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Abstract. Question answering over linked data has emerged in the past
years as an important topic of research in order to provide natural lan-
guage access to a growing body of linked open data on the Web. In this
paper we focus on analyzing the lexical gap that arises as a challenge
for any such question answering system. The lexical gap refers to the
mismatch between the vocabulary used in a user question and the vo-
cabulary used in the relevant dataset. We implement a semantic parsing
approach and evaluate it on the QALD-4 benchmark, showing that the
performance of such an approach suffers from training data sparseness.
Its performance can, however, be substantially improved if the right lex-
ical knowledge is available. To show this, we model a set of lexical entries
by hand to quantify the number of entries that would be needed. Fur-
ther, we analyze if a state-of-the-art tool for inducing ontology lexica
from corpora can derive these lexical entries automatically. We conclude
that further research and investments are needed to derive such lexical
knowledge automatically or semi-automatically.

1 Introduction

The topic of question answering over linked data has started to receive substan-
tial attention in the Semantic Web community [8], and benchmarking campaigns
such as QALD1 [7] have been organized in order to support the systematic com-
parison of different approaches on the same task, on a shared dataset and using
the same evaluation protocol.

The main task in question answering over linked data can be framed as
finding a mapping of natural language questions to SPARQL2 queries which can
then be executed over an RDF dataset. As an example, consider the question in
1 together with the given SPARQL query that can be executed over DBpedia in
order to retrieve the answer.

1 http://www.sc.cit-ec.uni-bielefeld.de/qald/
2 http://www.w3.org/TR/sparql11-query/
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1. Who was the first to climb Mount Everest?

PREFIX res: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?uri

WHERE {

res:Mount_Everest dbo:firstAscentPerson ?uri .

}

The benchmarking challenges organized so far identified the lexical gap as one of
the main problems in developing question answering approaches to linked data.
The lexical gap refers to the problem that the vocabulary used by a user and the
vocabulary used to formally represent the data can differ substantially. In the
above example, for instance, the natural language question uses the expression
the first to climb, while the corresponding property in the SPARQL query is
called firstAscentPerson.

In order to develop a system that is successful and robust in mapping natural
language questions to corresponding SPARQL queries, substantial lexical knowl-
edge is needed, such as the knowledge that the property firstAscentPerson can
be expressed as the first to climb. In this paper we analyze what lexical knowl-
edge is needed for a question answering approach over linked data in order to be
able to correctly interpret questions such as the above one. To this end, we have
implemented the semantic parsing approach proposed by Zettlemoyer & Collins
[14] and adapted it for the task of question answering over linked data.

As first contribution, we show that a vanilla implementation of this approach
achieves poor results on the task. The main reason for this is that it was designed
for a scenario in which the vocabulary used in the training data largely overlaps
with the vocabulary used in the test data. This assumption, however, does not
hold in open ended question answering systems over linked data in which the
questions on which the system is trained can be rather different to the questions
that actual users will ask, with respect to both wording and structure.

As second contribution, we investigate how much lexical knowledge would
need to be added so that a semantic parsing approach can perform well on
unseen data. We manually add a set of lexical entries on the basis of analyzing
the test portion of the QALD-4 dataset. Further, we analyze if a state-of-the-art
tool for inducing ontology lexica from corpora can derive these lexical entries
automatically.

2 Semantic Parsing for Question Answering over Linked
Data

In order to apply semantic parsing for question answering over linked data,
we adapt Zettlemoyer & Collins’ approach [14] (ZC05). This approach relies
on Combinatory Categorial Grammar (CCG) [9, 10] for consituent-based syn-
tactic representations, and typed-lambda calculus expressions [3] for semantic



Lexical item Syntactic category Semantic representation

Barack Obama NP Barack Obama

is (S\NP)/(S\NP) λf.λx.f(x)
married to (S\NP)/NP λy.λx.spouse(x, y)
Michelle Obama NP Michelle Obama

Table 1. Example CCG lexicon.

representations. A simple example of a CCG lexicon for the sentence Barack
Obama is married to Michelle Obama is given in Table 1. The forward and
backward application rules of CCG are applied to these lexical items in or-
der to construct the parse tree of the sentence and its semantic representation
spouse(Barack Obama, Michelle Obama).

Input to the ZC05 algorithm is a set of training examples (Si, Li) with i =
1 . . . n, where each Si is a sentence and each Li is a corresponding semantic
representation (logical form). The output is a pair (φ, θ), where φ is a set of
features and θ is a vector of weights for those features.

At the heart of the algorithm is the method GENLEX(S,L). It takes as
input a sentence S and a corresponding logical form L, and generates a set of
potential lexical items with syntactic categories and semantics, and finally pairs
them with all possible substrings of S using rules defined in [14]. The resulting
lexical items are then used in the actual semantic parsing step, together with
initially defined lexical items for domain-independent expressions, such as wh-
words, prepositions, determiners, etc.

The actual semantic parsing step returns the highest scoring parses that
derive the expected logical form L using all possible lexical items. Parsing itself
is an iterative process: The first step uses all possible lexical items generated by
GENLEX, and only those lexical items that were used in the successful parses
are then passed to the second step of parsing, with newly estimated parameter
values.

We re-implemented the algorithm following the description in [14], using
CKY-style parsing and a stack decoder, and changing the parameter estima-
tion step into perceptron updates as in [15]. In Table 2 we show the updated
GENLEX rules to apply ZC05 semantic parsing approach. Newly added input
triggers are highlighted in boldface. Domain-independent expressions were spec-
ified manually, based on the domain-independent expressions used in [14]. These
expressions and 200 training examples from QALD-4 [11], used as input to the
ZC05 algorithm, can be found at http://pub.uni-bielefeld.de/data/2715997.

In order to evaluate semantic parsing on the QALD-4 dataset, the provided
SPARQL queries are automatically converted to semantic representations using
the following translation rules:

– Every resource in the query is translated into a constant.
– Every property in the query is translated into a binary function.
– Every COUNT solution modifier is translated into the function constant count.



Input Trigger Output Category and Example

Constant c NP : c
NP : dbr:Brooklyn Bridge

Arity-two predicate p (S\NP)/NP : λx.λy.p(y, x)
(S\NP)/NP : λxλy.dbo:author(y, x)

Arity-two predicate p (S\NP)/NP : λx.λy.p(x, y)
(S\NP)/NP : λx.λy.dbo:starring(x, y)

Arity-two predicate p (S\NP)/NP : λg.λx.λy.p(y, x) ∧ g(y)
(S\NP)/NP : λg.λx.λy.dbo:crosses(x, y) ∧ g(y)

Arity-two predicate p N/NP : λx.λy.p(x, y)
N/NP : λx.λy.dbo:officialColor(x, y)

Arity-two predicate p N/NP : λg.λx.λy.p(y, x) ∧ g(y)
N/NP : λg.λx.λy.dbo:capital(y, x) ∧ g(y)

Arity-two predicate p N : λx.p(x, c)
and constant c N : λx.rdf:type(x, dbo:River)

Arity-two predicate p (N\N)/NP : λx.λg.λy.p(y, x) ∧ g(y)
(N\N)/NP : λx.λg.λy.dbo:crosses(y, x) ∧ g(y)

Arity-two predicate p N/N : λg.λy.p(y, c) ∧ g(y)
and constant c N/N : λx.dbo:country(x, dbr:Germany) ∧ g(x)

argmax/min with second NP/N : λg.λx.argmax/min(g(x), f(x))
argument arity-two function f NP/N : λg.λx.argmax(g(x), λd.dbo:birthDate(x, d))

Table 2. GENLEX rules from Zettlemoyer & Collins [14] adapted to question answer-
ing over linked data.

3 Evaluation

After having trained the Zettlemoyer & Collins algorithm on the QALD-4 train-
ing set, the learned model was tested on the QALD-4 test set, comprising 50
questions. We excluded questions that require YAGO classes, UNIONs, ORDER BY

statements and FILTERs, leaving 37 questions with respect to which the results
produced by the semantic parsing approach were compared to the QALD-4 gold
standard results. For each question q, precision and recall were computed as
follows:

Recall(q) =
number of correct system answers for q

number of gold standard answers for q

Precision(q) =
number of correct system answers for q

number of system answers for q

In addition, F1-measure is computed as the harmonic mean of precision and
recall. Since the QALD-4 training queries cover only a small part of the DBpedia
vocabulary, we decided to increase lexical coverage of the system by adding a



Precision Recall F1 Correct

Learned lexicon + ontology labels 0.66 0.05 0.09 2
Learned lexicon + ontology labels + handcrafted items 0.93 0.70 0.80 26
Learned lexicon + ontology labels + M-ATOLL 0.70 0.18 0.30 7

Table 3. Results on the QALD-4 test dataset in terms of precision, recall and F-
measure, together with the number of correctly answered questions (out of 37).

Expression Syntax Semantics

first to climb N/NP λxλy.dbo:firstAscentPerson(x, y)
artistic movement N λxλy.dbo:movement(x, y)
launched from (S\NP)/NP λxλy.dbo:launchPad(y, x)
extinct N λx.dbo:conservationStatus(x, ’EX’)
German N/N λgλx.g(x) ∧ dbo:country(x, dbr:Germany))
taikonauts N λx.rdf:type(x, dbo:Astronaut)

∧dbo:nationality(x, dbr:China)

Table 4. Example lexical items created for the QALD-4 test data.

lexical item for each DBpedia predicate and class on the basis of their label,
according to the GENLEX rules in Table 2.

The test results are given in the first row of Table 3, where correct specifies
the number of correctly answered questions (out of 37). Most prominently, recall
turns out to be very low. This is because most of the expressions in the test
questions appear neither in the training data nor among the DBpedia labels.
Thus, the system lacks a great deal of lexical knowledge of expressions that were
not seen during training.

For example, to answer the question Who was the first to climb Mount Ever-
est, the system would need a lexical item such as shown in the first row of Table 4.
Such an item is not present in the induced lexicon, neither is it contained among
the ontology labels. In such cases we therefore need external lexical resources to
bridge the lexical gap. In order to test how much additional lexical knowledge is
needed, we manually handcrafted lexical items for the test data. Some examples
are given in Table 4.

In total we created 54 lexical items. The results using those additional lexical
items are presented in the second row in Table 3, showing that recall significantly
increased, from 5% to 70%.

The system thus shows remarkable improvements by using the handcrafted
lexical items. However, for large domains the required manual effort is not al-
ways feasible. Therefore we ran M-ATOLL [12, 13], a system that automatically
extracts lexicalizations for ontology elements from a text corpus, on the pred-
icates used in the training dataset. It managed to find 10 of the required 54
lexical items. Results using lexical items per predicate that were automatically
extracted by M-ATOLL are shown in the third row in Table 3.



Despite the range of automatically and manually created lexical items, the
system still failed to answer questions such as What was Brazil’s lowest rank in
the FIFA World Ranking. This is mainly due to the n-gram size used to match
vocabulary elements with expressions occuring in the natural language question.
Currently we consider only 4-grams, in order restrict the number of parse trees
produced during semantic parsing, whereas 7-grams would be needed to map
lowest rank in the FIFA World Ranking to the corresponding property fifaMin.

4 Related Work

A very prominent work on learning grammars for semantic parsing is Zettlemoyer
& Collins [14], who proposed lexical induction and parameter estimation using
pairs of questions and logical forms. Our learning algorithm is based on their
approach but differs in the parameter estimation step, using perceptron-style up-
dates (as in [15]) instead of gradient updates. Kwiatkowski et al. [5] proposed an
approach for lexicon induction without using handcrafted domain-independent
lexical items. The approach is based on an iterative splitting of the sentence
and the logical form, such that the approach learns which splitting operation
produces the most accurate lexical items. Preceding work by Kwiatkowski et
al. [6] leverages the same splitting strategy but generalizes better by using tem-
plates for lexical items. Other work on semantic parsing with CCG is Artzi &
Zettlemoyer [1, 2], and Krishnamurthy et al. [4] who apply semantic parsing to
open-domain question answering.

Research on applying semantic parsing to Freebase has also gained a lot of
attention, examples are Cai & Yates (2013); Kwiatkowski et al. (2013); Berant
et al. (2013); Berant & Liang (2014); Reddy et al. (2014). Like our system, these
systems need external lexical knowledge to parse unseen expressions during the
test phase.

5 Conclusion

We have implemented the semantic parsing approach by Zettlemoyer & Collins
[14] and adapted it to question answering over linked data. In order to quantify
the effort needed to address the lexical gap, we have analyzed the amount of
entries that would be needed in order to get acceptable results on the QALD-4
benchmark. By manually adding 54 lexical entries to the seed lexicon of the
semantic parser we achieve a precision of 93% and a recall of 70%. We have fur-
ther analyzed whether these lexical entries can be induced automatically from
a corpus using the state-of-the-art ontology induction system M-ATOLL. While
these preliminary results bear some promise, they also clearly show that auto-
matic methods still leave a large part of the lexical gap open, that until now can
only be filled manually, and that further research and investments are needed
in techniques that induce lexical entries from corpora or by crowd-sourcing in
order to build successful question answering systems over linked data.
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