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Abstract
Recently, we introduced the pulsed triple electron resonance (TRIER) experiment, 
which correlates dipolar frequencies of molecules with three electron spins. These 
correlation patterns contain valuable information: in combination with double 
electron–electron resonance (DEER) they allow to interpret distance distributions 
of biological systems that exist in more than one conformation. Together with an 
improved sequence and new data processing, we were now for the first time able 
to obtain two-dimensional distance correlation maps of the previously investigated 
model compounds as well as of spin-labeled proteins. For this we applied two-
dimensional approximate Pake transformation to TRIER data. This enabled us to get 
distance correlation plots from two triple-labeled protein samples that were in good 
agreement with DEER data and simulations. With such information it should then 
be possible to assign peaks in DEER distance distributions for macromolecules that 
can exist in more than one conformation.
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1  Introduction

The double electron–electron resonance (DEER) or pulsed electron double reso-
nance (PELDOR) technique is nowadays increasingly used as a complementary 
tool to X-ray structure analysis, nuclear magnetic resonance (NMR) spectroscopy 
and cryogenic electron microscopy. It provides structural information on biological 
systems and materials of increasing complexity by distance distribution analysis in 
the nanometer range. Originally introduced by Milov et al. [1, 2] and later extended 
to a dead time-free four-pulse sequence [3, 4], DEER separates pairwise couplings 
between electron spins from other electron spin interactions. In an approach similar 
to the spin–echo double resonance (SEDOR) experiment in NMR spectroscopy [5], 
the interactions are observed in the time domain. The optimal range for the applica-
tion of DEER is 1.5–8 nm, but by deuteration of the solvent [6] and the protein [7] 
the distance range can be extended up to 16 nm [8] in favorable cases.

In cases where double resonance, double-quantum [9] or solid-echo based [10] 
experiments are sufficient, experimental strategies usually aim for the preparation 
of systems with no more than two electron spins in the distance range of interest. 
But many systems, in particular biomolecules, cannot be prepared in a way where 
the isolated spin pair approximation holds. This leads to multi-spin contributions 
[11–13] which complicate interpretation of the data in terms of a distance distribu-
tion. Even in cases where the isolated spin pair approximation is not violated, full 
structural information on the system may not be obtainable if multiple conforma-
tions are populated [14]. To tackle this problem we recently introduced the triple 
electron resonance (TRIER) experiment [15] for systems with more than two para-
magnetic centers. TRIER requires the selective excitation of three distinct subsets of 
spins with sufficiently high probability. In systems that contain only one type of spin 
label, this is best done with shaped and frequency modulated pulses, which have 
become accessible in the past few years through fast arbitrary waveform generators 
(AWGs). In combination with a local oscillator and sufficiently broadband digitizers, 
AWGs provide access to bandwidths up to 0.8 GHz for observed and up to 2.5 GHz 
for pumped spins [16] and have been implemented in spectrometers operating from 
0.33 to 6.8 T [17–21] magnetic field. Besides enhancing the excitation bandwidth, 
frequency-swept pulses can allow for more precise control of spin systems through 
adiabatic passage [22] even in the presence of a strongly varying resonator profile 
through the principle of offset-independent adiabaticity [17, 23]. Thanks to the exci-
tation of larger spin fractions, signal intensity can be increased [18, 19] and this 
in turn makes it possible to conduct new correlation experiments [15, 24–26]. Two 
overview articles on state-of-the-art EPR with frequency-swept pulses have recently 
been published [16, 27].

TRIER itself can be seen as an extension of the one-dimensional DEER experi-
ment to a two-dimensional experiment (Fig. 1a) correlating dipolar frequencies that 
stem from the same molecule. In our initial work on TRIER [15] we obtained cor-
relation spectra for several model compounds. Here, we demonstrate that we are 
able to obtain two-dimensional distance correlation maps and apply TRIER to pro-
tein samples of current interest. Best results are achieved by optimizing processing 
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parameters with the help of the spectrum, which acts as quality control and helps to 
avoid processing artifacts. The two-dimensional time traces are then subjected to 
two-dimensional approximate Pake transform (2D-APT), which yields two dimen-
sional distance correlation maps. TRIER acts exclusively as a correlation experi-
ment and is intended to complement, not to replace DEER. To set experimental 
and processing parameters some knowledge about the distances in the molecule is 
required. We show that this information can come from DEER data and, for known 
systems, from simulations.

This paper is structured as follows: in Sect. 2, we discuss pulse shapes that we 
investigated for their application and further development of the pulse sequence. 
In Sect. 3, we describe how we process the two-dimensional time-domain data and 
how we obtain distance correlation maps through two-dimensional approximate 
Pake transformation. This is followed by a description of our experimental setup in 
Sect. 4 and the sample preparation and characterization in Sect. 5. Finally, results 
from three model compounds of different geometries and two proteins are shown in 
Sect. 6. This work finishes with a summary and outlook in Sect. 7. We also provide 
Supplementary Information (SI) which contains an in-depth characterization of the 
proteins, a comprehensive summary of the measurements and data processing and 
details on the synthesis of one of the model compounds.

2 � Improvements of the TRIER Pulse Sequence

We investigated different types of pulses and their effect on sensitivity and mod-
ulation depth, as well as a modification of inter-pulse delays. The TRIER experi-
ment correlates inter spin distances of molecules that contain three electron spins. A 
detailed discussion on the TRIER sequence itself and all pathways that can lead to a 
modulation of the echo can be found in [15].

2.1 � Investigated Pulse Types

The TRIER experiment (Fig. 1a) requires pulses with three different excitation win-
dows: One for the detection subsequence (gray) and two for the pump pulses (blue 
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Fig. 1   a The pulse sequence of the TRIER experiment. The times t
1
 and t

2
 are varied and provide the two 

indirect dimensions. The three colors (gray, blue and orange) represent the different excitation frequency 
ranges of the pulses. Experimental inversion profiles of the individual pulses are given in b. The nitrox-
ide spectrum is shown in the back in light gray (color figure online)
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and orange). As sensitivity is a challenge in TRIER, it is essential that excitation pro-
files possess steep edges and no ripples in and outside of the excitation band, so that 
they cover most of the spectrum without overlap of the excitation bands intended 
for exciting different subsets of spins (Fig. 1b). In our initial work on TRIER [15] 
we used linearly frequency-swept pulses (chirp pulses) [17] with smoothed edges 
for the detection sequence and asymmetric hyperbolic secant (HS) pulses [28, 29] 
for pumping. Meanwhile we have also tested Gaussian [30, 31] and Gaussian cas-
cade (GC) [32–34] pulses and compared their excitation windows and the resulting 
sensitivity and modulation depth. While frequency-swept pulses such as chirps and 
HS pulses allow for highly-efficient inversion due to adiabatic passage [22, 35], they 
require slightly more complex pulse schemes for proper refocusing [35] and can suf-
fer from loss of magnetization due to transverse interference effects [16, 25].

With respect to the narrower banded ( ∼ 25 MHz) observer pulses, the poor qual-
ity of the excitation windows of GC and HS pulses (Fig. S10), especially for �∕2
-pulses, and the resulting low sensitivity made these two pulse types unsuitable for 
the detection subsequence. Gaussian and chirp pulses on the other hand both showed 
well defined excitation profiles and comparable modulation depths (Fig. S11), and 
could both be used for TRIER.

Pump pulses on the other hand require excitation bandwidths of around 60 MHz. 
Here, the Gaussian and chirp pulses cannot compete with the steep edges of the 
excitation profiles of asymmetric HS or GC pulses. Although HS and GC both show 
good excitation profiles, HS pulses provide deeper modulation depths (Fig. S11).

2.2 � Modification of Timings in the Pulse Sequence

In the initial description of TRIER, we used identical lengths for the delays �1 and 
�3 . This leads to an overlap of the TRIER echo with an echo that is created by the 
�∕2 and the second observer inversion pulse. Instead of adding an additional step to 
the already complex phase cycle [15] we opted for increasing �3 of the TRIER echo, 
which separates the two echoes. This strategy is similar to the one we used in five-
pulse DEER [36] and for dynamical decoupling with multipulse sequences [37].

3 � Data Processing

Compared to our introduction of TRIER [15], we improved data processing and 
added several more steps that allow us to obtain spectra with strongly improved res-
olution and distance correlation maps. In brief, we use the spectrum to find param-
eters for the Lorentz-to-Gauss transformation (see below) that give a good balance 
between reduced line width and the addition of noise [15]. The Lorentz-to-Gauss 
transformed time traces are then used to obtain distance correlation maps through 
2D-APT. We provide an overview of the data processing in form of a flowchart in 
the SI in Sect. 2.1.
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3.1 � Background Correction and Lorentz‑to‑Gauss Transformation

After the acquisition of echo transients for all time pairs t1 , t2 , each time trace was 
multiplied with a Gaussian that was fitted to the echo. The product was then inte-
grated—this corresponds to an observer bandwidth-matched filter and strongly 
improves the quality of the integration [38]. The integrated echo signals at all time 
pairs t1 , t2 now constitute a two-dimensional data set. All echoes that are not mod-
ulated along both indirect dimensions [15] (this also includes all DEER signals) 
are removed by background correction. As the background also contains contribu-
tions that stem from time-modulated DEER signals, a simultaneous fit along both 
dimensions is not feasible. Instead, the exponentially decaying background decay is 
removed sequentially: First, the fit along one dimension is subtracted from the sig-
nal, second, the background along the other dimension is fitted and subtracted. Best 
results were usually obtained when the dimension with the deeper modulation depth 
was corrected first.

After background removal, a Savitzky–Golay filter of high order [39, 40] is 
applied to the background corrected signal. The smoothed, two-dimensional time 
traces are then subjected to a Lorentz-to-Gauss transformation in both dimensions 
[15]. This is a crucial step and changes the line shape from Lorentzian to Gaussian, 
which reduces overlap and removes peak-like features in the spectra that stem from 
overlap. But, at the same time, Lorentz-to-Gauss transformation decreases the sig-
nal-to-noise ratio and it is important to find a balance between line width and noise 
before computing distance correlation maps.

3.2 � The TRIER Spectrum

TRIER spectra are expected to be reflection symmetric about the axes and the diago-
nals, but background correction and non-equivalent modulation depths introduce a 
(sometimes strong) asymmetry into the data. Hence, after two-dimensional Fourier 
transform (2D-FT), with the superscript T denoting the transpose, the matrix � of 
the asymmetric spectrum A(�1,�2) is symmetrized through geometric averaging

which is superior to arithmetic averaging and gives better artifact suppression. If at 
this point the signal-to-noise ratio in the spectrum is not satisfying, the quality of it 
can be improved by a procedure that can be described as “covariance filtering”. For 
this the symmetric covariance matrix � , based on the covariance map C(�2,�

�
2
) , 

needs to be obtained by mapping sets of one-dimensional spectra of one dimensions 
[41, 42], which are averaged over a time tmax

1
 along the other indirect dimension. A 

detailed discussion of covariance filtering and how to obtain the covariance matrix 
can be found in the SI in Sect. 2.2. Then, the spectrum is multiplied with the covari-
ance matrix:

(1)� =
√

��T

(2)�� = ��.
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This resembles the use of matched filters and not only increases the signal-to-noise 
ratio, but also removes spurious frequencies that stem from imperfect background 
correction.

The parameters of the Lorentz-to-Gauss transformation are manually adjusted 
until a good balance between added noise and reduced line width is achieved. As 
it is easier to see and verify the results from Lorentz-to-Gauss transformation in the 
spectrum, it has proven to be more efficient to use the spectrum for the optimization 
than the distance map. This optimization works quite well, since for narrow distribu-
tions the data is dominated by a single frequency perpendicular to the unique axis 
(horn of the Pake pattern). For broad distributions optimization works just as well 
because the Pake pattern is washed out. Covariance filtering is not applied in pro-
cessing that leads to distance correlation maps (see Fig. S3), but is merely used to 
improve the quality of the spectrum, since it is a frequency-domain filter.

3.3 � Two‑Dimensional Approximate Pake Transformation

The next step involves a transformation of the signal to the distance domain. For this 
the time-domain signal after optimized Lorentz-to-Gauss transformation is used. 
In the analysis of DEER data, one way to obtain distance distributions is through 
approximate Pake transformation (APT) [43], which is very fast and can be extended 
to a two-dimensional data set. The linear TRIER signal Vlin(t1, t2) is the product of a 
discrete distribution of combinations of dipolar frequencies P(�1,�2) and the kernel 
basis V(�1, t1,�2, t2):

To obtain P(�1,�2) , Eq. (3) must be inverted by an integral transformation which 
would require a memory-straining four-dimensional kernel function K(�1, t1,�2, t2) . 
But by recognizing and exploiting the separability of the problem, the basis in 
matrix form V4D factorizes into

where the basis function V2D is given by

assuming the angles � between the spin–spin vectors and the magnetic field are 
uncorrelated. This approximation is similar to neglect of orientation selection, which 
is often permissible for spin labels in proteins. For our rigid model compounds, the 
approximation is still reasonable, because of free rotation around the triple bonds 

(3)Vlin(t1, t2) = ∬ P(�1,�2)V(�1, t1,�2, t2) d�1 d�2.

(4)V4D = V2D ⊗ V2D,

(5)V2D(�, t) = ∫
�∕2

0

cos[(3 cos2(�) − 1)�t] sin(�) d�
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in the linker backbone and of the non-zero angle between the label arms. If this 
assumption holds, the kernel factorizes as

This significantly reduces the memory requirements for data processing. The kernel 
function is derived analytically

and should ideally fulfill the orthogonality condition

Here, f (t1, t2) = t1t2 is set in relation to a Bessel transformation [43] and the nor-
malization function c(�1,�2) is given by

The kernel is approximate in the sense that Eq.  (8) cannot be exactly fulfilled. 
The quality of the approximation can be quantified by the condition number of 
K(�1, t1,�2, t2) which is the ratio between the maximum and minimum singu-
lar value of K(�1, t1,�2, t2) . Inversion of Eq.  (3) yields the discrete frequency 
distribution

which is related to the true frequency distribution P(�1,�2) through

D(�1,�
�
1
,�2,�

�
2
) is the cross talk matrix, and accounts for the erroneous admixture 

of other frequency components at a given frequency [43]. Again, the four-dimen-
sional matrix D(�1,�

�
1
,�2,�

�
2
) can be obtained from its two-dimensional analogs

where i = 1, 2 , through

(6)K4D = K2D ⊗ K2D.

(7)K(�1, t1,�2, t2) = c(�1,�2)V(�1, t1,�2, t2)f (t1, t2)

(8)∬ V(�1, t1,�2, t2)K(�
�
1
, t1,�

�
2
, t2) dt1 dt2 = �(�1 − �

�
1
)�(�2 − �

�
2
).

(9)c(�1,�2) = ∬
(

V(�1, t1)V(�2, t2)
)2
t1t2 dt1 dt2.

(10)P(0)(�1,�2) = ∬
1

c(�1,�2)
V(�1, t1)S(t1, t2)V(�2, t2)t1t2 dt1 dt2

(11)D(�1,�
�
1
,�2,�

�
2
)P(��

1
,��

2
) = P(0)(�1,�2).

(12)d(�i,�
�
i
) =

1

∫ V(�i, ti)
2ti dti � V(�i, ti)V(�

�
i
, ti) dti

(13)D(𝜔1,𝜔
�
1
,𝜔2,𝜔

�
2
) =

1

c(𝜔1,𝜔2)
d(𝜔1,𝜔

�
1
)⊗ d(𝜔2,𝜔

�
2
).
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Computationally, the true frequency distribution can be obtained by solving the lin-
ear matrix problem

where � and �(�) and are the vectorized forms of the matrix representations � and 
�(�) of P(�1,�2) and P(0)(�1,�2) , respectively. This step would require the construc-
tion of a four-dimensional cross talk matrix � . However, by exploiting the relation

the linear problem can be expressed with the two dimensional cross talk matrices �

Such crosstalk correction amplifies noise contributions to an extent that increases 
with increasing condition number of K(�1, t1,�2, t2) . This is a consequence of the 
underlying problem being ill-posed [44–46]. After computation of the crosstalk-cor-
rected frequency distribution, the distance correlation map P(r1, r2) can be computed 
by mapping the frequencies in both dimensions to distances according to the relation

where �0∕2� = 52.04 MHz is the dipolar frequency at 1 nm for an electron with 
g = ge.

While the �1,�2 coordinates are linearly spaced, the ordinates created in this man-
ner in the distance domain are spaced proportionally to r−3 , which increases the noise 
at short distances dramatically [43]. This effect can be reduced by distance domain 
smoothing (DDS), which filters the distance distribution by convolution with a Gauss-
ian function of a certain width � , which will be referred to as DDS-parameter. This 
filter is constructed according to

and the smoothed distance correlation map is obtained through

where �1 and �2 correspond to the dipolar frequencies of the distances r1 and r2 . The 
selection of the DDS parameter is important. When chosen too large, peaks in the 
distributions are artificially broadened, and when chosen too small, broad peaks are 
artificially split into many narrow peaks. Loosely speaking, the effect of � is similar 
to a regularization parameter [44–46]. Usually, good distributions are obtained with 
values in the range 0.5 nm > 𝜎 > 0.01 nm.

(14)� = �⧵�(�),

(15)(�⊗ �)� = � → � = (�⧵�)∕�T

(16)� = (�⧵�(�))∕�T.

(17)r(�) =

(

2��0

�

)1∕3

,

(18)F(�1,�2, r1, r2) = exp

[

r(�1) − r1

�

r(�2) − r2

�

]

(19)P�(r1, r2) =
∬ F(�1,�2, r1, r2)P(r1, r2) d�1 d�2

∬ F(�1,�2, r1, r2) d�1 d�2

,
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To keep a constant integral the maps were normalized according to [43]:

Just like the spectrum, the such obtained distance correlation maps suffer from the 
asymmetry of the TRIER signal as well, and are hence symmetrized to yield the 
final distance correlation map

3.4 � Comment on 2D Tikhonov Regularization

Tikhonov regularization has become the most widely applied approach to computing 
distance distributions from DEER data [44, 46–48]. Therein, a regularization param-
eter � is fixed according to the L-curve method [45, 49], which finds a balance between 
under- and over smoothing. We tried to extend the currently existing one-dimensional 
Tikhonov regularization to the two-dimensional problem at hand. However, as previ-
ously reported for other applications [48, 50, 51], the selection of a single regulariza-
tion parameter for a two-dimensional distribution led to wrong results. Note also that 
determination of the regularization parameter � from the L-curve is not necessarily 
optimal for DEER as has been found recently [52].

4 � Materials and Methods

4.1 � EPR Spectrometer

All experiments were performed at 50 K on a home-built high-power EPR spectrom-
eter with arbitrary waveform excitation capability [16, 35, 53] at Q-band frequencies 
around 34 GHz. Pulse sequences were generated by an AWG with built-in sequencer 
(Agilent/Keysight M8190A operated at a sampling rate of 8 GSa/s) and up-converted to 
Q band by a 33 GHz local oscillator. The same local oscillator was used to down-con-
vert signals to frequencies around 1.5 GHz, with subsequent acquisition with a 2 GSa/s 
digitizer (SP Devices ADQ412) via subsampling. The pulses, which were amplified by 
a 200 W traveling wavetube amplifier (Applied Systems Engineering TWT 187 Ka), 
were fed into an overcoupled home-built pent loop-gap resonator for 1.6 mm tubes with 
a loaded quality factor QL = 100 described in [54]. The spectrometer was controlled 
by home-written MATLAB scripts. The magnetic field was always chosen such that 
the nitroxide spectrum was centered around the maximum of the resonator response 
mode, providing reasonable microwave field amplitudes for all excitation frequencies. 
The spectrometer was operated continuously between 4 hours and 9 days and we did 
not encounter instabilities of temperature or microwave frequency and phase. With 
respect to stability, new-generation spectrometers with a fixed-frequency microwave 

(20)P��(r1, r2) =
P�(r1, r2)

r4
1
r4
2

.

(21)� =
√

������T.
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local oscillator, a fast AWG, and a robust very broadband resonator may be favorable 
compared to spectrometers with a frequency-controllable Gunn diode.

4.2 � DEER Measurements

Four-pulse DEER dipolar spectra were measured with the standard pulse sequence 
(�∕2)�obs − �1 − (�)�obs − t� − (�)�pump

− (�1 + �2 − t�) − (�)�obs − �2−echo [4]. 
Observer frequencies �obs were between 34 and 34.5 GHz and �obs − �pump = 0.1 GHz. 
The observer was set to the maximum of the field-swept echo-detected EPR spec-
trum of the nitroxide and to the center of the resonator dip. All pulses had a length 
of 16 ns. The value of the delay �1 was 680 ns. A phase cycle [+(+x) − (−x)] was 
applied to the �∕2 observer pulse to cancel receiver offset. The dipolar modulation 
time t = t� − �1 was varied between − 120 ns and 4480 ns using an interpulse delay 
�2 = 4500 ns. The data were background corrected and Fourier transformed in Deer-
Analysis2016. The “ghost suppression” feature of DeerAnalysis was used to reduce 
contributions of combination frequencies.

4.3 � TRIER Measurements

With the information from DEER, timings of the TRIER sequence were adapted 
to suit each sample optimally. Hence, only a general description of the pulses and 
timings is provided here. Detailed sample specific experimental conditions can be 
found in Sect. 3 of the SI.

Over the width of the nitroxide spectrum the amplitude response of the resonator 
varies significantly. By measuring the resonator profile beforehand, all pulses were 
compensated for this frequency dependence, which provided a constant adiabaticity 
over the entire excitation range of each pulse [16, 17].

4.3.1 � Observer Subsequence

We used chirp pulses for the detection subsequence (gray in Fig. 1). While Gaussian 
pulses have the advantage that all the pulses can have the same pulse length, chirps 
require the last refocusing pulse to be half the length of the previous pulses. Only 
this ensures proper refocusing of the echo [35]. The amplitudes of all pulses were 
optimized separately for maximum echo integral. The �∕2 and the first two � pulses 
had a length of 100 ns. The third � pulse had a length of 50 ns. All chirps had a 
bandwidth of 25 MHz and tails were smoothed with a quarter sine of variable length 
trise that was optimized to provide smooth excitation profiles.

The center frequency of the observer pulses was approximately − 50 MHz from 
the maximum of the spectrum. The interpulse delays were set to �1 = 400  ns and 
�3 = 900 ns. With the information obtained from the DEER spectra, �2 was set sam-
ple specific and fell in the range of 2500–3900  ns. A phase cycle [+(+x) − (−x)] 
was applied to the �∕2 and [+(+x) + (+y) + (−x) + (−y)] to the second and third 
observer pulses.
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4.3.2 � Pump Pulses

For the pump pulses (blue and orange in Fig.  1), asymmetric HS pulses with a 
length of 100 ns and a bandwidth of 60 MHz were used. The center frequency of 
the first pump pulse was approximately − 100 MHz from the center frequency of 
the observer pulses and the sweep was performed from low to high frequencies. The 
initial delay of the first pump pulse was 200 ns after the beginning of the second 
observer pulse and in consecutive experiments it was stepped with a sample-depend-
ent increment that was chosen such that it fulfilled the Nyquist criterion for all dis-
tances visible in the DEER data.

The second pump pulse was positioned such that its center frequency was approx-
imately + 100 MHz from the center frequency of the observer pulses. In contrast 
to the first pump pulse, the second pump pulse was swept in the opposite direction, 
from high to low frequencies. The initial delay between the end of the pump pulse 
and the beginning of the last observer pulse was 200 ns. In consecutive experiments, 
the second pump pulse was moved towards the third observer pulse with the same 
increment as the first pump pulse.

While the order of both HS pulses was 6 for the first half of the pulse, it was set to 
a lower value (usually between 1 and 4) for the second half to provide a steeper exci-
tation profile in the frequency domain. The apodization parameter was 10 for both 
sides of the pulses. The pulse amplitudes were optimized to provide a clean echo, 
which, after incorporation of the resonator profile, resulted in critical adiabaticities 
[35] of about Qcrit ≈ 8.

5 � Sample Preparation

We measured TRIER experiments with three triradical model compounds and two 
triply-labeled proteins. All samples were measured in clear fused quartz capillaries 
(Wilmad LabGlass) with an outer diameter of 1.6 mm.

5.1 � Model Compounds

The model compounds were identical to the ones used previously [15]. All triradi-
cals were dissolved in perdeuterated o-terphenyl-d14 (dOTP) that was synthesized 
according to a published standard procedure [55] and kindly provided by Herbert 
Zimmermann. The chemical structures are depicted in Fig. 2.

The triradical T����������� is of equilateral geometry and we used a concentration 
of 120 μ M in dOTP. The synthesis of T����������� is described in [11]. As a triradical, 
where the nitroxides are arranged in isosceles geometry, we used T��������� of which 
a detailed synthesis is given in [11]. The sample had a concentration of 240 μ M in 
dOTP. In T������� the nitroxides form a scalene triangle. For T������� we used a con-
centration of 100 μ M in dOTP.

The synthesis of T������� is described in Sect. 5.2.
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Just prior to measurement, probes were melted with a heat gun set to 90 ◦ C and 
shock frozen by quick immersion in liquid nitrogen to provide a homogeneous 
glassy solid.

5.2 � Synthesis of Model Compound with Scalene Geometry

The synthesis of T������� is shown in Fig. 3.
The scaffold was built up and the three isoindoline moieties were connected 

through Sonogashira–Hagihara cross coupling reactions. The last step was the oxi-
dation of the isoindoline moieties to N-oxylisoindoline moieties. The attempt to 
attach a spacer unit similar to the building block 3, however, already coupled with 
the isoindolineimide moiety instead of having the alkyne protecting group CH2OH, 
failed due to the low reactivity of bromoisoindoline for the cross coupling with 
alkynes and the incompatibility of the imide moiety with primary amines. A detailed 
discussion of the synthesis can be found in Sect. 5 of the SI.
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Fig. 3   Synthesis of T�������
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5.3 � RRM1 of PTBP1 and Rpo4/7 as Protein Model Systems

5.3.1 � Protein Expression and Purification

Two soluble proteins that are well-characterized by X-ray structure analysis [56, 
57], NMR [58] and EPR spectroscopy [59–61] served as application model systems 
for TRIER: the heat-stable complex of subunits Rpo4 and Rpo7 (also known as F 
and E, respectively) of the archeal RNA polymerase of M. jannaschii [57, 62] and 
the isolated RNA recognition motif 1 (RRM1) of the alternative splicing regulator 
polypyrimidine-tract binding protein 1 (PTBP1) [59, 60]. The labeling sites for the 
Rpo4/7 complex (Rpo4: C36, G63C; Rpo7: V49C) were selected from a larger set 
of sites reported in [61], where all pairwise distances from DEER experiments have 
been measured.

The three labeling positions in RRM1 (T71C/L80C/T109C) were chosen to lie in 
solvent exposed surfaces of �-helical regions.

The two subunits, Rpo4 and Rpo7, of the Rpo4/7 complex were individually 
over-expressed in Escherichia coli (E. coli) following the established protocols [61, 
62]. A more detailed description of the purification of both constructs can be found 
in the SI in Sect. 1.

RRM1, encoding an N-terminal chitin binding domain as affinity tag, was over-
expressed in E. coli and afterwards purified by affinity and size-exclusion chroma-
tography following previously published protocols [59, 60].

Protein concentrations were determined with a NanoDrop Spectrophotometer 
ND-1000 (Witec AG) using the theoretical calculated extinction coefficients [63] of 
� = 29.34 L mmol−1 cm−1 for Rpo4/7 and � = 4.47 L mmol−1 cm−1 for RRM1.

5.3.2 � Site‑Directed Spin Labeling and Sample Preparation

Rpo4/7 was spin labeled after complex formation of the two subunits with tenfold 
molar excess of MTSSL ((1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)meth-
anethiosulfonate, Toronto Research Chemicals) over cysteine at a protein concen-
tration of 10 μ M. Unreacted spin label was washed out by repeated concentration 
and re-dilution in a 10 kDa MWCO centrifugal concentrator (Vivaspin-500, 10 kDa 
MWCO, Sigma-Aldrich). Removal of the free label and spin label attachment was 
checked by CW EPR spectroscopy.

The final protein sample was lyophilised, resuspended in a D 2O/d8-glycerol mix-
ture (1:1 by volume) and transferred into the sample tube.

The triple cysteine version of RRM1 (T71C/L80C/T109C) was diluted to a con-
centration of 40 μ M and site-directed spin labeling (SDSL) was performed with 
tenfold molar excess of MTSSL. After incubation over night at room temperature, 
unattached spin label was removed by PD10 desalting columns (GE Healthcare 
LifeScience) and RRM1 was concentrated to 180 μ M. Spin label attachment was 
proven by continuous-wave EPR (CW EPR) spectroscopy at X-band (9.5 GHz) at 
room temperature (see SI for detailed description). Finally, RRM1 was diluted 1:1 
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with d 8-glycerol (Sigma Aldrich) and 10 μ L of the solution was transferred into to 
the quartz capillary.

6 � Experimental Results and Discussion

A summary of the timings and pulse parameters that were used for each sample can 
be found in the SI in Sect. 3. Before measuring TRIER spectra we acquired DEER 
traces. Based on the DEER data we selected appropriate TRIER timings, such as 
the time steps Δt1,Δt2 and the maximum observation time max(t1), max(t2) in the 
two indirect dimensions. Challenges presented itself for samples that contained very 
short and rather long distances. This situation requires long time traces that are sam-
pled with a short time step, which requires prolonged measurement times. For the 
model compounds measurement times were between 24–72  h and for the protein 
samples up to around 200 h. We expect to reduce measurement time in the future by 
introducing non-uniform sampling to TRIER.

After acquisition of the time traces, we usually first optimized our data-processing 
(background correction and Lorentz-to-Gauss transformation) until peaks were well 
separated in the frequency domain. Only then the 2D-APT algorithm was run. As it 
is easier to see the results from the Lorentz-to-Gauss transformation in the spectrum, 
this has proven to be more efficient than immediately optimizing the distance map. 
Distance correlation maps usually show more details (such as shoulders) than the 
spectra and offer the advantage of more intuitive units. All of our two dimensional 
TRIER plots (spectra and distance correlation maps) feature projections plots. For 
display, the DEER distance distributions were superimposed onto the sum projec-
tions of the TRIER distance correlation maps after normalization to their maximum 
amplitude.

In powdered solids the dipole-dipole coupling usually leads to the characteristic 
Pake doublet. However, our projections do not show fully resolved Pake patterns. 
This is due to our processing which emphasized the peaks of the Pake patterns (see 
Sect. 3.2). It can also be seen in Fig. 6 of Ref. [11] that the angular backbone geom-
etry compared to the straight one leads to a broadened distance distribution already 
in a biradical and that no classical Pake pattern is observed for this geometry.

Many of the TRIER distance projection plots appear to resolve distances better 
than the DEER distance distributions they are compared to. Note that all DEER data 
was measured up to the time where the dipolar oscillations had fully decayed and a 
significant section of clean background was present. Hence, the seemingly narrower 
distributions in TRIER are a result of the data processing and distance distributions 
in TRIER sum projections are not as reliable as the ones obtained from DEER.
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6.1 � Comments on the Interpretation of TRIER Spectra and Distance Correlation 
Maps

If all three spin labels are of the same type, the TRIER spectrum is expected to be 
symmetric with respect to the axes and each quadrant contains the complete correla-
tion pattern. When describing the spectra, we, therefore, limit our discussion to the 
first quadrant. We start each of our discussions with the spectrum and then move on 
to the distance correlation map.

The TRIER experiment correlates distances between spin labels that are in the 
same molecule. Ideally, the two-dimensional background correction removes any 
signals that are not modulated along both dimensions (this includes all DEER sig-
nals, see discussion on TRIER pathways in [15]). Combination frequencies as they 
arise from the multi-spin contribution in DEER (ghost peaks), have no equivalent 
in TRIER with three spin labels, as this would require one pump pulse to excite two 
spins, and at the same time the other pump pulse has to excite one spin as well. This 
is not possible with only three unpaired electrons. Ghost peaks can appear in mol-
ecules that contain four or more electron spins, but the discussion of this is beyond 
the scope of this paper.

We also want to point out that the peaks on the diagonal in the spectra and the 
distance correlation maps are usually not autocorrelation peaks. They are in fact 
cross-correlation peaks between two distances that just happen to have the same 
length. If the TRIER experiment is set up correctly, autocorrelation peaks, where 
a distance is correlated with itself, are not or only weakly present as they can only 
arise if the excitation bands of the pump pulses overlap. When measuring a triradi-
cal, the intensity of auto-correlation peaks was negligible compared to the intensity 
of the cross peaks [15]. However, pulse overlap in combination with a background 
correction that does not completely remove DEER signals, can lead to the appear-
ance of diagonal peaks, even for diradicals (where no TRIER peaks are present). 
Therefore, we investigated a mixture of diradicals: the distance correlation map 
showed two peaks along the diagonal that corresponded to the autocorrelation, but 
no off-diagonal peaks were observed (data not shown). In combination with DEER 
data this still allows to discriminate between a mixture of diradicals and a triradical.

On the processing side, we observed a general trend of the 2D-APT in combina-
tion with our background correction to create artifact diagonal peaks for the longest 
distance that is present. This problem needs to be addressed in future work.

6.2 � Equilateral Geometry

In T����������� all three distances between the nitroxides are equal if bending of 
the spacer is neglected and are, according to structure simulations with Chem3D 
(PerkinElmer Informatics), expected to be rsim = 4.2 nm. This corresponds to a 
dipolar frequency of �sim∕2� = 0.70 MHz. Since only one distance is present, only 
one correlation peak is expected per quadrant in the TRIER spectrum (Fig. 4a) at 
(0.7 MHz/0.7 MHz).
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The experimentally observed dipolar frequency �exp∕2� = 0.6 MHz is slightly 
smaller than the expected �sim . Compared to the previously recorded spectrum [15], 
we were able to reduce the line width with the improved processing algorithm. With 
2D-APT a distance correlation map can be obtained that shows, as expected, only 
one correlation peak at (4.1 nm/4.1 nm).

6.3 � Isosceles Geometry

In T��������� the nitroxides form an isosceles triangle and two different distances 
rref
A

= 3.9 nm and rref
B

= rref
C

= 3.2 nm are present [15]. This corresponds to the dipo-
lar frequencies �ref

A
∕2� = 0.88 MHz and �ref

B
∕2� = �ref

C
∕2� = 1.59 MHz. A total 

of three correlation peaks can be expected: Two peaks represent the correlations 
between rA and rB and are expected at ( �A∕�B ) and ( �B∕�A ). As rB and rC have the 

Fig. 4   Experimental a TRIER 
spectrum and b distance cor-
relation map of T����������� . The 
trinitroxide is of equilateral 
geometry and, therefore, only 
one correlation peak is present 
in each quadrant of the spectrum 
and of the distance correlation 
map. The TRIER projections 
in b are shown in blue and the 
DEER distance distribution in 
orange (color figure online)
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same length, these peaks coincide with the correlation of rA and rC , which gives rise 
to peaks at ( �A∕�C ) ( �C∕�A ). The third correlation peak is expected to fall on the 
diagonal, since ( �B∕�C ) and ( �C∕�B ) connect two distances with the same length.

The experimentally observed dipolar frequencies in Fig.  5 are �exp

A
∕2� = 0.9 

MHz and �exp

B
∕2� = �

exp

C
∕2� = 1.4 MHz, and match the expected frequencies 

quite well. Though the difference between �A on the one hand and �B , �C on 
the other hand is rather small, all peaks are resolved. A closer look at the spec-
trum appears to reveal a peak at (0.9  MHz/0.9  MHz) or ( �A∕�A ). This is an 
artifact that stems from overlap between the peaks at (0.9  MHz/1.4  MHz) and 
(1.4 MHz/0.9 MHz), and could be reduced by a stronger Lorentz-to-Gauss trans-
formation, which would decrease the signal-to-noise ratio [15]. Overlap of the 
off-diagonal peaks also explains the stronger intensity of the diagonal peak at 
(1.4 MHz/1.4 MHz). Compared to the previously published spectrum of T��������� 
in [15], the improved data processing enabled us to well resolve the three peaks 
and remove most of the artifact at (�A∕�A).

Fig. 5   Experimental a TRIER 
spectrum and b distance correla-
tion map of T��������� . The trini-
troxide is of isosceles geometry 
which leads to three correlation 
peaks. The TRIER projections 
in b are shown in blue and the 
DEER distance distribution in 
orange (color figure online)
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For the distance correlation map, three peaks are expected as well: Two 
peaks that are mirrored along the diagonal at ( rA∕rB),(rA∕rC ) and ( rB∕rA ), 
( rC∕rA ) and a peak at ( rB∕rC ), ( rC∕rB ). As predicted, the distance correlation 
map (Fig. 5b) shows three peaks at (3.20 nm/3.75 nm), (3.75 nm/3.20 nm) and 
(3.15  nm/3.15  nm), which fits the expected distances. For reasons currently 
unknown to us, the diagonal peak appears at a slightly shorter distance than one 
would expect from the off-diagonal peaks.

According to the discussion about the absence of autocorrelation peaks (Sect. 6.2) 
and under the assumption that all distances have similarly wide distribution, all 
peaks in the distance correlation map are expected to have the same intensity as 
they all correspond to two correlation peaks each. The intensities of the peaks in the 
projection plot fit the DEER data (Fig. 6 in SI) and reveal the double presence of the 
shorter distance.

6.4 � Scalene Geometry

In T������� the nitroxides compose a scalene triangle, resulting in three different dis-
tances and a total of six expected correlation peaks. According to geometric struc-
ture simulation with Chem3D, the distances are about rsim

1
= 1.9 nm, rsim

2
= 2.2 nm 

and rsim
3

= 3.4  nm, with their respective dipolar frequencies being �sim
A

∕2� = 7.5

MHz, �sim
B

∕2� = 4.9 MHz and �sim
C

∕2� = 1.3 MHz. In this system, the short dis-
tances highlight one of the current challenges of TRIER: To be properly recorded, 
the high frequencies require a smaller time step in both indirect dimensions which 
strongly impacts acquisition time. This is particularly problematic in combination 
with long distances (low frequencies), which in turn require long time traces. Detec-
tion of the contribution from the short distances is additionally complicated by the 
fact that the width of the Pake pattern scales with r−3 and thus the amplitude scales 
with r3 [64]. In particular, detection of correlations between two short distances 
requires a very-high signal-to-noise ratio. In such a situation, Lorentz-to-Gauss 
transform has to be applied carefully: though it can separate the correlation peaks at 
small frequencies, the increase of noise in the spectrum can lead to correlation peaks 
from the short distances dropping beneath the noise level.

Using improved data processing we were able to improve the quality of the 
TRIER spectrum of T������� compared to the previously published one [15], where 
the spectrum had a strong cross shape, lacking all correlations between �A and 
�B . From the projection plots in Fig.  6a, we obtained the experimental dipolar 
frequencies �exp

A
∕2� = 8.1 MHz, �exp

B
∕2� = 4.0 MHz and �exp

C
∕2� = 1.7 MHz. 

The discrepancy between the simulated values and the observed dipolar frequen-
cies is attributed to the inaccuracy of the simulation in combination with the r−3 
dependency of the dipolar frequency, which lets small changes in the distance 
have a big impact on the frequency. The spectrum shows the correlation of rA with 
rB at (8.2  MHz/4.1  MHz) and (4.1  MHz/8.2  MHz). The correlation of rA with rC 
is revealed through the peaks at (8.2  MHz/1.7  MHz) and (1.7  MHz/8.2  MHz) 
and the connection between rB and rC is revealed in the slightly broader peaks at 
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(1.7  MHz/4.0  MHz) and (4.0  MHz/1.7  MHz). The spectrum also shows an addi-
tional peak at (1.5  MHz/1.5  MHz) which we assign to imperfect background 
correction.

The distance correlation map (Fig.  6b) reveals the scalene geometry of T������� 
more clearly: Correlation of rA with rB can be seen from the peak at (2.1 nm/2.3 nm), 
(2.3 nm/2.1 nm) and with rC at (2.1 nm/3.3 nm), (3.2 nm/2.1 nm). The correlation 
peak of rB with rC is at (2.3  nm/3.3  nm), (3.2  nm/2.3  nm). All correlation peaks 
involving rB show a shoulder that was not visible in the spectrum, but is in agreement 
with DEER data (orange in Fig. 6b). The peaks on the diagonal at (2.1 nm/2.1 nm), 
(2.3 nm/2.3 nm) appear to arise from overlap of the neighboring off-diagonal peaks 
The artifact at (3.2 nm/3.2 nm) corresponds to the strong peaks that are visible in the 
spectrum at (1.5 MHz/1.5 MHz) and arises from imperfect background correction.

Fig. 6   Experimental a TRIER 
spectrum and b distance cor-
relation map of T������� . The 
TRIER projections in b are 
shown in blue and the DEER 
distance distribution in orange. 
The trinitroxide is of scalene 
geometry and has six correla-
tion peaks. The diagonal peaks 
at (1.2 MHz/1.2 MHz) in a and 
(3.3 nm/3.3 nm) in b come from 
imperfect background correction 
in combination with the 2D 
APT algorithm (color figure 
online)
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6.5 � Rpo4/7

After obtaining distance correlation maps with model compounds, we extended 
our scope to systems that are more typical for the main current application 
field of DEER. With the open-source toolbox MMM (Multiscale Modeling of 

Fig. 7   a MMM simulation of 
the interspin distances based 
on the PDB structure 1GO3, 
experimental b TRIER spectrum 
and c distance correlation map 
of Rpo4/7. The TRIER projec-
tions in c are shown in blue and 
the DEER distance distribution 
in orange (color figure online)
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Macromolecules) [65] we simulated interspin distances for the mutant of the Rpo4/7 
complex (see Fig. 7a). The chosen set of mutation positions consists of two over-
lapping distance distributions in the range of 2.8–3.3 nm ( rA , red and rB , blue) and 
4.2–4.4 nm ( rC , yellow). With this we expect the dipolar frequencies to be approxi-
mately �sim

A
∕2� = �sim

B
∕2� = 1.8 MHz and �sim

C
∕2� = 0.4 MHz, resembling the sit-

uation of T��������� (Sect. 6.3). However, rB shows a strong shoulder at rshoulder
B

= 3.3 
nm ( �shoulder

B
∕2� = 1.4 MHz) that does not overlap with rA and additional peaks 

or a splitting of the peaks can be expected. Indeed, the spectrum (Fig.   7a) shows 
a strong peak at (1.8  MHz/1.8  MHz) which corresponds to the correlation of the 
two shorter distances rA and rB . The broad peak at (1.8 MHz/1.8 MHz) appears to 
have shoulders at around (1.8  MHz/1.2  MHz) and (1.2  MHz/1.8  MHz), which fit 
the expected correlation of the shoulder of rshoulder

B
 with rA . The two coinciding cor-

relations of rA with rC and rB with rC can be discerned at (0.5 MHz/1.8 MHz) and 
(1.8 MHz/0.5 MHz). A small shoulder appears to be visible at (0.5 MHz/1.2 MHz) 
and (1.2 MHz/0.5 MHz).

Interpretation of the correlation pattern is simplified in the distance-correlation 
map (Fig.  7b). A broad feature is at (3.0 nm/3.0 nm) which corresponds to the 
correlation of rA with rB . Correlation of rshoulder

B
 with rA cannot be discerned as a 

peak. The peaks at (4.6 nm/3 nm) and (3 nm/4.6 nm) stem from correlation of rA 
with rC as well as rB with rC The correlation of rshoulder

B
 with rC is clearly visible at 

(4.7 nm/3.5 nm) and (3.5 nm/4.7 nm). The peak at (4.7 nm/4.7 nm) is an artifact 
from 2D-APT (Sect. 6.1).

6.6 � RRM1 of PTBP1

MMM simulations (Fig. 8a) for the RRM1 domain show three distinct distance dis-
tributions with maxima rsim

A
= 2  nm ( �sim

A
∕2� = 7.0MHz, orange), rsim

B
= 2.3 nm 

( �sim
B

∕2� = 4.3 MHz, blue) and rsim
C

= 3.5 nm ( �sim
C

∕2� = 1.2 MHz, yellow). 
The TRIER spectrum (Fig.   8b) shows correlation peaks at (1.5  MHz/4.5  MHz), 
(4.5 MHz/1.5 MHz) and at (4.5 MHz/4.5 MHz). All of the peaks show some split-
ting, as the two shorter distances do not fully overlap. Hence, RRM1 is similar to 
T������� , but with a larger difference between the short and the long distances. The 
peak like feature at (1.5 MHz/1.5 MHz) is an artifact from background correction.

The distance correlation map (Fig.  8c) shows the expected picture: The strong 
feature between 2–2.5 nm is in agreement with the correlation pattern of the two 
partially overlapping distributions rA and rB . The correlation peaks of rA with rC are 
visible at (2 nm/3.5 nm) and (3.5 nm/2 nm) and between rB and rC at (2.7 nm/3.5 nm) 
and (3.5 nm/2.7 nm). The peak at (3.5 nm/3.5 nm) once again is an artifact from 
imperfect background correction.
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7 � Conclusion

Improvements in the TRIER pulse sequence and, in particular, in data processing 
enabled us to obtain much better resolved spectra of trinitroxide model compounds 
than in the original paper on TRIER [15]. Using two-dimensional APT we are now 
able to obtain the first two-dimensional distance correlation maps from the TRIER 

Fig. 8   a MMM simulation of 
the interspin distances based 
on the PDB structure 2N3O, 
experimental b TRIER spectrum 
and c distance correlation map 
of the RRM1 domain of PTBP1. 
The TRIER projections in c are 
shown in blue and the DEER 
distance distribution in orange 
(color figure online)
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time-domain data. We showed that such correlation maps can not only be obtained 
for well-defined model compounds, but also for biological, relevant systems that are 
currently under investigation.

Nonetheless, application of TRIER in structural biology as a routine approach 
still poses significant challenges: proper setting of experimental (such as the time 
step and trace lengths) and processing parameters (Lorentz-to-Gauss transformation) 
require previous knowledge about what distances are to be expected. This infor-
mation can generally be obtained through DEER measurements and, in our case, 
could also be predicted by MMM simulations. We recommend to use TRIER as a 
complement to DEER rather than a stand-alone technique. In systems that contain 
a distribution of distances that reach from short to long, the required experimental 
parameters can lead to long acquisition times up to 200 h for proteins even on a new 
generation AWG-based high-power Q-band spectrometer. A third problem arises 
from the fact that the amplitude of the Pake patterns scales with r3 , meaning that 
correlation peaks with a short distance have a reduced intensity. This effect is par-
ticularly strong for correlations of two short distances, which can make them hard to 
detect and require long measurement times. One more issue is that in some cases the 
current implementation of background correction and data processing produces an 
artifact autocorrelation peak for the longest distance, which can lead to misinterpre-
tation of the TRIER data.

We envision TRIER as an extension to DEER, where it can be useful in several 
cases: It can be used to distinguish between a mixture of two diradicals and a triradi-
cal. Only in the latter case we observe a TRIER signal with off-diagonal peaks. In 
the second scenario, TRIER can also be used to accurately probe the distance in 
a triradical, where the spin labels form an equilateral triangle. In such a case the 
DEER distance distribution suffers from sum and difference combination frequen-
cies (ghost distances, [13]), which, at the cost of longer measurement times, are not 
present in the distance correlation maps.

In a third scenario, TRIER can aid interpretation of DEER distance distributions 
for macromolecules that exist in more than one conformation. In this case, distance 
correlation maps can be used to assign DEER distances that belong to the same 
molecule.

In follow-up work we expect to improve our experimental parameters to speed 
up the acquisition process, for example through non-uniform sampling. For data 
processing, we plan to implement stable regularization algorithms, such as gradi-
ent projection [66, 67], which is better suited for larger-scale problems. This should 
provide better resolved distance correlation maps and reduce the impact of artifact 
diagonal peaks at long distances. Future investigations will also involve compounds 
with different types of spin labels (such as nitroxide, gadolinium, copper and trityl). 
In this case, each spin label type can be assigned a role (observer, first pump, second 
pump). Since the spectra are well separated, complete elimination of overlap should 
be possible, which would increase the intensity of the echo and hence sensitivity. 
Not only would this allow larger fractions of spins to be excited, but also with better 
excitation selectivity, the contribution from pathways that lead to modulation in only 
one dimension could be reduced and the modulation depth for TRIER increased. On 
top of this, working with a combination of different spin labels has the benefit that 
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it reduces the number of peaks in the spectrum which in turn facilitates assignment 
and interpretation, especially in cases where two or more conformations are present.
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