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Chapter 1

Introduction

In the digital age nowadays, a patent war among technology firms is nothing new. Firms invest
in R&D, innovate and patent on their techniques so that their opponents cannot infringe. Better
differentiated goods or higher efficient production by innovation drops opponents out of the
market indirectly. In fact, patenting is a mechanism for encouraging innovation. However, it
becomes a tool for firms to ensure their monopoly power in the market, which brings social
welfare loss. The question is whether a patent really can encourage innovation. If so, what is
the optimal patent policy that brings less social welfare loss?

Incentives of innovation in a patent race

Early literature discusses firms incentives of R&D investment of stochastic innovation against
rivalry is Reinganum (1981, 1982). The follower firm is conservative, since R&D investment
contributes to the chances of current innovation but future innovation. Strategically, the follower
firm invests permissively since the leader has a relative great advantage of innovating success-
fully. This memoryless model is improved by Doraszelski (2003) by introducing knowledge
accumulation. R&D effort contributes to current chances of innovation and accumulates as
knowledge in the future. He argued the follower’s incentives of R&D investment by a dynamic
model of knowledge accumulation with differential game approach.

A differential game approach

Instead of growing model of R&D, this thesis uses a differential game approach to investigate
firms interaction of R&D behavior in a patent race. Differential game approach gives a dynamic
micro-view of strategic interaction among players. The best response with respect to opponents’
best response gives time consistency. The Markov-perfect Nash equilibrium is subgame perfect
so that firms do not deviate from their best choices. To characterize the equilibria, this thesis
uses two methodologies: collocation method (Rui & Miranda, 1996) and auxiliary system
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(Dockner & Wagener, 2013). Both methods can solve nonlinear system numerically; further,
the later one can visualize the impact of different parameters given the state spaces.

Knowledge and spillovers

In general, knowledge is an intangible good that gives a special feature of a patent race. Since
knowledge is not physical, its spillovers exist naturally. Further, whether knowledge is additive
or multiplicative to the existing knowledge pool is another issue that affects firm’s R&D
investing behavior. In this case, does a patent still play a role of changing firm’s behaviors of
R&D investment?

Endogenous patent benefit and product market

A patent plays a role of innovation incentives by patenting benefits, which determines by its
length and strength. A long patent life with strong protection preventing imitation gives a high
benefit for a patent holder. This thesis estimates the endogenous benefit of a patent holder by
process innovation in a product market, which allows discussing more details of patent length
and strength than other exogenous patent race model.

Patent portfolio and n firms

Production usually contains several techniques with different patents and this collection owned
by a single agent is a patent portfolio. In a patent war, firms holding more than one patent and
compete with more than one competitor in the market. Even though the patent war is like a
raging fire, there is still innovation developed by users volunteering without any patenting in
the market. If the innovation can occur without patenting, what does the role of a patent play in
this case? This thesis gives a model to explain why some innovation such as an open-source
software without patenting can also be as successful as a private software product.

Thesis outline

Chapter 2 is a patent race with knowledge accumulation of the complementary property and
spillovers, which focus on how the different features of knowledge affects firm R&D incentives.
Chapter 3 is a patent race with knowledge accumulation and product market, which describes
the optimal patent policy that balances the trade-off between monopoly welfare loss and
innovation incentives. Chapter 4 is a patent portfolio race with knowledge accumulation,
which gives more general outcomes for n firms with a collection of patents. All models follow
differential game approach and Markov-perfect Nash equilibria is characterized numerically.



Chapter 2

A patent race with the complementary
property and spillovers

2.1 Introduction

A patent race is a technological competition among firms. A firm making the first-hand
innovation takes advantages. The early literature, Loury (1979), Lee and Wilde (1980) and
Reinganum (1982), used the exponential distribution of success times to model patent race
with knowledge stock. The property of the exponential distribution is memorylessness, which
implies that firms’ current R&D effort is not associated to knowledge stock that they have
accumulated in the past. This is not realistic. To include history dependency into the model,
multistage models are introduced by Fudenberg et al. (1983) and Harris and Vickers (1985).
Even though there is history dependency from one stage to the next stage, memorylessness
problem still exists within one stage. Further, R&D investment in multistage models is restricted
to a couple of choices. The discussion to address patent policy and incentives for innovation is
also limited in these multistage models.

Another way to deal with the problem of memorylessness is proposed by Doraszelski
(2003). He extended Judd’s (1985) concept that a hazard rate, which is the rate at which a firm
makes the first discovery at a certain point of time in a patent race, depends on knowledge
accumulation. He proposed that the knowledge stock can be carried to the next period due to
learning but, at the same time, it depreciates over time due to forgetting. Since knowledge stock
can be accumulated over time, the investment of previous periods helps the firm to innovate
and win the race (Doraszelski, 2003); this solved the problem of memorylessness in the patent
race model. The hazard rate model of knowledge accumulation explains the incentives of a
follower to catch up to the leader. Because of the knowledge effect, a leader reduces its R&D
effort by its large knowledge pool. The follower has chances to catch up to the leader by
increasing its R&D effort even if it has small knowledge pool. However, this result only holds
under the assumption of an additive hazard rate, which means knowledge and R&D efforts are
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substitutable for innovation. This assumption allows firms to rely on their knowledge stock
and innovate without making any current R&D effort. To lose this assumption, I propose a
multiplicative hazard rate so that knowledge stock and R&D effort are complements. When
R&D effort and knowledge stock are complementary for innovation, the follower with little
knowledge stock initially loses its advantage in the race. The chances of innovation of the
follower cannot be improved by making R&D effort without corresponding knowledge stock.
Instead of a strong catching-up behavior of a follower, the leader has more incentives to invest
and keep its dominance in the complementary case than the substitute case.

Further, Cohen and Levinthal (1989) maintained that R&D investment contributes to the
chances of innovation not only by generating self knowledge but also assimilating spillovers
from rival’s knowledge. The ability to internalize spillovers is absorptive capacity (Cohen &
Levinthal, 1989). I also include spillovers and absorptive capacity in the model of hazard rate,
so that increasing R&D effort additionally contributes to innovation by absorbing opponent’s
knowledge stock. In fact, spillovers give more incentives to invest in R&D for the follower
than the leader, which reinforces the catching-up behavior in the case of the substitute property.
This contradicts with the argument of Halmenschlager (2004), which discussed spillovers and
absorptive capacity given by three levels of R&D choices in the multistage model of Fudenberg
et al. (1983). The reason is that limited R&D choices and restrictive R&D contribution of
innovation within each stages underestimates the follower’s incentives of R&D investment with
costly spillovers. When R&D effort contributes to future chances of innovation and the strategy
of R&D effort allows to locate at any level of a continuous interval rather than restrict to only
three choices, spillovers give the follower incentives to innovate. This explains some empirical
cases that increasing absorptive capacity is one of R&D strategies of innovation (Tilton, 1971;
Allen, 1977; Mowery, 1983).

Even though spillovers increase firms’ incentives to invest in R&D in the short run, R&D
investment decreases in the long run. A strong patent protection that reduces the imitator’s
reward can encourage firms to invest in R&D in the long run. In contrast, in a race with weak
patent protection, firms are not willing to invest because the imitation reward is high, which
results in a slow process of innovation. As long as the innovator’s reward is distinguished with
the imitator’s one, firms have incentives to invest and innovate eventually. Since investment is
booming, time of innovation is shorter.

Overall, two types of characteristics of a patent race are introduced: the additive or multi-
plicative hazard rate and non-spillovers or spillovers, which generates four scenarios. The main
research questions underlying the analysis will be the following:

• Does the follower invest more than the leader?

• Are firms aggressive to invest in R&D when their rival accumulates knowledge stock?

• Does patent protection encourage firms to innovate?

• How do firms interact during the race?
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where different scenarios are compared. The next section will present models in different
scenarios; section 3 is going to address the methodology of finding equilibria; in section 4,
firms’ strategies of R&D investment in different cases are discussed.

2.2 Model

Two firms (i ∈ {1,2}) compete to win a patent race, that is, firms compete to be an innovator.
To innovate successfully, firms need to invest in R&D and accumulate knowledge stock. When
firms invest in R&D, R&D effort ui is produced at current time t, which will be accumulated
as knowledge stock in the next period t + 1. R&D effort and knowledge stock affect the
distribution of success times of innovation. The way that they give impacts on innovation
depends on the property between them.

Doraszelski (2003) assumed that R&D effort and knowledge stock are substitutive for
innovation; in this paper, I consider them as complementary goods. This changes the form of
the hazard rate hi, which defines as

hi(t) = lim
∆t→0

P
(
τi ∈ [t, t +∆t]

∣∣min[τi,τ j]> t
)

∆t

where τi is the innovation time of firm i. The hazard rate is the conditional probability
of innovation given that neither of firms innovates. An additive form of the hazard rate
implies that R&D effort and knowledge stock are substitutive for innovation.1 I introduce a
multiplicative form of the hazard rate, which considers the complementarity between R&D
effort and knowledge stock.2

Another effect of making innovation is spillovers. Since spillovers change the way of
knowledge accumulation, which changes the distribution of success times. Suppose knowledge
stock is a private good. Doraszelski (2003) assumed that a firm’s knowledge is accumulated
by its R&D investment; this paper allows its knowledge to be additionally accumulated by
spillovers from the opponent. Knowledge accumulation depends on R&D effort as well as
spillovers.

By the property between R&D effort and knowledge stock for innovation and the way
of knowledge accumulation, I introduce four scenarios of the race: the substitute property
without spillovers, the complementary property without spillovers, the substitute property with
spillovers, and the complementary property with spillovers. The model of scenario 1 follows
Doraszelski (2003) and the other three scenarios are modeled as follows.

1See scenario 1 in the section 2.1.
2See scenario 2 in the section 2.2.



6 A patent race with the complementary property and spillovers

2.2.1 Scenario 1: substitute property without spillovers

According to Doraszelski (2003), the hazard rate of firm i making the first discovery follows
the additive function:

hi = λui + γzi, λ ≥ 0, γ ≥ 0, i = 1,2

where the control variable ui is current R&D effort of firm i at time t (a simplified notation of
ui(t)); the state variable zi is firm i’s knowledge stock at time t (a simplified notation of zi(t));
λ is the effectiveness of current R&D effort; γ is the effectiveness of past R&D effort. By this
additive characteristic, innovation without R&D effort is possible.

Further, he assumed there is no spillover when knowledge is accumulated and the state
equation is

żi = ui −δ zi, zi(0) = z0
i ≥ 0, δ > 0, i = 1,2.

Knowledge stock is accumulated by a firm with its own R&D effort and, at the same time,
depreciated at rate δ . The parameter δ is a depreciation rate of technology, which captures
technological obsolescence (Doraszelski, 2003).

2.2.2 Scenario 2: complementary property without spillovers

In this scenario, all assumptions remain the same with scenario 1 except the form of the hazard
rate. The state equation of accumulating knowledge stock without spillovers is

żi = ui −δ zi, zi(0) = z0
i ≥ 0, δ > 0, i = 1,2.

The hazard rate is changed from additive to multiplicative form. The distribution of success
times with the complementary property is

hi = uλ
i zγ

i , ui ≥ 0, zi ≥ 0, i = 1,2.

The hazard rate hi of firm i depends on its current R&D effort and knowledge stock
multiplicatively. The intuition of the multiplicative hazard rate is that current R&D effort
and knowledge stock are complementary. Firms require both knowledge and R&D effort to
innovate. The empirical study of Cohen and Levinthal (1989) observed that firms invest in
R&D is to identify, assimilate and exploit knowledge pool. Making use of knowledge for
innovation needs R&D investment. This complementary property of knowledge and R&D
effort can be modeled by a multiplicative hazard rate, which is different from the case of the
additive hazard rate in scenario 1. An additive hazard rate has the characteristic that current
R&D effort and knowledge stock is substitutable, which implies that R&D effort is replaceable
by knowledge stock for innovation. This assumption allows firms to innovate only with large
knowledge stock rather than making R&D effort, which does not hold in scenario 2.
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2.2.3 Scenario 3: substitute property with spillovers

In this scenario, all assumptions remain the same with scenario 1 except the state equation of
accumulating knowledge stock. The hazard rate keeps an additive form as scenario 1:

hi = λui + γzi, λ ≥ 0, γ ≥ 0, i = 1,2

which describes the substitute property between R&D effort and knowledge stock. Firms can
accumulate knowledge stock by its current R&D effort and, additionally, spillovers from its
opponent. The state equation of knowledge accumulation with spillovers is

żi = ui −δ zi +Φ(ui)z j, zi(0) = z0
i ≥ 0, δ ≥ 0, i, j = 1,2, j ̸= i.

How much spillovers can be used to build up its own knowledge base depends on its absorptive
capacity Φ(ui):

Φ(ui) = βuθ
i , 0 < θ < 1 , β > 0.

Absorptive capacity is the ability to obtain spillovers and this ability depends on R&D effort
a firm invests in. Spillover parameter β controls how much percentage of current knowledge
stock leaks out from its rival; θ is a parameter of absorptive capacity, which controls the
marginal effect of current R&D effort that satisfies Φui(ui)> 0 and Φuiui(ui)< 0. The marginal
decreasing R&D effort implies that internalizing knowledge spillovers is diminishing with
R&D effort, which follows the assumption of absorptive capacity by Cohen and Levinthal
(1989).

2.2.4 Scenario 4: complementary property with spillovers

In the last scenario, the complementary property makes the firm with a small amount of
knowledge stock hard to innovate. The distribution of success times with the complementary
property follows

hi = uλ
i zγ

i , λ ≥ 0, γ ≥ 0, i = 1,2.

The way to increase chances of innovation is to expand knowledge stock by absorbing knowl-
edge spillovers. The state equation of knowledge accumulation with spillovers is

żi = ui −δ zi +Φ(ui)z j, zi(0) = z0
i ≥ 0, δ ≥ 0, i, j = 1,2, j ̸= i.

Doraszelski (2003) stated that the follower firm has incentives to catch up to the leader in
some empirical studies and the patent race model with history dependency gives evidences
for this observation. By investing in R&D, making current R&D effort and accumulating
knowledge, the follower firm has chances to innovate. In fact, the empirical observation also
shows that one of the main reasons firms invest in R&D is to be able to facilitate other’s
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technology (Tilton, 1971; Allen, 1977; Mowery, 1983). Further, internalizing knowledge needs
effort (Cohen & Levinthal, 1989) and making a successful innovation requires both knowledge
stock and R&D effort. Therefore, I argued that the chances of a follower catching up to a
leader is little since the follower has little knowledge stock in the beginning of the race. The
main incentive of a follower investing in R&D is to make use of knowledge spillovers, which
increases its chances to innovate.

2.2.5 Hamilton-Jacobi-Bellman (HJB) equation

Firms’ optimal strategy of the game is the amount of R&D effort that can maximize their
expected discounted innovation profits net of investment costs subject to their state of knowledge
accumulation. There are control variables ui, and state variables zi, i ∈ {1,2}. Firms do not
know when they will innovate and face a stochastic transition between non-innovating and
innovating. The objective function of firm i over an infinite horizon is the present expected
payoff Ji:

Ji = E
[∫ min[τi,τ j]

0
e−rt [−C(ui)]dt + e−r min[τi,τ j]Pi

]
subject to the state equations of knowledge accumulation of two firms where Pi = P if firm i
wins the race (i.e. τi < τ j) and Pi = P if firm i loses the race (i.e. τi > τ j); r > 0 is the discount
rate; C(u1) =

1
2u2

1 > 0 is the R&D investment function.

This game is a type of a piecewise deterministic game by Dockner et al. (2000). The race
is deterministic like a general optimal control problem with an infinite horizon when no firm
innovates; however, there is a stochastic transition as soon as one firm innovates. Firms face a
stochastic transition between modes: innovating successfully, rival innovating successfully, and
no one innovating successfully. Denote three modes:

mode =


m1 if firm 1 wins the patent
m2 if firm 1 loses
m3 if none of the firms have obtained the patent yet.

As soon as one firm wins the race, the game is over. The firm who loses the race does not allow
to continue on, so modes cannot be switched between winning (m1) and losing (m2).

Then, each firm has two transition rates by switching between different modes: from
pending (m3) to winning (m1) as well as from pending (m3) to losing (m2). The transition
function of modes for firm 1 is

qmamb =

{
h1 (a,b) = (3,1)
h2 (a,b) = (3,2)
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The transition rate from pending (m3) to winning (m1) is the hazard rate of innovation of firm 1.
Since there are only two firms in the game, the transition rate of firm 1 from pending (m3) to
losing (m2) is the hazard rate of firm 2 winning the race,

Thus, the value of the game of firm 1 for three modes is
P mode = m1

P mode = m2

V 1(z1,z2,m3) mode = m3.

The value of the game for firm 1 is P in mode m1 and P in mode m2. In mode m3, while the
race is pending, the value function of firm 1 depends on two state variables of knowledge stock:
V 1(z1,z2,m3).3

The aim is to find a Markov-perfect equilibrium, which gives a firm’s best strategy of R&D
investment with respect to its rival’s best strategy. Given the best strategy u j of firm j, the value
function V i(z1,z2,m3) solves the Hamilton-Jacobi-Bellman (HJB) equation:

rV i(z1,z2,m3) = max
ui≥0

[
hi(P−V i(z1,z2,m3))+h j(P−V i(z1,z2,m3))

−C(ui)+V i
1(z1,z2,m3)ż1 +V i

2(z1,z2,m3)ż2

]
where V i

ι (z1,z2,m3) =
∂

∂ zι
V i(z1,z2,m3). If the transversality condition holds for V i(z1,z2), that

is,
lim sup

t→∞

e−rtV i(z1(t),z2(t))≤ 0,

the strategic function u∗1(z1,z2) maximizing the right hand side of the HJB equation is a
Markov-perfect equilibrium.

2.2.6 Symmetric Nash equilibria in feedback strategies

The strategic function of firm 1 in different scenarios can be obtained as follows.

• scenario 1
u∗1(z1,z2) = λ (P−V 1(z1,z2))+V 1

1 (z1,z2)

To get more intuition, I simplify the effectiveness of current R&D effort λ = 1. The
optimal R&D effort is P −V 1(z1,z2) +V 1

1 (z1,z2). In the scenario of the substitute
property without spillovers, firms’ optimal strategies of R&D effort consists of two terms:
the net payoff of winning the race and the marginal value of the game. The optimal

3 I assume that firm 1 and firm 2 are homogeneous. The transition rate from m3 to m1 is h2 and the value of
the game for firm 2 is P in mode m1. The transition rate from m3 to m2 is h1 and the value of the game is P in
mode m2. In mode m3, while the race is pending, the value function of firm 2 depends on two state variables of
knowledge stock: V 2(z2,z1,m3)



10 A patent race with the complementary property and spillovers

R&D effort is determined by the effective capital gain of winning, P−V 1(z1,z2), and
the marginal capital gain of its knowledge stock, V 1

1 (z1,z2). There is no direct effect of
knowledge stock.

• scenario 2

u∗1(z1,z2) = λ zγ

1
(
P−V 1(z1,z2)

)
(u∗1(z1,z2))

λ−1 +V 1
1 (z1,z2)

Assume λ = γ = 1. Then, the optimal R&D effort is z1
(
P−V 1(z1,z2)

)
+V 1

1 (z1,z2). By
the complementary property without spillovers, firm 1’s knowledge stock z1 directly
affects its optimal R&D effort u1, which is different from scenario 1. This attributes to
complements of R&D effort and knowledge stock.

• Scenario 3

u∗1(z1,z2) = λ (P−V 1(z1,z2))+V 1
1 (z1,z2)

(
1+

θz2

u∗1(z1,z2)
Φ(u∗1(z1,z2))

)
Assume θ = λ = 1. Then, P−V 1(z1,z2)+V 1

1 (z1,z2)(1+β z2). Optimal R&D effort
depends on not only the net payoffs of winning the race but also a marginal value with
a markup of spillovers. Compared with scenario 1, the influence of the marginal value
is bigger due to the markup β z2 > 0, and the magnitude of the markup depends on the
opponent’s knowledge stock z2 and the spillovers parameter β . Under the assumption
of the absorptive capacity Φ = βui, the benefit of the marginal value of a firm increases
if the marginal absorptive capacity Φuiincreases. In other words, if firms have the
absorptive capacity to assimilate knowledge spillovers, the benefit of the additional value
by additional knowledge stock increases so that they have incentives to invest more in
R&D under spillovers.

• Scenario 4

u∗1(z1,z2) =λ zγ

1
(
P−V 1(z1,z2)

)
(u∗1(z1,z2))

λ−1

+V 1
1 (z1,z2)

(
1+

θz2

u∗1(z1,z2)
Φ(u∗1(z1,z2))

)
Assume θ = λ = γ = 1 and the optimal R&D effort simplify as z1

(
P−V 1(z1,z2)

)
+

V 1
1 (z1,z2)(1+β z2). Clearly, the effect of complementary property contributes to the first

term, z1(P−V 1), and the effect of spillovers contributes to the second term, V 1
1 (1+β z2).

There exists the direct effects of both firm 1 knowledge stock z1 and its opponents
knowledge stock z2 because of the complementary property and spillovers respectively.
When the spillover parameter β increases, the optimal R&D effort increases. The optimal
R&D effort increases more if the opponent has a larger knowledge pool. In the case of a
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follower with a smaller knowledge pool, the optimal R&D effort depends more highly
on spillovers. This explains the reason that firms mainly invest in R&D to assimilate
spillovers in many empirical studies (Tilton, 1971; Henderson & Cockburn, 1996). If
the leader has a large knowledge stock with spillovers, the follower’s best strategy is to
invest its absorptive capacity.

Assume firm 1 and firm 2 are homogeneous. The optimal R&D effort of firm 2 in different
scenarios are

• Scenario 1
u∗2(z1,z2) = λ (P−V 2(z1,z2))+V 2

2 (z1,z2)

• Scenario 2

u∗2(z1,z2) = λ zγ

2
(
P−V 2(z1,z2)

)
(u∗2(z1,z2))

λ−1 +V 2
2 (z1,z2)

• Scenario 3

u∗2(z1,z2) = λ (P−V 2(z1,z2))+V 2
2 (z1,z2)

(
1+

θz1

u∗2(z1,z2)
Φ(u∗2(z1,z2))

)

• Scenario 4

u∗2(z1,z2) =λ zγ

2
(
P−V 2(z1,z2)

)
(u∗2(z1,z2))

λ−1

+V 2
2 (z1,z2)

(
1+

θz1

u∗2(z1,z2)
Φ(u∗2(z1,z2))

)

The HJB equation of firm 1 with feedback strategies can be written as

rV 1(z1,z2) =
[
P−V 1(z1,z2)

]
h1(u∗1(z1,z2),z1)+

[
P−V 1(z1,z2)

]
h2(u∗2(z1,z2),z2)

+V 1
1 (z1,z2)ż1(u∗1(z1,z2),z1,z2)+V 1

2 (z1,z2)ż2(u∗2(z1,z2),z1,z2)

−C(u∗1(z1,z2)).

2.3 Computation

To characterize the Markov-perfect equilibrium, the collocation method by Rui and Miranda
(1996) is used. First, assume the state space in a two-dimensional interval (z1,z2) ∈ [a1,b1]×
[a2,b2] where a1 = a2 = 0 and b1 = b2 = 1. The value function is approximated as a Chebychev
polynomial of degree n:

V̂ (z1,z2)≈ c
[
Ti−1 ⊗T j−1

]
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Ti−1 =


T0(−1+ 2(z1−b1)

a1−b1
)

T1(−1+ 2(z1−b1)
a1−b1

)
...

Tn−1(−1+ 2(z1−b1)
a1−b1

)



T j−1 =


T0(−1+ 2(z2−b2)

a2−b2
)

T1(−1+ 2(z2−b2)
a2−b2

)
...

Tn−1(−1+ 2(z2−b2)
a2−b2

)


Tk(x) = cos[k cos−1(x)]

I suppose there exists a coefficient matrix c1×i j of a Chebychev polynomial function such that
the HJB equation holds on a set of Chebychev nodes

ẑ1i =
a1 +b1

2
+

b1 −a1

2
(cos

n− i+0.5
n

π), i = 1, · · · ,n

ẑ2 j =
a2 +b2

2
+

b2 −a2

2
(cos

n− j+0.5
n

π), j = 1, · · · ,n

To find the coefficient matrix c1×i j, the iteration cτ for τ = 0,1, · · · ,κ is constructed with
the HJB equation:

[r+h1 +h2]V τ(z1,z2)− ż1V τ
1 (z1,z2)− ż2V τ

2 (z1,z2) = Ph1 +Ph2 −C

where h1, h2, ż1, ż2 and C are functions:

h1 = h1
(
z1,u∗(z1,z2,V τ−1(z1,z2))

)
h2 = h2

(
z2,u∗(z2,z1,V τ−1(z2,z1))

)
ż1 = ż1

(
z1,z2,u∗(z1,z2,V τ−1(z1,z2))

)
ż2 = ż2

(
z1,z2,u∗(z2,z1,V τ−1(z2,z1))

)
C =C

(
u∗(z1,z2,V τ−1(z1,z2))

)
and

V τ(z1,z2) = cτ [Ti−1 ⊗T j−1]

V τ
1 (z1,z2) = cτ [

∂

∂ z1
Ti−1 ⊗T j−1]

V τ
2 (z1,z2) = cτ [Ti−1 ⊗

∂

∂ z2
T j−1]
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The iteration starts with an initial guess of the value function V 0(ẑ1i, ẑ2 j) = h1P+ h2P−
c(u1) where u1 = δ ẑ1i and u2 = δ ẑ2 j for all Chebychev nodes i, j= 0,1,...,n. Then, c0 =

V 0(ẑ1i, ẑ2 j)[Ti−1⊗T j−1]
−1. The iteration stops when the coefficient matrix cκ that satisfies the

following for all Chebychev nodes i, j= 0,1,...,n has been found:∣∣εi j
∣∣

V κ(ẑ1i, ẑ2 j)
< 0.01

where

εi j =
(
P−V κ(ẑ1i, ẑ2 j)

)
h1
(
ẑ1i,u∗(ẑ1i, ẑ2 j,V κ(ẑ1i, ẑ2 j))

)
+
(
P−V κ(ẑ1i, ẑ2 j)

)
h2
(
ẑ2 j,u∗(ẑ2 j, ẑ1i,V κ(ẑ2 j, ẑ1i))

)
+V κ

1 (ẑ1i, ẑ2 j)
[
ż1
(
ẑ1i, ẑ2 j,u∗(ẑ1i, ẑ2 j,V κ(ẑ1i, ẑ2 j))

)]
+V κ

2 (ẑ1i, ẑ2 j)
[
ż2
(
ẑ1i, ẑ2 j,u∗(ẑ2 j, ẑ1i,V κ(ẑ2 j, ẑ1i))

)]
−C

(
u∗(ẑ1i, ẑ2 j,V κ(ẑ1i, ẑ2 j))

)
.

Deviation εi j is divided by the value function in order to be scale-invariant. When it is small
enough, the deviation from the HJB equation is small at nodes. The simulation is running with
100 Chebychev nodes, that is, 10 nodes for each state dimension n = 10.

2.3.1 Parameter

Martin (2002) distinguished input and output spillovers. Input spillovers are spillovers that
flow between firms during accumulating knowledge stock in the R&D competition, which
means that R&D investment takes the firm as well as its rivals closer to success by spillovers.
Input spillovers are controlled by spillover parameter β in this model. The spillover parameter
determines the percentage of knowledge stock leaking out among firms, and absorptive capacity
parameter θ controls the learning ability of absorbing rival’s knowledge stock. Here I set
β = θ = 1 for the benchmark of scenarios with spillovers.

Further, output spillovers are spillovers from the benefits of the new discovery by the
successful firm (Martin, 2002). The successful firm, who wins the R&D competition, take
advantages of process or/and product innovation due to its new discovery. Its rival needs to buy
a license or patents of the new discovery in order to imitate. Higher output spillovers imply
that the successful firm benefits less from the patent of its discovery. The output spillovers
depend on the degrees of patent protection and can be described as a ratio between P and P. If
P = 0, there is no benefits from imitation, which means patent protection is perfect. If P = P,
the benefit from both innovation and imitation are the same, which means there is no patent
protection. The benchmark of patent protection is P/P = 0.2 according to the investigation of
Henderson and Cockburn (1994, 1996) where the market share of chemical patents was 82% in
1990.
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Fig. 2.1 R&D investment of firm 1. Figure (i) is C(u∗(z1,z2)) in scenario 1 with the additive
hazard rate but spillovers; figure (ii) is C(u∗(z1,z2)) in scenario 2 with the multiplicative
hazard rate but spillovers; figure (iii) is C(u∗(z1,z2)) in scenario 3 with the additive hazard
rate and spillovers; figure (iv) is C(u∗(z1,z2)) in scenario 4 with the multiplicative hazard rate
and spillovers. Parameters are λ = γ = θ = 1, r = 0.105, δ = 0.2, P = 0.0435, P = 0.0087.
The parameter β = 1 for the scenario of spillovers.

Besides, the rest of the parameter setting follows Dorazelski (2000) that used several
empirical studies of the pharmaceutical chemistry for the parameter setting. Parameter δ = 0.2
is by Henderson & Cockburn (1994, 1996) who found that knowledge stock depreciate 20%
over time. The discounted rate is set as 10.5%, i.e., r=0.105 according to Grabowski & Vernon’s
(1994). The innovating reward is P = 0.0435, where is calculated given a three-year expected
duration of the race in the case of the linear hazard rate by Doraszelski (2003).

2.4 Equilibria and strategies

The equilibrium feedback function of R&D investment is given in figure 2.1 under different
scenarios. In the scenarios of the substitute property, firm 1 decreases R&D investment when
it has larger knowledge stock; instead, in the scenario of the complementary property, firm 1
increases R&D investment when it has larger knowledge stock. Substitution of R&D effort
and knowledge stock reduces firms’ incentives to invest with large knowledge stock, since
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the chance of innovation depends on both factors additively. In this case, the firm with little
knowledge stock also has chances to innovate if it makes high enough R&D effort. This effort
is also accumulated as knowledge stock in the next period of time, which contributes to the
chances of innovation in the future. Thus, firms invest more when it has little knowledge
stock and invest less when it has large knowledge stock. However, in the scenarios of the
complementary property, the chance of innovation is little if firms have not enough amount of
knowledge stock. Innovation requires both R&D effort and knowledge stock relatively. The
firm with large knowledge stock has high chances of innovation as long as it makes enough
R&D effort. That is the reason that firms invest more when it has larger knowledge stock.

In the scenarios of spillovers, a slightly increasing of firm 1’s R&D investment occurs
when its opponent has large knowledge stock. In this case, R&D investment also contributes
to absorptive capacity, which additionally increases knowledge accumulation. Firms invest in
R&D to accumulate knowledge stock and, at the same time, absorb the opponent’s knowledge
spillovers. If the opponent’s has large knowledge stock, knowledge spillovers increase. The
chances of innovation increase if firms can absorb spillovers into its knowledge accumulation
by investing in the absorptive capacity. Hence, the incentive to invest in R&D increases when
knowledge spillovers are large. Compared to the scenarios without spillovers, a positive relation
between R&D investment and opponent’s knowledge stock is more significant.

2.4.1 Pure knowledge effect

A patent race with knowledge accumulation can capture the catching-up behavior of the follower
firm and the reason is the pure knowledge effect (Doraszelski, 2003). The pure knowledge
effect indicates that firms decrease their incentives to invest in R&D when they have large
knowledge stock. The chances of innovation by investing in additional R&D effort reduce
when knowledge stock becomes large. This effect explains the incentive of the follower firms
to catch up to the leader, since decreasing leader’s R&D investment increases the follower’s
chances to innovate relatively. The definition of the pure knowledge effect is given:

∂

∂ z1
(C(u∗(z1,z2)))< 0.

Since the cost function C(ui) is monotonic, ∂

∂ z1
u∗(z1,z2)< 0 holds if the pure knowledge effect

is satisfied. In the case of the additive hazard rate, there exists the pure knowledge effect if
V1(z1,z2)>V11(z1,z2).4

In scenario 2, ∂

∂ z1
u∗(z1,z2)=P−V (z1,z2)−z1V1(z1,z2)+V11(z1,z2)). Since P−V (z1,z2)>

0, which is a positive net return of innovation, the pure knowledge effect depends on −z1V1(z1,z2)+

V11(z1,z2). Compared with scenario 1, the pure knowledge effect in the case of the multiplica-

4In scenario 1 where λ = γ = 1, the optimal R&D effort is u∗(z1,z2) = P−V (z1,z2)+V1(z1,z2). Then,
∂

∂ z1
u∗(z1,z2) =−V1(z1,z2)+V11(z1,z2).
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Fig. 2.2 R&D investment of firm 1 under comparison of spillovers and non-spillovers. Figure
(i) is C(u∗(z1,z2)) under the additive hazard rate; figure (ii) is C(u∗(z1,z2)) under the multi-
plicative hazard rate. The green surface is the R&D investment with spillovers and the blue
one is without spillovers. Parameters are λ = γ = θ = 1, r = 0.105, δ = 0.2, P = 0.0435,
P = 0.0087. The parameter β = 1 for the scenario of spillovers.

tive hazard rate is harder to reach since z1V1(z1,z2)<V1(z1,z2) such that 0 < z1 < 1. In fact,
figure 2.1 (ii) and (iv) shows no pure knowledge effect in the case of the multiplicative hazard
rate. The reason that the pure knowledge effect does not occur in this case is that R&D effort
and knowledge stock are complementary. Even though a firm has large knowledge stock, it still
needs corresponding amount of R&D effort to innovate, which has no reason to decrease R&D
investment as knowledge stock increases.

To see the impact of spillovers on the pure knowledge effect, I check the scenario 3:
∂

∂ z1
u∗(z1,z2) = −V1(z1,z2)+ (1+β z2)V11(z1,z2). Compared with scenario 1, the additional

term of spillovers for the pure knowledge effect is β z2V11(z1,z2). If V11(z1,z2)> 0, ∂

∂ z1
u∗(z1,z2)

is larger in the case of spillovers than the case without it. This means that the pure knowledge
effect is weakened by spillovers, which also shows in figure 2.1 (iii). The pure knowledge
effect in figure 2.1 (iii) is not as strong as it in figure 2.1 (i).

2.4.2 Strategic R&D investment of the leader and the follower

By the pure knowledge effect, the firm with larger knowledge stock invests less than the firm
with less knowledge stock. Strategically, the follower firm has an incentive to invest more
because it knows that reducing R&D investment of the leader increases its chances to win the
race relatively. To exam this in different scenarios, assume firm 1 is a follower, which implies
it has less knowledge stock than firm 2,z1 < z2. The follower investing more in R&D than the
leader can be expressed as

C(u∗(z1,z2))>C(u∗(z2,z1)), z1 < z2
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which is called action reaction (Doraszelski, 2003). On the other hand, if firm 1 is the leader
and it invests more than the follower to keep its leader dominance, which is called increasing
dominance:

C(u∗(z1,z2))>C(u∗(z2,z1)), z1 > z2

Compared R&D investment of two regions in figure 2.1 (i) and (iii): region 1 where z1 < z2

and region 2 where z1 > z2, investment in region 1 is higher than it in region 2 in the case of
the additive hazard rate. This shows that firm 1 invests more as a follower than it as a leader if
knowledge stock and R&D effort are substitutive. Because of the pure knowledge effect in the
scenario of the substitute property, a follower firm invests more when it considers a reducing
R&D investment of the leader.

Nevertheless, the case of the multiplicative hazard rate does not have the pure knowledge
effect and the R&D investment in region 1 is lower than it in region 2 in figure 2.1 (ii) and
(iv). As a follower, it knows the leader will not reduce R&D investment; instead, the leader
will invest in the amount of R&D corresponding to knowledge stock due to the complementary
property. The follower firm loses its incentives to catch up to the leader, and the leader will
keep its dominance by investing in R&D.

In scenario 3, even though spillovers weaken the pure knowledge effect, it still exists with the
substitute property. The follower still invests more than the leader under spillovers as it in sce-
nario 1. The property of substitutes between knowledge stock and R&D effort is the main force
of action reaction between the leader and the follower. The effect of spillovers is only to increase
both leader and follower’s R&D investment since ∂

∂β
C(u∗(z1,z2)) = u∗(z1,z2)z2V1(z1,z2)> 0

if V1(z1,z2)> 0. This means that spillovers have a positive effect of R&D investment if firm
1’s value of the race is positively correlated to its knowledge stock. Figure 2.2 gives evidence
that most R&D investment is slightly greater with spillovers than without spillovers.

2.4.3 Aggressive and submissive responses

Aggressive and submissive responses are defined as follows. A firm increases R&D investment
as its rival’s knowledge stock increases, which is an aggressive response:

∂

∂ z2
(C(u∗(z1,z2)))> 0.

A firm decides to invest less as its rival’s knowledge stock increases, which is a submissive
response:

∂

∂ z2
(C(u∗(z1,z2)))< 0.

In scenario 1, if firm 1’s marginal value with respect to its opponent knowledge stock is
relatively small or negative V2(z1,z2) < V12(z1,z2), it invests aggressively ∂

∂ z2
u∗(z1,z2) =

V12(z1,z2)−V2(z1,z2)> 0. However, in scenario 2, this aggressive response can be weak. If
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Fig. 2.3 R&D investment of firm 1 under comparison of different degrees of patent protection in
the scenario of the complementary property. Figure (i) is C(u∗(z1,z2)) without spillovers; figure
(ii) is C(u∗(z1,z2)) with spillovers. The dark blue surface is R&D investment without patent
protection P

P = 1 and the light blue one is with perfect patent protection P
P = 0. Parameters

are λ = γ = θ = 1, r = 0.105, δ = 0.2, P = 0.0435. The parameter β = 1 for the scenario of
spillovers.

V2(z1,z2)< 0, ∂

∂ z2
u∗(z1,z2) =V12(z1,z2)− z1V2(z1,z2)<V12(z1,z2)−V2(z1,z2). This implies

firm 1 under the complementary property is not aggressive as it under the substitute property
when its value of the race is negatively correlated to the opponent’s knowledge stock.

If there are spillovers, aggressive behaviors are more intense. The response in scenario 3
follows ∂

∂ z2
u∗(z1,z2) =V12(z1,z2)−V2(z1,z2)+β (z2V12(z1,z2)+V1(z1,z2)) and the additional

term is β (z2V12(z1,z2)+V1(z1,z2)) due to spillovers. If V1(z1,z2)> 0 and V12(z1,z2)> 0, then
β (z2V12(z1,z2)+V1(z1,z2)) > 0. This explains that a firm chooses to invest aggressively in
order to benefit from spillovers if its additional knowledge stock can increase its value.

2.4.4 Degree of patent protection

Here I define the degree of patent protection by the ratio P
P . A lower ratio means stronger patent

protection, that is, the reward of losing the race (imitator’s reward) is relatively less than the
reward of winning the race (innovator’s reward). Then, perfect patent protection means zero
imitator’s reward P

P = 0, and no patent protection means the same innovator and imitator’s
rewards P

P = 1. Perfect patent protection brings a positive externality on R&D investment since
the losing firm gets 0 imitator’s reward. Firms are likely to invest in R&D, to win the race,
and to get the innovator’s reward. In contrast, firms lose their incentives to invest and innovate
if a losing firm can get the same reward as a winning firm. A negative externality of R&D
investment occurs when there is no patent protection.

However, in the case of the multiplicative hazard rate, the positive externality under perfect
patent protection is not significant, because R&D investment is not sufficient to bring a firm
to win the innovator’s reward. The complementary property requires both R&D effort and
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Fig. 2.4 R&D investment of firm 1 under comparison of different degrees of patent protection
in the scenario of the substitute property. Figure (i) is C(u∗(z1,z2)) without spillovers; figure
(ii) is C(u∗(z1,z2)) with spillovers. The dark blue surface is R&D investment without patent
protection P

P = 1 and the light blue one is with perfect patent protection P
P = 0. Parameters

are λ = γ = θ = 1, r = 0.105, δ = 0.2, P = 0.0435. The parameter β = 1 for the scenario of
spillovers.

knowledge stock for innovation. In this situation, patent protection does not bring significant
externality to improve R&D investment. In fact, a firm’s marginal value function with respect
to its rival’s knowledge stock does not change significantly and the difference of the strategic
investment function between perfect patent protection and no patent protection is very little
(see figure 2.3).

Consider a case of the additive hazard rate with spillovers. Spillovers give a positive
externality of R&D investment especially for the follower. Since the leader is forced to share
its knowledge pool through spillovers, the chances of the follower to catch up to the leader
increase relatively. Further, spillovers reinforce the positive externality of R&D investment
under patent protection. When the imitator reward is little and the chances of catching up to
the leader increases, the follower best strategy is to invest aggressively. Figure 2.4 shows the
action reaction is more significant under spillovers and patent protection.

2.4.5 Expected innovation time

To give a close look of the race and understand the impact on innovation time by different
scenarios, I first introduce expected innovation time. According to Polasky et al. (2011), the
probability of innovation before time t can be calculated by the hazard rate h(t):

P(τ < t) = 1− e−
∫ t

0 h(s)ds
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Fig. 2.5 Time path of knowledge accumulation and R&D investment in the scenario of the
complementary property without spillovers. Solid curves represent a leading firm; dashed
curves represent a follower firm. Parameters are λ = γ = θ = 1, r = 0.105, δ = 0.2, P= 0.0435,
P = 0.0087, z1(0) = 0.5, z2(0) = 0.
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Fig. 2.6 Time path of knowledge accumulation, R&D investment and expected innovation
time in the scenario of the substitute property. Blue curves are the case without spillovers;
green curves are the case with spillovers. Solid curves represent a leading firm; dashed curves
represent a follower firm. Parameters are λ = γ = θ = 1, r = 0.105, δ = 0.2, P = 0.0435,
P = 0.0087, z1(0) = 0.5, z2(0) = 0. The parameter β = 1 for the case with spillovers.

The expected innovation time τ that evaluates the expected occurrence of innovation from time
ti to ti+1, which follows

τ ≈ ∑ ti[P(innovation before ti+1)−P(innovation before ti)]

≈ ∑ ti[1− e−
∫ ti+1

0 h(s)ds − (1− e−
∫ ti

0 h(s)ds)]

≈
∫

∞

0
th(t)e−

∫ t
0 h(s)dsdt.

The expected innovation time is calculated numerically under firms’ optimal strategies u∗(z1(t),z2(t))
given initial knowledge stock zi(0). I obtain the steady state of knowledge stock by numerically
solving two state dynamics: żi = 0, i ∈ {1,2}.

I find that, in the case of multiplicative hazard rate, the leader and follower’s R&D invest-
ment is close to 0 and also knowledge stock approaches to 0 at the steady state (see figure
2.5). The reason is that firms play an one-shot game under complementary property. The
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Fig. 2.7 Time path of knowledge accumulation, R&D investment and expected innovation time
with different degrees of patent protection. Blue curves are the case with patent protection
P
P = 0; gray curves are the case without patent protection P

P = 1. Solid curves represent a
leading firm; dashed curves represent a follower firm. Parameters are λ = γ = θ = β = 1,
r = 0.105, δ = 0.2, P = 0.0435, z1(0) = 0.5, z2(0) = 0.

complements of knowledge stock and R&D effort make the follower hard to catch up to the
leader, so the follower is not willing to increase investment from the beginning to the end of the
race. The leader invests at the beginning of the race and decreases its investment along with
the decreasing knowledge stock in the long run. Since knowledge stock depreciated overtime,
the biggest chance of innovation is at the beginning of the race. If firms cannot innovate at
the beginning, the chances of innovation become inferior over time. Thus, the steady state of
R&D investment and knowledge stock are almost 0 and the chances of innovation is little in
the long run. The probability of innovation before an infinitive time is only 3.84%. If there are
spillovers in the case of the complementary property, the probability of innovation before an
infinitive time only increases 0.001%.

Spillovers become a more significant factor that affects expected innovation time in the
scenarios of the substitute property. One unit of R&D effort contributes to chances of innovation
and knowledge accumulation that additionally increases the chances of innovation. If there are
spillovers, one unit of R&D effort also contributes to the absorptive capacity that additionally
increases the chances of innovation by absorbing spillovers into knowledge accumulation,
which brings a positive effect for the follower and the leader loses its advantage relatively.
Figure 2.6 shows that the leading firm with positive initial knowledge stock loses its incentives
to invest in R&D under spillovers. The more knowledge the leader accumulates, the more
knowledge spills out to its opponent. In contrast, the follower firm enters the race with 0
stock, and invests more with spillovers than without spillovers in the beginning of the race.
Apparently, spillovers are attractive to the follower and not appealing to the leader at the start
point of the race. The follower invests a lot and then sharply decreases its investment during the
race until a lower level of investment is reached; the leader invests little initially, then sharply
increases and then decreases investing. This overshooting investment during the beginning
period attributes to spillovers. In the long run, knowledge accumulation reaches a higher level
and R&D investment reaches a lower level under spillovers, which brings a smaller expected
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innovation time.5 Namely, a shorter innovation time attributes to knowledge accumulation of
spillovers.

Since spillovers result in a lower expected innovation time in the long run, does patent
protection change the effect of spillovers? Compare two cases in the scenario with spillovers:
perfect patent protection and no patent protection. Both leading and follower firms invest more
with patent protection at the start point of the race and in the long run as well (see figure 2.7).
Since R&D investment and knowledge accumulation eventually reach a higher level with patent
protection, the expected innovation time is less.6 The reason is that perfect patent protection
ensures 0 reward for a losing firm so that firms are motivated to invest and innovate.

2.5 Conclusions

I use the patent race model of knowledge accumulation, which considers history dependency
of R&D investment on innovation. Firms make R&D effort by investing and this effort is
accumulated as knowledge stock in the next period of time. The hazard rate of innovation
depends on firm’s knowledge stock that has been accumulated previously and R&D effort that
is made in the current time. The follower has incentives to invest more than the leader if R&D
effort and knowledge stock are substitutive in innovation. Because of the pure knowledge
effect where the leader reduces its investment along with the large amount of knowledge stock,
the follower strategically increases its investment, which increases its chances of innovation.
However, the pure knowledge effect does not exist when R&D effort and knowledge stock are
complementary. The follower does not have corresponding knowledge stock for innovation and
the chance of innovation of the leader is relatively high. Thus, the follower loses its incentive
to invest, and the leader invests more to keep its dominance in the patent race. The different
types of knowledge and R&D effort and the relation between them causes different technology
strategies of the leader and the follower. This result corresponds to the empirical study by
Kylaheiko et al. (2011). In the high-tech industries, the follower firms are likely to focus R&D
on substitutable knowledge assets of the leading firm. For example, in 1989, Qualcomm did
not invest in R&D that is complementary with knowledge assets of 2G mobile phone, which
has been developed by the leading firm such as Nokia or Mototrola. It turned to make R&D
effort on Code Division Multiple Access (CDMA) of 3G mobile phone, which has substitutive
property with original knowledge, and eventually innovates successfully.

Except for the different strategies of R&D investment corresponding to different types
of knowledge and R&D effort, another strategic consideration of R&D investment refers to
knowledge spillovers. Several empirical studies of high-tech industries such as semiconductors

5The expected innovation time is 1.8648 in the scenario 1 and 1.787 in the scenario 3. The calculation follows
the same parameter setting in figure 2.6.

6The expected innovation time is 1.7306 with perfect patent protection and 2.02 without patent protection. The
calculation follows the same parameter settings in figure 2.7.
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and pharmaceuticals show that firms’ incentives to invest in R&D is to learn from opponents
(Tilton, 1971; Henderson & Cockburn, 1996). To support this, the absorptive capacity is
included in knowledge accumulation in the model so that firms’ R&D investment additionally
contributes to absorbing spillovers, which indirectly increases the chances of innovation. This
factor is insignificant if R&D effort is complementary with knowledge stock. Nevertheless,
in the substitute property, spillovers give a positive effect on R&D investment of the follower
in the beginning of the race. Even though the leader loses its incentive to invest initially, it
overinvests in the later on periods due to spillovers. In fact, both firms invest less with spillovers
than without them in the long run, but knowledge stock reaches a higher level eventually,
which decreases the expected time of innovation. To increase the long-term level of R&D
investment, a perfect patent protection can encourage firms to invest. Since spillovers exist and
patent protection ensures the innovator’s reward, the high level of both R&D investment and
knowledge stock leads to a shorter innovation time.

Overall, whether the follower invests more than the leader is associated with the pure
knowledge effect, which is decided by the characteristics of R&D effort and knowledge stock.
The pure knowledge effect does not appear under the complementary property, which results in
increasing dominance. In addition, spillovers encourage firms to invest aggressively in R&D
against rival’s knowledge stock. At the same time, there should be a corresponding patent to
protect the innovator’s reward so that firms will actively invest in R&D rather than passively
using spillovers for innovation. Patent protection that ensures the innovator’s reward is an
effective policy tool to increase the level of R&D investment in the long run and shorten the
innovation time.





Chapter 3

A patent race with knowledge
accumulation and product market

3.1 Introduction

In the technology intensive industry, firms invest in R&D for innovation. After innovating,
an innovator applies for patents to protect its innovation. Since opponents cannot infringe
patents, they are not allowed to imitate the innovator’s technique to produce goods in the market,
which usually drives opponents out of the market. The innovator becomes a monopolist, which
reduces the social welfare. In fact, patents are a mechanism to protect the innovator, which
increases firms’ incentive to innovate; however, patents also indirectly ensure the innovator’s
market power, which increases the social welfare loss. This paper discusses the social welfare
of patent policy by building a model connecting two different research lines: (i) a patent race
and (ii) process innovation.

Firms face a patent race to be the first innovator. This research line discusses innovation
incentives in a patent race (Reinganum, 1981; Fudenberg et al.,1983; Harris and Vickers, 1987).
Firms compete to be the first innovator that can benefit from an exogenous patent reward. They
make current R&D effort by investing in R&D for innovation in one period of time, which,
nevertheless, does not contribute to the next period of innovation. Later on, Doraszelski (2003)
introduced knowledge accumulation so that the current R&D efforts can be accumulated as
knowledge stock that can also contribute to chances of innovation in the following periods.
These models of the patent race are too simplified on the patent policy, which only features
on exogenous patent benefits rather than patent length and strength. This paper includes two
factors, patent length and patent strength, in the model, and introduces ex-post patents to
evaluate the value of patents.

It has been discussed for a long time that which patent policy can optimize the trade-off
between the social welfare loss and the innovation incentives. Gilbert and Shapiro (1990)
proposed a general static model of patent benefits and concluded that the optimal length of
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patents is infinite by maximizing the social welfare. However, their model did not capture
competition among firms. Kamien and Schwartz (1974) argued that longer patents result in
a more intensive rivalry, which affects firms’ expected benefits of patents. DeBrock (1985)
included the feature of rivalry by modeling ex-post patents with two stages, which captures
firms’ expected patent benefits better. In this ex-post patent system, firms invest in R&D
optimally according to their expected payoff of innovation after patenting. Kitch (1977) also
showed empirically that firms develops innovation after evaluating their expected payoff of
innovation. This paper uses a differential game approach to capture better feature of ex-post
patents in continuous time.

After a patent race, firms evaluate their payoff of innovation and decide the optimal strategies
of R&D investment. They develop process innovation by investing in R&D to reduces marginal
cost of production. Cellini and Lambertini (2009) discussed process innovation of rivalry, which
follows D’Aspremont and Jacquemin (1988) with a differential game approach and calculated
the social welfare of innovation in a dynamic system. They concluded that R&D cartel preforms
better on social welfare than independent ventures since R&D cooperation generates lower
production cost by more efficient R&D than non-cooperation. This result corresponds to
Kamien et al. (1992) static R&D model, which shows that research joint ventures (RJV) cartel
performs better on welfare than RJV competition by yielding higher profits and a lower price in
the market. Instead of comparing cartels and competition, another dynamic model of process
innovation by Hinloopen et al. (2013) focused more on firms’ incentive to innovate in a view
of the choke price. In this line of research, patent policy is not captured. This paper include
the patent policy in the process innovation by connecting with a patent race model. Except
for forming cartels to boost innovation, Judd et al. (2012) maintained that a policy maker can
use a patent system as a tool to increases incentives of innovation. This paper compares social
welfare between cartels and patenting to see which tool generates better welfare in a dynamic
framework.

In fact, firms face both research and market competition when they want to innovate. They
first invest on knowledge R&D to innovate in a patent race and then invest on process R&D to
reduce production cost in a market competition. However, there is not many research combining
a patent race and a market competition. Steinmetz (2010) connected a patent race and the
market competition in a two-stage model that follows a patent race model of Doraszelski (2003)
in the first stage and Bertrand competition in the second stage. Since Cournot competition is
more efficient than Bertrand competition in a dynamic model of R&D under the conditions
of productive R&D, highly substitutable goods and R&D spillovers (Breton et al., 2004), this
paper considers a Cournot model that follows the dynamic process innovation as Cellini and
Lambertini (2009) for the later stage.

The objective of the research is to know the optimal innovation strategy of firms under
different patent policies and the optimal patent policy with the maximal social welfare. The
model is a three-stage dynamic model with a differential game approach. In the first stage, two
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Fig. 3.1 Transition among different phases in the three-stage game overtime

firms invest in R&D, accumulate knowledge and compete in a patent race. In the second stage,
the successfully innovating firm monopolizes the market until the patent expires. After the
patent expires the market becomes duopoly, which is in the final stage. Monopoly does not
always occur if the strength of a patent system is extremely weak. The three-stage game of two
players will be solved by backward induction numerically.

3.2 Model

Assume two firms compete in a patent race and then compete in a product market. In a patent
race, both firms invest in R&D effort that is accumulated as knowledge stock over time in order
to innovate. After the race is over, the innovator can enter the product market and reduce its
marginal costs by process innovation. Further, the innovator earns a patent, which drives the
imitator out of the market. The length of the patent determines how long the innovator can
monopolize the market; after the patent expires, the imitator enters the market. The imitator
can imitate innovation without additional cost, which allows it to produce efficiently, that is,
the innovator and the imitator compete with the same initial marginal cost in a duopoly market.
This can be modeled as a three-stage differential game: (1) the first stage where both firms do
not innovate yet, that is, both firms are in a patent race, (2) the second stage where one firm
innovates and monopolizes the product market due to patent protection, and (3) the final stage
where the imitator enters and the product market becomes duopoly after the patent expires. The
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status of the firm follows four modes in different stages:

mode =



m1 both firms compete in a patent race
m2 firm 1 wins the patent race and monopolize the product market

by process innovation
m3 firm 1 loses the patent race and cannot enter the product market
m4 both firms compete in a duopoly market.

Figure 3.1 shows the transition between different phases in the three-stage game. From stage
1 to stage 2, if the firm innovates and obtains the patent at time tau in a patent race, the firm
status goes from mode 1 to mode 2; otherwise, the status goes from mode 1 to mode 3. After
the patent expires at time T , the firm’s status ends up at mode 4 in stage 3. It is also possible
that the innovator does not have chances to monopolize the market due to innovation diffusion.
If the strength of patents is weak, the imitator can easily enter the product market right after the
patent race. In this case, the game goes from stage 1 (m1) to stage 3 (m4) directly.

Since I use the backward induction to solve the three-stage differential game, I will introduce
the model of the third stage first, then second stage and the first stage in the last.

3.2.1 Third stage: process innovation in duopoly (m4)

R&D effort of process innovation plays a role of reducing marginal cost in order to produce
homogeneous goods. Assume that firms compete in Cournot competition. The reason to model
process innovation by Cournot competition is that Cournot competition is more efficient with
productive R&D and highly substitutable goods (Breton et al., 2004). The value function of
firm 1 at m4 is

V 1
m4
(c1,c2) = max

q1,k1

∫
∞

τ+T
e−ρt

[
(1−q1 −q2 − c1)q1 −

1
2

k2
1

]
dt

subject to
ċ1 = (−k1 +δc)c1

ċ2 = (−k2 +δc)c2

where qi = qi(t), ki = ki(t) and ci = ci(t) are the quantity, R&D effort and marginal cost of
firm i respectively; δc is a constant depreciation rate measuring decreasing productivity; ρ

is the discounted rate; T is the length of the patent; τ is the time at which the patent race is
over. The market becomes duopoly after the patent race is over and the patent expires, that is,
the market competition begins from time τ +T . The firm’s marginal cost is reduced by R&D
investment overtime, and the firm produces its optimal quantity to maximize its present value
of production profits net off production cost and R&D cost over time.
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This differential game of duopoly with process innovation has a normalized demand function
and no spillovers, which is a simplified model of Cellini and Lambertini (2009). Instead of
looking for open-loop strategies as Cellini and Lambertini (2009), feedback strategies are more
appropriate since they are subgame perfect where firms are time-consistent. The Hamilton-
Jacobi-Bellman (HJB) equation of firm 1 is

ρV 1
m4

= max
q1,k1

(1−q1 −q2 − c1)q1 −
1
2

k2
1 + ċ1

∂V 1
m4

∂c1
+ ċ2

∂V 1
m4

∂c2
.

where V i
m4
(c1,c2) satisfies the transversality condition, that is,

lim sup
t→∞

e−ρtV i
m4
(c1(t),c2(t))≤ 0, i = 1,2.

Thus, the feedback strategies of symmetric firms are

q⋆im4
=

1−2ci + c j

3
, i = 1,2

k⋆im4
=−ci

∂V i
m4

∂ci
, i = 1,2

where 1 > ci > 0, q⋆im4
> 0 and k⋆im4

> 0. This implies
∂V i

m4
∂ci

< 0. The firm’s optimal R&D effort
is positive if and only if the value of the race decreases as the marginal cost increases. Further,
firms produce with positive profits in the duopoly market, that is, (1−qi −q j −ci)qi − 1

2k2
i > 0

if
ci <

1+ c j

4+3
√

2
∂V i

m4
∂ci

.

Then, duopoly holds when −2
√

2
3 <

∂V i
m4

∂ci
< 0 and 0 < ci <

1
2 .1

The feedback strategies of the quantity are the same in the dynamic model and the static
model of Cournot competition. Firm’s optimal quantity of production increases as its marginal
cost decreases. If its opponent production is more marginally costly, the firm strategically
produces more because of reducing production of its opponent. The feedback strategies of
R&D investment positively depends on the marginal cost and the marginal value with respect
to marginal cost. If a firm has less production efficiency than another firm, its optimal R&D
investment is higher.

1Since firms are symmetric, I restrict to the state space where firms are allowed to perform symmetrically.
Both firms have positive production in the state space {c1,c2} ∈ [0, 1

2 ]× [0, 1
2 ].
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3.2.2 Second stage: process innovation in monopoly (m2) or out of the
market (m3)

In the second stage, the patent race is over at time τ and the innovator holds a patent during the
time period of a valid patent, T . If firm 1 innovates successfully (m2), it obtains a patent and
monopolizes the product market. Its objective is

V 1
m2
(c1, t;τ) = max

q1,k1

∫
τ+T

t
e−ρ(t̃−τ)

[
(1−q1 − c1)q1 −

1
2

k2
1

]
dt̃ + e−ρ(τ+T−t)V 1

m4
(c1,c2), t ≥ τ

subject to
ċ1 = (−k1 +δc)c1.

The patent is expired at time τ +T and the imitator, firm 2, enters the market. Assume that
there is no cost of imitation so that firm 2 enters the market with the same marginal cost as firm
1. At the transition time τ +T , the terminal value of the race at m2 and the initial value of the
race at m4 are the same given that the imitator’s initial cost atm4 is the same with the terminal
cost of innovator at m2:

V 1
m2
(c1,τ +T ) =V 1

m4
(c1,cini

2 ), cini
2 = c1.

The HJB equation at m2 is

ρV 1
m2

−
∂V 1

m2

∂ t
= max

q1,k1
[(1−q1 − c1)q1 −

1
2

k2
1 + ċ1

∂V 1
m2

∂c1
]

such that
V 1

m2
(c1,τ +T ) =V 1

m4
(c1,cini

2 ), cini
2 = c1.

The feedback strategies are

q⋆1m2
=

1− c1

2
, k⋆1m2

=−c1
∂V 1

m2

∂c1
.

where q⋆1m2
> 0 and k⋆1m2

> 0. The optimal R&D effort depends on the state of marginal
cost and its marginal value with respect to the marginal cost, which is the same with the
duopoly case. The marginal value of the race must decrease with the increasing marginal
cost so that the monopoly market with process innovation can sustain. If the marginal cost
brings more marginal value of monopoly than duopoly, optimal R&D effort in monopoly
is larger than it in duopoly. Further, the firm only produces under a positive profit, that is,
(1−q1 − c1)q1 − 1

2k2
1 > 0 if

ci <
1

1+
√

2
∂V 1

m2
∂c1

.
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Then, monopoly only holds when −1√
2
<

∂V 1
m2

∂c1
< 0.

In contrast, if the innovator and the patent holder is firm 2, firm 1 cannot infringe the
patent, which means that firm 1 cannot offer the same good and drops out of the market ( m3).
According to firm 2’s state, ċ2 = (−k2 + δc)c2, and the patent length, firm 1 faces its value
function V 1

m3
(c2, t) where V 1

m3
(c2(t),T ) =V 1

m4
(c1(0),c2(t)). The terminal value of m2 and m4

should be the same at the transition timeτ +T . Assume no imitation cost so that firm 1 enters
the market with the same marginal cost as the innovator, c1(0) = c2(T ), after the patent is
expired at time τ +T . The HJB equation at m3 is

ρV 1
m3

−
∂V 1

m3

∂ t
= ċ2

∂V 1
m3

∂c2

such that
V 1

m3
(c2,τ +T ) =V 1

m4
(cini

1 ,c2), cini
1 = c2

There is no feedback strategies since firm 1 is out of the market.

3.2.3 First stage: a patent race (m1)

In a patent race, R&D effort plays a role of innovating. The function of R&D in this stage is
different from it in the second and third stages. R&D effort of first stage contributes to make
innovation occur; R&D effort of second and third stages contributes to production efficiency
after innovation. In this stage, firms invest in R&D to accumulate knowledge, which increases
chances of innovation. The race is over as long as one firm innovates. Firms face a stochastic
process of innovation and the transition rate of changing the status of a firm, which is the
switching rate among different mode, is

ζ
1
mamb

=


h1κ (a,b) = (1,2)
h2κ (a,b) = (1,3)
h1(1−κ)+h2(1−κ) (a,b) = (1,4)

where hi = hi(t) is the distribution of successful innovation of firm i, which is a hazard rate
that a firm innovates successfully in a small time interval at time t; κ is the strength of a patent.
The chances of switching the firm’s status from an innovator to a monopolist depends on the
hazard rate hi and the strength of a patent κ . If a firm innovates successfully with a rate h1, the
probability of a patent holder being a monopolist depends on the patent strength κ ∈ [0,1]. It
is also possible that the market becomes duopoly where the imitator enters with a probability
1−κ. A higher κ implies a stronger patent, which indicates that the innovator has higher
chances to monopolize the market. The transition rate ζ 1

m1m2
of firm 1 from innovating in a

patent race to being a monopolist is h1κ; the transition rate ζ 1
m1m3

of firm 1 losing the patent
race is the transition rate of firm 2 innovating in the patent race and being a monopolist, h2κ .
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The probability of firm i innovating and a patent failing to protect innovation is hi(1−κ), so
the transition rate ζ 1

m1m4
is ∑

2
i=1(1−κ)hi, which indicates the probability of either one firm

innovating and facing duopoly from a patent race phase to the market phase.

The hazard rate of successful innovation depends on firm’s R&D effort ki(t) and its knowl-
edge stock zi(t). The form of the hazard rate determines whether the follower firms have
incentives to innovate (see chapter 2). To capture whether the patent policy affects incentives
of the follower firm , I consider an additive hazard rate, hi = ki + zi, where the follower firm
has the incentive to catch up to the leader. The additive hazard rate captures the feature of
substitution between R&D effort and knowledge so that the follower with less knowledge can
increases chances of innovation by investing in sufficient R&D.

This stochastic mode-switching model of the patent race is a piecewise deterministic game
where the game is deterministic during the race and is stochastic when the status of firms
changes in the end of the race (Dockner et al., 2000). The HJB equation of the piecewise
deterministic game of the patent race of firm 1 is

ρV 1
m1

= max
k1

[
h1κ

(
V 1

m2
−V 1

m1

)
+h2κ

(
V 1

m3
−V 1

m1

)
+(h1 +h2)(1−κ)

(
V 1

m4
−V 1

m1

)
− k2

1

+ ż1
∂V 1

m1

∂ z1
+ ż2

∂V 1
m1

∂ z2

]
where żi = ki −δzzi for i = 1,2; δz is a depreciation rate of knowledge stock, which implies the
rate of technology obsolescence; V 1

mi
is the value function of firm 1 at different modes. The net

expected payoff of firm 1 switching to a monopolist at m1 is the switching rate h1κ multiplying
the net payoff of being a monopolist V 1

m2
−V 1

m1
; the same argument goes for m3 and m4. If

V i
m1
(z1,z2) satisfies the transversality condition

lim sup
t→∞

e−ρtV i
m1
(z1(t),z2(t))≤ 0, i = 1,2,

the feedback strategy of symmetric firms is

k⋆im1
=

1
2

[
κV i

m2
+(1−κ)V i

m4
−V i

m1
+

∂V i
m1

∂ zi

]
, i = 1,2

where 1> zi > 0 and k⋆im1
> 0. The optimal R&D of a patent race depends on the patent strength,

the value of different market structures and the marginal value of knowledge dynamics. If the
strength of patent is high, the proportion of the value of a monopolist is high. This implies
that a firm has more incentives to invest in R&D if patents can efficiently protect it to obtain
benefits as a monopolist.

Compared with a patent race with exogenous patent rewards, the patent reward of the model
endogenously depends on the net total expected payoff in the latter stage. The strength of
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patents and the value of different market structure determines the benefits of the patent. Firms’
optimal R&D effort of a patent race depends on the amount of benefits that an innovator with a
patent can generate in different market structures. In fact, the benefit structure of innovation
affects whether patent protection supports innovation (see chapter 4). It is important to use
a model that can capture the benefit structure of innovation better. Kitch (1977) argued that
patents come at the beginning of innovation process and its benefit is generated afterward
in most empirical cases. This paper uses three-stage model with differential game approach,
which allows to estimate ex-post benefits of innovation.

3.3 Computation

At Markov perfect Nash equilibria, HJB equations should hold for the feedback strategies in
the state space. Since the analytical solution cannot be derived from a non-linear system of
HJB equations, I use a numerical method to approximate the value function. Rui and Miranda
(1996) found that the collocation method of Chebychev nodes and a Chebychev polynomial
can estimate an unknown non-linear curve better than the other methods. The following will
introduce how to use the collocation method to approach the value function in the state space.

In the two state space Xi = {xi1,xi2, ...,xin} ∈ [ai,bi] for i = 1,2, the Chebychev polynomial
of degree n with coefficient matrix C1×nn is

V̂ (X1,X2)≈ C [TX1 ⊗TX2]

TXi =


T0(−1+ 2(xi1−bi)

ai−bi
)

T1(−1+ 2(xi2−bi)
ai−bi

)
...

Tn−1(−1+ 2(xin−bi)
ai−bi

)


where Ty(w) = cos[ycos−1(w)]. A good approximated value function should hold for the HJB
equation at all Chebychev nodes in the state space. Chebychev nodesX̂i = {x̂i1, x̂i2, ..., x̂in} for
i = 1,2 are

x̂ik =
ai +bi

2
+

bi −ai

2
(cos

n− k+0.5
n

π),k = 1, · · · ,n, i = 1,2.

Assume the initial guess of the approximated value function and calculate its value at Chebychev
nodes, V̂ i,ini

mi (X̂1, X̂2). Obtain Ci,ini
mi such that V̂ i,ini

mi (X̂1, X̂2) = Ci,ini
mi

[
TX̂1

⊗TX̂2

]
at nodes. Then,

the estimated value function of the initial guess follows V̂ i,ini
mi (X1,X2) = Ci,ini

mi [TX1 ⊗TX2] by
which the control variables of the initial guess can also be estimated. The HJB equation
holds for the control variables of the initial guess, state variables, and a new value function
V̂ i,1

mi (X̂1, X̂2) = Ci,1
mi

[
TX̂1

⊗TX̂2

]
at all nodes so that the new coefficient matrix Ci,1

mi can be
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calculated. Then, the new estimated value function of this iteration is generated V̂ i,1
mi (X1,X2) =

Ci,1
mi [TX1 ⊗TX2]. The same argument goes on for the next iteration until the estimated value

function makes HJB equations scale-invariantly deviate from an error ε at all nodes.

By backward induction, I look for the approximated value function of two state variables at
m4 first, then m2, m3 and finally m1. The HJB equations with feedback strategies in the state
space at different modes are

ρV 1
m2
(c1, t)−

∂V 1
m2

(c1,t)
∂ t =

(
1−c1

2

)2
+ c1

∂V 1
m2

(c1,t)
∂c1

(
c1
2

∂V 1
m2

(c1,t)
∂c1

+δc

)
,{c1, t} ∈ [0,0.5]× [0,30];

ρV 1
m3
(c2, t)−

∂V 1
m3

(c2,t)
∂ t = c2

∂V 1
m3

(c2,t)
∂c2

(
c2

∂V 2
m3

(c2,t)
∂c2

+δc

)
,{c2, t} ∈ [0,0.5]× [0,30]

ρV 1
m1
(z1,z2) = AκV 1

m2
(c1,T )+BκV 1

m3
(c2,T )+(A+B)(1−κ)V 1

m4
(c1,c2)

+[A− (1+δz)z1]
∂V 1

m1
(z1,z2)

∂ z1
+[B− (1+δz)z2]

∂V 1
m1

(z1,z2)

∂ z2

−(A+B)V 1
m1
(z1,z2)− 1

2(A− z1)
2

,{z1,z2} ∈ [0,1]× [0,1];

ρV 1
m4
(c1,c2) =

(
1−2c1+c2

3

)2
+ 1

2

(
c1

∂V 1
m4

(c1,c2)

∂c1

)2

+ c2
2

∂V 1
m4

(c1,c2)

∂c2

∂V 2
m4

(c1,c2)

∂c2

+δc

(
c1

∂V 1
m4

(c1,c2)

∂c1
+ c2

∂V 1
m4

(c1,c2)

∂c2

)
,{c1,c2} ∈ [0,0.5]× [0,0.5];

where A = κV 1
m2
(c1,T )+(1−κ)V 1

m4
(c1,c2)−V 1

m1
(z1,z2,c1,c2)+

∂V 1
m1

(z1,z2,c1,c2)

∂ z1
+ z1 and B =

κV 2
m2
(c2,T )+(1−κ)V 2

m4
(c1,c2)−V 2

m1
(z1,z2,c1,c2)+

∂V 2
m1

(z1,z2,c1,c2)

∂ z2
+ z2. Since two firms are

symmetric,
∂V 2

m3
(c2,t)

∂c2
=

∂V 1
m2

(c1,t)
∂c1

at m3, which has been calculated in m2. The HJB equation at
m3 is a simple partial differential equation of two variables given terminal conditions, which
can be solved directly numerically by the Mathematica program. The collocation method is
used on solving HJB equations of m1, m2 and m4. Initial guess of the estimated value function
at those modes are

V̂ i,ini
m1 (z1,z2) = hiκ

(
V i

m2
−V i

m1

)
+h2κ

(
V i

m3
−V i

m1

)
+(hi +h j)(1−κ)

(
V i

m4
−V i

m1

)
− 1

2k2
i

,ki = δzzi;

V̂ i,ini
m2 (c1, t) = 1

4r

(
(1− c2

1)−δ 2
c
)(

1− e−ρ(T−t)
)
+ e−ρ(T−t)V i

m4
(c1,c1(T ));

V̂ i,ini
m4 (c1,c2) = (1−q1 −q2 − c1)q1 − 1

2k2
1, qi =

1−2c1
3 , k1 = δcc1.
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Fig. 3.2 R&D investment of the benchmark. Figure (i) is the R&D investment of firm 1 at m1;
figure (ii) is R&D investment of firm 1 at m4. The parameters are ρ = 0.105, δc = δz = 0.2,
κ = 0.5. The patent length is T = 10.

For the numerical estimation, the degree of Chebychev polynomial of the collocation method is
n = 10 and its deviation error is ε = 0.0001.

3.4 Equilibria and strategies

The benchmark model is assumed the technology obsolescence at a rate δz = 0.2. As soon as
one firm becomes innovator in the patent race, it starts to produce by process innovation with an
initial marginal cost cim2(0) = 0.5 where productive efficiency is depreciated at a rate δc = 0.2.
A patent with neutral strength κ = 0.5 protects the innovator from imitation by 50% chances,
which is valid for 10 periods T = 10. Otherwise, the imitator enters the product market with the
same process innovation cim4(0) = c jm4(0) = 0.5, i ̸= j. The race runs under a discounted rate
ρ = 0.105. The optimal strategies of R&D investment of the benchmark shows in figure 3.2.

The follower firm, which has less knowledge stock, has incentives to invest more in

R&D than the leader, which has more knowledge stock. In figure 3.2(i), 1
2

(
k⋆1m1

(z1,z2)
)2

>

1
2

(
k⋆1m1

(z2,z1)
)2

when z1 < z2. This catching-up behavior is a result of knowledge effect
(Doraszelski, 2003). The feature of reducing R&D in terms of increasing knowledge contributes
to a less R&D investment of the leader, which increases incentives of the follower strategically.
This effect can also be observed in figure 3.2(i) that R&D investment decreases with increasing
knowledge accumulation. The substitution effect of R&D effort and knowledge for innovation
is the main reason of the negative marginal R&D investment (see chapter 2). R&D effort can
compensate insufficient knowledge stock for innovation, which gives follower’s incentive to
innovate.

The firm with less production efficiency has incentives to invest more in R&D than

the firm with better efficiency in a product market. In figure 3.2(ii), 1
2

(
k⋆1m4

(c1,c2)
)2

<

1
2

(
k⋆1m4

(c2,c1)
)2

when c1 < c2. To be competitive in the market, firms try to be efficient on its
production by process innovation. Better production efficiency induces firms to produce more,
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Fig. 3.3 Patent strength of R&D investment and knowledge accumulation. Figure (i) is R&D
investment of firm 1 with respect to knowledge state under different strength of patents; figure
(ii) is R&D investment over time; figure (iii) is knowledge accumulation over time. Curves
and the surface of light gray is for κ = 1; gray curves and the gray surface is for κ = 0.5;
black curves and the black surface is for κ = 0. The dashed line represents the follower firm
with initial knowledge zi(0) = 0, and the solid line represents the leader with initial knowledge
z j(0) = 0.5. Other parameters follow benchmark: ρ = 0.105, δc = δz = 0.2.

since the benefit of a lower production cost induces firms to produce more. In contrast, if the
firm with low production efficiency, it strategically reduces its production due to increasing
production of its opponent. To sustain its production in the market, the firm must invest in
R&D for a more efficient production. That is the reason that the less efficient firm invests more
in R&D. Figure 3.2(ii) shows that R&D investment increases when the marginal cost increases.

3.4.1 Patent strength

A stronger patent implies that the innovator has a higher chance to monopolize the market in
the period of a valid patent, that is, κ approaches 1. A weaker patent indicates that the innovator
has a higher chance to compete in a duopoly market after innovation, that is, κ approaches to 0.
Since a strong patent protects the innovator from the imitator, the benefit of the innovator is
more significant than the case with a weak patent. This gives firms more incentives to invest in
R&D of a patent race with a strong patent. Figure 3.3(i) shows that firms’ R&D investment is
larger in the case of κ = 1 than the other cases.

Besides, assume that a follower firm has less knowledge stock than a leader firm in the
beginning of the race. When they compete to innovate successfully in a patent race, a strong
patent encourages the follower firm to invest more R&D than the leader. In figure 3.3(ii),
the follower invests more in R&D than the leader at the beginning of the race under a strong
patent. When the patent is stronger, the difference of R&D investment between the leader and
the follower is more significant. If there is no patent to protect innovation, that is κ = 0, the
catching-up behavior of the follower’s R&D investment becomes insignificant. In the long
run, a strong patent encourages frims to invest in R&D and reach a high level of knowledge
accumulation.
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Fig. 3.4 Patent benefit structures of firm 1. Figure (i) is innovation benefit of firm 1 with respect
to its marginal cost; figure (ii) is total benefits with respect to two firms’ cost state. The red
curve and surface corresponds to 10 periods of patent length; The blue curve and surface
corresponds to 20 periods patent length. Other parameters follow the benchmark: ρ = 0.105,
δc = δz = 0.2, κ = 0.5.

3.4.2 Benefit structure of patents

The benefit structure of patents affects firms’ incentives to innovate under different degree of
patent protection. If an innovator can acquire a certain share of the total profits, strong patent
protection encourages firms to invest in R&D and innovate. In contrast, innovation is more
likely to obtain with weak patent protection, if the profit of the innovator is independent of the
degree of patent protection (see chapter 4).

To see which benefit structure of the endogenous benefit model belongs to, first define
the benefit of a patent holder of firm 1 is V 1

(m2)
(c1,0). Figure 3.4(i) shows that more efficient

production and longer patent length generate more patent benefits. If firm 1 does not innovate,
it gets an imitator’s reward V 1

(m3)
(c2,0). The total benefit of firm 1 is V 1

(m2)
(c1,0)+V 1

(m3)
(c2,0).

In figure 3.4(ii), the total benefit is high if the firm production is more efficient then its opponent.
If the patent length is longer, the total benefits is higher. When c1 decreases, both patent benefit
and total benefit increases. This implies that an innovator is more likely to acquire a fixed share
of total benefits and a longer patent brings more benefits.

3.4.3 Patent length, innovation time and social welfare

The optimal patent length has been discussed in several contributions. On the one hand, since
the patent length implies the periods of monopoly of an innovator, an optimal patent length is
associated with the minimal social welfare loss. On the other hand, benefits of a patent holder
as a monopoly gives firms incentives to invest in R&D in the first stage of a patent race. A
longer patent brings more benefits to the innovator, which induces innovation happens earlier.
According to Polasky et al. (2011), the probability of innovation before time t can be calculated
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Fig. 3.5 The time path of social welfare. Figure (i) is the time path of the social welfare under
10 periods of a patent length, T = 10 and the expected innovation time is at time τ = 2.63 in
this case. Figure (ii) is the comparison of social welfare under different patent length. The
red curve follows T = 20; the black curve follows T = 10; the blue curve follows T = 0. The
parameters are ρ = 0.105, δc = δz = 0.2 and κ = 0.5.

by the hazard rate h(t):
P(τ < t) = 1− e−

∫ t
0 hi(s)ds

The expected innovation time that happens innovation from time ti to ti+1 is

E(t) =
∫

∞

0
tdP(τ < t)≈

∫
∞

0
thi(t)e−

∫ t
0 hi(s)dsdt.

Figure 3.5(i) shows the expected innovation time in the case of 10 periods patent length,
τ = 2.63. Before innovation, firms invest in R&D in a patent race and the social welfare over
time is ∑i=1,2−ki(t). After innovation, the social welfare over time SW is the sum of consumer
surplus over time CS and producer surplus over time PS. In the period of a valid patent T , the
time path of social welfare of monopoly M is

SWM(t) =CSM(t)+PSM(t),

CSM(t) =

(
q⋆1m2

(t)
)2

2
, PSM(t) =

(
1−q⋆1m2

(t)− c1(t)
)

q⋆1m2
(t)− 1

2
(
k⋆1m2

(t)
)2
.

In the beginning of the valid patent, the social welfare is negative because the R&D cost and
producing cost surpass the revenue. After some time periods the producing cost decreases due
to the process innovation and the social welfare becomes positive. After the patent expires, the
opponent enters the market and the social welfare of duopoly over time D is

SWD(t) =CSD(t)+PSD(t),

CSD(t) =

(
q⋆1m4

(t)+q⋆2m4
(t)
)2

2
,
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Fig. 3.6 The time path of social welfare and marginal of RJV cartel.Figure (i) is the time path
of marginal cost; figure (ii) is the time path of social welfare. The red curve represents the case
under 20 periods of patent protection T = 20 (dashed line represents the opponent); the green
curve represents RJV cartel; the blue curve represents duopoly competition. The parameters
are ρ = 0.105, δc = δz = 0.2 and κ = 0.5.

PSD(t) =
(
1−q⋆1m4

(t)−q⋆2m4
(t)− c1(t)

)
q⋆1m4

(t)− 1
2
(
k⋆1m4

(t)
)2

+
(
1−q⋆1m4

(t)−q⋆2m4
(t)− c2(t)

)
q⋆2m4

(t)− 1
2
(
k⋆2m4

(t)
)2
.

The innovator lost its benefits as a monopoly after the patent expires, which is the main reason
that social welfare drops at the time of patent expiration.

A long period of patent brings monopoly power for the innovator, which reduces the
consumer surplus by a high market price. At the same time, a patent also increases firm’s
incentives to innovate, since the gain of monopoly is protected. Figure 3.5(ii) shows that
innovation occurs early if the patent lasts longer. In the time periods from 3 to 8, social welfare
of the case without patenting suffers from a slow process innovation due to the low R&D
incentives of no monopoly benefits. This leads to a low social welfare level in the case without
patenting. Nevertheless, after time 8, the effect of low incentives of process innovation becomes
less and the effect of market competition increases. The consumer surplus of duopoly surpasses
the consumer surplus of monopoly. The social welfare in the case without patenting is higher
than it with patenting from time 8. If the periods of patenting is longer, the difference of
social welfare between monopoly and duopoly is accumulatively more. In fact, there exists a
critical time that balance out the trade-off between loss of innovation incentives and the loss
of monopoly of social welfare, which implies the optimal patent length is finite. In contrast,
Gilbert and Shapiro (1990) give a general model of patent policy and concluded that the optimal
patent length is infinitive. After considering strategic interaction among firms, intertemporal
choices and R&D incentives, the optimal length of patents should be finite.
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3.4.4 Research joint venture (RJV) cartel

Research joint venture and R&D cartel gives more efficient innovation by eliminating dupli-
cation R&D effort. Kamien et al. (1992) discuss social welfare under four different cases
of research joint venture(RJV) and cartels: (i) R&D competition, (ii) R&D cartel, (iii) RJV
competition, and (iv) RJV cartel in a static model. Cellini and Lambertini (2009) introduce
a dynamics model and state that R&D cartel can improve social welfare. Assume that firms
form an RJV cartel, that is, firms share R&D effort and innovation completely, k1 = k2 = k
and c1 = c2 = c. Since both firms R&D effort contributes to process innovation fully, the
dynamics of marginal cost of the third stage follows ċ = (−2k+δc)c, which follows a special
case of fully technological spillovers in Cellini and Lambertini (2009). After a patent race at
m1 the innovator and its opponent join RJV cartel atm4. The Hamilton-Jacobi-Bellman (HJB)
equation of firm 1 under RJV cartels at m4 becomes

ρV 1
m4

= max
q1,k

(1−q1 −q2 − c)q1 −
1
2

k2 + ċ
∂V 1

m4

∂c

where V i
m4
(c1,c2) satisfies the transversality condition, that is,

lim sup
t→∞

e−ρtV i
m4
(c(t))≤ 0, i = 1,2.

Thus, the feedback strategies of symmetric firms are

q⋆im4
=

1− c
3

, i = 1,2

k⋆m4
=−c

∂V i
m4

∂c
, i = 1,2

where 1 > c > 0, q⋆im4
> 0 and k⋆m4

> 0.
The marginal cost and social welfare of RJV cartels over time show in figure 3.6. RJV cartels

generates most social welfare over the time path by most efficient R&D, which corresponds to
the result of Kamien et al. (1992) and Cellini and Lambertini (2009). Further, RJV cartels gives
more incentives to innovate earlier than the case of completed duopoly due to efficient process
innovation. However, a long enough length of patents can intriguer the innovation occurs even
more earlier than the case of RJV cartels.

3.5 Conclusions

The research combines a patent race and process innovation by a three-stage model with
a differential game approach. Firms invest in R&D in ex-ante and ex-post of patents. In
the first stage, firms invest and accumulate knowledge competitively, which increases their
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chances of being the first innovator. In the second stage, the innovator increases its production
efficiency by ex-post R&D investment and becomes a monopolist in a valid period due to patent
protection. In the last stage, the patent is expired and the imitator enters the market with the
same production efficiency as the innovator. Firms compete in the duopoly market by their own
process innovation.

This model characterizes the dynamics of ex-ante and ex-post R&D investment, which
can capture endogenous benefits of prospect patents. According to different benefit structures,
the patent has either a negative or positive impact on innovation (see chapter 4). Endogenous
benefits can describe the strategic interaction between an innovator and a free-rider. When the
free-rider problem is significant, the benefit is less due to the reducing innovator’s incentives,
which discourages innovation.

Except for the benefit of patents, the model also allows analyzing the impact of patent
strength and patent length. Strong patent ensures the patent holder’s benefit by monopolizing the
market, which encourages innovation. Even though innovation brings efficient production and
increases producer surplus, monopoly of an innovator scarifies consumer surplus at the same
time. The optimal length of patent, which balances the trade-off between efficient production
and loss of consumer surplus, is finite, since a long period patent brings more welfare loss than
production efficiency. Research joint venture





Chapter 4

A patent portfolio race with knowledge
accumulation

Coauthored with Florian Wagener

4.1 Introduction

A patent race or R&D race is a game in which firms compete with each other to make a certain
innovation first. The winner of the race usually obtains the advantage of getting a patent on the
innovation. Early models of patent races were given by Loury (1979), Lee and Wilde (1980),
Dasgupta and Stiglitz (1980a,b), Reinganum (1981, 1982) and Kamien and Schwartz (1982).
These models do not feature history dependence: the probability of successful innovation
depends only on current R&D effort, but not on past R&D experience. Doraszelski (2003)
introduced an R&D race model with knowledge accumulation, where R&D efforts in each
period of time contribute to building a knowledge stock and affect the hazard rate of successful
innovation. This rate is assumed to be linear in R&D effort and in the knowledge stock, which
implies that it is possible to innovate successfully without actually exerting R&D efforts. This is
not realistic: Cohen and Levinthal (1990) argued that firms need to make an effort to internalize
knowledge. The model in this paper uses a hazard rate that depends on R&D efforts and
knowledge stock multiplicatively. In this way, successful innovation is only possible if there is
a positive knowledge stock as well as positive R&D efforts of the innovating firm.

Patents generate revenues because of their monopolizing power; moreover, R&D intensive
firms usually hold many patents. It is however not the case that for each patent a specific
knowledge stock is build, only to be discarded when the patent is awarded; rather a single
R&D knowledge stock is used to obtain many patents on successive related innovations. In this
article, we study therefore a patent portfolio race, where firms use a single knowledge stock to
innovate multiple times in order to build up their patent portfolio. This is different from the
direct contribution of investment to the stock of patents in Denicolo and Zanchettin (2012). In
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their model, investing in R&D increases the stock of patents directly; this stock accumulates
over time to form a patent portfolio. A shortcoming of their model is that investing in R&D
leads with certainty to innovation and the acquisition of a patent. Sieberta and Graevenitz
(2010) improved on this by adding a hazard rate model for successful innovation, introduced
by Loury (1979) and Reinganum (1981, 1982), to a patent portfolio race model. Firms choose
the level of the hazard rate to decide whether to innovate and whether to write a cross-license
contract on their patent portfolios. Our model is close to their approach, but instead of using
a memoryless model, we use a hazard rate that depends on the stock of past investments into
R&D like in Doraszelski (2003).

Since we consider knowledge accumulation in a patent portfolio race, the nature of knowl-
edge is an important issue. A common assumption is that each firm has a private knowledge
stock (e.g. Doraszelski 2003). We argue however that the knowledge stock may be assumed
to be fully public. Nelson (1959) and Arrow (1962) already posited that firms can obtain
knowledge by various ways, which is not necessarily by paying, and the knowledge is not
reduced if other firms obtain it. We moreover follow Romer (1986) by assuming that knowl-
edge, at least for low knowledge stock levels, exhibits increasing returns to scale: If little is
known, knowledge consists of isolated, almost unconnected results. Each new results suggests
connections between what is already known, giving rise to ‘synergy’ network effects. Only if
the knowledge stock is mature, marginal returns to developing additional knowledge diminish.

Moreover, we assume that for the most part the R&D efforts of the firm are directed to
internalising public knowledge. Although this can be refined, we are already able to capture
much relevant behaviour with this approach. Breton et al. (2006) developed a dynamic R&D
model with public knowledge in a duopoly market. In their model, firms invest in a laboratory in
order to assimilate public knowledge to innovate successfully. Firms face binary R&D decision,
either investing 0 or 1, and their decisions over time affect their probability of successful
innovation. If only one firm innovates, it establishes a monopoly. If two firms innovate, they
form a duopoly, which is less profitable than a monopoly, but the firms have lower production
costs as there are innovation spillovers from the other firm. Breton et al. find that firms invest
in R&D only if the level of public knowledge is sufficiently high. Moreover, they find that
for intermediate knowledge levels, the Pareto optimal outcome can be improved by policy
intervention.

As an increase in the stock of public knowledge facilitates private enterprises, policy makers
have an incentive to make big investments into public knowledge, in the hope that this will
entail the formation of high-tech clusters. Breshnahan and Gambardella (2004) write: “The
positive feedback elements of a successful cluster also make it difficult to learn anything from
clusters that don’t take off; an implication of ‘nothing succeeds like success’ is that ‘nothing
fails like failure’.” It is the inherent inobservability of a knowledge stock that has failed to
materialize that constitutes the added value of a model-based approach. In the present article,
our objective is to investigate the effects of institutional parameters, which presumably can be
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set or at least influenced by the policy maker, like the degree of patent protection, and external
parameters, which are beyond the policy maker’s control, like the size of the resulting market,
on the establishment of a mature knowledge stock and a flourishing patent portfolio race.

A typical result is shown in figure 4.1, where the effects of the degree of patent protection
— an institutional parameter — and firm patience — an external parameter — are shown.
We find three different regimes: if firms are sufficiently forward-looking, R&D competition
will lead to the establishment of a mature knowledge stock that is completely market-driven
(“market-driven innovation”): there is nothing here for a social planner to do. On the other
hand, if the planning horizon of the firms is too short, they will phase out R&D investments,
whatever the initial knowledge stock; the probability that they make any innovation is very
small, and it will drop to zero over time (“innovation unlikely”). Again, a social planner has
little to do here. More interesting to her is the third region, that separates the first two. There,
market competition can sustain a mature knowledge stock, provided the initial knowledge
stock is larger than some critical level (“innovation after initial subsidy”). It is here that the
planner has to decide whether to provide the means to move the initial knowledge stock above
the critical level, in order to get industrial activity going that probably generates all kinds of
external benefits.

Our model does not say anything about this decision. It does two other things: it identifies
the region where the action of the social planner can make a difference, and it shows how
changing institutional parameters in the model affects the location of this critical region. For
instance, still referring to figure 4.1, installing stronger patent protection will increase both
the “market-driven innovation” region as well as the “innovation after initial subsidy” region.
However, the figure also indicates that the effect of increasing patent protection is small, as
the boundary curves between the regions are almost flat. In the analysis, we focus on three
parameters, one institutional — patent protection — and two external — innovation benefit and
patience. We find that an initial subsidy helps estabilishing a self-sustaining innovation regime
only if total innovation benefit is not too small or if firms are sufficiently patient. The impact of
the degree of patent protection is, by comparison, relatively small. Moreover, our results give
the cross-effects of changing two parameters simultanously in detail.

A methodological contribution of this paper is to use the auxiliary system approach of
Dockner and Wagener (2014) to explore the characteristics of the Markov perfect Nash equilib-
ria of the patent portfolio race. This allows us to deal with the arising non-differentiable value
functions. In particular, we develop a bifurcation theory for Markov perfect Nash equilibria of
differential games of a single state variable; we believe that we are the first to do so. Figure 4.1
is a bifurcation diagram, visualising how the qualitative characteristics of a dynamic Markov
perfect Nash equilibrium depends on different parameters.

Section 2 models a patent portfolio race between two firms and introduces the auxiliary
system. Section 3 discusses the mathematics of the bifurcation theory involved. In section 4 we
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Fig. 4.1 The effect of patent protection and time preference on the resulting innovation regime.

investigate the dependence of the the expected innovation time on different parameters. We
extend the two firm game to n firms in section 5. Section 6 concludes.

4.2 Markov perfect Nash equilibria of a patent portfolio race

4.2.1 Model

We model a patent portfolio race between two firms as a differential game, with a public
knowledge stock as the single state variable. All R&D efforts from different firms will
contribute to the public knowledge stock. To innovate, a firm needs to invest not only in R&D
but also into labour: the knowledge stock is interpreted as generic knowledge, which needs to be
assimilated by labour for innovation (Kylaheiko et al., 2011). The ability to exploit knowledge
is called absorptive capacity by Cohen and Levinthal (1990); it is higher if a firm invests more
in labour. In the model, firms can invest strategically in both labour and R&D: a firm with large
knowledge stock and labour force has a higher probability to innovate successfully.

We think of the knowledge stock as a large collection of small fundamental ideas, indexed
by a continuous variable x ∈ [0,Z], where Z is the size of the knowledge stock. Total investment
I = I1 + I2 in R&D increases the probability of a new fundamental idea being found, and hence
increases z. On the other hand, ideas are forgotten or being made obsolete at a constant rate
δ ; after such an event, the ideas are relabeled. The index x ∈ [0,Z] consequently indicates the
vintage of a fundamental idea: x = Z labels the oldest idea, while x = 0 corresponds to the
newest. This model results in the knowledge evolution equation

dZ
dτ

= I1 + I2 −δZ, Z(0) = Z0. (4.1)
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We turn to innovations: these can occur when two or more fundamental ideas are combined.
However, not all combinations of ideas result in innovations: knowledge absorption by a firm
consists, in our model, by going through the range of possible combinations of fundamental
ideas, looking for those combinations that yield marketable innovations.

For simplicity, we restrict to the situation where a marketable innovation combines only
two fundamental ideas. We then obtain a knowledge network, where the fundamental ideas are
the nodes and the marketable innovations form the links. If two ideas are new, they are likely to
generate an innovation. To model this, we assume that the density dµ of links is proportional to

dµ(x1 and x2 generate innovation) ∝ f (x1 + x2)dx1 dx2, (4.2)

where f is a positive decreasing function.

If an innovation is made at time τ = T1, the innovator will benefit from its patent; the
imitator benefits from innovation spillovers. Since firms can innovate multiple times, the race
continues: the second innovation is made at τ = T2, etc.

Innovations occur at random times. Denote by Hi the hazard rate of innovation by firm i;
then

Hi(τ) = lim
∆τ→0

P(firm i innovates in [τ,τ +∆τ) | race not over at time τ)

∆τ
.

That is, the probability that firm i innovates in the interval (τ,τ +∆τ) is approximately Hi(τ)∆τ .
The rate Hi(τ) = Hi(Z(τ)) at which innovations are found is assumed to be proportional to

Hi(Z) ∝

∫
{all pairs of nodes}

dµ =
∫

0≤x2≤x1≤Z
f (x1 + x2)dx1 dx2. (4.3)

In particular, Hi is a positive increasing function satisfying 0 ≤ Hi(Z)≤ cZ2 for some c > 0.
We shall moreover assume that the innovation rate is bounded by a constantλ as a function of
Z.

For instance, in the illustrations below, we assume that the hazard rate of firm i depends on
the effectiveness of current effort λ , firm i’s integrative labour Li, public knowledge stock Z
and a threshold parameter θ in the following way

HIi(Li,Z) = λLiHi(Z) = λLi
Z2

Z2 +θ 2 . (4.4)

We can interpret HIi as the production function of innovations with labour and knowledge as
inputs; this production function has, for small knowledge stocks, increasing returns to scale,
which are caused by knowledge network effects. Increasing returns in knowledge production
have been proposed very early on (Arrow, 1962; Romer 1986). We note however that our results
do not depend on the particular parametrisation; they can even be obtained for knowledge
production functions without increasing returns to scale.
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The firm exerts integrative labour effort Li = Li(τ) ≥ 0 and R&D effort Ii = Ii(τ) ≥ 0,
incurring running effort costs

cL

1+1/η
L1+1/η

i +
cI

1+1/ξ
I1+1/ξ

i ;

here cL,cI,η ,ξ > 0. Firm i innovates with probability Hi(τ)∆τ; if it innovates, it reaps
innovation benefits P; the other firm innovates with probability H−i(τ)∆τ , and in that case firm
i reaps imitation profits P, which are less than the innovation benefits.

Given the competing firm’s effort schedules L−i(Z) and I−i(Z), firm i tries to maximise

Ji(Li, Ii) =
∫

∞

0
e−ρτ

(
HIi(Li,Z)P+HI−i(L−i(Z),Z)P

− cL

1+1/η
L1+1/η

i − cI

1+1/ξ
I1+1/ξ

i

)
dτ,

subject to (4.1) and the restrictions Li ≥ 0, Ii ≥ 0. Let

Vi(Z) = supJi(Li, Ii),

denote where the supremum is taken over all bounded measurable functions Li(Z) and Ii(Z)
satisfying the restrictions.

Then Vi(Z)e−ρτ is the value of firm i at time τ and knowledge stock level Z. Over the time
interval [τ,τ +∆τ), the value evolves as follows. At the end of the interval, the knowledge
stock Z has evolved to Z +∆Z.

Choosing integrative labour effort and knowledge investment levels optimally and discount-
ing future profits with rate ρ yields

Vi(Z)e−ρτ = max
Li,Ii

[
−
(

cL

1+1/η
L1+1/η

i +
cI

1+1/ξ
I1+1/ξ

i

)
e−ρτ

∆τ

+HIi(Li,Z)Pe−ρτ
∆τ +HI−i(L−i,Z)Pe−ρτ

∆τ

+Vi(Z +∆Z)e−ρ(τ+∆τ)+o(∆τ)
]
.

Dividing by e−ρτ∆τ , rewriting and taking the limit ∆τ → 0 then yields the Hamilton-Jacobi-
Bellman (HJB) equation for firm i:

ρVi(Z)−max
Li,Ii

[
−
(

cL

1+1/η
L1+1/η

i +
cI

1+1/ξ
I1+1/ξ

i

)
(4.5)

+HIi(Li,Z)P+HI−i(L−i,Z)P+V ′
i (Z)

dZ
dτ

]
= 0.
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Note that this is equivalent to the HJB equation of a firm with deterministic revenues

HI1(L1,Z)P+HI2(L2,Z)P.

The benefit of imitation P derives from innovation spillovers that contribute less to a patent
portfolio. We introduce the parameter κ as the ratio of innovation and imitation benefits

κ = P/P.

This measures the lack of patent protection. There is full freedom to imitate, and hence
complete lack of patent protection, if innovation benefit and imitation benefit are equal, i.e.
if κ = 1; there is no freedom to imitate and perfect patent protection if the imitator does not
benefit from the innovation, i.e. if κ = 0.

If Π denotes the total benefit
Π = P+P;

then the innovation benefit can be expressed in terms of total benefit and equals

P =
Π

1+κ
.

That is, if there is no patent protection (κ = 1), innovation benefits are just one half of total
benefits, while if there is full protection (κ = 0), innovation benefits equal total benefits.

4.2.2 Natural units

The dynamics simplify if we introduce ‘natural’ units. This allows us to concentrate on the
underlying relations between the variables of the model, rather than be distracted by complicated
looking factors, which are only related to the measurement scales. It is straightforward to return
to the actual units used.

For instance, the inverse t0 = δ−1 of the obsolescence/forgetting rate δ determines a
natural time scale of the knowledge evolution process. Likewise, if the innovation rate Hi is
specified according to (4.4), the threshold parameter Z0 = θ determines a natural scale Z0 for
the knowledge stock. Hence, by introducing a ‘natural’ time t by τ = t0t = t/δ , a ‘natural’
stock z by Z = Z0z, and a natural investment rate ui by Ii = I0ui, the knowledge evolution
equation takes the form

ż =
I0

δZ0
(u1 +u2)− z; (4.6)

here, as in the following, the superimposed dot denotes derivation with respect to t. This
equation simplifies to

ż = u1 +u2 − z.
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if the scale I0 of the investment rate is chosen in terms of the natural scales for knowledge and
time, that is, as I0 = Z0/t0 = δZ0.

We introduce natural scales for value Vi, integrative labour effort Li, and benefits P and P
by setting

Vi(Z) =V0vi(z), Li = L0ℓi, P = P0π, P = P0κπ.

We define V0, L0 and P0 in terms of the following equalities:

V0 =
cIt0
α

I1+1/ξ

0 = cLt0L1+1/η = λP0L0;

the constant α will be determined later in a convenient manner. Moreover, we introduce

r = ρt0 and hi(z) = Hi(Z).

The HJB equation for firm i then takes the form

rvi(z)−max
ℓi,ui

[
πℓihi(z)+κπℓ−ih−i(z)−

ℓ
1+1/η

i
1+1/η

−α
u1+1/ξ

i
1+1/ξ

+ v′i(z)(ui +u−i − z)

]
= 0.

(4.7)

4.2.3 Determining Markov perfect Nash equilibria

Equation (4.7) is the full HJB equation of the value function of firm i at points where vi is
differentiable. By choosing labour and investment schedules, the two firms play a differential
game. We focus on the situation that firms use feedback strategies, determining their effort
levels as functions of the knowledge stock. The corresponding equilibrium concept is that of
Markov perfect Nash equilibria (MPNE).

It can be shown that the value vi of each firm is increasing in the knowledge stock, which is
also intuitively clear. The optimal R&D and labour efforts are then obtained by maximising the
right hand side of (4.7), yielding

ℓ∗i (z) = (πh(z))η and u∗i (z) =
(

v′i(z)
α

)ξ

, for i = 1,2.

We concentrate on the symmetric situation, where h1(z) = h2(z) = h(z) and v1(z) = v2(z) = v(z)
for all z. The HJB equations for a symmetric MPNE can be written as

rv(z)−G(z,v′(z)) = 0, (4.8)

where

G(z, p) def
=

(
1

1+η
+κ

)
(πh(z))1+η +α

−ξ 2+ξ

1+ξ
p1+ξ − pz. (4.9)
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We now make the choice α = (2+ ξ )1/ξ , to cancel out the factor (2+ ξ ). Moreover, we
introduce the ‘effective innovation rate’ Φ(z), as well as the ‘effective innovation revenue’ µ ,
which is net of integration costs, by

µ =

(
1

1+η
+κ

)
π

1+η , and Φ(z) = h(z)1+η .

The ‘game Hamiltonian’ G takes then the form

G(z, p) = µΦ(z)+
p1+ξ

1+ξ
− pz.

It is well-known that HJB equations like (4.8) need not have a solution v(z) that is continuously
differentiable and satisfies (4.8) pointwise. For this class of equations, Crandall and Lions
(1983) have developed a weaker solution concept, that of ‘viscosity solution’, whose definition
is given in the appendix. In economics, these solutions have been known for a long time under
the name ‘Skiba solutions’ (see Skiba, 1978; cf. also Sethi, 1977, Dechert and Nishimura, 1983).
They are characterised by points of nondifferentiability in the value and jump discontinuities in
the actions; the mathematical definition of viscosity solution basically describes which kind of
jumps are allowed.

In single-player problems, these jump points carry important information, as they bound
‘policy regimes’: for two initial states on either side of a jump point, the optimal policies are
qualitatively different. In a multi-player problem, as considered in the present article, the
situation is more involved; but in certain cases, jump points may have the same ‘dynamical
separation’ property; examples of this are given below.

The existence of a value is settled by the following theorem.

Theorem 1. The game HJB equation (4.8) has a unique uniformly continuous and bounded
viscosity solution v(x), which is positive, non-decreasing and Lipschitz continuous.

To characterize the corresponding MPNE strategies, we use the auxiliary system approach
of Dockner and Wagener (2014), which enables us to analyze the MPNE geometrically. A
significant advantage of this approach is that it allows us to discuss MPNE in non-differentiable
and non-continuous strategies. This approach starts with the classical remark that the graph
p = p(z) of the function p(z) = v′(z) is traced out by the solution curves (z(s), p(s)) of the
‘auxiliary’ system of differential equations, which take for p ≥ 0 the form

dz
ds

=
∂G(z, p)

∂ p
= pξ − z, (4.10)

dp
ds

=rp− ∂G(z, p)
∂ z

= (1+ r)p−µΦ
′(z). (4.11)
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Fig. 4.2 Trajectories (solid curves a, b, c, and d) and isoclines dz
ds = 0 (dashed curve A), dp

ds = 0
(dashed curve B) of the auxiliary system given ξ = η = 1.

However, unlike the optimal control case, the curve parameter s does not have an interpretation
as time (see Dockner and Wagener, 2014, for details). The system has to be complemented by
the dynamic equation

ż =
dz
dt

=
2

2+ξ
pξ − z, z(0) = z0. (4.12)

Figure 4.2 gives a phase diagram of the auxiliary system given ξ = η = 1. The dashed curves
A and B denote respectively the isoclines dz/ds = 0 and dp/ds = 0; the solid curves a, b, c
and d denote trajectories of the auxiliary system. However, not all of these correspond to a
MPNE. Firstly, a MPNE gives rise to a function p = p(z) that is defined on all of state space
(Rowat, 2007): this requirement disqualifies for instance the curve b immediately.

But this requirement does not eliminate sufficiently many candidates. So let p = p(z) be the
graph of a function that is traced out by trajectories of the auxiliary system and that is defined
for all z ≥ 0. The corresponding knowledge dynamics can then be determined by substituting
p = p(z) in (4.12), yielding the state evolution z∗ = z∗(t).

As the value function is Lipschitz continuous, its derivative p(z) has to be bounded, which
rules out the trajectory d; moreover, since v is non-decreasing, necessarily p(z) ≥ 0, and
trajectories cannot cross into the region p < 0: this rules out a.

On the other hand, trajectory c corresponds to a MPNE. In view of theorem 1, it is sufficient
to check that it gives rise to a continuous and bounded value function that is defined over all
knowledge states.

4.3 Parameter dependence of innovation regimes

In this section, we discuss the dynamics of the knowledge stock in the patent portfolio race,
given that the players choose MPNE strategies. These dynamics can be classified in a small
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Fig. 4.3 Discontinuous MPNE. Curves U and D are both trajectories of the auxiliary system.
At the jump point, the jump condition G(z, pL) = G(z, pU) is satisfied.

number of qualitatively different types, which we call innovation regimes; a system can only
change its innovation regime by going through a bifurcation. The bifurcation theory relevant
to model is developed in appendix A.2. Here we analyse the implications of the resulting
diagrams, which depict the parameter dependence of the innovation regimes. Specifically, we
make the specific choices η = ξ = 1; we take moreover h(z) = z2/(1+ z2), so that the hazard
rate is marginally increasing for small values of the knowledge stock and marginally decreasing
if z is large. We note that this convex-concave behaviour of the hazard rate does not drive our
results; in fact, the result presented in this section can also be obtained for a fully concave
hazard rate.

The four qualitatively different types of Markov perfect Nash equilibria are illustrated in
figure 4.4, panels (a)-(d). They correspond to three main types of innovation regimes, one
regime having two subtypes. The main types are, respectively, a market-driven innovation
regime, a conditional innovation regime and a regime where it is unlikely that many innovations
will be made.

4.3.1 The innovation regimes

The first regime is characterised by market-driven innovation. Figure 4.4(a) shows the non-
cooperative equilibrium effort levels uNash(z) for this regime relative to the effort level uss(z)
that would be necessary to keep the knowledge stock constant at the state z. It follows that if
uNash(z)> uss(z), the knowledge level will increase, while if uNash(z)< uss(z), it will decrease.

The market-driven innovation level is characterised by the fact that there is a single globally
attracting positive steady state knowledge stock. Innovation is entirely driven by the competition
amongst the two firms. We shall see that market-driven innovation occurs for high innovation
benefits or low rates of time preference.

Figures 4.4(b) and 4.4(c) illustrate two situations that are mathematically different, but
dynamically very similar: both are instances of a situation where market driven innovation
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Fig. 4.4 Innovation regimes. The figures in the left colum show the four generic types of
Markov perfect Nash equilibrium investment strategies uNash, as well as the investment level
uss necessary to maintain a steady state knowledge stock: ifuNash > uss, the stock increases, if
uNash < uss, it decreases.
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(a) Constant time preference
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(b) Constant total profit
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Fig. 4.5 Parameter regimes. The figures show the dependence of the innovation regimes on
innovation profit π versus lack of patent protection κ; time preference rate r versus lack of
patent protection κ; and time preference rate r versus total profit (1+κ)π . Parameters that
are not varied are kept at the values r = 0.525, κ = 0.2, Π = 2.765.
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is possible, conditional on the initial knowledge stock being sufficiently high. For instance,
in figure 4.4(b), there is a critical knowledge stock level at ẑ ≈ 0.43. If the initial stock is
less than this critical value, the effect of the strategic interaction between the firms is letting
public knowledge peter out in the long run. The difference between the two situations is the
nature of the critical level: if it is a repeller, the stock level will linger for a while at this level,
before going either on an upward or a downward trajectory; if it is an indifference point, the
knowledge stock will move away from it much more quickly.

In the regime where there is conditional innovation only if the initial knowledge stock is
sufficiently high, the intervention of a policy maker might propel the initial stock past the
critical value; competition takes over from there. Note that the policy maker’s decision problem
is not treated in this paper; it will of course depend on the public benefits of having an active
knowledge industry in this field.

Finally, the third regime is characterised by a knowledge stock that eventually decays
to zero with respect to any initial level or any amount of subsidy, cf. figure 4.4(d). As
long as knowledge is at a positive level, there is some probability for an invention, but this
decays quickly, and even the probability of a single invention is smaller than 1. This ‘unlikely
innovation’ regime typically obtains if the innovation benefit is too low or the depreciation rate
is too high.

4.3.2 Results

In the analysis of the dependence of these three regimes on parameters, we focus on the lack
patent protection κ , the innovation benefit π or the related quantity total benefit Π, and the rate
of time preference r. The resulting classification diagrams are shown as 4.5(a)–4.5(c).

The first of these, figure 4.5(a), shows the impact of varying the degree of patent protection
and the innovation profit, while keeping the time preference rate constant. We conclude from
it that higher innovation profits simulate market-driven innovation, which is as expected, but
also that strong patent protection has an adverse effect on innovation, which is at first glance
surprising. It is explained by the fact that total profit

Π = π +κπ (4.13)

does actually depend on the degree of patent protection: decreasing the amount of protection,
that is, increasing κ , increases the total profit. In this situation patent protection is restrictive, as
it stops the imitating firm from achieving a profit it would otherwise have made. An example of
this would be a software patent which would stop the second firm from writing an application
that does not compete with the application developed by the first firm.

A different situation is obtained if π and κ are constrained by the requirement that total
profit is constant, that is, by equation (4.13). In figure 4.6 a level curve of Π is shown as



4.3 Parameter dependence of innovation regimes 57

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

Lack of patent protection

In
no

va
ti

on
pr

of
it Market-driven innovation

Innovation unlikely

Fig. 4.6 Effect of patent protection if total profit is constant. In that situation, innovation profits
depend on the degree of patent protection as indicated by the broken line.

a broken line. Along this curve, the effect of patent protection is reversed: strong patent
protection fosters market-driven innovation, while weak patent protection stifles it.

In figure 4.5(c), the degree of patent protection is held constant, and total profit and the
time preference rate are varied against each other. Again it is immediately apparant that an
increase in the level of total profit is advantageous for market-driven innovation, while myopia
of the firms is disadvantageous.

More specifically, there appears to be a critical value of total profit, below which the
industry is always in the ‘unlikely innovation’ regime. The conditional innovation regime is
wedge-shaped: this means that for small values of the total profit — for instance a highly
specialised market — conditional innovation is possible if the competing firms can afford to
have a long time horizon. This description might fit specialised industries cooperating closely
with a well-informed banking sector that allows them to take a long term view. Also note that
for small values of the time preference rate, there is virtually no situation where a social planner
might want to intervene.

This is different for the situation where the time preference is large, which would be typical
for fast-moving industries, where knowledge is quickly obsolete. Firstly, the profits have to be
much larger for market-driven innovation to be sustainable, and secondly, the region where
actions by a social planner may influence the outcome is much larger. This would lend support
for governments pursuing an active campaign of supporting knowledge industries.

Finally, figure 4.5(b) considers the situation that total profit is constant, and that the degree
of patent protection and the time preference rate are varied. Here we see the same kind of result
as in figure 4.6, that stronger patent protection supports market-driven innovation. The effect
seems however to be relatively weak.
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4.4 Patent portfolio race for n firms

In this section, we generalise the model to a patent portfolio race for n firms that either innovate
or imitate. As before, an innovation is made by a single firm, which is rewarded by the
innovation benefit π; the non-innovating firms all obtain the same imitation benefit κπ .

We want to study the resulting innovation regime as a function of the number of competing
firms. From our discussion in section 4.3.2 it follows that we have to distinguish between at
least three situations: total benefits are constant, that is

π +(n−1)κπ = const;

the imitation benefit κπ is constant and distributed evenly over the imitating firms, each of
which receives κπ/(n− 1); and the situation that each imitating firm obtains a benefit κπ ,
independent on the number of firms.

We shall therefore begin with the situation that no a priori relation is assumed between
innovation benefits π and imitation benefits κπ . Working again in natural variables, the value
function of firm i is then as follows:

vi = sup
∫

∞

0
e−rt

(
πℓihi(z)+∑

j ̸=i
κπℓ jh j(z)−

ℓ
1+1/η

i
1+1/η

−α
u1+1/ξ

i
1+1/ξ

)
dt,

subject to the requirements that ℓi ≥ 0, ui ≥ 0 and that the knowledge stock z evolves according
to

ż =
n

∑
i=1

ui − z.

The Hamilton-Jacobi-Bellman equation for the case of n firms is

rvi(z)−max
ℓi,ui

[(
πℓihi(z)+κπ ∑

j ̸=i
ℓ jh j(z)

)
−

ℓ
1+1/η

i
1+1/η

−α
u1+1/ξ

i
1+1/ξ

+ v′i(z)

(
n

∑
j=1

u j − z

)]
= 0.

Optimal R&D effort and labour levels are

ℓi = (πhi(z))
η and ui =

(
v′i(z)

α

)ξ

, for i = 1, . . . ,n.

Again, we assume that hi(z) = h(z) for all i and consider only symmetric MPNE, where
vi(z) = v(z) for all i. Set as before p(z) = v′(z); choose α = (n+(n−1)ξ )1/ξ , and introduce
the effective innovation benefits and the effective innovation rate as

µ =

(
1

1+η
+κ(n−1)

)
π

1+η and Φ(z) = h(z)1+η . (4.14)
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The HJB equation then takes the same form as above

rv(z)−G(z, p) = 0,

with

G(z, p) = µΦ(z)+
p1+ξ

1+ξ
− pz.

The auxiliary system together with the equation for the knowledge dynamics takes the form

dz
ds

= pξ − z, (4.15)

dp
ds

= (1+ r)p−µΦ
′(z), (4.16)

dz
dt

=
1

1+(1−1/n)ξ
pξ − z. (4.17)

We prove the following fundamental result about this auxiliary system in appendix A.3.

Theorem 2. Assume that the function Φ is two times continuously differentiable, that Φ(0) = 0,
Φ′(z)> 0 for all z > 0 and Φ(z)→ 1 as z → ∞; assume moreover that Φ′(z) has a finite number
of critical points and that

Φ′(z)
z1/ξ

→ 0 as z ↓ 0.

Then there are values µ∗ = µ∗(ξ ,r) and µ∗ = µ∗(ξ ,r) of µ , such that for all n, the following
holds. If 0 < µ < µ∗, the symmetric Markov perfect Nash equilibrium is in the ‘unlikely
innovation’ regime; if µ > µ∗, it is in the ‘market driven innovation’ regime.

As in the situation with two firms, there is a significant difference between the situations
that either total profit or the innovation benefit is independent of the degree of patent protection.

4.4.1 Constant total profit

The first situation we consider is that innovator profits are a fixed ‘cake’ of size Π, of which the
innovator obtains a share π and each imitator κπ; moreover, the degree κ of patent protection
is independent of the number of firms in the market.

This is the original situation for which patents have been developed: to give firms an
incentive to innovate, the value that is added by the innovation should go to the innovator. It is
expected that a working patent protection policy of this kind will then encourage many firms to
work in a knowledge industry.

We model this by postulating that the innovating firm and the n−1 imitating firms share a
fixed total profit Π according to the equality

Π = π +(n−1)κπ.
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Consequently, the innovator profit depends on the number of imitators and the patent protection
policy as

π =
Π

1+(n−1)κ
.

Substituting this into the effective innovation benefits µ yields

µ =

1
1+η

+(n−1)κ

(1+(n−1)κ)1+η
Π

1+η .

For instance, under full patent protection κ = 0, effective innovation benefits are independent
of the number of firms

µ =
Π1+η

1+η
,

while if patent protection is absent (κ = 1), we have

µ =
1+(n−1)(1+η)

n1+η

Π1+η

1+η
∼ Π1+η

nη
, as n → ∞.

More generally

µ ∼ Π1+η

κηnη
as n → ∞. (4.18)

By theorem 2, a self-sustaining positive knowledge stock exists if µ > µ∗. The above results
show that if patent protection is perfect (κ = 0), a knowledge industry can support any number
of firms if total profit is sufficiently large. Of course, this is a formulation of the rationale for
the patent system. If however patent protection is imperfect, there is a maximum number of
firms that can be active in the knowledge industry, before the strategic incentive to invest in
the publicly available fundamental knowledge disappears. This number is obtained by solving
µ = µ∗ for n, where we take for µ the asymptotic approximation from equation (4.18), leading
to

nmax ∼
Π1+1/η

κ(µ∗)1/η
. (4.19)

We summarise this discussion in the following result.

Theorem 3. Consider the situation that the total profit generated by a single innovation is
independent of the number of competitors and the degree of patent protection. Then there is
a number nmax, approximately given by (4.19), such that for any number n ≤ nmax of firms, a
positive knowledge stock can be supported.

Under full patent protection (κ = 0), the number of firms that can be supported is unbounded,
if total profit is sufficiently large; if total profit is too small, a positive knowledge stock can
never be supported.
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4.4.2 Constant benefits from innovation

There is a second situation, where the innovation benefits are constant, but where imitation
may create additional value. Consider for instance the situation of software patents or software
licences. These days, application development builds on a huge stack of pre-existing software,
some covered by commercial licences, some by open source licences. A new application of
a different kind that is developed using the same low-level building blocks will not affect
the market share, and the benefits, of that application for which these building blocks were
developed originally.

To model this situation, we assume that innovation profit π as well as imitation profit κπ

are both independent of the number n of firms in the market. The effective innovation benefit µ

as given in (4.14) is then linearly increasing in the number of firms if κ > 0; note moreover
that if κ = 0, we are back in the situation of the previous section.

In the following theorem, the notation [x] is used for the largest integer number that is
smaller than or equal to x.

Theorem 4. Consider the situation that the innovation benefit π is independent on the number
n of imitators or on the imitation benefits κπ . Assume κ > 0.

Then there is a minimal number nmin of firms that can support a positive knowledge stock.
We have

1+
[

1
κ

(
µ∗

π1+η
− 1

1+η

)]
≤ nmin ≤ 1+

[
1
κ

(
µ∗

π1+η
− 1

1+η

)]
.

Note that nmin decreases with innovation profits π: for small innovation profits, a large
number of firms are needed to sustain a positive knowledge stock. Also, nmin decreases with
κ: if the patent regime is weak, or absent as in the case κ = 1, it is easier to sustain a stock of
public knowledge. This reflects for instance the pioneering ‘software sharing culture’ described
by Stallman (1999), and which is at the basis of the ‘open software’ culture (Lerner & Tirole,
2002).

4.5 Conclusions

We have modeled a patent portfolio race with public knowledge accumulation where symmetric
firms compete with each other to innovate and build up their patent portfolio. If a firm does not
innovate, it obtains rewards from innovation spillovers from its rival; the size of these rewards
is determined by the degree of patent protection. We follow Arrow and Romer by assuming
that, at least for small knowledge levels, knowledge production has increasing returns to scale.
Firms invest strategically in the public knowledge stock as well as in the labour necessary to
exploit the public stock.

In this game, we have found three different types of Markov perfect Nash equilibria, corre-
sponding to three innovation regimes: market-driven innovation, where the non-cooperative
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competition between the firms leads always to the creation of a positive steady state knowledge
stock; conditional innovation, where the competiting firms can sustain a positive knowledge
stock indefinitely, but they need help creating a sufficiently large initial stock; and unlikely
innovation, where the equilibrium outcome is to let the stock disappear.

We have investigated the dependence of the resulting innovation regime on a number of
parameters: innovation profit, total profit, degree of patent protection and the time preference
rate. We found that the benefit structure has significant effects on the outcome. If innovations
only help to acquire a certain share of the total profits, then market-driven innovation fares
better with a strong patent protection scheme. We showed that in this situation the maximal
number of competing firms that can sustain a long-term positive knowledge stock increases
much more rapidly with the total profit level under strong patent protection than under weak
patent protection. This finding reinforces the traditional support of a patent protection scheme.

If however the profits of the innovator are independent of the degree of patent protection,
market-driven innovation is more likely to obtain if patent protection is weaker. In fact, there is
a critical degree of patent protection, below which the market can sustain an infinite number of
firms. While it is true that both their costs and their benefits are small, this is not unrealistic.
Lerner and Tirole (2001) remark, in the context of open source projects, that part of the reason
why people contribute is that the cost of contributing is not that high.

We also investigate the impact of the average planning horizon of the competing firms,
which is often dictated by their financing. We find that market-driven innovation can already
occur if total profits are relatively small, if the planning horizon is sufficiently large; an example
would be a highly specialised small firm that has a long-term relation with a bank or which is
fully self-financed.



Chapter 5

Summary

Firms accumulate their knowledge stock by investing in R&D, which increases their chances of
innovation. They compete with each other to become the first innovator and get the innovation
benefits. This game is a patent race. All three chapters are based on the model of a patent race
and the objective is to find the Markov perfect Nash equilibrium that firms’ optimal strategies
of R&D investment with respect to opponents’ optimal strategies.

Chapter 2 features on the property between R&D effort and knowledge. The property of
knowledge plays a more important role of R&D investment especially for the follower firms.
If knowledge and R&D effort are complementary, the follower with less knowledge than the
leader is relatively inferior in a patent race. Its incentive to innovate becomes very low. In
this case, the chances of innovation become little in the long run with any patent policy. In
contrast, if R&D and knowledge additively contribute to chances of innovation, high R&D
effort compensates the followers’ insufficient knowledge pool. Because of the pure knowledge
effect the leader firm reduces its R&D investment by its large knowledge pool, which increases
the follower chances of innovation relatively. Strategically, the follower’s incentives to innovate
increases.

In the case of additive property, a patent can encourage innovation. However, a patent holder
monopolized the market indirectly. Opponents cannot infringe the patent, naturally become
less competitive, and finally leave the market. This monopoly of innovator with a patent harms
social welfare. Chapter 3 connects a patent race model with products market in order to discuss
the impact of the patent policy on social welfare. Longer patents intriguer higher innovation
payoff, which leads to earlier innovation, but gives longer harm of monopoly on welfare.
Instead of patenting, research joint venture (RJV) cartels allows firms to cooperate on R&D but
compete in duopoly. RJV cartels bring more efficient process innovation on production, which
results in an early innovation and even increase welfare in a market competition under efficient
R&D.

In reality, firms face more than one competitor and more than one patent in a race. In
Chapter 4, firms allow to innovate several times and compete with a collection of patents,
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which is a patent portfolio race. In this patent portfolio race model, the benefit structure of
innovation has significant effect of R&D incentives in terms of the patent policy. If a patent
portfolio can ensure the innovator to acquire certain share of innovation profits, R&D incentives
increase with strong protection. If patents cannot ensure the share of benefits, firms would
rather innovate without patent protection. This describes the case of successful innovation of
open-source software that has been developed without patent protection.
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Appendix A

A.1 Existence and uniqueness

We need the notion of sub- and superdifferentials of a function at a point (cf. Bardi and
Capuzzo-Dolcetta, 2008, chapter I, lemma 1.7). Let z ∈R, and let v(z) be a continuous function.
Then p ∈ R is an element of the superdifferential D+v(z̄) at z̄, if there exists a continuously
differentiable function ϕ(z) such that ϕ ′(z̄) = p and v(z)−ϕ(z) takes a (local) maximum at
z̄; p ∈ R is in the subdifferential D−v(z̄), if there ϕ ′(z̄) = p and v(z)−ϕ(z) takes a (local)
minimum at z̄.

These notions are generalisations of the notion of sub- and supergradient, usually introduced
in the context of convex functions. The definition of supergradient is entirely analogous to that
of superdifferential, except that the ‘test function’ ϕ is restricted to the class of linearly affine
functions. For instance, the supergradient of the function v(z) = z2 is empty for all z, while
D−v(z) = D+v(z) = {2z} for all z.

A function v(z) is a viscosity subsolution of an equation

F(z,v(z),v′(z)) = 0, (A.1)

if F(z,v(z), p)≤ 0 for all z and all p ∈ D+v(z); it is a viscosity supersolution if F(z,v(z), p)≥ 0
for all z and all p ∈ D−v(z). If it is both a sub- and a supersolution, v(z) is called a viscosity
solution.

It should be noted that if v(z) is a subsolution of equation (A.1), then it is a supersolution
of the equation −F(z,v(z),v′(z)) = 0.

Theorem 5. Let µ,ξ ,r > 0 be given constants. Let Φ : R→R be a continuously differentiable
non-decreasing function, such that Φ(0) = 0 and limz→∞ Φ(z) = 1, and let

G(z, p) = µΦ(z)+
|p|1+ξ

1+ξ
− pz. (A.2)
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In the class of bounded continuous functions, there is a unique viscosity solution v(z) of the
HJB equation

rv(z)−G(z,v′(z)) = 0. (A.3)

This function is moreover Lipschitz continuous and non-decreasing as a function of z.

Proof. Let M > 0 be a constant. Let wM(z0) value function of the optimal control problem that
tries to minimise the functional

J(z,u) =
∫

∞

0
e−rt

(
|u|1+1/ξ

1+1/ξ
−µΦ(z)

)
dt

over the set UM = {u : [0,∞)→ [−M,M] : u measurable}, subject to the restriction

ż = u− z, z(0) = z0.

This auxiliary problem is introduced to show the existence and uniqueness of the solution of
the game HJB equation, as well as to show that the solution is non-decreasing. We shall apply
results from Bardi and Capuzzo-Dolcetta (2008). In the remainder of this section, references
to chapters or propositions shall all be taken to refer to that book. For instance, a reference
like “proposition III.2.1” means “proposition 2.1 of chapter III in Capuzzo-Dolcetta (2008)”;
“equation III.(2.9)” will refer to equation (2.9) in chapter III.

We shall show that for M sufficiently large, v(z) =−wM(z) does not depend on M and is
a viscosity solution of (A.3). To show this, let U = [−M,M] and f (z,u) = u− z if z ≥ 0 and
f (z,u) = 0 if z < 0. Then f satisfies assumptions A0, A1, and A3 of chapter III in BC. Set
ℓ(z,u) = |u|1+1/ξ/(1+1/ξ )−µΦ(z). Since Φ is bounded and |u| ≤ M, also assumption A4

from the same chapter is satisfied.

Proposition III.2.1 implies that the value function wM of this minimisation problem exists,
is continuous and even uniformly Hölder regular. By choosing u(t) = 0 for all t, it is clear that
v(z)≤ J(z0,u)≤ 0. As moreover Φ(z)≤ 1 for all z, we obtain the bound −µ/r ≤ v(z)≤ 0 for
v.

The Hamilton function of the minimisation problem, as defined in equation III.(2.9), is

HM(z, p) = sup
|u|≤M

[
− p f (z,u)− ℓ(z,u)

]
= µΦ(z)+

|p|1+ξ

1+ξ
+ pz,

where the last equality holds only for |p| ≤ M1/ξ . Proposition III.2.8 then implies that the value
function wM is a viscosity solution of the equation

rw(z)+HM(z,w′(z)) = 0. (A.4)
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As H is coercive, that is H (x, p)→ ∞ as |p| → ∞, and wM is bounded, continuous, and a
viscosity solution of (A.4), it follows from proposition II.4.1 that wM is Lipschitz continuous,
with Lipschitz constant C. It follows moreover from the proof that C is independent of M, if M
is sufficiently large, say, larger than M1 > 0. Equations III.(4.4) and III.(4.6) then imply that
the super- and subdifferentials of wM are contained in the interval [−C,C]. If M is taken larger
than both M1 and Cξ , then the restriction |p| ≤ M1/ξ is never binding, and w(z) = wM(z) is a
viscosity solution of the equation

rw(z)+H (z,w′(z)) = 0,

where

H (z, p) = sup
u

[
− p f (z,u)− ℓ(z,u)

]
.= µΦ(z)+

|p|1+ξ

1+ξ
+ pz,

From this, we infer that v(z) =−w(z) is a viscosity solution of

rv(z)−H (z,−v′(z)) = rv(z)−G(z,v(z)) = 0.

This shows existence of a Lipschitz continuous viscosity solution.

Uniqueness in the class of bounded continuous function follows directly from theorem
III.2.12.

To show non-decreasingness of v, fix z10 and ε > 0, and find u(t) such that if z1(t) satisfies

ż1 = u− z1, z1(0) = z10,

then
J(z1,u)≤ w(z10)+ ε.

Take z20 > z10, and let z2(t) be the solution of

ż2 = u− z2, z2(0) = z20.

Then y(t) = z2(t)− z1(t) satisfies

ẏ =−y, y(0) = z20 − z10 > 0,

implying that z1(t)< z2(t) for all t. As Φ is non-decreasing, it follows that

w(z10) = J(z1,u)− ε ≥ J(z2,u)− ε ≥ w(z20)− ε.

As ε > 0 is arbitrary, we conclude that w(z10)≥ w(z20) whenever z10 < z20. This implies that
w is non-increasing and that v(z) =−w(z) is non-decreasing.
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A.2 Bifurcation theory of differential games

A MPNE strategy is given by a function p = p(z) = v′(z), which is such that v satisfies the HJB
equation (4.8).

A dynamic equilibrium is obtained if the graph p= p(z) of the MPNE strategy intersects the
dynamic isocline ż= 0. Figure A.1 illustrates a typical situation. The graph of the discontinuous
MPNE intersects the dynamic isocline at SSH , SSR and SSL (see figure A.1(a)), which are
therefore steady states of the knowledge dynamics, given in figure A.1(b). As ż > 0 in the area
above the dynamic isocline, the knowledge stock is increasing there; below the isocline, it is
decreasing. We conclude that SSL and SSH are attractors, while SSR is a repeller.

For different parameter values, we may have a different number of attractors, repellers and
jump points. These numbers change at bifurcations.

One of the main determinants of a bifurcation is its codimension: this is the minimal number
of parameters that needs to be varied in order to encounter the bifurcation ‘in a stable way’.
‘Stable’ means in this context that the bifurcation also occurs in a system that differs only
slightly from the original one. Bifurcations of codimension one are encountered most often,
as they occur stably even in one-parameter families. We shall encounter also bifurcations of
codimension two, but not of any higher codimension.

A different way of thinking about codimensions is the following: the codimension of a
bifurcation is the difference between the dimension of the parameter space and the dimension of
the set of parameter values associated to the bifurcation. For instance, in a one-parameter model,
the parameter set of a codimension one bifurcation will have dimension zero, that is, it will
consist of isolated points. Likewise, in a two-parameter model, codimension one bifurcation
values will form one-dimensional sets, i.e. curves, and codimension two bifurcations occur
at isolated points. Note that all this dimension counting proceeds from the assumption of the
system being generic, and the bifurcation sets being in ‘general position’.

More precisely, we shall discuss four different types of codimension 1 bifurcations of
MPNE: saddle node (SN), indifference attractor (IA), game indifference attractor (GIA) and
game indifference repeller (GIR) bifurcations. In addition to these codimension one bifurcations,
we discuss a codimension two bifurcation that occurs in the model, a game indifference saddle
node (GISN) bifurcation. The bifurcation diagram shows which parameter values result in
different kinds of dynamics. We focus on the parameters κ , π and r in order to study how
patent protection, innovation benefits and far-sightedness help to accumulate public knowledge
in the long run.

A.2.1 Saddle-node bifurcation

A dynamical system experiences a saddle-node bifurcation if, on varying a parameter, two
steady states coalesce and disappear. For a general differential game, we define the bifurcation
analogously: a Markov perfect Nash equilibrium that depends continuously on the game’s
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(b) Knowledge dynamics

Fig. A.1 State dynamics. Panel A.1(a): steady states correspond to intersections of the MPNE
and the dynamics isocline; panel A.1(b): the resulting state dynamics. Black dots denote steady
states, the diamond denotes a jump point .

parameters experiences a saddle-node bifurcation if the dynamics that result from both players
choosing their equilibrium feedback strategy goes through a saddle-node bifurcation.

Figure A.2 illustrates the bifurcation scenario. In A.2(d), there are a repeller and an attractor
right of the jump state, which is marked with a diamond. At bifurcation — figure A.2(e) —
they coalesce and disappear thereafter (figure A.2(f)), leaving only the ‘no knowledge’ steady
state z = 0, which is then a global attractor. From figure A.2(b), we learn that this coalescing
happens at the parameter value for which the graph of the MPNE strategy is tangent to the
dynamic isocline.

More exactly, the saddle-node bifurcation is defined by the requirement that this tangency
occurs and is nondegenerate. We have the following necessary conditions, formulated in terms
of the parametrisation

(
z(s), p(s)

)
of the solution curve of the auxiliary system:{

Dynamic equilibrium: pU(sU) =
3
2zU(sU)

Tangency: p′U(sU) =
3
2z′U(sU).

Since the auxiliary system is highly non-linear, it is unlikely that an analytical solution exists.
Hence, we have to resort to numerical methods to find the MPNE trajectories as well as the
bifurcating parameter values.

In the present model, the saddle-node bifurcation separates the regime with a positive
knowledge stock that is sustained by the competing R&D efforts of the two firms and that
generates a stream of inventions (figures A.2(a) and A.2(d)) and the regime where no positive
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Fig. A.2 Saddle-node bifurcation scenario. Panels A.2(a),A.2(b), and A.2(c) show the MPNE
and the dynamic isocline; A.2(d), A.2(e), and A.2(f) give the corresponding state dynamics.
The sequence illustrates a saddle-node bifurcation scenario, with the bifurcation occurring at
A.2(b) and A.2(e).

stock of knowledge can be supported in this way, and where by consequence even the probability
of making a first innovation is quite low. Note however that the first regime can only be entered
if the initial knowledge stock is already sufficiently high, or if it is pushed to the self-sustainable
regime by a sufficiently large initial knowledge subsidy of a policy maker. The lower boundary
of the sustainable regime is marked by an indifference point, which features in the next
bifurcation.

A.2.2 Indifference-attractor bifurcation
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Fig. A.3 Indifference-attractor bifurcation scenario. Panels as in figure A.2. The sequence
illustrates an indifference-attractor bifurcation at the origin. The gray dashed curves are the
isoclines of the auxiliary system.
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Before we can introduce the indifference-attractor bifurcation, we first need to discuss
indifference points. In economic dynamic optimisation models, these are often associated
with the name of Skiba (1978) and Dechert and Nishimura (1983), although they have been
described earlier. These are points at which the optimal policy function, expressed as a function
of the state variable, has a jump discontinuity, and where the agent is consequently indifferent
between two or more different policies. Note however that in the single-agent situation, the
optimal policy will always lead away from the jump point: as a function of time, the action of
the agent is continuous.

The situation is slightly different in dynamic games. There Markov perfect Nash equilibrium
strategies also can have jump discontinuities. But, when compared to the single player situation,
there is now the additional possibility that the dynamics steers the state through a discontinuity,
and that the actions of the agents, viewed as functions of time, can have simultaneous jumps
(Dockner and Wagener, 2014).

To be consistent with the usage in dynamic optimisation, we shall call an indifference
point of a Markov perfect Nash equilibrium strategy a point at which the strategy has a jump
discontinuity, but which is such that no orbit of the resulting dynamics passes through this
point. If the latter condition is not satisfied, we shall call such a point merely a jump point.

An indifference-attractor bifurcation is for the rest much like a saddle-node bifurcation,
only that here an attractor and an indifference point coalesce and disappear. In figure A.3, an
attractor at the origin and an indifference point in A.3(d), which marked with a black diamond,
meet at the origin in A.3(e) and have disappeared in A.3(f).

The geometric characterisation is however not as straightforward as in the situation of the
saddle-node. At bifurcation, there is a heteroclinic connection1 between the unstable manifold
D of the origin and stable manifold U of the steady state of the auxiliary system with the largest
z coordinate (cf. figure 4.2).

To find a heteroclinic connection numerically, first a vertical line z = ζ has to be chosen
inbetween the two saddles of the auxiliary system. At the connection, the following conditions
are satisfied: {

pD(sD) = pU(sU)

zD(sD) = zU(sU) = ζ

where (zU(sU), pU(sU)) and (zD(sD), pD(sD)) parameterize respectively the branches U and
D in A.3(b); ζ is a constant. Note that in practice, the equations on the second line are used
to determine sD and sU ; once these are obtained, the difference ∆ = pD(sD)− pU(sU) can be
computed. A parameter value where this difference vanishes is then a heteroclinic bifurcation
value.

In the present model, we have found the indifference-attractor bifurcation to occur only at
the origin. It separates the regime where there is a self-sustainable knowledge stock that can be

1A heteroclinic connection is formed when the unstable and stable manifold coincide; see Wagener (2003) for
an exposition in the setting of dynamic optimisation models.
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reached if the initial knowledge stock is sufficiently high from a regime with a self-sustainable
knowledge stock that can be reached from every initial point. In the latter regime, the R&D
competition between the firms will always lead to a stream of innovations, and no initial subsidy
is needed to manipulate the initial stock of knowledge.

A.2.3 Game indifference-attractor and game indifference-repeller bifur-
cation
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Fig. A.4 Game indifference-attractor bifurcation scenario. Panels as in figure A.2. White
diamonds are jump points; the black diamond is an indifference point.
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Fig. A.5 Game indifference-repeller bifurcation scenario. Panels as in figure A.2.

At a game indifference-attractor bifurcation an attractor and an indifference point coalesce;
after the bifurcation a jump point remains. It is illustrated in figure A.4. Dynamically, it is rather
similar to the saddle-node bifurcation, the indifference point taking the part of the repeller.

The game indifference-repeller bifurcation is similar to the game indifference-attractor
bifurcation, except that now a repeller and a jump point coalesce, and after the bifurcation an
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indifference point remains. It is illustrated in figure A.5. The ‘game’ in both names indicates
that these bifurcations have no counterpart in the bifurcation theory of dynamic optimisation
problems. This is of course due to the appearance of the jump point.

We observe in figures A.4(b) and A.5(b) that both bifurcation are similarly characterised:
a jump point coincides with an intersection of the stable manifold U of the rightmost saddle
of the auxiliary vector field and the dynamic isocline. The kind of intersection determines the
kind of bifurcation. The observation leads to the following conditions:{

Dynamic equilibrium: pU(sU) =
3
2zU(sU)

Jump: ẑ = zU(sU) = zD(sD) and G(ẑ, pU(sU)) = G(ẑ, pD(sD)).

where as before (zU(sU), pU(sU)) and (zD(sD), pD(sD)) parameterize the branches U and D
in both figure A.4 and figure A.5. The conditions are used in the following order: from
the dynamic equilibrium condition, the value of sU is determined. Using the first of the
jump conditions then yields the values of both ẑ and sD, and lets us compute the difference
∆ = G(ẑ, pU(sU))−G(ẑ, pD(sD)). Parameter values for which this quantity vanishes are at
bifurcation.

Even though the conditions of the two bifurcation are very similar, their effects are widely
different. The game indifference attractor bifurcation is similar to the saddle node bifurcation in
that it marks the boundary between the ‘no innovation’ and the ‘conditional innovation’ regimes.
The game indifference repeller bifurcation is less interesting dynamically, as it seperates the
situation where the state move slowly away from the repeller to the situation that the state moves
quickly away from the indifference point. Both situations, though mathematically distinct, are
in the ‘conditional innovation’ regime.

A.2.4 Game indifference-saddle-node bifurcation

The bifurcations discussed so far, saddle-node, indifference-attractor and the game indifference-
attractor and indifference-repeller bifurcation, are all codimension one bifurcations that are en-
countered in the analysis of the patent portfolio race. In the two-parameter bifurcation diagrams
which we consider below, these bifurcations are therefore represented by one-dimensional
curves.

We have encountered a single codimension two bifurcation in the analysis, which occurs as
terminal point of several of the codimension one bifurcation curves. This bifurcation we call, in
analogy to a similar bifurcation in optimal control, game indifference-saddle-node bifurcation
(cf. Kiseleva and Wagener, 2010, 2015).

The game indifference-attractor and the game indifference-repeller bifurcation are both
characterised, by the coincidence of a transversal intersection of the dynamic isocline and
the stable manifold U with a jump point. The game indifference-saddle-node bifurcation is
similarly characterised by the coincidence of a tangency of U with a jump point. This is a
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Fig. A.6 A game indifference-saddle-node bifurcation point. At this bifurcation, two simpler
bifurcation conditions are satisfied simultaneously: the stable manifold of the largest saddle
of the auxiliary system is tangent to the dynamic isocline (saddle-node condition), and a
jump point coincides with a dynamic steady state (indifference-attractor/indifference-repeller
condition). In the case of constant patent protection, the GISN is at Π = 2.45 and r = 0.445;
in the case of constant total profit, the GISN is at κ = 0.94 and r = 0.447. Parameters that are
not varied are kept at the values r = 0.525, κ = 0.2, Π = 2.765.

codimension 2 bifurcation determined by the conditions
Dynamic equilibrium: pU(sU) =

3
2zU(sU)

Tangency: p′U(sU) =
3
2z′U(sU)

Jump: ẑ = zU(sU) = zD(sD) and G(ẑ, pU(sU)) = G(ẑ, pD(sD)).

As before (zU(sU), pU(sU)) and (zD(sD), pD(sD)) parameterize the branches U and D in fig-
ure A.6. Note that these are four equations, containing two free parameters sU and sD. Hence at
least two parameters are necessary to satisfy the equations generically, making this a codimen-
sion 2 bifurcation. Of course, a more extensive analysis will also have to check nondegeneracy
conditions.

The GISN bifurcation point has no immediate economic significance, as it does not divide
separate parameter regimes. But as it is, in a two-parameter bifurcation diagram, the endpoint
of several codimension one bifurcation curves, it organises these curves. Such bifurcation
points are sometimes called organising centres.
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Fig. A.7 Bifurcation diagrams. The dynamics of the parameters region (a), (b), (c) and (d)
corresponds to figure 4.4. Parameters that are not varied are kept at the values r = 0.525,
κ = 0.2, Π = 2.765.
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A.2.5 The bifurcation diagrams

Figure A.7 shows the resulting bifurcation diagrams, in the (κ,π), (Π,r) and (κ,r) parameter
spaces respectively. An interpreted version of these diagrams is given in figure 4.4.

A.3 Proof of theorem 2

We repeat the statement of theorem 2.

Theorem. Assume that the function Φ is two times continuously differentiable, that Φ(0) = 0,
Φ′(z)> 0 for all z > 0 and Φ(z)→ 1 as z → ∞; assume moreover that Φ′(z) has a finite number
of critical points and that

Φ′(z)
z1/ξ

→ 0 as z ↓ 0.

Then there are values µ∗ = µ∗(ξ ,r) and µ∗ = µ∗(ξ ,r) of µ , such that for all n, the following
holds. If 0 < µ < µ∗, the symmetric Markov perfect Nash equilibrium is in the ‘unlikely
innovation’ regime; if µ > µ∗, it is either the ‘conditional innovation’ or the ‘market driven
innovation’ regime.

We construct the value function by analysing the auxiliary system

dz
ds

= A1(z, p) = pξ − z,
dp
ds

= A2(z, p) = (1+ r)p−µΦ
′(z) (A.5)

for z ≥ 0. We call A = A(z, p) = (A1,A2) the auxiliary vector field.

Proof, first part: small µ . We show that for µ > 0 sufficiently small, the point (z, p) = (0,0)
is the unique steady state. Then we show that there is a unique trajectory in the region
0 < p < z1/ξ that converges to (0,0); this trajectory parametrises the graph of a continuously
differentiable bounded function p = p(z), which is such that v(z) =

∫ z
0 p(x)dx satisfies the

game HJB equation.
Any steady state (z, p) has to satisfy the equations

pξ − z = 0, (1+ r)p−µΦ
′(z) = 0.

Eliminating p yields
1+ r

µ
=

Φ′(z)
z1/ξ

. (A.6)

If the right hand side is defined for z = 0 to equal 0, then, by hypothesis, it is a continuous
function of z. As Φ′(z) → 0 for z → ∞, it has to take a maximum M at a point z = z̄. Set
µ∗ = (1+ r)/M. If 0 < µ < µ∗, equation (A.6) has no solution, and

z1/ξ >
µ

1+ r
Φ

′(z)
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for all z > 0.

Consider the family of trajectories γy(s)= (zy(s), py(s)) of (A.5) that satisfy (zy(0), py(0))=
(z̄,y). As γ0 intersects the horizontal axis transversally at (z̄,0), for y > 0 sufficiently small γy

also intersects the horizontal axis, at (z̄y,0). Since ṗ/ż > 0 for z > 0 and p = 0, zy decreases as
y increases.

Note that γy cannot enter the closed region

R1 = {(z, p) : z ≥ 0, A1(z, p)≥ 0}= {(z, p) : 0 ≤ z ≤ pξ}

before intersecting the horizontal axis: as A points into this region on every boundary point
of R1, the region is forward invariant, and no trajectory can leave it again. In particular, no
trajectory that has entered the region can intersect the horizontal axis afterwards.

Let y∗ be the supremum of all y such that z̄y > 0. Then γy∗(s)→ (0,0) as s → ∞. Construct
a function q as follows:

q(zy∗(s)) = py∗(s) (A.7)

for all s such that 0 < zy∗(s) < z̄. This function is well-defined since the distance from γy(s)
to R1 is always positive, and hence zy is strictly decreasing. Moreover, after differentiating its
defining relation with respect to s, it is seen to satisfy

A2(z,q(z)) = q′(z)A1(z,q(z)); (A.8)

since A1 is bounded away from zero on every compact interval [ε, z̄], it follows that on (0, z̄],
the function q is continuously differentiable. Moroever, since (z,q(z)) ̸∈ R1, it follows that
q(z)≤ z1/ξ . Finally, equation (A.8) is equivalent to

∂G
∂ p

(z,q(z))q′(z)+
∂G
∂ z

(z,q(z))− rq(z) = 0.

Integration yields
G(z,q(z))− rv(z) = 0, (A.9)

where v(z) =
∫ z

0 q(x)dx.

We extend q(z) by using (A.7) for all negative values of s. The region

R2 = {(z, p) : z ≥ z̄, 0 ≤ p ≤ M}

is backward invariant and contained in the complement of R1: hence γy∗ cannot leave R2

for negative s, and A1 is bounded away from 0 on R2. Again this implies that zy∗ is strictly
decreasing for all s < 0 as well as zy∗(s)→ ∞ as s →−∞.

Equation (A.8) holds also for the extended function; we conclude that v(z) =
∫ z

0 q(x)dx is a
continuously differentiable solution of the game HJB equation (A.9).
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Finally, we note that for (z, p) ̸∈ R1, we have that pξ < z, and consequently that

dz
dt

=
1

1+(1−1/n)ξ
pξ − z <− (1−1/n)ξ

1+(1−1/n)ξ
z < 0

for z > 0. Hence, for 0 < µ < µ∗, in the symmetric Markov perfect Nash equilibrium, the
knowledge stock always decays towards 0.

�� ��
�

�

Fig. A.8 Illustration of the second part of the proof of theorem 2. The dashed curves are the
isoclines A1 = 0 and A2 = 0; the solid curve is the stable manifold of the equilibrium eµ of A,
as well as the graph of p(z) = v′(z). The region Q− bounded by the isoclines is shaded; in this
region, dp/dz < 0.

Proof, second part: large µ . We shall show that for µ sufficiently large, the stable manifold of
the rightmost equilibrium of the auxiliary vector field is the graph of a functionq(z), such that
v(z) =

∫ z
0 q(x)dx is a continuously differentiable solution to the game HJB equation.

By hypothesis, the number of critical points ofΦ′(z) is finite. Let z1 < .. . < zN denote the
positive critical points of Φ′. As Φ′(z)> 0 and Φ′(z)→ 0 as z ↓ 0, it follows that Φ′′(z)> 0
for all 0 < z < z1; likewise, as Φ′(z)→ 0 as z → ∞, it follows that Φ′′(z)< 0 for all z > zN .

We have seen above that an equilibrium of the auxiliary system has to satisfy(A.6), which
can be rewritten as

F(z,µ) = (1+ r)z1/ξ −µΦ
′(z) = 0.

Clearly F(zN ,µ)< 0 if µ > µ1 = (1+ r)z1/ξ

N /Φ′(zN); moreover F(z,µ)→ ∞ as z → ∞, and
∂F/∂ z > 0 for all z > zN . We conclude that for each µ > µ1, there is a unique solution zµ of
F(zµ ,µ) = 0 in the interval [zN ,∞). Set pµ = z1/ξ

µ ; then eµ = (zµ , pµ) is an equilibrium of the
auxiliary vector field.
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Let Q+ be the region to the right of the line z = zµ that is bounded by the isoclinics
{A1(z, p) = 0} and {A2(z, p) = 0}; that is

Q+ =

{
(z, p) : z > zµ , z1/ξ < p <

µ

1+ r
Φ

′(z)
}
.

Note that the auxiliary vector field A is outward pointing on all points of the boundary of Q+;
hence it contains a part γ+(s) = (z+(s), p+(s)) of the stable manifold of eµ , which is such that
γ+(s)→ eµ as s → ∞. But as Q+ is backward invariant, necessarily γ+(s) ∈ Q+ for all s. By
definition A1 ̸= 0 in Q+ and hence z+ is strictly decreasing in s. As before, γ+(s) defines a
continuously differentiable function q on z > zµ by setting

q(z+(s)) = p+(s).

Note that by differentiating this relation, we obtain

dq
dz

(z+(s)) =
(p+)′(s)
(z+)′(s)

=
A2

A1
< 0

for all s; hence q(z) is stricly decreasing for z > zµ .
We proceed to show that q can be extended to a function defined for all z ≥ 0. For this

purpose, let

Q− =

{
(z, p) : 0 < z < zµ , z1/ξ < p <

µ

1+ r
Φ

′(z)
}
.

Locally around eµ , the auxiliary vector field is outward pointing from Q−; hence it contains a
part γ−(s) = (z−(s), p−(s)) of the stable manifold of eµ .

Let pi = (µ/(1+ r))Φ′(zi) for all critical points zi, and introduce

pmin = min{pµ , p1, . . . , pN}, pmax = max{p1, . . . , pN}.

Since (µ/(1+ r))Φ′(zN)> pµ and Φ′(0) = 0, there are solutions of (1+ r)pµ −µΦ′(z) = 0
in the interval 0 < z < zN . As Φ′(z) has finitely many critical points, it is piecewise monotonic,
and there are only finitely many solutions to this equation. Let zmin denote the smallest of these.

The region
S1 = {(z, p) : zmin < z < zµ , pmin < p < pmax}

has then the property that A is inward pointing only on the segment Σ = {(zmin, p) : pmin < p <

pmax} of the boundary, and outward pointing on the rest of the boundary. Moreover, A1 < 0 for
all points of S1.

We claim that the trajectory γ−(s) has to intersect Σ for some s. To see this, choose s such
that γ−(0) ∈ Q− is so close to eµ , that z−(s) is strictly increasing for all s. Note that there is
then a constant c < 0 such that A1(z, p)≤ c for all points in S1 ∩{z ≤ z−(0)}. As γ−(s) cannot
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intersect other parts of the boundary of S1 except Σ, there is some s̄ < 0 such that z−(s̄) = zmin

and z+ is strictly increasing for all s > s̄.

The final part of the proof is to show that for µ sufficiently large, the trajectory γ−(s)
intersects the positive vertical axis for some ŝ < s̄, while satisfying (z+)′(s)> 0 for all ŝ < s ≤ s̄.

For this we introduce the region

S2 = {(z, p) : 0 ≤ z ≤ zmin, pξ − z ≥ 1}.

Note that A1(z, p)≥ 1 on S2.

We claim that pmin = pmin(µ)→∞ as µ →∞. It is clear from their definition that pi →∞ as
µ → ∞. Moreover, for every fixed z > zN , we have that F(z,µ)< 0 for µ > (1+ r)z1/ξ/Φ′(z);
it follows that zµ > z for those values of µ . Hence zµ → ∞ and pµ = z1/ξ

µ → ∞ as µ → ∞. This
proves the claim.

Consequently, for µ sufficiently large, we have (zmin, pmin) ∈ S2 and consequently also
γ−(s̄) ∈ S2, as p−(s̄)≥ pmin.

We shall extend the trajectory γ−1 for smaller values of s, until it hits the boundary of S2.
While in S2, the trajectory traces out the graph of a function q, defined in the usual way, that
satisfies

q′(z) =
A2(z,q(z))
A1(z,q(z))

≤ A2(z,q(z))≤ (1+ r)q(z), q(zmin) = p−(s̄).

the first inequality holds as A1 ≥ 1 on S2, and the second inequality follows from the fact that
Φ′(z)≥ 0.

By Gronwall’s inequality, it follows that for z0 < z

q(z)≤ q(z0)e(1+r)(z−z0),

and consequently, replacing z by zmin and z0 by z, that

q(z)≥ p−(s̄)e(1+r)(z−zmin) ≥ pmine(1+r)(z−zmin).

It follows that
q(z)ξ − z = pξ

mine−ξ (1+r)zmin(1+ξ (1+ r)z)− z > 0

for all 0 ≤ z ≤ zmin, if pmin is larger than some constant C > 0. Let µ∗ > µ1 be such that this
condition is satisfied for all µ > µ∗. Then the graph of q is in S2 for all 0 ≤ z ≤ zmin, and γ−(s)
leaves S2 through the positive vertical axis at some s = ŝ < s̄.

We conclude that for µ ≥ µ∗, by setting

q(z−(s)) = p−(s)
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for s≥ ŝ, the function q is defined for all 0≤ z< zµ ; moreover, it is a continuously differentiable
function.

We conclude that we have found a continuously differentiable function q(z), defined for all
z ≥ 0, such that

q′(z)A1(z,q(z)) = A2(z,q(z));

as in the first part of the proof, this implies that v(z) =
∫ z

0 q(x)dx is a continuously differentiable
solution of the game HJB equation (A.9).




