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Plants are sessile and as such their reactions to environmental challenges differ from
those of mobile organisms. Many adaptions involve growth responses and hence,
growth regulation is one of the most crucial biological processes for plant survival
and fitness. The plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP)
transcription factor family is involved in plant development from cradle to grave, i.e.,
from seed germination throughout vegetative development until the formation of flowers
and fruits. TCP transcription factors have an evolutionary conserved role as regulators
in a variety of plant species, including orchids, tomatoes, peas, poplar, cotton, rice and
the model plant Arabidopsis. Early TCP research focused on the regulatory functions of
TCPs in the development of diverse organs via the cell cycle. Later research uncovered
that TCP transcription factors are not static developmental regulators but crucial growth
regulators that translate diverse endogenous and environmental signals into growth
responses best fitted to ensure plant fitness and health. I will recapitulate the research on
TCPs in this review focusing on two topics: the discovery of TCPs and the elucidation of
their evolutionarily conserved roles across the plant kingdom, and the variety of signals,
both endogenous (circadian clock, plant hormones) and environmental (pathogens,
light, nutrients), TCPs respond to in the course of their developmental roles.

Keywords: transcription factor, TCP, development, evolution, plant hormones, signaling

DISCOVERY OF TCPs – OF PELORIA AND OTHER MUTANTS

Developmental plasticity is important for plant survival because plants are sessile organisms that
have to adapt to suboptimal environmental conditions. It is crucial that these developmental
adaptions are balanced, which means that multiple environmental stimuli have to be perceived
and weighed against each other before a plant adjusts its growth. Hence, a plethora of regulatory
proteins is involved in governing developmental responses to the environment. One family of

Abbreviations: bHLH, basic helix-loop-helix; BRC, BRANCHED; CCA1, CIRCADIAN CLOCK ASSOCIATED 1; CIN,
CINCINNATA; CUC, CUP-SHAPED COTYLEDON; CYC, CYCLOIDEA; FT, FLOWERING LOCUS T; GA, gibberellic
acid; ICS1, ISOCHORISMATE SYNTHASE 1; IDR, intrinsically disordered region; jaw-D, JAGGED AND WAVY-D; LA,
LANCEOLATE; LHY, LATE ELONGATED HYPOCOTYL; LOX, LIPOXYGENASE; NLS, nuclear localization signal; PRR,
PSEUDO RESPONSE REGULATOR; TB1, TEOSINTHE BRANCHED 1; TCP, TEOSINTE BRANCHED 1, CYCLOIDEA,
PCF1; TOC1, TIMING OF CAB EXPRESSION1.
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transcription factors that is involved in multiple developmental
processes are the TEOSINTE BRANCHED 1, CYCLOIDEA,
PCF1 (TCP) proteins.

The common toadflax (Linaria vulgaris) is a perennial plant
with bilateral, zygomorphic flowers that is native to Europe and
large parts of northern Asia. When Carl Linnaeus was presented
with a common toadflax that did not exhibit zygomorphic
but radially symmetric flowers, he called it peloria from the
Old Greek πέλωρ (pelór), which means monster. Linnaeus
speculated that this monster was a hybrid between the common
toadflax and a thitherto unknown plant and he was surprised
to see that this hybrid was nevertheless able to propagate
through seeds (Linnaeus and Rudberg, 1744). Whereas his hybrid
hypothesis proved to be wrong, he used this case as evidence
against immutability, the belief that all species are created at
the beginning of the world and are unchanging (Smith, 1821).
Peloria is a natural variation that occurs in toadflax, snapdragons
(Antirrhinum majus) (Darwin, 1868) and in foxgloves (Digitalis
purpurea) (Keeble et al., 1910), amongst other species.

About 250 years later, Luo et al. (1996) isolated the
CYCLOIDEA (CYC) gene which is only expressed in the dorsal
parts of the snapdragon flower and which is responsible for the
regulation of zygomorphic flowers. A double mutant of CYC
and its close homolog DICHOTOMA leads to radially symmetric
snapdragon flowers (Luo et al., 1996). Cubas et al. (1999b) found
that a homolog of the CYC gene was also responsible for floral
symmetry in the common toadflax. Here, they could show that
the CYC gene in peloric mutants was extensively methylated
and silenced (Cubas et al., 1999b). At about the same time,
Doebley et al. (1995) analyzed two quantitative trait loci that
control morphological differences between domesticated maize
(Zea mays) and its wild progenitor teosinte. They found the
teosinte branched 1 (tb1) mutation, which leads to increased side
shoot outgrowth, and showed that the difference between the
maize and the teosinte variant of TB1 lies mainly in the regulatory
regions of the gene, i.e., whereas the function remains the same,
the expression pattern is different between domesticated maize
and teosinte (Wang et al., 1999).

Kosugi et al. (1995) found that two promoter motifs that are
important for the transcriptional regulation of the proliferating
cell nuclear antigen (PCNA) gene in rice (Oryza sativa) were
bound by two transcription factors that were designated PCF1
and PCF2 (Kosugi and Ohashi, 1997). Finally, Cubas et al. (1999a)
determined that the above described proteins TB1, CYC and
PCF1 and PCF2 share a conserved non-canonical bHLH region,
the eponymous TCP domain (Kosugi and Ohashi, 1997).

FORM AND FUNCTION OF TCP
TRANSCRIPTION FACTORS

Whereas, this review will mainly focus on the evolutionarily
conserved roles of TCPs in the regulation of plant development
and their interactions with endogenous and environmental
signals, it is crucial to understand how they function. TCP
transcription factors are divided into two classes, class I and class
II TCPs. These classes differ in the composition of their respective

NLSs, the length of the second helix in the bHLH domain, and the
presence of an arginine-rich domain of unknown functionality
outside the bHLH domain (Cubas et al., 1999a). This so-called
R domain is not found in class I TCPs and was predicted to
form a hydrophilic α-helix or a coiled-coil structure that mediates
protein–protein interactions (Lupas et al., 1991; Cubas et al.,
1999a).

The basic region of the TCP domain is essential for DNA
binding. Replacement of a conserved glycine–proline pair in
the basic region by two lysines completely abolished DNA
binding activity of TCP4 in electrophoretic mobility shift studies
(Aggarwal et al., 2010). Addition of the major groove binding
dye methyl green reduced TCP4 binding to DNA, indicating
that TCP4 binds to the major groove in double stranded DNA
(Aggarwal et al., 2010).

In various experimental approaches, class I and class II TCP
proteins have been shown to recognize GC-rich sequences in
target gene promoters (Kosugi and Ohashi, 1997; Li et al.,
2005; Viola et al., 2011; Danisman et al., 2012). The differences
between class I and class II binding preferences are dependent
on the presence of glycine or aspartic acid at positions 11 or
15, respectively (Viola et al., 2012). Interestingly, the class I
and class II consensus binding site sequences are not mutually
exclusive, indicating that at least a subset of potential target
genes are targeted by both class I and class II TCP proteins.
This led to speculations about a possible antagonistic relation
between class I and class II TCPs, where these proteins compete
for common target genes and inhibit or activate gene expression
depending on which class dominates the target gene promoter
(Li et al., 2005). So far, this was shown in one case only, where
the Arabidopsis class I TCP transcription factor TCP20 binds to
the same promoter as the class II TCP4 and regulates the target
gene LIPOXYGENASE2(LOX2) in the opposite direction to TCP4
(Danisman et al., 2012). It is likely though that more cases of class
I-class II TCP antagonisms will be discovered in the future, as the
two classes are frequently discovered to be involved in the same
biological processes.

Similar to many transcription factor families, TCPs require
dimerization to bind to DNA, as addition of deoxycholate,
an inhibitor of protein–protein interactions, to electrophoretic
mobility shift assays leads to a reduction of TCP binding to target
sequences (Trémousaygue et al., 2003). Dimerization between
TCP transcription factors first has been described between PCF1
and PCF2 in rice, which form homo- and heterodimers (Kosugi
and Ohashi, 1997). Whereas the homodimer of TCP20 for
example does not bind to the promoter of the iron homeostasis
regulator BHLH39 in yeast one-hybrid experiments, the TCP20
heterodimer with TCP8 or TCP21 does (Andriankaja et al., 2014).
A systematic yeast two-hybrid approach between Arabidopsis
TCPs found that many protein–protein interactions are possible
between TCPs and that there is a preference to bind to TCPs of
the own class, i.e., class I TCPs preferably interact with class I
TCPs and class II TCPs preferably interact with class II TCPs
(Danisman et al., 2013). Dimerization of TCPs are facilitated
by IDR (Valsecchi et al., 2013). These are characterized by low
compactness, low globularity and higher structural flexibility
and are typically present extensively in eukaryotic transcription
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factors (Liu et al., 2006). The C-terminal IDR of TCP8 is needed
for self-assembly of TCP8 in dimers and higher order complexes.
These IDRs potentially facilitate the flexibility of TCPs in the
choice of interacting partners and thus increases the number of
potential functions TCP transcription factors can be involved
in Thieulin-Pardo et al. (2015). TCPs not only interact with
TCPs: protein–protein interactions with a plethora of other
proteins has been described, including negative regulators of
effector-triggered immunity (Kim et al., 2014), components of
the circadian clock (Pruneda-Paz et al., 2009, 2014; Giraud et al.,
2010), and others (Trémousaygue et al., 2003; Tao et al., 2013).

EVOLUTIONARY CONSERVED ROLES
OF TCPs

The three eponymous TCP proteins were characterized as
regulators of branching, floral symmetry, and the cell cycle
(Doebley et al., 1995; Luo et al., 1996). Later, both CYC-like and
the PCF-like TCPs were shown to be involved in leaf development
(Kosugi and Ohashi, 1997; Palatnik et al., 2003). TCP research
since then has focused on these three developmental processes,
mainly identifying evolutionarily conserved processes in a wide
array of plant species and the role of cell cycle regulation in
the observed phenotypes. Recently it became clear however that
TCPs are not limited to branching, floral symmetry and leaf
development, and neither are they limited to cell cycle mediated
regulation of growth. Both will be discussed further below.

TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1
transcription factors belong to an evolutionary conserved
family that first appears in fresh water algae of the Charophyta
family (Navaud et al., 2007). In the bryophyte Physcomitrella
patens, knockout of the TCP transcription factor PpTCP5 leads
to increased numbers of sporangia that are attached to a single
seta, reminiscent of branching phenotypes of tcp mutants in
higher land plants (Ortiz-Ramírez et al., 2016). Hence, control
of meristematic activity of axillary meristems with a subsequent
effect on branching patterns seems to be an ancient role of TCP
transcription factors (Ortiz-Ramírez et al., 2016). Consistent
with this finding, branching phenotypes are apparent both in
monocot and dicot plant species. Overexpression of the rice
OsTB1, an ortholog of maize TB1, led to a strong decrease in
tiller number. The number of axillary buds was not affected in
these plants but their outgrowth was Takeda et al. (2003). This
fits to the observation that it is not the formation of axillary
meristems but the outgrowth of these that is affected by TCPs
(Braun et al., 2012). This has been shown in peas (Braun et al.,
2012), poplar (Muhr et al., 2016), Arabidopsis (Aguilar-Martínez
et al., 2007; Poza-Carrión et al., 2007) and potato (Nicolas et al.,
2015).

TCP effect on floral development was shown in a wide range
of plant species, including Arabidopsis, Antirrhinum, annual
candytuft (Iberis amara) (Busch and Zachgo, 2007; Busch et al.,
2012), angiosperms like Aristolochia arborea and Saruma henryi
(Horn et al., 2015), Gerbera species (Broholm et al., 2008), rice
(Yuan et al., 2009), sunflowers (Fambrini et al., 2012), peas (Wang
et al., 2008), ragworts (Kim et al., 2008), Morrow’s honeysuckle

(Lonicera morrowii) (Howarth and Donoghue, 2006), Knautia
macedonica (Berger et al., 2016), and orchids (De Paolo et al.,
2015).

Phylogenetic analysis revealed that the CYCLOIDEA-like
TCPs underwent two major duplication events that both predate
the formation of core eudicots (Howarth and Donoghue, 2006).
In Arabidopsis, all three CYC clades are represented by TCP12,
TCP1 and TCP18, respectively (Howarth and Donoghue, 2006).
Especially the CYC2 clade, represented by TCP1 in Arabidopsis,
underwent multiple additional duplications and has been studied
for its effect on floral symmetry, as it contains the original
CYC gene of Antirrhinum (Howarth and Donoghue, 2006). An
interesting side note is that the duplication of the CYCLOIDEA-
like TCPs nearly coincides with the major duplication events
of the homeotic MADS-box transcription factors APETALA3,
AGAMOUS and SEPALLATA, all three of them important factors
for the definition of organ identity in flowering plants (Howarth
and Donoghue, 2006). This suggests that the genetic components
that are important for the definition of floral organs diversified
at a similar time as the components that are important for the
growth regulation of these. TCP transcription factors have been
identified as targets of Arabidopsis APETALA1 and SEPALLATA3
(Kaufmann et al., 2009, 2010), highlighting a possible link
between organ identity formation and growth regulation between
MADS-box transcription factors and TCPs (Dornelas et al.,
2011).

In Antirrhinum, CYC regulates symmetry via the Myb-
domain transcription factor RADIALIS (Corley et al., 2005).
Overexpression of CYC in Arabidopsis leads to larger petals
containing enlarged petal cells (Costa et al., 2005). Regulation
of floral growth is not restricted to the CYC-like class II
TCPs. In the jaw-D mutant, petal development is different
from wild type Arabidopsis (Palatnik et al., 2003). Nag et al.
(2009) showed that this depends on miR319 regulation of TCP4.
A microRNA-resistant form of TCP4 under the control of an
APETALA3 promoter is expressed in floral organs only and leads
to dramatically smaller flowers that only consist of carpels and
sepals, missing any petals or stamens, whereas the seedlings of
these plants look normal (Nag et al., 2009).

The zinc-finger transcriptional repressor RABBIT EARS
controls the expression of the TCPs TCP5, TCP13, and TCP17
and misexpression of both RABBIT EARS and these TCPs leads
to aberrant petal development in Arabidopsis (Huang and Irish,
2015). Repression of these TCPs leads to an early stop of mitotic
activity during petal development (Huang and Irish, 2015).
Interestingly the opposite occurs upon downregulation of TCP5,
TCP13, and TCP17 in leaves, where leaf cells continue with
mitotic divisions for a longer time than in wild type plants (Efroni
et al., 2008). Here, the effect of TCP transcription factors on organ
development is dependent on the organ-context. This underlines
the importance of the regulatory interplay between TCPs and
organ identity regulators. While there are hints at this interplay
between TCPs and MADS box transcription factors during flower
development, such an interplay remains to be shown during the
development of other organs (Dornelas et al., 2011).

First indications for a role of TCPs in leaf development comes
from work in Antirrhinum (Nath et al., 2003). The Antirrhinum
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class II TCP mutant cin displays crinkly leaves, which are the
result of a change in the regulation of the cell cycle during leaf
development (Nath et al., 2003). Essentially, mitotic divisions of
developing leaf cells in the leaf tip are arrested first and those
at the leaf base are arrested last. The result of this successive
arresting behavior is a so called arrest front that moves from the
leaf tip to the leaf base. The form of this arrest front is different
in cin leaves than in wild type leaves, leading to a modified leaf
curvature (Nath et al., 2003). In Arabidopsis, similar behavior
is observed in the jaw-D mutant (Palatnik et al., 2003). Jaw-
D is an overexpressor of the microRNA miR319a in which the
CIN-like class II TCPs TCP2, TCP3, TCP4, TCP10, and TCP24
are downregulated (Palatnik et al., 2003). Jaw-D mutants display
serrated leaves, abnormal petals and delayed leaf development
and senescence (Palatnik et al., 2003). This phenotype derives
from delayed leaf development, in which the mitotic arrest front
starts later than in wild type plants (Efroni et al., 2008). Recently,
it was shown that miR319a-regulated TCP transcription factors
act redundantly with NGATHA transcription factors to limit
meristematic activity of leaf meristems during leaf development
(Alvarez et al., 2016). This phenotype was also apparent in plants
expressing an artificial microRNA against the class II TCPs TCP5,
TCP13, and TCP17 and the phenotype was extremely strong
when these plants were crossed with jaw-D plants (Efroni et al.,
2008).

Class II TCPs also regulate leaf development in tomato
compound leaves. An ortholog of the Arabidopsis miR319-
sensitive TCPs in tomato is LA and it is under the control
of the tomato miR319 (Ori et al., 2007). La mutants exhibit
simple leaves, whereas overexpression of miR319 without LA
insensitivity to the microRNA leads to increased partitioning of
the compound leaves. Also, miR319 overexpressing tomato leaves
grow 3 months longer than wild type leaves and show the marks
of late differentiation, which is a behavior that is identical to
Arabidopsis jaw-D plants (Ori et al., 2007; Efroni et al., 2008).
Overexpression of miR319 in the monocot Agrostis stolonifera
(creeping bentgrass) leads to downregulation of class II TCPs and
to the formation of wider and thicker leaves that are different
from the wild type (Zhou et al., 2013). This phenotype stems from
an increased number of cells in the transgenic bentgrass, similar
to jaw-D in Arabidopsis (Efroni et al., 2008; Zhou et al., 2013).
In general, expression of CIN-like genes is closely correlated with
leaf shapes both in Solanaceae species and in the desert poplar
(Populus euphratica) (Shleizer-Burko et al., 2011; Ma et al., 2016).

Expression of TCP3 with a dominant repressor domain led
to severe disturbance of Arabidopsis development in all organs
(Koyama et al., 2007), involving ectopic shoot formation, serrated
leaves, modified sepals and petals, and wavy silique formation.
This was due to misexpression of boundary specific genes, i.e.,
CUC and LATERAL ORGAN BOUNDARIES (Koyama et al.,
2007). Also in Antirrhinum, an ortholog of Arabidopsis TCP15
was found to interact with CUPULIFORMIS, a protein that
is related to Arabidopsis CUC proteins (Weir et al., 2004).
Furthermore, the two Arabidopsis class I TCPs TCP14 and TCP15
were shown to be redundant in affecting cell proliferation during
leaf development and in other tissues in Arabidopsis. The most
obvious effect though was seen in internode length, which is

reduced in tcp14 tcp15 mutants and leads to shorter plants
(Kieffer et al., 2011).

Whereas TCP functions have thus been very well-
characterized in these branching, flower and leaf development
over a wide array of plant species (Figure 1), there are hints
that this is just a subset of TCP roles in development. TCPs
were shown to be upregulated upon imbibition of dry seeds
and germination of tcp14 transposon insertion lines seemed
to be lower than in wild type seeds (Tatematsu et al., 2008).
Although here, expression of TCP14 in the transposon lines
was not necessarily lower than in the wild type, indicating that
TCP14 may not be the only cause of the reduced germination rate
(Tatematsu et al., 2008). Downregulation of TCP expression in
cotton led to reduced cotton hair fiber length as well as a higher
of lateral shoots and a stunted growth indicative of a reduced
apical dominance (Hao et al., 2012). Overexpression of miR319
in Chinese cabbage not only led to altered leaf development,
also the cabbage heads were rounder than in cabbage with low
miR319 expression and higher expression of its target gene
BrpTCP4-1 (Mao et al., 2014). Heterologous expression of the
rice OsTCP19 in Arabidopsis led to a lower number of lateral
roots (Mukhopadhyay et al., 2015). In cucumber, mutation
of a TCP gene led to a unique plant phenotype. The affected
cucumber plants did not develop tendrils but shoots instead.
The authors of this study hypothesize that here TCPs not only
affect growth of an organ but also determine organ identity
(Wang S.et al., 2015). A similar phenotype was found in melons
where a single-nucleotide mutation in CmTCP1 led to the Chiba
tendril-less mutation. Also here, the tendrils were converted to
shoot and leaf-like structures (Mizuno et al., 2015). This would be
the first indication that TCPs can act as organ identity regulators.
Further research has yet to uncover whether the function of TCPs
in organ identity regulation of tendrils is a unique and novel role
or whether other plant organs also need TCPs to define their
identity.

TCP FUNCTIONS EFFECT ON THE CELL
CYCLE – DIRECT OR INDIRECT?

Early, TCP research focused on the cell cycle as main target
of TCP regulation (Kosugi and Ohashi, 1997; Li et al., 2005).
Whereas, binding to cell cycle genes has been shown in certain
cases (Li et al., 2005; Davière et al., 2014), close analysis
of cell division patterns and transcript changes during jaw-
D leaf development indicated that the class II-TCP dependent
regulation of the cell cycle may be indirect (Efroni et al., 2008).
Also binding of the class I TCP TCP20 to cell cycle genes has
been shown only once and in vitro (Li et al., 2005), whereas
direct target gene analysis indicate that hormone synthesis,
especially jasmonate synthesis, is rather directly targeted by
TCP20 (Danisman et al., 2012). Both TCP4 and TCP20 affect leaf
development via the synthesis of methyl jasmonate, a hormone
that has multiple functions in plant development and response
to wounding and pathogens (Schommer et al., 2008). Jasmonate,
usually known for its role in wounding and pathogen response,
does also affect the cell cycle (Świątek et al., 2002).
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FIGURE 1 | Phylogenetic tree of plant species in which TCP transcription factors are involved in branching (Takeda et al., 2003; Aguilar-Martínez
et al., 2007; Poza-Carrión et al., 2007; Bai et al., 2012; Braun et al., 2012; Drummond et al., 2015; Nicolas et al., 2015; Muhr et al., 2016) (blue dots),
flower development (Linnaeus and Rudberg, 1744; Keeble et al., 1910; Corley et al., 2005; Costa et al., 2005; Busch and Zachgo, 2007; Broholm et al.,
2008; Kim et al., 2008; Nag et al., 2009; Yuan et al., 2009; Howarth et al., 2011; Busch et al., 2012; Tähtiharju et al., 2012; Claßen-Bockhoff et al., 2013;
Juntheikki-Palovaara et al., 2014; De Paolo et al., 2015; Horn et al., 2015; Lucero et al., 2015; Wang et al., 2008; Wang X.et al., 2015; Yang et al., 2015;
Berger et al., 2016) (purple dots) or leaf development (Kosugi and Ohashi, 1997; Nath et al., 2003; Palatnik et al., 2003; Koyama et al., 2007, 2010a,b;
Ori et al., 2007; Efroni et al., 2008; Kieffer et al., 2011; Mimida et al., 2011; Sarvepalli and Nath, 2011; Danisman et al., 2012, 2013; Aguilar-Martínez and
Sinha, 2013; Burko et al., 2013; Tao et al., 2013; Zhou et al., 2013; Ballester et al., 2015; Huang and Irish, 2015; Ma et al., 2016) (green dots),
respectively. The phylogenetic tree was created using Phylotree and iTOL (Letunic and Bork, 2016).

Jasmonate is not the only plant hormone that may mediate
TCP regulation to the cell cycle. The evidence for hormone
involvement in TCP-mediated growth regulation accumulated
in the recent years (Nicolas and Cubas, 2016). TCP functions
have been associated with abscisic acid (Tatematsu et al., 2008;
González-Grandío et al., 2013; Mukhopadhyay et al., 2015),
auxin (Kosugi et al., 1995; Ben-Gera and Ori, 2012; Uberti-
Manassero et al., 2012; Das Gupta et al., 2014), brassinosteroid
(Guo et al., 2010), cytokinin (Steiner et al., 2012; Efroni
et al., 2013), GA (Yanai et al., 2011; Das Gupta et al., 2014;
Davière et al., 2014), jasmonic acid (Schommer et al., 2008;
Danisman et al., 2012), salicylic acid (Wang X.et al., 2015), and

strigolactone signaling pathways (Dun et al., 2012; Hu et al., 2014)
(Figure 2).

Apart from hormonal control of growth, TCP transcription
factors are also involved in other biological processes that
in turn affect growth. For example, binding sites of TCP
transcription factors have been identified in the promoters of
CYTOCHROMEC1 and 103 genes that are encoding components
of the mitochondrial oxidative phosphorylation machinery and
protein biogenesis (Welchen and Gonzalez, 2006). The authors
of this study proposed that the TCP transcription factors binding
these sites coordinate mitochondria genesis and function with
growth in new organs (Welchen and Gonzalez, 2006). Another
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FIGURE 2 | Hormonal pathways associated with Arabidopsis TCP transcription factors and orthologs. The proteins were plotted according to their
phylogenetic similarity using PhyML and TreeDyne (Dereeper et al., 2008). AA, abscisic acid; AX, auxin; BR, brassinosteroids; CK, cytokinin; ET, ethylene; GA,
gibberellic acid; JA, jasmonic acid; SA, salicylic acid; SL, strigolactones.

study showed these genes contain a GGGC(C/T) element in their
promoters which is important for diurnal regulation of their gene
expression (Giraud et al., 2010). These promoters are bound by
TCP transcription factors, implying a role in diurnal regulation
of transcripts of the mitochondrial oxidative phosphorylation
machinery (Giraud et al., 2010). Earlier TCP21 was found to
bind to the promoter of the core clock gene CCA1 and regulate
its expression (Pruneda-Paz et al., 2009). TCP21 serves as an
inhibitor of CCA1 during the day and dimerization of TOC1
with TCP21 abolishes its binding to the CCA1 promoter. In a
double mutant with the clock gene LHY, tcp21/lhy greatly reduces
the period of CCA1 expression (Pruneda-Paz et al., 2009). Not
only TCP21, other TCPs have also been found to bind to CCA1
in yeast based studies and co-immunoprecipitation experiments
(Giraud et al., 2010; Pruneda-Paz et al., 2014). A recent study
also showed that TCP20 and TCP22 act as activators of CCA1
in the morning, fulfilling an important role in the circuity of the
circadian clock (Wu et al., 2016). This means that TCP proteins
bind to the promoters of clock genes, regulate their expression,
dimerize with clock proteins and bind to downstream targets of
the clock (Pruneda-Paz et al., 2009, 2014; Giraud et al., 2010; Wu

et al., 2016) (Figure 3). Altogether, it becomes clear that TCPs not
only affect growth via the cell cycle. Instead, they act in different
biological processes that directly or indirectly affect growth.

MEDIATING ENVIRONMENTAL SIGNALS
INTO GROWTH RESPONSES

This picture becomes even more complex, as TCPs also
mediate environmental signals into growth responses. TCPs
were found to be involved in pathogen defense. First, an
extensive study showed that both Pseudomonas syringae and
Hyaloperonospora arabidopsidis infection led to reduction of
TCP14 protein (Mukhtar et al., 2011). Secreted proteins
from pathogenic bacteria transferred by the Aster leafhopper
(Macrosteles quadrilineatus) to Arabidopsis were able to dimerize
with and destabilize TCP2, TCP4, and TCP7 proteins, comprising
both classes of TCP transcription factors (Sugio et al., 2011,
2014). Overexpression of the responsible phytoplasma protein
SECRETED ASTER YELLOWS-WITCHES BROOM PROTEIN
11 in Arabidopsis destabilizes TCP2, TCP3, TCP4, TCP5, TCP10,
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FIGURE 3 | Interactions of TCP transcription factors with components of the circadian clock both within the central clock circuitry and in
downstream processes. Class I and class II TCPs are depicted in green and blue, respectively. Known clock components are depicted in gray. Proteins are
represented as circles, genes in squares. Dimers are depicted as overlapping circles. CCA1 inhibition by TCP21 is abolished by dimerization of TCP21 with TOC1.
The CCA1/LHY dimer inhibits TCP21 expression (Pruneda-Paz et al., 2009). The effect of nine TCPs that bind to the CCA1 promoter in yeast one-hybrid studies is
unknown (Pruneda-Paz et al., 2014). Downstream of the clock, TCP/clock component heterodimers regulate rhythmic expression of mitochondrial proteins
depending on the number and arrangement of TCP binding sites in the mitochondrial gene promoters (Giraud et al., 2010).

TCP13, TCP17, and TCP24 and leads to jaw-D-like phenotypes
(Sugio et al., 2011). Additionally, jasmonic acid levels in infected
Arabidopsis leaves are significantly reduced in comparison with
untreated leaves, indicating that the plant’s defense mechanisms
are reduced upon infection by the pathogen. A similar effect
has been found in apples, where the plant pathogen Candidatus
Phytoplasma mali binds to two TCP transcription factors and
induces morphogenetic changes that co-occur with reduction of
jasmonic acid, salicylic acid, and abscisic acid levels (Janik et al.,
2016). Further studies identified the class I TCPs TCP8 and TCP9
as important factors for the expression of ICS1, which encodes for
a key enzyme in salicylic acid synthesis (Wang X.et al., 2015). In
another study, TCP21 has been identified to bind to the promoter
of ICS1 and induction of ICS1 expression by salicylic acid is
blocked in tcp21 mutants (Zheng et al., 2015). Class I TCPs also

interact with proteins known to regulate ICS1 expression, i.e.,
the transcription factors WRKY28, NAC019 and ETHYLENE
INSENSITIVE 1 and the calmodulin binding protein SYSTEMIC
ACQUIRED RESISTANCE DEFICIENT 1. Consequently, the
tcp8 tcp9 double mutant shows increased sensitivity to infection
with Pseudomonas syringae pv. maculicola ES4326 (Wang X.et al.,
2015). TCP transcription factors partially control pathogen
defense via a second pathway, i.e., by antagonizing the effect of
SUPPRESSOR OF rps4-RLD1, a protein that negatively regulates
effector-triggered immunity in Arabidopsis (Kim et al., 2014).
Lack of TCPs in the triple mutant tcp8 tcp14 tcp15 leads
to increased growth of Pseudomonas syringae DC3000 when
compared to wild type plants (Kim et al., 2014).

Recent studies showed that TCP transcription factors regulate
flowering time. A knockout of the class I TCP transcription
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factor TCP23 led to earlier flowering than the wild type, whereas
TCP23 overexpressing lines showed delayed flowering behavior
(Balsemão-Pires et al., 2013). The floral transition of axillary
meristems in Arabidopsis is controlled by an interaction between
the flowering time proteins FT and TWIN SISTER OF FT
and BRC1 (Niwa et al., 2013). The protein–protein interactions
between these transcription factors have been shown in yeast two-
hybrid, bimolecular fluorescence complementation, and in vitro
pull-down assays (Niwa et al., 2013). As brc1 mutants exhibit
accelerated flowering and ft and twin sister of ft mutants exhibit
slower flowering of axillary meristems, respectively, it seems
that there is an antagonistic relationship between BRC1 and
the flowering time proteins (Niwa et al., 2013). It is likely
that dimerization of BRC1 with FT and TWIN SISTER OF
FT represses their function in axillary meristems (Niwa et al.,
2013). The apple FT orthologs MdFT1 and 2 were also found
to interact with TCP transcription factors (Mimida et al., 2011).
Overexpression of the tomato miR319 led to flowering with

fewer leaves than in wild type tomato and it was shown that LA
binds to the promoters of the tomato APETALA1 and FRUITFUL
orthologs (Burko et al., 2013).

Perception of the red to far-red light ratio (R:FR) informs
a plant of shading by neighboring vegetation and a lower
R:FR ratio leads to suppressed axillary meristem outgrowth,
allowing the plant to invest in a longer hypocotyl and eventually
avoid the shading. In Arabidopsis, hypocotyl elongation is
regulated via the bHLH transcription factor PHYTOCHROME
INTERACTING FACTOR 4, which among others activates
YUCCA8 expression to promote cell elongation (Sun et al.,
2012). YUCCA2, 5, and 8 are also direct target genes of TCP4.
In fact, induced overexpression of TCP4 leads to elongated
hypocotyls and this effect is dependent on both auxin and
brassinosteroid signaling (Challa et al., 2016). In potato, BRC1a
regulation is dependent on the R:FR. BRC1a comes in two
forms: the short form (BRC1aS) and the alternatively spliced
long version (BRC1aL). Both result in proteins but the shorter

FIGURE 4 | Schematic figure depicting the diversity of environmental signals that affect TCP functions in plants (Mukhtar et al., 2011; Sugio et al.,
2011; Balsemão-Pires et al., 2013; González-Grandío et al., 2013; Niwa et al., 2013; Viola et al., 2013, 2016; Guan et al., 2014; Hu et al., 2014; Kim et al.,
2014; Mukhopadhyay et al., 2015; Nicolas et al., 2015; Kumar et al., 2016).

Frontiers in Plant Science | www.frontiersin.org 8 December 2016 | Volume 7 | Article 1930

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01930 December 19, 2016 Time: 13:16 # 9

Danisman TCPs between the Environment and Plant Growth

form is cytoplasmatic and does not bind to target genes
in the nucleus. The ratio between these two forms changes
upon decapitation of potato shoots, exposure to darkness, and
under low R:FR conditions (Nicolas et al., 2015). Whereas
decapitation leads to a relative increase in BRC1aS, darkness
and low R:FR treatments lead to a relative increase in BRC1aL

content. The longer BRC1aL protein subsequently inhibits
axillary branch elongation in potato shoots and stolons (Nicolas
et al., 2015). Arabidopsis brc1 and brc2 (tcp12 and tcp18) show
a reduced response to R:FR and the response is abolished in
the brc1 brc2 double mutant (González-Grandío et al., 2013).
TCP transcription factors are also involved in axillary bud
outgrowth of Petunia. Here, GhTCP3 acts in conjunction with
DECREASED APICAL DOMINANCE 2, a receptor protein that
normally inactivates strigolactones in response to decreased R:FR
(Drummond et al., 2015). Rice OsTCP15 is involved in the
mesocotyl elongation in response to darkness and responds to
strigolactone and cytokinin treatments, outlining the interplay
between TCPs and different plant hormones in developmental
regulation that is responsive to the environment (Hu et al.,
2014).

Viola et al. (2013) showed that class I TCPs contain a
conserved cysteine-20 which is sensitive to treatments by
oxidants in a dose-dependent manner. This redox-dependent
behavior of TCP15 is important for its effect in anthocyanin
biosynthesis. A mutant in which the cysteine-20 of TCP15
was replaced by a serine accumulates less anthocyanin under
high light stress than wild type plants (Viola et al., 2016).
Plant extracts from TCP15 overexpressing plants showed that
exposure to prolonged high light conditions leads to an
abolishment of TCP15 DNA-binding activity in vivo, mirroring
the in vitro phenotype (Viola et al., 2013, 2016). Thus,
TCP15 function is reactive to high light input. While the
anthocyanin response is not a direct developmental response,
further analysis may show that there is a developmental
effect.

Not only light affects TCPs, also other signals are perceived
and lead to TCP-mediated growth regulation. For example,
Guan et al. (2014) showed that TCP20 is involved in nutrient
foraging of Arabidopsis roots. In split-root experiments wild
type Arabidopsis develops an increased number of lateral roots
in medium containing high nitrate concentrations (i.e., 5 mM
NO3

−) and close to no lateral roots in medium containing
low nitrate concentrations (i.e., 0 mM NO3

−). Tcp20 plants
do not exhibit this behavior, indicating that the regulation
of root foraging is under the control of TCP20 (Guan
et al., 2014). Interestingly, TCP20 transcript levels are not
under the control of nitrate levels, indicating that TCP20 is
regulated on protein level, either by forming specific protein–
protein dimers in the case of nitrate deficiency or via another
regulatory mechanism. In rice, the transcript of the class I
TCP OsTCP19 is upregulated during salt stress and water-deficit
treatments (Mukhopadhyay et al., 2015). Heterologous OsTCP19
overexpression in Arabidopsis leads to reduced numbers of lateral
roots but increased abiotic stress tolerance, i.e., plants grew better
on Mannitol-containing medium and recovered better after
water-deficit treatments. Here, LOX2 expression was reduced

in the OsTCP19 overexpressors and ABA signaling genes were
upregulated (Mukhopadhyay et al., 2015). Recent experiments
revealed up- and down-regulation of several TCPs in Arabidopsis
under osmotic stress, although a functional analysis of their role
in response to osmotic stress has not been done yet (Kumar
et al., 2016). In summary, these few results are first indications
that TCPs are no mere static regulators of development, but
that they do directly translate environmental signals into growth
regulation (Figure 4).

CONCLUSION AND OUTLOOK

TCP transcription factors play a role in a multitude of growth
processes over a wide range of plant species (Figure 1). They
affect growth directly via the cell cycle and indirectly via
influencing plant hormonal signaling and the circadian clock
(Figures 2 and 3). Additionally, recent discoveries link TCP-
controlled growth responses with environmental signals such as
R:FR, high light stress, salt stress or the presence or absence of
nutrients.

TCP transcription factors are involved in so many important
developmental processes and interact with so many plant
hormones that it is likely that future plant research will also
uncover a lot more signals that TCPs react to. This will also
mean that future TCP research will have to more closely
elucidate how the interaction of TCPs with different signaling
networks is regulated to ensure a measured response to
environmental challenges. This research will have to uncover the
roles of dimerization, transcriptional and post-transcriptional
regulation as well as post-translational modifications in
controlling and ensuring specific TCP functions in plant
development.

Plant pathogens are targeting TCP transcription factors to
manipulate plant architecture in their favor. If plant pathogens
use TCPs in their best interests, maybe so should we. TCP
transcription factors will be valuable tools in optimizing plant
architecture and hardening plants in response to environmental
challenges.
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Świątek, A., Lenjou, M., Van Bockstaele, D., Inzé, D., and Van Onckelen, H.
(2002). Differential effect of jasmonic acid and abscisic acid on cell cycle
progression in tobacco BY-2 cells. Plant Physiol. 128, 201–211. doi: 10.1104/pp.0
10592

Tähtiharju, S., Rijpkema, A. S., Vetterli, A., Albert, V. A., Teeri, T. H.,
and Elomaa, P. (2012). Evolution and diversification of the CYC/TB1
gene family in asteraceae—a comparative study in Gerbera (Mutisieae) and
sunflower (Heliantheae). Mol. Biol. Evol. 29, 1155–1166. doi: 10.1093/molbev/
msr283

Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M.,
et al. (2003). The OsTB1 gene negatively regulates lateral branching in rice.
Plant J. 33, 513–520. doi: 10.1046/j.1365-313X.2003.01648.x

Tao, Q., Guo, D., Wei, B., Zhang, F., Pang, C., Jiang, H., et al. (2013).
The TIE1 transcriptional repressor links TCP transcription factors with

TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development
in Arabidopsis. Plant Cell 25, 421–437. doi: 10.1105/tpc.113.109223

Tatematsu, K., Nakabayashi, K., Kamiya, Y., and Nambara, E. (2008). Transcription
factor AtTCP14 regulates embryonic growth potential during seed germination
in Arabidopsis thaliana. Plant J. 53, 42–52. doi: 10.1111/j.1365-313X.2007.
03308.x

Thieulin-Pardo, G., Avilan, L., Kojadinovic, M., and Gontero, B. (2015). Fairy
“tails”: flexibility and function of intrinsically disordered extensions in the
photosynthetic world. Front. Mol. Biosci. 2:23. doi: 10.3389/fmolb.2015.00023

Trémousaygue, D., Garnier, L., Bardet, C., Dabos, P., Hervé, C., and
Lescure, B. (2003). Internal telomeric repeats and “TCP domain” protein-
binding sites co-operate to regulate gene expression in Arabidopsis
thaliana cycling cells. Plant J. 33, 957–966. doi: 10.1046/j.1365-313X.2003.
01682.x

Uberti-Manassero, N. G., Lucero, L. E., Viola, I. L., Vegetti, A. C., and Gonzalez,
D. H. (2012). The class I protein AtTCP15 modulates plant development
through a pathway that overlaps with the one affected by CIN-like TCP
proteins. J. Exp. Bot. 63, 809–823. doi: 10.1093/jxb/err305

Valsecchi, I., Guittard-Crilat, E., Maldiney, R., Habricot, Y., Lignon, S.,
Lebrun, R., et al. (2013). The intrinsically disordered C-terminal region of
Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation
and self-assembly domain. Mol. Biosyst. 9, 2282–2295. doi: 10.1039/c3mb7
0128j

Viola, I. L., Camoirano, A., and Gonzalez, D. H. (2016). Redox-dependent
modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15
during exposure to high light intensity conditions in Arabidopsis. Plant Physiol.
170, 74–85. doi: 10.1104/pp.15.01016

Viola, I. L., Güttlein, L. N., and Gonzalez, D. H. (2013). Redox modulation of plant
developmental regulators from the class I TCP transcription factor family. Plant
Physiol. 162, 1434–1447. doi: 10.1104/pp.113.216416

Viola, I. L., Reinheimer, R., Ripoll, R., Manassero, N. G. U., and Gonzalez, D. H.
(2012). Determinants of the DNA binding specificity of class I and Class II
TCP transcription factors. J. Biol. Chem. 287, 347–356. doi: 10.1074/jbc.M111.
256271

Viola, I. L., Uberti Manassero, N. G., Ripoll, R., and Gonzalez, D. H. (2011).
The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental
regulator with distinct DNA-binding properties due to the presence of a
threonine residue at position 15 of the TCP domain. Biochem. J. 435, 143–155.
doi: 10.1042/BJ20101019

Wang, R.-L., Stec, A., Hey, J., Lukens, L., and Doebley, J. (1999). The limits
of selection during maize domestication. Nature 398, 236–239. doi: 10.1038/
18435

Wang, S., Yang, X., Xu, M., Lin, X., Lin, T., Qi, J., et al. (2015). A rare SNP identified
a TCP transcription factor essential for tendril development in cucumber. Mol.
Plant 8, 1795–1808. doi: 10.1016/j.molp.2015.10.005

Wang, X., Gao, J., Zhu, Z., Dong, X., Wang, X., Ren, G., et al. (2015).
TCP transcription factors are critical for the coordinated regulation of
ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana. Plant J.
82, 151–162. doi: 10.1111/tpj.12803

Wang, Z., Luo, Y., Li, X., Wang, L., Xu, S., Yang, J., et al. (2008). Genetic control of
floral zygomorphy in pea (Pisum sativum L.). Proc. Natl. Acad. Sci. U.S.A. 105,
10414–10419. doi: 10.1073/pnas.0803291105

Weir, I., Lu, J., Cook, H., Causier, B., Schwarz-Sommer, Z., and Davies, B.
(2004). CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum.
Development 131, 915–922. doi: 10.1242/dev.00993

Welchen, E., and Gonzalez, D. H. (2006). Overrepresentation of elements
recognized by TCP-domain transcription factors in the upstream regions
of nuclear genes encoding components of the mitochondrial oxidative
phosphorylation machinery. Plant Physiol. 141, 540–545. doi: 10.1104/pp.105.
075366

Wu, J.-F., Tsai, H.-L., Joanito, I., Wu, Y.-C., Chang, C.-W., Li, Y.-H., et al. (2016).
LWD–TCP complex activates the morning gene CCA1 in Arabidopsis. Nat.
Commun. 7:13181. doi: 10.1038/ncomms13181

Yanai, O., Shani, E., Russ, D., and Ori, N. (2011). Gibberellin partly mediates
LANCEOLATE activity in tomato. Plant J. 68, 571–582. doi: 10.1111/j.1365-
313X.2011.04716.x

Yang, X., Zhao, X.-G., Li, C.-Q., Liu, J., Qiu, Z.-J., Dong, Y., et al.
(2015). Distinct regulatory changes underlying differential expression of

Frontiers in Plant Science | www.frontiersin.org 12 December 2016 | Volume 7 | Article 1930

https://doi.org/10.1016/j.cub.2015.05.053
https://doi.org/10.1016/j.cub.2015.05.053
https://doi.org/10.1105/tpc.112.109090
https://doi.org/10.1038/ng2036
https://doi.org/10.1016/j.molp.2015.12.002
https://doi.org/10.1038/nature01958
https://doi.org/10.4161/psb.2.6.4811
https://doi.org/10.1016/j.celrep.2014.06.033
https://doi.org/10.1016/j.celrep.2014.06.033
https://doi.org/10.1126/science.1167206
https://doi.org/10.4161/psb.6.10.17097
https://doi.org/10.4161/psb.6.10.17097
https://doi.org/10.1371/journal.pbio.0060230
https://doi.org/10.1242/dev.056770
https://doi.org/10.1105/tpc.111.093518
https://doi.org/10.1073/pnas.1105664108
https://doi.org/10.1073/pnas.1105664108
https://doi.org/10.1111/nph.12721
https://doi.org/10.1371/journal.pgen.1002594
https://doi.org/10.1371/journal.pgen.1002594
https://doi.org/10.1104/pp.010592
https://doi.org/10.1104/pp.010592
https://doi.org/10.1093/molbev/msr283
https://doi.org/10.1093/molbev/msr283
https://doi.org/10.1046/j.1365-313X.2003.01648.x
https://doi.org/10.1105/tpc.113.109223
https://doi.org/10.1111/j.1365-313X.2007.03308.x
https://doi.org/10.1111/j.1365-313X.2007.03308.x
https://doi.org/10.3389/fmolb.2015.00023
https://doi.org/10.1046/j.1365-313X.2003.01682.x
https://doi.org/10.1046/j.1365-313X.2003.01682.x
https://doi.org/10.1093/jxb/err305
https://doi.org/10.1039/c3mb70128j
https://doi.org/10.1039/c3mb70128j
https://doi.org/10.1104/pp.15.01016
https://doi.org/10.1104/pp.113.216416
https://doi.org/10.1074/jbc.M111.256271
https://doi.org/10.1074/jbc.M111.256271
https://doi.org/10.1042/BJ20101019
https://doi.org/10.1038/18435
https://doi.org/10.1038/18435
https://doi.org/10.1016/j.molp.2015.10.005
https://doi.org/10.1111/tpj.12803
https://doi.org/10.1073/pnas.0803291105
https://doi.org/10.1242/dev.00993
https://doi.org/10.1104/pp.105.075366
https://doi.org/10.1104/pp.105.075366
https://doi.org/10.1038/ncomms13181
https://doi.org/10.1111/j.1365-313X.2011.04716.x
https://doi.org/10.1111/j.1365-313X.2011.04716.x
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01930 December 19, 2016 Time: 13:16 # 13

Danisman TCPs between the Environment and Plant Growth

TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR
genes associated with petal variations in zygomorphic flowers of Petrocosmea
spp. of the family Gesneriaceae. Plant Physiol. 169, 2138–2151. doi: 10.1104/pp.
15.01181

Yuan, Z., Gao, S., Xue, D.-W., Luo, D., Li, L.-T., Ding, S.-Y., et al. (2009).
RETARDED PALEA1 controls palea development and floral zygomorphy in
rice. Plant Physiol. 149, 235–244. doi: 10.1104/pp.108.128231

Zheng, X., Zhou, M., Yoo, H., Pruneda-Paz, J. L., Spivey, N. W., Kay, S. A., et al.
(2015). Spatial and temporal regulation of biosynthesis of the plant immune
signal salicylic acid. Proc. Natl. Acad. Sci. U.S.A. 112, 9166–9173. doi: 10.1073/
pnas.1511182112

Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., et al. (2013). Constitutive
expression of a miR319 gene alters plant development and enhances salt

and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161,
1375–1391. doi: 10.1104/pp.112.208702

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Danisman. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 13 December 2016 | Volume 7 | Article 1930

https://doi.org/10.1104/pp.15.01181
https://doi.org/10.1104/pp.15.01181
https://doi.org/10.1104/pp.108.128231
https://doi.org/10.1073/pnas.1511182112
https://doi.org/10.1073/pnas.1511182112
https://doi.org/10.1104/pp.112.208702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	TCP Transcription Factors at the Interface between Environmental Challenges and the Plant's Growth Responses
	Discovery Of Tcps – Of Peloria And Other Mutants
	Form And Function Of Tcp Transcription Factors
	Evolutionary Conserved Roles Of Tcps
	Tcp Functions Effect On The Cell Cycle – Direct Or Indirect?
	Mediating Environmental Signals Into Growth Responses
	Conclusion And Outlook
	Author Contributions
	Funding
	Acknowledgments
	References


