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Abstract

This Ph.D dissertation develops general equilibrium issues of overlapping generations

economies (OLG hereafter), which play important roles to study many intertemporal

phenomena. They are particularly adapted to study issues on distributions between

different generations, pensions systems, debts, taxes, money, monetary policy, interest

rates and growth. We use a general equilibrium approach and study classical issues such

as the existence of equilibrium, characterization of Pareto optimal allocations.

Many works on OLG have some limitations regarding the production sector. Indeed,

standard hypothesis supposes that production set is convex, returns to scale are either

constant or decreasing. But many sectors involve high technological revolution which

implies internal or external economies of scale, highlighting the importance of increasing

returns in growth. The first step of our work is thus to consider, a standard OLG model

with production beyond the classical hypothesis of constant returns to scale. We are

concerned, in the first place by a formalization of increasing returns in OLG models,

described in Balasko, Cass and Shell [3], Balasko and Shell [4], [5]. The production

possibilities are described by a sequence of production mapping and the main innovation

comes from the fact that we allow for increasing returns to scale of more general type of

non-convexities. To describe the behavior of the firms, we consider loss-free pricing rules,

which cover the case of the average pricing rule, the competitive behavior when the firms

have convex production sets, and the competitive behavior with quantity constraints.

We prove the existence of an equilibrium under assumptions, which are at the same level

of generality than the ones for the existence in an exchange economy.

Beyond the existence result, we are led to study the mechanism of transfer between

generations in order to analyze the possible perpetuation of firms. We then incorporate

durable goods which may be stored from one period to a successive period through a

linear technology. In this model, we establish not only the existence of an equilibrium but

also highlight features of durable goods that entitle consumers, the roles of producers,

lenders and borrowers, even at the end of their lifetime. Another important result

on the relation between prices allows us to make a link with the Pareto efficiency of

equilibrium, confirming their role in restoring the market failure in OLG economies. We

review the characterization of Pareto optimal allocations, in the line of Balasko and Shell

[4], but in addition we allow for multiple agents and multiple goods per period. Our

approach is set-theoretic and geometrical. The consumers characteristics are described

by their consumption sets, their preference sets and the associated normal cones. We

give conditions of Pareto optimality, under very basic assumptions, by providing a simple

and geometric version of the proof of Balasko and Shell [4], encompassing the case of

non-complete and non-transitive preferences.



Résumé

Cette thèse s’inscrit dans l’étude des modèles à générations imbriquées qui a aujourd’hui

un rôle central pour étudier de nombreux sujets en économie. Les modèles générations

font l’objet de travaux tant en microéconomie qu’en macroéconomie à côté des modèles

de croissance optimale. Une des limitations des nombreux travaux sur les modèles

générations provient de la modélisation du secteur productif, à savoir les hypothèses

standards de convexité, les rendements d’échelle constants ou décroissants. Mais cer-

taines productions sont concernées par des la révolutions technologiques impliquant des

économies d’échelle interne et externe. De plus, si on considère les modèles de croissance

endogène, on assiste à des externalités concernant le capital humain, qui sont des sources

de rendement croissant au niveau agrégé. Ainsi, les rendements croissants sont essentiels

en économie.

Nous commençons alors par considérer, dans le Chapitre 2, un modèle à généra- tions

imbriquées avec production, mais au-delà de l’hypothèse classique de rendements con-

stants. Les capacités de production sont modélisées par une suite de fonctions multi-

voques de production, de plus, nous ne faisons aucune hypothèse sur les rendements

d’échelles, ainsi les rendements croissants sont permis. Les comportements des produc-

teurs sont décrits par des règles de tarification sans perte, qui comprennent la tarification

au coût moyen, le comportement compétitif lorsque les ensembles de production sont

convexes, ainsi que le comportement compétitif sous contrainte à la Dehez–Drèze [23],

[24]. Nous établissons l’existence d’équilibre sous des hypothèses aussi générales que

celles des modèles d’échange pure.

Dans le Chapitre 3, nous proposons d’étudier la possibilté de transfert entre les généra-

tions. Pour celà, nous introduisons des biens durables qui peuvent être stockés entre

deux périodes successives, grâce à une technologie linéaire. Nous démontrons l’existence

d’équilibre via une ćonomie équivalente sans bien durable, dans laquelle la période de

vie de chaque consommateur est étendue sur trois périodes. Un résultat additionnel

concernant la relation entre les prix nous permettrait de faire le lien avec les conditions

d’optimalité.

Le Chapitre 4 reprend les conditions d’optimalité vues dans Balasko et Shell [4], mais

en plus nous considérons le cas où il y a plusieurs agents par période. Notre approche

est ensembliste et géométrique. Chaque consommateur est caractérisé par son ensem-

ble de consommation, ainsi que son ensemble d’allocations préférées et le cône normal

correspondant. Nous caractérisons les allocations Pareto optimales en donnant une ap-

proche simple et géométrique à la preuve de Balasko et Shell [4], tenant aussi compte

des préférences non-complètes et non-transitives.
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Chapter 1

General Introduction

1.1 OLG models of general equilibrium

Overlapping generations models (OLG hereafter) were introduced by Allais [1] in 1947

and Samuelson [54] in 1958. Observing that “we live in a world where new generations

are always coming along”, Samuelson built a model in which generations overlap indefi-

nitely, in contrast to the Arrow-Debreu model which assumes all agents as contemporary.

OLG models evolve infinitely many dates, and at each date, a “generation” of new agents

is born and agents live within two subsequent dates. Thus, at date t, consumers with

different lifetimes coexist: the young consumers born at date t and the old ones born at

the preceeding date t− 1. In addition, at each date, there are finitely many goods. One

important feature of the Samuelson’s OLG model is this double infinity of goods and

consumers, which is source of many unobserved phenomena in Arrow-Debreu economies:

money has a value and the first welfare theorem may fail. Indeed, in an economy where

there are many dates, consumers may wish to transfer their wealth accross different

periods of their lifetime, by means of contracts for future deliveries, debts or money.

In a finite horizon case, by backward induction, it is impossible to hold money with a

positive value since at the last period it is worthless, so it is at one period before the

last one and so on. But in an OLG economy, there is no last date, money can have a

positive value even though it does not enter as an argument in the preferences of con-

sumers, and competitive equilibria need not be Pareto efficient. Indeed, by taking into

account even the simple demographic structure of OLG models, the wealth of agents at

equilibrium prices can be finite although the total endowments have infinite value. OLG

models highlight the possibility of inefficiency, which is excluded in the Arrow-Debreu

model, and which can be recovered by transfers between generations. OLG models are

then more specific and more realistic than the standard and static Arrow-Debreu model.

1
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They are particularly approppriate to study redistribution or reallocation issues between

different generations (pension system, debt, taxes etc), intertemporal phenomena such

as monetary policy and growth, besides optimal growth theory.

Samuelson’s OLG model has been since developped into a more comprehensive model

called also “OLG model of general equilibrium”as pointed by Geanakoplos in [34]. An

OLG model can thus be described as a general equilibrium model with infinitely many

agents and goods, and a production sector. The idea is to use a mechanism analysis

which aims at finding the “good” allocation for all economic agents, that is, an allocation

which satisfies, in term of utility the current generations but which does not penalize the

future generations. Our work lies in this respect and treats general equilibrium issues

such as equilibrium existence, optimality, but in addition we enlarge the framework by

relaxing some classical restrictions and allowing for more general but simpler results.

In this line, we go beyond the limiting assumption of constant returns to scale and

consider the possibility of increasing returns to scale in the production side. In order

to study transfer mechanisms accross generations, we allow for goods to be durable,

they can be consumed but can also play other roles such as input factors (in a storage

technology) or collaterals for loans. Thus any agent who holds a durable good acts

as consumer and producer at the same time, and sees his lifetime artificially extended

given the remaining wealth that may still persist after they disappear from the economy.

Their role in restoring inefficiency in OLG models leads us to consider Pareto optimality

characterizations. For this matter, we propose to revisit the characterizations provided

by Balasko and Shell [4], as a note where the setting considers non-transitive and non-

complete preferencesand the approach is mainly set-theoretic.

In the section that follows, we highlight the relevence of increasing returns to scale in

economics, their driving sources, and what has been documented in literature.

1.2 Increasing Returns to Scale (IRS)

1.2.1 On the sources of increasing returns to scale

Increasing returns to scale occur when the firm adds more to output than to costs,

that is there is an increase in output as cost decreases. Thus IRS have their sources

in economies of scale, internal or external to the firm, resulting in an increase of the

average productivity of the firm.

Internal economies come from the expansion of the firm itself, that is its average costs

depend on its size. There are many ways to achieve internal economies of scale. They
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can occur due to technical economies, which can be related to a large machinery and

equipments resulting in a production of large scale so that the average cost declines.

In addition, large firms have the possibility to increase productivity by using a labour

division, splitting tasks according to the specialization of the workforce. Another form of

labour division is the managerial economies of scale, showing the importance of trained

and qualified employees who are able to take quicker and better decisions. Good man-

agers are able to find new methods and equipments, more profitable to the firm, cutting

wastes and allowing for more efficiency in terms of time thus reducing production costs.

Bigger firms have more possibilities to enjoy financial economies of scale since they are

more favorable to loans at lower rates than the smaller ones, leading to additionnal

resources and opportunities to raise their scale. Another source of internal economies is

the monopsy power, which occurs when a firm has access to its factor inputs at lower

prices in the market. This is the case of some large firms who are able to negotiate lower

prices when purchasing raw materials in some poor countries.

External economies of scale occur outside of the firm, in this case its average costs do

not depend on its size, however they can be internal to the industry to which it belongs.

This corresponds to Alfred Marshall’s1 treatment of increasing returns: external to the

firm but internal to the industry. An important source of external economies of scale

is knowledge spillover that benefits industrial clusters. Indeed workers from different

firms can easily interact, share ideas and knowledge, allowing firms to take advantage

of improvements of human capital, inventions and technical successes of other firms.

These informal channels and knowledge diffusions are not costly but crucial for success.

These interactions are beneficial especially for large industries. It is evident that external

economies can also be brought by scientific progresses of local universities, or by creations

of transportations and infrastructures that firms gathered in the surrounding area can

benefit.

These two types of economies of scale have different implications in the market. An

industry concerned with external economies, for instance can consist of small firms

under perfect competition. Indeed, it is possible that given productions of all other

firms, a single firm j’s production set is a convex cone. Thus increasing returns due

to external economies can be compatible, at least partially to the standard competitive

model. However, internal economies result in cost advantage of large firms over small

ones, leading to deviations from perfect competition and to alternative modelling of

firms behaviour. This explains the introduction of pricing rules in literature, and we

shall see that, under a nonnegativity condition, this notion also allows to give account

of models with increasing returns in macroeconomics, where they are usually associated

to imperfect competition.

1See Marshall [45] (1920)
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Before introducing the notion of pricing rules, let us recall an example provided by Laf-

font (1979) [39] and used by Bonnisseau (1994) [9] to illustrate that due to externalities,

increasing returns are internalized so that at the aggregate level, the production set fails

to be convex. More specifically, the iso-output set is non-convex, leading to an optimal

production that neither maximizes the profit nor minimizes the cost. The example is as

follows:

Consider three goods A, B, C, where C is used as a factor input and A and B are

consumption goods produced by two firms. The first firm produces at constant returns

to scale, and its production set is given by:

Y1 := {(a, b, c) ∈ R3 | b ≤ 0, c ≤ 0, a ≤ −c}

The second firm incurs negative externalities from the first firm. Given a production

plan (a, b, c) its production set is:

Y2(a, b, c) := {(a, b, c) ∈ R3 | a ≤ 0, c ≤ 0, b ≤ −c(1 + min{1

2
,− c1

a1
− 1})}

There is a unique consumer, endowed initially with ω = (0, 0, 1), and whose utility

function is defined by: u : (xA, xB, xC) ∈ R3
+ → xA(xB)3. Although the productions

sets are convex, the aggregate production set, given by

Y := {y ∈ R3 | ∃y1 ∈ Y1, ∃y2 ∈ Y2(y1), y = y1 + y2}

is not convex. Indeed, for a total input factor equals to 1, the intersection between

Y and the plane given by c = 1 fails to be convex, as shown in Figure 1.1. Thus Y

is not convex, which implies that the graph of Y2 is not convex. There is a unique

Pareto optimum, given by: x∗ = (1
6 ,

9
8 , 0), y∗1 = (1

6 , 0,−
1
4), y∗2 = (0, 9

8 ,−
3
4), where both

firms operate. Note that the production plan y∗1 is not efficient, since firm 1 can still

srictly increase his production in good A at the same input level and the minimization

of cost would be reached if only firm 1 operated. Moreover, the aggregate production

y∗ = y∗1 +y∗2 does not correspond to the maximization of profit at any given price. Thus,

when externalities are internalized, increasing returns occur so that the production is

not convex anymore, and the profit maximization or cost minimization at given price

become meaningless.
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Figure 1.1: An example of non-convex production due to externalities ([9], [39])

1.2.2 The concept of Pricing Rules

Increasing returns to scale are sources of non-convexities in production, which makes

the profit maximizing behaviour at given prices meaningless. In this line, it is necessary

to model the behavior of producers beyond the profit maximizing one.

A pricing rule maps a firm’s set of weakly efficient production plans to the set of prices.

This concept allows for a more general type of behavior of firms.

Formally, let us consider a finite set of producers J . Let Y j be the production set of firm

j and let F j denote set of weakly efficient production plans, F j := {yj ∈ Y j | y′j /∈ Y j}.
A pricing rule is a mapping ϕj which associates to a feasible and weakly efficient pro-

duction plan yj ∈ F j , a set of prices ϕj(yj) compatible with this production. The graph
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of ϕj describes combinations of prices and production plan that firm j finds “accept-

able”. This concept allows for different behaviors thus different pricing rules for different

firms. When a combination of prices and production plans (p, y) is found acceptable to

all of the firms find , it is called a production equilibrium. Such an equilibrium may

not be reached if pricing rules fail to be continuous or sensitive. Thus, although it is

a general and flexible concept, a pricing rule cannot be completely arbitrary, and some

regularity restrictions are needed on the admissible pricing rules. We will then focus on

non-empty-, compact- and convex- valued mappings, which graphs are closed. These

properties ensure the closedness and connectedness of the graph of the pricing rules.

Particular cases are:

• the profit maximization at given prices, in the case of convex production, or ex-

ternal economies of scale,

• the average cost pricing: when firms choose prices which make them just break-

even,

• the marginal pricing rule: firms are instructed to sell their outputs at prices that

satisfy the first order condition for optimality (in this case, losses may occur under

increasing returns to scale),

• the constrained maximization profit: firms maximize profits at given prices, but

subject to quantity constraints.

When firms exhibit non-convexities, then losses are possible. It is then natural to require

firms to have boundaries on their losses, in order to ensure that a production equilibrium

exists. This property ensures sensitivity of the pricing rules to changes in the production

plan yj , and non-emptiness of the set of production equilibria. A pricing rule has the

bounded losses property when there exists a scalar αj ≤ 0 such that for each yj ∈ F j ,
q · yj ≥ αj , for all q ∈ ϕj(yj). When pricing rules are regular with bounded losses,

the set of admissible prices given a production plan cannot reduce to a singleton, this

is a favorable condition to the existence of production equilibrium. A general existence

result when firms follow bounded losses pricing rules is established by Bonnisseau and

Cornet in [10].

Pricing rules can be endogeneous or exogeneous to the models, they allow for both

price-taking and price setting behaviours. In [26], Dierker, Guesnerie and Neuefeind

established the existence of equilibrium when some firms are price takers and other

firms are price setters: they set the prices of their products given the prices of the

inputs. Their result encompasses a wide array of pricing rules, including the marginal
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cost pricing rule. Their result also takes into account the losses incured by firms, financed

through exogeneously given shares.

1.2.3 Some existing results on IRS

There is a wide range of literature in microeconomics and macroeconomics, taking into

account increasing returns to scale. Most of such works are centered on endogenous

growth.

On one side, many results and analysis on the existence of equilibrium when the behav-

iors of firms are described in terms of pricing rules have been established in literature,

see Cornet [22] (1988), Dehez and Drèze [23], [24], Heal [38], and Villar [59] (2000), with

the latter work covering very comprehensive results on convex and non-convex produc-

tion economies. More recent results also can be found in Bonnisseau and Jamin [11],

[12] (2008, 2009), where [12] treats increasing returns in intertemporal economies, which

is then directly applicable to OLG models, when extended to the infinite period case.

Brown and Heal [18] (1979) has reached a result standing for the possibility of increasing

returns to be an essential ingredient to attempt an economic development, when they

treat equity and efficiency in a Walrasian framework with production and increasing

returns. In [18], the owner of a firm that my incur losses has no interest to close it

down. It is indeed concluded that “with increasing returns to scale in production, it may

be possible to remove some endowment from one person, give it to another, and make

both better off”. Translating this result to development economics supposes that in an

under-developed country with a highly unequal distribution of income, a redistribution

away from the very rich may in the long run make all better off, because the acquisition

of purchasing power by the middle and lower income groups may lead to development

of a mass market and a substantial increase in industrial profits.

On the other side, many works and results have been developed on models of endoge-

neous growth based on increasing returns. Young [60] (1928) pointed out, in his analysis

increasing returns as source of economic progress, and in the 1980s appears a remark-

able revival of interest in economic growth. For instance, Romer [53] (1986) proposed

an alternative view on long-run growth driven by the accumulation of knowledge, which

has an increasing marginal product on the production of consumption good; thre, ex-

ternalities, increasing returns in the production of output, and decreasing returns in the

production of new knowledge are keys. In List and Zhou [40] (2007), increasing returns

to scale arising from fixed costs of production and internal to the firm generate posi-

tive growth. Moreover, Lucas [41] (2002), Barro and Sala-i Martin [6] (2003) provide a

thoughtful literature synthesis on economic growth.
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Now, we consider some models of neoclassical growth with increasing returns introduced

by Benhabib and Farmer [7] (1994), Gali [33] (1995), and Barseghyan and DiCecio [8]

(2006). [12] focuses on indeterminacy caused by increasing returns, while [33] and [8]

conclude on multiple steady states equilibria leading to poverty traps, for some degree of

increasing returns to scale, a conclusion that is in opposition to the intuition proposed by

Brown and Heal [18]. The common feature of these studies centers on the modelling of

the production sector, where increasing returns are exclusively associated to imperfect

competitions. The structure of the market consists of considering two main sectors

of production: one for intermediate goods and the other one for final goods. Firms

in the sector of final goods operate under perfect competition while each intermediate

goods producer has a monopoly power over the good it produces 2. This formalization

allows then for the application of competitive behaviour approach on the production

sector despite the increasing returns to scale. This imperfect competition structure,

takes into account the market power that firms with increasing returns possess, allowing

them to make positive profit. If a main reason of incompatibility between competition

and increasing returns lies on the supply mappings that may fail to be well defined,

this market structure allows to write a closed form making equilibrium possible in the

presence of incresing returns. This modelling is actually a variant of pricing rules that

generates no losses, but as concluded in Barseghyan and DiCecio [8], “bad equilibria”and

poverty trap may occur. We then wonder whether this structure is not neutral to this

result and if going beyond it by letting firms behave differently according more general

pricing policies would not result in good equilibria only, in favour of increasing returns

in development economics.

1.3 Approach and Overview of the results

Although the focus and the motivations are not necessarely the same, the results enu-

merated above bring further issues to be deeply considered. We are concerned, in the

first place by a formalization of increasing returns in OLG models, described in Balasko,

Cass and Shell [3], Balasko and Shell [4], [5]. This thesis consists of three mains chapters

which correspond to three main papers, on increasing returns to scale [13], on durable

goods [51] and on optimality characterizations [14].

2In [42] is provided the notion of Staggered pricing model: the idea is to embed intermediate goods
produced by firms with market power. Intermediate goods are bundled without cost (without labor or
capital) into a final good by a competitive firm. This brings their market power to intermediate goods
producers
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1.3.1 OLG models with increasing returns

We start with the OLG models, described in Balasko, Cass and Shell [3], Balasko and

Shell [4], [5], see also Tvede [57] for a more intuitive version of OLG models. Our work

relies on existing results on equilibrium studies in economies with increasing returns to

scale, which namely consist of modelizing the production sector in a more general way

using the concept of pricing rules.

Given the demographic structure of OLG economies, where at each date t = 1, 2, . . .

appears a new cohort of individuals living for two successive dates, we model production

capacities sequentially through set-valued mappings (F jt ) which associate, to a vector

of inputs at date t, a vector of outputs at date t + 1. This implicitely supposes that

production takes time, and an investment at a period one cannot give any return before

the subsequent period. Since the production is described in a recursive way, one can

think of a pricing rule, defined in a similar way. Thus at each period t, there is a set-

valued mapping ϕjt which associates to a weakly efficient production plan yjt of firm j

a set of admissible prices. This corresponds to the idea that production decisions are

taken at each period, and that compatible prices are also determined at each period.

A global pricing rule would correspond to a production and a price decides at the firt

period t = 1 and established for all the future periods. This approach is less suitable

with the structure of OLG models, where at each period, new consumers take part to

the economical decision and thus to the production decision related to their lifetime.

We do not make any assumption on the returns to scale, but we posit classical hypothesis

such as closedness, free-disposal and possibility of inaction. We consider firms to be

active forever once they are set, but this does not exclude the possibility of considering

productions starting at each date and active for two subsequent dates as in Tvede [57].

In this case, we have a sequence of set-valued mapping (F jt )t started at each date t,

active at dates t and t+1, and inactive at dates t′ 6= t, t+1, that is (F jt′)t′ are identically

null.

We suppose in addition that firms are privately owned and we will naturally make use

of the properties of regularity and of bounded losses in our model with production. In

particular, our approach consists of cases where firms admit only non-negative profits,

thus we will focus on loss-free pricing rules, that is the bound αj defined in section 1.2.2

is reduced to zero. This restriction is natural when firms are not regulated and when

0 ∈ Y j
t , that is firms are privately owned and can always refuse to produce, instead

of incuring losses. These pricing rules may be considered when there are increasing

returns to scale, fixed costs, when there is a fixed capital that is indivisible input, or the

production function is S-shaped.
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Particular loss-free pricing rules are the constrained profit maximization, the average

cost pricing, or more generally the mark-up pricing, which consists of adding a profit

component to the average cost. More details on this class of pricing rules are provided

in Villar [59]. As already remarked earlier, increasing returns are usually associated

to imperfect competition, especially in macroeconomics, but the pricing that results

from such a market is actually a variant of loss-free pricing rule. For instance, the one

proposed by Benhabib and Farmer [7] is a mark-up pricing rule where the mark-up is

constant.

Given the private ownership and the free losses assumptions, profits possibly strictly

positive are redistributed among consumers according to their exogeneous shares on

firms. We then prove the existence of an equilibrium under assumptions, which are at

the same level of generality than the ones for the existence in an exchange economy. It

is important to remark that the free-disposal assumption is key in this existence result.

Indeed, as established in Bonnisseau and Cornet (1988) [10] 3, this assumption allows

the usual existence to hold when production sets are non-convex. This explains why we

introduce positive polar cones in our proof, which at least permits our global production

to satisfy a weak form of free disposal.

However, this result relies on an assumption of private ownership with given shares,

which is rather restrictive in an economy where firms are perpetuated by successive

generations, but whose transfers of firms ownerships are not formalized since no stock

markets are introduced. This issue,clearly ignored if firms exhibited constant returns to

scale with zero profits highlights the usefulness of considering a general wealth distribu-

tion function and a mechanism of wealth transfers between successive generations, which

will allow to keep the firms active forever. Letting newly born individuals be endowed

with exogeneously given shares can be explained through bequest motives, that is old

agents of previous generation, since they are about to die, freely leave to the young their

ownership. In this way, agents can prevent the disappearance of their firms from the

economy, and their offsprings who become the new owners of the firms will distribute the

profits between them according to the shares they have inherited, leave the ownerships

to the next cohort and so on. Another possibility, implicit to our model, is the existence

of hidden financial markets, where agents either save at risk-free rate or invest in firms

by buying shares, but either choice is supposed to bring them the same return, under

the absence of arbitrage condition and the equi-profitability among the firms.

Although our model also accounts for a succession of firms active only for two dates,

the possibility of perpetual firms drives us to consider durable goods, through which,

3See [10] Lemma 5.1
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transfer of wealth, and in particular of capital of firms could be meaningful accross

generations.

1.3.2 OLG models with durable goods

Throughout chapter 3, we will see that durable goods serve in transferring wealth accross

generations, either through markets or bequest motives, but in addition, they can also

provide to their owners, possibilities to have access to a loan backed up by collaterals,

to hold inputs for additionnal endowments that can be useful to the future, not only for

their well-being during their old age but also for the well-being of their offsprings.

We start considering a simple pure exchange economy with durable goods and will make

use of the intuition obtained in this framework to understand the transfer mechanism

between generations. Our model incorporates then durable goods which may be stored

from one period to a successive period through a linear technology. We show that the

existence of an equilibrium can be established by considering an equivalent economy

“without”durable goods, where the agents economic activity is extended over three suc-

cessive periods. This intermediate step helps to confirm that a consumption of durable

goods by young agents has an impact, both on their consumption when old, but also

after their lifetime, this explains the extension from a two-period lifetime into three-

period one. It is clear that the consumption behaviour has impacts not only on their

close future or their own generation but also on the succeeding generations.

However, above the existence result, this paper provides a mechanism within which

generations successively transfer their wealth, by means of durable goods, and shows that

their consumptions, thanks to their durability, entail their owners the role of producer:

they have in their possession a technology that allows them to store or transfer their

consumption to the next period. Durable good can be then assimilated to a saving,

an asset holding that permits young agents to shift their endowment to a preferred

consumption plan. In the same spirit, our model implicitely supposes the existence of a

financial markets, where agents take loans and back them up with their durable goods,

which will be systematically seized once they disappear from the economy. Basically,

our model entitles agents to buy and hold durable goods, seen as assets, even at their

old age; this situation can be explained by a lifetime contract called also viager, when

a house, a durable good, allows old agents to enjoy not only of that house but also of

an additionnal resource corresponding to the financial value of it on the future market.

Our model is not incompatible with uncertain lifetimes, where agents may hold assets

or be involved in any liability at the end of their lifetime. If indeed, at each period,

they have a probability to die in the next period, then defaults are prevented thanks
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to the durable goods that serve as collaterals to loans. In both certain and uncertain

frameworks, we remark that a purchase of durable goods by old can be motivated by

bequest motives, where agents are supposed to be altruistic.

While we mainly focus on the mechanism of wealth transfer between generations, it

is important to note that many works, theoretical and empirical, on durable goods

already exist in the literature, to study different issues, such as savings, borrowing

constraints and collaterals. Furtherore, since durable goods are used as component in

wealth, they are useful to study wealth distribution, see Diaz and Luenngo-Prado in

[25], who in addition relate the two with precautionary savings. Indeed, in [25], the

liquidity or illiquuidity nature of durable goods, have impact on the behaviour and

wealth composition of agents, reflected to the notion of precautionary saving, especially

when there is uncertainty or risk in the economy. Such an issue is not treated in our case,

especially since the main feature of the durable goods we consider is their desirability.

But this framework can be worth consideration for the continuation of this work, where

liquid assets can be represented by shares on firms that may be may make positive

profits. Moreover, these studies which involve empirical analysis consider durable goods

which are not easily divisible, and entail very high transaction costs, as in [46]. In [25],

they are assumed specific to households and cannot be traded or rented without first

converting them back to a productive capital. Our model does not have this specificity

and allows for a durable good to be divisible when sold on a future market to the young.

But in case of production, this work meets that property and goes in the line of our aim

to study the perpetuation of firms through transfers of shares and property rights accross

generations. For instance, agents partipate in firms by putting together their investment

so that each durable capital, possibly specific to each firm is kept in its entirety.

Another important result involves a relation between prices at equilibrium, which is

similar to the one provided by Balaso and Shell in [4]. Indeed, equilibria may fail to be

efficient in OLG models, and durable goods such as money, or an infinitely lived asset

like a land, could restore the market failure. We then propose to revisit the Pareto

optimality characterizations provided by Balaso and Shell.

1.3.3 Characterization of optimal allocations in OLG models with mul-

tiple goods

We propose to review in chapter 4 the characterization of Pareto optimal allocations,

in the line of Balasko and Shell [4], but in addition we allow for multiple agents per

period. Our approach is set-theoretic and geometrical. The consumers characteristics
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are described by their consumption sets, their preference sets and the associated nor-

mal cones. We give conditions of Pareto optimality, under very basic assumptions, by

providing a simple and geometric version of the proof of Balasko and Shell [4].

Balasko and Shell [4] provide a criterion based on the asymptotic behavior of the norm

of the prices to characterize Pareto optimal allocation without durable good or infinitely

lived asset. Burke [17] revisits this criterion by focusing in particular on the right

definition of the Gaussian curvature of the indifference surface. Actually, these authors

provide a proof with a first step considering the special case of a single commodity per

period. Then, the generalization to several commodities is only sketched.

Our purpose in this paper is three fold: to provide a simpler, direct proof of the Balasko-

Shell Criterion considering in one step several consumers for each generation and sev-

eral commodities; to encompass the case of non-complete, non-transitive preferences;

to compute explicitly a Pareto improving transfer when the allocation does not satisfy

the Balasko-Shell Criterion. Nevertheless, note that the structure of the proof is based

strongly on Balasko-Shell’s one.

It is important to remark that a geometrical approach has already been provided by

Borglin and Keiding [16]. [16] considers infinite horizons economies, and treats the

particular case of OLG models. They center the notion of Pareto optimality to its weak

form, and consider characterizations based on parameters that describe the economy

such as supporting prices and curvatures of indifference surfaces, thus an approach that

easily meets our model.

We consider this contribution as a first step to be able in future works to tackle the

question in presence of durable commodities and with heterogeneous longevities of the

agents.

Throughout these three chapters, we have raised aditionnal issues but we have also

accumulated further tools and intuitions that will be important and helpful for further

studies, especially in production economies where increasing returns are allowed and

thus growth can be expected.





Chapter 2

Existence of an equilibrium in an

OLG model with increasing

returns

Abstract

We consider a standard overlapping generations economy with a simple demographic

structure where a new cohort of agents appears at each period and whose economic

activity is extended over two successive periods, and finitely many firms are active

forever. The production possibilities are described by a sequence of production set-valued

mappings and the main innovation comes from the fact that we allow for increasing

returns to scale of more general type of non-convexities. To describe the behavior of the

firms, we consider loss-free pricing rules, which covers the case of the average pricing

rule, the competitive behavior when the firms have convex production sets, and the

competitive behavior with quantity constraints à la Dehez-Drèze. We prove the existence

of an equilibrium under assumptions, which are at the same level of generality than the

ones for the existence in an exchange economy1.

JEL classification: C62, D50, D62.

Keywords: Overlapping generations model, increasing returns to scale, loss-free pric-

ing rules, equilibrium, existence

1This paper is based on “Existence of an equilibrium in an OLG model with increasing returns” [13]
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2.1 Introduction

Overlapping generations models are studied both in microeconomics and in macroe-

conomics to analyze intertemporal phenomena. These models involve infinitely many

dates, goods and consumers. This double infinity is source of many unobservable phe-

nomenons in Arrow-Debreu economy even if the space of goods is of infinite dimension.

Regarding the production side, if we consider endogenous growth models, externalities

might be introduced for example via the level of human capital, which are source of

increasing returns at the aggregate level. But these returns are not taken into account

by the agents, who have a myopic behavior in the sense that they do not care about the

externalities they create.

We thus plan to study a standard overlapping generations model with production allow-

ing increasing returns to scale and a behavior of the producers, which goes beyond the

competitive one.

The basic model is the one introduced [3–5], see also [57] for a very intuitive approach.

The production knowledge of a producer is described by generalized production corre-

spondences, which define the possible outputs at one date given the vector of inputs

consumed at the previous date. This sequential approach of the production allows to

consider innovation along the time and heterogeneity of producers.

The equilibrium concept is the standard one but for the behavior of the producers since

we do not assume that the production sets are convex. Hence the standard competitive

behavior is meaningless.

In models allowing for non-convex technologies, the firms follow general pricing rules to

describe a large range of possible behaviors including the profit maximizing behavior

at given prices. The literature considers pricing rules which associate a set of admis-

sible prices to a weakly efficient production. For a comprehensive introduction see

[10, 22, 26, 59]. Since the production is defined in a recursive way, we propose to define

also the pricing rule recursively, so that the prices for two successive dates depend on

the production possibilities for these two dates and not for the other ones.

We consider loss-free pricing rules, meaning that the firms are restricted to get a non

negative profit over two successive periods. This covers the case of the average pricing

rule, the competitive behavior when the firms have convex production sets, and the
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competitive behavior with quantity constraints à la Dehez-Drèze, [23, 24].

Contrary to the case of a constant return technology, it is crucial to determine how

profits (or losses) of producers are distributed among consumers. Indeed, the optimality

of the equilibrium allocation depends on the repartition scheme. In this first paper,

we only consider private ownership economies and we assume that the shares are given

exogenously. It would be meaningful to introduce a stock market at each date allowing

the old generation to sell the shares to the young generation.

In this paper, we provide an existence result under sufficient conditions at the same level

of generality than those for an exchange economy. On the production side, we need to

assume the free-disposal condition as for the static models. On the pricing rule, we just

need a continuity condition.

2.2 Description of the model

We consider an economy with infinitely many dates (t = 1, 2 · · · ). For all t ∈ N∗, there

exists a finite set Lt of commodities available in the world. We denote #Lt = Lt.

Consumers

At each period t ∈ N (including at period 0), a finite and non-empty set of consumers

It, called generation t, are born. We denote #It = It and I = ∪t∈NIt. Each individual

lives two periods (an agent born at period t lives at t and t+ 1 and is assumed to have

no economic activity before t and after t+ 1).

The consumption set of each individual i ∈ It, t ≥ 1 is the subset Xi = RLt+ × RLt+1
+ .

Thus consumption of each consumer of generation t is limited to his lifetime t and t+ 1.

The consumption set of consumers of generation 0 is RL1
+ .

Consumers preferences are represented by a utility function ui : Xi → R. This means

that preferences are complete and transitive.

The vector ei ∈ RLt++ × RLt+1
++ represents the initial endowment of the agent i of the

generation t, which is null outside his lifetime.

Producers

We assume the set of producers J to be finite. Each firm is supposed to be active for

all dates. We denote #J = J .
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The production possibilities are represented by production set-valued production map-

pings which associate to a given vector of inputs at date t, a set of possible outputs

produced at the next period. This supposes that the production process takes time,

the consumption of an input at date t has no influence on the output at this date. For

each firm j, (F jt )∞t=1 is a sequence of mappings from −RLt+ to RLt+1 . For a given inputs

vector zjt , F
j
t (zjt ) is the set of possible vector of outputs the firm can produce. We do

not assume the nonnegativity of the output vectors in order to allow for productions

with free-disposal, but the hypothesis we posit later in the next section will show that

only the nonnegative output vectors will be relevant.

Let us associate to each firm j at each period t an elementary production set Zjt defined

by:

Zjt = {(zjt , ζ
j
t+1) ∈ −RLt+ × RLt+1 | ζjt+1 ∈ F

j
t (zjt )}

Notice that Ztj is the graph of the mapping F jt . We define the global inter-temporal

production set of firm j by:

Y j =

{
(yjt )

∞
t=1 ∈

∞∏
t=1

RLt | ∀t,∃(zjt , ζ
j
t+1) ∈ Zjt : yjt = zjt + ζjt with ζj1 = 0

}

We remark that, although we suppose firms to be active forever, we do not exclude the

possibility of firms starting at each date t and operating only for two successive dates t

and t + 1 as in Tvede [57]. In this case, we call for all t ≥ 1, Jt the finite set of firms

started at each date t. Thus, firm j ∈ Jt is active at dates t and t + 1, and inactive at

dates t′ 6= t, t+1. We can thus consider the sequence of set-valued mapping (F jt )t where

(F jt′)t′ are identically null, if t 6= t, t+ 1

Feasibility condition

An allocation ((xi)i∈I , (y
j)j∈J ) ∈

∏∞
t=0

∏
i∈It X

i ×
∏
j∈J Y

j is feasible if for all t ∈ N∗,
it satisfies the market-clearing condition:

∑
i∈It−1∪It

xit =
∑

i∈It−1∪It

eit +
∑
j∈J

yjt (2.1)

We denote by A(E) the set of feasible allocations.

Pricing Rule

The price vector p is an element of
∏∞
t=1 R

Lt
+ , and pth is the market price of the com-

modity h at date t.
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Since the model we consider allows for increasing returns, the producers behavior can-

not only be characterized by a competitive and profit maximization behavior. So we

describe the behavior of the producers by general pricing rules. See Cornet [22], Dierker,

Guesnerie and Neuefeind [26] and Villar [59] for a survey on the representation of eco-

nomic behavior of producers by pricing rules. All the firms are allowed to follow different

pricing rules. Since the production possibilities are defined in a recursive way, we define

the pricing rule in a similar way. This approach corresponds to the idea that at each

period, newly born individuals appear, taking part to the economic decisions thus to the

determination of productions carried over their lifetime. For a producer j at a period t,

the pricing rule ϕjt is a set-valued mapping defined on the set of weakly efficient produc-

tions of Zjt with values in RLt+ × RLt+1
+ . So, given a weakly efficient production yj ∈ Y j

and a price p, the pair (yj , p) is compatible with the behavior of the jth producer if for

all t, (pt, pt+1) ∈ ϕjt (z
j
t , ζ

j
t+1) where (zjt , ζ

j
t+1) ∈ Zjt and yjt = zjt + ζjt .

A state ((yj), p) is called a production equilibrium if for all t, each firm j ∈ J finds

acceptable the price (pt, pt+1) according to his pricing rule for the given weakly produc-

tion plan (yj), that is for all j ∈ J , (pt, pt+1) ∈ ϕjt (z
j
t , ζ

j
t+1), where (zjt , ζ

j
t+1) ∈ Zjt and

yjt = zj∗t + ζjt .

Budget Constraint

We assume that we are in a private ownership economy. Each agent i ∈ It holds a share

θij ≥ 0 of the firm j such that for all j,
∑

i∈It θ
ij = 1.

The budget constraint, for each agent i ∈ It, t ∈ N∗ is given by:

pt · xit + pt+1 · xit+1 ≤ pt · eit + pt+1 · eit+1 +
∑
j∈J

θij(pt · zjt + pt+1 · ζjt+1)

and for i ∈ I0, p1 · xi1 ≤ p1 · ei1

Equilibrium

We are now able to state the definition of an equilibrium in this overlapping generation

economy with production.

Definition 2.2.1. An equilibrium in the OLG economy E is an element

(p∗, (xi∗), (yj∗)) ∈
∏∞
t=1 R

Lt
+ ×

∏
i∈I X

i ×
∏
j∈J Y

j such that:

a) for all t ∈ N∗, for all i ∈ It, xi∗ is a maximal element of ui in the budget set:

{xi ∈ Xi | p∗t · xit + p∗t+1 · xit+1 ≤ p∗t · eit + p∗t+1 · eit+1 +
∑
j∈J

θij(p∗t · z
j∗
t + p∗t+1 · ζ

j∗
t+1)},
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and, for all i ∈ I0, xi∗ is a maximal element of ui in the budget set

{xi ∈ Xi | p∗1 · xi1 ≤ p∗1 · ei1};

b) for all j ∈ J , for all t, (p∗t , p
∗
t+1) ∈ ϕjt (z

j∗
t , ζ

j∗
t+1), where (zj∗t , ζ

j∗
t+1) ∈ Zjt and yj∗t =

zj∗t + ζj∗t ;

c) for all t ∈ N∗,
∑

i∈It−1∪It x
i∗
t =

∑
i∈It−1∪It e

i
t +
∑

j∈J y
j∗
t .

An equilibrium is thus a list of prices and allocations such that: (a) every consumer

maximizes her utility at given prices within her budget set; (b) all the firms are at

equilibrium at ((yj∗), p∗); and (c) all markets clear at every date t ∈ N∗.

2.3 Existence of equilibrium

We consider standard assumptions on the consumption side.

Assumption C.

a) For all t ∈ N∗, for all individuals i ∈ It, Xi = RLt+ × RLt+1
+ and for all i ∈ I0,

Xi = RL1
+ .

b) For all individuals in I, ui is continuous, quasi-concave and locally non-satiated;

c) For all t ∈ N∗, there exists i0(t) ∈ It such that for all xt ∈ RLt+ , ui0(t)(xt, ·) is locally

non-satiated and i1(t) ∈ It such that for all xt+1 ∈ RLt+1
+ , ui1(t)(·, xt+1) is locally

non-satiated.

Assumption E. For all t ∈ N∗, for all i ∈ It, ei ∈ RLt++ × RLt+1
++ and for all i ∈ I0,

ei ∈ RL1
++.

We posit the following assumption on the production mappings.

Assumption F.

a) For all (j, t) ∈ J × N∗, F jt has a closed graph;

b) for all zjt ∈ −R
Lt
+ , 0 ∈ F jt (zjt );

c) for all zjt ∈ −R
Lt
+ , F jt (zjt ) ∩ RLt+1

+ is bounded;

d) for all zjt , z
j′
t ∈ −R

Lt
+ , if ztj ≤ z

j′
t then F jt (zj′t ) ⊂ F jt (ztj);

e) F jt (zjt ) = (F jt (zjt ) ∩ RLt+1
+ )− RLt+1

+ .
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Assumption F implies that Y j is closed for the product topology and satisfies the posibil-

ity of inaction and the free-disposal assumption. The set of weakly efficient production

plans coincides then with the frontier of the production set. Furthermore, negative

outputs correspond to the disposal of some part of the production. We do not make

assumptions on the returns to scale, thus increasing returns are allowed.

We make the following regularity condition on the pricing rule. As pointed in Bonnis-

seau and Cornet [10], this regularity condition helps to avoid the case where the set of

admissible prices is reduced to a singleton, otherwise there is no possibility of equilibria.

Assumption PR. For all (j, t) ∈ J × N∗,

a) ϕjt has a closed graph and for all (zjt , ζ
j
t+1) ∈ ∂Zjt , ϕ

j
t (z

j
t , ζ

j
t+1) is a closed convex

cone in RLt+ × RLt+1
+ different from {(0, 0)};

b) for all (zjt , ζ
j
t+1) ∈ ∂Zjt , for all (pt, pt+1) ∈ ϕjt (z

j
t , ζ

j
t+1), if ζt+1,k < 0 then pt+1,k = 0.

Although losses are possible in the presence of increasing returns, we will particularly

focus on loss-free pricing rules: only combinations of prices and productions yielding

nonnegative profits will be found acceptable by the producers.

Assumption LF. (Loss-free assumption) For all (j, t) ∈ J ×N, for all (zjt , ζ
j
t+1) ∈ Zjt ,

for all (pt, pt+1) ∈ ϕjt (z
j
t , ζ

j
t+1),

pt · zjt + pt+1 · ζjt+1 ≥ 0

Assumption LF is naturally associated to firms which operate in unregulated markets

and where inaction is possible: in this way, whenever the markets conditions are not

advantageous, the owners of the firms can always decide to close them down without

incuring any cost, thus profits are guaranteed to stay nonnegative.

Pricing rules satisfying Assumptions PR and LF always exist. Villar in [59] has pointed

out two main examples: the constrained profit maximization and the mark-up pricing

rule.

In our framework, the constrained profit maximization is given by:

ϕjCPMt (zjt , ζ
j
t+1) = {(pt, pt+1) ∈ RLt+ ×RLt+1

+ \ (0, 0) | pt · zjt + pt+1 · ζjt+1 ≥ pt · z
j′
t + pt+1 ·

ζj′t+1,∀(z
j′
t , ζ

j′
t+1) ∈ Zjt , with zj′t+1 ≥ z

j
t+1}, for (zjt , ζ

j
t+1) 6= (0, 0),

ϕjCPMt (0, 0) is the closed convex hull of (pt, pt+1) ∈ RLt+ ×RLt+1
+ \ (0, 0) for which there

exist sequences (zjνt , ζ
jν
t+1) ∈ ∂Zjt \ {(0, 0)} and (pνt , p

ν
t+1) ∈ RLt+ × RLt+1

+ , such that

(zjνt , ζ
jν
t+1)→ (0, 0) and (pνt , p

ν
t+1)→ (pt, pt+1) with (pνt , p

ν
t+1) ∈ ϕjCPMt (zjνt , ζ

jν
t+1).
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This pricing rule results in combinations of prices and productions such that no other

combinations using fewer inputs but yielding to higher profits are possible. It can be

used to modelize the behaviour of firms when the increasing returns are due to fixed

costs or the use of a fixed capital like land or machinery.

In order to introduce the mark-up pricing rule, we define the average cost pricing rules

as combinations of prices and productions plans which make firms to just break even:

ϕjACt (zjt , ζ
j
t+1) = {(pt, pt+1) ∈ RLt+ ×RLt+1

+ | pt · zjt + pt+1 · ζjt+1 = 0}, if (zjt , ζ
j
t+1) 6= (0, 0),

ϕjACt (0, 0) is the closed convex hull of (pt, pt+1) ∈ RLt+ × RLt+1
+ \ (0, 0) for which there

exist sequences (zjνt , ζ
jν
t+1) ∈ ∂Zjt \ {(0, 0)} and (pνt , p

ν
t+1) ∈ RLt+ × RLt+1

+ , such that

(zjνt , ζ
jν
t+1)→ (0, 0) and (pνt , p

ν
t+1)→ (pt, pt+1) with pνt · z

jν
t + pνt+1 · ζ

jν
t+1 = 0}.

Fom the average-cost pricing rule, we define the “mark-up pricing”as ϕjACt (zjt (1 +

ρjt ), ζ
j
t+1). This pricing rule thus consists of prices that cover the costs of the firms

to which is added a profit component ρjt called mark-up. A mark-up can be related

conditions on the firms, such as the existence of fixed cots, fixed capital or the presence

of entry barriers. By definition of the average-cost pricing rule, ρjt = −pt·zjt+pt+1·ζjt+1

pt·zjt
;

this ratio expresses the measure of the profitability of firm j when it advances some

capital or investment at date t.

Clearly, average cost pricing is a particular mark-up pricing where the mark-up is equal

to zero.

The main result of this paper is the following:

Theorem 2.3.1. Under Assumptions C, E, F, PR and LF, the OLG economy E has an

equilibrium.

Remark 2.3.1. This result encompasses the known existence results for exchange economies.

Indeed, it suffices to consider that there is only one producer with a constant production

correspondence Ft defined by Ft(zt) = −RLt+1
+ and the pricing rule corresponding to the

competitive behavior, that is,

ϕt(zt, ζt+1) = {(pt, pt+1) ∈ RLt+ × RLt+1
+ | pt · zt + pt+1 · ζt+1 = 0}.

Remark 2.3.2. If we further assume that F jt has a convex graph for all (j, t) and that

the pricing rule ϕjt describes the competitive behavior, that is,

ϕjt (z
j
t , ζ

j
t+1) = {(pt, pt+1) ∈ RLt+ × RLt+1

+ | pt · zjt + pt+1 · ζjt+1 ≥ pt · zj′t + pt+1 ·
ζj′t+1,∀(z

j′
t , ζ

j′
t+1) ∈ Zjt },
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then Assumptions PR and LF are satisfied and Theorem 2.3.1 gives the existence of a

competitive equilibrium in the OLG economy.

Remark 2.3.3. Note that Assumption PR (b) implies that for all t ∈ N∗, for all k ∈ Lt+1,

then ζj∗t+1,k ≥ 0 if commodity k is desirable by at least one consumer of generation t or

t + 1. So, even if we do not a priori exclude negative quantities of output when we

define the production mappings, at equilibrium, the production of an output is always

non negative for desirable commodities.

2.4 Equilibrium in truncated economies

We will proceed as in exchange economies (see Balasko et al. [3]) to establish the

existence of equilibrium in E : first we show the existence of pseudo-equilibrium in the

truncated economies with a finite horizon

Eτ =

(
(uτi, Xτi, eτi, θi)i∈Iτ−1

0
, (Y tj , ϕ̃tj)t=1,...,τ−1

j∈J

)
then we prove that prices and allocations remains in a compact space of a suitable linear

space and we finally show that a cluster point is an equilibrium of the OLG economy.

Notations.

Iτ−1
0 = ∪τ−1

t=0 It is the set of all the individuals born up to period τ − 1.

For each i ∈ I1,

Xτi = {x ∈
∏τ
t=1 R

Lt
+ | xt′ = 0, ∀t′ > 1}

uτi(x) = ui(x1)

eτi = (eτit′ )
τ
t′=1 such that eτi1 = ei1, and eτit′ = 0 if t′ > 1.

For each t = 1, . . . , τ − 1, for each i ∈ It,

Xτi = {x ∈
∏τ
t=1 R

Lt
+ | xt′ = 0, ∀t′ 6= t, t+ 1}

uτi(x) = ui(xt, xt+1)

eτi = (eτit′ )
τ
t′=1 such that eτit = eit, e

τi
t+1 = eit+1 and eτit′ = 0 if t′ 6= t, t+ 1.

For each t, we choose an arbitrary closed convex cone Ct, called free-disposal cone,

included in RLt++ ∪ {0} containing 1t = (1, . . . , 1) ∈ RLt++ ∪ {0} in its interior. We denote

by C+
t the positive polar cone of Ct

2.

2C+
t = {v ∈ RLt | v · u ≥ 0, ∀u ∈ Ct}
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We define the extended production set Y tj for t = 1, . . . , τ − 1 as follows:

Y tj = {(ytjt′ )
τ
t′=1 ∈

τ∏
t′=1

RLt′ | (ytjt , y
tj
t+1) ∈ Zjt , ∀t′, y

tj
t′ ∈ −Ct′}

This extension is necessary since the existence result for economies with non-convex

production sets require that the production sets satisfies the free-disposal assumption or

at least a weak form of it, namely, with our notations the fact that Y tj−
∏τ
t′=1Ct′ = Y tj .

We also extend the pricing rules as follows: for all ytj ∈ ∂Ytj ,

ϕ̃tj(ytj) = {p ∈
τ∏

t′=1

C+
t | (pt, pt+1) ∈ ϕjt (y

tj
t , y

tj
t+1), pt′ · ytjt′ = 0, ∀t′ 6= t, t+ 1}

We thus extend the production sets into
∏τ
t′=1 RLt′ , but we focus only on the production

at date t and restrict the activity at dates t′ 6= t to the free disposal at zero cost. We

also remark that if p ∈ ϕ̃tj(ytj) and pt′ ∈ RLt′+ \ {0} for some t′ 6= t, t+ 1, then ytjt′ = 0.

The truncation of the economy leads us to a weak notion of equilibrium termed as

pseudo-equilibrium.

Definition 2.4.1. A pseudo-equilibrium in the truncated economy Eτ is an element

(p∗, (xi∗), (ytj∗)) ∈
∏τ
t=1C

+
t ×

∏
i∈Iτ−1

0
Xτi ×

∏
j∈J

∏τ−1
t=1 Y

tj such that:

a) for all t = 1, 2 . . . τ − 1, for all i ∈ It, xi∗ is a maximal element of uτi in the budget

set

{xi ∈ Xτi | p∗ · xi ≤ p∗ · eτi +
∑
j∈J

θijt p
∗ · ytj∗};

for all i ∈ I0, xi∗ is a maximal element of uτi in the budget set {xi ∈ Xτi | p∗·xi ≤ p∗·eτi};

b) for all j ∈ J , for all t = 1, . . . , τ − 1, p∗ ∈ ϕ̃tj(ytj∗);

c) For all t = 1, . . . , τ−1,
∑

i∈Iτ−1
0

xi∗t =
∑

i∈Iτ−1
0

eτit +
∑

j∈J
∑τ−1

t′=1 y
t′j∗
t and

∑
i∈Iτ−1

0
xi∗τ ≤∑

i∈Iτ−1
0

eτiτ +
∑

i∈Iτ e
i
τ +

∑
j∈J

∑τ−1
t′=1 y

t′j∗
τ

Remark 2.4.1. The difference between a pseudo-equilibrium and an equilibrium is that

we do not require the market clearing condition at the last period τ and we artificially

increase the initial endowments by adding those of the consumers of the generation τ .

This particular feature is useful to show below that if τ ′ > τ , then the restriction of a

pseudo-equilibrium of Eτ ′ to the τ − 1 first generations is a pseudo-equilibrium of Eτ .

Remark 2.4.2. Since Condition (c) of the above definition is weaker on the last period

τ than the standard market clearing condition, an equilibrium of Eτ is clearly a pseudo-

equilibrium.
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Remark 2.4.3. In the definition of a pseudo-equilibrium, the price p∗ is supposed to be

in
∏τ
t=1C

+
t . Actually, we remark that it belongs to the smaller set

∏τ
t=1 R

Lt
+ . This is

a consequence of Condition (b) and the fact that ϕjt takes its values in RLt+ × RLt+1
+ .

Consequently, we deduce from the definition of ϕ̃tj that at equilibrium ytj∗t′ = 0 for all

t′ 6= t, t+ 1.

Remark 2.4.4. From the definition of the truncated economy and the definition of a

pseudo-equilibrium, we remark that if τ̄ > τ and (p∗, (xi∗), (ytj∗)) is a pseudo-equilibrium

in the economy Eτ̄ , then the price and the allocations restricted to the τ first periods(
q∗, (χi∗)i∈Iτ−1

0
, (ξtj∗) j∈J

t=1,...,τ−1

)
defined by

q∗ = (p∗t )
τ
t=1,

for all i ∈ Iτ−1
0 , χi∗ = (xi∗t )τt=1,

for all j ∈ J , for all t = 1, . . . , τ − 1, ξtj∗ = (ytj∗t′ )τt′=1,

is a pseudo-equilibrium in the economy Eτ .

Indeed, from the definition of a pseudo-equilibrium, we just have to look at Condition

(c) for the period τ . Since (p∗, (xi∗), (ytj∗)) is a pseudo-equilibrium in the economy Eτ̄
and τ̄ > τ , one has: ∑

i∈I τ̄−1
0

xi∗τ =
∑

i∈I τ̄−1
0

eτ̄ iτ +
∑
j∈J

τ̄−1∑
t′=1

yt
′j∗
τ

From the definition of X τ̄ i, for all i ∈ ∪τ̄−1
t=τ+1It, xi∗τ = 0. From the definition of eτ̄ i, for

all i ∈ ∪τ̄−1
t=τ+1It, eτ̄ iτ = 0. From the previous remark, for all t′ = τ + 1, . . . , τ̄ − 1, for all

j, yt
′j∗
τ = 0. Furthermore, for all j, yτj∗τ ≤ 0 and for all i ∈ Iτ , xi∗τ ≥ 0. So, one deduces

that

∑
i∈I τ̄−1

0

xi∗τ =
∑

i∈Iτ−1
0

xi∗τ +
∑
i∈Iτ

xi∗τ =
∑

i∈Iτ−1
0

eτ̄ iτ +
∑
i∈Iτ

eτ̄ iτ +
∑
j∈J

τ−1∑
t′=1

yt
′j∗
τ +

∑
j∈J

yτj∗τ

which implies that

∑
i∈Iτ−1

0

xi∗τ ≤
∑

i∈Iτ−1
0

eτ̄ iτ +
∑
i∈Iτ

eτ̄ iτ +
∑
j∈J

τ−1∑
t′=1

yt
′j∗
τ

So we get Condition (c) for the period τ since xi∗τ = χi∗τ and eτ̄ iτ = eτiτ for all i ∈ Iτ−1
0

and eτ̄ iτ = eiτ for all i ∈ Iτ .

Since the truncated economy Eτ does not satisfy the strong survival assumption but its

weak form, we are going to deduce the existence of pseudo-equilibrium from a quasi-

equilibrium. One has:
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Definition 2.4.2. A quasi-equilibrium in the truncated economy Eτ is a list (p∗, (xi∗), (ytj∗))

in
∏τ
t=1C

+
t ×

∏
i∈Iτ−1

0
Xτi ×

∏
j∈J

∏τ−1
t=1 Y

tj satisfying:

a’) for all t = 1, 2 . . . τ − 1, xi∗ is an element of the budget set:

{xi ∈ Xτi | p∗ · x∗i ≤ p∗ · eτi +
∑
j∈J

θijt p
∗ · ytj∗}

and for all xi ∈ Xτi such that: p∗ · xi < p∗ · eτi +
∑

j∈J θ
ij
t p
∗ · ytj , uτi(xi) ≤ uτi(xi∗),

for all i ∈ I0, xi∗ ∈ {xi ∈ Xi | p∗ · xi ≤ p∗ · eτi} and for all xi ∈ Xτi such that

p∗ · xi < p∗ · eτi, uτi(xi) ≤ uτi(xi∗),

b) for all j ∈ J , for all t = 1, . . . , τ − 1, p∗ ∈ ϕ̃τj(ytj∗);

c)
∑

i∈Iτ−1
0

xi∗ =
∑

i∈Iτ−1
0

ei +
∑

j∈J
∑τ−1

t=1 y
tj∗;

d) p∗ 6= 0.

Proposition 2.4.1. Under the assumptions of Theorem 2.3.1, for all τ ≥ 2, there exists a

quasi-equilibrium of the economy Eτ .

Proof. The proof is based on the fact that Eτ satisfies the necessary assumption of

the existence of a (quasi)-equilibrium. See Bonnisseau-Cornet [10] for the existence

of equilibrium with bounded-losses pricing rules and in particular of losses-free pricing

rules, Gourdel [37] for the existence of quasi-equilibrium and the way to go from quasi-

equilibrium to equilibrium, and Bonnisseau-Jamin [11] for the existence of equilibrium

with a weaker version of the free-disposal assumption.

Indeed, the existence of quasi-equilibrium is ensured by Assumptions (C) and (E), and

the facts that :

• ϕ̃tj satisfies Assumption (PR)(a) since ϕjt satisfies this assumption and Ct is a

closed convex cone.

• for all (ytj) ∈
∏
∂Y tj , if p ∈ ∩j,tϕ̃tj(ytj), p · eτi +

∑
j∈J θ

ij
t p · ytj ≥ 0, thanks to

Assumptions (LF) and (E), and Remark 2.4.3, that is p∗ ∈
∏τ
t=1 R

Lt
+ .

• Y tj −
∏τ
t′=1Ct′ = Y tj (free-disposal)

and the boundedness assumption stated by the following lemma. �

Let e ∈
∏
t∈N∗ R

Lt
+ defined by et =

∑
i∈It∪It−1

eit. Let e′ ∈
∏
t∈N∗ R

Lt
+ such that e′ ≥ e.

We denote by Ã(Eτ (e′)), the set of allocations satisfying the market clearing condition
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for a pseudo-equilibrium (Condition (c) of Definition 3.4.1) for the economy Eτ . We

establish that feasible allocations are bounded for all greater initial endowments.

Lemma 2.1. For all e′ ≥ e, for all j ∈ J , there exists a sequence of non negative real

numbers (mtj) such that for all τ , for all ((xi), (ytj)) ∈ Ã(Eτ (e′)),

for all i ∈ Iτ−1
0 , for all t = 1, . . . , τ − 1, 0 ≤ xit ≤ e′t +

(∑
j∈J m

tj
)

1t;

for all j ∈ J , for all t = 1, . . . , t− 1, for all t′ 6= t+ 1,

0 ≥ ytjt′ ≥ −e
′
t′ −

∑
j∈J m

t′j1t
′
,

m(t+1)j1t+1 ≥ ytjt+1 ≥ −e′t+1 −
∑

j∈J m
(t+1)j1t+1.

Proof. Let ((xi), (ytj)) be an element of Ã(Eτ (e′)). Then, for all t = 1, . . . , τ ,

∑
i∈Iτ−1

0

xit ≤ e′t +
∑
j∈J

τ−1∑
t′=1

yt
′j
t

For all j ∈ J , we define the sequence (mtj) as follows: m1j = 0 and mt+1j is a positive

real number so that:

F jt (−e′t −
∑

j∈J m
tj1t) ⊂ mt+1j1t+1 − RLt+1

+ .

Such real number exists from the boundedness Assumption F(c). Since 0 ≤
∑

i∈Iτ−1
0

xi1,

we get
∑

j∈J y
1j
1 +

∑
j∈J

∑τ−1
t=2 y

tj
1 ≥ −e′1. Since for all j ∈ J , y1j

1 ≤ 0 and for all

t = 1, . . . , τ − 1, ytj1 ≤ 0, we obtain 0 ≥ y1j
1 ≥ −e′1, for all j and 0 ≥ ytj1 ≥ −e′1 for all t.

For the second period, we have

∑
j∈J

y1j
2 +

∑
j∈J

y2j
2 +

∑
j∈J

τ−1∑
t=3

ytj2 ≥ −e
′
2

For all j ∈ J , y2j
2 ≤ 0 and for all t = 3, . . . , τ − 1, ytj2 ≤ 0. From the above inequalities

and Assumption F(d), y1j
2 ∈ F

j
1 (y1j

1 ) ⊂ F j1 (−e′1) ⊂ m2j12 − RL2
+ . Thus, for all j ∈ J ,

0 ≥ ytj2 ≥ −e′2 −
∑

j∈J m
2j12, for all t = 2 · · · τ − 1,

m2j12 ≥ y1j
2 ≥ −e′2 −

∑
j 6=j′ y

1j′

2 ≥ −e′2 −
∑

j 6=j′m
2j′12 ≥ −e′2 −

∑
j′∈J m

2j′12

By an induction argument taking into account the definition of the sequences (mtj) we

prove the result for all period.

For the consumptions, since they are all non-negative, 0 ≤ xi ≤
∑

i′∈Iτ−1
0

xi
′
. So, for all

t,
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0 ≤ xit ≤ e′t +
∑

j∈J
∑τ−1

t′=1 y
t′j
t ≤ e′t +

∑
j∈J y

t−1j
t ≤ e′t +

∑
j∈J m

tj1t

�

The following lemma ensures that a quasi-equilibrium in Eτ is an equilibrium.

Lemma 2.2. If (p∗, (xi∗), (ytj∗)) is a quasi-equilibrium, then p∗t 6= 0 for all t and

(p∗, (xi∗), (ytj∗)) is an equilibrium.

Proof. Since the utility functions are continuous, the condition for a quasi-equilibrium

(p∗, (xi∗), (ytj∗)) to be an equilibrium is that the indidvidual wealth is strictly above the

subsistence level, that is: wi∗ = p∗ · eτi +
∑

j∈J θ
ij
t p
∗ · ytj∗ > inf p∗.Xτi, for all i ∈ Iτ−1

0 .

As already remarked (See Remark 2.4.3), p∗ ∈
∏τ
t=1 R

Lt
+ , so inf p∗.Xτi = 0. Hence, from

Assumptions E and LF, it suffices to show that p∗t 6= 0 for all t = 1, . . . , τ .

Suppose that there exists t such that p∗t = 0. Knowing that p∗ is not equal to 0, there

exists t̄ such that p∗t̄ 6= 0 and p∗t̄+1 = 0 or p∗t̄ = 0 and p∗t̄+1 6= 0. We deal with the first

case, the proof being the same for the second case.

Since p∗t̄ ∈ RLt̄+ \ {0}, the consumer i1 in It̄ given by Assumption C(c) has a strictly

positive wealth wi1∗ > 0. Then (xi1∗
t̄
, xi1∗

t̄+1
) is a demand of consumer i1. But, then,

the local non-satiation of the partial utility function ui1(xi1∗
t̄
, ·) is incompatible with

p∗t̄+1 = 0.

Thus, necessarily p∗t 6= 0 for all t, and wi∗ > inf p∗.Xτi = 0.

�

From Remark 2, an equilibrium is a pseudo-equilibrium, thus we have proved the fol-

lowing result.

Proposition 2.4.2. Under the assumptions of Theorem 2.3.1, for all τ ≥ 2, there exists a

pseudo-equilibrium of the economy Eτ .

In the following lemma, we provide two properties of the pseudo-equilibrium, which

will be useful for the limit argument in the next section. In the following, a non zero

equilibrium price p∗ is normalized so that
∑τ

t=1

∑
`∈Lt p

∗
t` = 1.

Lemma 2.3. If (p∗, (xi∗), (ytj∗) is a pseudo-equilibrium, then p∗t 6= 0 for all t.

The set of pseudo-equilibria of the economy Eτ with a normalized price is closed.

Proof. The first part uses the same argument as for Lemma 2.2.

We now consider a sequence of pseudo-equilibria (pν , (xiν), (ytjν)) that converges to

(p̄, (x̄i), (ȳtj). We prove that (p̄, (x̄i), (ȳtj) is also a pseudo-equilibrium.
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It is easy to establish that (p̄, (x̄i), (ȳtj) satisfies the condition (b) in Definition 2, since

ϕ̃τj has closed graph, and also the condition (c). So it remains to show that the condition

(a) is also satisfied.

Denote by (wiν) the associated wealth sequence and by w̄i its limit. One easily shows

that the budget constraint is satisfied by x̄i. If w̄i > 0, then x̄i maximizes the utility

function under the budget constraint. Indeed, if p̄ · xi < w̄i, then for ν large enough,

pν · xi ≤ wiν . But this implies that ui(xi) ≤ ui(xiν), and by the continuity of ui,

ui(xi) ≤ ui(x̄i). If p̄ · xi = w̄i > 0. Let λ < 1. Then p̄ · (λxi) < w̄i. So, from above,

ui(λxi) ≤ ui(x̄i). Using again the continuity of ui, ui(xi) = limλ→1 u
i(λxi) ≤ ui(x̄i).

Let us now prove that p̄t 6= 0, for all t. Since p̄ 6= 0 by normalization, there exists t

such that p̄t 6= 0. Hence, for the consumer i0(t) ∈ It and i1(t − 1) ∈ It−1, w̄i0(t) > 0

and w̄i1(t−1) > 0. So the agents i0(t) and i1(t − 1) are utility maximizer hence, from

Assumption C(c), p̄t+1 6= 0 and p̄t−1 6= 0. Doing again the same argument, we conclude

that the prices at each period is different from 0.

Since p̄t 6= 0, for all t, w̄i > 0 for all consumers, hence all of them are maximizing utility

at the price p̄. �

2.5 From truncated equilibria to equilibrium

The proof of Theorem 2.3.1 consists of considering a sequence of pseudo-equilibrium in

the truncated economy with an horizon increasing to infinity. First, we establish that

the sequence of equilibrium prices in the truncated economies remains in a compact set

for the product topology on
∏∞
t=1 RLt . Then we show that the sequence of T -equilibrium

remains in a compact set and we prove that a cluster point is an equilibrium of the OLG

economy E .

From the previous section, for all T ≥ 2, there exists a T -equilibrium (pT , (xiT ), (ytjT ))

of the economy ET . Since we have proved in the previous section (see Lemma 2.2) that

pT1 6= 0, we normalize pT so that
∑

`∈L1
pT1` = 1.

We extend the price and the allocations to the whole space
∏∞
t=1 RLt by adding zeros for

the missing components without modifying the notations. So, now the sequences (pT ),

(xiT ) and (ytjT ) are in
∏∞
t=1 RLt .

We now prove that the sequence of prices (pT ) remains in a compact subset of
∏∞
t=1 RLt .

Lemma 2.4. For all t, there exists k̃t ∈ R+ such that for all T , 0 ≤ pTt ≤ k̃t1t.
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Proof. If it is not true, there exist t̄ and an increasing sequence (T ν) such that

pT
ν

t̄ ≥ ν1
t̄. Let τ > t̄+ 2. We assume without any loss of generality that T ν > τ for all

ν.

Now we consider the restriction to the τ first period of the T ν-equilibrium (pT
ν
, (xiT

ν
), (ytjT

ν
)):

- for all i ∈ Iτ−1
0 , xiν is the restriction of xiT

ν
to
∏τ
t=1 RLt ;

- for all j ∈ J , for all t = 1, . . . , τ − 1, ytjν is the restriction of ytjT
ν

to
∏τ
t=1 RLt ;

- pν is the restriction of pT
ν

to
∏τ
t=1 RLt .

From Remark 2.4.4 in the previous section, (pν , (xiν), (ytjν)) is a pseudo-equilibrium of

the truncated economy Eτ . We now renormalize the price pν as follows:

πν =
1∑τ

t=1

∑
`∈Lt p

ν
t`

pν

Since πν is non negative, the sequence πν remains in the simplex of
∏τ
t=1 RLt , which

is compact. From Lemma 2.1 in the previous section, the sequence (xiν), (ytjν)) re-

mains in the compact subset Ã(Eτ (e)). So the sequence (πν , (xiν), (ytjν)) has a cluster

point (π̄, (x̄i), (ȳtj)). From Lemma 3.2, (π̄, (x̄i), (ȳtj)) is also a pseudo-equilibrium of

the truncated economy Eτ . But π̄1 = 0 since (
∑τ

t=1

∑
`∈Lt p

ν
t`) converges to +∞ and

0 ≤ pν1` ≤ 1 for all ` ∈ L1. Hence we get a contradiction since Lemma 3.2 shows that for

all t = 1, . . . , τ , π̄t 6= 0. �

Proof of Theorem 2.3.1.

From Lemma 2.1 and the above lemma, the sequence of T -equilibrium of the economy

ET , (pT , (xiT ), (ytjT )), remains in a compact set for the product topology of
∏∞
t=1 RLt ×∏∞

t′=1

∏
i∈It′

∏∞
t=1 RLt ×

∏
j∈J

∏∞
t′=1

∏∞
t=1 RLt . Since this is a countable product of

finite dimensional spaces, the product topology is metrizable on the compact sets and

there exists a sub-sequence (pT
ν
, (xiT

ν
), (ytjT

ν
)) of (pT , (xiT ), (ytjT )), which converges

to (p∗, (xi∗), (ytj∗)). We recall that the convergence for the product topology implies the

usual convergence when we consider only a finite number of components.

For each τ ≥ 2, for ν large enough, the restriction of (pT
ν
, (xiT

ν
), (ytjT

ν
)) to the τ

first periods is a pseudo-equilibrium of Eτ (see Remark 2.4.4 and it converges to the

restriction of (p∗, (xi∗), (ytj∗)) to the τ first periods. From Lemma 3.2, this restriction is

a pseudo-equilibrium of Eτ . From Definition 3.4.1 and the notations above, one deduces

that (p∗, (ξi∗), (yj∗)) defined as follows in an equilibrium for the OLG economy E :

- for all t ≥ 1, for all i ∈ It, ξi∗ = (xi∗t , x
i∗
t+1) and for all i ∈ I0, ξi∗ = xi∗1 ;
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- for all j ∈ J for all t ≥ 1, zj∗t = ytj∗t , ζj∗t+1 = ytj∗t+1 and yj∗t = zj∗t + ζj∗t with ζj∗0 = 0. �

2.6 A Numerical Example

This subsection intends to illustrate a case of a simple stationary OLG economy with a

single firm. At every date t ≥ 1, there is only one good |Lt| = 1, and one individual per

generation |It| = 1.

Consumers

All consumers are identical except the old consumer at date t = 0. They live two

periods, and are described by their consumption set X = R2
+, their initial endowment

vector (ey, eo) and their utility function u : X → R. The consumer at date t = 0 who is

old at date t = 1 has consumption set R+.

We consider a standard time-separable utility function, namely the Cobb-Doublas utility

function: u(xyt , x
o
t ) = a lnxyt + (1− a) lnxot , 0 ≤ a ≤ 1.

The firm

The firm is described by a production function f : −R+ → R which transforms the good

at date t into the good at date t+ 1.

We assume that f is of the form: f(zt) =

−γ(zt − ẑ), if zt ≤ ẑ ≤ 0

0, if ẑ ≤ zt ≤ 0
, where γ > 1,

ẑ < 0 and zt ≤ 0 the input used at date t. The output at time t + 1 is then given by:

ζt+1 = f(zt).

This technology exhibits strict increasing returns due to the fixed cost ẑ.

Pricing rule

The price vector p is an element of R2
+. Define the relative price: πt = pt

pt+1
. We describe

the behavior of the producer by the average cost pricing: ptzt + pt+1ζt+1 = 0, or in term

of relative prices: πtzt + ζt+1 = 0.

The consumer’s demand

Each consumer t is maximizing her utility function ut under her budget constraint.

Given a price (pt, pt+1), the consumer t’s demand is:{
xyt = awt

pt
= a(ey + eo

πt
)

xot = (1−a)wt

pt+1
= (1− a)(πte

y + eo)
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Clearly, if the relative price πt increases, the agent will decrease his consumption when

young and increase it again when old. His lifetime utility is an increasing function of

πt ≥ 0. However, we note that at each period t, the relative price πt cannot be too

small. Indeed, if we let πt tend to 0+ at date t, the consumption of young xyt will be

infinitely high while the total resource at each date is finite.

Supply function

Whenever zt ≤ ẑ, the firm can decide to produce ζt+1 = −γ(zt− ẑ) following an average

cost pricing. Thus we can write: ζt+1 = −πtzt and:

• ζt+1 = γẑπt
πt−γ

• zt = − γẑ
πt−γ

Remarks:

i) zt and ζt+1 are well defined whenever πt < γ;

ii) for all t ≥ 0, for πt ∈ (0, γ), ζt+1 > 0 and zt < 0, in addition, ζt+1 is an increasing

function of πt;

iii)limπt→γ− ζt+1 = limπt→γ−
γŷπt
πt−γ = +∞

iv) In case of constant returns to scale, that is no fixed cost, it is known that the firm,

while maximizing its profit would exhibit a discontinuous supply function. The fixed

cost associated to the average cost pricing result in a smooth supply function on the

range (0, γ).

Equilibrium

An equilibrium is an element (p∗t , (x
∗o
0 , (x

∗y
t , x

∗o
t )∞t=1), (zt,

∗ ζ∗t+1)) such that:

a) for all t, (x∗yt , x
∗o
t ) is a solution to

max u(xtt, x
t
t+1)

s.t π∗t x
∗y
t + x∗ot ≤ ŵ∗t

b) For all t, π∗t z
∗
t + ζ∗t+1 = 0;

c) x∗yt + x∗ot−1 = ey + eo + z∗t + ζ∗t−1;

where π∗t =
p∗t
p∗t+1

Characterization of equilibria

The sequence of prices (p∗t ) is an equilibrium price system if the sequence of relative

prices (π∗t ) is a solution to:

(1− a)ey(πt−1 − 1)− γŷ

πt−1 − γ
πt−1 = aeo(1− 1

πt
)− γŷ

πt − γ
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Figure 2.1: Asymptotic efficiency: when the average-cost prices tend to the marginal
cost with no fixed cost

with πt ∈ (0, γ) for all t ≥ 1, γ > 1, 0 ≥ ŷ ≥ −ey and 1 ≥ a ≥ 0.

The following figure illustrates this equation in terms of (πt−1, πt) for the particular case

where γ = 4 the initial endowment at each period ω = 2, the initial endowment when

old e = 0.8, the propension to consume when young a = 0.02, the fixed cost ẑ = −1.

Here, the consumer is ready to invest in the production since his endowment is large

enough when young and his preferences put a higher weight when old.

We have multiple steady states equilibria: a low and stable steady state π∗ < 1 and

π∗∗ = 1 which is not stable. Suppose that at each date t0, πt0 < 1, then the economy

will display a succession of inflationary equilibria since all the following prices will be

below 1 and will be decreasing to the low steady state π∗. If we instead have πt0 > 1,

then the successive price πt0+1 > 1 so are all the following prices. This case will lead

to a non stationary equilibria where the relative prices will increase and tend to the

marginal price γ without reaching it, that is: 1 < πt0 < πt0+1 < . . . < γ. Thus from

period t0, the production will be increasing, so will be the welfare of all the successive

generations since they will benefit from a deflation: pt0 > pt0+1 > . . .. Thus we have an

economy which is asymptotically efficient: it converges toward an equilibrium which is

associated to an economy without fixed costs, at which the utility is at its maximum.

For instance, if u∗, u∗∗ and ū are respectively the utility levels at π∗, π∗∗ and γ, then

given the same parameters above, we have: u∗ = 0.255 < u∗∗ = 0.595 < ū = 1.597.

The existence of fixed cost and the average cost pricing make the firm decide to produce

at each date. So the fixed cost is not always necessarely a barrier to production. It is
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also important to remark that a production at the marginal price γ is still possible even

though it will generate losses equal to γpt+1ẑ = ptẑ ≤ 0. Indeed, the demand would be:{
xyt = a(ey + ẑ + eo

γ )

xot = (1− a)(γ(ey + ẑ) + eo)

The corresponding market clearing equation gives a positive production equals to 0.768,

given the same parameters above, and the associated utility at γ is 0.344 which is clearly

lower than u∗∗ thus lower than ū. This confirms the “superiority of average cost over

over marginal cost when πt0 > 1.

Note that the choice of a is primordial and that this result relies on the particular fact

that consumers have higher initial endowment but lower incentive to consume when

young, they are more focused on future consumption.

2.7 Discussions and Concluding Remarks

As already pointed out earlier, loss-free pricing rules are relevant in unregulated markets

and can be applied to firms whose increasing returns are due to fixed cost, or associated to

a S-shape production function, which means that the technology displays first increasing

returns to scale until some level of production then decreasing returns to scale. As

provided in Villar [59], important examples are the constrained profit maximization and

the mark-up pricing rule which also include the average-cost pricing as a particular case.

These two groups of loss-free pricing rules are known to be the closest extensions of

competitive behavior when there are increasing returns. In particular, they follow the

basic profit that a firm will produce only when the profits are non-negative, otherwise

it closes down.

Increasing returns and imperfect competition:

It is important to remark that increasing returns are usually associated to imperfect

competition. In particular, firms benefiting from increasing returns may become not

negligible since their productivity will be as high as their size, so that they have some

market power and their behavior goes beyond the price-taker’s one. These firms act

then as monopolies but because of the social inefficiencies they cause in the market, they

may be considered publicly owned thus regulated. Regulation supposes that the firms

are assigned to follow marginal pricing, which implies losses when there are increasing

returns to scale, leading us beyond the loss-free framework. This calls for the need to

model the behavior of firms with monopoly power in an unregulated approach, which

face serious difficulties when these firms are not identical and interact between them.
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Some models that treat growth theory have provided structures that permit to reconcile

competitive behavior of firms and increasing returns.

In this line, Benhabib and Farmer [7] have provided such a model in which the firms

behaviors and the associated pricing are described as follows. There is a continuum of

intermediate goods y(i), i ∈ [0, 1], they are used to produce a final consumption good

according to the production function: Y =
[∫ 1

0 (y(i))λdi
]1/λ

where λ ∈ (0, 1). Clearly,

this production function exhibits constant returns to scale. The final good sector is

assumed to be competitive. If p(i) is the price of intermediate good i with respect to

the final good, then the problem of the final good sector is given by:

max
y(i)

{[∫ 1

0
(y(i))λdi

]1/λ

−
∫ 1

0
p(i)y(i)di

}

The first order condition implies that the demand for the intermediate goods i is given

by: y(i) = pt(i)
1/λY , or equivalently, p(i) =

(
y(i)
Y

)λ−1
, which is well defined whenever

Y > 0. The intermediate goods are, in turns produced by firms that are involved in

a monopolistic competition as in Dixit and Stiglitz [27]. Their production, à la Cobb-

Douglas makes use of capital and labor, y(i) = K(i)αN(i)β, where α, β > 0, α+ β > 1,

thus the increasing returns to scale are introduced in the intermediate goods sector. It

is assumed that the technology used to produce intermediate goods is identical to each

firm and that the factor market is competitive so that the capital and the labor are

paid their marginal products. Let r and ω be respectively the capital rent and the wage

relative to the final consumption good. The decision of each firm consists of maximizing

for p(i) its profit: Π(i) = p(i)y(i)−ωN(i)−rK(i) = Y 1−λN(i)βλK(i)αλ−ωN(i)−rK(i).

Here, the parameter λ represents the degree of monoppoly power of each firm, and for

λ(α + β) ≤ 1, this profit function is concave in N(i) and K(i), which confirms the

consistency between increasing returns in the technology and monopolistic competition.

The first order condition gives: r = αλp(i)y(i)
K(i) and ω = βλp(i)y(i)

N(i) . The assumption of

symmetry leads to a solution where N(i) = N , K(i) = K and p(i) = p̄. However, the

competitivity of the final good sector leads to zero profit, that is Y −
∫ 1

0 p̄y(i)di = 0,

and using the demand function in intermediate goods, we obtain that p(i) = p̄ = 1. But

thanks to the monopoly power λ, the intermediate goods sector makes positive profits.

Indeed, by substituting this price p̄ to the expressions of ω and r and then to π(i), we

have that: Π :=
∫ 1

0 π(i)di = Y (1− λ(α+ β)) > 0, whenever Y > 0 and λ(α+ β) < 1.

Structuring the production sector in this way allows firms to exploit their market power

by charging prices higher than their marginal costs, making then excess profits contrary

to the regulated approach, thus in this approach, one basically makes use a variant of

loss-free pricing rules. Indeed, in this case, the production set consists of the set of
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(K,N, Y ) such that Y ≤ KαNβ and a (weakly) efficient production (K,N, Y ) satisfies

Y = KαNβ, with α + β ≥ 1. According to the expressions of r, ω above and the fact

that the final good Y is the reference good, the application ϕ defined by ϕ(K,N, Y ) :=

(αλKα−1Nβ, βλKαNβ−1, 1), which confirms that this notion of loss-free pricing rule

gives account of models with increasing returns in macroeconomics. Here, we have an

example of mark-up pricing à la Villar, where the mark-up, for Y > 0 is given by:
Π
Y = 1 − λ(α + β) that is positive and constant. Another way of associating increasing

returns and imperfect competition in macroeconomic models can be seen in Seegmuller

[55], where increasing returns are due to a fixed cost, firms are identical, have perfect

information on the final good’s demand, can enter or exit the market for free, behave

competitively in the factor market, and compete à la Cournot in the final good market.

His model then shows for all the firms, a same positive mark-up that depends on the

number of active firms in the market . This case actually follows the equi-profitability

principle by Villar in [59].

Ownership transfer of firms:

Another important remark concerns the possible perpetuation of firms accross gener-

ations. Indeed, although we obtain an existence result which conditions are rather as

general as the ones used for an exchange economy, an important feature was the assump-

tion of exogenously given shares on firms, that all individuals received systematically

at their birth, this settles the distribution of profits among consumers. However, ac-

cording to the budget constraint, these profits in addition to the initial endowments are

completely spent to finance lifetime consumptions of each agent, and it is not explicitly

shown how firms can be perpetuated forever. The literature provides many ways to treat

intergenerational transfers. One of these ways is the notion of bequest: agents, supposed

altruistic, choose to devolve their properties and assets to other agents through a will

at the end of their lifetime. For instance, we can see the shares θij ’s at date t as the

bequest left to each child i ∈ It by cohort t − 1. In this way, agents can prevent the

disappearance of their firms from the economy, and their offsprings who become the new

owners of the firms will distribute the profits between them according to the shares they

have inherited, leave the ownerships to the next cohort and so on.

There is also a non altruistic way to transfer firms ownership among generations by

allowing agents to buy shares of firms through savings. Indeed, the lifetime budget

constraint implicitely supposes the existence of a hidden financial market, we can for

instance assume that each individual of cohort t decides to save si when young at rate

rt+1. The budget balance of agent i ∈ It can be spread into: pt · xit = pt · eit − si and

pt+1·xit+1 = pt+1·eit+1+si(1+rt+1). This savings can be used to invest in the firms so that

agent i holds a portfolio (θij), and si := −
∑

j∈J θ
ijpt ·zjt . By assuming the no arbitrage
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conditions: −pt · zjt = 1
1+rt+1

pt+1 · ζjt+1 and that all firms j that are active at date t have

the same return or profitability, agent i will be indifferent between holding a bond or

investing in any firm j, so that the only thing that matters is his gain at date t+ 1, that

is sirt+1 =
∑

j θ
ijπjt , where πjt is the profit made by firm j at date t. We thus end up

with the same lifetime budget constraint as in our model, that is: pt · xit + pt+1 · xit+1 =

pt · eit + pt+1 · eit+1 − si + (1 + rt+1)si = pt · eit + pt+1 · eit+1 +
∑

j θ
ij(pt · zjt + pt+1 · ζjt+1),

for i ∈ It, t ≥ 1.

Note that assuming uniform profitability among firms is an interesting feature. Indeed,

This case is already presented above, and it captures the situation where firms operate

in the same economical environment and may face the same conditions that generate

increasing returns to scale.

However, the shares on firms, θij remains undeterminated, it is not explicitely provided

how the shares are attributed to each agent, this leavies unexplained a key element of

the model. This issue will appear again later in the next chapter, in which we also

aim at defining a plausible intergenerational transfer. The paper is partially inspired by

Magill and Quinzii in [43], and consists of a modest approach, intending to analyze the

mechanism of transfer between generations, by means of durable goods.



Chapter 3

OLG models with durable goods

Abstract

We consider a standard pure exchange overlapping generations economy. The demo-

graphic structure consists of a new cohort of agents at each period with an economic

activity extended over two successive periods. Our model incorporates durable goods

that may be stored from one period to a successive period through a linear technology.

In this model, we intend to study the mechanism of transfer between generations, and

we show that the existence of an equilibrium can be established by considering an equiv-

alent economy “without”durable goods, where the agents economic activity is extended

over three successive periods1.

JEL classification: C62, D50, D62.

Keywords: Overlapping generations model, durable goods, irreducibility, equilibrium,

existence

1This paper is based on “Existence of equilibrium in OLG economies with durable goods”, [51]
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3.1 Introduction

Many works in OLG models involve the standard hypothesis of constant returns to scale.

This hypothesis constitutes a limitation to the production sector. Indeed, by bahaving

competitively, producers will reach their maximal profit at zero. Thus, the issue on the

repartition of profits among consumers who own the firms is avoided, as well as the one on

the existence of market which allows the transfert of property right from one generation

to another one. Moving beyond this restriction constitutes one of our motivations in

a previous work [13]. In this paper, we indeed proposed to go beyond the standard

hypothesis of constant returns and considered a model of overlapping generations with

production where increasing returns are allowed. The equilibrium existence rests on

the following facts. There is a finite number of firms that are active forever but owned

successively by 2-period lived individuals who receive exogeneous shares on firms at their

birth. The producers are instructed to make non-negative profits while they choose a

combination of prices and production plans. The consumers wealth consists of the value

of their initial endowments and the profits they obtain from the firms according to

their respective shares. They use all their wealth to pay for their lifetime consumption,

leaving nothing to the next generations. Thus the transfers of property rights between

generations are excluded.

We propose then to improve this work by studying the possibility of transfer of firms

property across generations. This paper constitutes a first step to this improvement. We

are working in the line of [43] who considers a model of overlapping generations with pro-

duction. There are durable goods which depreciate over time, and they perpetuate the

firms by allowing the transmission of the ownership shares accross generations through a

stock market. However, we will first focus our attention to a pure exchange overlapping

generations model as in [3–5], but in addition, commodities can be durable. We intend

to study, in such a model, the mechanism of wealth transfer between generations, and

we consider that the existence of durable goods makes the transfer of shares between

generations meaningful.

We are in a model with infinitely many dates, and for simplicity, the set of commodities,

perishable or durable, is the same at each date. Furthermore, there is no uncertainty,

and every individual is supposed to correctly anticipate the future prices. There is a

technology that permits to store and transfer the durable goods from one period to the

next one. This storing technology is linear. The transfered good will implicitely act

like an additionnal endowment at the date it is available. This technology is considered

as a production function in the sense that a consumer who purchases a durable good

can consume it and also use it as input to produce a good at the succeeding period.

The relation between the spot prices in Proposition 3.2.1, which is like an arbitrage-free
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condition illustrates this, where price at each date can consist of two components: the

input investment and the consumption cost. Malinvaud already considers this kind of

phenomen in [44]. There, he introduces a forward market at each date, where agents

can trade goods available only in the future. We can assimilate our work to a model à

la Malinvaud with production.

The existence of durable goods in the model implies that agents in the end of their

lifetime, will still own some goods which they will not need anymore in the next period.

Thus we introduce, at each date a futures market that allows trades of goods available in

a future date. This market helps the old generations to sell, at the end of their lifetime,

their remaining durable goods after consumption. As mentionned above, this futures

market is similar to a market of shares in a firm: at each date, old agents sell to the young

the right to dispose of the remaining durable goods. This creates an additional resource

to the old agents and a possibility for the young agents to increase their endowment

when they become old. Purchase by the young on this market can be seen as savings

that will finance the retirement of the old. The old generations, in return, will leave, at

the end of their lifetime some commodities, to which the young generations, one period

after, can have access. We can see those contracts as lifetime sale contracts called also

“viager”, where the old people can sell, for instance their house for an annuity, while

they still occupy it until the end of their life, the buyers will then own the house right

after.

In our case, there is no uncertainty, but durable goods can also act as collaterals in mort-

gage loans, in which case the reimbursement takes place one period after the agreement,

during which the borrower seizes the collateral itself. This collateral role of durable

goods is not new, it has been treated in intertemporal general equilibrium theory, as

in [36] in the case of two-period model, or also in [2] in which agents have infinte life-

time and trade long-lived assets secured by durable goods. Thus, even though default

may imply disequilibrium, by incorporating durable goods to secure assets, default be-

comes possible and equilibrium exists under standard hypothesis. In our case, in order

to establish the existence result, we make an important assumption on the desirability

of durable goods, which ensures that prices are positive, and in addition, there are no

wastes at equilibrium: all the durable goods owned by the old will be bought by the

young generations, that is all lendings will be payed back.

Our model can easily be extended to treat the case where lifetimes are uncertain and

agents may hold assets or be involved in any liability at the end of their lifetime. If

indeed, at each period, they have a probability to die in the next period, then defaults
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are prevented thanks to the durable goods that serve as collaterals to loans. In both

frameworks of certain and uncertain lifetimes, we remark that a purchase of durable

goods by old can be also the result of bequest motives, where agents are supposed to be

altruistic.

While we mainly focus on the mechanism of wealth transfer between generations, it is

important to note that many works, theoretical and empirical, on durable goods already

exist in literature, to study different issues, such as savings, borrowing constraints and

collaterals. Furthermore, since durable goods are used as components in wealth, they

are useful to study wealth distribution, see Diaz and Luenngo-Prado in [25], who in

addition relate the two with precautionary savings. In [25], for instance the liquidity or

illiquuidity nature of durable goods, have impact on the behaviour of consumers, reflect

to the notion of precautionary saving, especially when there is uncertainty or risk in

the economy. Such an issue is not treated in our case, especially since the main feature

of the durable goods we consider is their desirability, thus without taking into account

how liquid they are. Moreover, these studies which involve empirical analysis consider

durable goods which are not easily divisible, and entail very high transaction costs, as

in Martin [46]. In [25], they are assumed specific to households and cannot be traded or

rented without first converting them back to a productive capital. Our model does not

have this specificity and allows for a durable good to be divisible when sold on a future

market to the young. But in case of production, this work meets that property and goes

in the line of our aim to study the perpetuation of firms through transfers of shares and

property rights accross generations. For instance, agents partipate in firms by putting

together their investment so that each durable capital, possibly specific to each firm is

kept in its entirety.

The paper is organized as follows. The model is descibed in Section 2. We make classical

assumptions on the consumers, at the same level as for a pure exchange economy with

perishable goods, but in addition we assume that goods are desirable. A first result of the

paper establishes a relation between the spot prices and the futures prices at equilibrium.

Our main result is the existence of an equilibrium in this economy. The arbitrage-free

conditions on equilibrium prices and the condition of no wastes allow us to consider a

so-called “reduced equilibrium”. This arbitrage-free condition at equilibrium also im-

plies an indeterminacy concerning the purchase of young agents on the futures market.

Indeed, thanks to the relations between spot and futures prices like no-arbitrage con-

ditions, they will be indifferent between buying today on the futures market or buying

tomorrow on the spot market.
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We then establish the existence of the reduced equilibrium, for that we reformulate the

model into an equivalent economy “without” durable goods as defined in Section 3. In

this associated economy, all individuals will artificially live over three periods, and the

consumption sets are transformed so that they will not consist of the positive orthant

anymore. Furthermore the strong survival assumption is not satisfied since the initial

endowments are no longer interior points.

The existence result is concluded in Section 4, where the proof is similar to Balasko

et al in [3–5] but we also use the notion of irreducibility, used by Florenzano as seen

in [28, 29]. Irreducibility ensures that no matter how we allocate the individuals into

two groups, each of the groups has some good for which the other group is willing to

exchange with some goods of its own. This condition is easily obtained in our model

thanks to the presence of durable and desirable goods and the connections between all

the generations: they are indeed involved in a trade, either directly when they have

common periods of life, or indirectly, in which case, individuals of each generation will

successively act as intermediaries between them. The existence of equilibrium in the

original model with durable goods follows the existence of equilibrium in the equivalent

economy without durable goods. This passage through an equivalent economy gives

account to the involvement of durable goods in the utility of the agents.

3.2 The Model

We consider an overlapping generations economy with discrete and infinitely many dates

(t = 1, 2 . . .).

Commodities

There exists a finite set L of commodities available for consumption and trade in the

world. We denote #L = L. Goods can be perishable or durable, and may suffer

transformations from one period to an immediate successive period.

We represent these transformations by linear mappings Γt : RL → RL which transform

each consumption xt ∈ RL+ at date t into a bundle of goods

Γt(xt) ∈ RL+ at date t + 1. The commodity ` ∈ Lt is perishable if Γt(δ`) = 0, where

δ` ∈ RL consists of one unit of commodity ` and nothing else.
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So each good can be seen as a consumption good and an input if we think of Γt as a

production function.

Consumers

A generation 0, I0, lives only one period. At each period t ∈ N∗, there is a finite and

non-empty set of consumers It called generation t, who are born and live for two periods.

We denote #It = It and I = ∪t∈NIt.

The consumption set of each individual i ∈ It is a subset Xi = RL+×RL+. The consump-

tion set of consumers of generation 0 is RL+.

Consumers preferences are represented by a utility function ui : Xi → R.

The vector ei ∈ RL×RL represents the initial endowment of the agent i of the generation

t.

Assumption C.

a) For all individuals in I, ui is continuous, quasi-concave and locally non-satiated.

b) For all t ∈ N∗, there exists i0(t) ∈ It such that ui0(t) is strictly monotonic.

Assumption C is a classical assumption in a standard finite economy.

Assumption E. For all t ∈ N∗, for all i ∈ It, ei ∈ RL++×RL++, for all i ∈ I0, e
i ∈ RL++.

Markets and Prices

At each date t, there is a spot market for consumption. The price vector p is an element

of
∏∞
t=1 RL+ and pt` is the spot price of commodity ` at date t.

Furthermore, we allow for trade between generations. To make clear how this trade

takes place within one period, consider an individual born at date t who purchases xit+1

when old. This consumption gives right to xit+1 at date t+1 and to Γt+1(xit+1) available

only at date t+2 that is, after his lifetime. So at the end of date t+1 he may wish to sell

Γt+1(xit+1) to young. We write f it+1 the purchase of a young i of generation t+ 1 from

old agents of generation t at date t+1, and Πt+1 the vector price at which the trade is

agreed, the future price vector Π is an element of
∏∞
t=1 RL+. We remark that f it+1 is not

available before date t+ 2. This market can be seen as a futures market, where agents
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trade goods available only in the next period.

Each individual i ∈ It purchases f it at date t from generation t − 1 at price Πt, which

is available only at date t+ 1 and gives right to Γt(f it ) at price pt+1. At date t+ 1, the

same individual earns Γt(xit) from his previous consumption and sells xit+1 on the futures

market, when he is old, at the end of his lifetime. These operations are summarized by

the following budget constraint at prices (p,Π): for agent i ∈ It,

pt ·xit + pt+1 ·xit+1 + Πt · f it ≤ pt · eit + pt+1 · eit+1 + pt+1 ·Γt(xit) + pt+1 ·Γt(f it ) + Πt+1 ·xit+1

for agent i ∈ I0, p1 · xi1 ≤ p1 · ei1 + Π1 · xi1.

Note that the consumption when old xit+1 appears at both sides as expenditure and

additionnal income.

We denoted by Bi(p,Π) the budget constraint associated to (p,Π).

Feasibility conditions

An allocation ((xi), (f i)) in
∏∞
t=0

∏
i∈It X

i ×
∏∞
t=0

∏
i∈It R

L
+ is feasible if:

∑
i∈It−1

xit,h =
∑
i∈It

f it,h, for t ≥ 1, for h durable ,

∑
i∈It−1∪It

xit =
∑

i∈It−1∪It

eit +
∑
i∈It−1

Γt−1(xit−1) +
∑
i∈It−1

Γt−1(f it−1), for t > 1,

and

∑
i∈I0∪I1

xi1 =
∑

i∈I0∪I1

ei1

The first equation indicates that there are no wastes, all the durable goods owned by

old agents at the end of their lifetime will be bought by the young agents at that time.

We denote by A(E) the set of all feasible allocations.

Equilibrium

Definition 3.2.1. An equilibrium of the economy (E) is a list (p∗,Π∗, (xi∗), (f i∗)) in∏∞
t=1 RL+ ×

∏∞
t=1 RL+ ×

∏∞
t=0

∏
i∈It X

i ×
∏∞
t=0

∏
i∈It R

L
+ such that:
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a) for all t ≥ 1, for all i ∈ It, (xi∗, f i∗) is a maximal element of ui satisfying the budget

constraint:

p∗t ·xit+p∗t+1 ·xit+1 +Π∗t ·f it ≤ p∗t ·eit+p∗t+1 ·eit+1 +p∗t+1 ·Γt(xit)+p∗t+1 ·Γt(f it )+Π∗t+1 ·xit+1,

for all i ∈ I0, xi∗ is a maximal element of ui satisfying: p∗1 · xi1 ≤ p∗1 · ei1 + Π∗1 · xi1.

b) the allocation ((xi∗), (f i∗)) is feasible:

∑
i∈It−1

xi∗t =
∑
i∈It

f i∗t , for t ≥ 1,

∑
i∈It−1∪It

xi∗t =
∑

i∈It−1∪It

eit +
∑
i∈It−1

Γt−1(xi∗t−1) +
∑
i∈It−1

Γt−1(f i∗t−1), for t > 1,

∑
i∈I0∪I1

xi∗1 =
∑

i∈I0∪I1

ei1.

Remark 3.2.1. The first equation in Condition b) implies:

∑
i∈It−1∪It

xi∗t =
∑

i∈It−1∪It

eit +
∑

i∈It−1∪It−2

Γt−1(xi∗t−1), for t > 1

This equation states that the consumptions at date t involve consumptions of the pre-

ceeding generations.

In the following, we denote by γt the transpose of Γt.

Proposition 3.2.1. i) If (p∗,Π∗) is an equilibrium price, then (p∗, Π̂∗) where

Π̂∗t := γt(p∗t+1) for all t, is also an equilibrium.

ii) For all t ∈ N∗, p∗t � γt(p∗t+1).

Remark 3.2.2. i) The equilibrium price (p∗, Π̂∗) coincides with the equilibrium defined

by Malinvaud in [44], where he considered an intertemporal economy with perish-

able commodities. These commodities do not cross time but may be available to

agents only in future dates; in this case, agents are allowed to trade on forward

markets at forward prices. Our model is then similar to the model à la Malinvaud

with a production with constant returns.

ii) Furthermore, if we think xi∗t as a bundle that gives right to consumption at date t

as well as “input” for date t+ 1, we may write p∗t = γt(p∗t+1) + p′t, where γt(p∗t+1)

can be seen as the “input” cost while p′t is the consumption cost at date t.
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Proof. At equilibrium, Π∗t+1 ≥ γt+1(p∗t+2), for all t. Otherwise, all the young agents at

date t + 1 will have an arbitrage opportunity by buying a commodity h on the futures

market and reselling it on the spot market at date t + 2. Then, there is no solution to

the utility maximization problem under the budget constraint since the utility functions

are locally nonsatiated.

Furthermore, if Π∗t+1,h > (γt+1(pt+2))h, the young agents have no incentive to buy on the

futures market because it is better to wait until the next period to make the purchase

on the spot market, so f i∗t+1,h = 0 for all i. But this implies that xi∗t+1,h = 0 for all i.

If we decrease the future price from Π∗t+1,h to Π̂∗t+1,h, then the budget set Bi(p∗, Π̂∗)

associated to (p∗, Π̂∗) is smaller and included in the budget set Bi(p∗,Π∗) associated

to (p∗,Π∗). Moreover, ((xi∗), (f i∗)) belongs to Bi(p∗, Π̂∗). Hence as it is optimal in

B(p∗,Π∗), it is still optimal in the smaller set Bi(p∗,Π∗). So (p∗, Π̂∗) is an equilibrium

price with the same consumption allocations.

Now, let us suppose that there exists a durable commodity h in L such that p∗th ≤
(γt(p∗t+1))h. Thus, either p∗th < (γt(p∗t+1))h or p∗th = (γt(p∗t+1))h If the first case holds,

then young agents at date t, will have an arbitrage opportunity by buying the commodity

h at price p∗th on the spot market, and reselling it at the price (γt(p∗t+1))h at date t+ 1.

In the second case, the agent would be willing to buy as much as she wants of good

h when she is young, since her utility is locally nonsatiated, thus there would be no

solution to the utility maximization problem. So necessarely, arbitrage-free condition

implies p∗t � γt(p∗t+1), for all t ∈ N∗.
�

Thus the list (p∗, (xi∗), (f i∗)) in
∏∞
t=1 RL+ ×

∏∞
t=0

∏
i∈It X

i ×
∏∞
t=0

∏
i∈It R

L
+ such that:

a) for all t ≥ 1, for all i ∈ It, xi∗ is a maximal element of ui in the budget set:

{xi ∈ Xi | (p∗t − γt(p∗t+1)) · xit + (p∗t+1 − γt+1(p∗t+2)) · xit+1 ≤ p∗t · eit + p∗t+1 · eit+1},

for all i ∈ I0, xi∗ is a maximal element of ui in the budget set:

{xi ∈ Xi | (p∗1 − γ1(p∗2)) · xi1 ≤ p∗1 · ei1}.

b) the allocations ((xi∗), (f i∗)) are feasible:

∑
i∈It−1

xi∗t =
∑
i∈It

f i∗t , for t ≥ 1,

∑
i∈It−1∪It

x∗it =
∑

i∈It−1∪It

eit +
∑

i∈It−1∪It−2

Γt−1(xi∗t−1), for t > 1,
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∑
i∈I0∪I1

xi∗1 =
∑

i∈I0∪I1

ei1.

is an equilibrium with durable goods.

The budget constraint in a) indicates that the agents anticipate the future prices. Indeed

the price vector p∗t+2 appears in the budget constraint of the agents of generation t

because of the trade they make when old with the young of generation t + 1 whose

budget constraint involves prices at date t + 2: at equilibrium these agents anticipate

Πt+1 to be equal to γt+1pt+2.

Moreover, we note an indetermination for the (f i∗) given in b). As a matter of fact, the

individuals maximize their utility under a budget constraint that does not depend on

the f i∗ anymore. The f i∗’s are only given by
∑

i∈It−1
xi∗t =

∑
i∈It f

i∗
t , for t ≥ 1, which

means that the agents are indifferent between buying today on the futures market or

buying tomorrow on the spot market. This is an usual direct consequence of the no-

arbitrage condition on spot and futures prices.

To prove the existence of an equilibrium with durable goods, we will focus on the so-

called “reduced equilibrium”defined as follows:

Definition 3.2.2. A “reduced equilibrium”is a list (p∗, (xi∗)) of
∏∞
t=1 RL+×

∏∞
t=0

∏
i∈It X

i

such that:

a) for all t ≥ 1, for all i ∈ It, xi∗ is a maximal element of ui in the budget set:

{xi ∈ Xi | (p∗t − γt(p∗t+1)) · xit + (p∗t+1 − γt+1(p∗t+2)) · xit+1 ≤ p∗t · eit + p∗t+1 · eit+1},

for all i ∈ I0, xi∗ is a maximal element of ui in the budget set:

{xi ∈ Xi | (p∗1 − γ1(p∗2)) · xi1 ≤ p∗1 · ei1}.

b) the allocations ((xi∗)) are feasible:

∑
i∈It−1∪It

x∗it =
∑

i∈It−1∪It

eit +
∑

i∈It−1∪It−2

Γt−1(xi∗t−1), for t > 1,

∑
i∈I0∪I1

xi∗1 =
∑

i∈I0∪I1

ei1.
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Indeed, if (p∗, (xi∗)) is a reduced equilibrium, then the list (p∗,Π∗, (xi∗), (f i∗)) where

Π∗t := γt(p∗t+1) for all t, and the f i∗’s are such that
∑

i∈It−1
xi∗t =

∑
i∈It f

i∗
t , for t ≥ 1,

is an equilibrium.

Our main result is the following existence theorem.

Theorem 3.2.1. Under Assumptions C and E, the economy E has an equilibrium.

3.3 An equivalent economy without durable goods

In the following, since the budget constraint of each individual involves prices over three

periods of time, we build an equivalent economy Ẽ “without” durable goods, where each

individual’s lifetime is extended over three periods. This equivalent economy is similar

to the standard pure exchange OLG model with perishable goods, and we will establish

the existence of an equilibrium in Ẽ to prove the existence of an equilibrium in an econ-

omy with durable goods.

3.3.1 Description of the equivalent economy Ẽ

We consider an overlapping generations model with discrete and infinitely many dates

t = 1, 2 . . ., and the same commodity space L at each date.

At each date t, the set of consumers, called generation t is the same, and denoted by It.

To describe the characteristics of the consumers we define the following linear mappings:

φt : (RL)2 → (RL)3, for t ≥ 1, by φt(xit, x
i
t+1) = (xit, ξ

i
t+1, ζ

i
t+2), with

ξit+1 = xit+1 − Γt(xit), and ζit+2 = −Γt+1(ξit+1 + Γt(xit)),

φ0 : RL → (RL)2, by φ0(xi1) = (ξi1, ζ
i
2), with ξi1 = xi1, and ζi2 = −Γ1(ξi1).

The consumption sets are now defined as follows:

For each i ∈ I0, X̃i := φ0(RL+), and for each i ∈ It, t ≥ 1, X̃i := φt((RL+)2).

Thus the consumption set of an agent i of generation t, X̃i is defined over three periods:

t, t+1 and t+2, and that of generation 0 is now defined over two periods: t = 1 and t = 2.
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The initial endowment is defined as follows:

ẽi = (ei1, 0) ∈ RL++ ×RL, for i ∈ I1, and ẽi = (eit, e
i
t+1, 0) ∈ RL++ ×RL++ ×RL, for i ∈ It.

For each t, the function φt is injective, the function φt
|(RL+)2

: (RL+)2 → X̃i is bijec-

tive. Its inverse ψt : X̃i → (RL+)2 is thus well defined. In the same way, the function

φ0
|RL+

: RL+ → X̃i is bijective, and its inverse ψ0 : X̃i → RL+ is thus also well defined.

We can now define the new utility functions ũi : X̃i → R, by ũi = ui ◦ ψt.

Note that for each i ∈ I0, ũi(ξi1, ζ
i
2) = ui(ξi1), and for each i ∈ It, t ≥ 1, ũi(xit, ξ

i
t+1, ζ

i
t+2) =

ui(xit, ξ
i
t+1 + Γt(xit)).

This new utility function clearly shows the role of any purchase of durable goods by

young agents on their consumption when old. Re-defining consumption bundles in this

way supposes an “internalisation”of the durability technology in the utility.

The definition below coincides with the standard definition of a competitive equilibrium

in an OLG economy without durable goods.

Definition 3.3.1. An equilibrium in Ẽ is a list (p∗, (χi∗)) in
∏∞
t=1 RL+ ×

∏∞
t=0

∏
i∈It X̃

i,

such that:

a) for all t ∈ N, for all i ∈ It, χi∗ = (xi∗t , ξ
i∗
t+1, ζ

i∗
t+2) is a maximal element of ũi satisfying

the equivalent budget constraint:

p∗t · xi∗t + p∗t+1 · ξi∗t+1 + p∗t+2 · ζi∗t+2 ≤ p∗t · ẽit + p∗t+1 · ẽit+1

b) the consumption plan (χi∗) is feasible:∑
i∈I0 ξ

i∗
1 +

∑
i∈I1 x

i∗
1 =

∑
i∈I0∪I1 ẽ

i
1∑

i∈It−2
ζi∗t +

∑
i∈It−1

ξi∗t +
∑

i∈It x
i∗
t =

∑
i∈It−1∪It ẽ

i
t, t > 1

Proposition 3.3.1. If (p∗, (χi∗)), where χi∗ = (xi∗t , ξ
i∗
t+1, ζ

i∗
t+2) for i ∈ It is an equilibrium of

the equivalent economy, then (p∗, (xi∗)) is a reduced equilibrium, where xi∗ = (xi∗t , ξ
i∗
t+1+

Γ(xi∗t )) for i ∈ It, t ≥ 1.

Proof. Indeed, by construction, if (χi∗) is feasible in Ẽ , then, ((xi∗)) defined by xi∗ =

(xi∗t , ξ
i∗
t+1 + Γ(xi∗t )) is feasible, that is:

∑
i∈I0

ξi∗1 +
∑
i∈I1

xi
∗

1 =
∑

i∈I0∪I1

xi
∗

1 =
∑

i∈I0∪I1

ẽi1

∑
i∈It−2

ζi∗t +
∑
i∈It−1

ξi∗t +
∑
i∈It

xi∗t =
∑
i∈It−2

−Γt−1(xi∗t−1) +
∑
i∈It−1

(xi∗t − Γt−1(xi∗t−1)) +
∑
i∈It

xi∗t



OLG models with Durable Goods 52

Thus: ∑
i∈It−1∪It

x∗it =
∑

i∈It−1∪It

ẽit +
∑

i∈It−1∪It−2

Γt−1(xi∗t−1), for t > 1

Furthermore the optimality of χi∗ for the utility function ũi under the equivalent budget

constraint above implies, by construction, the optimality of xi∗ = (xi∗t , ξ
i∗
t+1 + Γ(xi∗t )) for

the utility function ui and under the budget constraint:

p∗t · xit + p∗t+1 · (xit+1 − Γt(xit))︸ ︷︷ ︸
ξit+1

+p∗t+2 · (−Γt+1(xit+1))︸ ︷︷ ︸
ζit+2

≤ p∗t · eit + p∗t+1 · eit+1

p∗1 · xi1︸︷︷︸
ξi1

+p∗2 · (−Γ1(xi1))︸ ︷︷ ︸
ζi2

≤ p∗1 · xi1, i ∈ I0.

�

3.3.2 Some properties of the equivalent economy

• For all t = 1, 2, . . ., for all i ∈ It, the consumption sets X̃i are non-empty, closed,

and convex.

We note that the X̃i’s are not the positive orthants, but the consumptions at date t

for i ∈ It are bounded from below. Indeed, for each individual i of generation t, we

allow for negative consumptions at dates t+ 1 and t+ 2, but the consumptions at

date t+ 1 and t+ 2 are constrained by the consumptions at the preceeding dates.

These kind of consumption sets are considered by Florenzano in [30], in which

nonnegative components are called consumptions and nonpositive ones deliveries:

the activity of an agent of generation t at date t+1 artificially consists of delivering

the remaining goods she holds at this period to agents of the next genaration.

• For all t = 1, 2, . . ., for all i ∈ It, the utility functions ũi defined above inherit

the conditions on ui in Assumption C, thanks to the linearity of φt and ψt. In

particular, there exists i0(t) in It such that ũi0 is strictly monotonic with respect

to the two first variables (xi0t , ξ
i0
t+1).

• The set of feasible allocations A(Ẽ), that is the set of allocations satisfying the

market clearing condition (Condition (b) of Definition 3.3.1) for the economy Ẽ is

a subset of a compact set for the product topology. Indeed, let e ∈
∏
t∈N∗ RL+ be

defined by et =
∑

i∈It∪It−1
eit. Let e′ ∈

∏
t∈N∗ RL+ such that e′ ≥ e. Then, there

exists a sequence of nonnegative vectors (Mt)t≥1 such that for all (χi) ∈ A(Ẽ),
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with χi = (xit, ξ
i
t+1, ζ

i
t+2), i ∈ It, for all t = 1, 2 . . ., we have:

0 ≤ xit ≤Mt, −Γt(Mt) ≤ ξit+1 ≤Mt+1, and −Γt+1(Mt+1) ≤ ζit+2 ≤ 0.

Mt is recursively defined by: Mt = e′t + Γt−1(Mt−1 + Γt−2(Mt−2) · · · + Γ1(M1)),

where M1 = e′1. (See Appendix A)

3.4 Existence of equilibrium in the equivalent economy

To establish the existence of equilibrium in Ẽ , we first truncate the economy Ẽ at a finite

horizon τ and consider the set of all individuals born up to period τ −2, Iτ−2
0 = ∪τ−2

t=0 It.

For each i ∈ I0,

X̃τi = {a ∈ (RL+)τ | (a1, a2) ∈ X̃i, at′ = 0, ∀t′ > 2}

ũτi(a) = ũi(a1, a2)

ẽτi = (ẽτit′ )
τ
t′=1 such that ẽτi1 = ẽi1, and ẽτit′ = 0 if t′ > 1.

For each i ∈ It, t = 1, 2 . . . τ − 3,

X̃τi = {a ∈ (RL+)τ | (at, at+1, at+2) ∈ X̃i, at′ = 0,∀t′ 6= t, t+ 1, t+ 2}

For each i ∈ Iτ−2,

X̃τi = {a ∈ (RL+)τ | (aτ−2, aτ−1,−Γτ−1(aτ−1 + Γτ−2(aτ−2)) ∈ X̃i,

at′ = 0,∀t′ 6= τ − 1, τ − 2}

ũτi(a) = ũi(at, at+1, at+2)

ẽτi = (ẽτit′ )
τ
t′=1 such that ẽτit = ẽit, ẽ

τi
t+1 = ẽit+1 and ẽτit′ = 0 if t′ 6= t, t+ 1.

We note that the standard survival assumption is not satisfied because the initial endow-

ment ẽτi may not belong to the consumption set X̃τi. Indeed, for i ∈ It, (ẽit, ẽ
i
t+1, ẽ

i
t+2)

may not be in X̃i since ẽit+2 = 0 6= −Γt+1(ẽit+1 + Γt(ẽit)) if Γt+1 6= 0. So in order to

overcome this difficulty, we work with a free-disposal equilibrium by introducing the

free-disposal cone Y := −(RL+)τ . Then ẽτi ∈ X̃τi−Y . See [28] and [29] for the existence

of free-disposal equilibrium in a pure exchange economy.

Now, we introduce a weak notion of equilibrium, called pseudo-equilibrium, in which

we do not require the market clearing condition at periods τ − 1 and τ . Indeed, the
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truncation of an equilibrium is not an equilibrium but a pseudo-equilibrium. (See Lemma

3.1 below).

Definition 3.4.1. A pseudo-equilibrium in the truncated economy Ẽτ is an element

(p∗, (ai∗) ∈ (RL+)τ ×
∏
i∈Iτ−2

0
Xτi such that:

a) for all t = 1, 2 . . . τ − 2, for all i ∈ It, ai∗ is a maximal element of ũτi in the budget

set

{ai ∈ X̃τi | p∗ · ai ≤ p∗ · ẽτi};

for all i ∈ I0, ai∗ is a maximal element of ũτi in the budget set {ai ∈ X̃τi | p∗·ai ≤ p∗·ẽτi};

b) For all t = 1, . . . , τ − 2, ∑
i∈Iτ−2

0

ai∗t =
∑

i∈Iτ−2
0

ẽτit ,

∑
i∈Iτ−2

0

ai∗τ−1 ≤
∑

i∈Iτ−2
0

ẽτiτ−1 +
∑

i∈Iτ−1

ẽiτ−1.

According to this definition, at period τ−1, we artificially increase the initial endowments

by adding those of the consumers of the generation τ − 1.

Lemma 3.1. If τ̄ > τ and (p̄∗, (āi∗)) is a pseudo-equilibrium in the economy Eτ̄ , then

the price and the allocations restricted to the τ − 1 first periods
(
p̂∗, (âi∗)i∈Iτ−2

0

)
defined

by

p̂∗ = (p̄∗t )
τ−1
t=1 ,

âi∗ = (āi∗t )τ−1
t=1 , for all i ∈ Iτ−2

0 , is a pseudo-equilibrium in the economy Eτ .

In the following, we will establish the existence of a pseudo-equilibrium in Ẽτ . For that,

we use the fact that an equilibrium with free-disposal is a pseudo-equilibrium. But since

ẽτi ∈ X̃τi − Y , the problem of non-interiority of the initial endowments leads us to first

make use of the notion of quasi-equilibrium with free-disposal as an intermediate step.

Definition 3.4.2. A quasi-equilibrium with free-disposal in Ẽτ is a list (p∗, (ai∗), y∗) in

(RL+)τ ×
∏
i∈Iτ−2

0
Xτi × Y such that:

a’) for all t = 1, 2 . . . τ − 1, ai∗ is an element of the budget set:

{ai ∈ X̃τi | p∗ · ai ≤ p∗ · ẽτi}

and for all ai ∈ X̃τi such that: p∗ · ai < p∗ · ẽτi, ũτi(ai) ≤ ũτi(ai∗),
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for all i ∈ I0, ai∗ ∈ {ai ∈ X̃i | p∗ · ai ≤ p∗ · ẽτi} and for all ai ∈ X̃τi such that

p∗ · ai < p∗ · ẽτi, ũτi(xi) ≤ ũτi(xi∗),
b) p∗ · y ≤ p∗ · y∗ = 0 for all y ∈ Y
c)
∑

i∈Iτ−2
0

ai∗ =
∑

i∈Iτ−2
0

ẽτi + y∗

d) p∗ 6= 0.

Proposition 3.4.1. For all τ ≥ 3, Ẽτ has a quasi-equilibrium with free-disposal (p∗, (ai∗), (y∗))
in (RL+)τ ×

∏
i∈Iτ−2

0
Xτi × Y .

Proof

Indeed, Ẽτ satisfies all the necessary conditions of existence of quasi-equilibrium in an

exchange economy where free-disposal activities are possible. [See Florenzano in [29],

Proposition 2.2.2]

• ẽτi ∈ X̃τi − Y and
∑

i∈Iτ−2
0

ẽτi ∈ int
(∑

i∈Iτ−2
0

X̃τi − Y
)

• for all i, ũτi satisfies the classical conditions of continuity, quasi-concavity and

local non-satiation,

• the set of feasible allocations A(Ẽτ ) is a subset of a compact set of (RL)τ . �

Actually, one way to go from a quasi-equilibrium to an equilibrium is the notion of

McKenzie-Debreu irreducibility. But following Assumption C and Assumption D made

on the original economy, we establish that the truncated economy Ẽτ is McKenzie-Debreu

irreducible.

Proposition 3.4.2. The truncated economy Ẽτ , equiped with the disposal activity Y is

McKenzie-Debreu irreducible, that is for all non-empty disjoint subsets J1, J2 of Iτ−2
0 ,

J1, J2 6= Iτ−2
0 , Iτ−2

0 = J1 t J2,and for all feasible allocation (ai) ∈
∏
i∈Iτ−2

0
Xτi, there

exists an allocation (a′i) ∈
∏
i∈Iτ−2

0
Xτi such that:

1- ũτi(a′i) ≥ ũτi(ai) for all i ∈ J1 and ∃j ∈ J1, ũ
τj(a′j) > ũτj(aj),

2-
∑

i∈Iτ−2
0

(a′i − ẽτi)−
∑

i∈J2
(ẽτi − ai) ∈ Y

Taking into account the feasibility of the allocation (ai), condition 2 can also be written

as:
∑

i∈Iτ−2
0

a′i −
∑

i∈J1
ai +

∑
i∈J2

ẽτi ∈ Y .

The irreducibility condition says that whenever the individuals are allocated into two

nonempty and disjoint groups J1 and J2, then for any feasible allocation (ai) and after

disposing of any eventual surplus,
∑

i∈Iτ−2
0

ẽτi +
∑

i∈J2
(ẽτi − xi) can be allocated to

group J1 improving the situation of its members as given by Relation 1.
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Proof.

First case, there exists t such that It ∩ J1 6= ∅, and It ∩ J2 6= ∅. So let i1 and i2 be in It
such that i1 6= i2 and i1 ∈ J1, i2 ∈ J2. Since ẽτit and ẽτit+1 are positive for i = i1, i2, each

one is able to provide some good for which the other one is willing to exchange with some

good of its own thanks to Assumption C. For instance, take a′i1 = ai1 + ε where ε > 0 is

arbitrarely small, a′i2 = ẽτi2 − ε� 0 for ε small enough, a′i = ai, for i ∈ J1, i 6= i1, and

a′i = ẽτi, for i ∈ J2, i 6= i2. Clearly, a′i satisfies Relations 1 and 2: the situation of one

group will be moved to a preferred position, by adding a feasible trade from the other

group.

Suppose now that there does not exist t such that It ∩ J1 6= ∅ and It ∩ J2 6= ∅; let us

define: t̄1 := max{t | It ⊂ J1}, t̄2 := max{t | It ⊂ J2}.
Note that the sets {t | It ⊂ J1} and {t | It ⊂ J2} are disjoint and thei union is

{1, 2, . . . τ − 2}.

If t̄1 6= τ −2, then It̄1 ⊂ J1 and It̄1+1 ⊂ J2. If t̄1 = τ −2, then since t̄2 6= τ −2, It̄2 ⊂ J2

and It̄2+1 ⊂ J1. Since the two sub-cases can be treated similarly, we deal only with the

first one, in which It̄1 ⊂ J1 and It̄1+1 ⊂ J2. In this sub-case, since ẽτit̄1 , ẽ
τi
t̄1+1 are positive

for i ∈ It̄1 , as well as ẽτit̄1+1 for i ∈ It̄1+1, both generations are able to provide some

commodity during their common period of life. In particular, consider the individual

i0(t̄1) mentionned in Assumption C, then a young individual i of generation t̄1 + 1 can

provide some goods to i0(t̄1), improving the utility of i0(t̄1) when he is old at date t̄1 + 1.

If we keep the allocations of the other individuals of J1 unchanged, and let the other

members of J2 consume their initial endowments, Relations 1 and 2 are satisfied. �

Thanks to Assumptions C and D on the original economy, the McKenzie-Debreu irre-

ducibility of the truncated economy Ẽτ and the interiority of the total initial endowment,

we get that a quasi-equilibrium with free-disposal (p∗, (ai∗)) ∈
∏τ
t=1 RL+×

∏
i∈Iτ−2

0
Xτi is

an equlibrium with free-disposal. (See Florenzano [29], Proposition 2.3.2 and Corollary

2.3.2)

Remark 3.4.1. The strict monotonicity of the utility function ui0 of an individual i0 in

It in Assumption C implies that p∗t � 0 for all t = 1, 2, . . . τ − 1, thus y∗t = 0 for all

t = 1, 2, . . . τ − 1.

Thus, since the equilibrium is realized without disposal of surplus, we get that the

equilibrium with free-disposal is actually an equilibrium so a pseudo-equilibrium. Hence,

one finally obtains:

Proposition 3.4.3. For all τ ≥ 3, there exists a pseudo-equilibrium of the economy Ẽτ .
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The following lemma gives properties of the pseudo-equilibrium. We normalize a non

zero equilibrium price p∗ so that
∑τ

t=1

∑
`∈L p

∗
t` = 1.

Lemma 3.2. If (p∗, (ai∗)) ∈ (RL+)τ ×
∏
i∈Iτ−0

Xτi is a pseudo-equilibrium, then p∗t � 0,

for all t.

Furthermore, the set of pseudo-equilibria of the economy Ẽτ with a normalized price is

closed.

Proof: See Appendix A.

The last step of the existence of equilibrium in the reduced economy consists of consider-

ing a sequence of pseudo-equilibria in the truncated economy with an horizon increasing

to infinity. We follow [13], and establish that the sequence of equilibrium prices in the

truncated economies remains in a compact set for the product topology on
∏∞
t=1 RL.

From the previous section, for all T ≥ 2, there exists a pseudo-equilibrium (pT , (aiT )) of

the economy ẼT . Since we have previously proved that pT1 6= 0, we normalize pT so that∑
`∈L p

T
1` = 1.

We extend the price and the allocations to the whole space
∏∞
t=1 RL by adding zeros for

the missing components without modifying the notations. So, now the sequences (pT ),

(aiT ) are in
∏∞
t=1 RL.

Lemma 3.3. For all t, there exists k̃t ∈ R+ such that for all T , 0 ≤ pTt ≤ k̃t1, where

1 = (1, . . . , 1) ∈ RL.

Proof. See Appendix A.

Now we show that the sequence of pseudo-equilibria remains in a compact set and we

prove that a cluster point is an equilibrium of the OLG economy E .

From the compactness of A(Ẽ) and the above lemma, the sequence of T -equilibrium

of the economy ET , (pT , (aiT )), remains in a compact set for the product topology of∏∞
t=1 RL×

∏∞
t′=1

∏
i∈It′

∏∞
t=1 RL. Since this is a countable product of finite dimensional

spaces, the product topology is metrizable on the compact sets and there exists a sub-

sequence (pT
ν
, (aiT

ν
)) of (pT , (aiT )), which converges to (p∗, (ai∗)). We recall that the

convergence for the product topology implies the usual convergence when we consider

only a finite number of components.

For each τ ≥ 3, for ν large enough, the restriction of (pT
ν
, (aiT

ν
)) to the τ first periods is a

pseudo-equilibrium of Ẽτ (see Lemma 3.1) and it converges to the restriction of (p∗, (ai∗))
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to the τ first periods. From Lemma 3.2, this restriction is a pseudo-equilibrium of Ẽτ .

From Definition 3.4.1 and the notations above, one deduces that (p∗, (αi∗)) defined as

follows is an equilibrium for the OLG economy Ẽ :

αi∗ = (xi∗t , ξ
i∗
t+1, ζ

i∗
t+1), for all t ≥ 1 and for all i ∈ It,

αi∗ = (ξi∗1 , ζ
i∗
2 ), for all i ∈ I0.

�

3.5 Concluding Remarks, Discussions and Possible exten-

sions

To summarize, we have established an existence result that relies on another important

result such as the fact that a pure exchange economy with durable goods is equivalent to

a standard pure exchange economy “without” durable goods. This equivalent economy

helps to confirm that a consumption of durable goods by young agents has an impact,

both on their consumption when old, but also after their lifetime, this explains the

extension from a two-period lifetime into three-period one. This equivalent economy

satisfies classical assumptions of a standard pure exchange economy, except the survival

assumption. In order to recover this difficulty, we introduce an artificial free-disposal

cone, a classical technical solution, provided by Florenzano in [28–30]. The ultimate step

from an equilibrium with free disposal into an equilibrium is ensured by the desirablility

of durable goods, which confirms why this assumption is primordial in our model.

However, above the existence results of equilibria, this paper provides a mechanism

within which generations successively transfer their wealth, by means of durable goods,

and shows that their consumptions, thanks to their durability, entail their owners a

role of producer. It is clear that the consumption behaviour has impacts not only on

their close future or their own generation but also on the succeeding generations. The

irreducibility property that links generations to each other appears then natural to our

economy, and this feature was important to our existence result. In the following, we

will see more in detail the role of the durable goods in our model.

Durable goods act like consumption goods and inputs for future dates, so they not only

enter the budget constraints but are involved in the utility function of each agent as

well, contrary to many existing literatures. Many other models consider durables not

as consumption goods but as goods which bring services, and it is theses services that

are involved in the utility of agents. In our model, according to the relations on prices,

durable goods can be “consumed” and differ from perishable goods in the sense that
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their prices contain an additionnal component which measures their ability to be used

as inputs or any other investment goods for the future. Therefore, any agent who holds

a durable good acts like a consumer and a producer at the same time, in this line, we

can think of the linear mapping Γt as a production technology to which each consumer

can have access in order to store or transfer the good accross successive periods. This

production takes time: from a consumption at period t is produced a good, available at

date t+ 1 that will add to the existing allocations.

Financial markets and Arbitrage-free condition

It is important that durable goods must be desired, by at least one individual of each

generation, and no wastes are allowed. Since the future is assumed perfectly antipated,

old agents will never purchase any durable goods unless they are sure that they can sell

them again on the futures market. Whenever a durable good still remain at the end

of the life of its owner, it will be traded on the futures market. At equilibrium, under

the no-wastes condition and given the perfect foresight, consumptions of old agents may

include durable goods, which will bring an additionnal financial resource thanks to the

futures market, this relates the notion of viager if we associate the durable good to

housing: agents can enjoy of their house during their old ages while receiving the future

market value of that house. The budget initial constraint of agent i ∈ It illustrates it

by showing the consumption xit+1 at both the expenditure and the income sides.

As mentionned before, the trade of deliverable goods in the future can be associated

to borrowings and lendings, that are balanced at each date according to the market

clearing condition. More precisely, at each date t, consider the individual i ∈ It and

denote by lit := Πt · f it the amount that he spends on the futures market when young.

Note that lit can be seen as saving when young that may be borrowed by old of previous

generation, and will bring (1 + rt)l
i
t at date t + 1, where rt is the rate of return. Note

also that agent i is allowed to borrow bit+1 when old from the young of next generation

but up to b̄it+1 := Πt+1 · xit+1, that is, the durable good he holds when old, xit+1 will

serve as collateral to his lending. Then, the budget constraint of agent i writes as:

pt · xit + pt+1 · xit+1 + lit ≤ pt · eit + pt+1 · eit+1 + pt+1 · Γt(xit) + (1 + rt)l
i
t + bit+1

At equilibrium, thanks to the arbitrage-free condition (1 + rt)l
i = (1 + rt)Πt · f it =

γt(pt+1) · f it , this budget constraint is the same as the initial one introduced previously

in our model. In addition, the no-wastes condition:
∑

i∈It f
i
t =

∑
i∈It−1 x

i
t implies that∑

i∈It b
i
t =

∑
i∈It b̄

i
t =

∑
i∈It−1

lit, this confirms that all borrowings are paid back, all

collaterals are seized.
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Moreover, from the arbitrage-free condition ((1+rt)Πt−γt(pt+1)) ·f it = 0, we know that

if rt ≤ 0, then Πt ≥ γt(pt+1), a necessary condition at equilibrium as remarked in the

proof of Proposition 3.2.1. But the case where rt < 0 would lead to a lack of incentive

to save or lend to the old, leaving the remaining durable goods valueless. By considering

rt = 0, we have the so called reduced equilibrium where Πt = γt(pt+1), which confirms

that at equilibrium the (f i)’s will be completely indeterminate. As a remark on the

shares on firms θij ’s in the previous chapter, this indetermination is again an immediate

consequence of the non-arbitrage condition. Here in our framework, it stipulates that

young agents are indifferent between buying today on the futures market or waiting the

next period to buy on the spot market. The only condition on the f i’s is the market

clearing condition that prevents wastes and defaults in case of lending.

One important fact from our model is its structure which allows the agents to buy or hold

an asset at the end of their lifetime, for instance, many agents buy a house at their old

age. But the condition of no-arbitrage resulting in an indetermination of the f i’s limits

our result, a priori, the indifference of agents between trading with the old in futures

market or waiting to buy in the spot market cannot ensure that the transfer actually

happens, thus the f i can eventually be zero. Another way to recover this limitation is the

altruism, which will ensure that agents have incentive to hold durable goods and transfer

them to the next generation, even if it does not bring them any financial compensation.

Bequest motives:

It might happen that old agents leave freely their remaining durable goods to the next

generation as a bequest. In such a situation, supposing altruism implies that their utility

may be affected by the utility of their heir who benefits from the bequests. Indeed, we

then have a particular case of Seghir and Martinez [56], where we first suppose that

lifetimes are not uncertain. Our model can be adapted in the following way. For each

t and each i ∈ It, the bequest he intendes to leave to the next generation is denoted

by Bi =
∑

k∈It+1
Bi
k. Then we introduce a function V i : RL+ → R+ as the utility that

agent i ∈ It gets from his bequest motives. This bequest consists of some part of the

remaining durable goods xit+1 that the old agents decide to put on their will at date t+1

so that some individuals of generation t + 1 will have the rights over them. The other

part, ξit+1 will be traded on the future market at price Πt+1 as described in our original

model. Note that whether it concerns trade on futures market or bequest, the delivery

will take place at date t + 2 when the agent disappears from the economy. We do not

require that the agents know from whom they benefit of the transfer, so they receive it

in an anonymous way, and we call T i the total nominal transfer that agent i receives.

This transfer will consist of the bequest they inherit from the previous generation t− 1,

registered at date t, delivered at date t+ 1 thus valued at the price pt+1. Thus, on one
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side, old agents leave bequests to the next generation and on the other side, they also

receive some transfer from the old of the previous generation.

The budget constraint of agent i ∈ It becomes:

pt · xit + pt+1 · xit+1 + Πtf
i
t ≤ pt · eit + pt+1 · eit+1 + pt+1 · Γt(xit) + Πt+1 · ξit+1 + T i

Thus, if we consider again the same model with the borrowing and lending system,

the collateral to back up his borrowing will consist of the remaining durable goods

net of the bequest, or equivalently, the bequest cannnot exceed the wealth of agent i

net of his debt from borrowing. More precisely, we have that xit+1 = ξit+1 + Bi, and∑
i∈It ξ

i
t+1 =

∑
i∈It+1

f it+1.

At each period t, we can write the no-wastes condition as:

∑
i∈It−1

xit =
∑
i∈It

f it +
∑
i∈It−1

Bi,

∑
i∈It−1∪It

xit =
∑

i∈It−1∪It

eit+
∑
i∈It−1

Γt−1(xit−1)+
∑
i∈It−1

Γt−1(f it−1)+
∑
i∈It−1

Γt−1(Bi), for t > 1,

and
∑

i∈I0∪I1 x
i
1 =

∑
i∈I0∪I1 e

i
1.

Finally, an equilibrium would then consist of (p, (T i), (xi), (f i), (Bi)) such that:

a) (xi, f i, Bi) maximizes the utility function U i(xi, Bi) := ui(xi) +V i(Bi) satisfying the

budget constraint above;

b) There are no wastes and the market clears at each date t.

c) T i =
∑

k∈It−1
pt+1 · Γt(Bk

i ).

Here, agents are supposed to receive their bequest only after they reimburse their debt.

The difference with our initial model is that, old agents now have a lower level of col-

lateral to access to a lending, but he can enjoy of an additionnal wealth through the

anonymous transfer from the previous generation, which is not necessarely as high as the

value of his whole remaining durable if he would have traded it on the future market.

But here, introducing the bequest motive enhances the possibility of transfer accross

generations, where the incentive is not necessarely related to the financial issue but to

the utility of each agent that is increasing with the bequest he concedes. The concerns

of the agents on the next generations well-being can explain then why they still hold

assets or buy durable goods at the end of their lifetime.
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In our framework, conditions of no-arbitrage on prices at equilibrium are required in-

ducing the indetermination of the f is and possibility of a null rate of return. Although

this transfer mechanism appears to be financially neutral or non-motivating, this is not

the case for he economy since it helps to improve the situation of old agents and of all

the successive generations. This can explain the role of institutions that make sure that

some allocations will be always left to the old and to the future generations to promote

their welfare.

Durable goods and uncertainty

Introducing uncertainty to our model is relevant extension. For instance, associating

durable goods to collateral loans in the literature supposes that agents are exposed to

default risk by lending, since the borrowers, for some reason may fail to pay them back.

The existence of durable goods eases the extension of our model to a framework where

agents finitely live at least for two consecutive periods, and have a robability to die in the

next period, at each period. Indeed, whenever an agent disappears from the economy,

then either he has paid his debt back or the lender seizes his durable good that serves as

collateral at its current price after incuring the transformation Γt. Such a model already

exists, we can for instance follow again Seghir and Martinez [56] and adapt it to our

OLG model.

We consider the same discrete and infinitely many dates t = 0, 1, . . .. The demographic

structure consists of a finite group of agents born at each date t, It, and lives for at least

two dates, ensuring individuals of different lifetimes to overlap. Consider i ∈ It. He

is initially endowed of some allocations (eit+k)k≥0 and consumes (xit+k)k≥0 for k finite.

eit+k = 0 if agent i lives from t to t+k−1 where k ≥ 2. His utility function is accordingly

extended. Each consumption xit+k will bring Γt+k(xit+k) at date t + k + 1 and can be

proposed to be sold on the future market or proposed as collateral for a loan contracted

at any t+ k. All agents alive at this period can take part to this trade, and agent i can

also take part to the future contracts issued by his contemporanous.

Call Gs the set of all agents alive at date s, then, the market clearing condtition at date

s is given by:

∑
i∈Gs

xis =
∑
i∈Gs

f is, for s ≥ 1,

∑
i∈Gs

xis =
∑
i∈Gs

eis +
∑

i∈Gs−1

Γs−1(xis−1) +
∑

i∈Gs−1

Γs−1(f is−1), for s > 1,
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Consequently, the uncertainty on the duration of lifetime enables agents to trade with

all their contemporanous, at any period they are alive, but at each date, all of the

borrowing and lending activities will be balanced so that there is no room for default

even when a borrower accidently disappears from the economy.

Durable goods, liquid and illiquid wealth

Although our focus is different, it is worth pointing out that the absence of risk or un-

certainty limits the roles of durable goods and ignores some issues related to them. This

can be seen in the literature that considers durable goods as consumptions and assets,

and treats for instance wealth distribution, illiquidity, income risks and precautionary

savings. It is not specified in our model, but in the literature, the illiquidity level of

durable goods is of significant importance in determining the saving, and can explain

also the consumption or expenditure of agents. The illiquidity supposes that, if agents

are facing financial issues, in order to sell their durable goods or borrow againt them,

they may incur losses. This may then interfere in the demand of durable goods and

limit their purchase, as confirmed by Mishkin [47]. This issue is clearly ignored in our

model, even if we also link the existence of durable good to savings and to collateral for

loans. Indeed, we consider durable goods desirable, thus agents are willing to buy or

hold them, their transactions are easy and costless and their future prices are perfectly

forseen.

There are additionnal reasons why households are willing to possess an illiquid store of

value such as a durable good, when there is uncertainty and the economical environment

is risky. If we then go beyond these restrictions of desirability and certainty, an answer

is provided by Diaz and Prado [25] who try to clarify the composition of wealth in the

USA, where poorer households hold more illiquid wealth than the richer ones. For that,

they consider two means of savings: financial assets considered liquid and durable goods,

considered illiquid and which main roles are then services providers and collateral for

loans. They establish that “durable goods represent an important fraction of household

wealth”, and confirm the fact that “portfolio becomes more liquid as wealth increases”.

Our model, does not explicit these two types of assets, liquid and illiquid, and does not

allow to determine the composition of the wealth of agents. As a crucial hypothesis to

our model, the desirability of durable goods ensures the purchase of durable goods both

in spot and furures markets, without raising their level of liquidity. But such a feature

may be important and correspond to the notion of equity while introducing financial

markets in a productive economies. In the case where positive profits are possible and

dividends are paid, agents have incentive to buy or hold shares, which liquidity eases the

trade. Considering this framework meets one of the mains perspectives to our thesis.

Whenever increasing returns are allowed, positive profits can be expected, which needs
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to raise the notions of distribution among consumers, fundamental values of a firm that

now consist not only of its remaining capital but take also into account the future profits

it may generate.

The next chapter treats optimality issues, which was motivated by the role that plays

durable goods to restore Pareto optimality in OLG models. Indeed, the relations on

prices at equilibrium partly reflect the characterization provided in Balasko and Shell

[4]. However, our existence result relies on the equivalent economy where consumption

sets are not the positive orthant. This calls for the need to establish a proof compatible

with such a non conventionnal framework.



Chapter 4

Optimal allocations in OLG

models with multiple goods

Abstract

We consider a pure exchange overlapping generations economy with finitely many com-

modities and consumers per period having possibly non-complete non transitive prefer-

ences. We provide a geometric and direct proof of the Balasko-Shell characterization of

Pareto optimal allocation (See, [4]). As a by-product, we compute an explicit Pareto

improving transfer when the criterion is not satisfied, which is minimal for some suitable

distance1.

JEL classification: C62, D50, D62.

Keywords: Overlapping generations model, preference set, normal cone, equilibrium,

Pareto optimality.

1This chapter is based on the paper “Notes on the Characterization of optimal allocations in OLG
models with multiple goods” [14]
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4.1 Introduction

As already well known, OLG equilibrium allocations may lack in being Pareto optimal.

This market failure was established by Samuelson [54], who attributes this phenomenon

as a lack of double coincidence of wants, and suggests to solve this by using the role of

money. Geanakoplos [34] clarifies this phenomenon as a result of two facts: generations

overlap, and infinite horizon. He points some links between the Samuelson model and

the Arrow-Debreu model, and established how a durable good such as money, or an

infinitely lived asset like a land, could restore the market failure.

Balasko and Shell [4] provide a criterion based on the asymptotic behavior of the norm

of the prices to characterize Pareto optimal allocation without durable good or infinitely

lived asset. Burke [17] revisits this criterion by focusing in particular on the right

definition of the Gaussian curvature of the indifference surface. Actually, these authors

provide a proof with a first step considering the special case of a single commodity per

period. Then, the generalization to several commodities is only sketched.

Our purpose in this paper is three fold: to provide a simpler, direct proof of the Balasko-

Shell Criterion considering in one step several consumers for each generation and sev-

eral commodities; to encompass the case of non-complete, non-transitive preferences;

to compute explicitly a Pareto improving transfer when the allocation does not satisfy

the Balasko-Shell Criterion. Nevertheless, note that the structure of the proof is based

strongly on Balasko-Shell’s one.

It is important to remark that a geometrical approach has already been provided by

Borglin and Keiding [16]. They actually consider infinite horizons economies, and treats

the particular case of OLG models. They center the notion of Pareto optimality to its

weak form, and consider characterizations based on parameters that describe the econ-

omy such as supporting prices and curvatures of indifference surfaces, thus an approach

that easily meets our model.

We consider this contribution as a first step to be able in future works to tackle the

question in presence of durable commodities and with heterogeneous longevities of the

agents.

Since, we have no more a representation of the preferences by utility function, we can-

not use the standard differentiability assumption and the link between the curvature of

the indifference surfaces and the second derivative of utility function. So we adopt a

geometric approach to state the assumptions directly on the preferred sets. The smooth-

ness assumption is obtained by assuming that the normal cone is an half line. For the
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upper bound of the curvature, we use the notion of prox-regularity of the complemen-

tary of the preferred set, introduced in variational analysis by Rockafellar and Poliquin

in [49], which is extensively studied by Thibault and Colombo in [21]. For the lower

bound, which is related to the strict convexity of the preferred sets, we assume that the

truncated preferred sets are included in a suitable ball with a large enough radius.

The simplification of the proof comes from the fact that we show that the parameter

αt used in Balasko-Shell work to describe the Pareto improving transfer has a nice

geometric interpretation in terms of a radius of a sphere tangent to the boundary of the

preferred set at the allocation. This remark allows us to use this radius as a particular

distance function and to compute explicitly the minimal Pareto improving transfer when

the criterion is not satisfied.

Details about the model and assumptions are described in Section 2. Some preliminary

results are provided in Section 3. In particular, we characterize the weak Pareto optimal

allocation in term of the existence of a supporting price using the normal cone to the

preferred sets. The end of this Section explains how the multi-consumer case can be

simplified by considering aggregate feasible Pareto improving transfer. In Section 4, we

provide the proof and we show which assumptions are used for the if part and for the

only if part of the criterion. We also provide two examples showing that the result is no

more true if one of the conditions on the curvature does not hold true.

4.2 The model

We2 consider an OLG economy E with infinitely many dates t = 1, 2 . . . At each date

there is a finite set of commodities Lt, and we denote by Lt its cardinal.

At each date t ∈ N, a finite set of individuals It is born, living for two periods, young

at date t and old at date t+ 1. We start with the first generation 0 which lives for only

one period and consists of the old agents at date 1. I = ∪∞t=0It denotes the set of all

individuals and I−0 = ∪∞t=1It.

At each date t ≥ 1, we denote by xi = (xit, x
i
t+1) the consumption by an individual i in

It, which is an element of the consumption set Xi = RLt+ ×RLt+1
+ . The consumption set

of consumers of generation 0 is Xi = RL1
+ .

2Notations. We consider several finite dimensional Euclidean space RL. In each of them, RL+ is the
standard positive cone and RL++ its interior. x ≤ y means that y − x ∈ RL+, x · y denotes the standard
inner product of the vectors x and y, ‖x‖ =

√
x · x denotes the standard Euclidean norm. If P is a

subset of RL, P̄ denotes its closure and intP , its interior. B(x, r) (resp. B̄(x, r)) denotes the open (resp.
closed) ball of center x and radius r.
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Consumers preferences are represented by a (strict) preference relation P i : Xi → Xi:

for all i ∈ I:

ξi ∈ P i(xi) means that ξi is strictly preferred to xi.

ξi ∈ P̄ i(xi), the closure of P i(xi), if and only if ξi is preferred or indifferent to xi.

For all t ≥ 0, i ∈ It, we denote by NP̄ i(xi)(x
i) the normal cone3 of P̄ i(xi) at xi.

We now posit the main assumption, which is maintained throughout the paper.

Assumption A.

a) For all individual i in I, P i(xi) is open in Xi, convex, xi ∈ P̄ i(xi) \ P i(xi). For all

i ∈ I−0 P
i(xi) + (RLt+ × RLt+1

+ ) ⊂ P i(xi) and for i ∈ I0, P i(xi) + RL1
+ ⊂ P i(xi).

b) Each consumer i is endowed with some endowments ei of the goods during his

lifetime: for all i ∈ I, ei ∈ Xi and for all i ∈ I0, ei ∈ RL1
+ . For each period t ≥ 1,

et denotes the total endowments at this date, that is, et =
∑

i∈It−1∪It e
i.

c) For all i ∈ I, for all xi in the interior ofXi, −NP̄ i(xi)(x
i) is a half line {tγi(xi) | t ≥ 0},

defined by γi(xi) which is a continuous mapping on the interior of Xi satisfying

‖γi(xi)‖ = 1. For all xi in the interior of Xi, for all i ∈ I−0, , γi(xi) ∈ RLt++×RLt+1
++

and for all i ∈ I0, γi(xi) ∈ RL1
++.

Assumption A is a classical assumption in a standard finite economy. If the preferences

are represented by a utility function, it means that it is continuous, quasi-concave,

strictly increasing and smooth on the interior of Xi.

At each date t, there is a spot market for the L commodities. The spot price vector

p is an element of
∏∞
t=1 R

Lt
++ and pt` is the spot price of commodity ` at date t. We

consider the set of normalized prices ∆ := {p ∈
∏∞
t=1 R

Lt
++ | ‖p1‖ = 1}. We denote by

Πt = (pt, pt+1), for t ≥ 1, and Π0 = p1.

Budget Constraints

The budget constraint at a given price p, for each agent i ∈ I−0 is given by:

Πt · xi = pt · xit + pt+1 · xit+1 ≤ Πt · ei = pt · eit + pt+1 · eit+1,

3NP̄ i(xi)(x
i) = {q ∈ RL × RL | q · (z − xi) ≤ 0,∀z ∈ P̄ i(xi)}
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and for each agent i ∈ I0,

Π0 · xi = p1 · xi1 ≤ Π0 · ei = p1 · ei1.

4.3 Preliminary results

Let us recall some basic definitions of equilibrium and optimal allocations in a standard

pure exchange OLG economy with multiple commodities.

Definition 4.3.1. An equilibrium of the economy E is a list (p∗, (xi∗)) in ∆×
∏∞
t=0

∏
i∈It X

i

such that:

a) for all i ∈ I, (xi∗) is a maximal element for P i in the budget set associated to the

equilibrium price p∗, that is, for all i ∈ I, Πt · xi∗ ≤ Πt · ei, and for all xi ∈ P i(xi∗),
Πt · xi > Πt · ei.

b) the allocation (xi∗) is feasible:

∑
i∈It−1∪It

xi∗t = et =
∑

i∈It−1∪It

eit, for t ≥ 1

Proposition 4.3.1. Under Assumption A, if the initial endowments are strictly positive,

the OLG economy E has an equilibrium.

Proof. The existence of an equilibrium can be proved following the same procedure as

in [3], using the existence result in finite dimension of Gale and Mas-Colell [31], [32], see

also Florenzano [28]. 4

Definition 4.3.2. The feasible allocation x in
∏
i∈I X

i is Pareto optimal (PO) (resp.

weakly Pareto optimal (WPO)) if there is no (yi) in
∏
i∈I X

i such that:

∑
i∈It−1∪It

yit = et, for t ≥ 1

and for all i ∈ I, yi ∈ P̄ i(xi), with yi ∈ P i(xi) for at least one individual i (resp. and

there exists t ≥ 1 such that for all t ≥ t, for all i ∈ It, yi = xi).

We remark that a PO allocation is WPO.

Definition 4.3.3. Let x = (xi) be an allocation in
∏
i∈I X

i. The price p ∈ ∆ is said to

support x if for each t ∈ N, for all i ∈ It and for all ξi ∈ P i(xi), Πt · ξi > Πt · xi.
4Main steps of the proof are provided in Appendix B
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Remark 4.3.1. Every competitive allocation x∗ = (xi∗) associated with the equilibrium

price p∗ ∈ ∆ is supported by p∗.

If x = (xi), an interior allocation, is supported by the price p, then for all i ∈ I, there

exists λi > 0 such that γi(xi) = λiΠt.

Lemma 4.1. If x = (xi), an interior allocation, is WPO, then, for all t ≥ 0, γi(xi) =

γj(xj) for all i, j ∈ It.

Proof. Let t ≥ 0. Since (xi) is WPO,
∑

i∈It x
i /∈

∑
i∈It P

i(xi). Indeed, if it would not

hold, then there exists (ξi)i∈It ∈
∏
i∈It P

i(xi), such that
∑

i∈It x
i =

∑
i∈It ξ

i. Then,

one easily checks that the allocation (yi) defined by yi = xi for i /∈ It and yi = ξi for

i ∈ It is feasible and Pareto dominates (xi), which is in contradiction with the weak

Pareto optimality of (xi).

By Assumption A, (P i(xi))i∈It are convex and nonempty, and for all i, xi /∈ P i(xi) and

xi ∈ P̄ i(xi). So, for each i ∈ It, there exists a sequence (ξiν) of P i(xi), which converges to

xi. The set
∑

i∈It P
i(xi) being convex, so by using the standard separation theorem for

convex sets in finite-dimensional space for
∑

i∈It x
i and

∑
i∈It P

i(xi), there exists q 6= 0

such that q ·
∑

i∈It x
i ≤ q ·

∑
i∈It ξ

i for all (ξi) ∈
∏
i∈It P

i(xi). Consider an individual

i0 in It. Then for all ξi0 ∈ P i0(xi0), q · xi0 + q ·
∑

i∈It,i 6=i0 x
i ≤ q · ξi0 + q ·

∑
i∈It,i 6=i0 ξ

iν .

By taking the limit, we obtain: q · xi0 ≤ q · ξi0 , which means that q belongs to the

cone −NP̄ i0 (xi0 )(x
i0), thus q = ‖q‖γi0(xi0). By repeating the same reasoning for all

individuals of It, we establish that γi(xi) = 1
‖q‖q for all i ∈ It. �

Lemma 4.2. The interior allocation x = (xi) is WPO if and only if there exists a price

sequence p ∈ ∆ which supports x = (xi).

Proof. Let x be supported by a price sequence p. Assume that x is not WPO, then there

exists a feasible allocation (yi) and some t ≥ 1 such that xi = yi for all i ∈ It, t ≥ t,

where yi ∈ P̄ i(xi) for all i ∈ I and yi ∈ P i(xi) for at least an individual. Therefore, for

all t and for all i ∈ It, Πt · yi ≥ Πt · xi with at least one strict inequality for i0 ∈ It0
where t0 < t. Thus, we have:

p1 ·
∑

i∈I0∪I1

yi1 + p2 ·
∑

i∈I1∪I2

yi2 + . . .+ pt−1 ·
∑

i∈It−1∪It−2

yit−1 + pt ·
∑
i∈It−1

yit >

p1 ·
∑

i∈I0∪I1

xi1 + p2 ·
∑

i∈I1∪I2

xi2 + . . .+ pt−1 ·
∑

i∈It−1∪It−2

xit−1 + pt ·
∑
i∈It−1

xit
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Since, yit = xit for all i ∈ It, t ≥ t, we get:

p1 ·
∑

i∈I0∪I1

yi1 + p2 ·
∑

i∈I1∪I2

yi2 + . . .+ pt−1 ·
∑

i∈It−1∪It−2

yit−1 + pt ·
∑
i∈It−1

yit >

p1 ·
∑

i∈I0∪I1

xi1 + p2 ·
∑

i∈I1∪I2

xi2 + . . .+ pt−1 ·
∑

i∈It−1∪It−2

xit−1 + pt ·
∑

i∈It−1∪It

xit

which is in contradiction with the feasibility of (yi) implying
∑

i∈It−1∪It x
i
t =

∑
i∈It−1∪It y

i
t =

et.

Conversely, let x be a WPO allocation. We first truncate the economy at a finite horizon

t by considering the t first generations. Denote Jt−1 =
∏t−1
τ=0 Iτ . We shall prove the

result by induction on the truncation at t.

First, consider the truncated economy E1 at date t = 1, which consists of the generation

0, I0. From Lemma 4.1, p1 = γi(xi) for any i ∈ I0 supports (xi)i∈I0 .

Now, suppose that (p1, . . . pt) is supporting (xi)i∈Jt−1 , and let us prove that there is a

unique pt+1 � 0 such that (p1, . . . pt+1) supports (xi)i∈Jt . From Lemma 4.1, for any

i0 ∈ It, γi0(xi0) supports xi for all i ∈ It. So, it suffices to prove that γi0t (xi0) is collinear

to pt and then to choose pt+1 = ‖pt‖
‖γi0t (xi0 )‖

γi0t+1(xi0).

We consider a reduced economy with Lt commodities, the individuals in It−1 ∪ It and

the preferences defined by Qi(ξi) = P i(xit−1, ξ
i) for i ∈ It−1 and Qi(ξi) = P i(ξi, xit+1)

for i ∈ It. Since x is a WPO allocation, the allocation (xit)i∈It−1∪It is Pareto optimal

in this finite economy. We also remark that −NQi(xit)
(xit) = {λγit(xit−1, x

i
t) | λ ≥ 0} for

i ∈ It−1 and −NQi(xit)
(xit) = {λγit(xit, xit+1) | λ ≥ 0} for i ∈ It. So, using the same

argument as in the proof of Lemma 4.1, we prove that the vectors ((γit(x
i
t−1, x

i
t))i∈It−1

and (γit(x
i
t, x

i
t+1))i∈It) are colinear. Since (pt−1, pt) supports xi for any i ∈ It−1, pt is

colinear to γit(x
i
t−1, x

i
t)), so it is also colinear to γit(x

i
t, x

i
t+1) for all i ∈ It. �

Definition of aggregate Pareto improving transfers

The proof of the main result studies the behavior of Pareto improving transfers that we

now introduce. In the following, we distinguish transfers and aggregate transfers. For

an allocation (xi), for each generation t, we define an aggregate preferred set as follows:

P̄t((x
i)) :=

∑
i∈It

P̄ i(xi)

From Assumption A, P̄t((x
i)) is a closed convex subset of RLt+ × RLt+1

+ (or RL1
+ for the

generation 0) and satisfies P̄t((x
i)) + (RLt+ × RLt+1

+ ) ⊂ P̄t((x
i)) (or P̄t((x

i)) + RL1
+ ⊂
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P̄t((x
i)) for the generation 0). The closedness of P̄t((x

i)) is ensured by the fact that

P̄ i(xi) is a nonempty closed subset of RLt+ ×RLt+1
+ for all i ∈ It. Indeed, for all t and for

all i ∈ It, the asymptotic cones 5 AP̄ i(xi) = RLt+ ×R
Lt+1
+ are positively semi-independent

6, a sufficient condition for a finite sum of closed sets to be closed.

If x = (xi) is an interior allocation supported by the price p ∈ ∆ and xt =
∑

i∈It x
i.

Then one checks that for all t ≥ 0, for all i ∈ It,

NP̄t((xi))(x̄
t) = {λΠt | λ ≥ 0} = {λγi(xi) | λ ≥ 0}

Definition 4.3.4. (a) For a given feasible allocation x = (xi), the sequence of commodity

transfers h = (hi) ∈
∏
i∈I0 R

L1 ×
∏∞
t=1

∏
i∈It(R

Lt × RLt+1) is feasible if (xi + hi) is

feasible, which means that (xi + hi) belongs to
∏∞
t=0

∏
i∈It X

i and
∑

i∈It−1∪It h
i
t = 0.

(b) The sequence of commodity transfers h = (hi) is Pareto improving upon x = (xi)

if h is feasible and x + h Pareto dominates x, that is for all t ≥ 1 and all i ∈ It,
xi + hi ∈ P̄ i(xi), with xi + hi ∈ P i(xi) for at least one agent i.

(c) An aggregate transfer h̄ ∈ RL1 ×
∏∞
t=1 RLt × RLt+1 is feasible if h̄t−1

t = −h̄tt for all

t ≥ 1 and Pareto improving upon the allocation x = (xi) if:

i) for all t, xt =
∑

i∈It x
i + h̄t ∈ P̄t((xi))

ii) there exists t such that xt =
∑

i∈It x
i + h̄t ∈ int(P̄t((x

i)))

By the very definition of Pareto optimality, the allocation x = (xi) is Pareto optimal

if and only if there exists no feasible Pareto improving transfer upon x. But, we also

remark that the interior allocation x = (xi) is Pareto optimal if and only if there exists

no feasible aggregate Pareto improving transfer upon x. So, in the next section, we will

be able to work only on aggregate feasible transfers and not on feasible transfers, which

will greatly simplify the notations and the formulas.

If there exists h̄, an agregate Pareto improving transfer, then let t ≥ 0, by definition

of P̄t((x
i)), there exists (ξi)i∈It in

∏
i∈It P̄

i(xi) such that
∑

i∈It x
i + h̄t =

∑
i∈It ξ

i. By

letting hi = ξi − xi, we easily check that xi + hi ∈ P̄ i(xi) for all i ∈ It.

Furthermore, for t,
∑

i∈It x
i+h̄t−α(1Lt ,1Lt+1) ∈ P̄ t((xi)), for some λ > 0 small enough.

Then there exists (ξi) ∈
∏
i∈It P̄

i(xi) such that
∑

i∈It x
i+ h̄t−λ(1Lt ,1Lt+1) =

∑
i∈It ξ

i.

5Asymptotic cones are a generalization of recession cones of convex sets as defined in Rockafellar [52].
Here, since the P̄ i(xi) is closed and convex, its asymptotic cone coincides with its recession cone, which
consists of the set of all directions in which P̄ i(xi) is unbounded.

6In Debreu [19], two cones A and B of Rm are positively semi-independent if x ∈ A and y ∈ B such
that x + y = 0 implies that x = y = 0.
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Let us consider the individual i0 ∈ It, we can then write h̄t =
∑

i 6=i0(ξi − xi) + (ξi0 −
xi0) + λ(1Lt ,1Lt+1). Take hi = ξi− xi and hi0 = ξi0 − xi0 + λ(1Lt ,1Lt+1). We note that

xi0 + hi0 = ξi0 + λ(1Lt ,1Lt+1) ∈ P i0((xi0)). So, h is a Pareto improving transfer and x

is not Pareto optimal.

Conversely, if x is not Pareto optimal, there exists h a Pareto improving transfer. From

the convexity of P i(xi) (Assumption A(a)), (1/2)h is a Pareto improving transfer. We

now check that h̄ defined by h̄t = (1/2)
∑

i∈It h
i is an aggregate Pareto improving

transfer. h̄ is obviously feasible since h is feasible. For all t, since (1/2)h is Pareto

improving, xt + h̄t ∈ P̄t((x
i)), with xt =

∑
i∈It x

i. Since xi is an interior allocation,

xi + (1/2)hi belongs to the interior of Xi for all i. For the agent i0 of generation t0 such

that xi0 + hi0 ∈ P i0(xi0), since P i0(xi0) is open (Assumption A(a)), one gets that there

exists λ > 0 such that xi0 +(1/2)hi0−λ(1Lt ,1Lt+1) ∈ P i0(xi0). So,
∑

i∈It0
xi+(1/2)hi−

λ(1Lt ,1Lt+1) ∈
∑

i∈It0
P̄ i(xi) = P̄ t0((xi)), which implies that

∑
i∈It0

xi + (1/2)hi ∈
int(P̄t0((xi))).

4.4 Characterization of Pareto-optimal allocations

We now state the main result of the paper. It provides a condition on the supporting

price of a weak Pareto optimal allocation, which is necessary and sufficient for the Pareto

optimality of the given allocation.

Proposition 4.4.1. Let x = (xi) ∈
∏
i∈I X

i be a WPO allocation supported by the price

sequence p = (p1, p2, . . . pt, . . .). We suppose that:

Assumption B: there exist χ̄ > 0 and χ > 0 such that for all t ≥ 1, ēt ≤ χ̄1Lt ,

χ(1Lt ,1Lt+1) ≤ xi for all i ∈ It and χ1L1 ≤ xi for all i ∈ I0;

Assumption C: there exists r > 0 such that for all i ∈ I, B(xi + rγi(xi), r) ⊂ P i(xi);

Assumption C’: there exists r̄ > 0 such that for all i ∈ I−0 (resp. i ∈ I0), for all

ξi ∈ P̄ i(xi), if ξi ≤ (et, et+1), then ξi ∈ B̄(xi + r̄γi(xi), r̄) (resp. if ξi ≤ e1, then

ξi ∈ B̄(xi + r̄γi(xi), r̄);

Assumption G: there exists ν ≥ ν > 0 such that for all t ≥ 1, i ∈ It,

ν ≤ ‖γit(xi)‖
‖γit+1(xi)‖

≤ ν

Then, x is Pareto optimal if and only if:

∑
t∈N∗

1

‖pt‖
= +∞.
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Since x is supported by the price sequence p = (p1, p2, . . . pt, . . .), we recall that Lemma

4.1 implies that for all period t, for all i ∈ It, 1
‖Πt‖Πt = 1

‖(pt,pt+1)‖(pt, pt+1) is equal to

γi(xi). We denote by γt the vector 1
‖Πt‖Πt and we let xt =

∑
i∈It x

i.

Remark 4.4.1. i) Assumptions C and C’ mean that the boundaries of the preferred sets

lie below small closed balls of radius r and above the comprehensive hull of bigger closed

balls of radius r̄. Assumptions C and C’ means that the preferences are smooth and

uniformly strictly convex. While Assumptions C and C’ in [4] are stated in terms of

curvature of the utility functions, we have chosen a more geometric approach because

the preferences are not representable by a utility function.

For each individual i, let us consider the closed set F i defined as the complementery

of P i(xi), F i := {P i(xi). Then Assumption C means that F i is prox-regular at xi.

Indeed, let r > 0 and β > 0. The set F is called (r, β)- prox-regular at x ∈ F , if for any

y ∈ F ∩B(x, β) and any v ∈ NP (F, y) with ‖v‖ ≤ 1, y ∈ ProjF (y+ rv) where NP (F, y)

is the proximal normal cone to F at y, that is:

NP (F, y) = {v | ∃ρ > 0, y ∈ ProjF (y + ρv)}

In our framework, under Assumption A,

NP (F, y) = {µγ(y) | µ ≥ 0}

The notion of prox-regularity was introduced by Poliquin and Rockafellar, as a new

important regularity in variational analysis, see [49], and extensively studied by Colombo

and Thibault in [21].

ii) Note that Assumption B implies that the number of individuals is uniformly bounded

above at each generation. Indeed, if It is the number of individual of the generation t,

and h is a commodity at period t, then Itχ ≤
∑

i∈It x
i
h ≤ eth ≤ χ̄. We denote by Ī, an

upper bound of the number of individual at each generation.

iii) Assumptions C and C’ still hold when we aggregate the finitely many consumers at

each period by considering the set P̄ t((xi)). Assumption C implies B(xt + Itrγ
t, Itr) ⊂∑

i∈It P
i(xi), thus, whatever is the number of consumers of generation t, B(xt+rγt, r) ⊂

intP̄ t((xi)).

Let ξt ∈ P̄ t((xi)) such that ξt ≤ (et, et+1). Then Assumption C’ implies that ξt belongs

to
∑

i∈It B̄(xi + r̄γi(xi), r̄), which is equal to B̄(xt + Itr̄γ
i(xi), Itr̄). So uniformly in t,

ξt belongs to B̄(xi + Ī r̄γi(xi), Ī r̄).

For the coherence of the notations, we let ρ = r and ρ̄ = Ī r̄.
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iv) We remark that Assumption G is slightly weaker than Property G in Balasko and

Shell in [4]. Indeed, Property G assumes that the ratio ps`
‖Πt‖ is uniformly bounded above

and away from 0 for all period t, for s = t, t + 1 and for all commodities ` at date t or

t + 1. Recalling that Πt is positively collinear to γt, this clearly implies that the ratio
‖γtt‖
‖γtt+1‖

is uniformly bounded above and away from 0 for all period t.

Proof of Proposition 4.4.1 . Since the allocation x = (xi) is Pareto optimal if and

only if there exists no feasible aggregate Pareto improving transfer upon x, the proof

will be established by constructing and characterizing a sequence of aggregate Pareto

improving transfers.

Let h̄ be a feasible aggregate transfer. Set ηt := Πt · h̄t, the net present value of the

aggregate transfer h̄ at each date t.

Remark 4.4.2. If h̄ is a feasible aggregate Pareto improving transfer upon (xi), then by

Definition 4.3.4, xt+ h̄t ∈ P̄ t((xi)), so thanks to Assumption C’, Πt · h̄t > 0, thus ηt > 0.

Let us define the sequence α by:

αt :=
‖h̄t‖2‖Πt‖

Πt · h̄t
=
‖h̄t‖2‖Πt‖

ηt

Remark 4.4.3. i) Note that ‖h̄t‖2 = αtηt

‖Πt‖ ≤
αt‖Πt‖‖h̄t‖
‖Πt‖ , thus ‖h̄t‖ ≤ αt. Thus, if α is

bounded then h̄ is also bounded.

ii) αt

2 actually represents the radius of the sphere S(xt + αt

2 γ
t, α

t

2 ) which is tangent to

P̄ t((xi)) at xt, and contains xt + h̄t. Indeed, we easily check that:∥∥∥∥xt + h̄t −
(
xt +

αt

2
γt
)∥∥∥∥ =

αt

2

We prepare the proof by three lemmas and then we prove the necessary and the sufficient

condition in two additional lemmas.

Lemma 4.3. If the feasible aggregate transfer h̄ is Pareto improving upon x = (xi), and

if Assumption C ′ holds, then the sequence α is bounded from above.

Proof. Since h̄ is a feasible aggregate Pareto improving transfer, 0 ≤ ξt = xt + h̄t ≤
(et, et+1). So, from Assumption C ′ and Remark 4.4.1, ξt ∈ B̄(xt + ρ̄γt, ρ̄). Hence, from

Remark 4.4.3 (ii), the sphere S(xt + αt

2 γ
t, α

t

2 ), which is tangent to P̄ t((xi)) at xt, and

contains ξt is included in B̄(xt + ρ̄ Πt
‖Πt‖ , ρ̄). So αt

2 ≤ ρ̄, which shows that α is bounded

from above. �
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Lemma 4.4. If h̄ is a feasible Pareto improving aggregate transfer, then:

αt =
‖Πt‖
ηt
‖h̄t‖2 ≥ ‖Πt‖

ηt

[
1

‖pt‖2
(η0 + . . .+ ηt−1)2 +

1

‖pt+1‖2
(η0 + . . .+ ηt)2

]

Proof. Indeed, the construction of η and the feasibility of the transfer h allow us to

write:

η0 = p1 · h̄0 = p1 · h̄0
1 = −p1 · h̄1

1

η1 = Π1 · h̄1 = p1 · h̄1
1 + p2 · h̄1

2 = −p1 · h̄0
1 + p2 · h̄1

2

. . .

ηt = Πt · h̄t = pt · h̄tt + pt+1 · h̄tt+1 = −pt · h̄t−1
t + pt+1 · h̄tt+1

By summing up, we obtain that: η0 + η1 + . . .+ ηt = pt+1 · h̄tt+1, with h̄tt = −h̄t−1
t

By definition,

αt =
‖Πt‖
ηt

(
‖h̄tt‖2 + ‖h̄tt+1‖2

)

By Schwarz inequality, (pt · h̄tt)2 ≤ ‖pt‖2‖h̄tt‖2, that is:
(
pt·h̄tt
‖pt‖

)2
≤ ‖h̄tt‖2, we then obtain

that:

αt ≥ ‖Πt‖
ηt

[
(pt · h̄tt)2

‖pt‖2
+

(pt+1 · h̄tt+1)2

‖pt+1‖2

]

Hence,

αt ≥ ‖Πt‖
ηt

[
1

‖pt‖2
(η0 + . . .+ ηt−1)2 +

1

‖pt+1‖2
(η0 + . . .+ ηt)2

]

�

Lemma 4.5. Let η be a positive sequence in R. Let us define an aggregate transfer h̄

in RL1 ×
∏∞
t=1(RLt × RLt+1) and the associated α respectively by:

h̄tt+1 =
(
η0 + η1 + . . .+ ηt

) pt+1

‖pt+1‖2
and h̄tt = −h̄t−1

t

αt =
‖Πt‖
ηt
‖h̄t‖2 =

‖Πt‖
ηt

[
1

‖pt‖2
(η0 + . . .+ ηt−1)2 +

1

‖pt+1‖2
(η0 + . . .+ ηt)2

]
Under Assumptions B and C, if α is bounded then there exists µ > 0 such that µh̄ is a

feasible Pareto improving aggregate transfer.
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Remark 4.4.4. In Lemma 4.5, h̄ is computed in such a way that Πt · h̄t = ηt and the

associated αt is the smallest possible one.

Proof. Let µ > 0 be taken small enough so that µαt < 2ρ, for all t, which is feasible

since α = (αt) is bounded.

From the formula above and Remark 4.4.3 (ii), since µαt

2 ≤ ρ, xt + µh̄t belongs to the

sphere S(xt + µαt

2 γt, µα
t

2 ) ⊂ B(xt + ργt, ρ) ∪ {xt}. Since h̄t 6= 0, xt + µh̄t ∈ B(xt +

ργt, ρ) \ {xt}. From Assumption C and Remark 4.4.1 (iii), xt + µh̄t ∈ intP̄ t((xi)), that

is µh̄ is a feasible aggregate Pareto improving transfer upon the allocation (xi). �

Lemma 4.6. Given the positive price sequence p, if x is not PO, then under Assumption

C ′,
∑

t∈N∗
1
‖pt‖ < +∞.

Proof. Since x is not PO, there exists a Pareto improving aggregate transfer h̄. From

Lemma 4.3, the associated α is bounded from above by 2ρ̄, thus, from Lemma 4.4:

2ρ̄ ≥ αt ≥ ‖Πt‖
ηt‖pt+1‖2

[η0 + . . .+ ηt]2 ≥ 1

ηt‖pt+1‖
[η0 + . . .+ ηt]2

since ‖Πt‖
‖pt+1‖ =

√
1 + ‖pt‖2

‖pt+1‖2 ≥ 1. Thus:

1

‖pt+1‖
≤ 2ρ̄ηt

[η0 + . . .+ ηt]2

But, we notice that:

ηt

[η0 + . . . ηt]2
≤ 1

η0 + . . .+ ηt−1
− 1

η0 + . . .+ ηt

This implies that:

∞∑
t=1

ηt

[η0 + . . .+ ηt]2
≤ 1

η0

Hence
∞∑
t=1

1

‖pt‖
=

2ρ̄

η0
< +∞

�

Remark 4.4.5. The following example shows that if preferences are flat at the given

allocation, so not satisfying Assumption C’, then the allocation could be not Pareto

optimal even if
∑

t
1
‖pt‖ = +∞. Let us consider an OLG economy with one commodity
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per period, one consumer per generation, the allocation (1, 1) for all generation and the

preferred set {ξ ∈ R2
+ | tξt + (t + 1)ξt+1 > 2t + 1}. Then, one easily check that this

allocation is not Pareto optimal because the allocation (1/2, 3/2) for each generation

is Pareto dominating But, one also checks that the price (1, 2, . . . , t, . . .) supports this

allocation and
∑

t
1
‖pt‖ =

∑
t

1
t = +∞.

The last step of the proof of Proposition 4.4.1 is given by the following lemma.

Lemma 4.7. Under Assumptions B, C and G, if the positive price sequence p satisfies∑
t

1
‖pt‖ < +∞, then x is not PO.

Proof. Consider ηt = 1
‖pt‖ for all t, and denote by η̄t :=

∑t
s=1 η

t. Note that (η̄t)

is bounded. Let the corresponding agregate transfer h̄ and the associated sequence α

defined by the formula of Lemma 4.5. From this Lemma, it remains to show that α is

bounded.

From Lemma 4.5, we have: h̄t = (η̄t−1 pt
‖pt‖2 , η̄

t pt+1

‖pt+1‖2 ). Consequently, since η̄t−1 ≤

η̄t, ‖h̄t‖2 = (η̄t−1)2 1
‖pt‖2 + (η̄t)2 1

‖pt+1‖2 ≤ (η̄t)2
(

1
‖pt‖2 + 1

‖pt+1‖2

)
. Since ηt = 1

‖pt‖ , the

associated α defined in Lemma 4.5 satisfies:

αt = ‖Πt‖
ηt ‖h̄

t‖2 ≤ ‖Πt‖‖pt‖(η̄t)2
(

1
‖pt‖2 + 1

‖pt+1‖2

)
=
√
‖pt‖2 + ‖pt+1‖2 (η̄t)2

‖pt‖

(
1 + ‖pt‖2

‖pt+1‖2

)
= (η̄t)2

√
1 + ‖pt+1‖2

‖pt‖2

(
1 + ‖pt‖2

‖pt+1‖2

)
Assumption G implies that ‖pt‖

‖pt+1‖ and ‖pt+1‖
‖pt‖ are bounded. Since η̄t is bounded, α is so.

�

Remark 4.4.6. The following example shows that if preferences exhibit a kink at the

given allocation, so not satisfying Assumption C, then the allocation could be Pareto

optimal even if
∑

t
1
‖pt‖ < +∞. Let us consider an OLG economy with one commodity

per period, one consumer per generation, the allocation (1, 1) for all generation and

the same preferred set {(1, 1)} + R2
++. Then, one easily checks that this allocation is

Pareto optimal because to strictly improve the welfare of an agent, we need to reduce

the allocation of the agent of the next generation when she is young so that her welfare

strictly decreases. But, one also checks that the price (1, 2, . . . , 2t, . . .) supports this

allocation and
∑

t
1
‖pt‖ is finite.
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4.5 Conclusion

Providing a simple set-theoretic and geometric version of the proof of Balasko and Shell

[4] has allowed us to directly consider the multi-goods case 7, while in [4], the proof

needs to first go through the one-commodity case. We have encompassed the case of

non-complete and non-transitive preferences where basic assumptions are made on the

preference sets and the associated normal cones. We provide a characterization of Pareto

optimality that is established following a simple and geometric version of the proof of

Balasko and Shell [4]. Moreover, we provide an explicit expression of improving transfers

ht at each date t, that do not satisfy the criterion. Indeed, this is easily obtained thanks

to the minimal value of the parameter α that is also used in [4].

A natural continuation to this work would be the extension to the case of OLG models

with heterogeneous longevities within each generation. In this case, we would need

to review some hypotheses concerning for instance the initial endowments and strict

monotony of utility functions. We also propose to extend this work to the case of OLG

models with durable commodities. As established in the previous chapter 3, Section 3.3,

such an extension calls for an optimality characterization to the non conventional case

where the consumption sets do not consist of the positive orthant anymore.

7Note that in [14], we have considered the particular case where Lt = L for all t.
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General Conclusion

In this thesis, we have considered OLG models with production, where we go beyond

the classical hypothesis of constant returns. We have then provided a formalization of

incresing returns by allowing firms to behave in a more general way through the notion

of pricing rule. Although losses may occur, we focus on loss-free pricing rules that are

relevant in unregulated markets and can be applied to firms whose increasing returns

are due to fixed cost or associated to a S-shape production function, which means that

the technology displays first increasing returns to scale until some level of production

then decreasing returns to scale. Since we assume that firms are privately owned and

inaction is possible, this principle instructs firms to produce only when the profits are

non-negative, otherwise they close down. These pricing rules allow us to give also account

of some models that treat growth theory and provide structures that permit to reconcile

competitive behavior of firms and increasing returns by associating them to imperfect

competition. These structures have the advantage to show how firms can exploit their

market power in presence of increasing returns by charging prices that will bring them

positive profits. This approach clearly constitutes a variant of loss-free pricing rules.

Beyond the existence result, we are led to study the mechanism of transfer between

generations in order to analyze the possible perpetuation of firms. We then incorporate

durable goods which may be stored from one period to a successive period through a

linear technology. In this model, we establish not only the existence of an equilibrium but

also highlight features of durable goods that entitle consumers, the roles of producers,

lenders and borrowers, even at the end of their lifetime. Allowing agents to hold assets

at the end of their lifetime is relevant when their lifetimes are actually uncertain. This

extension is easily obtained from our model. A natural continuation to this work is the

introduction of a production, where durable goods are involved and increasing returns

are allowed.

Another important result on the relation between prices allows us to make a link with

the Pareto efficiency of equilibrium, confirming their role in restoring the market fail-

ure in OLG economies. We review the characterization of Pareto optimal allocations,

in the line of Balasko and Shell [4], but in addition we allow for multiple agents and

multiple goods per period. Our approach is set-theoretic and geometrical. The con-

sumers characteristics are described by their consumption sets, their preference sets and

the associated normal cones. We give conditions of Pareto optimality, under very basic

assumptions, by providing a simple and geometric version of the proof of Balasko and

Shell [4], encompassing the case of non-complete and non-transitive preferences. As part

of the motivations of this chapter, a future work will consist of including durable goods
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and characterizing optimal allocations in a framework where the consumption sets do

not consist of the positive orthant anymore.

Throughout this thesis, we have raised aditionnal issues but we have also accumulated

further tools and intuitions that will be important and helpful for further studies, es-

pecially in production economies where increasing returns are allowed and thus growth

can be expected. Indeed, increasing returns may induce losses, but in the long run,

the economy may grow to an efficient allocation, where there are no losses. This meets

the notion of dynamical efficiency, an issue that deserves a deeper consideration, and

constitutes a natural perspective to this thesis.



Appendix A

On the equivalent economy

with“no” durable goods

Boundedness of A(Ẽ)

Let e ∈
∏
t∈N∗ RL+ be defined by ẽt =

∑
i∈It∪It−1

ẽit and e′ ∈
∏
t∈N∗ RL+ such that e′ ≥ ẽ.

Let (χi) ∈ A(Ẽ), with χi = (xit, ξ
i
t+1, ζ

i
t+2), then for all t = 1, 2 . . .,

∑
i∈I0

ξi1 +
∑
i∈I1

xi1 ≤ e′1

∑
i∈It−2

ζit +
∑
i∈It−1

ξit +
∑
i∈It

xit ≤ e′t, t > 1

For the first period, define M1 := e′1. Since ξi1 ≥ 0 and xi1 ≥ 0, we have 0 ≤ xi1 ≤M1 for

i ∈ I0, and 0 ≤ ξi1 ≤M1 for i ∈ I1.

For the second period, let M2 := e′2 + Γ1(M1).

For i ∈ I0, since ζi2 = −Γ1(ξi1), we have: −Γ1(M1) ≤ ζi2 ≤ 0.

By definition, we know that:

∑
i∈I0

ζi2 +
∑
i∈I1

ξi2 ≥
∑
i∈I0

−Γ1(ξi1)−
∑
i∈I1

Γ1(xi1) ≥ −Γ1(e′1)

Thus, for i ∈ I2, 0 ≤ xi2 ≤
∑

i∈I2 x
i
2 ≤ e′2 −

∑
i∈I0 ζ

i
2 −

∑
i∈I1 ξ

i
2 ≤ e′2 + Γ1(e′1), that is:

0 ≤ xi2 ≤M2.

83
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For i ∈ I1, it is clear that ζi2 ≥ −Γ1(e′1). Futhermore,

ζi2 +
∑

i′∈I1,i′ 6=i
ζi
′

2 ≤ e′2 −
∑
i∈I0

ζi2

But, ∑
i′∈I1,i′ 6=i

ζi
′

2 +
∑
i∈I0

ζi2 ≥ −Γ(
∑

i′∈I1,i′ 6=i
xi1)− Γ(

∑
i∈I0

ξi1) ≥ −Γ(e′1)

Thus, for i ∈ I1, −Γ1(M1) ≤ ζi2 ≤ e′2 + Γ(e′1) = M2.

For period t ≥ 3, we recursively proceed with the same reasoning to prove that the se-

quence of nonnegative vectors (Mt)t≥1, defined byMt = e′t+Γt−1(Mt−1+Γt−2(Mt−2) · · ·+
Γ1(M1)), where M1 = e′1satisfies the desired inequalities.

�

Proof of Lemma 3.1

There is no modification concerning the budget constraints feasibility, we just have to

look at Condition (b) for the period τ−1 in the definition of a pseudo-equilibrium. Since

(p̄∗, (āi∗)) is a pseudo-equilibrium in the economy Eτ̄ and τ̄ − 1 > τ − 1, one has:

∑
i∈I τ̄−2

0

āi∗τ−1 =
∑

i∈I τ̄−2
0

ẽτ̄ iτ−1

Considering the definition of X τ̄ i, for all i ∈ ∪τ̄−1
t=τ It, āi∗τ−1 = 0. From the definition of

ẽτ̄ i, for all i ∈ ∪τ̄−1
t=τ It, ẽτ̄ iτ−1 = 0. So, one deduces that:

∑
i∈I τ̄−2

0

āi∗τ−1 =
∑

i∈Iτ−2
0

āi∗τ−1 +
∑

i∈Iτ−1

āi∗τ−1 =
∑

i∈Iτ−2
0

ẽτ̄ iτ−1 +
∑

i∈Iτ−1

ẽτ−1

and since
∑

i∈Iτ−1
āi∗τ−1 ≥ 0, we have:

∑
i∈Iτ−2

0

āi∗τ−1 ≤
∑

i∈Iτ−2
0

ẽτ̄ iτ−1 +
∑

i∈Iτ−1

ẽτ−1

So we get Condition (b) for the period τ − 1 since āi∗τ−1 = âi∗τ−1 and ẽτ̄ iτ−1 = ẽτiτ−1 for all

i ∈ I τ̄−2
0 and ẽτ̄ iτ−1 = ẽiτ−1 for all i ∈ Iτ−1.

�
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Proof of Lemma 3.2

The first part comes from the strict monotonicity of the utility of agent i ∈ It, for all

t = 1, 2 . . . τ − 1, as mentionned in Assumption C.

We normalize a non zero equilibrium price p∗ so that
∑τ

t=1

∑
`∈L p

∗
t` = 1.

Let us consider a sequence of pseudo-equilibria (pν , (aiν)) that converges to (p̄, (āi)). We

prove that (p̄, (āi)) is also a pseudo-equilibrium.

We easily establish that (p̄, (āi)) satisfies Condition (b) in Definition 3 of pseudo-equilibrium.

So it remains to show that Condition (a) is also satisfied.

Denote by (wiν) the associated wealth sequence and by w̄i its limit. One easily shows that

the budget constraint is satisfied by āi. If p̄·ai < w̄i, then for ν large enough, pν ·ai ≤ wiν .

But this implies that ũi(ai) ≤ ũi(aiν), and by the continuity of ũi, ũi(ai) ≤ ũi(āi). Thus

(p̄, (āi)) satisfies Condition (a) in Definition 3.4.2 of a quasi-equilibrium. Thus (p̄, (āi))

is actually a “pseudo-quasi-equilibrium”. But thanks to the irreducibility condition, we

can discard the possibility of minimal wealth at any quasi-equilibrium price. Thus each

agent is an utility maximizer at any quasi-equilibrium price. �

Proof of Lemma 3.3

We have established that for all T ≥ 2, there exists a pseudo-equilibrium (pT , (aiT )) of

the truncated economy ẼT . Since pT1 6= 0, we normalize pT so that
∑

`∈L p
T
1` = 1.

We extend the price and the allocations to the whole space
∏∞
t=1 RL by adding zeros for

the missing components without modifying the notations. So, now the sequences (pT ),

(aiT ) are in
∏∞
t=1 RL.

If Lemma 3.3 is not true, then there exist t̄ and an increasing sequence (T ν) such that

pT
ν

t̄ ≥ ν1. Let τ > t̄+ 3. We assume without any loss of generality that T ν > τ for all

ν.

Now we consider the restriction to the τ first period of the T ν-equilibrium (pT
ν
, (aiT

ν
)):

- for all i ∈ Iτ−2
0 , aiν is the restriction of aiT

ν
to
∏τ
t=1 RL;

- pν is the restriction of pT
ν

to
∏τ
t=1 RL.
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From Lemma 3.1 in the previous section, (pν , (xiν))) is a pseudo-equilibrium of the

truncated economy Eτ . We now renormalize the price pν as follows:

πν =
1∑τ

t=1

∑
`∈L p

ν
t`

pν

Since πν is nonnegative, the sequence πν remains in the simplex of
∏τ
t=1 RL, which is

compact. From the boundedness of A(Ẽτ (e)), the sequence (aiν) remains in the compact

subset A(Ẽτ (e)). So the sequence (πν , (aiν) has a cluster point (π̄, (āi)). From Lemma

3.2, (π̄, (āi)) is also a pseudo-equilibrium of the truncated economy Ẽτ . But π̄1 = 0 since

τ∑
t=1

∑
`∈L

pνt` ≥
∑
`∈L

pνt̄` ≥ νL

converges to +∞ and 0 ≤ pν1` ≤ 1 for all ` ∈ L. Hence we get a contradiction since

Lemma 3.2 shows that for all t = 1, . . . , τ , π̄t 6= 0.

�
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OLG with multiple goods: on the

existence result

Sketch of the proof of the existence of an equilibrium

We will proceed as in exchange economies (see Balasko et al. [4]) to establish the

existence of equilibrium in E .

Step 1: Truncate the economy at a finite horizon τ : we thus consider individuals born

up to period τ−1 and group them all together into Iτ−1
0 . The truncated economy with a

finite horizon Eτ =
(
Xτi, P τi, eτi

)
i∈Iτ−1

0
where, for each t = 1, . . . , τ − 1, for each i ∈ It,

Xτi = {x ∈
∏τ
t=1 RL+ | xt′ = 0, ∀t′ 6= t, t+ 1},

P τi(x) = P i(xi),

eτi = (eτit′ )
τ
t′=1 such that eτit = eit, e

τi
t+1 = eit+1 and eτit′ = 0 if t′ 6= t, t + 1 satisfies

the sufficient conditions for the existence of pseudo-equilibrium in finite dimension of

Gale and Mas-Colell [31], [32], where the production set is Y = {0}. Indeed, the

Xτi’s are closed (as a sum of closed subsets of R2L
+ ), convex, non-empty and bounded

below, the P τi(x)’s are open in X and convex, and the income functions ατi’s defined

by ατi(p) = p · eτi satisfy ατi(p) > inf p · Xτi = 0. The difference between a pseudo-

equilibrium and an equilibrium is that we do not require the market clearing condition

at the last period τ and we artificially increase the initial endowments by adding those

of the consumers of the generation τ . We also recall that if τ ′ > τ , then the restriction

of a pseudo-equilibrium of Eτ ′ to the τ − 1 first generations is a pseudo-equilibrium of

Eτ .
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Step 2: We prove that prices and allocations remain in a compact space of a suitable

linear space and we finally show that an equilibrium of the OLG economy is a limit

point of pseudo-equilibria for the esquence of truncated economies.

Relation between the aggregate normal cone and the normal cones to

the individual preferred sets 1

NP̄t((xi))(x̄
t) =

⋂
i∈It

NP̄ i(xi)(x
i)

Proof. Indeed, let q ∈ ∩i∈ItNP̄ i(xi)(x
i), then q · (zi − xi) ≤ 0 for all zi ∈ P̄ i(xi),

i ∈ It. Thus by summing up, q ·
∑

i∈It(z
i − xi) = q · (

∑
i∈It z

i −
∑

i∈It x
i) ≤ 0, where∑

i∈It z
i ∈ P̄t((xi)). Consequently, ∩i∈ItNP̄ i(xi)(x

i) ⊂ NP̄t((xi))(x̄
t).

Conversely, let q ∈ NP̄t((xi))(x̄
t), then for all z ∈ P̄t((x

i)), q · (z − x̄t) ≤ 0. Since

Pt((x
i)) =

∑
i∈It P̄

i(xi), for all i ∈ It, there exists zi ∈ P̄ i(xi) such that z =
∑

i∈It z
i.

By linearity of the scalar product,
∑

i∈It q · (z
i − xi) ≤ 0. By taking zi = xi for all

i 6= 1, i ∈ It = {1, 2, . . . It} and z1 ∈ P̄ 1(x1), then q · (z1 − x1) ≤ 0 which means

that q ∈ NP̄ i(x1)(x
1). By repeating the same reasoning for i = 2, . . . It, we obtain that

q · (zi − xi) ≤ 0 for all i ∈ It, thus NP̄t((xi))(x̄
t) ⊂ ∩i∈ItNP̄ i(xi)(x

i). �

1This relation was also provided in [52] p. 230, as an exercice
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économie avec effets externes, Annales d’économie et de statistique, No. 36.
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Université de Paris 1.

[14] Bonnisseau J-M., and L. Rakotonindrainy (2015), A note on the characterization

of optimal allocations in OLG economies with multiple goods, Documents de

travail du CES 2015.03, Université de Paris 1.
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[24] Dehez, P. and Drèze, J. (1988b), Distributive production sets and equilibria with

increasing returns, Journal of Mathematical Economics, 17, 231 - 248.



References 91

[25] Dı́az A. and M. J. Luengo-Prado (2010), The Wealth Distribution with Durabe

Goods, International Economic Review. Vol. 51, No. 1.

[26] Dierker, E. and Guesnerie, R. and Neuefeind, W. (1985), General equilibrium

where some firms follow special pricing rules, Econometrica, 53, 1369 - 1393.

[27] Dixit, A. and J. Siglitz (1977), Monopolistic Competition and Optimum Product

diversity, American Economic Review, 67, 297-308.
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fluctuations endogènes, Recherche Economique de Louvain, De Boeck Université,
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