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ABSTRACT
We present a formal model of intention grounding for robots
in HRI which models the user and robot’s own current inten-
tions simultaneously. Central to the model are interactive
state machines, and strength-of-evidence functions, which
are evaluations of the degree to which an agent’s current
intention is being communicated publicly. The model has
so far been used in a simple pick-and-place robot with a
speech interface, but we argue this can be generalized to
other robots such as semi-autonomous vehicles, providing
potential for automatic evaluation and active learning.

1. INTRODUCTION
In HRI, the intentions of humans and robots are funda-

mentally different in terms of how they are arrived at, and
how they are internally represented. However, if appropriate
assumptions are made when designing a robotic system, it is
possible to achieve sufficient overlap (or homomorphism, in
an informal sense) between the different agents’ intentions in
order to carry out a task together. The inherent differences
in the internal representations and processing of humans and
robots [10] makes arriving at these overlapping intentions an
even greater challenge. However, one can imbue robots with
communicative grounding mechanisms in the sense of [2, 1],
which are the abilities to build and align internal represen-
tations towards shared information or “common ground”.

In robots with speech interfaces, there has been much
work on user intention recognition, forming part of the sub-
field of Spoken Language Understanding (SLU). Conversely,
on the side of the robot, grounding the robot’s intention can
be achieved through robots having high legibility in their ac-
tions to make them ‘intent-expressive’ to users [4, 3]. What
is required in real-world HRI is to model both the user and
robot’s intentions simultaneously, and the public evidence
for them within a single system– SLU runs online during
the robotic action, where the robotic action immediately
and seamlessly updates the context in which the words being
spoken are interpreted. Achieving a closed-loop interaction
which ensures user intentions are dynamically recognized ac-
curately, and also quickly, is a challenge we address here.

2. A MODEL OF CONTINUOUS
INTENTION GROUNDING FOR HRI

We build on the proposal of [9] for a communicative ground-
ing model for HRI, inspired by recent attempts to incremen-
talize grounding strategies in dialogue models [6, 5, 8], which
can be purposed for simple robots with speech interfaces if

certain modifications are made. The first modification is
that the robot’s actions have the same status as dialogue
acts. The second is that commitment to goals can be real-
valued rather than absolute, and this commitment can be
evaluated by strength-of-evidence functions which monitor
the degree to which each agent is showing commitment to
their goal at a given time.

Statecharts with strength-of-evidence functions.
We follow work using Harel statecharts [7] for dialogue

control in robotic systems by [11, 12]. Fig. 1 defines the
grounding state machine for a simple robot which interprets
a user’s speech to carry out actions. Here we characterize the
user and robot as having parallel states, represented either
side of the dotted line.

Fig. 1 shows the states and “triggering conditions” that
must be satisfied to allow state transitions (written on the
arcs between state boxes, where specific guards are in square
brackets). The main motivation of the model is to explore
the criteria by which the robot judges both their own and
their interaction partner’s goals to have become publicly
manifest (though not necessarily grounded) in real time, and
therefore when they are showing commitment to them. To
determine which grounding state each agent is in, we use
evaluation functions Ev for each agent’s state within the
triggering conditions– these are strength-of-evidence valua-
tion functions that return a real number value indicating the
degree to which the agent has displayed their goal publicly,
according to the robot’s best knowledge. Goals are hidden
and estimated in the case of the user state and observed
in the case of the robot, yet both have to be evaluated for
the degree to which they are manifest to allow appropriate
interpretation of the user’s speech.
UserGoal is estimated as the most likely user intention

from a set of possible goals Intentions, given the current
utterance u, the robot’s state Robot, user’s state User and
the current task’s state Task, as in (1), with Ev(UserGoal)
characterized as its probability in (2). Intentions is the set
of intentions specified on a degree of abstraction deemed
relevant by the system designer– for example a possible in-
tention could be TAKE(X) for a robot capable of taking
object X. While they are important, the lower-level inten-
tions required to realize the higher-level ones need not be
discussed for the overview of the model here.

UserGoal := arg max
i∈Intentions

p(i | u,Robot, User, Task) (1)

Ev(UserGoal) := max
i∈Intentions

p(i | u,Robot, User, Task) (2)

While the estimated user’s goal is continuously being up-
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Figure 1: Interactive Statechart as modelled by the robot consisting of two parallel, concurrent states, one for each participant.
The triggering events and conditions in the transition functions (the directed edges) can reference the other state.

dated through new evidence, this goal can only be judged
to become sufficiently mutually manifest with the robot
when a certain confidence criterion has been met– here
we characterize this as a real-valued threshold δ. Using a
real-valued threshold allows experimentation into increas-
ing responsiveness of the robot by reducing it [8]. As
Fig. 1 shows, once Ev(UserGoal) ≥ δ then the state
user_showing_commitment_to_goal can be entered. In a
fully cooperative system one can assume the assignment
RobotGoal := UserGoal is then carried out upon enter-
ing the state (though we omit this from the core grounding
model given cooperativity is not assumed).

Conversely, the Robot’s view of its own grounding state
uses the function Ev(RobotGoal) and its own threshold ε.
Unlike the user, the robot’s goal is taken to be fully ob-
served to itself as some i ∈ Intentions, however it must still
estimate when i is made public by its actions, and we assume
this is a probability function which considers the states of
Robot, User and Task as the user’s state machine does, but
also depends on its most recent action action:

Ev(RobotGoal : i) := p(i | action,Robot, User, Task) (3)

Given this is an approximation to the user’s inference
function from the robot’s action to the most likely goal
(rather than the predictability of the action given the
goal), it can be seen as a measure of the legibility of the
robot’s action [3]. Once ε has been reached, or the ac-
tion has become sufficiently legible, the robot may enter
robot_showing_commitment_to_goal. Once in this state it
is permissible for the user state to either commit to the mu-
tually manifest goal and trigger grounding, else engage the
robot in repair, entering user_repairing_robot_action.
Then, as soon as is physically possible in the motor plan, the
robot state will become robot_repairing_robot_action.
The repairing state’s internal processes are identical to the
initial user_uncommitted one, except the first action upon
entry is to prune Intentions such that:

Intentions := {i | p(RobotGoal | i) = 0} (4)

(4) removes all those intentions which would eventually
lead to entry to the repaired RobotGoal intention. The robot

will remain in this repairing state until the user’s state has
exited user_repairing_robot_action, triggering the end of
the user-initiated repair interaction. Note that it is only pos-
sible for the user state to repair the RobotGoal, rather than
UserGoal– the user can repair the latter through self-repair,
but that is currently not represented as its own state. Repair
of the robot’s current action is only possible through know-
ing it had shown commitment to a goal which caused it (i.e.
been in the state robot_showing_commitment_to_goal), oth-
erwise, as per normal principles of situated dialogue, it would
not be able to interpret the utterance as a repair. The
strength-of-evidence function Ev(RobotGoal) and the thresh-
old ε are therefore of tantamount importance, as they deter-
mine when confirmations and repairs can be interpreted as
such, and consequently determine the interactive dynamics
of the system.

Fluidity through incremental processing.
We achieve fluidity in this grounding process through in-

cremental processing. The increment of the triggering events
in the User state is the latest word w in current utterance
u (as opposed to the latest complete utterance). The prin-
cipal Natural Language Understanding (NLU) decisions are
therefore to classify incrementally which type of dialogue act
u is, (e.g. u : confirm), whether w begins a new dialogue
act or not, and estimate UserGoal from the set Intentions,
whatever they may be in the given application. The ground-
ing statechart is then checked to see if a transition is possible
from the user’s current state as each word is processed, akin
to incremental dialogue state tracking [13].

3. EXAMPLE APPLICATIONS
For a given robot, while the interactive statechart defines

the transitions between grounding states, their triggering
criteria require the definition of the variables of the esti-
mated current UserGoal from a set Intentions, its strength-
of-evidence function Ev(UserGoal), threshold δ, and the
analog for the robot state, Ev(RobotGoal) and threshold ε.
The below subsections give two examples, however we em-
phasize these are two simple sets of choices, and the potential
for optimizing these provides a useful avenue for research,
and the potential for learning and selecting some of these
elements through interaction is also possible.
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Figure 2: Concurrent User and Robot grounding states during an interaction where an initial mis-recognition of ‘green’ as
‘grey’ by the ASR, and confusion over colours in reference resolution where ‘grey’ gives higher probability to a blue object.
The recognition of repair allows the participants to become grounded again.

3.1 Pick-and-place robot with voice interface
Our first example application can be seen in Fig. 2, a sim-

ple pick-and-place robot which performs natural language
understanding incrementally as words are spoken. The
robot’s principal objective is to resolve references to the ob-
jects in the scene and place them at target locations.

We characterize UserGoal as taking or placing the most
likely object out of the referent set R according to the
robot’s reference resolution’s output distribution, given
the user’s utterance u so far (e.g.(5)) and Intentions is
simply the set of possible actions applicable to all the
possible referents. When the action is TAKE, the Ev
function is the probability of the most likely object be-
ing referred to as in (6). It is an empirical question
to find a suitable δ which (6) should reach to allow en-
try into user_showing_commitment_to_goal– making this
lower means the robot is quicker to react to the user’s speech,
though could be incorrect in estimating the user’s intended
referent, while higher values may result in better accuracy
but with a noticeably less fluid interaction [8].

UserGoal := TAKE(arg max
r∈R

p(r | u)) (5)

Ev(UserGoal) := max
r∈R

p(r | u) (6)

UserGoal is obtained incrementally with a simple NLU
method using the results from the robot’s reference res-
olution and the Robot and User’s current grounding
states. Firstly, sub-utterance dialogue act (DA) classi-
fication is performed, judging the utterance u to be in
{request, confirm, repair}. Then the state machine is
queried to see if transitioning away from the current state is
possible and the UserGoal is updated – see [9].

The robot’s state machine module partially consists of
the Robot grounding statechart in Fig. 1. When the User
state is user_showing_commitment_to_goal, the RobotGoal

is set to UserGoal, whereupon it plans to grab or place
the estimated referent. The robot can estimate the time
needed to pick up the referent ri based on a vector v con-
taining its arm’s current position and velocity with a func-
tion MinTimeToGrab(ri, v). We use this to characterize
a simple strength-of-evidence function for the robot’s in-
tention in (7). This approximates the predictability that
its current action will lead to picking up its target ri with
a softmax function over the negative time estimations for
grabbing each object still in play.

Ev(RobotGoal : TAKE(ri)) :=
e−MinTimeToGrab(ri,v)∑

rj∈R
e−MinTimeToGrab(rj ,v)

(7)

The threshold ε determines how quickly the robot state
machine can enter robot_showing_commitment_to_goal,
which is the point where the robot’s action can be repaired
or confirmed by the user. If ε is low, then it may optimisti-
cally interpret repair and confirmation acts as referring to
its goal early in its movements, while if it is too high, repairs
and confirmations may only be interpreted as such when the
arm is very near the target object, making the interaction
safer but more cumbersome [8].

Fig. 2 shows the state dynamics for the concurrent stat-
echart during an interaction with repair. Notice how
the Robot state mirrors, though slightly lags, the User,
by virtue of the fact that it takes time to demonstrate
commitment to a given goal with a sufficiently strong
Ev(RobotGoal), or legibility. The robot’s ASR error leads
to it showing commitment to picking up the wrong object.
A user-initiated repair interaction begins. During the re-
pair, Intentions is pruned such that all intentions imply-
ing the current RobotGoal are removed as in (4). The
robot consequently changes its goal to match UserGoal
and re-enters robot_showing_commitment_to_goal once
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Figure 3: An example of the grounding state model in operation for a semi-autonomous vehicle which has taken the initiative
to change lanes, which is repaired by the user.

its new movement has become legible. In this state,
the user’s confirmation “right” is interpreted as refer-
ring to the revised RobotGoal, triggering the entry to
robot_committed_to_goal.

In experiments with this robot, [9] show that user rat-
ings of the robot’s perceived understanding correlate very
strongly with a simple internal measure of understanding
derivable from the grounding state machine as the number of
state entries into the robot_committed_to_goal state over
time. This understanding measure could be used for auto-
matic evaluation and as a reward in reinforcement and active
learning paradigms in future work.

3.2 Semi-autonomous car with voice interface
We now briefly outline a possible application to semi-

autonomous cars. We envisage a situation where a car is
left to make autonomous decisions, while the user can inter-
vene when they wish to with voice commands.

We show an example where the car decides to change lanes
automatically, upon which the user sees an oncoming traffic
jam in the lane being moved to beyond the robot’s field of
view, and then repairs the lane change to go back to the
original lane– see Fig. 3.

Focusing on the robot’s intention to change to lane li,
given a function which estimates the minimum time needed
for the car to join a given lane lj ’s trajectory from its current
position and velocity in vector v, MinTime(lj , v), we posit
the simple strength-of-evidence function in (8).

Ev(RobotGoal : ChangeLane(li)) :=
e−MinTime(li,v)∑

lj∈Lanes
e−MinTime(lj ,v)

(8)

We note here that as this is an approximation to the user’s
inference function from the snippet of the car’s movement
trajectory to the car’s goal, more sophisticated approaches

to legibility of movement shown in [4] with continuous func-
tions could be used here.

In Fig. 3, once the RobotGoal to change lanes becomes
legible, with (8) reaching ε, the user’s repair act“no!” can be
interpreted as referring to that goal. The robot then engages
in repair until both agents can become uncommitted again.
Repairing the RobotGoal again uses (4) to prune Intentions,
which in the absence of another sufficiently strong UserGoal
causes reversion to the original uncommitted state rather
than a correction of the action as in Fig. 2.

4. CONCLUSION
We have presented an abstract model for intention

grounding in HRI which allows investigation into continu-
ous intention recognition and expression for different robots
with speech interfaces. The choice of the possible intentions,
strength-of-evidence functions and thresholds will vary with
the affordances of the robot and its primary tasks. How-
ever, provided the robot has the ability to monitor the on-
going progress of its actions, and provided those actions are
interruptible, our model can be used as a framework for
investigating the optimal strength-of-evidence functions for
intentions in HRI.

Furthermore, we propose that in future work, rather than
restricting the definition of all the elements of the model to
be defined at design time, the strength-of-evidence functions
and the thresholds could be learned during HRI using model
selection and reinforcement learning methods.
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