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production by Corynebacterium glutamicum
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Abstract

Background: Corynebacterium glutamicum is a well-studied bacterium which naturally overproduces glutamate
when induced by an elicitor. Glutamate production is accompanied by decreased 2-oxoglutatate dehydrogenase
activity. Elicitors of glutamate production by C. glutamicum analyzed to molecular detail target the cell envelope.

Results: Ciprofloxacin, an inhibitor of bacterial DNA gyrase and topoisomerase IV, was shown to inhibit growth of
C. glutamicum wild type with concomitant excretion of glutamate. Enzyme assays showed that 2-oxoglutarate
dehydrogenase activity was decreased due to ciprofloxacin addition. Transcriptome analysis revealed that this
inhibitor of DNA gyrase increased RNA levels of genes involved in DNA synthesis, repair and modification.
Glutamate production triggered by ciprofloxacin led to glutamate titers of up to 37 ± 1 mM and a substrate
specific glutamate yield of 0.13 g/g. Even in the absence of the putative glutamate exporter gene yggB,
ciprofloxacin effectively triggered glutamate production. When C. glutamicum wild type was cultivated under
nitrogen-limiting conditions, 2-oxoglutarate rather than glutamate was produced as consequence of exposure
to ciprofloxacin. Recombinant C. glutamicum strains overproducing lysine, arginine, ornithine, and putrescine,
respectively, secreted glutamate instead of the desired amino acid when exposed to ciprofloxacin.

Conclusions: Ciprofloxacin induced DNA synthesis and repair genes, reduced 2-oxoglutarate dehydrogenase
activity and elicited glutamate production by C. glutamicum. Production of 2-oxoglutarate could be triggered
by ciprofloxacin under nitrogen-limiting conditions.

Keywords: Corynebacterium glutamicum, Ciprofloxacin, DNA gyrase, Glutamate, Ornithine, Putrescine, Arginine,
Lysine, 2-oxoglutarate, Overflow metabolism
Background
Glutamic acid and its salts are used as flavor enhancers
since decades, due to its “meaty” taste, designated as
“umami” [1]. The annual global production of glutamic
acid and its salts amounts to about three million tons
per year and is still increasing [2]. Corynebacterium
glutamicum was discovered because it naturally ex-
cretes high amounts of glutamate under certain condi-
tions [3, 4]. Due to this ability, C. glutamicum and its
close relatives are used for the industrial production of
glutamate [2, 5]. This rod shaped, Gram-positive bac-
terium is biotin auxotrophic and secretes glutamate, for
instance when biotin is limiting [4]. Biotin has to be
supplemented to the growth media to maintain the
function of the two enzymes pyruvate carboxylase (EC
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6.4.1.1) and acetyl-CoA carboxylase (EC 6.4.1.2) [6, 7].
The second catalyzes the first committed step in fatty acid
synthesis [7]. Thus, biotin limitation may be closely
connected to changes in the membrane composition. It
has also been shown, that glutamate production, induced
by biotin limitation, is always accompanied with mem-
brane alteration. However, membrane alterations alone
are not a sufficient prerequisite for the production of glu-
tamate [8]. Other membrane destabilizers like detergents
(surfactants) or fatty acids like Polyoxyethylen(20)-sorb-
itan-monopalmitate (Tween-40) and cell wall affecting
compounds are used to elicit glutamate production in C.
glutamicum [9–15]. For example, Penicillin G which in-
hibits the transpeptidase activity and, thus, cross-linking
of cell wall peptidoglycan is a commonly known elicitor of
glutamate production by C. glutamicum [16, 17]. Another
antibiotic affecting cell wall synthesis is ethambutol which
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Fig. 1 Colony formation of C. glutamicum wild type in the presence
of different ciprofloxacin concentrations. The cells were cultured in
CGXII (4 % (w/v) glucose) to an OD600 of 15 and ciprofloxacin was
added. After five hours of ciprofloxacin exposure, cells were diluted
in 0.9 % NaCl to an OD600 of 1 and further diluted. Colony forming
units (cfu) were determined. Experiments were performed in biological
duplicates and colony number determined for two technical replicates
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inhibits the arabinosyltransferase, an enzyme involved in
the polymerization of cell wall arabinogalactan [18–20].
Although the described elicitors for glutamate pro-

duction affect the cell envelope of C. glutamicum, it is
widely accepted that membrane alteration alone is not
sufficient for glutamate production and the ‘leak model’
is obsolete [8, 21]. On the one hand, under several
glutamate overproducing conditions the metabolic flux
is changed, because 2-oxoglutarate dehydrogenase
complex (ODHC) activity is reduced [22]. This is con-
tributed to the inhibition of ODHC via OdhI [23, 24].
On the other hand, it is evident that glutamate is not
only diffusing through the membrane passively, but
involves active export [21, 25]. Recent results affirm
that active glutamate export is due to the putative
mechanosensitive channel protein YggB [26, 27]. Trig-
gering glutamate overproduction by C. glutamicum is a
complex phenomenon, but a growth limitation per se
(e.g., due to phosphate limitation, [28]) does not lead to
glutamate overproduction. It has also been established
that triggering export alone is not sufficient for glutam-
ate overproduction [20, 21, 29–31]. However, all known
triggers of glutamate overproduction lead to reduced
ODHC activity [22, 32–34]. The underlying regulatory
mechanism is not transcriptional regulation, but inhib-
ition of ODHC on the enzyme activity level by OdhI, a
specific inhibitory protein [24, 35, 36].
Since the beginning of investigation of glutamate produc-

tion by C. glutamicum it is known that agents targeting the
DNA synthesis can elicit the production of glutamate [37].
Nevertheless, none of these inhibitors of DNA replication
were analyzed in C. glutamicum regarding their mode
of action in glutamate synthesis. Ciprofloxacin, a mem-
ber of the fluoroquinolone antibiotics, inhibits DNA
gyrase and topoisomerase IV of Gram-negative as well
as of Gram-positive bacteria [38, 39]. Therefore, it
causes the stagnation of the cell division due to its
DNA replication inhibiting function. Here, we report
that ciprofloxacin does not only arrest growth of C.
glutamicum, but also triggers glutamate production.

Results
Effects of ciprofloxacin on colony formation
Typically production of a desired metabolite, for instance
an amino acid, occurs at the expense of biomass forma-
tion. Therefore, arresting growth while maintaining
substrate utilization should lead to higher product
yields. While sub-lethal concentrations of cell wall ac-
tive antibiotics such as penicillin G are known to trig-
ger glutamate production by C. glutamicum, the effect
of ciprofloxacin, an inhibitor of DNA gyrase and topo-
isomerase IV in Gram-positive bacteria and, thus, of
DNA synthesis [38, 39], on C. glutamicum has not been
tested. It is believed that bacterial cells exposed to
ciprofloxacin are non-dividing, but living and metabol-
ically active [38].
To determine how ciprofloxacin affects C. glutamicum,

cells growing exponentially on glucose minimal medium
were exposed to ciprofloxacin for five hours before the
colony forming units (cfu) were determined. Growth was
arrested already at very low ciprofloxacin concentrations
(IC50 = 1.3 μg/ml), for example at a concentration of 4 μg/
ml, the ability to form colonies was already reduced by
90 % (Fig. 1). Colony formation at high ciprofloxacin con-
centrations was heterogeneous whereas untreated cells
formed uniform colonies (see Additional file 1: Figure S1).

Transcriptional effects due to addition of ciprofloxacin
To determine the transcriptional response of C.
glutamicum to sub-inhibitory ciprofloxacin concentra-
tions, a microarray experiment was performed for com-
parison of differential gene expression due to the exposure
to ciprofloxacin. Therefore, the C. glutamicum WT was
cultured in CGXII and 1 % (w/v) glucose to an OD600 of
about 5 before no or 4 μg∙ml-1 ciprofloxacin were added
for one hour. This relatively low concentration was used,
because the growth inhibitory effects are less severe than
at higher concentrations. The differential expression of
ciprofloxacin treated cells was compared to untreated cells
(Table 1). Mostly, genes important for DNA synthesis,
repair or modification such as recA (codes for DNA
recombinase A), cglIM (codes for DNA cytosine-5-
methyltransferase) and cg1018 encoding a putative ATP-
dependent DNA helicase gene showed higher mRNA levels
after exposure to ciprofloxacin. This included 8 of the 48



Table 1 Differential gene expression of C. glutamicum caused by ciprofloxacin

Gene IDa Gene namea Function of proteina M-valueb P-value*

DNA synthesis, repair, modification

cg2141 recA Recombinase A 3.86 0.000

cg1996 cglIM DNA (cytosine-5-)-methyltransferase 3.41 0.000

cg0886 - Putative ATP-dependent DNA helicase superfamily II 2.41 0.003

cg1401 ligA DNA ligase (NAD(+)) 2.16 0.002

cg1400 - Putative DNA polymerase III, Gram-positive-type alpha subunit 2.01 0.002

cg1997 cglIR Putative type II restriction endonuclease 1.38 0.001

cg0885 - Putative helicase, UvrD/Rep-family 1.08 0.029

cg2509 recO DNA repair protein RecO 1.05 0.044

cg1316 - DNA/RNA helicase, SNF2 family 1.03 0.022

cg1018 - Putative ATP-dependent DNA helicase 3.12 0.001

cg2950 radA Putative ATP-dependent protease involved in DNA repair 1.10 0.029

Transcription, Translation, Proteinmodification

cg2114 lexA transcriptional regulator, LexA-family 1.61 0.004

cg3071 pyrE Orotate phosphoribosyltransferase 1.38 0.025

cg0684 papA Prolyl aminopeptidase A 1.31 0.006

cg0685 - Conserved hypothetical protein similar to metal-dependent proteases,
putative molecular chaperone

1.66 0.003

cg0686 - Putative acetyltransferase, GNAT-family 1.32 0.013

cg1980 - Hypothetical protein, MoxR-like ATPase 1.33 0.006

Genes of unknown function

cg2113 divS Cell division suppressor DivS 5.38 0.000

cg2381 - Conserved hypothetical protein 3.86 0.000

cg1287 - Conserved hypothetical protein 3.09 0.008

cg1962 - Putative membrane protein 2.56 0.000

cg0839 - Hypothetical protein 2.52 0.001

cg1977 - Putative secreted protein 1.95 0.000

cg2026 - Hypothetical protein 1.88 0.000

cg1978 - Hypothetical protein 1.72 0.000

cg1917 - Hypothetical protein 1.50 0.002

cg0841 - Conserved hypothetical protein 1.39 0.016

cg1743 - Conserved hypothetical protein 1.38 0.006

cg1937 - Putative secreted protein 1.22 0.015

cg3018 - Hypothetical protein 1.22 0.002

cg0451 - Putative membrane protein 1.21 0.003

cg0712 - Putative secreted protein 1.08 0.014

cg3106 - Conserved hypothetical protein 1.03 0.029

cg2391 aroG 3-Deoxy-7-phosphoheptulonate synthase -1.26 0.022

cg0203 iolE Putative myo-inosose-2 dehydratase -1.25 0.009

cg1342 narJ Respiratory nitrate reductase 2, delta chain -1.13 0.041

cg2378 mraZ Putative MraZ protein -1.13 0.023

cg2118 fruR transcriptional regulator of fructose metabolism -1.08 0.014

cg0205 iolH Myo-inositol catabolism protein -1.06 0.044
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Table 1 Differential gene expression of C. glutamicum caused by ciprofloxacin (Continued)

Genes of unknown function

cg1918 - Putative secreted protein -2.82 0.000

cg2080 - Conserved hypothetical protein -1.74 0.012

cg2952 - Putative secreted protein -1.58 0.002

cg0045 - ABC-type putative sugar transporter, permease subunit -1.36 0.025

cg1884 - Putative membrane protein -1.30 0.038

cg1340 - Conserved hypothetical protein -1.27 0.001

cg3226 - Putative MFS-type L-lactate permease -1.15 0.009
aGene ID, gene name and function of proteins are given according to CoryneRegNet (http://coryneregnet.de). bRelative RNA levels of cells treated with 4 μg∙ml-1

ciprofloxacin compared to untreated cells are shown as log 2 values (M-values). *P-values were determined by Student’s t-test. Only genes with significant (p < 0.05)
expression differences and M-values >1 or <1 are listed. The wild type was cultured in triplicate in CGXII with 1 % (w/v) glucose to an OD600 of about 5. Afterwards, cells
were exposed to 4 µg/ml ciprofloxacin, a concentration allowing minor growth of the cultures. The data are available as Gene Expression Omnibus GSE77189 data set
at http://www.ncbi.nlm.nih.gov/geo/

Fig. 2 Biomass formation and glutamate production after ciprofloxacin
addition. The C. glutamicum wild type, supplemented with 4 % (w/v)
glucose, was grown to an optical density of 15 and ciprofloxacin in
different concentrations was applied. After ciprofloxacin addition,
cultures were incubated until glucose was consumed and the
cell dry weight produced in this phase (ΔCDW, open diamonds)
and the glutamate concentration (black squares) were determined,
after the consumption of the substrate. Values and error bars represent
the mean and the experimental imprecision of duplicates
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genes of the LexA regulon [40]. Further genes induced
by ciprofloxacin were genes related to transcription,
translation or protein modification or unknown func-
tions. Among the genes showing reduced mRNA levels
after exposure to ciprofloxacin was the mraZ gene,
which putatively is involved in cell division.

Eliciting glutamate production by exposure to ciprofloxacin
To investigate if a growth arrest due to ciprofloxacin
maintains metabolically active C. glutamicum cells, cul-
ture supernatants of cells exposed to ciprofloxacin were
assayed for amino acids. Interestingly, it was revealed
that C. glutamicum produced glutamate when exposed
to ciprofloxacin, even though other elicitors of glutam-
ate production were absent from the medium (such as
biotin limitation, Penicillin G, ethambutol, Tween 40
[11, 16, 19, 41]). Thus, although ciprofloxacin did not
affect mRNA levels of genes of glutamate biosynthesis
(Table 1), it elicted glutamate production. To identify
the optimal ciprofloxacin concentration for triggering
glutamate production by C. glutamicum WT, different
concentrations of ciprofloxacin were added to cultures
at an optical density of 15. It could be shown that even
the addition of 2 μg/ml ciprofloxacin elicited the pro-
duction of glutamate (Fig. 2). The highest glutamate
titer was obtained by the addition of 8 μg/ml ciproflox-
acin (37 ± 1 mM) which corresponded to a substrate
specific glutamate yield of 0.13 g/g. This yield is com-
parable to glutamate production triggered for example
by biotin limitation (0.15 g/g), addition of ethambutol
(0.2 g/g) or penicillin G (0.25 g/g) [19, 33, 42]. Since
the hitherto known triggers of glutamate production
lead to reduced 2-oxoglutarate dehydrogenase complex
(ODHC) activity [23, 24], it was analyzed whether the
ODHC activity was decreased after exposure to ciproflox-
acin. C. glutamicum was cultured in glucose minimal
medium to an OD600 of about 8 before either no or
8 μg/L ciprofloxacin were added. ODHC activity was
assayed in crude extracts prepared after 4 h of
ciprofloxacin exposure. Indeed, when ciprofloxacin was
added, ODHC activity was decreased by 87 % from 5.8 ±
0.7 mU/mg protein to 0.8 ± 0.3 mU/mg protein. These
data are comparable to studies with Penicillin G or Tween
40 treated C. glutamicum cells, where the ODHC activ-
ities were decreased to a similar extent [22].

Contribution of the mechanosensitive channel protein YggB
Besides reduced ODHC activities being involved in
glutamate production, active glutamate export is a hall-
mark of glutamate production by C. glutamicum. The
mechanosensitive channel protein MscS encoded by
yggB (cg1432) is involved in the export of glutamate and
in its absence glutamate production is reduced about
four to five fold [26]. To test whether YggB is important
for glutamate production triggered by ciprofloxacin
addition, the gene was deleted and glutamate production
of the respective strain was measured and compared to
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the parental strain (Fig. 3). The cells were grown in
CGXII (1 % (w/v) glucose) and ciprofloxacin (0, 4, and
16 μg/L, respectively) was added at an optical density
of 2 to 5. Unexpectedly, ciprofloxacin-induced produc-
tion of glutamate was observed in the presence and ab-
sence of yggB. By contrast, glutamate production under
biotin-limiting conditions was decreased about four
fold, but not completely abolished (Fig. 3). Thus, unlike
for glutamate production under biotin-limiting condi-
tions, ciprofloxacin-triggered glutamate production was
not affected by the absence of YggB.

Influence of ciprofloxacin on ornithine, arginine, putrescine
and lysine producing strains
In order to test if ciprofloxacin addition triggers produc-
tion of other glutamate-family amino acids, ornithine and
arginine producing strains (ORN1 and ARG1) as well as
strain PUT21 producing putrescine, a diamine derived
from ornithine, were exposed to ciprofloxacin. The strains
were cultured in CGXII supplemented with 1 % (w/v) glu-
cose to an optical density of 2 to 5 before ciprofloxacin
was added (0, 4, and 16 μg/L, respectively). However, the
addition of ciprofloxacin reduced rather than increased
production of ornithine, arginine and putrescine, re-
spectively, and triggered the production of glutamate as
by-product (Fig. 4). In a similar experiment, the effect
of ciprofloxacin on lysine production by the lysine
producing strain DM1729 was determined. Lysine pro-
duction media have high biotin concentrations (a) to
ensure sufficient levels of the biotin protein pyruvate
Fig. 3 Difference of ciprofloxacin and biotin limitation after yggB
deletion. The strains MB001 (black) and MB001ΔyggB (white) were
cultured to an optical density of 2 to 5 in CGXII supplemented with
1 % (w/v) glucose and ciprofloxacin was applied. In addition, the
MB001 strain (black) was compared to MB001ΔyggB (white) during
biotin limitation. Therefore the pre-limited cells (in CGXII, 4 % glucose,
0 μg biotin per L) were re-inocculated to CGXII, containing 2 μg
biotin per L, supplemented with 1 % (w/v) glucose. The glutamate
concentration of both conditions was determined in the culture
supernatant after the complete consumption of glucose. Values
and error bars represent the mean and the standard error of
triplicate cultivations
carboxylase and (b) to avoid glutamate formation trig-
gered by biotin limitation [43]. Addition of ciprofloxacin
to the lysine producer resulted in glutamate production
and lysine production was reduced at 16 μg/L cipro-
floxacin (Fig. 4). Thus, ciprofloxacin addition specific-
ally triggers glutamate production and interferes with
production of glutamate-derived products (ornithine,
arginine and putrescine) as well as with production of
lysine, an amino acid not belonging to the glutamate-
family of amino acids.

Influence of ciprofloxacin on the production of overflow
metabolites
Glutamate may be considered an overflow metabolite,
which, however, requires sufficient supply of a nitrogen
source. Efficient 2-oxoglutarate production requires dele-
tion of the genes for enzymes converting 2-oxoglutarate
to glutamate and nitrogen-limiting conditions [44]. To in-
vestigate whether ciprofloxacin triggers 2-oxoglutarate
production under nitrogen-liming conditions, C. glutami-
cum WT was cultivated in CGXII medium containing ten
times less nitrogen sources (2 g (NH4)2SO4 and 0.5 g/L
urea) as compared to regular CGXII medium. Ciprofloxa-
cin (16 μg/ml) was added to the culture, when growth
with glucose stagnated due to nitrogen starvation and cul-
tivation was continued until exhaustion of the carbon
source. Ciprofloxacin did not affect biomass formation
under these conditions, but the product spectrum was
changed (Table 2). Instead of glutamate, 2-oxoglutarate
was the main product formed (Table 2). Besides 18.6 ±
0.1 mM 2-oxoglutarate, 4 mM glutamate was formed
when ciprofloxacin was added while formation of
acetate and lactate was not increased by addition of
ciprofloxacin (Table 2).

Discussion
Here, we have characterized how glutamate production
by C. glutamicum can be triggered by addition of the
gyrase inhibitor ciprofloxacin. In fact, it is known for
long that gyrase inhibitors like novobiocin can elicit
glutamate efflux in corynebacteria [37]. However, all
triggers of glutamate production analyzed to date to
some molecular detail have in common to affect the
cell membrane and/or cell wall. For example, biotin
limitation and addition of the fatty acid synthase inhibi-
tor cerelunin impair fatty acid and/or mycolic acid bio-
synthesis, penicillin G targets peptidoglycan cross-
linking, ethambutol inhibits cell wall arabinogalactan
biosynthesis, detergents like Tween 40 impair the sur-
face integrity. The mechanism of ciprofloxacin action
with respect to triggering glutamate production re-
mains to be elucidated. In the simplest case, growth ar-
rest by ciprofloxacin maintains metabolic activity of the
cells which convert growth substrates to glutamate as



Fig. 4 Growth of amino acid and diamine producer strains exposed to ciprofloxacin. The strains DM1729 (lysine producer) (a + b), ARG1 (arginine
producer) (c + d), ORN1 (ornithine producer) (e + f) and PUT21 (putrescine producer) (g + h) were cultured to an optical density of 2 to 5 in CGXII
supplemented with 1 % (w/v) glucose and ciprofloxacin was applied. Graphs on the left side (a, c, e, g) show the growth inhibition due to the
addition of ciprofloxacin in concentrations of 0 μg/ml (white tirangles), 4 μg/ml (hatched squares) and 16 μg/ml (black circles). The graphs on the
right side (b, d, f, h) show the concentrations of either lysine, arginine, ornithine or putrescine (black bars) and of glutamate (white bars) after the
complete consumption of glucose. Values and error bars represent the mean and the standard error of duplicates

Table 2 Production of organic acids by C. glutamicum WT under nitrogen-limiting conditions in the absence or presence of ciprofloxacin

Ciprofloxacin [μg/ml] Cell dry weight [mg/ml] Acetate [mM] Lactate [mM] glutamate [mM] 2-oxoglutarate [mM]

0 6 ± 1 7 ± 2 7 ± 1 0 ± 1 7 ± 1

16 6 ± 1 10 ± 1 6 ± 1 4 ± 1 19 ± 1

Cells were cultivated in CGXII containing ten times less nitrogen sources than regular CGXII medium. 1 % glucose was used as carbon and energy source. At an
OD600 of about 15, no or 16 μg/ml ciprofloxacin were added. The concentration of organic acids was determined after glucose depletion. All values represent the
mean and the standard error of triplicates
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overflow metabolite. This notion is supported by the
fact that under nitrogen-limiting conditions 2-oxoglutarate,
the immediate nitrogen-free precursor of glutamate is
produced instead of glutamate (Table 2).
The exposure of C. glutamicum to ciprofloxacin altered

expression of remarkably few genes (Table 1). Genes of
glutamate biosynthesis were not significantly altered
(Fig. 5). By contrast, one study reported decreased expres-
sion of almost all genes involved in the EMP pathway, the
PPP, and the TCA cycle by cells triggered for glutamate by
addition of detergent, penicillin or by biotin limitation for
12 hs [45]. These expression changes have since been ob-
served when gene expression is compared between slow
Fig. 5 Scheme of the central carbon metabolism and glutamate biosynthesis a
depicted next to the reaction catalyzed by the encoded enzymes. Relative RNA
cells are shown (values in green are below 1, those in red greater than 1), howe
showed significantly changed expression as determined by Student’s t-test, i.e.,
and fast growing cells [46]. To minimize secondary effects
due to long exposures, cells treated with ciprofloxacin
were analysed already 1 h after addition of ciprofloxacin
(Table 1). Accordingly, a coherent picture of differential
gene expression emerged. The primary transcriptional
response to ciprofloxacin targets DNA synthesis as in
Streptomyces coelicolor [47]. The response of C. glutami-
cum to ciprofloxacin showed the typical expression pat-
tern of the SOS response as consequence of DNA damage
conditions [40]. Namely the genes recA, cglM, cglR, radA,
lexA (autoregulation) and divS and several genes of un-
known function (cg2381, cg2026, cg0841, cg1977) of the
48 genes of the LexA regulon were upregulated. As known
nd relative RNA levels with/without ciprofloxacin treatment. Genes are
levels of cells treated with 4 µg/ml ciprofloxacin compared to untreated
ver, unlike the genes listed in Table 2, none of the genes depicted here
p> 0.05. 6PGL: 6-phosphogluconolactone; 6PG: 6-phosphogluconat
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for C. glutamicum and other bacteria, autoproteolytic
cleavage of the transcriptional regulator LexA is induced
by RecA bound to single stranded DNA leading to the in-
duction of the LexA regulon [48–51]. Several genes of the
LexA regulon [40] were induced by ciprofloxacin in C.
glutamicum. Notably, the LexA regulon was induced in E.
coli by nalidixic acid, which is a gyrase inhibitor of the
class of quinoles as ciprofloxacin [52]. Transcriptional
regulation by LexA is not a prerequisite of glutamate pro-
duction in C. glutamicum since induction of the LexA
regulon has not been reported when glutamate production
was triggered by biotin limitation or by addition of etham-
butol or tween 40 [45, 53]. When C. glutamicum was
treated with high ciprofloxacin concentrations, very few
colony forming units were observed and these showed
colony heterogeneity as depicted in Additional file 1:
Figure S1 for 100 μg/ml ciprofloxacin, a concentration
about 60 fold higher than IC50. Likely, mutations have
occurred leading to different ciprofloxacin susceptibil-
ity as is often observed for treatments triggering the
LexA regulon and the SOS response [54].
Genome resequencing of glutamine-producing E. coli

mutants obtained by classical mutagenesis and screening
revealed nonsynonymous mutations in gyrA which en-
codes the primary target of ciprofloxacin DNA gyrase
and these mutations were shown to have caused glutam-
ine overproduction and reduction of chromosomal DNA
supercoils [55]. Similarly, overexpression of genes encod-
ing topoisomerase I (topA) and topoisomerase IV (parC
and parE) reduced chromosomal DNA coils and entailed
glutamine production by E. coli [55]. MurI-type glutam-
ate racemases are known to inhibit DNA gyrase activity
in E. coli [56] and Bacillus subtilis [57]. These enzymes
link DNA gyrase activity to murein biosynthesis since D-
glutamate is present in peptidoglycan cross-links. As the
closely related C. diphtieriae possesses D-glutamate in
its tetrapeptides (L-Ala-D-Glu-meso-Dap-D-Ala) and
tripeptides (L-Ala-D-Glu-meso-Dap) of peptidoglycan
[58], it is likely that D-glutamate is also present in the
peptidoglycan peptides of C. glutamicum. In fact, C.
glutamicum possesses a murI gene [59]. However, excre-
tion of D-amino acids by C. glutamicum has not been
observed unless a heterologous racemase gene was over-
expressed [60]. Altered murein biosynthesis and cell wall
integrity due to ciprofloxacin may be involved in trigger-
ing glutamate production under these conditions.
Exposure to ciprofloxacin triggered glutamate produc-

tion even in strains overproducing other amino acids
such as lysine as it is true for penicillin G-triggered glu-
tamate production [16]. Thus, ciprofloxacin is a specific
trigger of glutamate production by C. glutamicum. Glu-
tamate was also produced efficiently in the absence of
yggB coding for the glutamate channel, which releases
glutamate by passive diffusion [61]. By contrast, the
deletion of yggB reduced, but not completely abolished
glutamate production triggered by biotin limitation (see
also Fig. 3) or Penicillin G [26, 62]. The residual glutam-
ate production in the absence of YggB varied from trig-
ger to trigger, but suggested that (an) additional
glutamate export system(s) may exist. This is supported
by the fact, that the export of glutamate is also observed
when the external concentration exceeds the intracellu-
lar concentration, which suggests an additional energy-
dependent transport mechanism [63].
Triggers of glutamate production are known to elicit a

metabolic switch in the sense that ODHC activity is re-
duced [23, 24], and also ciprofloxacin reduced ODHC
activity about seven fold (see above). The reduced ODHC
activity in the presence of ciprofloxacin may also explain
ciprofloxacin-triggered production of 2-oxoglutarate
under nitrogen-limiting conditions (Table 2). Other trig-
gers of glutamate production also led to 2-oxoglutarate
production under nitrogen-limiting conditions [44, 64, 65].
When aceA (encoding isocitrate lyase), gltB (encoding
glutamate-2-oxoglutarate aminotransferase) and gdh (en-
coding glutamatate dehydrogenase) were disrupted in
addition, 2-oxoglutarate production was improved 16 fold
and almost 50 g/L 2-oxoglutarate accumulated [65].

Conclusions
Glutamate production by C. glutamicum triggered by cip-
rofloxacin was characterized and shown not to be affected
by the absence of the putative glutamate export system
YggB. This gyrase inhibitor led to increased expression of
genes that are involved in DNA synthesis, repair and
modification and belong to the LexA regulon and SOS re-
sponse of C. glutamicum. The exact mechanism(s) of trig-
gering glutamate production by ciprofloxacin and other
previously published triggers in C. glutamicum remain(s)
enigmatic. However, as observed with all published trig-
gers of glutamate production, ciprofloxacin reduced
ODHC activity in C. glutamicum. Moreover, production
of 2-oxoglutarate could be triggered by ciprofloxacin
under nitrogen-limiting conditions.

Methods
Microorganisms and growth conditions
Microorganisms and plasmids used in this study are
listed in Table 3. E. coli DH5α was used for gene clon-
ing. C. glutamicum and E. coli strains were routinely
grown in lysogeny broth (LB) (10 g/L tryptone, 5 g/L
yeast extract, 10 g/L sodium chloride) in 500 mL baf-
fled flasks on a rotary shaker (120 rpm) or LB agar
plates (18g/L agar) at 30 °C or 37 °C. For growth exper-
iments, CGXII minimal medium [66] was used for C.
glutamicum. Growth was followed by measuring the
optical density at 600 nm using a V-1200 Spectropho-
tometer (VWR, Radnor, PA, USA). An OD600 of 1



Table 3 Strains and plasmids used in this study

E. coli strains

DH5α F−thi-1 endA1 hsdr17(r−, m−) supE44
ΔlacU169 (Φ80lacZΔM15) recA1
gyrA96 relA1

[74]

C. glutamicum strains

WT Wild type strain ATCC13032, auxotrophic
for biotin

ATCC

MB001 ATCC 13032 with in-frame deletion
of prophages CGP1 (cg1507-cg1524),
CGP2 (cg1746-cg1752), and CGP3
(cg1890-cg2071)

[75]

ARG1 WT with in-frame deletion of ΔargR
carrying the pEKEx-argBfbr vector

[76]

ORN1 WT with in-frame deletion of ΔargFR [76]

DM1729 WT with lysCP458S, homV59A, pycT311I [70]

PUT21 WT with in-frame deletion of ΔargFR
carrying the pVWEx1-speC-argFleaky vector

[77]

MB001ΔyggB MB001 with in-frame deletion of ΔyggB This study

Plasmids

pK19mobsacB Kanr, mobilizable E. coli vector for the
construction of insertion and deletion
mutants of C. glutamicum (oriV, sacB, lacZ)

[78]

pK19ΔyggB KanR, pk19mobsacB with the deletion
construct of gene yggB

This study
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corresponds approximately to an estimated cell dry
weight of 0.25 g/L.
When necessary, the growth medium was supple-

mented with kanamycin (25 μg/mL), spectinomycin
(100 μg/mL), isopropyl β-D-1-thiogalactopyranoside
(IPTG) (1 mM) and arginine (750 μM). The growth be-
havior, amino acid and organic acid production and the
substrate consumption of C. glutamicum strains were
analyzed in 500 ml baffled flasks. Briefly, a 50 mL BHI
(37 g/L) seed culture was inoculated from an agar plate
and cultivated overnight. The cells were harvested by
centrifugation (4,000 x g, 10 min) and washed twice
with CGXII minimal medium without carbon source.
Subsequently, 50 mL CGXII medium, containing a
given concentration of carbon source and necessary
supplements, was inoculated to an optical density of
1.0. Detailed information on the carbon source and ni-
trogen concentrations employed is given in the results
chapter.

Determination of ODHC activity
Cultivation of the C. glutamicum wild type was per-
formed in CGXII (4 % glucose) and ciprofloxacin was
added at an OD600 of 10. After 4 °C, the cells were har-
vested and immediately, crude extracts were isolated by
ultrasonic treatment and the fresh extracts were analyzed
as described before [67].
Molecular genetic techniques
Standard methods such as restriction digestions, and
ligation were carried out as described elsewhere [68].
Digested DNA was purified by using the QIAquick Gel
Extraction Kit (Qiagen, Hilden, Germany). E. coli cells
were transformed by heat shock [68] and C. glutamicum
cells were transformed by electroporation [66]. Isolation
of genomic DNA was performed as previously described
[69]. Chromosomal changes in C. glutamicum were
performed as described elsewhere [66]. The gene for the
putative glutamate exporter was deleted in MB001
pK19mobsacBΔyggB. Flanks of yggB were amplified and
joined by crossover-PCR with primers yggB_up_fw + ygg-
B_up_rw and yggB_dw_fw + yggB_dw_rv (italics: restric-
tion sites, underlined: homologous sequence; yggB_up_fw,
CTTGAATTCGGACCCGTCCAAGCCAAG (EcoRI); ygg
B_up_rw, AGAGACGACCTAAGCCAGTCTGGGTACG
CCTAAAATCATGAGC; yggB_dw_fw, AGACTGGCTT
AGGTCGTCTCTGTCCAAGAGACAGTTGCGCC; yggB
_dw_rv, CCTCTGCAGGGAAGGGAGTTGAAGGTGA
CG (PstI)). The crossover PCR prodcut was restricted with
EcoRI and PstI and ligated into EcoRI and PstI restricted
pK19mobSacB. The primers yggB_up (CTTTTGGCGCT
CCAAGTACT) and yggB_down (TCCTCGAGCGATCG
AACAAT) were used for confirmation of the by PCR amp-
lification and DNA sequencing.

Determination of amino acid and carbohydrate
concentrations
For the quantification of extracellular amino acids and
carbohydrates, a high-performance liquid chromatog-
raphy system was used (1200 series, Agilent Technolo-
gies Deutschland GmbH, Böblingen, Germany). Samples
were withdrawn from the cultures, centrifuged (13,000 x
g, 10 min), and the supernatant used for analysis.
Organic acids were analyzed on a normal phase col-

umn (organic acid resin 300 x 8 mm, 10 μm particle size,
25 Å pore diameter; Chromatographie Service GmbH,
Langerwehe, Germany) using 5 mM sulfuric acid as the
mobile phase at a flow rate of 1 mL min-1 and were de-
tected with a refractive index detector (RID G1362A,
1200 series, Agilent Technologies). Amino acids were
automatically modified by precolumn derivatisation with
ortho-phthalaldehyde and separated as described previ-
ously [70]. ornithine, lysine and glutamate were quanti-
fied using a pre-column (LiChrospher 100 RP18 EC-5 μ
(40 x 4 mm), CS-Chromatographie Service GmbH,
Langerwehe, Germany) and a reversed phase column
(LiChrospher 100 RP18 EC-5 μ (125 x 4 mm), CS Chro-
matographie) as a main column and detected with a
fluorescence detector at excitation at 230 nm and
450 nm emission (FLD G1321A, 1200 series, Agilent
Technologies). For the determination of arginine and
putrescine, a reverse-phase (RP) LiChrospher 100 RP8
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EC-5 μ precolumn (40 x 4.6 mm) and a RP8 EC-5 μ
(125 x 4.6 mm) main column (CS Chromatographie,
Langerwehe, Germany) were used. 100 μM L-asparagine
was used as an internal standard. The mobile phases
used were in case of RP8 A: 0.25 % Na-acetate pH 6, B:
methanol. The gradient used was: 0 min 30 % B, 1 min
30 % B, 6 min, 70 % B, 11 min 90 % B, 14 min 70 % B,
16 min 30 % B. In case of RP18, the mobile phases used
were A:0.1 M Na-acetate pH 7.2, B: methanol. The gra-
dient used was: 0 min 20 % B, 0.5 min 38 % B, 2.5 min
46 % B, 3.7 min 65 % B, 5.5 min 70 % B, 6 min 75 % B,
6.2 min 85 % B, 6.7 min 20 % B.

Transcriptome analysis using DNA microarrays
The C. glutamicum wild type was exposed to 4 μg/ml cip-
rofloxacin to enable growth of the cells and compared to
the untreated wild type. The cells were inoculated in
CGXII (4 % (w/v) glucose), ciprofloxacin was added at an
OD600 of 5 and the RNA was isolated after one hour of
ciprofloxacin exposure. Fluorescently labeled cDNA syn-
thesis and DNA microarray hybridization was performed
as described previously [71, 72]. The data was analyzed as
described previously [73]. The data were normalized using
the LOWESS approach. The significance of gene expres-
sion rates was determined using a t-test adjusted with the
False Discovery Rate approach. Furthermore, the adjusted
p-value had to be lower than 0.05 and the genes needed
to be regulated more than two-fold. The data are avail-
able as Gene Expression Omnibus GSE77189 data set
at http://www.ncbi.nlm.nih.gov/geo/.

Additional file

Additional file 1: Figure S1. Colony formation of C. glutamicum wild
type without ciprofloxacin (0 μg/ml) and with the addition of 100 μg/ml
to the medium. (DOCX 968 kb)
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