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ABSTRACT

- The modified Lemke-Howson algorithm is a constructive procedure which enables us to

compute equilibrium points of abirnatrix game. The algorithm as described by one of

the authors (see ROSENMÜLLER [9]) is based on the original version invented by

LEMKE-HOWSON [5]. However, it differs from this version with respect to several

features. It works directly with the matrices defining the bimatrix game A and B. It has

an easy and very direct geometrical interpretation, hence for smaIl games we can follow

the development of the algorithm geometrically. Finally, instead of being "bilinear" , the

algorithm behaves rather like a "piecewise linear program" .

This presentation elosesa gap: although the algorithm has been describedgeometrically

(and with a flowdiagram) in [9] , there has been no constructive procedurethat can be
implementedon a computer.This is providedby the present paper.

We give all necessary proofs and computations in order to establish the foIlowing facts:

There are two tableaus accompanying the proceeding of the algorithm. As the algo-

rithm changes, moving alternatingly in the simplices of mixed strategies, so does the

computational procedure alternatingly dealing with the two different tableaus.

Both tableaus contain six regions dependingon the various ways of "transitions" the

procedurehas to perform.

While this aIl is in marked differenceto linear programming, there is also consolation:

The weIl known rectangle rule of linear programming can be modifiedeasily (that is,
there is a family of rectangle rules) such that changing the tableau alternatingly

amounts to applying the appropriate rectangle rule. Thus, there is also elose similarity
to the familiar LP-procedure.

Thus, a completedescriptionof the modifiedLH-algorithm is provided that can imme-

diately be implemented on any computer, in particular we supply an APL-program

that, e.g., can be run on an IBM PC (IBM is a registered trademark of International

BusinessMachinesCooperation).

..
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-- SECTION 1

Introduction

Let I = {l,...,m} and J = {l,...,n}. Abimatrix game(in mixedstrategies)is a qua-
druple

(1) r= (X,Y,A,B)

such that A = (a")' EIjEJand B = (b")' EIjEJ
are m )(n matrices and

IJ 1 , IJ 1 ,

(2)
m

X = {xeof1 I x = (x1'''''x ) ~0, E x. = 1}
m ieI 1

n
Y= {yelRn I y = (Y1""'y ) ~ 0, E y. = 1}

n jeJ J

are the (mixed) st~ategiesof player 1 and 2. If player 1 choosesx e X and player 2
choosesy e Y, then payoffsare definedby

(3)

x A y = E E x. a.. y.
iEI j eJ 1 IJ J

for player 1, and x B y for player 2.

A pair (x,Y) eX )( Y is said to be an equilibriumpoint if

xAy~xAy (x eX)
and

xBy~xBy (y eY)

holds truej thus, in equilibrium, no player has an incentive to deviate for his payoff

cannot be improved upon. If ris a zero-sum game (i.e., B = -A), then an equilibrium
consistsof a pair of optimal strategies and viceversa.

The Lemke-Howson-algorithm as devised in LEMKE-HOWSON [5] is a procedure

that (for "nondegenerate games") yields an equilibrium point within finitely many
steps.

The procedure works by transforming the bimatrix game into a bilinear programj
whereafterthe algorithm, starting with an "unboundededge" proceedsby movingalong

..
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a certain system of polyhedral edgesof dimension1 to search for an equilibriumpoint.

An implementationof this versionof the LH-algorithm in the sense that the geometri-

cal behaviorof the algorithm is representedby a sequenceof tableaus, to be computed
consecutivelyand leading to a numerical evaluation of an equilibrium point, has been

presented in PARTHASARATHY - RAGHAVAN[6] j however, a formal proof (and
an established computer program) for a neatly working version of the algorithm on a
contemporalcomputer is lacking.

..

The Lemke-Howson-algorithm also yields someinsight into the structure of equilibria.

It showsthat the number of equilibriumpoints (for nondegenerategames) is odd. It is
also known that not every equilibrium point can necessarily be reached in any casej

even if the initial "unbounded edge" is being changed, there are equilibria not to be

reached by the LH-algorithm (for further literature we refer to AGGARVAL [1],

BASTIAN [2], PARTHASARATHY-RAGHAVAN [6], SHAPLEY [7], TODD [1°,
11]).

An alternative versionof the algorithm (the modifiedLH-algorithm) has been presen-

ted in ROSENMÜLLER[9], Chapter I, Section1. This versionworks directly with the
matrices with A and B constituting the bimatrix game. The algorithm is not bilinear

but rather "piecewiselinear": it workseffectivelyin the simplicesX and Y, alternating

performingsteps in each of them. There is a flow diagram established in [9] which,
however, requires the computation of solutions of certain linear equations after each

step and, hence, is not in the spirit of traditional linear programming.In practice the

procedure suggestedby the flowdiagram is rather slow and the capacity of most com-
puters is not sufficient,evenfor smallproblems.

As the procedureis not a standard optimization problem it is not dear how to exact1y
define a sequence of "tableaus" correspondingto the geometrical movement of the
Lemke-Howson-algorithm as presented in [9] . This is exactly the goal of the present
paper. We suggest the correct parametrization of edges of certain subpolyhedraof the

simplicesof mixed strategies X and Y. Using this parametrization, we definea pair of

tableaus (correspondingto the alternating behaviorof the modifiedLH-algorithm) such
that alternating performingthe rectangle rule in each of the tableaus actually yields an
equilibrium point. The procedure can thus be implemented on a computer and, for the

sakeof completeness,we are addingan APL-versionof such a program.

-~
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Let A. ,A . denote the i-th row and j-th columnof the matrix A respectively.Intro-l' . J

duce the convexpolyhedra

(4)
Ki={yEY I Ai.y~Ak. y(kEI)}

Lj = {x EX I x B. j ~ x B. 1 (1 EJ)}

(i EI)

(j EJ)

as wen as

K - r, KT - i ET i T ~ I, T t 0

(5)
L - r, L

R - j ER j R~J,Rt0

E.g. K. denotes the mixed strategies of player 2 against which the (pure) strategy i EI1

(or the mixedstrategy el) of player I is "best reply". It is not hard to see that (x, y) is
an equilibriumpoint of r if and onlyif

yEK{ilxi>O} and xE L{jIYj>O}'

Thus, in equilibrium, the positive coordinates of xand the polyhedra K. containing Y1

correspond to each other (in fact uniquely if nondegeneracy prevails) - this is of course
an analogueto the familiar "optimality condition" of L.P. theory. We are thus motiva-
ted to introduce polyhedra

(6)
HT U = KT n{y EY I y. = 0 (j E U)}, J

GR,V = LR n{xEX I xi = 0 (i EV)}.

The game is called nondegenerate if

(7) dim HT U = n - IT I - IU I,, dim GR V = rn-I R I- IV I, far HT U t 0t GR V, "

(cf. Definition 1.11, SEC.I, CH.I, of [9]).

We shall assume that the game we are dealing with is nondegenerate.

."

~
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In this case we have the following characterization of equilibrium points:

;;;

(8)

Let (x, y) EX)( Y and put T = { i Ixi> O}~ land

R = VI Yj > O} ~ J. Then (x, y) is an equilibrium point

if and only if ITI = IR land {(x, y)} = H c)( G ~.
T,R R, r

For the details,see [9] , and in particular Corollary1.13in SEC.l, CH.1.

The statement formalizedin (8) can be interpreted geometricallyas follows:the simpli-

ces X and Y of mixed strategies are decomposedby the polyhedra Lj (j EJ) and Ki (i E

I) respectively. Among the subfaces of such polyhedra we distinguish vertices HT U',

ITI + IUI = n and edgesHT U' ITI + IUI = n-l (for some Ki ~Y; the situation is,

analogouslydescribed in X). A vertex HT U = {Y} has "labels" assigned to by the,

polyhedrait is adjacentto (Le.labelsi ET with YEKi) and by the positive coordinates

of y (Le., y. > 0 for j EUC).If (x,y) is an equilibrium point, then the labels of {x} =J

GRV and {Y} =HT U correspondto eachotherin a uniqueway., ,

Example 1.1:

Consider the matrices

A -
[

5 3 -4 -1
]- -6-3 5 3

and

[
-1 -4 7 11

]B = 3 4 -9 -19 '

then the following sketch illustrates the decomposition of X into polyhedra Ll'L2,L3,L4

and the decomposition of Y into polyhedra Kl'K2 (cf. Fig.l). An equilibrium. point is

given by

x= [!,~] , {X} = G13,0 = G13,{1,2}c

-
[
9 11 0

]
{;;1.y = H 4 = H c

y = 20'0, 20 ' , J J 12,2 12,{1,3}

;:;
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,"
where the indices ("labels") are matching in the appropriate way: xhas positive coordi-

nates 1,2 and yEK1 nK2; analogously Y1> 0, Y3 > 0 while :XEL1 n L3'
;;

e4

HU2}, (2}

e3
HU2}.(23}

t

(io.o.-M>.o)

e1 e2

,..
Fig.l

;;

L4 L3 L1 L2

I I I
I

X

e1 i i i e2

(,f)(!'!) (l,!)
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The modifiedLH-algorithm is explained in detail in SEC.l, CH.l of ROSENMÜLLER

[9], see also ROSENMÜLLER[8] for the n-person game version (WILSON [12]
describes the "multilinear" n-person version of the "original" LH-algorithm). We
wouldlike to assurnethe reader is slightlyfamiliar with the presentation in [9] .

For our present purpose we ~hall describe the modified LH-algorithm with the aid of
Example1.1as folIows:Use e1to denote the i'th unit vector.

The algorithm starts with a vertex, say

{e4} = H{2}, {I 2 3} ~Y

in Y. As e4 EK2' we move to simplex X and choose

2
{e } = G{2},{I}

as the first vertex in X. Now, e2 EL2 means that, in Y, we should admit for positive

2nd coordinates,Le. move "towards" e2 EY. That is, we delete index 2 from the labels

describing{e4}EY, thus movingalongthe edge

H{2}, {1,3} .

The endpoint of which is

1 1 2
y = (0, 3' 0, 3)

defining a vertex

{yl} = H{1,2,3}, {1,3}

Here the new lable i = 1 appeared, thus in X, we leave e2 along the edge

G{2}, 0

.. t 1
(
1 3

) harnvmg a x = 4' 4" w ere

{xl} = G{1,2}, 0.
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Hence the next edge in Y is H{1,2}, {3} which leads to y2 = (1,0, 0, I), We have
2

{y } = H{1,2}, {2,3} .

2 3 2 2
The next steps are along the edge G{I}, 0 towards x = (5' 5); {x } = G{13}, 0 and

311 3
alongH{1,2},{2}towardsy = (21 0, 2' 0). Now{y } = H{1,2},{2,4}and all labels
match in the required manner as we have explained above. Thus we have reached the

equilibriumpoint.

The main purposeof this paper is to developthe computational procedure that accom-

panies the geometricalpicture we have just studied. To this end we shall explain what
kind of "movement along an edge" we should adopt for the rigorous mathematical re-

presentation. In other words we shall define the "canonicalparametrization" of edges

depending,however,on what kind of movement along an edge we have in mind. For,

(speaking in Y) according to whether we leave a polyhedron Ki (Le. delete a label

i EHT U) or whether we leave a subfaceof Y (Le. delete an index jE HT U) there are, ,

two ways of departing from a vertex in order to move along an edge. Similarly, there

are two waysof arriving at a vertex after having trave1ledalong an edge. This yieldsfor
different types of a journey and the "canonicalparametrization" of this journey along
an edge must be chosen accordingly.The appropriate choice is then reflected by the

"appropriate" definitionof the two tableaus correspondingto a pair of edges, each one

located in a simplexX or Y respective1y.

The developmentof our presentation is intended as folIows.In Section 1 we will again

mention the four ways of travelling along an edge (the detailed discussionhas been

performed already in [8]). We shall then extensively discuss the case which is most
typical for the modified LH-algorithm. The other three cases will not be treated in
detail. Hence, Seetion 2 is devoted to developingthe "canonical parametrization" for

"case la" and for explaining the introductory data of the tableau correspondingto a

vertex. In Section 3 we define the tableau (actually a pair of tableaus) and introduce

the weil known rectangle procedure (which - thoughin structure resemblingthe one
used in linear programmingprocedures- is quite different in its detailed appearance).
We then prove that the reetanglerule, applied to the tableaus, accompaniesthe journey

between two edges; again the proof is being presented in detail for just one particular
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case while the other cases are being treated superficially.Section 4 is then intended to

collect the pieces: we present a detailed instruction for using the algorithm. That is,
given the matrices A and B, it is explained how to set up the initial tableaus and

perform the necessarysteps in order to reach a final tableau. This eventually yields a

pair of vectors constituting an equilibriumpoint of the game r= (X, Y, A, B). Finally,
in Section 5, for the sake of completeness,we add a computer program that actually

performs the necessary computations. The program has been written in APL and was

running on the IBM 6150 RT computer (IBM 6150 is a trademark of International

Business Machines Cooperations). However, it can be implemented on any personal
computerendowedwith APL.

Let us finish this section by introducing the necessary notational conventions.

The matrices A and Bare fixed throughout our presentation. In order to avoid indices

(coordinates)m+1, n+1, we put

1= {l,...,m, o} = IU {o}

J = {l,...,n, *} = J U{*}

and similarly for T ~I, U ~ J

T = TU {o}, U = U U {*}.

Next, vectorsxe IRmare also repeated as functionsx : I ~ IR,thus we denote the restric-

tion of x onto T ~ I by xT' this is of course to be identified with the vector

xT = (xi)iET EIRT.For convenience we write

x-T := x c = xI-TT
I

such that for z = (xl'...,xm'>') EIR we have e.g.

Z-T:I-T~IR

Z-T =(xi)itT .

Frequently singletons {i} ~land their elements are identified, thus

xi = x{i} and x-i = x-{i} = (xl'...,xi-1,xi+1,...,xm)

for x E IRm.In this context, "+" is used for "U" in case of a disjoint union, e.g.,
~
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T + i =TU {i} (for i t T ~I)

T + o-iO = (TU {o})-{iO} (foriOET ~I)

etc.

The disjoint union of subsets of I, say, is accompaniedby the formation of a "direet
sum" of functions(vectors) definedon these subsets.

E.g., if T', T" ~ I, T' n T" = 0, and z' : T' --t IR,z" : T" --t IR,then z = z' IBz" denotes

the functionon T =T' + TU(= T' UT") definedby

z : T' + T" --t IR

zi = zi (i e T'), zi = zj (i eT")

or (lessprecisein notation) the vector

z = (z',z").

An analogous notation is employed for matrices. E.g., matrix A can be seen as a

mappingA : I I( J --tIR andfor T ~I, U ~J wedenoteby A~ the restrictionon T I( U-
whichis representedby the matrix

We write AT := A~ i however,the i'-th row of Ais Ai. and the j'-th columnis A,j'
thus

J JA. =A
{
.
}

=A.
l' 1 1

but Ai is avoided.

U

AU =

T (:::::::+=+::)
T

SiIriilarly
U

-u

T F==f:::HAT
=
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Next let e = (1,...,1) (used for e EIRm and e EIRn). Write

0(=

-1

A :-1
1. ..10

and
1

23= B .1
-1. .. -1 0

Thus, Ol: I x J -f IRand if iO ET ~I ~land U ~J ~J, then it is seenthat

U. = J-U. = orU c .
ocr-IO Ol.f+C-IO -( T +10)

is represented by

u .
-I

- - -- :.!-I

T
10

- - --

-I

- - --

- - --

- - --
10,.:..- 4



-12 -

" SECTION2

The Canonical Parametrization

Let us focus our interest on the motion which the modified LH-algorithm performsin

Y. Basically, there are 4 types of "transitions" that occur when algorithmic procedure
leaves a vertex, movesalong an edge and reachesthe next vertex - geometrically

speaking.These four transitions can be classifiedaccordingto whether a subfaceof Y is

beingleft (reached)or a polyhedronKi is being left (reached) upon departure (arrival).

Again, the details are explainedin [9] , Ch.l, SEC.l, hence, for our present purposewe
illustrate the four types of transitions for the case that A and Bare 3 x 3 matrices by

Figure 2.

Here, HT U = {y} ~Y denotes the "departure" vertex while the "arrival" vertex varies,

accordingly,e.g., in case la) we have Hi' U = {y} = HT-' +i U' etc., 'l0 l'

Let us first start out with an extensivediscussionof case la). We shall definea certain

versionof a parametrization of the edgeHT-' U joining yand y, called the "canonical"
. 'l0'

one. This will suggest (at least partially) the form of the corresponding "tableau" and

the way the tableau changes when the algorithm switches from yto y.

To this end, let us nowfix an extreme point or vertex

Y 2HT U = {Y},
such that ITI ~ 2 and ITI + IUI =nj put

X:= Ai. y (iET)

and define, for some fixed iOET

LT Uj := {J.L= (-y,v) EIR-U x IR I ar;rUj J.L=O}.0 0
Then we have

,..

Lemma 2.1:

1. LTU, is a linear subspace of IR-Ux IRwith dimension 1.-1 0

OCU J.Lf 0 for all J.L= ('Y,v)e LTUi with 'Yf O.
10' ~O

2.

I



1a)

T,U ~ T - io + i. ' U

2 a)

Yj = {y E Y IYj = 0)0 0

I

T, U ~ T + i. , U - jo

-13 -

1 b)

~ YJ. = {y E Y IYj. = O}

eh
T,U ~ T - io , U + J.

e J. ejo

2 b}

eJo

T, U ~ T, U - jo + J.

Fig. 2
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Prool:

Follows immediately since the game is nondegenerate.

Definition 2.2:

For iOET let
i i i- 0

(
- 0 - 0

)
-U

J.L = 'Y ,v ELT-i 0

be defined by the requirement that

(1)
i

or.U jL0 = 1
10

holds true.

Let us observe that the quantities of generic types J.L= (-y,v), as consideredso far, can
be naturally extended to vectors of IRn)(IRby adding zero coordinates for all i EU. More

precisely
-U n

LT-i m°u ~IR )( IR
0

i

is as weIla linear subspaceof IRn)( IRwith dimension 1 and jL 0 m°u is a distinctive
element of this subspace.

Accordingly,

(y,A) + (LTUi mDU)0
i

is an affine subspace of IRn)( IRwith distinctive elements (y,A) and (y,A) + (jL 0 m°U),

In view of Definition 2.2, we have obviously

(2)
lR.r(y,X)= [~] ERT

0.

(3)
i

I

b
Ot.r((y,A) + (jL 0 m°U)) = 1 I iO0.

EIRT

b
1
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"
If we considerthe projection of IRn)( IR onto !Rn,then the situation may be viewedby

Fig.3 - assumingthat A and B have 3 columns.Also,Fig.3 represents the casein which
yhas positive coordinates - hence U = 0.

-u
y + ProjlRn LT-i~'

Simplex Y

Direction of
parametrisation

( Le., increasing e)

1

., ~..

\
K"

10

e1 \ I "e2

positive :'OrthantI

'. I - U

Origin ':'> \ " .,. - - . " - . . - . . . .' Proj n L -
. . - . . . . - . . . -' . . . . . .a. IR T 10

ylo =ProjlRn V.10

HT,U

(with U =~
hence no .. Ei)

necessary)
0 u notation"

Fig.3

,.
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Definition 2.3:

The canonical parametrization of (y,X) + (LTUi 61 °U) is the mapping0

1

() ~ (y,A) - () (p,061 °U)

(4)
nIR-+IR xlR.

We write (y(), ).(}):= (y,X) - () (p,1061°U) for ()E IR.(Actually, an additional index iO

would be appropriate but will be omitted for the sake of not overburdening OUf
notation.)

Theorem 2.4:

Let () --+ (y(), ).fJ)be the canonical parametrization described in Definition 2.3.

1.
1

There is 1)0 > 0 such that

2.

() iO
HT-i U = {y I 0 5 () 5 1) }0' .

1

()0 is explicitlycomputedby

io

i

X-A. Y io U io

)

. l' . C - --
1) =mm. . 1 ET ,11 > A. "{

-10 -u -10 1.11 -A. "{
l'

i

_.

)

y. 10
A. min -:L j EUC,;y. > 0

-10 J"{.
J

3.
i

For i ET-iO and i' ETC + iO' 0 < ()< ()0 we have

() () ()
A. y =). > A., yl' 1 .

4.
io

y1) =: yis the second vertex (apart from Y) adjacent to the edge HT-i U.0'
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Note that in statement 2 the minimizer decides as to whether case 1a) or case Ib) is

prevailing.I.e., if the arg min is someil ETCand

. X-A. Y
10 11'0 = . .

1 1- 0 A-U - 0
v-. 'Y

11'

then we are dealing with case 1a), etc.

Proof of Theorem 2.4:

In view of our previous construction the affine one-dimensional subspace of

(y,X) + (LTUi &ICU),0

which is parametrized by

O-+yO (Oe IR)

contains the edge HT-iO'U' In particular, for 0 = 0 we have yO= Y E HT,U' In view of

_iO JO _iO
the definition property (1) of'Y = (J.L , v ) we have clearly

_iO _iO
A. (-y &ICU) = v + 1.

10'

Also, exploring the - signin the canonicalrepresentation, we comeup with

(5)

i
A. yO =A. (y- ° (10 &ICU))

10' 10'

iO= X- 0(A. (1 &ICU))
10'

iO=X- 0 (li + 1)

0 0 0
=.A - 0<.A = A. yI'

whenever0> 0 and i e T-iO' This implies

yOt K-
lO

(0) 0)
,..
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Hence, for sufficiently small 0> 0 it turns out that yOEHT-iO'U and yOt HT,U'

By a compactnessargument, statements 1., 3., and 4. of our theorem fol1owat once;it
remainsto show2.

Now, clearly yOEHT-' U for all 0 that satisfy
10'

0 0 0
(
. C

)Y ~0, Ai. Y ~ A, 1 ET ,
i

and 00 is the smallest 0 that violates one of conditions (6), Le., the smallest 0 violating
either

(6)

(7)
- iO
yj - 01j > 0

i
r . .th '

U
c - 0 0lor some J Wl JE, 'Y' > ,orJ

(8)

. .
1 1

Ai. (y- 0(10 + °U)) < X- Ovo
Le.

i U i
(
- 0 - - 0

) T A
-

0 1) - A. 'Y < 1\ - . Y1 l'

i i

for some i ET-iO with V 0 < AiU 1o.

Obviously, the 0 we are looking for is the one given by 2., q.e.d.

So far our presentation has just been dealing with the "departure vertex", which, in

cases 1a) and 1b) is obtained by sacrificinga condition "yEK. ", Le., by leaving K. .
10 10

Now, let us turn to the "arrival", that is, as we want to treat case 1a), the entrance
into somenew K. .

11

In other words, let us consider the situation in which there is i1 ETCsatisfying

(9)

. X-A. Y Ol. (y,X)
10 11. 11.} =. . = .1 1 1- 0 A-U - 0 or.u 0

1)-. 'Y . P,
11 11

'"'

.,.
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This means that the vertex adjacent to HT-i U (apart from Y) is0'

101)
{y } = HT-' +. U.

10 11'

iO
L ." 1)

et us wnte y := y .

Supposenow that, for iO ET-iO + il' we want to perform the same procedure as pre-

viously, yielding the "canonical parametrization" of HT-' +. -" U . This way we
10 11 10'

obtain the vector

iO -U ",
~ ELT-io+i1-IO

which,giveny, is definedby a requirementanalogouslyto (1), Le., by

U )0
oe JL = 1.

10
(10)

Define a quantity

_iO U _iO
c. := - or. JL .
11 11

(11)

Then .it turns out that this quantity may be used to establish a direct relation between
i i

/i 0 and jJ,0 as folIows:

Corollary 2.5:
..
1

Let i1 ETC satisfy (9) and suppose that jJ,0 E LT
U,

+ . -" is given via (10). Then
10 11 10

(using (11)) we have

(12)

Jo.. .. c. .
"10 -10 11 JO .. .

JL =JL -)0 JL forIO/l1c.
11-

and
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(13)

. i
All - 0
J1. = - l!:.;..1 .-0c.

11

-,

Proof:
i

By definition of p,0 we have

neU _iO
[

9

]

T-i
~'T-i J1. = . EIR 0

0 ö '
hence

0 0

(14)
iO

m:;;U. . P, =
T-IO+11

0

or.U _io
i1 J1.
0

- 0

io

- ci1 I +-i1
0

T-iO+i1
EIR ,

+-11

-------- -...... 0 0

~ 0

iO
-m:;;U. . L =

T-Io+l1 -10c.
11

0

I

eIRT-iO+i1

1 +-i
0 1

~
. ,0

JO i

l!:.;..satisfies the defining properties of jJ,1 - which proves (13).1
-c.O

11

Similarly, consider now the case iO fi1' We have

0

(15)
i

U -0-ne"..J1. -
~'T-IO+I1-IO

0

or.U_iO
il J1.
0

.~
0

0

0 T-iO+i1-iO- . elR
-10

- Ci I +-i11
0

0
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"
Next, the canonical parametrization at y with respect to iO (which is an element of T!)

i
yieldsthe quantity p, 0, whichis uniquelydefinedby the requirement that it satisfies

0

(16)

.
or.;:.U -10T JL = 1

0

1

. EIRT.

0 t-l0

0

Thus

0 0

(17)
U _iO-. . JL -

0lT"-iO+l1-10
0 -. ,

10 .
aYp, I t-l111

0

o. I EIRT-iO+i1-io
-10

- Ci1 I t-i1
0

0 0

Multiplying (15) with the appropriate factor and subtracting the result from (17), we
comeup with

(18)

i
. cO

",-u 10 i 1
.

T .. .
VI", (

- 1 - 0 -1 +1 -1

T-iO+i1-io JL - )0 JL ) = 0 EIR 0 1 O.c.
11

Moreover, using (16) and Definition 2.2, we find.
-10. C. .

1 1 1,."U
(
- 0 1 - 0

)VI. JL - JL
10 -10c.

11

(19)

.
-10C. .

1 1

= 1 - !- (J(:Up,0
-10 10c.

11

= 1-0=1.
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-10. c. .
1 1 1

Concluding,we realize that (18) and (19) showTi 0 - -1- Ti 0 to satisfy the conditions
-10c.

11
i

defining jJ,0 uniquely; this indeed verifies (12), q.e.d.

Corollary 2.6:

For i1 ETClet

(20) a := - O{. (y,X)= - Al' Y + A.
11 11' l'

Then, for j1 EUC

(21)

a .
1 1

A - 1-0
y. =y. 1.
h h -10 hc.

11

and

(22)

a .
11 -10A=A l/
1 .-0c.
11

Proof:

Indeed, since

i i i c i- 0 ",...U- 0 - 0 Au - 0
c. = - Vl. J.L = l/ - . 1 ,
11 11 11

we can use (9) and (4) in order to obtain

. . a.
- 10-10 - 11 -10

Y =y - -n ("( 0 °U) =Y- _iO ("( $ °U).c.
11

Let us pause for some reflection.

The developmentas presented so far describesthe transition from the vertex Y to the

I adjacent vertex y (assumingwe considercase 1a, that is (T, U) --I (T-iO+il' U)). For-
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mulae (12) and (13), with some good will, may be interpreted as an analogue to the well

known "rectangle rule" of linear programming.

Indeed, in order to eompute y by means of y we need eertain quantities1:, c:, e..

Moreover,in order to eompute the next adjaeent vertex, we have to start with y and

use the eorrespondingquantities, say f, c: , and e. . Henee,we have to find a eomputa-

tional rule for the transition of these quantities. To this end, we foeuson eorollary2.5

whiehindeedpresents aversion of the reetangle rule for a transformation of Ji to it. This

transformation in turn dependson the quantities e: as indicated by the result of Corol-
lary 2.5. This means that we have to establish the reetangle rule for the quantities c

and e as wen. It soomsadvisableto eombineall neeessaryquantities in what is usually
ealled the "tableau" assigned to the vertex y. This tableau should at least contain quan-

tities y, 1, c, e.

There is, however, a further obstacle: So far we have only diseussed ease (la). There are

four other eases which eoneeivably would yield additional quantities to be represented

in our tableau to be eonstrueted. At this instant, therefore, we prefer to present the

tableau without furt her motivation. Rather, the quantities that will appear shall be

justified by furt her eomputation and transformational arguments following in the next
sections.
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SECTION 3

The Tableau

The peculiar pattern of the LH-algorithm as presented in SECTION 1 asks for a slight-

ly more complicatedversionof the tableau attached to a certain vertex {Y} = HT,U'It
shouldbe noted that we still are discussingthe situation in Y only. There is obviouslya
similar tableau attached to any vertex in the correspondingsimplexX.

The tableau to be presented below,contains 6 differentregions,four of them correspon-

ding to the definingsubsets T and U and their complementsrespectively.Accordingto
what kind of transition (correspondingto the cases 1a) to 2b)) is necessary, the "rect-

angle rule" will switch the coefficientsdependingon the positions in the various regions

of the tableau. Ideally, in order to compute the transition formula (that is to verify the
"rectangle rule"), we would have to considerthe behavior of each of the coefficientsin

the 6 regions dependingon four possiblecases of transition; that is, we would have to
perform 24 computational procedures. To proceed with this task explicitly would put
some strain on the reader and is not actually necessaryin all instances. We will hence

concentrateon a few dominant computationalproceduresand leave the remainingones
to the reader.

Definition 3.1:

Let HT U = {Y} ~ Y be a vertex in Y. The tableaucorresponding to yis the mapping,

T-: (Tc UUc) x (T UU U{*}) ~ IR
Y

defineä by Tis,r) = Tsr (s ETC x UC, r ET x U x {*}) where T is the m x(n+lk
matrix

T u {.}

10 jo .

11

TC

UC

h

I I
I I
I I

- -e-10- - - - (fJo - - - - - - -r- - - - - - - - - - - -Cl
,11

1
I 1

I I
I I
I I
I I
I I

_10- - - - sJo- - - - - - - --YjI- - - - - - - - - - - - Yh h
I I
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The entries of the matrix are defined as follows.

The last column contains

(2) f:)= - Ol-T(y,A)= A-T Y+ Xe-T

(see Corollary 2.6) and the vector y-U (Le. the positive coordinates of y). Next, 1: is
i i i

obtained via p,0 = (10, ii0)EIRJ-U(io ET) and the requirement that

(cf. Lemma 2.1 and Definition 2.2).

Similarly, c: is obtained by inspecting (11) in SEC.2, that is

(4)
i i

cO = - OC~P,0 EIRI-T

Finally, the quantities a: and 0: have not been motivated as yet, the formal definition is

given as follows. .

jo J-U jo jo jo J-U
For jo EU vectors ~ EIR and p = (~ , 0' ) EIR are defined by the require-

ment that

(5)
jo .fTL = ar;;..U ...JO-T T P

holds true. By non-degeneracy, -Jo is indeed well defined (this is in fact the normal

paradigm of changing the base in the L.P.-case). Accordingly, we define for jo EU, the

...JO I-T
vector er EIR by

(6) ;0 = A=~-OC~ -Jo .

0

i iO
(3) ar;;..U- 0 1

T J.t = =eT

0
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Remark 3.2:

There is no harm in visualizingT- by i - however,with respect to a matrix the orde1'-y

ing of rows and columnssometimes is important - thus, in a rigorous representation,

T- is actually an equivalenceclassof matrices - to be obtained by permuting rows andy

columnsof i (includingthe IIrowand columnindices").

Given the definition of IIthe tableau" for HT U = {y},let us turn to the rectangle rule,,
which is a mapping of transforming general tableaus.

Fix U ~J and T ~I.

Let T be a mapping (the "(T,U)-tableau")

T : (Tc UUc) )( (T UU) ~ IR

and let iOET,i1 EI-T.

Let

T := T - iO+ i1

and let t denote a mapping((T,U)-tableau)

A AC C A

T : (T UU ) )( (T UU) ~ IR .

The IIrectanglerille" (for (iO'i1)) is a mapping that sends (T,U)-tableaus into (T,U)-

tableaus, say

St . : {T} ~ {T}
10,11

as indicated by the familiar figure
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T U *

iO

TC
I I

i
1

- - ...J..J-
1 - - ß...1

I .-, I

==~==
1

UC

.
I I I :
'11 ~ 6
I .
I ,

T U *

ACT
iO

i1

, I
I I

- -'-1' - _1- - -/F - _1- - -
I al a

- -:- ~ - -1- - -;- - -. - - -
1 f
I I

I

.
l.1' 6- fb., al a
I I

I

.9t . 1=1'
10,11

UC

Gf course, application of this kind of rectangle rule will correspond to a transfer in case

la)

HT,U -I HT-io+il'U = Hi',U

If we have to deal with a transfer

H -IH. .=H..
T,U T-I0,U+h T,U

(correspondingto case 1b)), then there is a corresponding.9t '. Here,.9t . 1 = 1 is
Io'h IOdl

a mappingas indicated via
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T
iO

u *

UC j1

I I
, I

'1 ""'
1

"""'''6
I I '

, I :
I , ', r
, I

- - 'a" - ..I..- - 7:J- -+-~-- t!._-
, I
I ,

TC

T
UJ\,"

J1 U , *

, ,
, I (.lN

'_11. . . , , , . . . .6- t!..l.
lai' a
I I :
1 I :

~I: ~ 1..--
lai a

- - - - - - - ; -:- - - - - - - T - .

'cT
TC

. cU 10

The ordering of rows and columnsis, of course, arbitrary - which is why a "tableau"
perhaps is better thought of as a "mapping", The fact that we have four kinds of tran-

sitions - and hence four kind of tableaus - must be taken care of extensively while
implementingthe algorithm.

Theorem 3.3:

Let H'T U = {y} ~Y be a vertex in Y and let iOET, I T I~ 2. Suppose,yis the vertex,

adjacent to HT-' U other than yand assumethat {y} = HT-' +'

U' Then the corre-
10' 10 11'

sponding tableaus satisfy

(7) T ~ = ~ . T-
Y 1011 Y

Proof:

We have to compute the transition for 6 types of entries in T ~and T-,
Y Y
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>. Let us first concentrateon "the block UCx T" of T-, the transitions should bey

1 ~..
'Y-+ - a: J.orJl' 10

Ii -+ Ii - fb.a: for jl' i 0 fiO

The entries of T- are
y

-10

'Y= JLj1

Jo
a: = c.

11

~

1

ß= c.O
11

_iO

Ii= JLj1

Thus, the rectangle rule requires

1_-1-
Ci - -10c.

11

-10c.

1l=2
a: -10C.

11

-10
JL.
h1- --,-

- a:- -10c.
11

~

-10
~ . C.

-10 -10 11
Ii- fb. = JL. - JL.-.-

a: J1 h-10c.
11

As for row jl' consult CoroIlary2.5. Clearly, (13) in SEC.2 teIls us that - ~ is indeed

the (jl'i1) entry of Ty while (12), SEC.2 indicates that Ii - ~is the (jl'i) entry of Ty

(in "the block UC x U").

The remaining computations, though sometimes tedious, are a mere formalism. By
virtueofour considerationsin SEC.2weknowthat the tableauentriesof T- determine

y

y. Now, as the entries of some T. are defined formaIly by (1)...(6), we just have to

verify the rectangle rule via the definitions (1)...(6).

L____-
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To this end, fix i 0 ET, i 1 ETC. Also, denote the entries of Tywith a A,e.g., [1"p,... etc.

the same notation has been employed in SEC.2.

First of all, let us take the block UC)(U, Le., consider p = (0, u).

jo ~
As P (forjo EU = U) is definedvia

rrG:U)0 j 0
~-T p = alt(8)

we compute

jo. d. .
1 1 1

ort
u

(
.-PO 1 - 0

)P - -.- J1,
-10c.

11

the coordinates i El' of (9) are given by

(9)

U
1 a.. - ",U j

o

or:.-PO I1JO
VI. P

1 P + 11
.

or:U -10
11 J1,

",U -10
VIi J1,

~ ai. - m:UJo
ali + 1JO 11 P

.
or:U -10

11 J1,

. 0 for i f i1

=

or.Ujo +
11 p

a. . - or:Ujo
I1JO i P1

or.U _i 0
i1 J1,

for i = i1or.
u _iO

. J1,
11

- Ol~O
1

that is, the coordinates are those of the right hand side of (8). Thus, the term in paren-

thesis of (9) must be the left hand side of (8) - this takes care of the o:-entries in the
block UC )( U.

'" u ,,' ' I',' ,'';;~, ",' ';', ,'", I" ,f :!~" ,I';:,I,'~' ,i,,',",:~\, "";,,, "'""'1,'" ':'ii., "',. '""I,' 'I), ";r,,,,,,,"'\~;"",',.,,, ,"',' (li"', '" .'i"li,jj';i'i'\Ii"~"I";''',;ll,..!IiilJii,', ,;',;",1>";': ' ;,",,'d'i ,,,' .I't Lj,!!..:Ji.i.
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Next, the y.-entries, i.e. the block UC IC{*}, are obviously taken care of by Corollary

2.6, i.e., by formula (20) of SEC.2.

We proceed with the c:-entries in the TC IC T block, using the fact that the rectangle

rule has already been established for p,vs. {L.Hence, using the definitiQn as provided in

(4), we proceed as follows: First, for a1l i 0 #i1 :

)0-c. -
11

(10)

Similarly, for i 0 = i1

Ai1c. =
11

.
- {}(:"U{LI 0

11
by (4)

-

.
1. c.o.

1 1 1", U (
- 0 1 - 0

)- V{. J.I, - -.- J.I,
11 -10c.

11

(by Corollary 2.5, i.e., by (12), SEC.2)

-i. C.O.
-10 11-10c. - -.- c.

11 -10 11
c.
11

for i 1 # iO (by (4))

-

ic.O
11

1Qc.
11

for i 1 = iO (by (3))

-"""'U Ai1V{. J.I,
11

-
i

U -0
- {}(:"(-~)

11 -10c.
11
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(11)
-i Oc.

11- -.--
-10c.
11

for i 1 f iO by (4)

-

1-.--
-10c.
11

for i 1 =iO by (3)

Obviously,(10) and (11) establish the rectangle rille for the TC )( T block. As for the d:

in block TC )( Uj we have by (6)

A

~JOd. -
1 -1

~

A (lJO

aA . - m::U (p
_JO i 1 JO

J011 1 -~J.t
)

1 -10c.
11

(12)

i A

A c.O (lJO

'TJ 0 11
i

u. - 1
11 _iOc.

11

for i 1 f iO

-
A

(I~O
11

_iOc.
11

for i 1 =iO

using (6), (4), (3), and (5).

Finally, the e. in blocks TC )( {*} are transformed by using (2), thus, for i 1 f iO:
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e. = -0{. (y,~)
11 11'

(13)

e. .
1 1

= B. + {}(:"U-l ji 0
11 1 l' -10e.

11

(by Corollary 2.6)

e. )01 e.
= B. - 1 11

1
1

T-0e.
11

(by (4))

and for i 1 = iO:

e. =- O{. (y, ~)
11 10'

(14)

e.1 .
= - Ol. (y- X) + 11'1rU -10

1" -.- Vl. JL
0 -10 10.e.

\"-v---'" 11

0 (by Corollary 2.6)
e.
10

=}-0c.
11

(by (3)) q.e.d.

The further development is rather straight forward. There are four kinds of possible

transitions HT U -I Hi' Ü when passing from one vertex to an adjaeent one via some, ,

edge. .To each of these transitions, there corresponds a reet angle rule - we have explicit-

ly indieated two of them. Nowwe have

Theorem 3.4:

Let HT U = {y}and Hi' Ü = {y} be adjacent vertices. Suppose, T- is the tableau" y

correspondingto y. Then TA is obtained by the reet angle rule (Le., the one correspon-y

ding to HT U -I Hi' Ü),, ,
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Proof:

We should discuss briefly all four cases 1a) - 2b). Now, 1a) has already been dealt with.

As for 1b) we return to the presentation exhibited in 2.4 and 2.5; here we have to re-

place formula (9) in SEC.2 by

(15)

-
iO yj~ - 1

- _iO
f'
h

thus assumingthat a transition

HT U -I HT
' U .

, -10' +h
10

takes place. Againwe computey=y~ .

In doing so, we realize that the quantities of the tableau T- are sufficient in order toy

perform all necessarycomputations. Hence,it sufficesto again check the rectangle rule
(9t " that is) for case 1b). This amounts to jogglingaround the quantities specified

10,J1

by formulae (2) - (6). As the details are to be perceivedby walkingthe way parallel to

the one that led to the treatment of 1a), we shall not offer a further discussion.

As to cases2), we abbreviate the discussion- in principle we have to introduce another

canonical parametrization. Consider the vertex

{y} = HT U,

and let X= Ai. Y (iET). Pick jo EUj it follows from nondegeneracy that

(16)
j O-U -(U-jO) -(U-jO)

LT = {P=(O,u)EIR xlRlOlT (o,u)=O}

is a linear subspace of IR-Ux IRof dimension 1.

Again in view of nondegeneracy it is dear that equation (16), Le.

Olj0 = oc:U jo
T T P_jo

:;
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defines the vector ";0 uniquely and the mapping

(17)
0 ---< \y,J) - 0 do $ °U-jo)
IR-+ IRn )( IR

defines the canonical parametrization of the affine subspace
jo-U

(y,X) + (LT (9 °U-jo)'

Of course, the projection

0---< l =y- 0 clo $ °U-jo)

also parametrizes an affine subspace of IRn;this latter one contains HT U-' (and, JO

HT U). Thus, the analogueof Theorem2.4 is givenby:,

(18) There is io > 0 such that

() jo
HT U-J' = {y I 0 ~ 0~ () },

, 0

io is explicitlycomputedby(19)

-
X- Ai. Y

~o = min J jo -U ';0{J -A .
1 .

i ETC ~O > A~U~o, l'

-

/\ min
{
2- jE UC,~o > O

}10 J
J

From this vantage point the reader now views the scene that has so extensivelybeen

discribed in case 1. We willlea ve him there to his own efforts - if necessary.
q.e.d.
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As to this section, our final task is to shortly consider the initial tableau. This turns out

to be of a nice and simple shape.

Theorem 3.5:

. - h
( ) YLeth EJ and y =e = 0,...,0,1,0,...,0E_.

SupposeiOEI is such that
a. . = max a.. .
loh i EI lh

Then {eh} = HT U with T = {iO}and U = J - {j1} is a vertex in Y and the corre-,
sponding tableau is given by T j which is indicated by the following matrix

e 1

T

i 0

U

J *

(20)
C 1

T

UC j1

Here

(21) e = a. . - a.. (i ETC)
1 loh lh

and

(22) (Ij= a..- a.. + a. . - a. . (iETC, jEU)
1 lJ lh loh lOJ

Proof:
j1

Clearly, {e } = HT U is a vertex. Note that,

'X= a. .
loh

holds true. All we have to do is verifyingthe entries of the matrix using formulae (2) -
(6).

1 .-
- 1 . .. .. .. . . . . . . . . . . .. .. .. .irJ.. . .... e. .} 1.

.
- 1 .

:

0 1......... ..... ....... 1....1 1



-37-

In viewof (2) we have
he.= 'X- A. e =a. . - a..

1 l' Joh IJl

which shows (21). Next, exploit (5) in order to obtain

= (1,a. . - a. .)
loh 10J

The first coordinate of pj is ö~ , which equals 1.
h

Next, (6) leads to

(lj1 = aij - aqU pj

=a.. - (a.. , -1) (1, a. . - a. .)
IJ IJl loJl loJ

and thus (22).

The remaining computations, easy as they are, will not be carried out explicitly.

q.e.d.

-J
=(ocrUr1t4p

-1

= [ail -:] [ ai]

= [-: 1] [a""]aioj1 lJ
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SECTION4

Implementingthe Mgorithm

Supposethat, starting out from somevertex {y} =HT,U' we have "left KiO" (iOET),

hence a transition takes places along the edge HT-' U and case 1a) or 1b) will prevail.
10'

From Theorem 4 of SEC.2 and the following presen~ation we know, that this depends
1

essentiallyon the minimizing argument that yields -00 in 2.4.2. Clearly, the quantities

competing for this minimizer are basically available in the tableau T- . For, in solvingy

the definition presented by forrnulae (2) and (4) of SEC.4 into 2.4.2 it turns out that we

have to look for the rninimizer that yields the expression

{

e. i

}

A
{

y. i

}

rnin ~ I iETc, <;.0> 0 rnin:.J-1 jEUC, 1.0> 0
-10 1 -10 J
C. 1.1 J

Verbally, this means that we take the quotients of colurnn * and colurnn iOof Ty "co-
ordinatewise" and look for the rninirnizing row. According to whether this yields sorne

i1 ETC or sorne j1 EUC,we end up with 1a) or 1b) respectively. Note that the quotient

rninirnizing row is unique by non-degeneracy.

It is not hard to prove the generalization of this.

Theorem4.1:

Let {y} = HT,U be a vertex in Y with tableau Ty' Denote the last colurnnof Ty by

T.* (= (e, y-U))' Let HT' U' be an adjacent edge (so T' = T-p, or U' = U-p) and let,

T be the p'th colurnn of T-. Next, let u be a rowof T- (Le. u ETC or u EUc) such
'p y y

that

(1)
Tu*

{

T ,*

I }
-= rnin ~ T, fO, u' E{rowsofT-}
Tup Tu'pup y
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Then the following holds true:

1.

2.

3.

Proof:

Obvious.

q is uniquely determined

{y} = Hrr ü with T = T' + q,
or Ü = u' + q (chosenappropriately) is the vertex other than ythat is

adjacentto HT' U,.,
TA=.9t Tyy qp

Finally, we have to ponder about the terminating condition. To this end, consider the

version of the LH-AIgorithm discussed in [9], CH.l, SEC.l, Theorem 1.14, which is
based on the set

Q'/ = {xEXn I xi > 0 YEKi (i EI)

yj> 0 xE Lj (j EJ-n)}

Geometrically,this means that the starting vertex in Y is en and that the first HT U is,
some H. J . Now, obviously the process terminates once either n is added to the

10' -n

indices in U as to constitute HT U with nEU or n is removed from R such that GR V, ,
satisfiesn t R.

In any case, the algorithm terminates once index n appears afresh the first time. If we

complete the rectangle rule, then the equilibrium coordinates can be simply read from

the tableau as they are listed in the last row-.Concluding,the implementing procedure
for the modifiedLH-algorithmis describedas follows:

GivenMatricesA and B, performthe followingsteps

STEP INITIALIZE:

1.

2.

(2)

-

ChoosenOEJ arbitrarily.

Choose iOEI such that

a. =maxa. .
lono i 1110
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3. Choose iOEJ such that

b. . =max b. '.
10JO 10J

(3)

i j
If jo = nO' then STOP. (e 0, e 0) is a (pure) equilibrium point. Otherwise, set up

STEP INITIAL TABLEAUS

The initial tableau arising {rommatrix A is uniquely describedby formulae (20), (22),
(23).

n
This definesT- with Y =e O.Y

The initial t~bleau arising from matrix B is obtained by exchangingBT and A, J and I,
n and m etc. That is, we have

I-i0
jo j 0

(4) J-jo

10

Here

(5)

- T TB. = b.. - b . .
J J 010 J 10

=b. . - b. .
1OJo 1oJ

and

(6)

-i T T bT TQ.=b..-b.. + .. -b..
J Jl JI0 JOI0 JOl

= b.. - b. . + b. . - b..
1 J 10J 10JO IJO

Having thus established the initial tableaus, CONTINUE with the algorithm.

~

- 1

1 -1 B.- .... . . .. . . ..... . . . . .. . Q .'" . . ...
J . J

1 .-

0 1.. ... . ... . . .... ... . .1.. . . .1 1
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STEP CONTINUE

Havingobtained the information jo from the B-tableau, determine i1 (or j1) as to be

the minimizer of the (well defined) quotients of column * and column jo in the A

tableau, Le.,

. Ta' * T(J'*nun- =-
(J', Ta'jo T(J'jo

Traditionally, (J'is called the "pivot". Apply the rectangle rule, say .9t.. to the
JOl1

A-tableau. CONTINUE with the B-side.

Generally,the informationcontainedin an index p ("the pivot") from the previousside
determines a column in the tableau of the present side. The minimizer a of the

quotients of the last columnand columnp is the next pivot. It determines the rectangle
rule.9t to be applied to the present tableau. Also, the pivot a is the information to bepa
used at the next step with the tableau of the other side.

As far as the pivot satisfiesa f nOEJ, CONTINUEwith this step; otherwise move to
TERMINATE.

STEP TERMINA TE

U the pivot satisfies a = noEJ, the algorithm STOPS (after the last .9tpnohas been

performed).

The A-tableau as depicted in (1) of SEC.3 contains the positive coordinates j EUCof Y,

Le., the vector y-U = YUc in "the block UC x {*}". Correspondingly,the B tableau

contains some x c in the correspondingblock. Augmenting these quantities by anV

appropriate string of zero's yieldsan equilibriumpoint (x,Y).



Program LH :

Choose
Vertex

Strategies

Inittab

Switch TABl

Switch TAB2
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START

Determlne lnltla
Strategy Y using
NO, X as best reply
to Y and ! as best
reply to X. This
yields IO,JO.

Y

Get X,Y

END

Compute X,Y

STOP

Construc
Initial Tableaus
TABl TAB2

N



Subprogram Inittab :

START
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y

-~I

[

SEC 3,(20)

]
cf. SEC 4,(4) I A-MAT.j

-11 0
........

N

R={IO};V={M+1,..,M+N}\{M+JO}
compute RC and VC
ROW=RcUVc; COL=RUV

1

0 COL 0

]TAB = ~ TAB

RETURN
TAB

STOP

y

T={IO+N};U={l,...,N}\{JO}
compute TC and UC
ROW=TcUUc; COL=TUU
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Subprogram Switchtab :

The Subprogram is divided into two subprograms:
1. tor given column (COL) compute the row tor the pivot element.
2. change the Tableau.

START

Next row:

Find pivot element
and its index in T

N

Rectangle:

substitute in T: ,
1 - Il - 1lt' =- . P = l!. 1 =-
a ' a' a

"5= fj - Pr
a

TABI+1,1 H TAB1,COL+1

STOP
~

Comment: T is the tableau
without 1. row and

1. column

Comment : Apply Rectangle Rule

T = [

fJ

~
7J
h
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~ R~A LH BjljNjCjNOjXjYjlOjLAYjJOjLAXjTABljTAB2jlOVjCOLjZBAjZEB

[1] 1~(pA) [1] A Get dimension of A.
[2] N~(pA)[2]
[3] CHOOSEVBRTEX:A Select astart strategy for player 1 or 2.
[4] 'Select a column for player 2 out of 1,..., ','N
[5]' or for player 1 out of ',(~N+l), ',...,' ,~I+N
[6] NO~D0 C~O A Read input to NO.C=Omeans player 2.
[7] ~(-NOe\N+I)/CHOOSEVBRTBXA Is input correct ?
[8] ~ (NO(N)/STRATEGIBSA Is player 1 selected ?
[9] TRANSPOSB:A Then change roles of player 1 and 2,
[10] C~~A0 A~~B0 B~C A transpose matrices and
[11] C~N0 N~I 0 I~C A exchange I and N.
[12] NO~NO-I0 C~l A C=l means player 1 was selected.
[13] STRATBGIES:A NO, 10, JO are the indices of 1 in strategies
[14] X~lpO 0 Y~NpOA Y ,X,X .Find 10, JO, such that
[15] 10~A[jNO]\LAY~r/A[jNO] A X is best reply to Y
[16] X[10]~Y[NO]~1 A and Xist best reply to X.
[17] JO~B[IOj]\LAX~r/B[IOj] A If JO=NO,meaning Y=Xthen (X,Y)
[18] ~(JO=NO)/ENDA is an EqP with payoff (LAX,LAY).ThenSTOP.
[19] INITTABLEAUS:A Else construct the initial tableaus for
[20] TAB1~AINITTAB10,NO,LAY,0A player 1
[21] TAB2~BINITTABJO,IO,LAX,l A and player 2 (1 means transpose B).
[22] SVITCHTAB1:A JO was the number of the last used row.
[23] ~(N<COL~--1+TAB1[lj]\JO)/GBTXYA If there is a corresponding column in TABl
[24] ROV~TABlNBXTROVCOLA then find the row index of the pivot element
[25] TAB1~(ROV,COL)RECTANGLETABl A in TABl to change TAB1. RECTANGLEclaculates the
[26] SVITCHTAB2:A new JO (global in CHANGE)for TAB2. If there
[27] ~(I<COL~--1+TAB2[lj]\JO)/GETXYA is no corresponding column to JO, an BqP
[28] ROV~TAB2NBXTROVCOLA has been reached.
[29] TAB2~(ROV,COL)RECTANGLETAB2A If TAB2was changed correctly
[30] ~SVITCHTABlA then concider TABl again.
[31] GETXY:A Calculate strategies X and Y from
[32] X~lpO A the last columns of TABl and TAB2.
[33] X[«ZEB>N)/ZEB)-N]~«ZEB~1!TAB2[jl]»N)/1!TAB2[jl+2]
[34] Y~NpO
[35] Y[«0<ZEA)AZEA(N)/ZEA]~«0<ZEA)A(ZEA~1!TAB1[jl])(N)/1!TAB1[jN+2]
[36] END: A If player 1 was selected, Y,X is the
[37] ~(C=O)/ANSVER0 C~X0 X~Y0 Y~CA result, else X,Y.
[38] ANSVER:'Bquilibrium point found with strategies : . ,('X),' for player l'
[39] , and ',(~Y),' for player 2'
[40] R~X,Y

~

[1]
[2]
[3]
[4]
[5]
[6]

~ ROV~TAB NEXTROV COLjTAjRjllNjl

1~(pTAB)[2] 0 ROV~O A
~(O=v/TA~DCT<l!TAB[jCOL+l])/ENDA
R~(TA/l!TAB[jl])+TA/1!TAB[jCOL+l] A
~«l/9)=IIN~l/(R>0)/R)/END A
ROV~(TA\R)\IIN A

END: A

If no pivot element can be found return O.
Bleminate zeros in COLcolumn,
divide 1+1 column by COLcolumn and
find the smallest value, if it exists,
and its index.
Return pivot row.

..,.
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~ R~IAT 1N1TTAB PARAlj1OjJOjLAIBDAjVjDELTAjGAIIA;CjDjTETAjYjROVjCOLjVjUjNjl

[1] 1O~PARAI[l] ~ JO~PARAI[2] ~ LAIBDA~PARAI[3] ~ V~PARAI[4] ~ ~(Y=0)/11

[2] R PARAI contains 10, JO, the no. 01 pos. coordinates in strategies 01 players 1 and 2,

[3] R resp, the payoII Ior this strategy Irom matrix IAT and boolean variable Y that

[4] R indicates, whether the matrix IAT has to be transposed (V=l).
[5] IATI-~IAT

[6] 11:II-(plAT)[1] ~ NI-(pIAT)[2] RIlT is an IxN matrix.

[7] VI-Ip1 ~ V[1O]I-O R Take the invers strategiestoreduce the matrix.
[8] UI-Np1 ~ U[JO]I-O

[9] CI-((1-1),1)p--1R Now calculatethe components01 the tableau :-------

[10] D~IAT[1OjJO]+(U/VjIAT)-(~((N-1),1-1)pV/IAT[jJO])+((1-1),N-1)pU/IAT[1O;]R I

[11] TETAI-LAIBDA-V/IAT[jJO]R (c d teta) I
[12] GAlIAI-O R (gamma delta y ) I

[13] DELTA~(1,N-1)p1 R I

[14] YI-1 R I

[15] RI-(C,D,TETA),[l]GAIIA,DELTA,YAand order them to the tableau --------------------

[16] ~(V=0)/12 R Calculate the column and row vectors Ior player 1 or 2:

[17] ROY~((\(1O-1)),1O!\I),JO+1R RC={l,..,I}\{1O} VC={JO+I}

[18] COLI-1O,I+(\(JO-1)),JOhN R R ={1O} V ={M+1,..,I+N}\{JO+I}

[19] ~.3

[20] 12:ROVI-(N+(\(1O-1)),1O!\I),JORTC={N+1,..,N+I}\{N+1O} UC={JO}

[21] COLI-(N+1O),(\(JO-1)),JO!\NR T ={N+1O} U ={l,..,N}\{JO}

[22] 13:RI-(0,COL,0),[1]ROY,R
~

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

~ NTABI-P1VOTRECTANGLE TABjljNjROYjCOLjROjCOjP1jJ1

1~---l+(pTAB)[l]~ N~---l+(pTAB)[2]R Get the dimension01 the tableau

ROYI-P1VOT[l] ~ COLrP1VOT[2] A and the index 01 the pivot element.
NTABI-1 l!TAB A Tableau without row and column vector.

ROl-Ip1 ~ RO[ROY]I-OA Take all rows, exept the pivot row,

CO~Np1 ~ CO[COL]I-OA all columns, exept the pivot column.

NTABI-RO\CO\(NTABI-CO/ROjNTAB)-((ROjNTAB[j,COL])+.x(CO/NTAB[,ROYj]))+P1~NTAB[ROYjCOL]

NTAB[jCOL]I--1!TAB[jCOL+1]+P1 R Calculate the outer elements (see line 6),

NTAB[ROYj]1-1!TAB[ROY+1j]+P1 A the pivot column (see line 7) and pivot row.

NTAB[ROYjCOL]I-l+P1 A Replace the pivot element.

J1I-TAB[ljCOL+1] ~ JO~TAB[ROY+1j1]RTakerow and column (globalJO),

NTABI-TAB[lj],[l](1!TAB[j1]),NTABA copy old row and column vectors to new

NTAB[ROY+1j1]I-J1 R tableauand exchangerow and column.

NTAB[ljCOL+1]I-JO R JO will be used by LH.
~
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