
Performance Estimation of Streaming Applications
for Hierarchical MPSoCs

Martin Flasskamp†, Gregor Sievers†, Johannes Ax†, Christian Klarhorst†,
Thorsten Jungeblut†, Wayne Kelly*, Michael Thies†, and Mario Porrmann†

†Cognitronics and Sensor Systems Group, *Science and Engineering Faculty
CITEC, Bielefeld University, Queensland University of Technology

Bielefeld, Germany Brisbane, Australia
mflasskamp@cit-ec.uni-bielefeld.de w.kelly@qut.edu.au

ABSTRACT
Parallel programming and effective partitioning of appli-
cations for embedded many-core architectures requires op-
timization algorithms. However, these algorithms have to
quickly evaluate thousands of different partitions. We present
a fast performance estimator embedded in a parallelizing com-
piler for streaming applications. The estimator combines a
single execution-based simulation and an analytic approach.
Experimental results demonstrate that the estimator has a
mean error of 2.6% and computes its estimation 2848 times
faster compared to a cycle accurate simulator.

1. INTRODUCTION
Multiprocessor System-on-Chips (MPSoC) comprised of

dozens or hundreds of CPU cores are prevalently used in
current embedded systems due to their increased energy effi-
ciency compared to single core architectures. The efficient
mapping of tasks to MPSoCs that integrate many processing
elements has a high computational complexity. Some frame-
works [6, 15, 13] use optimization algorithms like simulated
annealing or evolutionary algorithms to explore a large solu-
tion space. A typical optimization goal is to maximize the
throughput of an application.

An important and time-consuming step of these algorithms
is the accurate evaluation of hundreds to ten thousands of
different partitions of the application. The effectiveness of
this optimization is based on two conflicting goals: Firstly,
the faster the evaluation of a single partition can be done
the more different partitions can be analyzed. Accordingly,
the chance is higher to derive a mapping with optimal perfor-
mance from the search space of possible partitions. Secondly,
the more accurate a partition is evaluated the better is the
compiler’s chance to correctly select between solutions. Thus,
the challenge is to balance computation time against accuracy
and find that trade-off that leads to the best overall result

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RAPIDO ’16 January 18 2016, Prague, Czech Republic
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4072-4/16/01. . . $15.00

DOI: http://dx.doi.org/10.1145/2852339.2852342

independent of the optimization algorithm.
Performance evaluation can be performed on various lev-

els of abstraction starting from analytical models, over ab-
stract ISA-simulation, up to complex but very precise RTL-
simulation or real FPGA-prototypes. In Fig. 1 the relation
between speed and accuracy is presented from very fast
but abstract simulations using native x86 execution to most
accurate micro-architectures (RTL-simulators, FPGA/ASIC-
prototypes).

The main contribution of this work is a fast and accurate
simulation-based estimation (SBE) framework. In addition,
a more abstract analytical modeling for performance estima-
tion is discussed. This analytical model can be used as an
optimistic upper bound for the achievable performance of an
application.

For the evaluation of the speed and accuracy of our estima-
tion we use our hierarchical CoreVA-MPSoC-architecture [12]
as a target hardware platform described in Section 3.1. The
architecture consists of VLIW CPUs that are tightly coupled
within CPU clusters via a bus-based interconnect. Several of
these clusters are connected using a Network-on-chip (NoC)
to allow for many-cores with hundreds of CPUs. To map
applications to a huge number of CPUs, we utilize a compiler
framework for streaming applications [6], c.f. Section 3.2.
The compiler implements a partitioning algorithm based on
simulated annealing to derive a good mapping of the applica-
tion to the MPSoC. This mapping is static because streaming
applications process a continuous data stream by repetitive
computation.

The estimation framework is designed to be applicable to
arbitrary MPSoC architectures.

speed

accuracy

speed

x8
6

th
re

ad
s

In
st

ru
ct

io
n

S
et

S
im

ul
at

or
 (I

S
S)

R
TL

 s
im

ul
at

or

FP
G

A
 p

ro
to

ty
pe

A
S

IC
 p

ro
to

ty
pe

Figure 1: Estimation and simulation methods:
Trade-off between accuracy and speed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211814597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. RELATED WORK
There are plenty of methodologies to profile software on

embedded systems. A comprehensive overview from Patel
and Rajawat with a focus on performance estimation can
be found in [9]. According to their taxonomy our SBE
framework can be classified as a combination of an analytical
methodology and a simulation-based approach. At the end
of Section 5 we compare accuracy and simulation speed of
our approaches with related work.

There are a number of works regarding the early system
level design space exploration for embedded systems. The
sesame framework [10] is an example for a high level hard-
ware/software estimation environment. An analytical model
is used to select candidate architectures. These architectures
are than simulated on a system level and refined. Our work
focus on the performance estimation for a given MPSoC
architecture.

Cheung et al. [4] present a performance simulation frame-
work for MPSoC. They generate structural performance
models with GCC in less than 0.1 s. An estimation error of
less than 1% compared to ISS is achieved at a speed close
to untimed behavioral simulation. The approach was tested
on four different configurations of the Xtensa LX2 processor
architecture.

An analytic approach based on neural networks is proposed
by Oyamada et al. [8]. During the MPSoC design process
they aim at a rapid selection of a suitable processor to run
a given application. The error of the analytic estimation is
up to 17% compared to the cycle accurate simulation. The
estimation time of 600 s for a cycle accurate simulation can
be reduced to 17 s.

Huang et al. [5] utilize GNU gcov to profile execution statis-
tics of given C code during native simulation on x86 CPUs.
Afterwards, the gathered information is used to annotate a
transaction accurate simulation. For an example application
the estimation time can be reduced to 15 s compared to 2656 s
required by a cycle accurate virtual prototype.

Benoit et al. [3] are targeting performance prediction of
data-parallel applications for automatic parallelization. They
achieve an estimation error of 1.59% compared to measured
results. Their approach of estimating a task’s execution
costs by an execution without any partition is comparable
to the strategy we utilize to estimate a task in our analytic
modeling and SBE model (cf. Section 4).

3. THE COREVA-MPSOC PROJECT
As a target platform for our performance estimation en-

vironment presented in this work, we use a self-developed
multiprocessor. The CoreVA-MPSoC is used for embed-
ded application domains like software defined radio, vision
processing, and robotics.

3.1 Hardware Architecture
The hardware architecture of our CoreVA-MPSoC is pre-

sented in Fig. 2. Basic building block of the MPSoC is the
VLIW CPU CoreVA that is designed to provide high resource
efficiency [7]. According to the application domain, the num-
ber of VLIW slots, ALUs, multiplication, and division units
can be configured at design time. The CPU features software
managed data and instruction scratchpad memories and six
pipeline stages.

A CPU cluster is used to tightly couple up to 32 of those
CPU cores using a bus-based interconnect. The interconnect

can be configured at design time and supports either AXI
or Wishbone standard, each featuring a crossbar or a shared
bus. Within a cluster, a CPU can access the local data
memory of every other CPU in a Non-Uniform Memory
Access (NUMA) fashion. A FIFO is attached to each CPU
to decouple write operations to the bus so the CPU is not
stalled on bus congestions.

To allow for MPSoCs with several hundred CPU cores,
a Network on Chip (NoC) can be used as an additional
level of communication hierarchy to connect several CPU
clusters. The NoC is built up of routers, implementing a
packet-switched wormhole routing. Packets are segmented
into flits with 64 bit payload data. The NoC allows for the
usage of different network topologies. In this work we use
a 2D-mesh topology. One port of each router is connected
to a CPU cluster via a network interface (NI) [2]. The NI
acts like a DMA controller by sending and receiving packets
concurrently with CPU processing. Packet data is directly
stored to and read from each CPU’s local data memory. The
NI supports a synchronized communication via a certain
number of independent uni-directional channels.

A single issue VLIW CPU occupies an area of 0.126 mm2 us-
ing a 28 nm FD-SOI standard cell technology including 16 kB
instruction and 16 kB data memory (post place&route) [12].
A hierarchical MPSoC with 4 CPU clusters, 4 CPUs in each
cluster, and 512 kB total memory requires 3.02 mm2. The
maximum clock frequency of the MPSoC is 830 MHz. A
more detailed description of the hardware architecture of our
MPSoC can be found in [12].

To program the MPSoC, the inter-CPU communication
is encapsulated by our communication library, transparently
for both cluster and NoC communication. The CPUs com-
municate via a block-based synchronization model and uni-
directional communication channels [6]. The channels can
use multi buffering to hide communication latencies.

3.2 Compiler Infrastructure
We have created a C compiler tool chain based on the

LLVM compiler infrastructure. Our custom backend sup-
ports VLIW and SIMD vectorization. Nevertheless, effi-
ciently programming a complete MPSoC with many CPUs is
a challenge for the programmer. Therefore, we developed a
compiler for streaming applications [6] to aid the programmer
in effective usage of the MPSoC’s resources. These applica-
tions need to be written in the StreamIt language developed
at MIT [14]. An application is represented by a structured
data flow graph, which describes the inherent parallelism of
its tasks. Our compiler for streaming applications searches
for a valid partition with maximum throughput. It utilizes an

CPU
Cluster

CPU
Cluster

CPU
Cluster

CPU
Cluster

CPU Cluster

Cluster Interconnect

CoreVA
CPU

Data
MEM

FI
FO

Instr.
MEM

CoreVA
CPU

Data
MEM

FI
FO

Instr.
MEM

NI

Figure 2: Hierarchical CoreVA-MPSoC architecture

approach based on simulated annealing to map the tasks of
a program onto the individual CPUs of the MPSoC. During
the partitioning process the compiler exploits three degrees
of freedom to alter an application’s data flow graph. Firstly,
the compiler decides on which processor a task is placed.
Secondly, a task can be cloned to exploit data parallelism.
Thirdly, the granularity of work done in each iteration can be
increased to reduce the overhead of communication. These
changes are called mutations and lead to a huge search space
for the partitioning algorithm.

Every partition is judged regarding the achieved perfor-
mance but is also checked if any hardware limits are exceeded.
These are upper limits for, e.g., memory consumption per
CPU or the packet size in the NoC. Partitions that violate
these restrictions are marked as invalid. Finally, C code is
generated for all CPUs according to the final partition. For
each task the computational part and the synchronization
with other tasks are separated.

4. ESTIMATION AND SIMULATION
METHODOLOGIES

An MPSoC can be simulated at different levels of ab-
straction at different levels of accuracy and speed. The most
abstract level is reached if the MPSoC is reduced to a number
of CPUs without considering the communication infrastruc-
ture (cf. Figure 3a). As a result, moving data from one CPU
to another does not have any costs at all. This kind of model
is used in our analytic modeling.

By adding topology details to the model, the communica-
tion channel between two arbitrary CPUs can be estimated
by heuristics (cf. Figure 3b). Hereby, the different commu-
nication channels (e.g., within a CPU cluster or in between
CPU clusters) can be distinguished regarding their latency
behavior or capacity. This level of abstraction is utilized
by our simulation based estimation (SBE) model presented
in Subsection 4.1. The model is based on an XML schema
defined as a formal description of the MPSoC architecture.
For example, a CPU is described by the number and con-
figuration of functional units and its local memory. The
hierarchical interconnect is specified by, e.g., its topology,
communication bandwidth, and latency.

The computational costs to execute a task are the same
on each processor of the same type independent from the
partition or MPSoC topology. Thus, we predetermine the
runtime of all tasks of an application by measuring their
execution time on a single CPU core with a cycle accurate
simulator. This has to be done only once and the results are
used by both analytic modeling and SBE model.

A higher estimation accuracy can be achieved if the sim-
ulation considers the hardware architecture of the MPSoC
(cf. Figure 3c). We present a cycle accurate simulation (CAS)
by an instruction set simulator (ISS) and RTL simulator as
well as FPGA and ASIC prototypes in Subsection 4.2. The
usage of simulation results can lead to a higher estimation ac-
curacy but requires the application to be executed. However,
the execution on a platform other than the target MPSoC
(e.g., an x86 PC) can be done at an early design stage. There-
fore, a simulation environment based on x86 threads can be
utilized to simulate the functional behavior of an application
during its development. The timing behavior can be quite
inaccurate depending on the architectural difference to the
target MPSoC.

C
C

C
C

C
C

C
C

CC CC
CC CC

(a) AM

C C CC

C C CC

C C CC

(b) SBE

C C CC

C C CC
(c) CAS

Figure 3: Level of abstraction for analytic modeling
(AM), simulation based estimation (SBE), and cycle
accurate simulation (CAS) of a hierarchical MPSoC.

speed accuracy availability

AM +++ – – +++

x86 threads ++ – ++

SBE +++ + +

ISS (CAS) – ++ –

RTL sim. – – ++ – –

FPGA ++ ++ – –

ASIC +++ +++ – – –

Table 1: Comparison of speed, accuracy, and avail-
ability for x86 threads, analytic modeling (AM), sim-
ulation based estimation (SBE), ISS, RTL simulator,
FPGA, and ASIC

In Table 1 a comparison of speed, accuracy, and avail-
ability of the mentioned performance evaluation methods is
presented. Although, the most accurate and fastest execution-
based performance ascertainment can be derived from an
existing chip prototype (ASIC), it is typically not available
due to an ongoing design process or high production costs.
Besides, it lacks the flexibility of evaluating different hard-
ware configurations. Our analytic modeling and SBE model
are both fast as depicted in Table 1. Furthermore, the ana-
lytic modeling has the best availability but a lower accuracy,
whereas the SBE model achieves a reasonable accuracy and
slightly worse availability. A further discussion is provided
in Section 5. Before describing the implementation details of
our SBE in Subsection 4.1, we will first present our analytic
modeling approach.

The amount of parallelism that an application offers limits
the scaling on multiprocessor architectures. Amdahl’s law
divides an application in a parallel portion f P r0, 1s and
a sequential portion 1 ´ f . The parallel portion can be
accelerated by a factor of m if it is executed on m CPUs.
The sequential part of the application limits the scaling.
Amdahl’s law does not consider any overhead of splitting
an application’s tasks to several CPUs. Because of this, it
is an optimistic limit for the achievable speedup for a given
number of CPUs. Parallel applications contain different
types of parallelism. A task features data parallelism if one
call of a task is independent from the next call. Thus, each
call of a task can be executed on another CPU. This type
of parallelism is also called scalable parallelism. Functional
parallelism (task and pipeline parallelism) describes a finite
number of atomic tasks that can be executed in parallel.
Amdahl’s law assumes scalable parallelism, because tasks
have to be splittable at arbitrary ratios. If an application

features data parallelism only (f “ 1), a linear scaling is
possible and the speedup S is equal to the number of CPUs
m if communication is not considered.

For our analytic modeling we assume an application with
sequential runtime w that has f 1

P r0, 1s data parallelism
and 1 ´ f 1 functional parallelism. In case of streaming ap-
plications, w is the runtime of a single repetition of the
periodic computation. We use a partitioning algorithm (e.g.,
brute force or greedy bin packing [6]) to partition all atomic
tasks of the functional-parallel part of the application to the
available m CPUs. There are then one or more CPUs that
limit the application’s speedup because the execution of their
tasks result in the longest runtime wmax. All other CPUs
do not operate at full utilization. The sum of all of these
spare cycles over all CPUs is wavailable. If the runtime of
the data-parallel part of the application w ¨ f 1 is at least as
large as wavailable, the data-parallel part can be partitioned
to all CPUs so that all CPUs have the same workload. This
results in linear speedup. Combining these two cases, the
resulting speedup SAM for our analytic modeling is:

SAM “

"

w
wmax

if w ¨ f 1
ă wavailable

m if w ¨ f 1
ě wavailable

(1)

It is important to note that this analytic modeling does
not consider communication. Therefore, two partitions of
an application for a particular MPSoC configuration cannot
be distinguished. From this follows that analytic modeling
cannot be used by optimization algorithms like our partition-
ing algorithm presented in Section 3.2. Our more accurate
SBE model addresses this limitation and is presented in the
next subsection. However, analytic modeling can provide
information about the application’s inherent parallelism at
a very early design stage based on the pure computational
costs of the application. In addition, analytic modeling can
be used by developers as an optimistic estimation for the
theoretical performance of an application.

4.1 Simulation Based Estimation (SBE)
Finding an optimal partition of an application for a par-

ticular MPSoC configuration is an optimization problem.
Our SBE approach can be integrated into partitioning algo-
rithms by providing accurate performance estimations. The
traversed partitions don’t have to be simulated individually
because their estimation is based on preceding simulations
of the individual tasks. MPSoC configurations with the
same number of CPUs can differ in many ways like topology,
communication infrastructure and memory layout. All these
characteristics must be modeled for accurate estimations.
While processing, an optimization algorithm traverses a huge
search space of different partitions (cf. Section 3). Every
partition has to be judged against the optimization goal
of maximum throughput. The performance of the applica-
tion is limited by a bottleneck, which can be the CPU or
the communication link with the highest load. A CPU’s
work consists of the computational work and synchronization
costs of the executed tasks as well as additional cycles if the
communication infrastructure is overloaded.

The computational work can be calculated for each CPU
by summing up the predetermined runtime of all tasks parti-
tioned onto this CPU. We made the assumption that a task’s
runtime is independent of the CPU’s position in the MPSoC.
This requires that the CPUs have the same properties like,
e.g., frequency and number of VLIW slots (cf. Section 3.1).

Accordingly, the runtime of all tasks can be determined in ad-
vance for a specific type of CPU by measuring the execution
on a single CPU.

Besides the placement of a task the communication be-
tween two tasks can influence the performance as well. De-
pending on the used communication infrastructure, there
are additional software costs (in terms of CPU cycles) for
synchronization and handling of communication channels in
software. These costs differ if a channel connects two tasks
on the same CPU or across a CPU cluster or the NoC. This
overhead is computed based on heuristics from the XML
description of the target MPSoC, including the topology,
communication bandwidth, and latency of the MPSoC as
well as software costs for CPU-to-CPU synchronization. The
software costs can automatically be determined in advance.
Our compiler infrastructure (cf. Section 3.2) generates micro
benchmarks for typical communication patterns. The mea-
surement is performed by executing the micro benchmarks
on our cycle accurate simulator.

Multiple tasks communicating concurrently on a communi-
cation link (e.g., a NoC link or a bus interconnect) may lead
to a load that is exceeding the link’s bandwidth. This may
cause a stall of the sending or receiving CPU and therefore
results in additional cycles. Our SBE models the communi-
cation infrastructure of the MPSoC to determine the load
of all network links for a certain partition. The load of one
network link is the sum of all communication channels that
communicate via this link.

The available data memory is a critical resource in embed-
ded multiprocessor systems since its size is typically limited
due to cost constraints. However, increasing the block size
improves the application’s throughput by reducing the im-
pact of synchronization costs. Our SBE model observes the
data memory size and enables the partitioning algorithm to
reject partitions exceeding that constraint.

The load of all CPUs and communication links is estimated
individually as described above. The combination enables
our compiler for streaming applications to determine a fast
but still accurate performance estimation of an application’s
partitions. Changing the placement of tasks or the MPSoC
configuration requires only a simple reevaluation of the SBE
model without execution/simulation of the application. Our
partitioning algorithm utilizes this estimation for balancing
the load due to computation and communication across the
MPSoC. Implementation details about SBE and our parti-
tioning algorithm can be found in the technical report [1].

4.2 Cycle Accurate Simulation (CAS)
An accurate simulator of embedded multiprocessor plat-

forms is required to aid both software and hardware develop-
ment process. The instruction set simulator (ISS) considered
in this work is written in C. Every level of hierarchy (CPU,
Cluster, NoC) in the simulator can be configured to eas-
ily perform a holistic design-space exploration of different
topologies.

The accuracy of our ISS needs to be close to the actual
hardware of the MPSoC, which is described in a Hardware
Description Language (HDL). For development and verifica-
tion of the HDL description an RTL simulation environment
is used. In addition, we perform gatelevel simulations (post
synthesis and post place&route) to determine the energy
consumption of the MPSoC. The accuracy of our RTL and
gatelevel simulation flow has been verified by measurements

of two ASIC prototypes [7]. Our ISS shows a simulation error
of less than 1% compared to RTL simulator. In addition to
the just mentioned simulations, our self-built FPGA-based
rapid prototyping environment RAPTOR [11] is available
for functional verification. This prototyping environment is
also used as a testbed for ASIC prototypes of the CoreVA-
MPSoC.

5. RESULTS
In this section we evaluate our performance estimation

approach using the CoreVA-MPSoC architecture and its
compiler infrastructure. Our benchmark suite contains 10
streaming applications derived from the StreamIt benchmark
suite [14]. We consider 10 MPSoC configurations with 2 to
16 CPUs (e.g., 2x2x4 is a 2x2 Network on Chip with 4 CPUs
within each of the 4 CPU clusters).

The speed of the different estimation and simulation vari-
ants is compared by measuring the time to produce 100
output items using the application FilterBank (cf. Figure 4).
Our evaluation system is running Ubuntu Linux 12.04 on
an Intel Xeon E5-1650 processor at 3.5 GHz and has 128 GB
RAM. The final partition produced by the partitioning algo-
rithm is executed for 100 iterations by the simulation based
on x86 threads and ISS as well as 30 times by the RTL
simulator. For FPGA and ASIC prototypes the runtime
is calculated based on the cycle accurate RTL simulation
and target frequencies of 50 MHz for the FPGA prototype
and 830 MHz for the ASIC prototype. The RTL simulation
shows the longest runtime with 164 s for one CPU to 812 s
for an MPSoC with 128 CPUs. Compared to RTL simula-
tion, the ISS is three order of magnitudes faster with 0.35 s
to 1.00 s. Increasing the number of CPU cores results in a
reduction of simulated MPSoC cycles which can be seen for
the FPGA and ASIC prototypes. The ISS execution time is
mainly affected by the number of simulated CPUs and the
total number of simulated MPSoC cycles. Our SBE model
shows the fastest execution time, because it only requires
solving the MPSoC model to derive communication costs.
The speedup of SBE compared to the ISS simulation ranges
from 1224 for an MPSoC configuration with 16 CPUs to 2848

0 8 16 32 64 128
CPUs

10-4

10-3

10-2

10-1

100

101

102

103

R
un

tim
e

[s
]

SBE
ISS

x86 threads
RTL simulator

FPGA prototype
ASIC prototype

Figure 4: Execution time to produce 100 output
items of FilterBank application for MPSoC config-
urations with 1 to 128 CPUs

for an MPSoC with 128 CPUs. For x86 threads the runtime
increases rapidly if there are more simulation threads (i.e.,
simulated MPSoC cores) than available physical CPU cores
of the simulation host. Compared to our SBE model, x86
threads have a higher runtime and are thus used for func-
tional verification and debugging in early design stages only.
The analytic modeling is not shown in Figure 4 because it
consists of a simple partitioning step of functional-parallel
tasks of the application followed by solving Equation 1. The
average estimation error of all applications and MPSoC con-
figurations is 26.4% for the analytic modeling compared to
the cycle accurate ISS. However, as described in Section 4, the
analytic modeling is not suitable for partitioning algorithms
and is not considered further.

Figure 5 shows the absolute error of our SBE model com-
pared to the cycle accurate ISS. For this comparison all
applications of our benchmark suite are used with a 2x2x4
MPSoC configuration. FFT, FilterBank, and MovingAverage
show the lowest error with less than 0.1%. The applications
BatcherSort and BitonicSort show a higher error of 9.8%
and 6.7% due to inaccuracies of the estimation of the com-
munication primitives. The average error considering all 10
applications is 2.6%.

For the evaluation of different MPSoC configurations, Fig-
ure 6 shows the absolute estimation error for SBE model, the
application DES and 10 different MPSoC configurations with
2 to 16 CPUs. We consider different topologies from a single
CPU cluster to multiple clusters (e.g., 2x1x8). There are 4
MPSoC configurations with 16 CPUs (1x1x16, 2x1x8, 2x2x4,
4x4x1) and 4 configurations with 8 CPUs (1x1x8, 2x1x4,
2x2x2, 4x2x1). For the DES application the average estima-
tion error is 2.3%. The configurations with two CPU clusters
and one NoC link show the highest error of 3.8% (2x1x4) and
4.8% (2x1x8). Nevertheless, considering all applications and
MPSoC configurations, the estimation error is not depending
on the MPSoC topology or CPU count. The SBE model is
aware of the MPSoC’s topology and is therefore suitable for
accurate estimations. Due to different experimental setups
and measurement methodologies, a fair comparison of our
SBE model with other related work is not easy. Cheung et

B
at

ch
er

S
or

t

B
ito

ni
cS

or
t

D
E

S

FF
T

Fi
lte

rB
an

k

La
tti

ce

Lo
w

pa
ss

Fi
lte

r

M
er

ge
S

or
t

M
ov

in
gA

ve
ra

ge

R
ad

ix
S

or
t0

2

4

6

8

10

E
st

im
at

io
n

E
rr

or
 [%

]

Figure 5: Estimation error of SBE model and dif-
ferent applications for 2x2x4 MPSoC configuration
compared to ISS

Figure 6: Estimation error of SBE model and
DES application for different MPSoC configurations
(NoC dimensions x #CPU per cluster) compared to
ISS

al. [4] and Benoit et al. [3] show an estimation error of less
than 2%. Oyamada et al. [8] present a much higher error of
17% and show a speedup of 35 compared to cycle accurate
simulation. Huang et al. [5] show a speedup of 177.

Considering all applications and MPSoC configurations
results in 100 different combinations. For these the average
estimation error for our SBE model is 2.6%. The SBE model
achieves a speedup in execution time of up to 2848 compared
to the ISS simulation for an MPSoC containing 128 CPUs.

The high estimation accuracy and fast runtime of SBE
allows our partitioning algorithm to explore a huge design
space of streaming applications. Our approach does not
require any simulation when integrated in an optimization
algorithm since all simulation steps are independent from
the MPSoC configuration and the placement of tasks.

6. CONCLUSION
In this work, we have presented a performance estimation

methodology for embedded hierarchical MPSoCs. 10 appli-
cations have been considered with 10 different MPSoC con-
figurations resulting in 100 combinations. The partitioning
of applications to these MPSoCs requires fast, but accurate
performance estimation. Analytical modeling can provide
information about the application’s inherent parallelism at
a very early design stage based on the pure computational
costs of the application. In this work we present a simula-
tion based estimation (SBE) model that combines a single
execution-based simulation (by measuring the runtime of
individual tasks once, independent of MPSoC configuration
and task placement) and an analytic approach (by modeling
the communication infrastructure and communication soft-
ware overheads). Compared to related work, SBE shows a
high accuracy and low execution runtime. The SBE model
shows a speedup of 2848 and an average estimation error of
2.6% compared to cycle accurate ISS simulation. Therefore,
SBE is suitable to be utilized in our parallelizing compiler
for hierarchical MPSoCs. In addition, the SBE model can be
applied for the design-space exploration to find an optimal
MPSoC hardware configuration for a certain application. In
the future we will extend the model by estimating latency,
required instruction memory, and energy consumption.

Acknowledgments
This work was funded as part of the DFG Cluster of Excel-
lence Cognitive Interaction Technology ’CITEC’ (EXC 277),
Bielefeld University and the BMBF Leading-Edge Cluster“In-
telligent Technical Systems OstWestfalenLippe” (it’s OWL),
managed by the Project Management Agency Karlsruhe
(PTKA).

7. REFERENCES
[1] J. Ax et al. An Abstract Model for Performance

Estimation of the Embedded Multiprocessor
CoreVA-MPSoC (v1.0). Technical report, Bielefeld
University, 2015. DOI: 10.13140/RG.2.1.1090.2483.

[2] J. Ax et al. System-level analysis of network interfaces
for hierarchical mpsocs. In NoCArc. ACM, 2015. In
press.

[3] N. Benoit and S. Louise. A First Step to Performance
Prediction for Heterogeneous Processing on Manycores.
Procedia Computer Science, 51:2952–2956, 2015.

[4] E. Cheung et al. Fast and accurate performance
simulation of embedded software for MPSoC. In Asia
and South Pacific Design Automation Conf.
(ASP-DAC), pages 552–557. IEEE, 2009.

[5] K. Huang et al. Profiling and Annotation Combined
Method for Multimedia Application Specific MPSoC
Performance Estimation. Frontiers of Information
Technology & Electronic Engineering, 16:135–151, 2015.

[6] W. Kelly et al. A Communication Model and
Partitioning Algorithm for Streaming Applications for
an Embedded MPSoC. In Int. Symp. on System on
Chip (SoC). IEEE, 2014.

[7] S. Lütkemeier et al. A 65 nm 32 b Subthreshold
Processor With 9T Multi-Vt SRAM and Adaptive
Supply Voltage Control. IEEE J. Solid-State Circuits,
48(1):8–19, 2013.

[8] M. Oyamada et al. Software Performance Estimation in
MPSoC Design. In Asia and S. Pacific Design Autom.
Conf. (ASP-DAC), pages 38–43. IEEE, 2007.

[9] R. Patel and A. Rajawat. Recent Trends in Embedded
System Software Performance Estimation. Design
Automation for Emb. Systems, 17(1):193–213, 2014.

[10] A. Pimentel et al. A Systematic Approach to Exploring
Embedded System Architectures at Multiple
Abstraction Levels. IEEE Trans. on Computers,
55(2):99–112, 2006.

[11] M. Porrmann et al. RAPTOR–A Scalable Platform for
Rapid Prototyping and FPGA-based Cluster
Computing. In PARCO’09, pages 592–599, 2009.

[12] G. Sievers et al. Evaluation of Interconnect Fabrics for
an Embedded MPSoC in 28nm FD-SOI. In ISCAS.
IEEE, 2015.

[13] L. Thiele et al. Mapping Applications to Tiled
Multiprocessor Embedded Systems. In Int. Conf. on
Application of Concurrency to System Design (ACSD),
pages 29–40. IEEE, 2007.

[14] W. Thies et al. StreamIt: A Language for Streaming
Applications. In Int. Conf. on Compiler Construction
(CC), pages 179–196. Springer, 2002.

[15] Z. Wang et al. Partitioning Streaming Parallelism for
Multi-Cores. In Int. Conf. on Parallel Architectures and
Compilation Techniques (PACT), page 307. ACM, 2010.

