs. The EPSP crosses the threshold to spike (and spike) for every

third input spike, given that speci�c ISI from the AN1. The ISI of the input spikes was
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long at the end of the third PD due to the SFA of the AN1. As a result, the STF strength is

reduced (see Fig. 48) and the absolute amplitude of the EPSP peak becomes smaller than

its value during the short ISI. Hence, the EPSP can reach the resting-state values during

the PIs after the third PD. The LN3 neuron integrates the EPSC through the conventional

excitatory synapse from the LN2. The LN3 spiked for every second input spike with that

speci�c ISI from the LN2. The time-constant of the STF in the synapse of the LN4 neuron

was tuned to be slower than that of the LN2’s. As a result, the EPSP of the LN4 can cross

the spiking threshold only after the �rst PD and the PI (or the �rst PP). Therefore, the

LN4 neuron responded to every second spike of the LN3 neuron whose ISI is > 20ms

(also the PI). However, the facilitated EPSC of the LN4 did not recover during the PIs. The

LN4 integrates this slowly recovering EPSC, and as a consequence, its EPSP rises after

every output spike (in the absence of input spikes).

It is signi�cant to note that the synaptic time-constant is tuned to be slow to imple-

ment the gradual time-constant of the STF. In this case, the STF is coupled to the synapse,

meaning that we used the synapse to implement the STF, as we did not have any dedi-

cated STF circuit during this implementation. However, this problem can be solved by

a speci�c STF circuit which we designed after this implementation (see Sec. 4.4). Never-

theless, through this STF implementation, we were able to achieve the desired response

from the network. That is, the total number of spikes within the CD decreases at each

stage of the network and the latency of the onset of the spikes increases through the

network. These two outcomes of our results coincide with the idea of the network

models proposed in the literature [113, 103]. The above-presented results showed us

the dynamics of the neurons from one of the networks in response to a chirp. Next, we

are going to analyze the responses of the neurons of all the networks to three stimulus

patterns.

We presented three variants of a chirp of 260 ms CD and 800 Hz frequency to the

networks. We plotted the spike-times of the neurons of all the networks in response

to these three chirps in the raster-plots shown in Fig. 50, Fig. 51, and Fig. 52. The

raster plots are organized by the neuron type from top to bottom. Horizontal bars

in grey separate the neuron types. The PD of the stimulus was varied between 5 ms

(shown in blue stripes), the 25ms (orange stripes) and the 49ms (green stripes). The

duty-cycle was �xed at 50%. Therefore the PIs were equal to the PDs. The PIs are shown

as white spaces in between the colored stripes of PDs. Let us analyze the responses of

the networks one-by-one for each stimulus.
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Figure 50: Rasterplot of the neurons of all the networks, in response to the 10 ms PP stimulus

with the constant duty-cycle. 5 ms PDs are shown in the blue stripes, and 5 ms

PIs are represented as the white vertical stripes in between. The neuron types are

distinguished using the gray horizontal bars. The spikes are represented as small

vertical bars. The nth neuron of every neuron type in the plot belongs to the nth

network, thereby preserving the network structure.

The raster-plots of the networks to the 10ms PP stimulus are shown in Fig. 50. Most of

the AN1 neurons do not show the SFA because the PD is shorter than the time-constant

of SFA. The AN1 neurons exhibit the low frequency of output spikes in response to the

high input frequency, due to the low-weight parameter setting of the AN1 synapses,
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as discussed earlier. As a result, the latency of approximately 5 ms occurs during the

onset of the AN1 spikes. It is evident from the �gure that all 20 neurons of the AN1

elicit spikes to this shortest PP stimulus. The EPSC amplitudes of the LN2’s STF synapses

build-up shortly during the short PDs. The EPSCs recover almost wholly (less than or

equal to the amount of the neuron’s leak current) during the PIs. As a result, the LN2

neurons elicit a small number of spikes compared to the AN1s. The EPSPs of the LN3

also recover almost entirely during the long ISIs of the LN2 spikes. Therefore, there

is only a small or no build-up of the EPSPs that cross the spiking threshold resulting

in almost no spikes from the LN3. The long ISIs of LN3 spikes or no LN3 spikes reduce

the overall activity among the LN4 neurons, due to the complete recovery of EPSPs

between the two input spikes. Few of the LN4 neurons begin to spike after the second

input spike, due to the STF synapses. In this case, the ISIs between the input spikes are

shorter than the time-constants of the STF. A prolonged recovery of the EPSC after the

�rst spike (or a low threshold) causes one of the LN4 neurons (topmost LN4) to respond

with more output spikes than its input spike-count (starting from the second input

spike). The discrepancy between the response pro�les of the neurons within the same

neuron type occurs due to the device mismatch e�ects. From the �gure, we can infer

that the networks (LN4 neurons) �lter out these high-frequency inputs.

Next, we present the networks’ responses to the 50ms PP stimulus as shown in Fig. 51.

Despite the AN1 neurons, all other neurons types spike more to this stimulus than to

the 10ms PP. The AN1 spike counts within the PDs are su�cient to trigger the negative

feedback loop of the SFA. Therefore, the AN1 neurons begin to adapt at the end of the

PDs. The AN1 neurons elicit enough number of spikes with close ISIs, to elicit more

than one LN2 spike during the PDs. As a consequence, the LN3 neurons output at-least

one spike for every two input spikes during the PDs. The LN4 neurons respond after

two input spikes from the LN3 with the ISI > 50ms, due to the slow STF as discussed

earlier. The e�ects of the device mismatch modify the total spike count and the onset

of the output spikes with each neuron type. Nevertheless, the networks (LN4) �nd this

stimulus attractive, by responding with high spike-counts.

Finally, we present the networks’ responses to the 98 ms PP stimulus as shown in

Fig. 52. Contrary to the responses shown in Fig. 50 and Fig. 51, the SFAs are visible in

the AN1 output spikes. The LN2 neurons respond similarly to their responses to 50ms

PP stimulus in Fig. 51, before the onset of the SFA of the AN1. After the onset of the

SFA, the ISIs of the AN1 spikes increase. The EPSCs of the LN2s’ STF synapses recover

almost completely (less than or equal to amount of the neuron’s leak current) during

these long ISIs, thereby, resulting in a small number of LN2 output spikes after the
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Figure 51: Rasterplot of the neurons of all the networks, in response to the 50 ms PP stimulus

with the constant duty-cycle. 25ms PDs are shown in the orange stripes, and 25ms

PIs are represented as the white vertical stripes in between. The neuron types are

distinguished using the gray horizontal bars. The spikes are represented as small

vertical bars. The nth neuron of every neuron type in the plot belongs to the nth

network, thereby preserving the network structure.

AN1 adaptation. The LN3 neurons respond in the same way to the 50 ms PP stimulus.

However, the total number of the PDs are smaller (three) during the 98ms PP stimulus,

compared to the (�ve) 50 ms PP stimulus of Fig. 51. The number of PPs are varied to
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Figure 52: Rasterplot of the neurons of all the networks, in response to the 98 ms PP stimulus

with the constant duty-cycle. 49ms PDs are shown in the green stripes, and 49ms PIs

are represented as the white stripes in between. The neuron types are distinguished

using the gray horizontal bars. The spikes are represented as small vertical bars. The

nth neuron of every neuron type in the plot belongs to the nth network, thereby

preserving the network structure.

maintain the constant CD in a chirp. As a result, the overall spike count of LN3 decrease

during this longest PP stimulus.
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Many LN4 neurons are silent during this stimulus because the PIs are long that the

EPSCs recover almost wholly (less than or equal to the amount of the neuron’s leak

current) without allowing the facilitation. However, there are a few LN4 neurons that

spike after two input spikes using slow STF due to the mismatch e�ects. Nevertheless,

the networks (LN4 neurons) respond with a smaller spike count than that of the 50

ms PP stimulus (see Fig. 51). This way, the networks �lter out these low-frequency

inputs.

To this extent, we examined the responses of the networks to three variants PP of a

chirp. Further, we present the network responses characterized by each neuron type,

to more PPs of a chirp. We introduced a chirp whose PPs are varied from 10 ms to 98

ms in steps of 8 ms, by keeping the duty-cycle constant at 50%. We measured the

total spike count of each neuron type of all the networks for each PP variant of the

stimulus. We computed the mean and the SD of these measures across the neuron

array of each neuron type and plotted these values in Fig. 53. Each point in the black

curve represents the mean of the total number of spikes from each neuronal type in

response to a particular PP variant of the stimulus, and the error bars represent the SDs

among the neurons of the same kind.

As we discussed earlier, the SFA of the AN1 is evident during long PPs of the chirp.

Therefore, the mean spike-count of the AN1 decreases from approximately 50 for the

10ms PP to approx. 30 for the 98ms PP. The resulting mean spike-counts display the

slope with two peaks at 10 ms PP and 34 ms PP. The neurons respond high to the

high-frequency stimulus due to the large number of the 10ms PP within a chirp. The

neurons begin to adapt after the 34ms PP, resulting in a drop in the mean spike-count.

The decline in the slope explains the high-pass �lter like the response of the AN1 to

the non-attractive stimuli.

The LN2 neurons �atten the slope of the AN1 responses, resulting from the strong SFA

and the reduced PP count within the chirp. The maximum mean spike-count of the

LN2 is smaller than the AN1’s due to the combined e�ects of the facilitating synapse

and the integrating neuron as discussed earlier. The number of the LN2 spikes within

the PDs increases for long PPs. However, the spike count of LN2 decreases for long PPs

after the onset of the SFA. Meanwhile, the number of the PDs declines for long PPs. As

a result, the LN2 neurons display two peaks in their mean responses, the highest peak

at 34ms PP and the second highest at 70ms PP. The mean response pro�le resembles

a band-pass �lter like the response. Therefore, the band-pass selectivity towards the

attractive stimulus appears already at this stage of the network.
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Figure 53: The response pro�les of the networks characterized by each neuron type, in re-

sponse to a chirp stimulus. Each point in the curve represents the mean (in black),

and the error bars represent the SD of the total sum of action potentials of each neu-

ronal array. The stimulus varies in the PPs with a �xed duty-cycle of 50%. One of

the networks’ response (shown as blue curves), whose LN4 neuron best represents

the neurophysiological recordings of BNC2a presented in [101] and B-LI4 in [57]. The

AN1’s y-axis is o�set by 30 to keep the scale of the y-axis constant for all the neurons.

Four of the LN3 neurons are silent, and their zero responses are included in the calcu-

lation of the mean. Therefore, the mean spike-count of the LN3 is almost constant to

all PPs. The LN3 start eliciting a spike per PD if the PD > 34ms. Therefore, the SD of the
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LN3 spike-count showed a peak value at 34ms PP. For the long PPs, the total number of

the PPs decreases within a chirp resulting in a decrease in the total spike-count of the

LN3 neurons. Therefore, the SDs of the LN3 show a weak band-pass pro�le, for increas-

ing PPs. The resulting band-pass �lter has a wide bandwidth because the LN3 neurons

respond minimally to the long PPs with at-least one spike per PD.

The input spike-counts are small during the short PPs. The EPSPs reach the resting-state

values during the long PPs. As a result, eight out of twenty LN4 neurons is completely

silent due to the mismatch e�ects. Therefore, the absolute value of the SD is higher than

the mean at 34 ms PP. The mean spike-counts (and the SDs) of the spiking LN4 array

show a stronger band-pass �lter pro�le than the LN3 for increasing PPs. Therefore, the

LN4 neurons prefer the 34ms PPs over the other. The band-pass �lter pro�le of the LN4

neuron di�ers from one another due to the device match. Therefore, averaging these

responses results in a broad bandwidth of the band-pass �lter pro�le. The individual

response of the LN4 neurons will be discussed later in this section. Nevertheless, we

present the results of one of the networks whose LN4 responses closely matched the

neurophysiological evidence presented in [101] and [57], to understand the individual

response to the PP variations with a constant duty-cycle. In this case, it is the �fth

network’s LN4 neuron (in the order) among the twenty networks.

The blue curve in each subplot of the Fig. 53 corresponds to this network’s responses.

The responses of the AN1 neuron follow the trajectory of the AN1 mean response and

remain within the SD values of AN1. However, the responses of the LN2, LN3, and LN4

neurons of this network fall outside of their corresponding SD values. The LN2 response

shows the second highest peak at 34ms PP (�rst peak at 18ms PP). The LN3 response

exhibit a wide band-pass pro�le, with the maximum at 34 ms PP. The LN4 response

displays a narrow band-pass pro�le, retaining the LN3’s peak at 34 ms PP. Therefore,

the network is tuned to select this PP of the stimulus. The 34ms peak of the band-pass

pro�le of this LN4 neuron is consistent with the values from the neurophysiological

recordings of BNC2a presented in [101] and B-LI4 in [57].

We analyze the responses of this particular network we picked earlier (responses shown

as the blue curves in Fig. 53), for several PPs with multiple duty-cycles. We presented a

chirp, whose PD was varied from 5ms to 49ms in steps of 4ms and the PI was varied

from 5ms to 49ms in steps of 4ms. We recorded the spikes from the neurons of all the

networks in response to all 144 combinations of the PDs and the PIs. Considering the

abundant number of the data, we present in the Fig. 54, only the interpolated data of

the total spike count of neurons of the network whose LN4 responses closely matched
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Figure 54: The heat-map plots showing the activity of neurons from one of the networks (�fth),

the LN4 of which best represents the neurophysiological evidence of BNC2a presented

in [101] and B-LI4 in [57]. The PD and the PI of the chirp are varied for di�erent

duty-cycles. Each point in the heat-map represents the total number of the action-

potentials per chirp. The regions in between the points are interpolated. The color-

code of the plots is drawn next to each of the plots. The maximum, the minimum

and the median of the activity are marked in red, blue and green accordingly.

the neurophysiological recordings. These responses of this network are su�cient to

explain the functionality of all the networks. The di�erence between the plots in Fig. 53

and the plots in Fig. 54 is that the duty-cycle of the PPs were kept constant at 50% in
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Fig. 53, whereas the duty-cycle was varied in Fig. 54. The secondary diagonal of each

subplot shows the spike-counts with 50% duty-cycle, which corresponds to the blue

curve in Fig. 53. The heat map represents the maximum spike-count in red and mini-

mum spike-count in blue, and their actual numbers are shown in the color-bars. The

response of the network is already discussed for the stimulus with �xed duty-cycles

(secondary diagonals). Therefore, the rest of the network activity will be discussed

here.

For short PDs and the long PI, the number of PDs within the chirp is small. As a result,

the AN1 neuron show low responses to the 5 ms PD and 49 ms PI. The activity in the

top right corner of long PDs and long PIs is not high due to the small number of PDs

within the chirp. For PDs longer than the PIs (except at 4 ms), more than one spike is

elicited by AN1 during each PD (in most cases). Therefore, the AN1 show high responses

in the regions of all the PDs when the PI was short (5 ms). In the lower middle region

of the 30ms PP, the PDs are shorter than the time-constant of the SFA, and the number

of the PDs is high within the chirp. A large number of spikes with short ISIs are elicited

here, marking the region of the maximum activity. The SFA creates a high-pass �lter

e�ect on the AN1 by shifting the maximum activity towards short PDs and lowering its

activity during long PDs. This way, the preference for the PDs and PIs starts at the �rst

stage (neuron) of the network.

For 5 ms PDs and 15-49 ms PIs, the incoming spikes from AN1 are small in number

within each 5ms PD and the PIs were longer than the time-constant of the STF, resulting

in a small EPSC that does not elicit output spikes from the LN2 neuron. The LN2 neuron

showed a small response during the short PDs due to the low-pass �lter property of

the STF. The LN2 neuron exhibited a minimal response to the AN1’s adapted spikes

with long ISIs during the long PDs as discussed earlier. Therefore, the LN2 activity in

the region of the 5 ms PIs and all the PDs is less than the AN1’s response. The AN1’s

adapted spikes have a minor impact on the LN2’s response during long PDs and long

PIs. Hence, the top right region of the plot showed an intermediate activity (in green),

while the total spike-count of this region remained almost the same. The maximum

spike-count of the LN2 neuron is smaller than the AN1 (as expected due to the STF). The

overall shape of the LN2 neuron’s heat-map pro�le resembles the AN1’s. The major

di�erences are: the region with the maximum activity of the LN2 is narrow compared

to the wide-spread region of the AN1; the minimum of the spike count of LN2 is zero,

whereas the AN1’s minimum value is �ve. The LN2 neuron shows a weak band-pass

pro�le in the primary diagonal but not in the secondary diagonal.

120



5.4 results

For 5-21 ms PDs and the 17-49 ms PIs stimulus, the input spikes from the LN2 are

minimal in number, resulting in small EPSPs that stay below the threshold of the LN3.

The LN3 neuron outputs one spike within each PD to every two incoming spikes from

the LN2. As a result, together with the small number of spikes from the LN2, the LN3’s

responses in the regions of the 49ms PD and all the PIs are signi�cantly reduced. The

high-pass �lter e�ect is created across the primary diagonal by the combined property

of the LN3’s one spike per PD and the small number of the PDs during the long PDs. The

structure of the stimulus played a signi�cant role in shaping the LN3 neuron’s activity

pro�le. The maximum activity of the LN3 was more centered around the region of 30

ms PP, compared to the LN2. The LN3 neuron shows weak band-pass pro�les across

both the primary and the secondary diagonals.

The LN4 shows no responses in the regions of 5 ms PDs and all the PIs because the

responses are already suppressed at the LN3. The responses of the LN4 in the regions

of the 5 ms PIs with all the PDs are almost zero due to the following reasons: small

responses from the LN3 neuron; slow build-up of the EPSC amplitudes due to the STF;

the EPSCs recovered almost completely during the long PIs. The LN4 activity on the top

right corner was canceled out by the combined e�ects of the STF and a small number

of the PDs. The LN4 neuron exhibits active band-pass �lter like responses across both

the primary and the secondary diagonals, with the peak activity being centered at the

region of the 30 ms PP. The band-pass pro�le of the LN4 neuron closely resemble the

values from the neurophysiological recordings of BNC2a presented in [101] and B-LI4

in [57].

In comparison to the LN4’s peak obtained when the duty-cycle is kept constant (blue

curve in Fig. 53), which is at the 34 ms PP, the new peak obtained from the duty-

cycle variations (Fig. 54) is centered at the 30 ms PP. This pro�le is more accurate

than the �xed duty-cycle responses, as the responses are analyzed for more features

of the chirps. The presented band-pass �lter pro�le represents the response of one of

the networks. However, due to the device mismatch e�ects, the �lter response varies

across the other networks. Let us analyze the responses of the LN4 neuron (band-pass

�lter neuron) from all the networks.

To demonstrate the variations in the responses across the networks, we present the

band-pass �lter responses of all the networks (LN4s) in Fig. 55. The total spike-counts

of the LN4 neurons within chirp are plotted, in response to the variants of the PD and

the PI (including the previously discussed LN4 from the �fth network). The LN4 neurons

from the networks: 2,6,7,12,17,18,19,20 are silent, because of the slow STF as discussed
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Figure 55: The heat-map plots showing the activity of the LN4 neurons of all the networks.

The responses are the sum of the total number of action-potentials per chirp, in

response to a chirp with varying PDs, PIs and duty-cycles. The variations in the neural

responses due to the device mismatch are visible in the subplots. These deviations

result in di�erent shapes of the band-pass �lter pro�les.

earlier. The LN4 from the networks: 9,10,13 show non-speci�c response patterns. The

LN4 from the networks: 1,3,4,5 show desired band-pass �lter like response patterns.

The LN4 from the networks: 11,14,15 show band-pass responses with highly narrow

bandwidths. However, the LN4 from the networks: 8,16 show band-pass responses with

wide bandwidths. Note that the maximum spike-counts are high in these two patterns,
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due to the strong STF (or low spike-threshold). Therefore, due to the device mismatch

e�ects at this stage as well as from the previous stages of the networks, the spike counts

and the shape of the band-pass �lters vary across all the LN4 neurons. The deviations

arising from the e�ects of the device mismatch increase at each stage of the network.

In this case, the responses are measured at the fourth stage of the network (LN4), which

di�er signi�cantly across the networks. Despite these deviations, di�erent shapes of

the �lter can be obtained by simply selecting the response from other networks. These

band-pass �lter responses can be used to control the motor (or a descending neuron)

to guide a robot based on acoustic patterns. The supplementary data displaying the

variations across other neuron types are included in the DVD attached to this thesis

(refer Chapter 7 for more details).

5.4.1 Behavioral data of cricket phonotaxis

To qualitatively compare the results obtained from the neuromorphic hardware with

the behavioral data of cricket phonotaxis, we re-plotted the phonotaxis data published

in [42] with permission, which is shown in �g. 56. The relative phonotaxis behavior

scores plotted were averaged acrossn number of crickets Gryllus bimaculatus, for four

di�erent stimuli:

1. Fixing the PI; changing the PD and the duty-cycle for n = 37.

2. Fixing the PD; changing the PI and the duty-cycle for n = 38.

3. Fixing the duty-cycle to 50%; changing the PD and the PI for n = 27.

4. Fixing the PP; changing the PD, the PI and the duty-cycle for n = 19.

The experiment was performed by monitoring the movement of the female cricket

using the walking compensator. The arti�cial calling songs were generated by mul-

tiplying the sinusoidal signal envelope with a sine wave of 4.5 kHz frequency. The

songs were presented through the loudspeakers for a Chirp Duration (CD) that varied

from 164 to 280ms, followed by a Chirp Interval (CI) that ranged from 134 to 200ms.

The deviation of the cricket moving towards the sound source was measured as an

indicator of phonotaxis. The relative phonotaxis scores were computed based on the

methods described in Sec. 5.2. A subset of the phonotaxis behavioral data (averaged

across the crickets), presented in [42] is shown in Fig. 56. The mean relative phonotaxis

scores in response to the varying PPs with a constant duty-cycle of 50% are shown in
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Figure 56: A subset of the cricket phonotaxis behavioral data presented in [42] is re-plotted

with permission for qualitative comparison of LN4 responses presented in Fig. 53

and Fig. 54 with the phonotaxis behavior. The mean relative phonotaxis scores of

crickets are shown in the left plot, in response to various PPs of the stimulus with

the constant duty-cycle. The SDs are represented as the error-bars in the plot. The

preference of crickets towards 40 ms PP is visible in the plot. The mean relative

phonotaxis scores of the crickets in response to various duty-cycles of the PP are

shown in the right plot. The mean responses show a band-pass �lter like selectivity.

It is visible that the crickets are attracted towards the stimulus that falls within the

range of the 20ms PD and the 20ms PI in various duty-cycles. The heat-map drawn

outside the measured data points (black dots) was interpolated.

the left �gure. The error-bars denote the SDs across di�erent animals. The band-pass

selectivity towards a speci�c stimulus is visible in the plot. The peak of the �lter exists

at 40 ms, which is higher than 34 ms peak of the LN4 neuron modelled in the hard-

ware (see Fig. 53). The heat-map plot of the behavioral data in response to di�erent

timescales of the PDs and the PIs is shown in the right �gure. The data was obtained

for only a few points, mainly on the principal diagonal, in the region of expected max-

imum responses. Very few data were measured away from the maximum response

region. The missing data in between the points were interpolated. The maximum re-

sponse is centered around the region of 40ms PPs. This peak is higher compared to the

peak activity of the LN4 neuron modelled in the hardware, which occurs in 30-34 ms

PP region (see Fig. 54). Furthermore, the region of peak responses is more widespread

in behavioral data, compared to the LN4 neuron responses from the hardware. This

di�erence in bandwidth of the �lters between the behavior and the neural data is con-

sistent with the observations presented in Kostarakos and his colleagues’ work ([58]).

The authors showed that the local neuron B-LI4 showed a narrow band-pass region

of selectivity, compared to the phonotaxis behavioral data (see Fig. 42). Therefore, the

band-pass �lter response of our calling song recognition network correlates with the

phonotaxis behavior.
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5.5 discussion

The responses of the LN4 neuron presented in Fig. 54 qualitatively matches the behav-

ioral data presented in Fig. 56 and also the �ne-tuned band-pass �lter like responses of

the B-LI4 neuron presented in [58] (shown in Fig. 42). Kostarakos and his colleagues

already proposed in [58] that these neural responses correlate with the phonotaxis be-

havior of crickets. Our network utilizes a bio-realistic computation to recognize call-

ing songs of crickets. The neurophysiological data from the biology [58] explain the

functional role of the neurons. The missing data in between were interpolated in the

biology, and the actual data points are unknown. However, our results suggest the net-

work responses over the entire range of the stimulus, in steps of 4 ms. It is reported

in [58], that no signi�cant change occurs in the neural responses within this duration.

Therefore, our model can be useful in predicting the neural activity for the missing

data points in the biological experiments.

In [101], Schildberger proposed that the band-pass response pro�le might be the result

of the interplay between the neurons with low-pass and high-pass responses. A more

recent work in [58], Kostarakos, and his colleagues identi�ed several local neurons

with band-pass �ltering characteristics and suggested in [103], that coincidence detec-

tion among them might play a role in selecting the attractive stimulus. Nevertheless,

we do not rule out the existence of a neuron with high-pass �lter characteristics in

cricket brain. For instance, the LN3 neuron responded with one spike per PD similar

to a pulse-onset detector and the number of the PDs within one chirp became small

for long PDs. When the chirp varying in the PP with a constant duty-cycle is presented

directly to the standalone LN3 neuron without sending it through the network, one can

expect a high-pass �lter response from this neuron. The high-pass �lter response can

also be obtained using the STD synapse as modeled in [97]. However, in both of our

implementations, the stimulus plays a signi�cant role in shaping this high-pass �lter

response. Therefore, temporal screening is the critical element of our computational

model. Temporal �ltering is one of the well-studied properties of the Short-Term Plas-

ticity (STP) [1]. We modeled the temporal �ltering properties of two of the neurons

using the STF in their synapses. Along with the SFA, the STF shaped the band-pass �l-

ter responses (given the pulse-based chirps) of the neurons. The time-constant of the

STF of the LN2 synapse is tuned to recover completely during 17 ms PI. Note that the

structure of the chirp plays a crucial rule in tuning these �lters, as the �rst temporal

�lter is set within the incoming stimulus, and the whole network operated within this

window. It is especially true for the LN3 neuron which is tuned to emit one spike per

PD, beginning from 17 ms PI. The LN4 neuron however operates on the PP and the
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STF of this neuron is tuned to recover after 34ms PP. Therefore, the temporal selection

reaches the maximum at 34ms PP as evident from Fig. 53. Therefore, the time-constant

of the STP plays a crucial role in the network. The designed STP currents o�er desired

�exibility in tuning their time-constants (see Sec. 4.4 for more details).

In [101], Schildberger mentioned that the onset latency of the AN1 neurons decreases

with the increase of the stimulus intensity. In our experiments, the initial onset latency

occurred at the AN1 neuron due to its low synaptic weight. The latency increased at

each stage of the network due to the STF synapses and a slow integration of the EPSCs

by the neurons. The delay can be useful especially during the phonotaxis implementa-

tion of both the sides of the auditory system, by tuning one side faster than the other.

However, in [86], the authors claim that the useful information for sound localization

was the di�erence in the tuning strengths of the inter-aural responses than the latency

itself. Nevertheless, studying the functional role of the delay will be a future direction

of this research.

Evidence of inhibition was found in the local neuron B-LI4 in [58]. Later in [103], the

Post-Inhibitory Rebound (PIR) was found to be the cause of the repression. The PIR

played a role in band-pass selectivity of the local neuron. A calling song recognition

network with PIR was proposed in [103], based on the latencies observed at di�erent

local neurons of the brain. This network was based on the coincidence detection be-

tween the delayed spikes and the non-delayed spikes from another neuron, resulting

in a band-pass response. Such a system cannot be implemented in our neuromorphic

hardware because it is not possible to stimulate the synapse with a non-digital sig-

nal in the current chip. However, the idea of a non-spiking neuron is promising to be

included in the design of the next-generation neuromorphic chips.

5.6 conclusion

The STP has also been reported in other insects such as mushroom bodies of drosophila

[106] and honey bees [75]. The STP is also known to play a role in sound localization in

avian auditory brain-stem [28]. Since no long-term learning has been observed during

cricket phonotaxis, and the recognition occurs at the milliseconds scale, it is worth-

while to investigate the role of the STP in cricket phonotaxis. We demonstrated the

signi�cance of the STP in a small network to recognize the calling songs of crickets

during phonotaxis. The network is able to select the attractive features of the given

stimulus. Since the neurons are modelled based on the biological evidence, the network

sugests an educated guess about the connectivity scheme of the cricket phonotaxis net-
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work. Our model provides a silicon platform to test the neural responses for complex

stimulus conditions, for e.g., various chirp patterns.

The �ltering responses of the network are modelled using the STF with di�erent time-

constants. These time-constant values are crucial for the implementation of this net-

work in a neuromorphic hardware. The implementation of this network is possible,

thanks to the real-time operation of our neuromorphic hardware, that operates in the

same scale of biological time-constants. The calling song recognition network mod-

elled in this research is compact, with only four neurons in a simple feed-forward con-

nectivity. This feature ensures the network easier to port to any other neuromorphic

chip. We built a dedicated neuromorphic chip to implement the calling song recogni-

tion network. The STP circuits proposed in Sec. 4.4 are used to model the STP synapses

of the network. The network that is built using the multi-chip hardware can be im-

plemented using a single chip. The chip with the calling song recognition network

can be used for acoustic based robotic tasks. Further details of this application speci�c

neuromorphic chip can be found in Chapter 7.

In this thesis, we have presented the response of the networks only to the regular

frequencies of the input pulses. However, in a real-world scenario, the input spikes

can be randomly distributed, for e.g., Poisson distribution. We simulated our networks

using the spikes from the Poisson and the Gamma distribution. The analysis of these

response of the networks are beyond the scope of this research. Therefore, we included

this data as the supplementary material in the DVD attached with this thesis. This

data can be used to characterize the network with the real-time sensor such as the

event-based silicon cochlea [65].
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A dedicated STD circuit is available in the neuromorphic chip. However, an explicit

control over the recovery-rate of the depression strength was missing in the circuit.

We designed a set of STD circuits that o�ers an independent control over the recovery-

rate of the depression voltage. This circuit can be used to obtain speci�c temporal

dynamics of the STP, such as strong depression followed by a fast recovery of the

synaptic strength, which was not possible with the existing STD circuit. The STD circuit

can also be used to investigate the role of STD in a calling song recognition network of

crickets. For example, in the synapse of the LN3 neuron, that implements a high-pass

�lter like a response, when stimulated out of the network.

No dedicated Short-Term Facilitation (STF) circuit exists in the current hardware. The

DPI synapse was used to implement the STF, sharing the time-constant between the

synapse and the STF. This constraint limits the synapse to operate with a time-constant

di�erent from the STF and vice versa. We designed a dedicated circuit to implement

the STF. The output voltage of this circuit did not always reach the steady-state values.

Therefore, we redesigned the STF circuit by adding a negative feedback loop. The new

STF circuit o�ers complete control over the recovery-rate of the facilitation strength as

well as the output voltage of the circuit reaches the steady-state values. The STF circuit

can be used to model long latencies in a calling song recognition network of crickets.

It allows implementing both STD and STF at the same synapse, with independent time-

constants. We combined the STD and the STF circuits to design the band-pass �lter like

characteristics of the STP to input frequencies. Please refer Appendix for further details

of this circuit. All these STP circuits are fabricated in CMOS, and their responses are

tested and characterized.

Alongside the STP circuit design, we demonstrated the computational signi�cance of

the STP in a small feed-forward network to recognize calling songs of crickets. We used

the STF to model the band-pass �lter characteristics of the neurons of the network. The

spiking neural network was emulated in the available neuromorphic hardware. The

network shows a band-pass �lter like selectivity to the calling song stimulus, anal-

ogous to the behavioral and neurophysiological evidence. The network responsible
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for recognizing calling songs of crickets during phonotaxis is unclear in the literature.

However, our network model suggests the connectivity scheme of the auditory neuron

circuitry in cricket brain. We designed a neuromorphic chip dedicated to implement-

ing this network using the newly developed STP circuits. The details of this chip can

be found in the Appendix. This chip is compact and can be used in the acoustic-based

robotic tasks.

Therefore, we addressed the two primary goals of neuromorphic engineering through

this research:

I. To understand the underlying computational principles of neurobiology using the

hardware.

II. To build the silicon circuits inspired by the neuroscience.

6.1 advantages of neuromorphic approach

Timing is a crucial factor in auditory systems, as the information is precisely encoded

in the timing of the spikes. During the implementation of our calling song recognition

network, we exploit the real-time operation of our neuromorphic hardware, to faith-

fully model the latency and the spike-times of the neurons for time-speci�c features

of the chirp. The biologically plausible time-constants in the range of 50-100 millisec-

onds are crucial to implementing the short-term synaptic dynamics in our network.

Thanks to the real-time operation of our neuromorphic chips that the time-constants

in this range are achievable. The neuromorphic hardware has the inherent noise due

to the device mismatch e�ects resulting from the fabrication process. This device mis-

match is useful in introducing inhomogeneities among the computational elements

(the synapses and the neurons) in the chip. These variations can be exploited to model

the biologically realistic neural computations. We designed the STP circuits by follow-

ing the design strategies to minimize the mismatch e�ects. However, we also used

these deviations in the responses to implement various shapes of the band-pass �lter

like responses of the neurons.

We used a neuromorphic hardware to uncover the puzzles of small-scale neural circuits.

Given its small size, the network can be implemented using any digital platform. How-

ever, we aim to model the computations in silicon as close as possible to the biology.

This goal is relevant, using the neuromorphic chip. Unlike standard processors, the

processing speed does not scale with the size of the network. The power consumption
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is signi�cantly lower than conventional processors. The event-based neuromorphic

sensors can be readily integrated to these chips, for real-time interaction with the en-

vironment which is useful for online-learning in robots. The neuromorphic chips o�er

a massively parallel framework, whose units are non-identical and perform real-time

computations. These brain-like computing machines can be used to bridge the gap be-

tween the machine learning approaches such as deep convolutional neural networks

to the bio-inspired approaches such as spiking networks.

6.2 future works

In this research, we investigated the role of STP in a small neural network. However,

the STP is known to in�uence the neural dynamics in large networks. Examining the

impact of the STP in these large systems is the possible future direction of this re-

search. We also designed the STP circuits, which can be tested for more computational

properties of the STP. Despite the fact, we built these circuits in the context of the au-

dition; these circuits can be used to implement temporal �lters in other modules as

well, e.g., vision. For example, our STP circuits can be used to build a spiking model

of the Elementary Motion Detection (EMD). EMD is a model that describes the sim-

pli�ed computations to perceive movement from the activity of photoreceptors. The

simplest EMD model consists of two photoreceptors, a delay element, and a multiplier.

The time delay ensures the two arriving signals at the photoreceptors are correlated

in time. The multiplier ampli�es the highly correlated activity. In the spiking model

of the EMD, events from the pixels of the Dynamic Vision Sensor (DVS) (also known as

silicon retina) can be taken into account for the photoreceptors activity. The output

of the �rst pixel can be used to stimulate the STP circuit and the second pixel to the

DPI synapse. In this model, the output of the STP circuit can be connected to either the

gate of the weight transistor or the threshold transistor of the DPI synapse. The output

voltage of the STP circuits can be used as a scaling factor to modify the EPSC of the DPI

synapse. This modi�cation occurs on a short-time scale, during which an event or in-

put pulse travels from one synapse to the other. The underlying neuron integrates the

incoming EPSC and elicits output spikes depending on the size of the EPSC amplitude.

Therefore, the speed of the arriving event is encoded regarding the �ring rate of the

neuron. This spiking EMD model can be used to navigate insect-inspired robots. Thus,

the designed STP circuits can be used as an on-chip velocity encoder in an event-based

sensor.

From the implementation of the calling song network, we realize that the insect in-

spired neural systems require a distinctive architecture of the chip design allowing
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more �exibility in tuning the synapses individually, than the general purpose hard-

ware. Although available hardware provides an e�cient platform to implement small

neural networks, more than one chip is required to model distinct synapses. For exam-

ple, in our implementation, we used two chips to implement four neurons because the

parameters are shared among the synapse array of each chip. Another limitation is the

portability of the multi-chip setup, to be used in a mobile robotic platform. Therefore,

the hardware needs a unique design strategy which allows a large number of inde-

pendently tunable synapses and neurons, to implement insect-inspired systems. The

requirement for a large number of input/output pins might be a limiting factor. How-

ever, this constraint can be tackled by implementing on-chip scaling of the parameters

such as synaptic weights and switching between these weights. This design technique

would o�er more �exibility to use the small-scale neuromorphic chips. We designed

one such chip to export the calling song recognition network. The architecture of the

chip design follows a similar strategy as we discussed above. Each neuron of the chip

receives the currents from eight independently tunable synapses. This chip is a pro-

totype with only eight neurons in total (more details of this chip can be found in the

Appendix). The chip laid a foundation to build recon�gurable architectures inspired

by insect neural structures. This architecture is scalable and can be used to design

large-scale neural systems. As we know, recon�gurability is the vital feature of the

next generation architecture of the neuromorphic systems.

6.3 outlook of neuromorphic engineering research

Moore’s law is reaching its limits, meaning further scaling of the silicon is impossi-

ble due to the quantum e�ects. It opens the door for new computing paradigms such

as quantum computing and neuromorphic computing. The quantum computers are

aiming to reach high speeds, whereas the neuromorphic processors aim to replicate

brain-like processing. Since the foundation in the late 80’s by Carver Mead, the neuro-

morphic computing is an actively growing research area. Many e�ective approaches

have been found by the neuromorphic community since then to build a brain-like-

computing machine. The neuromorphic computing �eld is continually evolving with

the advent of new devices, fabrication technologies, and brain imaging techniques.

For example, memristors, which have been intensively studied for their usage in neu-

romorphic computing. The memristors are only a few nanometers in size and show

promising capabilities such as long-term storage of synaptic weights. These proper-

ties ensure the memristors to be ideal candidates to implement the synapses for large-

scale neuromorphic hardware [55]. Integration of these memristive devices with the

existing CMOS based neuromorphic circuits will provide a full �exibility in tuning to
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achieve complex temporal dynamics of the synapse along with the long-term storage

of weights. Attempts have been made to culture the neuron cells on top of the mem-

ristor arrays, to build a living brain-machine interface. The neuromorphic chips have

been used to construct brain-machine interfaces [26]. These chips can locally process

the neural recordings and can bene�t the society by being used for neuroprosthetics.

With the ongoing progress in developing neuromorphic sensors and motor control

systems for neuroprosthetic applications [67, 85], the neuromorphic research is gain-

ing attention on bio-medical interfaces. The success of this inter-disciplinary research

highly depends on the integration of the researchers from all the communities espe-

cially biology, neuroscience, machine-learning, physics, engineering, and robotics.
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7
A P P E N D I X

7.1 fabricated cricket calling song recognition network

Considering the limitations of the STP circuits that are already existing in the hardware

(see Sec. 4.2 for more details), we designed another test chip using the STP circuits we

discussed earlier in Sec. 4.3 and Sec. 4.4. We call it a test chip-2 and the schematic of this

test chip with the calling song recognition network of cricket is shown in Fig. 57. Block

diagram of the test chip-2 is shown in the top, and the monitoring scheme to observe

the input and output spikes is shown in the bottom. The calling song recognition block

consists of an array of 8 DPI neurons (see right corner). Each neuron receives currents

from the excitatory and the inhibitory synapses, STD synapse without feedback, STF

synapse with feedback, and a band-pass �lter synapse consisting of another set of the

STD circuit without feedback and the STF circuit with feedback. The Calcium-based

learning synapses (Ca1 and Ca2) are not used in the calling recognition network,

therefore will not be discussed here.

The biases are shared across the rows and are distinct across each block in the column.

Two networks of calling song recognition network of crickets can be implemented us-

ing this chip, by selecting two sets of four neurons. The �rst neuron receives the input

events through the excitatory synapse and implements the SFA using the inhibitory

synapse. The second neuron receives input through the STF synapse with feedback.

The third neuron gets the spikes through the synapse from the EMD block. In other

words, we borrowed a synapse from the EMD block. The details of this EMD block are

beyond the scope of this research. Therefore we will not discuss its features here. The

forth neuron receives input through the other STF synapse circuit with feedback, bor-

rowed from the band-pass �lter synapse block (explained in the next section). The

monitoring scheme is shown in the bottom of Fig. 57. The output voltages of the de-

sired synapses and neurons can be monitored by selecting the appropriate row and

column addresses. This way, we could implement two calling song recognition net-

works in parallel. Neurons with four types of distinct synapses are available in the

same chip, and the events can be routed using the inbuilt mapper.
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7.1 fabricated cricket calling song recognition network

Figure 57: The schematics showing the calling song recognition block of the test chip-2. Top:

Block diagram of the test chip showing the array of synapse and neuron blocks along

with the newly designed STP circuits. Bottom: Schematic of the monitoring scheme

to monitor the output voltages of the desired synapses and neurons by providing

appropriate row and column addresses. The architecture is designed in a fashion

to allow the implementation of calling song recognition network in a single chip.

The top array consists of 8 rows of 8 di�erent synapses, the currents of which are

injected into a DPI neuron located at the end of each row. The synaptic arrays include

inhibitory (INH), excitatory (EXC), STD without feedback, STF with feedback, Band-

pass �lter (BPF) and Elementary Motion Detector (EMD). Calcium-based learning

synapses (CA1 and CA2) are independent of our network implementation.
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Figure 58: The layout of the testchip2 with the calling song recognition network. The layout

consists of arrays of 8 synapses, and eight neurons fabricated using the standard

CMOS AMS 180 nm technology. The total design area occupied is 1576.0*480.2 µm2,

including the Calcium-based learning blocks. The actual design area occupied by

the calling song recognition block is 1080.0*480.2 µm2. Further design details are

provided in table 2.

The network of cricket calling song recognition discussed in chapter 5 is designed

and fabricated in a standard CMOS AMS 180 nm technology. The layout of the calling

song recognition network is shown in Fig. 58. The design is compact, and it occupies

the silicon area of 1576.0*480.2 µm2
. Omitting the Calcium-based learning blocks, our

network design alone occupies 1080.0*480.2 µm2
. This plan can be exported to build

large-scale arrays.

We designed the architecture of the calling song recognition block based on the model

(refer Sec. 5.3.2) we implemented using the multi-chip setup (see Sec. 3.8). Since we

used two chips to model four distinct neurons, we aimed to solve this issue with our

new architecture which allows us to model four distinct neurons in the same chip.

However, the response variability can be characterized for up to two networks with

this test chip-2. Nevertheless, the application speci�c design allows this test chip to be

used as the prototype to study the sound based robotic tasks.
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7.1 fabricated cricket calling song recognition network

Block Type Length Width Value

Inhibitory

Synapse

M5-M6 Cap 10µ 10µ 200.368fF

Transistor 0.5µ 1µ -

Silicon occ. 31.33µ 18.33µ -

Excitatory

Synapse

M5-M6 Cap 10µ 10µ 200.368fF

Transistor 0.5µ 1µ -

Silicon occ. 28.915µ 23.3µ -

STD

simple +

Synapse

M5-M6 Cap 7µ 7µ 97.2fF

Transistor 0.36µ 1µ -

Silicon occ. 48.62µ 18.33µ -

STF

f.back +

Synapse

M5-M6 Cap 7µ 7µ 97.2fF

Transistor 0.36µ 1µ -

Silicon occ. 47.97µ 18.33µ -

BPF +

Synapse

M1-M4 Cap 7µ 7µ 97.2fF

Transistor 0.36µ 1µ -

Silicon occ. 68.21µ 18.33µ -

Neuron Silicon occ. 91.13µ 40.15µ -

Table 2: Dimensions of the circuit blocks designed in testchip-2.
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Figure 59: The schematics of the band-pass �lter circuit designed in the test chip-2. The circuit

consists of the STD (without feedback) and the STF circuits (with the feedback), two

opamp bu�ers, a comparator and a transmission-gate logic. The output voltages of

the STD and the STF circuits are compared, and the minimum of these two voltages

are selected through the transmission-gate logic.

7.2 stp based band-pass filter

Evidence in biology [28] suggest that both the STD and the STF synapses can target the

same neuron, with di�erent time-constants. This combination of the STP would result

in a band-pass �lter like selectivity to the incoming pre-synaptic spikes as described

in [53]. It is feasible to implement the band-pass characteristics using the STP model

proposed by [71]. However, these band-pass �lter characteristics cannot be achieved

using the current neuromorphic hardware. Therefore, we designed a circuit that im-

plements this phenomenon.

STP based band-pass �lter synapse is designed in both the test chip-1 and the test chip-

2 (shown as the BPF block in Fig. 57). Considering the similarities in the design of

this circuit in both the test chips, we restrict our discussion in this section with the

design of the test chip-2. The schematic of the band-pass �lter circuit is shown in

Fig. 59. The circuit consists of the STD circuit without the feedback and the STF circuit

with the feedback. The output voltages of these two STP circuits are connected to the

transmission-gate logic. An opamp comparator is used to compare the output voltages

of the two STP circuits. The operational ampli�er (or opamp) is the voltage ampli�er,

which is also the most extensively used device in electronics. Various con�gurations

of opamp exits and the comparators are one among them. The comparator compares

the two input voltages and outputs a high signal if one of them is larger than the other.

The transmission-gates select the minimum of the two compared output voltages. A

transmission-gate consists of an nMOS and a pMOS transistor connected in parallel.

The voltage applied to the gate of the nMOS is the inverted version of the voltage ap-
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Figure 60: The layout of the band-pass �lter circuit designed using the standard CMOS AMS

180 nm technology. The STD circuit and the STF circuits are located in the top-right

and the bottom-right regions. Two opamp bu�ers are situated in the middle (top and

bottom). The comparator is located in the bottom-right region, and the transmission-

gate logic is situated in the top-left region. As expected, the capacitors in the right

corner (top and bottom) occupy most of the silicon area in the design. The capacitors

are built using four layers of the Metal-Insulator-Metal(MIM). The layout occupies

the design area of 82.91*17.06 µm2.

plied to the pMOS transistor. The circuit acts a switch with a control voltage supplied

through the gates. The operational ampli�er, whose output gain is con�gured to one

is called a unity-gain follower and can be used as a bu�er. The output voltages of the

STD and the STF circuits are sent through the opamp bu�er, to decouple the voltages

from the transmission-gates.

As already mentioned in Chapter. 4, the STD circuit shows a low-pass �lter like re-

sponse and the STF circuit displays a high-pass �lter like pro�le to the input frequen-

cies. The designed circuit combines these two characteristics of the STD and the STF

circuits, to implement the band-pass �lter characteristics to input frequencies. The cir-

cuits are designed and fabricated using the standard CMOS AMS 180 nm technology.

The circuit occupies the silicon area of 82.91*17.06 µm2
.

The layout design of this circuit is shown in �g. 60. The STD circuit without a feedback

occupies the top-right region. The STF circuit with the feedback occupies the bottom-

right region. The capacitors of the STD (top-left) and the STF circuits (bottom-left) oc-

cupy the largest area of the design. The capacitors are designed using four layers of

the Metal-Insulator-Metal(MIM). Three opamps used to implement two bu�ers (top

and bottom: middle) and a comparator (bottom-right). The transmission-gate logic is

designed in the top-left area of the layout.

The steady-state responses of the fabricated band-pass �lter circuit are tested and char-

acterized by the input frequencies. Input pulses of 20 µs duration are provided from

10Hz up to 150Hz (in steps of 10) to the circuit, and the output voltages are recorded

through the oscilloscope. The mean and the SDs of the steady-state values of the output
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Figure 61: The steady-state output voltage responses of the band-pass �lter circuit to the input

frequencies are plotted. The input frequencies vary from 10 Hz to 150 Hz, and the

corresponding steady-state output voltages are recorded. Each point in the curve

represents the mean steady-state output voltages of the circuit, and the error bars

represent the SDs. The overall mean steady-state response shows a band-pass �lter

like pro�le. The low peak-to-peak amplitude of the steady-state output voltage for

high frequencies (due to short ISIs) results in small SD values.
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voltages are computed for each input frequency as shown in �g. 61. Each point in the

curve denotes the mean of the steady-state output voltages. The error-bars denote the

SDs. The resulting pro�le of the steady-state responses displays a band-pass �lter. The

shape of the band-pass �lter can be modi�ed using di�erent bias settings of the STD

and the STF circuits. The peak-to-peak amplitudes of the steady-state output voltage

decreases for high-frequency inputs due to the short ISIs. Therefore, the values of the

SDs are small for high-frequencies.

The STD responses can be obtained by shutting down the STF (by increasing the Vlow

and Vup of the STF higher than corresponding values of the STD circuit) and vice-versa.

The STF response alone is used to implement the STF synapse of the calling song recog-

nition network in test chip-2. Therefore, three types of the �lter responses can be

achieved at a single synapse. The circuit o�ers a multi-purpose computational building

block that can be integrated into the design of large-scale neuromorphic hardware.
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Parameter STD-no STF-no STD- STF-

feedback feedback feedback feedback

(Volts) (Volts) (Volts) (Volts)

Vwei 0.85 2.225 0.85 2.225

Vtau 0.2 0.52 0.2 0.52

Vup 0.8 2.8 0.8 2.8

Vlow 0.4 0.4 0.4 0.4

Vlim - - 0.6 0.3

Frequency 200 200 200 200

Pulsewidth 1µ 1µ 1µ 1µ

Risetime 1n 1n 1n 1n

Falltime 1n 1n 1n 1n

Table 3: Parameters used to simulate the STP circuits to obtain the temporal �lters, presented

in Fig. 35 of Sec. 4.5.

7.3 supplementary material

The parameters used in the simulations and emulation results obtained in this research

are presented in this section as tables. The parameters used to simulate the STP circuits

to obtain the temporal �lters presented in Fig. 35 of Sec. 4.5 are shown in table 3. The

parameters used to test/emulate the fabricated STP circuits to obtain the temporal �l-

ters presented in Fig. 40 of Sec. 4.6 are shown in table 4. The parameter sets of the

synapses and neurons used to emulate the cricket calling song recognition model pre-

sented in Fig. 53 and Fig. 54 of Sec. 5.4 are shown in table 5.

The additional data obtained during the testing of the fabricated STP circuits and also

the extra data from the implementation of the calling song recognition network are

written to the DVD attached to this thesis. The supplementary data includes the

steady-state responses of the output voltages of the STD and the STF circuits, with

and without the feedback control. We also added the additional raster plots obtained

for the PPs from 10 to 98 ms, with a constant duty-cycle together with the response

of all the networks to the PP variants along with the duty-cycle variations (the PD and

the PI varied from 5 to 49 ms). We included the response of all the networks to the

non-regular frequency of the input pulses such as the ‘Poisson’ and the ‘Gamma’ dis-

tribution of the input spikes. These responses can be used to understand the operation
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Parameter STD-no STF-no STD- STF-

feedback feedback feedback feedback

(Volts) (Volts) (Volts) (Volts)

Vwei 0.5 0.65 0.5 0.65

Vtau 0.85 0.3 0.81 0.33

Vup 1 1 1 1

Vlow 0.3 0.3 0.3 0.3

Vlim - - 0.5 0.5

Frequency 100 100 100 100

Pulsewidth 20µ 20µ 20µ 20µ

Vbuf 1.2 1.2 1.2 1.2

Table 4: Parameters used to emulate the fabricated STP circuits to obtain the temporal �lters,

presented in Fig. 40 of Sec. 4.6.

Synapse Vwei Vtau Vthr Pls.width

(Volts) (Volts) (Volts) (Volts)

AN1 Exc. 0.53 2.95 2.86 -

AN1 Inh. 2.48 0.11 0.8 0.08

LN2 Exc. 0.62 2.86 2.86 -

LN3 Exc. 0.7 2.8 2.85 -

LN4 Exc. 0.55 2.99 2.85 -

Neuron Vadap Vleak Vrefr

2D-0 0.13 0.17 0.25 -

2D-1 0.2 0.17 0.25 -

Table 5: Parameters used to emulate the cricket calling song recognition model presented in

Fig. 53 and Fig. 54 of Sec. 5.4.
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of the network (chip) when integrated with a real-time sensor such as event-based

silicon cochlea [65]. The scripts used to simulate the neuromorphic hardware and an-

alyze the data from the hardware are also added to theDVD enclosed with this thesis.

Please refer to the ‘readme.txt’ �le from theDVD for further details about the scripts

and the data attached.
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