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Abstract— For most of the rigid manipulators, it is possible
to apply a gravity compensation mode, by which the user is
able to easily reconfigure the arm and record the necessary
data. However, due to the specific characteristics of soft robots
such as elastic properties and complex dynamics, it is usually
very difficult to implement kinesthetic teaching for Learning
from Demonstration (LfD) scenarios. This paper tackles this
problem on a soft continuum robot named Bionic Handling
Assistant (BHA). We propose to use an active compliant
controller that facilitates the kinesthetic teaching for the user
while recording the position and orientation of the robot’s
end-effector. The recorded demonstrations are then encoded
with a task-parameterized probabilistic model through two
separate dynamical systems (one for the position and one for
the orientation). The approach was evaluated by conducting
two experiments on the BHA robot.

I. INTRODUCTION

An increasing number of soft robots have been developed

recently, inspired from the soft structures in nature like

octopus arm [1] or elephant trunk [2], based on the belief

that biological structures have been efficiently established

and evolved. In spite of all the well-known benefits of soft

manipulators such as hyper-redundancy, flexibility and safe

interaction with the environment, the control of such robots

remains challenging [3], [4].

One well-known control approach that is widely used

for rigid robots, is Learning from Demonstration (LfD).

LfD is based on imitation and exploits machine learning

techniques. It is inspired by the way the knowledge is

transferred between human beings while performing a task,

usually with subsequent trial-and-error learning. In LfD, the

goal is to extract important features of the task and its

reproduction in new situations characterized by robustness

with respect to possible perturbations. It typically considers

non-expert human users teaching or demonstrating to the

robot by kinesthetic teaching, observation or teleoperation

and replaces the need to program the robot by an expert

user for every specific task.

Although the LfD is a well-known method for the rigid

robots, there are only a few applications of it in soft-

robotics. For instance in [3], Calinon et.al proposed a

context-dependent reward-weighted learning approach that is

able to extract from demonstrations (fulfilled on a very dif-

ferent rigid robot), the weights for some predefined objective

functions. The weighted sum of these objective functions is
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Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany, Email:
mmalekzadeh, jqueisse, jsteil@cor-lab.uni-bielefeld.de

Fig. 1: BHA robot platform: three segments are connected (orange
structure) in serial. Each segment’s shape is defined by three air
chambers that provide length information by cable sensors (blue).

then used for the target soft robot, as the reward function in

a reinforcement learning algorithm [5]. This can be seen as a

skill transfer approach from a rigid robot to a soft robot. This

is important since providing demonstrations is not usually

easy for a soft robot, while performing kinesthetic teaching

on a rigit robot is usually trivial.

Among all the methods to collect the demonstrations,

kinesthetic teaching seems easier, faster and safer to im-

plement since the user often tries to reconfigure the robot

by his/her hands. In addition, the recorded demonstrations

are easier to modify and re-implement on the same agent.

However, it is not the case while we are dealing with soft

robots in general, mainly because of specific characteristics

of them such as elastic properties, very complex dynamics

and lack of suitable controller.

In this paper we utilize an active compliant control mode

already introduced in [2], to record kinesthetic demonstra-

tions directly with a soft continuum robot termed as Bionic

Handling Assistant (BHA). For most of the rigid manipula-

tors, the gravity compensation modes can be set for recording

the demonstrations during kinesthetic teaching. We propose

to use a controller that acts like the gravity compensation

mode and helps the user to record demonstrations (section

II).

After recording the demonstrations, we exploit Task-

Parametrized Gaussian Mixture Models (TP-GMM) [6] to

encode the end-effector pose. Among several available LfD

tools including Gaussian mixture regression [7], hidden

Markov models [8], dynamic movement primitives [9],

Gaussian process regression [10], we exploit the TP-GMM
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Fig. 2: (a) Low-Level control loop of the BHA robot utilizing
feedback control (fbc) and feed forward estimates (ffc) of the
equilibrium model, leaned by extreme learning machine (ELM),
in addition to the compliant control mode highlighted in red. (b)
Use case: BHA robot is following external force of interaction and
allows for kinesthetic teaching.

approach that has better generalization properties for learn-

ing of position and orientation, compared to other similar

methods.

We are interested in learning both the position and ori-

entation for the robot’s end-effector to suitably perform the

experiments, we exploited the method described in [11] (sec-

tion IV). A different pan-tilt parameterization of orientation

was employed in [12] which is more suitable to encode the

initial and final orientations of the end-effector.

The contribution of this paper is twofold: 1) A new

controller permits the user to apply the kinesthetic teaching

on a soft robot (the BHA robot) for the first time. The

same controller can be used on similar soft robots (and even

rigid ones); 2) The recorded demonstrations were used to

learn the full pose of a soft-continuum robot end-effector

with a task-parameterized version of Gaussian mixtures. The

generalization capability of the proposed method is then

evaluated in time-based and time-invariant scenarios.

II. THE BHA ROBOT

The Bionic Handling assistant (BHA, [13], [14]) has been

designed by Festo as a robotic pendant to an elephant trunk.

It is pneumatically actuated and comprises several continuous

parallel components operated at low pressures, which makes

the BHA inherently safe for physical interaction with humans

and an interesting platform for collaborative robotics tasks.

A further key aspect is the low-priced and rapid 3D manufac-

turing process with polyamide, resulting in application fields

of small and medium sized enterprises like pick-and-place

tasks.

The structure of the BHA is separated into three segments

as shown in Fig. 1. Each segment consists of three triangular

arranged air chambers. Therefore the main flexibility of the

BHA is based on 9 air chambers that extend their length

in relation to the pressure in those chambers. A fourth end-

effector segment is also available but was neglected for this

work. An active depression of the pressure of the chambers is

not possible, solely the tension of the extended body reforms

the structure back to the home position. The robot has no

fixed joint angles and each robot segment starts to bend

in the case that the three chambers reach different lengths.

Beside pressure sensors that are included in the air valves,

the BHA is equipped with cable potentiometers that allow

to measure the outer length of the air chambers providing

geometric information about the robot shape. Unfortunately,

the hardware design of the BHA bothers analytical modeling.

This includes elastic properties, complex dynamics of contin-

uum deformation, hysteresis effects, long control delays and

changing material properties. The whole control architecture

is embedded in a component based software framework as

shown in [15].

In principle, the length control can be accomplished

with standard proportional integral derivative (PID) schemes.

The fundamental problem is that these feedback control

approaches can be applied only with low gains due to the

slow plant dynamics, which consequently results in very

slow movements. To overcome this issue the BHA low

level controller refers to an equilibrium model to generate

an additional feed forward signal. The equilibrium model

predicts required pressures for postures with zero velocity

and acceleration. The combination of a slow PID controller

and the feed forward signal of the equilibrium model leads

to a significant improvement of length control [2].

For estimation of end-effector positions we refer to an

approximate kinematic model ignoring pressures and solely

operating on the lengths of virtual air chambers [16]. Ad-

ditionally it has been shown that the model error can be

reduced by machine learning techniques [17]. A constant-

curvature approach that is based on torus segments allows for

kinematic simulation of continuous deformations. For each

segment, the related three measured lengths of the actuators

can be used to estimate the coordinate transformation be-

tween two platforms, which can then be chained in order

to get the complete forward kinematics from base to end

effector.

Active Compliant Control Mode for Kinesthetic Teaching

We refer to the utilization of a learned equilibrium model

of the robot to implement a kinesthetic teaching mode

(described in [2]). The low level control loop is shown in

Fig. 2a. In the compliant mode, the deviation of the sensed

pressures p and the predicted pressures p̂ of the pneumatic

chambers for the current posture lreal is observed. Due to

the elastic material, a deformation of the robot while keeping

the chamber pressures constant, is possible. So a deformation

of the robot will result in a mismatch between predicted and

observed pressures. In case this mismatch exceeds threshold

T , a posture update is initiated to comply with the deformed

robot configuration. The threshold T has to be selected

concerning sensory noise and uncertainty of the equilibrium

model. A sample interaction with the BHA robot is shown

in Fig. 2b.

III. DYNAMICAL SYSTEM FOR POSITION AND

ORIENTATION

The recorded kinesthetic teaching dataset using the active

compliant control, consists of position and orientation of
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the robot’s end-effector. The pose of the end-effector needs

to be modeled during the encoding phase and reproduced

during the reproduction phase. However due to the multiple

advantages of using dynamical systems in task-space control,

we first encode the data into the virtual attractor space

[11]. E.g., robustness when facing perturbations and control

over the compliancy of the task execution by tuning the

tracking gains, are some of the benefits of exploiting such

approach. To do this, we assume a virtual unit mass at the

end-effector of the robot, where two dynamical systems,

control the position and orientation of this unit mass by

weighted superposition of virtual spring-damper systems.

The dynamical systems responsible for controlling the po-

sition and orientation are separated, due to the independence

of modalities. In this paper this method is used to control the

pose of a soft robot (BHA). However in [11], this approach

has been used to control the pose of two Barrett WAMs

(rigid robots) in a bi-manual task. The end-effector full pose

is represented by x = [xp� xo�]�, where xp and xo are the

position and orientation (axis-angle representation).

A. Dynamical System for position

During demonstration, the position of the robot’s end-

effector xp is recorded along with its velocity and acceler-

ation ẋp, ẍp. After preprocessing, the Cartesian position is

transformed into the movement of virtual unit-mass attractor

points. The dynamical system is a second order linear

differential equation, given by

ẍp = KP(x̂p − xp)−KVẋp, (1)

where KP , KV ∈ R
3×3 are the stiffness and damping matri-

ces, set to have critically damped system. In our application,

KP = kPI and KV = kVI , where kV = 2
√
kP . The

trajectory of the virtual attractor x̂p, is then computed by

x̂p = (KP)
−1

ẍp + (KP)
−1

KVẋp + xp. (2)

B. Dynamical System for orientation

Based on the formulation proposed in [11], [18], a second

dynamical system with different tracking gains is used to

convert the orientation of the end-effector expressed in unit

quaternion, into the orientation of another virtual attractor.

The equivalence of Eq. (1) in the unit quaternion space will

be

ẍo = 2KO log(x̂o ∗ x̄o)−KWẋo, (3)

where KO, KW ∈ R
3×3 are the angular stiffness and

damping matrices and ẋo and ẍo are the angular velocity

and acceleration (KO = kOI and KW = kWI , where

kW = 2
√
kO). The quaternion equivalence of the axis-angle

representation of the orientation xo, is represented by xo.

Similarly, x̂o represents the orientation attractor. Note that

here x̄o is the quaternion conjugate of xo and ∗ denotes the

quaternion product.

Eq. (1) and (3) are similar except for the tracking error

term on the right side of the equations. In (1), the term (x̂p−
xp) represents the error of the positions in the Cartesian

space while the quaternion product (x̂o ∗ x̄o) in (3), gives the

orientation error in unit quaternion space1.

Based on the definition, the quaternion representation q
for a vector of axis-angle orientation θ ∈ R

3×1 is

q = exp(θ) =

{
[cos(‖θ‖) sin(‖θ‖) θ�

‖θ‖ ]
� , θ �= 0

[1 0 0 0]� , otherwise
.

A logarithmic map will inverse the mapping

log(q) = log

([
v
u

])
=

{
arccos(v) u

‖u‖ , u �= 0

[0 0 0]� , otherwise
.

This mapping is one-to-one correspondent for ‖θ‖ < π.

From Eq. (3), we can compute x̂o using the above definition

x̂o = exp
(

1
2 (K

O)
−1

ẍo + 1
2 (K

O)
−1

KWẋo

)
∗ xo , (4)

by which we can retrieve the quaternion attractor through an-

other dynamical system and suitable choice of corresponding

stiffness and damping gains.

We therefore have computed the position attractor x̂p and

the orientation attractor (in unit quaternion space) x̂o, which

will be used through out the next section as the position and

orientation references.

IV. TASK-PARAMETRIZED GAUSSIAN MIXTURE MODEL

FOR FULL POSE

Consider a set of task-parameters represented as coordi-

nate systems along with a set of demonstrations that depend

on the task-parameters. We use TP-GMM as a statistical

approach in combination with dynamical systems to encode

different demonstrated actions in an abstract form of mix-

ture of Gaussian components. The task-parameters are the

frame of references that matter for each demonstration. The

model parameters are iteratively estimated with expectation-

maximization procedure using the recorded trajectories and

the corresponding task-parameters. Then, during reproduc-

tion, the product of linearly transformed model parameters

given new task-parameters, is used to estimate the new

trajectory through Gaussian mixture regression [6].

In this section, we briefly describe the approach for

the situations in which full pose (including position and

orientation) can be encoded suitably by using TP-GMM (for

more details see [6], [11]).

A. Learning the Model Parameters

The dataset includes both position and orientation attrac-

tors (extracted in the previous sections)

ξn =

[
ξIN
n

ξOUT
n

]
, ξOUT

n =

[
x̂p
n

x̂on

]
,

where ξIN
n and ξOUT

n are the input and output part of ξn
at time step n. For example, in a time-based movement in

3D Cartesian space, D = 8 corresponds to aggregation of

1Similar to the case of rotation matrices, if we represent two different
orientations in quaternion space with X o

1 and X o
2 , the quaternion that rotates

X o
1 into X o

2 , is given by X o
2 ∗ X̄ o

1 .
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time variable (ξIN , 1 dimension) and Cartesian position (3

dimensions) and unit quaternion orientation (4 dimensions).

The task parameters are P coordinate systems, represented

by {bn,j ,An,j}Pj=1 at each time step n. For position data,

they correspond to the origin and rotation matrix of the

coordinate system i.e. bn,j ∈ R
3×1 is the origin and An,j ∈

R
3×3 is a set of basis vectors. For the quaternion orientation

data, bn,j = 0 is 4 × 1 zero vector and An,j ∈ R
4×4

is the matrix representation of the quaternion orientation

(quaternion matrix2) of the jth frame at time step n.

A task-space attractor trajectory ξ ∈ R
D×N with N

samples in the global frame of reference, can be observed

from the viewpoint of each of P coordinate systems (task-

parameters) which forms different trajectories {X(j)}Pj=1 ∈
R

D×N . At each time step n, this projection can be obtained

by a linear transformation as

X(j)
n = A−1

n,j(ξn − bn,j). (5)

Based on Eq. (5), the projected position attractor yields

from R−1
n,j(x̂

p
n − on,j), in which R is the corresponding ro-

tation matrix and o is the origin of the coordinate frame and

the projected orientation attractor will be A−1
n,j(x̂

o
n−bn,j) =

Q−1
n,j x̂

o
n, where Q is the quaternion matrix representation of

R.

Intuitively speaking, the idea is to observe the movement

and the corresponding Gaussian Mixture Model (GMM) in

the global frame, from every single frame of reference.

The TP-GMM parameters are then, a set of GMMs pro-

jected into all of the frames. The learning process consists

of iteratively updating the model parameters defined by

{πi, {μ(j)
i ,Σ

(j)
i }Pj=1}Ki=1, for a model with K components,

where πi is the mixing coefficient for the ith Gaussian

component and μ
(j)
i and Σ

(j)
i are center and covariance

matrix of the ith Gaussian component at frame j. These

parameters are achieved with an Expectation Maximization

(EM) process that iteratively updates the model parameters

until convergence.

B. Reproduction

Given a set of task-parameters {bn,j ,An,j}Pj=1 in the

reproduction phase, the learned model is used to reproduce

the movements in the previous situations (reproducing the

demonstrations) or different trajectories with new frame of

references. At each time step n, the model first retrieves

a temporary GMM by a product of linearly transformed

Gaussians

N (μn,i,Σn,i) ∝
P∏

j=1

N
(
An,jμ

(j)
i +bn,j , An,jΣ

(j)
i A�

n,j

)
.

(6)

2Quaternion matrix consists of the quaternion vector elements i.e. if q1
and q2 are two quaternions then the quaternion matrix Q1 is built from
the elements of q1 so that Q1q2 ≡ q1 ∗ q2 (∗ is quaternion product).

This product of Gaussians can be achieved by the following

equations

Σn,i =
( P∑

j=1

(An,jΣ
(j)
i A�

n,j)
−1)−1

,

μn,i = Σn,i

P∑
j=1

(An,jΣ
(j)
i A�

n,j)
−1

(An,jμ
(j)
i + bn,j).

Based on Eq. (6) in the reproduction phase, the model

parameters are first transformed using the new given frames

and then the product of them forms the temporary GMM at

each time step n.

Given the temporary GMM parameters, Gaussian Mixture

Regression (GMR) is then used to retrieve the trajectory.

GMR estimates the conditional probability P(ξOUT
n |ξIN

n )
relying on the joint probability P(ξIN

n , ξOUT
n ), encoded with

GMM parameters (see details in [6]).

By using the dynamical system of Eq. (1) and (3), it

is straightforward to reproduce the position and orientation

from their attractors, either with the same stiffness and

damping gains or different ones.

V. EXPERIMENTS

The flexible BHA robot with 9 DoF is used in two

experiments. The aim of the first experiment is to teach the

robot, a time-based point to point end-effector movement. In

the second experiment the robot learns to follow an object

(a red cup) with its end-effector. This experiment is time-

invariant.

The experiments are designed to show the capability of our

proposed LfD approach. There are 3 phases for both of them:

demonstration, model learning and reproduction phase. The

demonstrations are recorded by kinesthetic teaching while

the robot is in active compliant control model. During the

demonstration, we record the full pose of the BHA end-

effector along with the position and orientation of each frame

of reference. The recorded end-effector data is smoothed out

and re-sampled through out a preprocessing step. Eventually

we will have 3 dimensions for the position and 4 dimensions

for the orientation expressed in unit quaternion space.

A. Time based point to point movement

The aim of the first experiment is to teach the robot to

move its end-effector from a start to an end pose. For each

movement, the start and end Cartesian poses are chosen

as 2 fixed frame of references. During demonstration, the

user is able to slowly move the robot from the start to the

end while recording the Cartesian positions and orientation

of the end-effector. We recorded an appropriate number of

demonstrations (here 8), by using a Vicon system. The Vicon

system also collects the complete pose of the start and end

frames that are fixed in this experiment. Fig. 2b shows one

example of the experiment’s setup by which we recorded the

demonstrations.
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Fig. 3: Demonstrations of point-to-point movements. Here only 4
demonstrations out of 8 were depicted. The gray cones represent
the pose of starts and ends. For each demonstration the starts and
ends can be distinguished respectively by the pink 1 and 2 and red
cones. The gray trajectory and the black cones on it show the pose
of the end-effector in some selected intervals. A sample BHA robot
is also shown in the top-left figure.

In the time-based recorded dataset, we have 8 dimensions

for ξ as

ξn =

⎡
⎣ tn
x̂p
n

x̂on

⎤
⎦ , bn,j =

⎡
⎣ 0

o
(j)
n

0

⎤
⎦ ,An,j =

⎡
⎣1 0 0

0 R(j)
n 0

0 0 Q(j)
n

⎤
⎦ ,

(7)

where o
(j)
n is the Cartesian position of the origin of jth

frame, 0 is a 4×1 zero vector. R(j)
n and Q(j)

n are respectively

the rotation matrix and quaternion matrix representation of

the orientation of jth frame.

We empirically chose 3 Gaussian components in the

model. The stiffness and damping gains in Eq. (1) and (3)

were set to kP = 500, kV = 50 and kO = 250, kW = 25
respectively, to keep the dynamical system close to an over-

damped situation.

Fig. 3 shows 4 sample demonstrations and the correspond-

ing fixed start and end poses by gray cones. A TP-GMM is

used to encode the recorded pose trajectories given the poses

of the start and end points as fixed frame of references. Fig.

4 shows how the learned TP-GMM model reproduces the

end-effector poses along the trajectory, given the same pair

of frames. The retrieved GMM has been plotted in the top-

left figure as well. Note that since the references are fixed

though out the experiment, the retrieved GMMs are the same

for every time step.

The generalization capability of TP-GMM approach was

examined successfully by providing different poses of start

and end points. In our experiment the proposed model was

able to produce suitable and smooth movements between

the points. Fig. 5 shows the qualitative results of 4 sample

reproduction, given new pairs of frames of references.

Here we provided the results only in simulation but in the

real experiment, to move the BHA robot, a previously devel-

oped inverse kinematics model based on constant-curvature

model [19] can be used to transform the Cartesian poses into

Fig. 4: Reproduction of 4 sample demonstrations in Fig. 3. The
TP-GMM model is learned by considering the full pose of the start
and end cones as the fixed frame of references (task parameters).
The blue line and the frames on them are the reproduced end-
effector position trajectories and samples of its orientation. The
model is successfully learning and reproducing the full pose of the
robot’s end-effector. In the top-left figure the green ellipsoids are
the retrieved GMM corresponding to the position attractors.

Fig. 5: Sample reproduced position and orientation of the end-
effector given new start and end poses. The colored depicted frames
show the orientation of the end-effector during the reproduced
position trajectory. We have not shown all the frames for all the
time steps. In the top-right figure, the red ellipsoids are the retrieved
GMM corresponding to the position attractors.

the robot’s joint space trajectory. We modified the iterative

inverse kinematics model to have more tendency to fit the

position of the end-effector rather than the orientation by

exploiting null-space of the robot. This is done by searching

more in the null-space of the robot to satisfy the orientation.

The real robot experiment can be carried out as a ball in the

basket or fruit picking scenario.

B. Time-invariant movement

In the second experiment, we want to demonstrate to the

robot to follow the position and orientation of a flying object

(a cup, shown in Fig. 6 by blue cones) in the work-space by

its end-effector. Time was used as the input in the previous

experiment. However using the TP-GMM, any other type
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Fig. 6: Two samples of moving frame during demonstration: Frame
1 (blue cones) is a moving frame that its position and orientation
should be followed by the pose of the robot’s end-effector. The
moving direction is shown by dark cones. Frame 2 (green cone)
has a fixed pose at the base of the robot. The gray small cones
show how the end-effector pose follows the pose of the second
frame.

of inputs can be used to derive the movement [6]. Since

the robot should follow the pose of the cup, we choose the

position of the cup in the 3D Cartesian space as the input by

which we can learn a time-invariant task. In this experiment,

we defined 2 frames of references. The first frame is the

moving cup (blue cones) and the second frame is the fixed

base of the robot. We define the dataset and the first frame

as follow

ξn =

⎡
⎣orc

n

x̂p
n

x̂on

⎤
⎦ , bn,1 =

⎡
⎣ 0
orc
n

0

⎤
⎦ ,An,1 =

⎡
⎣I 0 0
0 Rrc

n 0
0 0 Qrc

n

⎤
⎦ ,

(8)

where, the position of the cup orc
n has been replaced by

time. Rrc
n and Qrc

n are respectively, the rotation matrix and

quaternion matrix representation of the orientation of the first

frame (here the moving frame). In the above equation, ξn ∈
R

10×1, Rrc
n ∈ R

3×3, Qrc
n ∈ R

4×4 and I ∈ R
3×3 is the

identity matrix. The vectors 0 have suitable dimension. The

second frame is always fixed at the base of the robot, bn,2 =
0 ∈ R

10×1 and An,2 = I ∈ R
10×10.

Fig. 6 shows 2 sample demonstrations and frames. The

demonstrations were recorded by kinesthetic teaching while

the BHA robot was in the active compliant control mode i.e.

it is easy for the user to reconfigure the robot and follow

the pose of the red cup. During the demonstration, the cup

was moving randomly in the space with one user and another

user tries to keep the robot’s end-effector always close to the

cup. In Fig. 6 the blue cones show the movement of the cup

in the robot’s workspace. We collected 6 demonstrations for

this experiment. The second fixed frame is visualized by the

green cone fixed at the origin.

Since the first frame of reference is always in the vicinity

of the robot’s end-effector, the model learned the importance

of this frame. Note that, this implicit information is in the

demonstration data and not given to the model explicitly.

During reproduction, given the position and orientation of

Fig. 7: Reproduction of the sample demonstrations by using TP-
GMM. Here, the movement of the first frame is presented to the
robot and the encoded model retrieves the pose of the end-effector
(blue line and arrows).

the two frames, the model retrieves the full pose of the

end-effector. The inverse kinematic model of the BHA robot

is then used to obtain the joint variables (lengths of the 3

modules).

Fig. 7 depicts the reproduced pose for the end-effector

using the learned model. Here, for the moving frame, the

same movement as Fig. 6 has been considered. The trajectory

and the corresponding orientation are shown by blue lines

and arrows for some of the time instances. The difference

between the pose of the end-effector and the moving frame

at the end of the movement is due to the fact that we have

plotted only the first 100 time instances. The dynamical

system makes the movement more compliant but also a

bit delayed i.e. the positions and orientations follow their

attractors slowly according to the stiffness and damping

gains.

We examined the generalization capability of the learned

model by proving different poses for the moving frame (the

cup in the real experiment). Fig. 8, shows 2 new situations in

which the robot successfully follows the pose of the second

frame. The poses of the moving frame have been shown by

gray cones that get darker towards the end of the movement.

The reproduced trajectory of the end-effector is shown by the

black line on which the reproduced orientations have been

shown by blue arrows.

VI. CONCLUSION AND FUTURE WORKS

In this paper, a practical approach that enables us to apply

kinesthetic teaching on a soft pneumatic robot was suggested

and tested. To the best of the author’s knowledge, nobody has

tried to do any task-related teaching on a real soft/continuum

robot. The method is based on an active compliant controller

that has been developed for this robot. Similar controller can

be exploited on other soft robots such as STIFF-FLOP robot

[1] while providing demonstrations is necessary like in [3].

A task-parametrized probabilistic model was used as a

learning from demonstration algorithm to encode and retrieve

both the position and the orientation of the end-effector.

9th International Workshop on Human 
Human Friendly Robotics, 29. & 30. September 
2016, Genoa, Italy 

106 HFR2016.wordpress.com



(a) (b)

Fig. 8: Two different movements, each one has been shown from 2 angles. The gray cones are the position and orientation of the moving
frame that the robot’s end-effector (the blue line and arrow) is able to follow.

Two time-dependent and time-independent experiments were

conducted to test the ability of the proposed method. The

demonstrations were recorded by using a real BHA robot,

whilst the reproduction results were shown in simulation.

However in the future, we aim to design more complex real-

world experiments.

Also we want to evaluate the approach more quantitatively,

specially by analyzing the retrieved covariance matrices

during the reproduction phase. The demonstrations were for-

mulated by using dynamical systems. We are also interested

in applying different stiffness and damping gains in the

reproduction phase.
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