Available offille at www.sciencedirect.com

provided by Publications at Bielefeld Univers

Plant Biology

ScienceDirect

Understanding metabolite transport and metabolism in C₄ plants through RNA-seq

Urte Schlüter¹, Alisandra K Denton² and Andrea Bräutigam^{1,3}

RNA-seg, the measurement of steady-state RNA levels by next generation sequencing, has enabled quantitative transcriptome analyses of complex traits in many species without requiring the parallel sequencing of their genomes. The complex trait of C₄ photosynthesis, which increases photosynthetic efficiency via a biochemical pump that concentrates CO2 around RubisCO, has evolved convergently multiple times. Due to these interesting properties, C₄ photosynthesis has been analyzed in a series of comparative RNA-seq projects. These projects compared both species with and without the C₄ trait and different tissues or organs within a C₄ plant. The RNA-seg studies were evaluated by comparing to earlier single gene studies. The studies confirmed the marked changes expected for C₄ signature genes, but also revealed numerous new players in C₄ metabolism showing that the C₄ cycle is more complex than previously thought, and suggesting modes of integration into the underlying C₃ metabolism.

Addresses

¹ Institute of Plant Biochemistry and Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany

² Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany

Corresponding author: Bräutigam, Andrea (braeutigam@ipk-gatersleben.de)

³ Present address: Network Analysis and Modeling Group, IPK Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany.

Current Opinion in Plant Biology 2016, 31:83-90

This review comes from a themed issue on **Physiology and metabolism**

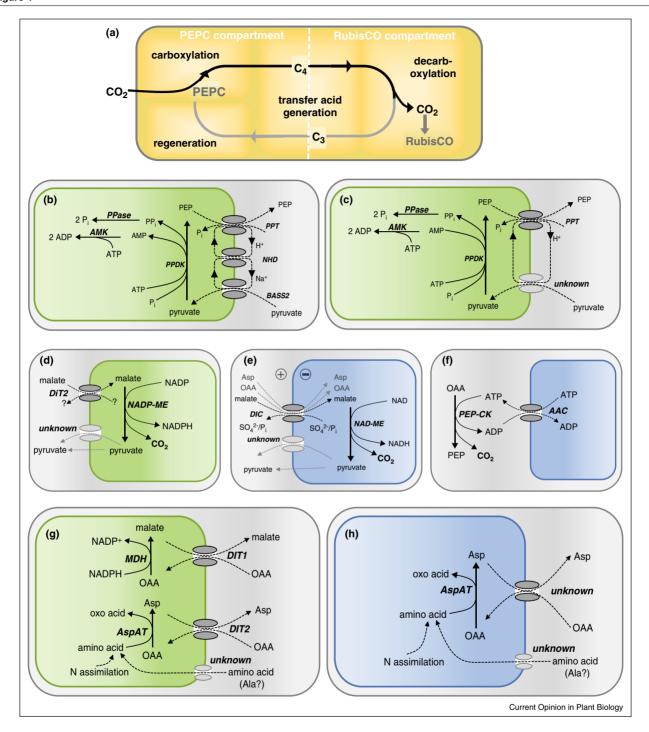
Edited by Robert T Furbank and Rowan F Sage

For a complete overview see the Issue and the Editorial

Available online 12th April 2016

http://dx.doi.org/10.1016/j.pbi.2016.03.007

1369-5266/© 2016 Elsevier Ltd. All rights reserved.


Introduction

The complex trait of C_4 photosynthesis requires numerous intra-cellular and inter-cellular transport processes [1,2]. Species which have evolved the trait supercharge photosynthesis by pre-fixing CO_2 through phosphoenol-pyruvate carboxylase (PEPC) in the mesophyll, transport of C_4 metabolites to the bundle sheath, and decarboxylating and enriching CO_2 at the site of RubisCO. The higher affinity of PEPC for CO_2 compared to RubisCO

lowers the CO_2 compensation point of the plants. This allows C_4 plants to thrive in environments that are carbon limited, that is, environments with high light, high temperature, and low or seasonal water availability [3].

By comparing sister species with and without the trait on a global scale, RNA-seq can identify trait-related differences in transcript abundance. The global perspective, which tests all genes at the same time, identifies both changes that are expected based on previously published data (i.e. enzyme assays or Western Blots; summarized in [4]) and changes that are not anticipated. Unlike the targeted approaches that existed before, RNA-seq is not limited to measuring abundance of known or expected transcripts. The downside is that any changes happening after transcript abundance such as translation efficiency, protein stability and modification are invisible to the approach. The initial comparative RNA-seq paper found that the abundance of all known C₄ cycle transcripts except malate dehydrogenase is indeed increased in the C₄ plant compared to a closely related C₃ plant [5^{**}]. This indicates that the complex trait C₄ photosynthesis is traceable at the transcript abundance level [5^{**}]. After the initial comparison in the genus *Cleomaceae* [5^{**}], the C_4 trait has also been traced in the *Flaveriaceae* [6,7], the (X = 9) Panicoideae [8], and in comparison of grass species with wider phylogenetic spacing, rice (Ehrhartoideae) vs Echinocloa (X = 9 Panicoideae) [9°] and rice (Ehrhartoideae) vs maize (Andropogonae) [10].

C₄ photosynthesis is a complex trait which consists of changes in cellular and leaf tissue architecture, changes in regulation, and changes in metabolism. The metabolic aspect of the trait can be deconstructed in the C₄ cycle itself consisting of carboxylation, transfer acid generation, decarboxylation and regeneration modules and their integration in the underlying leaf metabolism which presumably resembles that of non-C₄ plants (Figure 1, Table 1). Originally, three types of C₄ cycles were recognized, the NADP-malic enzyme (NADP-ME), the NADmalic enzyme (NAD-ME) and the phospho*enol*pyruvate (PEP) carboxykinase (PEP-CK) type [4] and they were named according to the presence of decarboxylation enzymes [4]. This simplistic view was theoretically questioned [11] at the same time as multiple lines of evidence showed a more complex cycle than previously envisioned [12–14]. As the C_4 cycle changes with developmental status [13] and possibly also with biotic and abiotic conditions [11], it seems prudent to no longer focus on historical prototypes but to describe the cycle as a series

C₄ metabolism is carried out by a combination of carboxylation, transfer acid generation, decarboxylation and regeneration modules. (a) Contribution of different modules to C₄ metabolism; (b, c) regeneration of PEP by the plastidic enzyme PPDK in the mesophyll, transport of the reaction product is performed by PPT, the import of pyruvate can be mediated by sodium coupled BASS2/NHD system (b) or by an unknown pyruvate transporter in the Andropogonae (c); (d)–(f) decarboxylation of the transfer metabolite in the bundle sheath, NADP-ME decarboxylation (d) is localized in the chloroplast with DiT2 a likely malate importer candidate in maize and the pyruvate exporter unknown (d); NAD-ME decarboxylation takes place in the mitochondria, import of malate is predicted to be carried out by the DIC translocator, the pyruvate exporter is unknown (e), Decarboxylation by PEP-CK in the cytosol is likely to depend on transport of ATP from the mitochondria by AAC; (g, h) transfer metabolite generation in the mesophyll. Malate and aspartate are produced in the plastid of the mesophyll especially in species with NADP-ME decarboxylation, their export is mediated by DiT1 and DiT2 respectively, aspartate can also be synthesized in the mitochondria, but a cooperating transporter is still unknown. Transport of aspartate out of the plastid would require recycling of the amino group, this could be supplied directly from N assimilation or by import of amino acid via an unknown mechanism. For abbreviations, see text.

Current Opinion in Plant Biology 2016, 31:83-90

Table 1

Prototypical C₄ cycle genes; all data given as reads per million; *P. maximum* values taken from Bräutigam *et al.* (2014), *Z. mays* whole leaf values taken from Sekhon *et al.* (2011), leaf VT_13, *G. gynandra* values remapped from Kulahoglu *et al.* (2014), leaf stage 4, *F. trinervia* values averaged from Mallmann *et al.* (2014), *Z. mays* mesopyll and bundle sheath (BS) data from Chang *et al.* (2012); action: E = enzyme; T = transporter; compartment: cp = chloroplast, cy = cytosol, mi = mitochondria

Module	Gene name	Compartment	Action	Arabidopsis ID ^b	Reaction	P. maximum	G. gynandra	F. trinervia	Z. mays whole leaf	Z. mays mesophyll	Z. mays BS
Regeneration module	PPDK	ср	E	AT4G15530	Pyruvate + 2 ATP + P → PEP + AMP + PP	13,380	20,941	25,638	11,092	35,421	7810
	AMK	ср	Е	At5q47840	AMP + ATP → 2 ADP	986	2328	1916	527	4739	1018
	Ppase	ср	Е	At5q09650	$PP \rightarrow 2 P$	451	1828	1138	371	579	286
	BASS2	ср	Т	At2g26900	Pyruvate (out) + Na ⁺ (out) → pyruvate (in) + Na ⁺ (in)	2797	4298	5790	nd	nd	nd
	NHD	ср	Т	At3g19490	H^+ (out) + Na^+ (in) $\rightarrow H^+$ (in) + Na^+ (out)	838	1081	1592	5	7	3
	PPT	ср	Т	At5g33320	PEP (in) + H ⁺ (in) + P (out) \rightarrow PEP (out) + H ⁺ (out) + P (in)	405	1633	2225	562	1498	243
	Proton	ср	Т	Unknown	pyruvate (out) + H ⁺	Not	Not	Not	?	?	?
	pyruvate transporter				(out) \rightarrow pyruvate (in) + H ⁺ (in)	needed	needed	needed			
Carboxylation	PEPC	су	Е	At2g42600	$PEP + HCO_3^- \rightarrow OAA + P$	18,393	19,879	15,712	5053	9485	432
	cytCA	су	E	Multiple solutions	$CO_2 + H_2O \rightarrow HCO_3^- + OH^-$	28,838	3081	10,493	2990	6692	281
Decarboxylation	NADP-ME	ср	E	At1g79750	Malate + NADP → pyruvate +NADPH +CO ₂	1120.5ª	1	4649	1334	87	12,192
	DiT2/DCT	ср	Т	At5g64280	$Malate \ (out) + X \rightarrow malate \ (in) + X$	Not needed	Not needed	212	149	7	545
	pyruvate exporter	ср	Т	Unknown	Pyruvate (in) + $X \rightarrow pyruvate$ (out) + X	Not needed	Not needed	?	?	?	?
	NAD-ME	mi	Е	At2g13560	Malate + NAD → pyruvate +NADH +CO ₂	177.5 ^a	2624	172ª	14	7	29
	DIC	mi	Т	At2g22500	Malate (out) + P or SO_4^- (in) \rightarrow malate (in) + P or SO_4^- (out)	455	577	6	29	2	147
	pyruvate exporter	mi	Т	Unknown	Pyruvate (in) + $X \rightarrow pyruvate$ (out) + X	?	?	Not needed	Not needed	Not needed	Not needed
	PEP-CK	су	Ε	At4g37870	$OAA + ATP \rightarrow PEP + ADP + CO_2$	8819	106	42	1364	21	7801
	AAC	mi	T	At3g08580	ATP (in) + ADP (out) \rightarrow ATP (out) + ADP (in), stoichiometry not clear for P	461	578	487	83	35	115
Transfer acid	plAspAT	ср	Е	At4q31990	OAA + aminoacid → Asp + ketoacid	49	151	1476	436	1797	51
generation	pIMDH	ср	Ē	At5g58330	OAA + NADPH → malate + NADP	632	478	6165	702	2621	95
	DiT1/OMT	ср	Т	AT5G12860	OAA (out) + malate (in) → malate (out) + OAA (in)	203	409	744	310	476	22
	DiT2/DCT	ср	Т	AT5G64280	OAA (out) + Asp (in) → Asp (out) + OAA (in)	33	153	212	149	7	545
	mAspAT	mi	Е	At2g30970	OAA + aminoacid → Asp + ketoacid	16	3885	246	23	13	8
	mMDH	mi	Е	AT1G53240	OAA + NADH → malate + NAD	164	721	185	77	28	104
	cytAspAT	су	Е	At1g62800	OAA + aminoacid → Asp + ketoacid	1273	5	44	24	19	91
	cytMDH	су	Е	AT1G04410	OAA + NADH → malate + NAD	735	4	5	311	463	1083
	AlaAT	?	E	At1g17290	Pyruvate + amino acid → alanine + ketoacid	3000	2538	2628	997	349	222

	Gene	Compartment Action Arabidopsis ID ^b	Action	Arabidopsis ID ^b	Reaction	P. maximum G. gynandra F. trinervia Z. mays Z. mays Z. mays whole leaf mesophyll BS	G. gynandra	F. trinervia	Z. mays whole leaf	Z. mays Z. mays Z. whole leaf mesophyll	Z. mays BS
Integration	TPT	cb	T	At5g46110	At5g46110 TP (in) + 3-PGA (out) → TP	2757	6022	3555	730	2069	1551
	PGK	do	ш	AT3G12780		1568	2698	2160	644	2630	774
	GAP-DH	do	ш	AT1G42970		9689	4520	5930	446	303	209
	PDH-kinase	Ē	ш	AT3G06483	NADPH → IP + NADP PDH protein + ATP → PDH protein-phosphon/ated + ATP	920	393	118	674	314	319

of modules which can be linked differently in different plants. The reactions involved in the C₄ cycle are characterized by a high degree of compartmentation. In the majority of plants, the carboxylation and decarboxylation modules are separated into different cell types, the mesophyll and bundle sheath, but in a variety of *Chenopdia*ceae and Hydrilla they also occur in the same cell [15]. Many enzymes involved in the C₄ cycle reside in organelles rather than in the cytosol [4]. Their localization necessitates the presence of transport proteins which connect the reactions of the C4 cycle to the cytosol [16]. In turn, the cytosols of the PEPC containing mesophyll tissue and the RubisCO containing bundle sheath tissue share a symplastic connection [17–20]. Molecular identification of the transport proteins lags behind identification of the enzymes. The necessary transport functions for each module will be highlighted in this review.

Modules of the C₄ cycle Regeneration module

The regeneration module produces the CO₂ acceptor, phosphoenolpyruvate (PEP), from pyruvate and phosphate. It is invariably localized to the chloroplasts with the pyruvate phosphate dikinase (also known as pyruvate orthophosphate dikinase) as the central enzyme [4,21– 23]. It produces PEP, pyrophosphate (PP) and adenosine monophosphosphate (AMP) from pyruvate, phosphate and ATP. The module requires the action of pyrophosphorylase (PPase) and AMP kinase (AMK) to drive the reaction and funnel PP and AMP back into metabolism as phosphate and ADP [23]. The module is only 80% specific to the mesophyll in Zea mays [24°] and Sorghum bicolor [25] based on transcript abundances (Table 1, data extracted from [24°]), but also controlled at the posttranscriptional level [26]. Two prototypes of the module are currently known (Figure 1b and c). Both use the same enzymes but different transport proteins. All species which import pyruvate in a sodium dependent manner, that is all C4 species tested so far with the exception of the Andropogonae [27] likely use the BASS2/NHD/PPT transport system (Figure 1b). BASS2 was identified as the probable pyruvate transporter based on expression patterns similar to other C₄ genes, that is, highly expressed in C₄ species and differentially expressed between C₃ and C₄ sister species [5**,7] and subsequently biochemically characterized [28°]. It indeed transports pyruvate in exchange for sodium, is specific for the sodium ion over lithium, is a highly abundant protein in the sodium dependent pyruvate transporting C₄ species and, if mutated in a C₃ plant, produces a pyruvate transport related phenotype [28**]. It acts in concert with a sodium protein exchanger (NHD) which exchanges the sodium for protons. The proton is transported back over the membrane with the export of PEP and import of phosphate. The transport across the chloroplast envelope thus involves three transport proteins which catalyze a net flux of pyruvate and phosphate in and PEP out with sodium

and protons cycling [28°]. The transcripts of all three transporters are highly abundant in C₄ plants and differentially expressed compared to sister C₃ species (Table 1) $[5^{\bullet\bullet}, 7, 8].$

The C₄ Andropogonae such as sorghum or maize are known to exchange pyruvate for protons directly [27] and consequently, neither BASS2 nor NHD can be detected as highly abundant in maize (Table 1) [25]. Instead of the conjunct action of BASS and NHD, the Andropogonae have an alternative transport protein in mesophyll chloroplasts which, to date, has not been characterized at the molecular level (Figure 1c, Table 1). Candidates for the chloroplast pyruvate importer in maize were suggested based on proteomic comparison of maize and pea chloroplast envelopes: mesophyll envelope proteins (Mep) Mep1-4 (Table 2) [16]. A pyruvate transporter is expected to be highly abundant in maize mesophyll cells. Of the candidates originally proposed, Mep1 and to a lesser degree Mep3a, fit the above criterium. In A. thaliana, the transporter orthologous to Mep1 carries glycolate and glycerate during photorespiration [29] and is named PLGG1.

Carboxvlation module

The product of the regeneration module, PEP, is carboxylated by PEPC in the cytosol of the cell using HCO₃⁻. PEPC is always highly upregulated in C₄ species (Table 1) $[5^{\bullet\bullet},7,8,9^{\bullet},30]$. The HCO_3^- for PEPC is produced through the action of a cytosolic carbonic anhydrase (CA). Abundant cytosolic CA activity can be achieved by upregulating the cytosolic CA [5^{**}] or by retargeting the already abundant plastidic CA [31,32]. Its mesophyll specificity is regulated post-transcriptionally [36]. The importance of the enzyme apparently varies among species. In Flaveria bidentis, reduction of CA drastically reduced fitness under greenhouse conditions [33] but in maize, reduction of CA only has minor effects [34]. The module is specific to the mesophyll (Table 1). No transport proteins are required for this module.

Decarboxylation module

Three alternatives are realized for decarboxylating the C₄ acid (Figure 1d-f). Based on the available global datasets, NAD-ME based and NADP-ME based decarboxylation appear to exclude each other while either can be supplemented with PEP-CK based decarboxylation [5°,6-8,9°,10]. NADP-ME based decarboxylation occurs in the chloroplasts and requires the import of malate and the export of pyruvate (Figure 1d). Transcripts of NADP-ME are reliably of higher abundance in F. bidentis (Table 1) [6,7] as well as in Z. mays, Setaria viridis, and Echinochloa glabrescens [8,9°,10]. The transport protein catalyzing the import of malate and/or the export of pyruvate is unknown at the molecular level (Table 1). The dicarboxylate transporter DiT2 (alternate name DCT) was considered a candidate transporter for malate in maize [35], however, the Flaveria trinervia DiT2 is unable to catalyze the reaction based on in vitro analysis of the transport substrates [36]. DiT2 is moderately upregulated in conjunction with NADP-ME [6-8] and DiT2 is strongly expressed in maize bundle sheath cells (Table 1) and S. bicolor bundle sheath cells [25]. Mutant analysis of maize showed symptoms consistent with a role in malate import in the C₄ cycle [37^{••}] raising the question whether the original assay was unsuitable for detecting the exchange [36] or whether Flaveria and maize may use different transporters (Figure 1d). The molecular identity of the pyruvate exporter is currently unknown but it cannot be excluded that pyruvate may rely on diffusion to pass the chloroplast membrane in its electroneutral form, pyruvic acid [38,39], especially given the high concentrations of pyruvate generated by NADP-ME. The module is specific to the bundle sheath (Table 1).

The NAD-ME based decarboxylation module is built around the mitochondrial NAD-ME which is highly upregulated in the C₄ species using this type of decarboxylation (Figure 1e) [5°,8,40]. Its high expression is accompanied by the expression of a dicarboxylate carrier, DIC (Table 1) [5**,8]. Among the mitochondrial carriers that accept malate or OAA, DIC is unique as it catalyzes net carbon import as malate/phosphate or malate/sulfate exchange [41]. In case of phosphate exchange, the electrical field is capable of driving the exchange as malate is negatively charged twice and phosphate is negatively charged three times. The resulting cytosolic phosphate

Table 2 Candidate transporters for reaction uncharacterized at the molecular level; all data given as reads per million; P. maximum values taken from Bräutigam et al. (2014), Z. mays whole leaf values taken from Sekhon et al. (2011), leaf VT_13, G. gynandra values remapped from Kulahoglu et al. (2014), leaf stage 4, F. trinervia values averaged from Mallmann et al. (2014), Z. mays mesopyll and bundle sheath (BS) data from Chang et al. (2012); action: E = enzyme; T = transporter

Original name	AGI	Maize ID	P. maximum	G. gynandra	F. trinervia	Z. mays whole leaf	Z. mays M	Z. mays BS
Mep1	At1g32080	GRMZM5G873519	103	172	128	345	340	535
Mep2	At5g23890	GRMZM2G077222	38	200	169	32	0	0
Мер3	At5g12470	GRMZM2G138258	22			498	20	2734
Mep4	At5g12470	GRMZM2G305851	3	185	1072	33	113	9

or sulfate needs to be reimported, likely as proton symport [8]. If instead the C₄ acid is imported into the bundle sheath mitochondria as aspartate, the import protein remains unknown as the DICs of Arabidopsis do not accept amino acids [41].

The decarboxylation yields mitochondrial pyruvate which has to be exported to the cytosol. The pyruvate exporter is currently not known; it is feasible that pyruvate crosses the mitochondrial membrane as pyruvic acid by diffusion because at least at high concentrations, pyruvate can move by diffusion in vesicles [38]. UCP1, upregulated in both NAD-ME and NADP-ME plants maintains redox poise in photosynthetic tissues [42], but no other known mitochondrial transport protein is consistently upregulated in the C₄ species assayed by RNA-seq.

The third decarboxylation module is run by PEP-CK and occurs in the cytosol (Figure 1f). The action of PEP-CK requires one ATP per reaction which is likely supplied by the mitochondria as the plastidic ATP exchanger is not relevant during day-time metabolism [43]. Export of ATP is mediated by AAC [44], a gene transcriptionally abundant in many species (Table 1) but specifically upregulated in the C₄ species *Megathyrsus maximus* which relies to a large degree on PEP-CK [8]. Alternatively, PEP may be metabolized to pyruvate directly by cytosolic pyruvate kinase which will supply the ATP for the decarboxylation reaction making the ATP export from mitochondria unnecessary.

Transfer acid generation module

The OAA generated by PEPC in the mesophyll is immediate converted to malate or aspartate before transfer and the pyruvate generated by MEs in the bundle sheath (Figure 1d and e) can be converted to alanine before transfer. The localization and role of the transfer acid generation is not well characterized.

Most C₄ species analyzed harbor a transcriptionally highly abundant alanine aminotransferase (AlaAT) (Table 1) [5°,7,8] of which the localization is unclear. In dicots, the AlaAT appears to be organelle-localized in which case additional transport processes were required. In maize, AlaAT is evenly distributed between mesophyll and bundle sheath (Table 1).

Plants contain AspAT and MDH in chloroplasts, mitochondria and the cytosol and each can be upregulated and/or abundant in C₄ species (Table 1). All C₄ plants analyzed to date which use NADP-ME based decarboxylation show chloroplast-dependent conversion reactions (Figure 1g). OAA is reduced in the chloroplasts after counter-exchange with malate by dicarboxylate translocator 1 (DiT1) across the plastid envelope [45]. Alternatively, the OAA is converted to aspartate (Asp) in chloroplasts by plastidic aspartate transaminase (AspAT) [12,46] after import by DiT2 [36] in exchange for aspartate. Both enzymes and transporters are moderately upregulated [7]; in maize, AspAT, MDH, and DiT1 are mesophyll specific while DiT2 is bundle sheath specific (Table 1). The transamination reaction requires an amino group donor in the chloroplast which may come directly from the N assimilation or from a plastidic AlaAT reaction realizing the regeneration of pyruvate. In the mixed PEP-CK/NAD-ME M. maximus, the cytosolic AspAT and MDH are abundant (Table 1) [8]. The NAD-ME species G. gynandra highly expresses a mitochondria localized AspAT [5°,13]. It is unclear which transport protein catalyzes the exchange of aspartate and OAA across the mitochondrial envelope (Figure 1h); the DIC does not transport amino acids [41], and for DTC the transport of amino acids was not tested [47].

Metabolic integration

The C₄ cycle runs atop C₃ metabolism, interacts with it, and creates different environments in mesophyll and bundle sheath cells all of which require fine tuning. For example, abundant expression of TPT [5°,16] (Table 1) couples the parts of the Calvin Benson Bassham cycle localized in the mesophyll and bundle sheath [24°,48]. The shuttle may also transfer ATP and reducing equivalents in the form of triosephosphates [16]. C₄ metabolism creates large pools of the transfer metabolites which need to be protected from the underlying metabolism, for example by reducing entry in the TCA cycle via pyruvate dehydrogenase complex kinase [8]. Integration into the underlying metabolism may be different not only based the use of decarboxylation enzyme in each species but may also carry further species specific solutions for metabolic adjustment. Different comparative RNA-seq papers have reported a range of possible adaptations including reduction of photorespiration in all systems studied to date [8,9°], reduction in amino acid and protein synthesis in some species [5**,7,9*] and changes in amino acid metabolism for G. gynandropsis and M. maximus [8]. The reduction in photorespiratory gene expression was suggested as the molecular change which fixes the C₄ trait [49]. The connection of the two cell types and efficient intercellular transfer is critical [8], but so far understudied.

Summary and outlook

RNA-seq has contributed to the molecular identification of novel [28**] and known [5**,8] transporters of the C₄ cycle and identified the enzymes of the C₄ cycle at the molecular level in many species (Table 1). The blueprint of the C₄ cycle is complete for NAD-ME and PEP-CK module (Figure 1e and f) [8], but less well defined for Andropogonae NADP-ME species as the mesophyll pyruvate transporter remains unknown (Figure 1b). Although the genes involved in transfer acid generation appear defined, their intra-cellular and inter-cellular localization and potential need for additional transporters

remain unclear. Additional RNA-seg experiments may define the modules ever more clearly for new C4 species while combined RNA-seq and genome-seq experiments will move the analyses to the next step: identifying the regulatory circuits underlying the high abundance detected by RNA-seq. Expression patterns of C₄ cycle genes are similar to those of photosynthetic genes [30,50,51] already suggesting a common regulatory system.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- · of special interest
- of outstanding interest
- Weber APM, von Caemmerer S: Plastid transport and metabolism of $C_{(3)}$ and $C_{(4)}$ plants — comparative analysis and possible biotechnological exploitation. *Curr Opin Plant Biol* 2010. **13**:257-265.
- Bräutigam A, Weber APM: In Transport Processes Connecting the Reactions of C₄ Photosynthesis, vol. 32. Edited by Raghavendra AS, Sage RF. Springer; 2011.
- Osborne CP, Sack L: Evolution of C₍₄₎ plants: a new hypothesis for an interaction of CO₍₂₎ and water relations mediated by plant hydraulics. Philos Trans R Soc B-Biol Sci 2012, **367**:583-600.
- Hatch MD: C-4 photosynthesis a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 1987, **895**:81-106.
- Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ et al.: An mRNA blueprint for C₄ photosynthesis derived from comparative transcriptomics of closely related C₃ and C₄ species. Plant Physiol 2011, **155**:142-156

The initial transcriptomics paper demonstrates that the C₄ trait can be traced at the transcriptional level.

- Mallmann J, Heckmann D, Brautigam A, Lercher MJ, Weber APM, Westhoff P, Gowik U: The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria. Elife
- Gowik U, Brautigam A, Weber KL, Weber APM, Westhoff P: Evolution of C₄ photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell 2011, 23:2087-2105.
- Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM: Towards an integrative model of C₄ photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C₄ species. *J Exp Bot* 2014, **65**:3579-3593.
- Covshoff S, Szecowka M, Hughes TE, Smith-Unna R, Kelly S, Bailey KJ, Sage TL, Pachebat JA, Leegood RC, Hibberd JM: C4 photosynthesis in the rice paddy: insights from the noxious weed Echinochloa glabrescens. Plant Physiol 2015.

Using a different set of methods compared to the previous papers, the authors corroborate earlier findings and highlight the value of comparing species of similar habitats in contrast to closely related species.

- Wang L, Czedik-Eysenberg A, Mertz RA, Si YQ, Tohge T, Nunes-Nesi A, Arrivault S, Dedow LK, Bryant DW, Zhou W *et al.*: Comparative analyses of C-4 and C-3 photosynthesis in developing leaves of maize and rice. Nat Biotechnol 2014, **32**:1158-1165.
- 11. Furbank RT: Evolution of the C₄ photosynthetic mechanism: are there really three C_4 acid decarboxylation types? J Exp Bot2011, 62:3103-3108.
- Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U

- et al.: Systems analysis of a maize leaf developmental gradient redefines the current C₄ model and provides candidates for regulation. *Plant Cell* 2011, **23**:4208-4220.
- Sommer M, Bräutigam A, Weber APM: The dicotyledonous NAD malic enzyme C₄ plant Cleome gynandra displays agedependent plasticity of C4 decarboxylation biochemistry. Plant Biol 2012.
- 14. Wingler A, Walker RP, Chen ZH, Leegood RC: Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiol 1999, 120:539-545.
- 15. Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE: Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 2001, 414:543-546.
- 16. Bräutigam A, Hofmann-Benning S, Weber APM: Comparative proteomics of chloroplast envelopes from C₃ and C₄ plants reveals specific adaptations of the plastid envelope to C₄ photosynthesis and candidate proteins required for maintaining C₄ metabolite fluxes. Plant Physiol 2008, **148**:568-579
- 17. Sowinski P, Bilska A, Baranska K, Fronk J, Kobus P: Plasmodesmata density in vascular bundles in leaves of C₄ grasses grown at different light conditions in respect to photosynthesis and photosynthate export efficiency. Environ Exp Bot 2007, 61:74-84.
- 18. Sowinski P, Szczepanik J, Minchin PEH: On the mechanism of C4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses. J Exp Bot 2008,
- 19. Botha CEJ: Plasmodesmatal distribution, structure and frequency in relation to assimilation in $\dot{\text{C}}_3$ and C_4 grasses in Southern Africa. Planta 1992, 187:348-358.
- 20. Evert RF, Eschrich W, Heyser W: Distribution and structure of plasmodesmata in mesophyll and bundle-sheath cells of Zeamays-L.. Planta 1977, 136:77-89.
- 21. Matsuoka M: The gene for pyruvate, orthophosphate dikinase in C₄ plants - structure, regulation and evolution. Plant Cell Physiol 1995, 36:937-943.
- 22. Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen THT: Functional evolution of C-4 pyruvate, orthophosphate dikinase. J Exp Bot 2011, 62:3083-3091.
- 23. Hatch MD, Slack CR: A new enzyme for interconversion of pyruvate and phosphopyruvate and its role in C4 dicarboxylic acid pathway of photosynthesis. Biochem J 1968, 106:141-147.
- Chang YM, Liu WY, Shih ACC, Shen MN, Lu CH, Lu MYJ,
 Yang HW, Wang TY, Chen SCC, Chen SM et al.: Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 2012, 160:165-177

The authors produce a mesophyll - bundle sheath specific transcrip-

- 25. Döring F, Streubel M, Bräutigam A, Gowik U: Compartmentation of the expression of photorespiratory genes in Sorghum bicolor. J Exp Bot 2016 http://dx.doi.org/10.1093/jxb/erw041.
- 26. Williams BP, Burgess SJ, Reyna-Llorens I, Knerova J, Aubry S, Stanley S, Hibberd JM: An untranslated cis-element regulates the accumulation of multiple C₄ enzymes in *Gynandropsis* gynandra mesophyll cells. *Plant Cell* 2016.
- 27. Aoki N, Ohnishi J, Kanai R: 2 different mechanisms for transport of pyruvate into mesophyll chloroplasts of C-4 plants - a comparative-study. Plant Cell Physiol 1992, 33:805-809.
- 28. Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P et al.: A plastidial sodium-dependent pyruvate transporter. Nature 2011, 476 472-U131

The plastid pyruvate transporter is identified at the molecular level as BASS2 working in concert with NHD and PPT.

Pick TR, Brautigam A, Schulz MA, Obata T, Fernie AR, Weber APM: PLGG1, a plastidic glycolate glycerate

- transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc Natl Acad Sci U S A 2013, 110:3185-3190.
- 30. Ding ZH, Weissmann S, Wang MH, Du BJ, Huang L, Wang L, Tu XY, Zhong SL, Myers C, Brutnell TP et al.: Identification of photosynthesis-associated C-4 candidate genes through comparative leaf gradient transcriptome in multiple lineages of C-3 and C-4 species. PLOS ONE 2015:10.
- 31. Tanz SK, Tetu SG, Vella NGF, Ludwig M: Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C-4 carbonic anhydrase in Flaveria. Plant Physiol 2009, 150:1515-1529
- 32. Ludwig M: Carbonic anhydrase and the molecular evolution of C-4 photosynthesis. Plant Cell Environ 2012, 35:22-37.
- 33. Von Caemmerer S, Quinn V, Hancock NC, Price GD, Furbank RT, Ludwig M: Carbonic anhydrase and C-4 photosynthesis: a transgenic analysis. Plant Cell Environ 2004, 27:697-703.
- 34. Studer AJ, Gandin A, Kolbe AR, Wang L, Cousins AB, Brutnell TP: A limited role for carbonic anhydrase in C-4 photosynthesis as revealed by a ca1ca2 double mutant in maize. Plant Physiol 2014. 165:608-617.
- 35. Majeran W, van Wijk KJ: Cell-type-specific differentiation of chloroplasts in C₄ plants. Trends Plant Sci 2009, 14:100-109.
- Renne P, Dressen U, Hebbeker U, Hille D, Flugge UI, Westhoff P, Weber APM: The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J 2003, **35**:316-331.
- 37. Weissmann S, Ma F, Furuyama K, Gierse J, Berg H, Shao Y, Taniguchi M, Allen DK, Brutnell TP: Interactions of C₄ subtype metabolic activities and transport in maize are revealed through the characterization of dct2 mutants. Plant Cell 2016. The plastid malate importer is identified at the molecular level as DiT2/ DCT, however the counterion and possible co-transport processes remain unknown.
- 38. Benning C: Evidence supporting a model of voltage-dependent uptake of auxin into cucurbita vesicles. Planta 1986, 169:228-237.
- Proudlove MO, Thurman DA: The uptake of 2-oxoglutarate and pyruvate by isolated pea-chloroplasts. New Phytol 1981,
- 40. Christin PA, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP: Parallel recruitment of multiple genes into C-4 photosynthesis, Genome Biol Evol 2013, 5:2174-2187
- 41. Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M: Molecular identification of three Arabidopsis thaliana

- mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 2008, **410**:621-629.
- 42. Sweetlove LJ, Lytovchenko A, Morgan M, Nunes-Nesi A, Taylor NL, Baxter CJ, Eickmeier I, Fernie AR: Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci U S A 2006, 103:19587-19592.
- Reinhold T, Alawady A, Grimm B, Beran KC, Jahns P, Conrath U, Bauer J, Reiser J, Melzer M, Jeblick W et al.: Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damage. Plant J 2007, 50:293-304.
- 44. Haferkamp I, Hackstein JHP, Voncken FGJ, Schmit G, Tjaden J: Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids. Eur J Biochem 2002, 269:3172-3181.
- Kinoshita H, Nagasaki J, Yoshikawa N, Yamamoto A, Takito S, Kawasaki M, Sugiyama T, Miyake H, Weber APM, Taniguchi M: The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism. Plant J 2011, 65:15-26.
- 46. Meister M, Agostino A, Hatch MD: The roles of malate and aspartate in C-4 photosynthetic metabolism of Flaveria bidentis (L.). Planta 1996, 199:262-269.
- 47. Picault N, Palmieri L, Pisano I, Hodges M, Palmieri F: Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria — bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem 2002, 277:24204-24211
- 48. Majeran W, Cai Y, Sun Q, van Wijk KJ: Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 2005, 17:3111-3140.
- 49. Bräutigam A, Gowik U: Photorespiration connects C3 and C4 photosynthesis. J Exp Bot 2016.
- 50. Kulahoglu C, Denton AK, Sommer M, MaSs J, Schliesky S, Wrobel TJ, Berckmans B, Gongora-Castillo E, Buell CR, Simon R et al.: Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C₃ and C₄ plant species. Plant Cell 2014, 26:3243-3260.
- 51. Aubry S, Kelly S, Kumpers BMC, Smith-Unna RD, Hibberd JM: Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C-4 photosynthesis. PLoS Genet 2014:10.