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Abstract

Finding the smallest sequence of operations to transform one genome into another is an important problem in
comparative genomics. The breakpoint graph is a discrete structure that has proven to be effective in solving
distance problems, and the number of cycles in a cycle decomposition of this graph is one of the remarkable
parameters to help in the solution of related problems. For a fixed k, the number of linear unichromosomal
genomes (signed or unsigned) with n elements such that the induced breakpoint graphs have k disjoint cycles,
known as the Hultman number, has been already determined. In this work we extend these results to
multichromosomal genomes, providing formulas to compute the number of multichromosal genomes having a
fixed number of cycles and/or paths. We obtain an explicit formula for circular multichromosomal genomes and
recurrences for general multichromosomal genomes, and discuss how these series can be used to calculate the
distribution and expected value of the rearrangement distance between random genomes.

Background
In molecular biology and genetics, comparative genomics
is a discipline interested in the comparison of genomic
attributes of different organisms. These attributes may
encompass DNA sequences, gene content, gene order,
regulatory sequences, and other structural features.
Several measures have been proposed to compute the
(dis)similarity between genomes. The field called genome
rearrangements is concerned with measures of dissimilar-
ity involving large-scale mutations, such as reversals and
transpositions, where a fundamental problem is to deter-
mine the smallest sequence of such rearrangement
operations that transforms one given genome into
another. This minimum number of operations is called
the rearrangement distance between the two given gen-
omes. These and other aspects of genome rearrange-
ments are discussed in detail by Fertin et al. [1].

A remarkable characteristic of methods to compute
distances is the systematic use of a graph, first intro-
duced by Bafna and Pevzner [2], known as the break-
point graph. It has proven, by its decomposition into
disjoint cycles, a useful tool to efficiently compute rear-
rangement distances such as transposition or reversal,
directly related to the number of cycles in this decom-
position [1].
Since cycle decomposition of breakpoint graphs plays a

central role in computing distances, it is useful to investi-
gate the distribution of such cycles. Particularly, the dis-
tribution of genomes with a number of cycles c allows us
to evaluate the probability to have a scenario of a dis-
tance d depending of c. Doignon and Labarre [3] enum-
erated the unsigned permutations of a given size such
that the corresponding graph has a given number of
cycles, and called it the Hultman number. Subsequently,
Grusea and Labarre [4] extended this result for signed
permutations, where the signs model gene orientation.
In this work we extend previous results providing for-

mulas to compute the number of multichromosomal
genomes with a given number of cycles and/or paths.
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We obtain an explicit formula for circular genomes and
recurrences for more general cases.
Our paper is organized as follows. In the Preliminaries

section we give some definitions and notations. The
results for circular and general multichromosomal
genomes are presented in the next section, called The
Multichromosomal Hultman Number. The following
section presents some discussion about the distribution
of the rearrangement distance, derived from the multi-
chromosomal Hultman numbers, and the Conclusion
section presents final remarks and perspectives.

Preliminaries
We represent multichromosomal genomes using a simi-
lar notation as in [5]. A gene is a fragment of DNA on
one of the two DNA strands in a chromosome, showing
its orientation. A gene is represented by an integer and
its orientation by a sign. The orientation of a gene g
allows us to distinguish its two extremities, the tail (gt)
and the head (gh). A chromosome is represented by a
sequence of genes, flanked in the extremities by telo-
meres (∘) if the chromosome is linear; otherwise, it is
circular. Genomes are represented as sets of chromo-
somes. An adjacency in a genome is either a pair of
consecutive gene extremities in a chromosome, or a
gene extremity adjacent to a telomere (a telomeric adja-
cency ). For instance, A = {(∘ 1 2 3 4 ∘)} is a genome
with one linear chromosome and four genes, and has
the adjacencies ∘1t, 1h2t, 2h3t, 3h4t and 4h∘, where the
first and the last are telomeric adjacencies.
There is a one-to-one correspondence between genomes

and matchings in the set of extremities. Adjacencies corre-
spond to two matched (saturated) vertices, and telomeric
adjacencies correspond to unmatched (unsaturated) ver-
tices. Therefore, a perfect matching (i.e., matching which
saturates all vertices of the graph) corresponds to a gen-
ome with only circular chromosomes. The matching cor-
responding to a genome A is denoted by MA. Because of
this one-to-one relationship, in this text we use the terms
genome and matching interchangeably.
Given two genomes A and B with the same set of

genes, the multichromosomal breakpoint graph of A and
B, denoted by BG(A, B), is built by joining the match-
ings MA and MB in the same set of vertices, using differ-
ent colors for the edges of each matching. Figure 1
shows an example of a multichromosomal breakpoint
graph for genomes A = {(1 2 3 4 5 6 7 8 9)} and B = {(6
-1 4 5 -2), (∘ -9 3 8 7)}. From this point on we will use
the term breakpoint graph to refer to the multichromo-
somal breakpoint graph. Since all its vertices have
degree 0, 1 or 2, the breakpoint graph is uniquely
decomposed in cycles and paths. For instance, the
breakpoint graph in Figure 1 is decomposed in two
cycles and one path.

The multichromosomal Hultman number
In this section, we extend the results of [3,4] for multi-
chromosomal genomes. There are two new aspects that
must be considered. First, since the breakpoint graph can
be decomposed in cycles and paths, we may have to
count not only cycles, but also paths. The other question
is about the identity genome. In the unichromosomal
case, the identity genome is easily defined. In the multi-
chromosomal case, it is not obvious which given genome
is the identity. When working on multichromosomal cir-
cular genomes, the identity is defined as in the unichro-
mosomal case. In the general case, working on genomes
with linear and circular chromosomes, we analyze two
types of identities for genomes: one with only one set of
circular chromosomes and another with a set of circular
chromosomes and a set of linear chromosomes.
In the next sections, we propose extensions of the

Hultman number for multichromosomal genomes, first
considering only circular genomes, and then extending
the results to general genomes, with linear and circular
chromosomes. The same strategy is used in all cases:
first, start with a matching representing the identity, and
then superimpose all other possible matchings, while
counting recursively cycles and paths. To do that, we
need to consider all possible operations to build such
matchings. In Figure 4, all such operations are shown.

Multichromosomal circular genomes
A circular genome is a genome where all chromosomes
are circular. Since there are no telomeric adjacencies, the
matching MA of a circular genome A is a perfect match-
ing on the extremities of A. Moreover, the breakpoint
graph of two circular genomes is decomposed in disjoint
alternating cycles, since each vertex has degree two.
We want to compute the number of circular genomes

with n genes that have c disjoint alternating cycles over a
given identity genome I, that we call the multichromoso-
mal circular Hultman number, denoted by HC (n, c). In
this case, since the matching of any circular genome is a
perfect matching, we claim that HC (n, c) is the same,
independently of the genome I chosen as an identity, and
simply define I∘ = {(1, 2,..., n)}. Hence, we define

HC(n, c) ≡ |{A ∈ Cn : cyc(BG(A, I◦)) = c}|, (1)

Figure 1 Multichromosomal breakpoint graph. Input genomes
are A = {(1 2 3 4 5 6 7 8 9)} (black edges) and B = {(6 -1 4 5 -2),
(∘ -9 3 8 7 ∘)} (dotted edges).
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where Cn is the set of all circular multichromosomal
genomes with n genes and cyc(G) denotes the number
of cycles in a graph G.
Starting with a perfect matching MI◦ of the 2n ver-

tices, we build all breakpoint graphs BG(A, I∘), for circu-
lar genomes A, which correspond to perfect matchings,
adding one edge at a time, while counting the number
of cycles, recursively.
The matching MI◦ is composed by n connected com-

ponents, and all are paths. Considering an arbitrary ver-
tex u in the matching MI◦ , there are 2n - 1 possible
edges uv that can be created. Figure 2 shows how these
different edges can be chosen. There are two possible
cases:
(a) Create Cycle: If u and v belong to the same com-

ponent, the edge e = (u, v) will create a cycle. There is
only one possibility for this type of edge.
(b) Merge Paths: If u and v belong to different com-

ponents, uv will merge both paths. There are 2n - 2 pos-
sibilities of adding such an edge.
Applying any of the two operations results in a graph

with n - 1 paths, a subcase of the original graph with n
paths, with operation (a) also creating a cycle. This allows
us to establish a recurrence for HC (n, c). For the base
cases, when n = 0 we only have the empty genome, with
0 cycles in the breakpoint graph. Therefore, HC (0, c) = 1
if and only if c = 0, with HC (0, c) = 0 for c > 0. Also, if
either n or c is less than zero, we have that HC (n, c) = 0.

HC(n, c) =

⎧⎪⎪⎨
⎪⎪⎩

0, if n = 0 and c > 0,
0, if n < 0 or c < 0,
1, if n = c = 0,
HC(n − 1, c − 1) + (2n − 2) · HC(n − 1, c), if n > c.

The following result states an explicit formula to HC

(n, c).
Theorem 1

HC(n, c) =
2n−c

(c − 1)!

∑
0≤q1,...,qn−c :∑n−c

2 mqm=n−c

(n + Q − 1)!
q2! · · · qn−c!1!q12!q2 . . . k!qn−c

,

where Q = q2 + ... + qk and
∑n−c

2
mqm = n − c is a

sum over all partitions of n - c.

Proof We know from [6] that unsigned Stirling num-
bers of first kind satisfy the following recurrence equa-

tion:
[

n
c

]
=

[
n − 1
c − 1

]
+ (n − 1)

[
n − 1

c

]
. Multiplying

both sides by 2n-c and using HC (n, c) recurrence equa-

tion we arrive at HC(n, c) = 2n−c

[
n
c

]
. Then, using the

explicit formula for
[

n
c

]
given in [7], we arrive at our

result. □
Furthermore, the sequence of integers generated by

HC (n, c) is the unsigned entry A039683 in the OEIS
(On-Line Encyclopedia of Integer Sequences) [8].

General multichromosomal genomes
We will generalize our previous formula for general
multichromosomal genomes, with both linear and circu-
lar genomes. As already mentioned, two difficulties
arise. Now, we have not only cycles but also paths in
the breakpoint graph. Thus, it is not clear which gen-
ome should be considered the identity genome. As a
starting point, let us consider again the identity as I∘ =
{(1, 2,..., n)}, and find the general Hultman number HG

(n, c, p), defined as

HG(n, c, p) ≡ |{A ∈ Gn : cyc(BG(A, I◦)) = c and pt(BG(A, I◦)) = p}|, (2)

where Gn is the set of all multichromosomal genomes
with n genes, and pt(·) denotes the number of paths in a
graph. In this set, each genome corresponds to a match-
ing, not necessarily perfect, since only circular genomes
correspond to perfect matchings. Similarly as the pre-
vious case, we start with the matching MI◦ on 2n ver-
tices, and recursively build all possible matchings, while
counting cycles and paths. Since a matching induced by
an arbitrary genome A in Gn is not necessarily perfect,
together with the create cycle and merge paths opera-
tions on a vertex u, we can also choose to not saturate a
vertex u in the matching being built, thus creating a tel-
omere, which we call a skip vertex operation.
Moreover, since we now have an operation that

is applied on just one vertex, and not two at a time
such as the operations presented in Section, we need
to define a different recurrence, where n correspond
to vertices in the breakpoint graph, and not to genes
in the genomes. In a genome I∘ with n genes, there are
2n vertices (extremities) in MI◦ and consequently in BG

(A, I∘). So, we need an auxiliary number H′
G(e, c, p) ,

such that HG(n, c, p) = H′
G(e, c, p), with e = 2n, and

H′
G(e, c, p) ≡ |{M ∈ Me : cyc(BG(M, MI◦ )) = c and pt(BG(M, MI◦ )) = p}| ,

where Me is the set of all possible matchings on e ver-
tices, and MI◦ is a perfect matching with e/2 edges
induced by I∘.

Figure 2 Construction of the breakpoint graph for a circular
identity genome I and a circular genome A. The adjacencies of I
are represented by black edges and those of A by grey edges.
Unvisited nodes are white, visited ones are black. To build a perfect
match (circular genome A) only two operations are possible: (a)
Create a cycle; (b) Merge two paths.
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Starting with the matching MI◦ , another matching is
built recursively by adding edges or skipping vertices
until all vertices have been visited. Visited vertices are
shown in figures as black vertices, and unvisited as
white. If e is even, we pick any unvisited vertex u and
we have tree possibilities (Figure 3a-c):
(a) Create Cycle: There is one edge uv such that v(≠ u)

is the unvisited vertex in the same component as u, and
this edge (shown as a grey edge uv) will create a cycle.
Vertices u and v are marked as visited (Figure 3(a)).
(b) Merge Paths: There are e - 2 edges uv such that v

is an unvisited vertex in a different component as u, and
this edge will merge these components, that are paths.
Vertices u and v are marked as visited. (Figure 3(b)).
(c) Skip Vertex: Vertex u is not saturated; no edge is

created and only u is marked as visited (Figure 3(c)).
If e is odd, it means that there is a vertex u that is

connected to a visited vertex. For this vertex, there is no
way to close a cycle, but the other two operations are
possible:
(d) Merge Paths: There are e - 1 edges uv such that v is

in a different component as u, merging these components.
Vertices u and v are marked as visited (Figure 3(d)).
(e) Skip Vertex: Vertex u is not saturated; no edge is

created, only u is marked as visited. A path where all
vertices are visited is created (Figure 3(e)).
For the base cases, again we know that when e = 0, we

have only the empty genome, and this means that
H′

G(0, c, p) = 1 if an only if c = p = 0, and
H′

G(0, c, p) = 0 if c > 0 or p > 0. Also, if any of e, c, or

p is negative, H′
G(e, c, p) = 0 . With that, we arrive at

the following recurrence:

H′
G(e, c, p) =

⎧⎪⎪⎨
⎪⎪⎩

0, (1)
1, (2)
H′

G(e − 2, c − 1, p) + (n − 2) · H′
G(e − 2, c, p) + H′

G(e − 1, c, p), (3)
(n − 1) · H′

G(e − 2, c, p) + H′
G(e − 1, c, p − 1), (4)

with (1) if any of e, c, p is negative, or e = 0 and any
of c, p is positive; (2) if e = c = p = 0; (3) if e is even;
and (4) if e is odd.

Multichromosomal genomes with a fixed number of
linear chromosomes
In this section we generalize the previous approach for dif-
ferent identity genomes. Instead of fixing the identity as a
circular genome, the identity Iℓ is a genome with a fixed
number of ℓ linear chromosomes. As for the input gen-
omes, first we consider all possible genomes, and in a sec-
ond approach also fix the number of linear chromosomes.
Identity genome Iℓ with ℓ linear chromosomes
In this case, we can define the Hultman number

HL(n, c, p, �) ≡ |{A ∈ Gn : cyc(BG(A, I�)) = c and pt(BG(A, I�)) = p}, (3)

where Gn is the set of all multichromosomal gen-
omes with n genes, and Iℓ is a genome with exactly ℓ

linear chromosomes. This is a generalization of
the previous case, since HG(n, c, p) = HL(n, c, p, 0).
We propose again an auxiliary series, defined as
H′

L(e, c, p, i) ≡ |{M ∈ Mn : cyc(BG(M, MIi )) = c and pt(BG(M, MIi )) = p}| ,
where Mn is the set of all possible matchings on e
vertices, and MIi is a matching on these vertices such
that exactly i vertices are unsaturated (isolated), with
e = 2n and i = 2ℓ. Then, given a matching MIi with i
unsaturated vertices, we will build a matching recur-
sively adding edges or skipping vertices until all ver-
tices have been visited. In this case, the parity of e + i
determines which possibilities we have (Figure 4).
When e + i is even, we will call the current state
balanced, otherwise it is unbalanced. In the balanced
case, focusing on an unvisited vertex u that is saturated
by MIi there are four possible cases (Figure 4a-d):
(a) Create Cycle: There is one edge uv such that v

(≠u) is an unvisited vertex in the same component as u,

Figure 3 Construction of the breakpoint graph for a circular genome I and a general genome A. The adjacencies of I are represented by
black edges and those of A by grey edges. Unvisited nodes are white, visited ones are black. We can create a cycle only when e (the number of
unvisited nodes) is even (a). We can merge two paths when e is even (b) or odd (d). We can skip a vertex when e is even (c) or odd (e). In (c)
and (d), the parity of the number of unvisited vertices is changed.
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and this edge will create a cycle. Vertices u and v are
marked as visited.
(b) Merge Paths: There are e - 2 - i edges uv such

that v is saturated in Ii and is in a different component
as u, and uv will merge these components, that are
paths. Vertices u and v are marked as visited.
(c) Skip Vertex: No edge is created and u is marked as

visited.
(d) Connect with unsaturated: There are i possible

edges from u to an unsaturated vertex v in Ii. Vertices u
and v are marked as visited.
Cases (a) and (b) visit two vertices that are saturated in

Ii, which means that the state remains balanced. Case (c)
changes the state to unbalanced, since only one vertex is
visited. Case (d) visits two vertices, but one is a unsatu-
rated vertex in Ii, which means that the parity of e + i
changes and the state becomes unbalanced.
In the unbalanced state, focusing on a vertex u

belonging to a component with all other vertices visited,
there are three possibilities (Figure 4e-g):
(e) Merge Paths: There are e - 1 - i edges uv such

that v is saturated in Ii and is in a different component
as u, and this edge will merge these components, that
are paths. Vertices u and v are marked as visited.
(f) Skip Vertex: Vertex u is not saturated in M ; no

edge is created and only u is marked as visited, and a
path with all vertices visited is created.

(g) Connect with unsaturated: There are i possible
edges from u to an unsaturated vertex v in Ii. Vertices u
and v are marked as visited, and a path with all vertices
visited is created.
Cases (e), (f) and (g) are similar to cases (b), (c) and

(d), respectively, which means that (e) keeps the state
unbalanced, but (f) and (g) change it to balanced again.
There are still two cases to consider, when e = i (Figure
4h,i).
(h) Connect two unsaturated: There are i - 1 possible

edges from an unsaturated vertex u to an unsaturated
vertex v in Ii. Vertices u and v are marked as visited,
and a path with all vertices visited is created.
(i) Skip Vertex: No edge is created and u is marked

as visited. A path with all vertices visited is created.
For the base cases, as before when e = 0 we have

H′
L(0, c, p, i) = 1 if and only if c = p = i = 0, and

H′
L(0, c, p, i) = 0 if any of c, p, i is positive. Also, if any

of e, c, p, i is negative, H′
L(e, c, p, i) = 0 .

With all these cases described, we arrive at the recur-
rence, from what we can deduce HL(n, c, p, ℓ):

H′
L(e, c, p, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (1)
1, (2)
(i − 1) · H′

L(e − 2, c, p − 1, i − 2) + H′
L(e − 1, c, p − 1, i − 1),

H′
L(e − 2, c − 1, p, i) + (e − 2 − i) · H′

L(e − 2, c, p, i)+
(3)

i · H′
L(e − 2, c, p, i − 1) + H′

L(e − 1, c, p, i), (4)
(e − 1 − i) · H′

L(e − 2, c, p, i)+

i · H′
L(e − 2, c, p − 1, i − 1) + H′

L(e − 1, c, p − 1, i), (5)

Figure 4 Construction of matching for genome Iℓ with ℓ linear chromosomes (i unsaturated vertices) and a general genome A.
Adjacencies of I are represented by black edges and those of A by grey edges. Visited (unvisited) vertices are black (white). We can create a
cycle only when e + i is even (a). We can merge two paths when e + i is even (b) or odd (e). We can connect an unsaturated vertex when e = i
(h), when e + i is even (c) or odd (f). We can skip a vertex when e = i (i), when e + i is even (d) or when e + i odd (g). In (c) and (d), the parity
of e + i is changed.
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with (1) if any of e, c, p, i is negative, or e = 0 and any of
c, p, i is positive; (2) if e = c = p = i = 0; (3) if e = i > 0, (4)
if e + i is even, e > i, (5) if e + i is odd, e > i.
Identity genome I�i and input genomes A�a with ℓi and ℓa

linear chromosomes
In this scenario, in addiction to fixing ℓi linear chromo-
somes for the identity I�i , we also build breakpoint
graphs only with genomes A�a that have exactly ℓa linear
chromosomes. We propose the Hultman number

H�(n, c, p, �i, �a) ≡ |{A�a ∈ Gn,�a : cyc(BG(A, I�)) = c and pt(BG(A, I�)) = p}, (4)

were Gn,�a is the set of all multichromosomal gen-
omes with n genes and exactly ℓa linear chromosomes,
and Iℓ is, as before, a genome with exactly ℓ linear
chromosomes. By definition, we have that∑n

�a=0 H�(n, c, p, �i, �a) = HL(n, c, p, �i) .
Again we define an auxiliary series, in this case
H′

�(e, c, p, i, a) ≡ |{M ∈ Me, a : cyc(BG(M, Me, i)) = c and pt(BG(M, Me, i)) =
p}| ,

where Me, a is the set of all possible matchings on e
vertices that has exactly a unsaturated vertices, and MIi

is a matching on these vertices such that exactly i ver-
tices are unsaturated. To build the breakpoint graph for
this new series, we use exactly the same operations as in
the previous, summarized in Figure 4. The only differ-
ence is that we have to track how many unsaturated
vertices a the current matching being build has. The
only operations that change this are the skip vertex
operations (c), (i) and (f), decreasing a by 1. The other
operations keep a the same, as they all create an edge
and do not mark any vertex as unsaturated.
The base cases are also similar, only including a in the

constraints. When e = 0 we have H′
�(0, c, p, i, a) = 1 if

and only if c = p = i = a = 0, and H′
�(0, c, p, i, a) = 0

if any of c, p, i, a is positive. Also, if any of e, c, p, i, a is
negative, H′

�(e, c, p, i, a) = 0 .
Therefore, the recurrence is given by

H′
�(e, c, p, i, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (1)
1, (2)
(i − 1) · H′

�(e − 2, c, p − 1, i − 2, a)+

H′
�(e − 1, c, p − 1, i − 1, a − 1), (3)

H′
�(e − 2, c − 1, p, i) + (e − 2 − i, a) · H′

�(e − 2, c, p, i, a)+

i · H′
�(e − 2, c, p, i − 1, a) + H′

�(e − 1, c, p, i, a − 1), (4)
(e − 1 − i) · H′

�(e − 2, c, p, i, a)+

i · H′
�(e − 2, c, p − 1, i − 1, a) + H′

�(e − 1, c, p − 1, i, a − 1), (5)

with (1) if any of e, c, p, i is negative, or e = 0 and any of
c, p, i is positive; (2) if e = c = p = i = 0; (3) if e = i > 0, (4)
if e + i is even, e > i, (5) if e + i is odd, e > i.

Distribution of rearrangement distances
From the Hultman series that we introduced, it is possi-
ble to derive the distribution of rearrangement distances
for each scenario.
The Double Cut and Join (DCJ) distance [9,10] is one

of the most studied rearrangement distances since its

introduction in 2005, because it can model several rear-
rangement operations and it is commonly easy to calcu-
late in many cases. The DCJ distance between two
genomes A and B is given by d(A, B) = n - c - e/2,
where n is the number of genes, and c and e are respec-
tively the number of cycles and even paths (paths with
even number of edges) in the breakpoint graph BG(A,
B). Using group theory, an alternative measure called
algebraic rearrangement distance was proposed by Feijäo
and Meidanis [11]. This distance can also be calculated
with the breakpoint graph, namely da(A, B) = n - c -
p/2, where n is the number of genes, and c and p are
respectively the number of cycles and paths in the
breakpoint graph BG(A, B). Since the parity of paths is
not important in the algebraic distance, it is the best
suited model for calculating the distribution of the rear-
rangement distances from the Hultman numbers pro-
posed here. For each of the four cases, we ask the
following question: How many genomes of size n have
distance d from a given identity genome? Making the
same assumptions about the identity and also the uni-
verse of the genomes - that is, circular only, general, or
a fixed number of linear chromosomes -, we arrive in
the following distance distributions, shown also in
Figure 5. It is interesting to notice that most of the gen-
omes are very distant from the identity.

DC(n, d) ≡ |{A ∈ Cn : da(A, I◦) = d}| = HC(n, n − d),

DG(n, d) ≡ |{A ∈ Gn : da(A, I◦) = d}| =
∑

c+p/2=n−d

HG(n, c, p),

DL(n, d, �) ≡ |{A ∈ Gn : da(A, I�) = d}| =
∑

c+p/2=n−d

HL(n, c, p, �),

D�(n, d, �i, �a) ≡ |{A�a ∈ Gn, �a : da(A, I�) = d}| =
∑

c+p/2=n−d

H�(n, c, p, �i, �a).

Using those equations, we can also calculate the
expected value for the rearrangement distance in any
selected scenario. For instance, if we have the random
variable Xn = da(An, In), where In is the circular identity
of size n and An is a genome sampled uniformly from
the set Cn of all circular genomes, then we have

P
[
Xn = d

]
=

DC(n, d)
|Cn| =

DC(n, d)
(2n − 1)!!

,

since |Cn| is the number of circular genomes of size n
and corresponds to the number of perfect matchings
with 2n vertices, given by (2n - 1)!!. The expected value
is then given by

E [Xn] =
n∑

d=0
d · P

[
Xn = d

]
=

1
(2n − 1)!!

n∑
d=0

d · HC(n, n − d),

and can therefore be calculated with the given recur-
rence equations. For instance, for n = 100 we have E
[X100] = 95.22. A closed formula for the expected value of
a rearrangement distance, to the best of our knowledge,
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has only been found for the very simple breakpoint dis-
tance dBP, which counts how many adjacent genes in the
identity are not adjacent in the other genome, and is

given by E[dBP(An, In)] = n −
(

1
2

+
1

2n
+ O

(
1
n2

))
[12].

This converges to n - 1/2 when n goes to infinity, which
is almost the diameter n for the breakpoint distance.
Although we have no closed formula for E[Xn], we con-
jecture that it also converges to n - k for some constant
k > 0, as n goes to infinity, and the experimental results
point to k ≈ 5.

Conclusions
In this paper, we introduced different recursive formulas
for the Hultman number and its variations, that are
relevant in the context of comparative genomics. We
have extended previous results that treated the unichro-
mosomal cases [3,4], focusing on multichromosomal
genomes. Table 1 shows a summary of the results.

For the Hultman number HC (n, c), in addition to the
recursive equations we also provided an explicit formula,
using the relationship between this series and the
unsigned Stirling numbers of first kind. An interesting
future direction is finding explicit formulas for the other
proposed sequences HG(n, c, p) and HL(n, c, p, ℓ).
Another interesting relationship is that, for a fixed n, the

sum of all combination of cycles and paths in a series results
in the number of genomes of size n. The number of circular
genomes of size n corresponds to the number of perfect
matchings with 2n vertices, which is given by (2n - 1)!!.
The number of general genomes of size n is the number of
matchings with 2n vertices, which is the telephone number
T (n) (sequence A000085 in OEIS [8]), given by

T(n) =
∑�n/2�

k=0

n!
2k(n − 2k)!k!

. The equations below follow:

n∑
c=0

HC(n, c) = (2n − 1)!!,
n∑

c=0

n∑
p=0

HG(n, c, p) = T(n),

Figure 5 Distribution of the rearrangement distance between genomes of size n = 21, in four different scenarios.

Table 1 Summary of the results in this paper.

Hultman Number Identity Universe

H(n, k) [3] π = 〈 ... 〉 Sn (unsigned permutations)

H±(n, k) [4] π = 〈 ... 〉 S±
n (signed permutations)

HC (n, c) Circular genome Circular genomes

HG(n, c, p) Circular genome General genomes

HL(n, c, p, ℓ) Genome with ℓ linear chr. General genomes

Hℓ (n, c, ℓi, ℓa) Genome with ℓi linear chr. Genomes with ℓa linear chr.

The first two rows show previous results, and the last four show the Hultman numbers proposed in this paper.
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n∑
c=0

n∑
p=0

HL(n, c, p, �) = T(n), for � = 0, . . . , n.

and

n∑
�a=0

n∑
c=0

n∑
p=0

H�(n, c, p, �i, �a) = T(n), for �i = 0, . . . , n.

These equations might be useful for finding explicit
equations for some of the numbers. We wrote a Python
script with all recurrence relations proposed, and the
above equations were useful to check the correctness of
each series.
The Hultman number can also be used to find the

expected value of the rearrangement distance between
uniformly distributed genomes, in our case the algebraic
distance between multichromosomal genomes. Future
directions include finding explicit equations for the intro-
duced recursive equations and the expected value of the
rearrangement distance.
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