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Chapter 1

General Introduction

This thesis consists of three self-contained essays and a concluding chapter. The

summary of the main results of the essays is the following: First, we prove a

Donsker result for the G-Brownian motion with finite state-space. In the second

essay, we give an elementary and more intuitive introduction to nonstandard mea-

sure theory and we also provide an alternative construction of the renowned Loeb

measure. Following, we develop the basic theory for the hyperfinite G-expectation.

Recently, it has become increasingly clear that in addition to randomness that can

be captured by probability, financial markets are also sensitive to the so-called

model uncertainty, in the sense that the probability distribution of randomness is

unknown. Thus, it becomes problematic to measure the uncertainty associated

to a given financial security in such a market. Faced with this problem, financial

economists (researchers and practitioners) need to develop a new model that can

capture several sources of uncertainty. The theory of G-expectation (also known as

sublinear expectation), motivated by coherent risk measures, henceforth referred

to as G-stochastic calculus, introduced by Peng [87, 89], provide a convenient

mathematical tool to model uncertainty. The G-expectation and its corresponding

canonical process, the G-Brownian motion, can be seen as the central objects of

the G-stochastic calculus.

In the first essay (see Chapter 2), we refine the discretization of the G-expectation

by Dolinsky et al. [38], in order to obtain a discretization of the sublinear expec-

tation where the martingale laws are defined on a finite lattice rather than the

whole set of reals. Dolinsky et al. [38] introduced a notion of volatility uncertainty

on a discrete timeline and defined a sequence of sublinear expectations (discrete

1



General Introduction 2

G-expectation) on the canonical space of the discrete time paths. By the analogue

of Donsker’s theorem, the discrete-time sublinear expectation converges to the G-

expectation on the continuous paths. In their approach, they only discretize the

timeline but not the state-space of the canonical process. For certain applications,

especially in nonstandard analysis, a discretization of the state space would be nec-

essary. Thus, we develop a modification of the construction by Dolinsky et al. [38]

which even ensures that the sublinear expectation operator for the discrete-time

canonical process corresponding to this discretization of the state space converges

to the G-expectation.

Despite the usefulness of the powerful tool of nonstandard analysis, the fact that

the language of the theory is based on logic has deterred and limited the number

of potential practitioners of nonstandard analysis. Thus, in the second essay (see

Chapter 3), we give a simplified introduction to nonstandard measure theory that

does not presuppose prior acquaintance with mathematical logic. The method-

ology is presented in terms of sequences, equivalence relations and equivalence

classes with respect to binary measures. This procedure is based on Lindstrøm’s

[73] work. However, our approach is more simplified, in the sense that we con-

struct the extended nonstandard enlargement in measure theoretic language. We

also show how the language of logic relates to the mathematical discourse in prob-

ability theory. Finally, we provide an alternative construction of the Loeb measure

using basic knowledge of real analysis.

The third essay (see Chapter 4) provides a mathematical foundation for the ap-

plication of the powerful tools of nonstandard analysis to G-stochastic calculus

and also potentially prepares the ground for the application of both nonstandard

analysis and G-stochastic calculus to financial economics. We apply Robinsonian

nonstandard analysis to G-stochastic calculus in order to provide an alternative,

combinatorially inspired construction of the G-expectation. Thus, we prove a lift-

ing theorem for the G-expectation. Herein, we use our discretization theorem

for the G-expectation from Chapter 2, Theorem 2.3.13. Very roughly speaking,

we extend the discrete time analogue of the G-expectation to a hyperfinite time

analogue. Then, we use the characterization of convergence in nonstandard anal-

ysis to prove that the hyperfinite discrete-time analogue of the G-expectation is

infinitely close to the classical G-expectation. We hope that this result may even-

tually become useful for applications in financial economics (especially existence of
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equilibrium in continuous-time financial markets with volatility uncertainty) and

that it provides additional intuition for G-stochastic calculus.

1.1 Financial markets with model uncertainty

Starting from Bernoulli, through Wiener, and then Kolmogorov, Itô and many

more, modern finance received its mathematical foundation. Kolmogorov [63]

postulated the fundamental axioms for modern probability theory. The edifice

of the theory is built on measure theory introduced by Émile Borel and Henry

Lebesque and developed by Radon and Fréchet. A probability space is a triple

(Ω,F ,P). That is, a measurable space (Ω,F) equipped with a probability measure

P. On the one hand, with this space, it is possible to predict future scenarios from

current events (P is used to define null events). On the other hand, if there are

many probability measures P within a given set P with equal possibilities, then it

becomes uncertain which one is the true1 probability. As such a probability space

cannot be defined by any single probability measure, the notion of expectation

and its non-additive counterpart capacity plays a significant role. Kolmogorov’s

[63] success can also be traced to the idea of conditional expectation, equivalent

measures and stochastic processes. These tools make possible the mathematical

formulation of financial markets.

Fischer Black and Myron Scholes articulated the ground breaking model for pric-

ing European call and put options in their seminal paper Black and Scholes [18].

The key concepts in their derivation are replication and the no-arbitrage option

pricing theory. Ross [96] described the general principle of arbitrage option pricing

theory. Accordingly, if a market is arbitrage free, then there exists a probability

measure on the future scenarios such that today’s worth of the option is the ex-

pected discounted payoff2, Duffie and Protter [40]. This probability measure is

called martingale measure, see Harrison and Kreps [48]. The uniqueness of a mar-

tingale measure translates into market completeness3. Harrison and Kreps [48] and

Harrison and Pliska [49] introduced the mathematical theory of semimartingales

and stochastic integrals needed for adequate financial modeling. Harrison and

1True probability gives a perfect statistical description of measurable quantities in a financial
market.

2This is known today as the first fundamental theorem of asset pricing.
3In a complete market, there exists a unique hedging strategy for replication of a contingent

claim.
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Kreps [48] asserted that both the no-arbitrage and the equilibrium asset prices (in

the spirit of Arrow-Debreu equilibrium, Debreu [35]) can be formalized in terms

of the state prices 4. However, this is only possible on a probability space that

allows state price density or equivalent martingale measures, in the sense that the

state price of a given asset is proportional to the marginal utility consumption of

individuals in that state.

A basic problem in general equilibrium theory is to prove the existence of equilib-

rium in a financial market in which each agent takes the best possible decision and

the demand and supply are balanced. The existence of equilibrium in continuous-

time Arrow-Debreu economy has been proved in the literature, see Mas-Colell

and Richard [81], Dana [33] and Bank and Riedel [8]. The martingale representa-

tion theorem links the concept of market completeness with a stochastic spanning

condition in Arrow-Debreu economy whose dynamics is driven by Brownian mo-

tion. However, in more general security markets, the limitation to trade only a

prespecified set of securities results in market incompleteness. Duffie and Huang

[39] articulated the idea of Kreps [65] on implementing an Arrow-Debreu allo-

cation into a Radner [91] economy. Such an economy is said to be dynamically

complete if agents can acquire all the consumption allocations they could achieve

in an Arrow-Debreu market by continuously trading the given set of securities.

In continuous-time models with a single agent, a large amount of literature has

concentrated on proving the existence of equilibrium in such markets, see for ex-

ample, Bick [14], Cox et al. [26], Herzberg [53] to mention but a few. All existing

literature studies the case where the markets are dynamically complete. In this

instance, they establish a standard method of constructing equilibrium in the fi-

nancial markets. However, the general condition under which equilibrium exists

varies. Herzberg [53] provided the foundation for equilibrium analysis in a financial

market whose dynamics of the dividends is driven by an exponential Lévy process.

He proved the existence of equilibrium in a Radner economy with a single agent

and trading using nonstandard analysis. Anderson and Raimondo [5] proved the

existence of equilibrium in a Radner economy for multiple agents with Brownian

information and trading using nonstandard analysis (see Section 1.2 for a detailed

discussion). The paper of Anderson and Raimondo [5] was the first in a series

of papers to prove the existence of equilibrium for a multi-agent financial market

with Brownian information.

4The state price for a given state at a particular time dictates how much an investor is ready
to part with today in return for an extra payment of a unit in the future state.
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1.1.1 Model uncertainty

Based on Knight’s [62] remark, risk can be regarded as randomness that can

be captured by probability and uncertainty5 can be regarded as all other forms

of randomness. A large amount of literature has focused on uncertainty as it

relates to financial markets, see for example Bewley [13], Rigotti and Shannon

[93], Epstein and Wang [46], Dana and Riedel [34], Epstein and Schneider [45],

Chen and Epstein [22], and Trojani and Vanini [105]. Our economic motivation

for studying model uncertainty lies in asset pricing and equilibrium analysis of

financial markets in the presence of volatility uncertainty. Ultimately, we aim

to prove the existence of equilibrium in a continuous-time financial market with

volatility uncertainty and multiple agents. Typically, the required probabilistic

setup for most financial economic analysis, assumes that all priors6 are equivalent

(i.e., they agree which events are null). Accordingly, many results in the literature

invariably depend on the Girsanov theorem for a change of measure. The drift

uncertainty can be reduced to uncertainty in which the equivalent probability

measure is the physical probability measure. But in light of Girsanov’s theorem,

this does not affect pricing, which always occurs with respect to a risk-neutral

probability measure (also known as equivalent martingale measure). Thus, drift

priors are equivalent (for example, see Chen and Epstein [22] and Cheng and

Riedel [23]). However, modeling volatility uncertainty generates a set of priors

that are non-equivalent (mutually singular, i.e., they disagree about which events

are possible.).

1.1.2 Volatility uncertainty

The volatility of a continuous time model is a function of the quadratic variation of

the underlying state process. In a sense, this describes the random buffeting power

of all sources of risk that influence the financial environment in which the asset

price is determined. There is an extensive literature (see for recent examples,

Eraker and Shaliastovich [47], Bollerslev et al. [19]) on stochastic time varying

volatility models. They often argue that the dynamics of the volatility is driven

by complicated structures, for example, the dynamics of volatility of volatility.

However, the confidence of modelers in these models is still questionable. Carr

5Uncertainty is also known as ambiguity.
6A prior is a well known term in economics denoting a probability measure.
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and Lee [21] object the assumption of modeling volatility based on a particular

parametric process. They remark that:

“The problem is particular acute for volatility models because the quan-

tity being modeled is not directly observable. Although an estimate

for the initially unobserved state variable can be inferred from market

prices of derivative securities, noise in the data generates noise in the

estimate, raising doubts that a modeler can correctly select any para-

metric stochastic process from the menu of consistent alternatives.”

However, the knowledge that the volatility of the state variable lies within a partic-

ular confidence interval still remains plausible. One approach to model volatility

uncertainty would be to consider several models with the objective of capturing all

sources of uncertainty that can initiate misspecification of the model parameter.

In the spirit of Epstein and Ji [43], we give an illustration on modeling volatility

uncertainty using a trinomial tree.

In a game we are to pick from a sequence of n independent urns that

describe uncertainty and each urn contains 100 balls with three differ-

ent types: D (Down), C (Constant) or U (Up). The time varies over

T = {0,∆, 2∆, . . . , n∆ = T}. The dynamic of each urn, that is the

state variable Bt = (B)t∈T with B0 = 0 is given by

Bt∆ −B(t−1)∆ =


+
√

∆ U,

0 C,

−
√

∆ D.

• First scenario: Here we are told the number of balls of type

U equals to the one of type D and there are no balls of type

C (uncertainty is weakened here because we have a full hand

information on the ball composition in each urn) for each urn.

We also know that all the urns are identically composed. The

resulting probability measure on the set of increment paths is a

product measure whose factors are all identical and given by

δ−
√

∆ + δ+
√

∆

2
,
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where for all A ⊆ R,

δx(A) =

1, x ∈ A

0, x /∈ A
.

Thus, we have a random walk. By Donsker’s theorem, the random

walk converges weakly to a Brownian motion in the continuous-

time limit as ∆ tends to 0 (see for example, Billingsley [16, The-

orem 14.1 and Example 12.3]). Cox et al. [27] uses this approach

to derive the Black-Scholes option pricing formula, as the limit of

a discrete-time binomial option pricing formula.

• Second scenario: We are told the number of balls of type U

equals to the one of type D in each urn. But we only know the

number of balls of type C is less than 30. Any probability measure

on the path of B with this information makes B a martingale.

The variance σ2
t of the difference between two paths depends on

the number of balls of type C in the urns and its uncertainty is

then defined on this range as 70
100

= σ2
t ≤ σ2

t ≤ σ2
t = 1. Since

the urns are independent, i.e., we cannot predict the future draws

from the past draws, the composition of the balls might not be

the same. Thus, the value of σt on the bound [σ, σ] might vary.

In the continuous-time limit as ∆ goes to 0, the discrete-time

trinomial model converges weakly in distribution to a continuous-

time model on [0, T ] (this type of convergence is discussed below).

And the canonical process B = Bt still inherits the martingale

property of the discrete-time setting, where σt lies in the interval

[σ, σ]. To be more detailed about the notion of volatility, we

denote the quadratic variation of B as follows:

〈B〉t(ω) = lim
∆→0

∑
s<t

|Bs∆ −B(s−1)∆|2.

Then, the volatility 〈B〉t lies in the confidence interval [σ2
t , σ

2
t ]. It

is important to note that volatility uncertainty leads to a set of

nonequivalent probability measures. The canonical process B is

called the G-Brownian.

A very sketchy summary of the used convergence result is the
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following: Let Ω be a set of continuous paths on [0, T ] that

starts at the origin which is zero. Informally, a sublinear ex-

pectation, E(·), is a function that is defined on a linear space of

random variables that satisfies monotonicity, constant preserving,

sub-additivity and positive homogeneity. Consider a sequence of

real-valued random variables (ξk)k≥1 such that ξk+1 and ξk are

identically distributed7 and ξk+1 is independent8 from (ξ1, . . . , ξk)

for k = 1, 2, . . .. We assume that

E [ξ1] = E [−ξ1] = 0, E [−ξ2
1 ] = σ2 and E [ξ2

1 ] = σ2.

We also introduce a sequence of partial sums Zn =
∑n

i=1 ξi where

Z0 = 0. By linear interpolation, a continuous process Ŷt can be

obtained from the sequence of Zn:

Ŷt = (btc+ 1− t)Zbtc + (t− btc)Zbtc+1,

where byc denotes the greatest integer less than or equal

to y. For instance, if Z0 = 0, Z1 = 0.35, Z2 = −1.16,

Z3 = 1.58, Z4 = 0.41, for 0 ≤ t < 1, Ŷt = (1 − t)Z0 +

tZ1 = 0; for 1 ≤ t < 2, Ŷt = (2− t)Z1 + (t− 1)Z2 = 0.35;

for 2 ≤ t < 3, Ŷt = (3− t)Z2 + (t− 2)Z3 = −1.16, for

3 ≤ t < 4, Ẑt = (4− t)Z3 + (t− 3)Z4 = 1.58, for 4 ≤ t < 5,

Ẑt = (5− t)Z4 + (t− 4)Z5 = 0.41. The graph of Ŷt against t is

plotted in Figure 1.1.

Ŷ can be seen in a sense as a G-Brownian motion, see Ruan [97].

The increments of the G-Brownian motion are zero mean, inde-

pendent and stationary, uncertain variance in the interval [σ2
t , σ

2
t ],

and can be proved to be G-normally distributed N (0, [σ2, σ2]).

We can assume that each experiment about all the urns’ compo-

sition discussed in the second scenario constitutes a probability

measure on Ω. By performing series of experiments, we obtain

a set of probability martingale measures Pσ on Ω. Let P be a

7Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random variables. They are identically
distributed if E(ψ(X)) = E(ψ(Y )) for any ψ ∈ Cb(Rn) where Cb(Rn) is the space of bounded
continuous functions.

8For any two random variables X and Y , X is said to be independent from Y if for each
ψ ∈ Cb(R2), E(ψ(X,Y )) = E(E(ψ(x, Y ))x=X).
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Figure 1.1: Graph of Ŷt against t .

given set of measures on Ω. For any bounded continuous function

ξ : Ω → R, if supP∈Pσ E
P [ξ] converges to supP∈P EP [ξ], then Pσ

converges weakly to P . The supremum of the expectation over P
is the G-expectation. In Chapter 2, we discuss this type of con-

vergence in the spirit of Donsker’s theorem on a finite state space.

We remark that our convergence is much more general than it was

suggested by this analogy.

Shige Peng in a series of papers has recently developed a paradigm of probability

theory involving sublinear expectation operators. With this new theory, a new

type of Itô-integral with respect to the G-Brownian motion (see, Peng [87, 89]),

Itô formula (see, Li and Peng [69]), martingale representation theorem (see Soner

et al. [99], Song [102]), Levy processes (see, Hu and Peng [56]), have emerged.

Peng [87] introduced a notion of G-expectation and G-Brownian motion via a

fully one-dimensional nonlinear heat equation9. There also exists an alternative

representation of the G-expectation known as the dual view on G-expectation via

volatility uncertainty, see Denis et al. [37]. Denis et al. [37] constructed consistent

9This is similar to the classical heat equation, dating back to 1900s, that describes the Brow-
nian motion.
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G-expectation and G-Brownian motion. They also construct the G-stochastic in-

tegral using quasi-sure stochastic analysis. Cohen et al. [24] presented a theory

of sublinear martingales in a discrete setting. By the natural properties of sub-

linear expectation, one can consider coherent (i.e., sublinear) risk measures10 as

sublinear expectations defined on the space of risk measure, Peng [87]. Thus, the

G-expectation appears as a natural tool to measure risk under uncertainty, Bion-

Nadal and Kervarec [17]. The G-Brownian motion provides a powerful tool for

modeling path dependent derivatives where volatility uncertainty generates a set

of probabilities that are non-equivalent.

Epstein and Ji [43, 44] provided the mathematical foundation for an equilibrium

analysis of assets markets with G-Brownian stochasticity. They present a model of

utility for continuous-time financial markets that captures the agent’s concern with

G-Brownian stochasticity. They also present some no-arbitrage pricing arguments

based on hedging strategies. Asset pricing theory characterized by model uncer-

tainty was originally investigated by Avellaneda et al. [7] and Lyons [80]. They

characterized the lower and upper bounds of the interval of no-arbitrage prices

that generate as the paths of volatility vary in such a confidence interval as a so-

lution to the nonlinear Black-Scholes PDE. This nonlinear equation is associated

with the G-Brownian motion, see Vorbrink [106]. Avellaneda et al. [7] assert that

the presence of volatility uncertainty in a market generates market incomplete-

ness. Thus, perfect hedging is implausible. Accordingly, hedging strategies only

yield an interval prediction of asset prices. This bolstered the idea of considering

preferences and equilibrium. In the words of Epstein and Ji [43]:

“Sharper predictions can be obtained by assuming preference maximiza-

tion and equilibrium”.

Epstein and Ji [43] analyzed such equilibrium, thus, applied the model of utility

to a single agent economy to study equilibrium of asset returns. Denis et al.

[37], Cont [25], Vorbrink [106] analyzed hedging strategies to derive a confidence

interval of asset prices. Epstein and Ji [43] characterized this asset prices interval

in terms of state prices. Beissner [10] proved the existence of Radner equilibrium

in an endogenous incomplete market under volatility uncertainty.

10Artzner et al. [6] introduced the concept and the axiomatic characterization of sublinear
risk measures on finite probability spaces in order to quantify the risk in finance. Delbaen [36]
extended Artzner et al. [6] result on general probability spaces.
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1.2 Bridge between discrete-time and

continuous-time models

The connection between a discrete-time stochastic process and a continuous-time

stochastic process remains a crucial issue of fundamental importance in stochastic

analysis and financial economics. In financial economics, an indepth understand-

ing of the basic economic arguments in the discrete-time framework is still the

requisite for studying the continuous-time counterpart. However, there has been

criticism that the mathematical tools used for analyzing continuous-time finan-

cial models have become too complex to capture and simplify the basic economic

arguments, see Duffie and Protter [40]. Moreover, financial economists find the

discrete-time setting easier to understand in the sense that it captures and gives a

simple interpretation to basic economic arguments. Thus, it is important to verify

that as one takes the limit of a discrete-time model, when the number of periods

increases (goes to infinity), it converges to the continuous-time counterpart. This

technique is known as weak approximation.

Weak approximation is a very crucial tool in stochastic analysis. A remarkable

result is Donsker’s theorem (see Chapter 2 for the G-Donsker result). For the

Donsker-type result for a general class of martingales and diffusion processes, see

for example, Billingsley [16]. Many authors have applied the concept of weak ap-

proximation to problems in financial economics (see for example, Cox et al. [27],

Duffie and Protter [40], Cutland et al. [32] and the references therein), especially

after Cox et al. [27] derived the Black-Scholes option pricing formula in an ele-

mentary way, as the limit of a discrete-time binomial option pricing formula. This

result proves to be more intuitive, elementary and convenient for computation.

Despite the wide application of the weak approximation technique to investigate

continuous-time models based on discrete analysis, there is no guarantee that such

limiting arguments lead to the appropriate continuous-time model, Cutland et al.

[30]. Thus, a stronger mode of convergence might be appropriate. The theory

of infinitesimals or nonstandard analysis, introduced by Abraham Robinson [94]

gives a definitive solution.
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1.2.1 The theory of infinitesimals

Abraham Robinson [94] developed a rigorous mathematical theory of infinitesimals

based on techniques from mathematical logic. His work started with a mathemat-

ical object such as the system of real numbers or some Banach space. Robinson

and Zakon [95] constructed a nonstandard enlargement even of the full superstruc-

ture over the reals. In Chapter 3, we present a more intuitive construction of the

nonstandard enlargement. Loeb [76] developed nonstandard measure theory: He

showed how every hyperfinite probability space (i.e., a probability space that may

be infinite but possesses all the “formal” properties of finite probability spaces)

induces a probability space in the standard sense, i.e. a σ-additive probability

measure on some σ-algebra (viz. the σ-algebra generated by the internal algebra

of the hyperfinite probability space). The corresponding measure on this space

is called the Loeb measure, see Chapter 3 for an alternative construction of the

Loeb measure. Anderson [3] used Loeb’s [76] result to develop a hyperfinite con-

struction of the Brownian motion. The hyperfinite Brownian motion can be seen

simultaneously as the standard Brownian motion. He also presented the hyperfi-

nite construction of the Brownian stochastic integral. The Itô stochastic integral

with respect to the Brownian motion can be constructed as the limit of a pathwise

Stieltjes integrals. However, the limit in this construction is not pathwise, but

typically L2-limit. The reason for this is that the (standard) Brownian motion

has unbounded variation, and the Stieltjes integrals are only defined with respect

to paths of bounded variation. Since a hyperfinite random walk is of hyperfinite

variation, a Stieltjes integral with respect to hyperfinite random walk can also be

seen as a standard stochastic integral in a formal sense, see Anderson [3]. Lind-

strøm [74] proposed the notion of a hyperfinite Lévy process and proved that the

standard part of a hyperfinite Lévy process is a Lévy process, and that for each

infinitesimal generator of a Lévy process one can find a hyperfinite process whose

standard part has precisely that generator. This was further discussed in subse-

quent papers by Albeverio and Herzberg [1] and Ng [84]. Albeverio and Herzberg

[1], Hoover and Perkins [54], Herzberg [52], Lindstrøm [70, 71, 72, 75] constructed

stochastic integrals with respect to hyperfinite Lévy processes and more general

martingales.

In Chapter 4, we present the hyperfinite construction of the G-expectation and its

corresponding G-Brownian motion. We show that our hyperfinite G-expectation

is infinitely close to the classical G-expectation. We remark that we do not work



1.2 Bridge between discrete-time and continuous-time models 13

on the Loeb space because the G-expectation and its corresponding G-Brownian

motion is not based on a classical probability measure, but on a set of martingale

laws.

The application of nonstandard analysis is not limited to measure theory. Luxem-

burg [79] developed nonstandard functional analysis using nonstandard hulls 11.

Hurd and Loeb [57] introduced nonstandard analysis to real analysis. An excellent

exposition of nonstandard analysis that puts accent on applications in stochastic

analysis and mathematical physics is Albeverio et al. [2].

1.2.2 Financial markets with nonstandard analysis

The twin frameworks of nonstandard analysis as a continuous-time setting, as

well as formally finite setting, motivate its applications to financial economics.

Nonstandard measure theory has been successfully applied in studying problems

in asset pricing (e.g. Cutland et al. [30], Kopp [64], Cutland et al. [31], Khan and

Sun [60]) and in equilibrium theory (e.g. Brown and Robinson [20], Anderson [4],

Rashid [92] Anderson and Raimondo [5] and Sun [104].). Anderson’s [4] article

in the Handbook of Mathematical Economics gives a good introduction to the

application of nonstandard analysis to economics.

Cutland et al. [30] used nonstandard analysis to construct the Black-Scholes option

pricing model. The model can be seen as the hyperfinite version of the binomial

Cox-Ross-Rubinstein model [27] and simultaneously as the classical Black-Schole

option model. Cutland et al. [31] analyzed the Cox-Ross-Rubinstein jump process

option pricing model using nonstandard methods. Kopp [64] used nonstandard

methods to establish a link between a mathematical model based on discrete and

finite probability spaces and its continuous-time counterpart. They also used

nonstandard methods to study the underlying setting. The main concern of these

papers is the convergence of discrete-time option pricing models to the continuous-

time counterpart.

The application of nonstandard analysis to general equilibrium theory was initi-

ated by the seminal work of Brown and Robinson [20] on nonstandard exchange

economies. In their work, they studied equilibria in economies with hyperfinite

11 This was extended by Henson and Moore [50]. In a sense, the nonstandard hull of an
internal Banach space corresponds to the ultraproduct of different Banach spaces.
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sets of agents in which each agent has null influence on the economy, and this

motivated further applications, e.g. Rashid [92], Anderson and Raimondo [5],

Sun [104]. Anderson and Raimondo [5] used nonstandard analysis to prove the

existence of equilibrium in a continuous time financial model with Brownian infor-

mation for multiple agents with the assumption that the dividends are only paid

at the expiry date. One way to summarize Anderson and Raimondo’s [5] result

is as follows: They begin with a standard continuous-time financial model, and

then discretize the model to a nonstandard hyperfinite model, they replace the

Brownian stochasticity in the continuous-time model with a modified version of

Anderson’s [3] hyperfinite random walks and introduce the corresponding stochas-

tic integrals. Furthermore, they prove the equilibrium consumption is nonzero

at every time and state space. By the construction of the Loeb measure, they

produce a candidate for the equilibrium of the aforementioned continuous-time

model. Then, they describe the candidate equilibrium as integrals with respect

to the normal distribution via the central limit theorem; however, having multi-

ple agents, the dividends depend on the distribution of wealth only at the expiry

date. Afterwards, they show that the hyperfinite equilibrium is infinitely close to

the candidate equilibrium. Finally, in the spirit of Brown and Robinson [20], they

prove that the candidate equilibrium is indeed an equilibrium of the continuous-

time model. In the spirit of Anderson and Raimondo [5], Herzberg [53] proved the

existence of equilibrium in a continuous-time market with a single agent where the

dynamics of the dividends is driven in a sense by hyperfinite Lévy processes.

The theory of hyperfiniteG-expectation developed in Chapter 4 provides the math-

ematical foundation that will be needed for the extension of Anderson and Rai-

mondo’s [5] result to a continuous-time model driven by G-Brownian stochasticity.



Chapter 2

Weak Approximation of

G-Expectation with Discrete

State-Space

2.1 Introduction

Dolinsky et al. [38] showed a Donsker-type result for the G-Brownian motion,

henceforth referred to as G-Donsker, by introducing a notion of volatility uncer-

tainty in discrete time and defined a discrete version of Peng’s G-expectation. In

the continuous-time limit, the resulting sublinear expectation converges weakly to

the G-expectation. In their discretization, Dolinsky et al. [38] allow for martingale

laws whose support is the whole set of reals. In other words, they only discretized

the time line, but not the state space of the canonical process. Now for certain ap-

plications, for example a hyperfinite construction of the G-expectation in the sense

of Robinsonian nonstandard analysis, a discretization of the state space would be

necessary. We will show in this chapter that a modification of the construction

by Dolinsky et al. [38] suffices to obtain a discretization where the state space

for the discrete-time canonical process is discretized, too (whence the martingale

laws are supported by a finite lattice only). We will prove the convergence of this

discretization to continuous-time G-expectation. The proof is based on technique

from (linear) probability theory. Ruan [97] constructed the G-Brownian motion

via the weak limit of a sequence of G-random walks which can be seen as the

15
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invariance principle of G-Brownian motion. The proof relies heavily on the theory

of sublinear expectation.

The rest of this chapter is organized as follows: In Section 2.2, we introduce

G-expectation, the discrete-time and continuous-time version of the sublinear ex-

pectation, and the strong formulation of volatility uncertainty in the spirit of

Dolinsky et al. [38]. Unlike in Dolinsky et al. [38], we require the discretization

of the martingale laws to be defined on a finite lattice rather than the whole set

of reals. In Section 2.3, we show that a natural push forward of our discretized

sublinear expectation converges weakly to the G-expectation as n goes to infinity

provided the domain of volatility uncertainty is scaled by 1/n. Finally, we prove

that

sup
P∈QD

EP [ξ] = lim
n→∞

max
Q∈Qn

D′n/n

EQ[ξ(X̂n)].

2.2 Framework

2.2.1 G-expectation via volatility uncertainty

Peng [89] introduced a sublinear expectation on a well-defined space L1
G, the com-

pletion of Lipb.cyl(Ω) (bounded and Lipschitz cylinder function) under the norm

‖·‖L1
G

, under which the increments of the canonical process (Bt)t>0 are zero-mean,

independent and stationary and can be proved to be (G)-normally distributed.

This type of process is called G-Brownian motion and the corresponding sublin-

ear expectation is called G-expectation. We fix a constant T > 0 and replace the

d-dimensional setting by Dolinsky et al. [38] with d = 1. We also fix a nonempty,

compact and convex set D ⊆ R+ such that the volatility processes take values in

D.

The G-expectation ξ 7→ EG(ξ) is a sublinear operator defined on a class of random

variables on Ω. The symbol G refers to a given function

G(γ) :=
1

2
sup
c∈D

cγ : R→ R (2.1)

where D = [rD, RD] and 0 ≤ rD ≤ RD <∞ are fixed numbers. The construction

of the G-expectation is as follows. Let ξ = f(BT ), where BT is the G-Brownian

motion and f a sufficiently regular function. Then EG(ξ) is defined to be the initial
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value u(0, 0) of the solution of the nonlinear backward heat equation,

∂tu−G(∂2
xxu) = 0,

with terminal condition u(·, T ) = ξ, Pardoux and Peng [86]. The mapping EG can

be extended to random variables of the form ξ = f(Bt1 , · · · , Btn) by a stepwise

evaluation of the PDE and then to the completion L1
G of the space of all such

random variables. Denis et al. [37] showed that L1
G is the completion of Cb(Ω)

and Lipb.cyl(Ω) under the norm ‖ · ‖L1
G

, and that L1
G is the space of the so-called

quasi-continuous function and contains all bounded continuous functions on the

canonical space Ω, but not all bounded measurable functions are included. Theo-

rem 2.3.13 (our main result in this chapter) cannot be extended to the case where

ξ is defined on L1
G under the norm ‖ · ‖L1

G
(see below), thus, we work in a smaller

space L1
∗ defined as the completion of Cb(Ω;R) under the norm ‖ · ‖∗. Our setting

is based on a set of martingale laws not a single probability measure. However,

when rD = RD = 1, the canonical process under EG(·), G-Brownian motion, be-

comes the standard Brownian motion since EG(·) will be a linear expectation under

the Wiener measure.

There also exists an alternative representation of the G-expectation known as the

dual view on G-expectation via volatility uncertainty, see Denis et al. [37]: One

can show that the G-expectation can be expressed as the upper expectation

EG(ξ) = sup
P∈PG

EP [ξ], ξ = f(BT ), (2.2)

where PG is defined as the set of probability measures on Ω such that, for any

P ∈ PG, B is a martingale with the volatility d 〈B〉t /dt ∈ D P ⊗ dt a.e, and

D = [rD, RD], for 0 ≤ rD ≤ RD <∞.

Remark 2.2.1. (2.2) can be seen as the cheapest super-hedging price of a Euro-

pean contingent claim where ξ can be regarded as the discounted payoff.

2.2.2 Continuous-time construction of sublinear expecta-

tion

Let Ω = {ω ∈ C([0, T ];R) : ω0 = 0} be the canonical space of continuous paths

with time horizon T ∈ (0,∞), endowed with uniform norm ‖ω‖∞ = sup0≤t≤T |ωt|,
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where the Euclidean norm on R is given by | · |. Let B be the canonical process

Bt(ω) = ωt, and Ft = σ(Bs, 0 ≤ s ≤ t) is the filtration generated by B. A

probability measure P on Ω is called a martingale law provided B is a P -martingale

and B0 = 0 P a.s. Then, PD is the set of martingale laws on Ω and the volatility

takes values in D, P ⊗ dt a.e;

PD = {P martingale law on Ω: d 〈B〉t /dt ∈ D, P ⊗ dt a.e.} .

Thus, the sublinear expectation is given by

ED(ξ) = sup
P∈PD

EP [ξ], (2.3)

such that, for any ξ : Ω → R, ξ is FT -measurable and integrable for all P ∈ PD.

EP denotes the expectation under P . It is important to note that the continuous-

time sublinear expectation (2.3) can be considered as the G-expectation (for every

ξ ∈ L1
G where L1

G is defined as the E[| · |]−norm completion of Cb(Ω;R)) provided

(2.1) is satisfied (cf. Dolinsky et al. [38]).

2.2.3 Discrete-time construction of sublinear expectation

Here we introduce the setting of the discrete-time sublinear expectation. We

denote

Ln =

{
j

n
√
n
, −n2

√
RD ≤ j ≤ n2

√
RD, for j ∈ Z

}
,

and Ln+1
n = Ln × · · · × Ln(n + 1 times), for n ∈ N. Let Xn = (Xn

k )nk=0 be the

canonical process Xn
k (x) = xk defined on Ln+1

n and (Fnk )nk=0 = σ(Xn
l , l = 0, . . . , k)

be the filtration generated by Xn. Let

D′n = D ∩
(

1

n
N
)2

be a nonempty bounded set of volatilities. Recall D = [rD, RD], for

0 ≤ rD ≤ RD <∞. We note that RD = supγ∈D |γ|, where | · | denotes the ab-

solute value. A probability measure P on Ln+1
n is called a martingale law provided

Xn is a P -martingale and Xn
0 = 0 P a.s. The increment ∆Xn denotes the differ-

ence by ∆Xn
k = Xn

k −Xn
k−1. Let PnD be the set of martingale laws of Xn on Rn+1,

i.e.,

PnD =
{
P martingale law on Rn+1: rD ≤ |∆Xn

k |2 ≤ RD, P a.s.
}
,
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such that for all n, Ln+1
n ⊆ Rn+1.

In order to establish a relation between the continuous-time and discrete-time

settings, we obtained a continuous-time process x̂t ∈ Ω from any discrete path

x ∈ Ln+1
n by linear interpolation. i.e.,

x̂t := (bnt/T c+ 1− nt/T )xbnt/T c + (nt/T − bnt/T c)xbnt/T c+1

where ̂: Ln+1
n → Ω is the linear interpolation operator,

x = (x0, . . . , xn) 7→ x̂ = {(x̂)0≤t≤T}, and byc denotes the greatest integer less

than or equal to y. If Xn is the canonical process on Ln+1
n and ξ is a random

variable on Ω, then ξ(X̂n) defines a random variable on Ln+1
n .

Remark 2.2.2. If n = T , thus for all t ∈ N,

x̂t := (btc+ 1− t)xbtc + (t− btc)xbtc+1.

For instance, if x0 = 0, x1 = 2, x2 = 1, x3 = 5, x4 = 3, for 0 ≤ t < 1, x̂t =

(1 − t)x0 + tx1 = 0; for 1 ≤ t < 2, x̂t = (2 − t)x1 + (t −
1)x2 = 2; for 2 ≤ t < 3, x̂t = (3− t)x2 + (t− 2)x3 = 1; for 3 ≤ t < 4,

x̂t = (4− t)x3 + (t− 3)x4 = 5, for 4 ≤ t < 5, x̂t = (5 − t)x4 + (t − 4)x5 = 3.

Thus, the graph of x̂t as a function of t is plotted in Figure 2.1.
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Figure 2.1: Graph of x̂t against t

2.2.4 Strong formulation of volatility uncertainty

We introduce the so-called strong formulation of volatility uncertainty for the

continuous-time construction, as in Dolinsky et al. [38], Nutz [85], Soner et al.

[100, 101], and for the discrete-time construction, as in Dolinsky et al. [38]; i.e., we

consider martingale laws generated by stochastic integrals with respect to a fixed

Brownian motion and a fixed random walk.

For the continuous-time construction; let QD be the set of martingale laws of the

form:

QD =

{
P0 ◦ (M)−1; M =

∫
f(t, B)dBt, and f ∈ C([0, T ]× Ω;

√
D) is adapted

}
.

B is the canonical process under the Wiener measure P0, and D is a convex set.

Remark 2.2.3. The elements ofQD, in particular M , with nondegenerate f which

satisfies the predictable representation condition, correspond to the analogy of

market completeness in finance (martingale representation theorem).
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For the discrete-time construction; we fix n ∈ N, Ωn = {ω = (ω1, . . . , ωn) : ωi ∈
{±1}, i = 1, . . . , n} equipped with the power set and let

Pn =
δ−1 + δ+1

2
⊗ · · · ⊗ δ−1 + δ+1

2︸ ︷︷ ︸
n times

where for all A ⊆ R,

δx(A) =

1, x ∈ A

0, x /∈ A

be the product probability associated with the uniform distribution. Let ξ1, . . . , ξn

be an i.i.d sequence of {±1} -valued random variables. The components of ξk are

orthonormal in L2(Pn). We denote the associated random walk by

Zn
k =

k∑
l=1

ξl,

then, we can view
k∑
l=1

f(l − 1,X)∆Xl

as the discrete-time stochastic integrals of X, where f is Fn-adapted and

X =
1√
n
Zn

is the scaled random walk. We denote by QnD′n the set of martingale laws of the

form:

QnD′n =
{
Pn ◦ (M f,X)−1; f : {0, . . . , n} × Ln+1

n →
√

D′n is Fn-adapted.
}

(2.4)

where

M f,X =

(
k∑
l=1

f(l − 1,X)∆Xl

)n

k=0

.

2.3 Results and proofs

Theorem 2.3.1 states that a sublinear expectation with discrete-time volatility

uncertainty on a set of reals converges to the G-expectation.
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Theorem 2.3.1. (cf. Dolinsky et al. [38, Theorem 2.2]) Let ξ : Ω → R be a

continuous function satisfying |ξ(ω)| ≤ a(1+ ‖ ω ‖∞)b for some constants a, b > 0.

Then,

lim
n→∞

sup
Q∈Pn

D/n

EQ[ξ(X̂n)] = sup
P∈PD

EP [ξ]. (2.5)

To prove (2.5), we prove two separate inequalities which imply (2.5). The proof of

the first inequality (for ≤ in (2.5)) will be discussed below while the proof of the

second inequality (for ≥ in (2.5)) is embedded in the proof of Proposition 2.3.11.

Before then, we introduce a smaller space L1
∗ that is defined as the completion of

Cb(Ω;R) under the norm

‖ ξ ‖∗:= sup
Q∈Q

EQ[|ξ|], Q := PD ∪ {P ◦ (X̂n)−1;P ∈ PnD/n, n ∈ N.}.

This is because Theorem 2.3.1 will not hold if ξ just belong to L1
G, where L1

G is

the completion of Cb(Ω;R) under the norm

‖ ξ ‖G:= sup
P∈PD

EP [|ξ|]. (2.6)

In fact, a random variable which is defined on a set of paths of finite variation will

have zero expectation under any martingale law P ∈ PD because the support of

the martingale laws is disjoint to a set of paths of finite variation whereas it will

have non zero expectation under an element of Q.

Lemma 2.3.2. (cf. Dolinsky et al. [38, Lemma 3.4]) Let ξ : Ω→ R be a continuous

function satisfying |ξ(ω)| ≤ a(1+ ‖ ω ‖∞)b for some constants a, b > 0. Then,

ξ ∈ L1
∗.

We shall prove Lemma 2.3.2 later.

To prove the first inequality (for ≤ in (2.5)),

lim sup
n→∞

sup
Q∈Pn

D/n

EQ[ξ(X̂n)] ≤ sup
P∈PD

EP [ξ], (2.7)

we need to prove the following lemmas. The main idea is to establish the stability

result for the quadratic variation of the process B. This will be done in Lemma

2.3.6, and the necessary tightness condition is as a result of the compactness of D

in the sense that RD is finite.
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Lemma 2.3.3. (cf. Dolinsky et al. [38, Lemma 3(i) and (ii)]) For any given

1 ≤ q <∞, there exists a positive constant C such that for all 0 ≤ k ≤ l ≤ n and

Q ∈ PnD,

EQ[ sup
k=0,...,n

|Xn
k |2q] ≤ C(nRD)q and EQ[|Xn

l −Xn
k |4] ≤ CR2

D(l − k)2.

Proof. The main idea is the Burkholder-Davis-Gundy inequalities: For any given

1 ≤ q <∞, and a positive universal constant K = K(q, 1),

EQ[ sup
k=0,...,n

|Xn
k |2q] ≤ KEQ[|〈X〉n|q].

Since Q ∈ PnD, |〈X〉n| = |
∑n

l=1(∆Xn
l )2| ≤ nRD Q a.s.

With similar argument,

EQ[|Xn
l −Xn

k |4] ≤ KEQ[|〈X〉l − 〈X〉k|2],

then, Q ∈ PnD implies that |〈X〉l − 〈X〉k|2 ≤ (l − k)2R2
D Q a.s.

It is important to note that if γ1, γ2, . . . , γm ∈ D, then γ1 + γ2 + . . . + γm ∈ mD

by the convexity of D.

The next lemma shows that all the expressions in (2.5) are well-defined and finite.

Lemma 2.3.4. (cf. Dolinsky et al. [38, Lemma 3.2]) Let ξ : Ω→ R be a continuous

function satisfying |ξ(ω)| ≤ a(1+ ‖ ω ‖∞)b for some constants a, b > 0. Then,

‖ ξ ‖∗ is finite. i.e.,

sup
n∈N

sup
Q∈Pn

D/n

EQ[|ξ(X̂n)|] <∞ (2.8)

and

sup
P∈PD

EP [|ξ|] <∞. (2.9)

Proof. Using the condition on ξ, for any 1 ≤ q <∞, n ∈ N and Q ∈ PnD/n,

EQ[|ξ(X̂n)|] ≤ a+ aEQ
[

sup
0≤t≤T

|X̂n
t |q
]
≤ a+ aEQ

[
sup

k=0,...,n
|Xn

k |q
]
.

By Lemma 2.3.3, EQ[supk=0,...,n |Xn
k |2q] ≤ K(nRD)q and as we observe that

RD/n = RD/n,

EQ[|ξ(X̂n)|] ≤ CR
q/2
D .
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Thus, (2.8) follows. (2.9) also follows from the Burkholder-Davis-Gundy inequal-

ities and from the condition on D (D is bounded), i.e.,

EP [ sup
0≤t≤T

|Bt|q] ≤ Kq for all P ∈ PD.

Now, we want to prove the tightness result.

Lemma 2.3.5. (cf. Dolinsky et al. [38, Lemma 3.3(i)]) Let Mn = (Mn
k )nk=0 be a

martingale with law Q̃n in PnD/n on Rn+1 and let M̂n be martingale with law Qn

on Ω, for each n ∈ N. Then, the sequence (Qn)n is tight on Ω.

Proof. Let 0 ≤ s ≤ t ≤ T . Using that RD/n = RD/n and from Lemma 2.3.3,

EQn [|Bt −Bs|4] = EQ̃n [|M̂n
t − M̂n

s |4] ≤ K(t− s)2

for a positive constant K. By the Kolmogorov’s criterion moment for weak relative

compactness, (see Klenke [61, Theorem 21.42]), (Qn)n is tight.

Lemma 2.3.6. (cf. Dolinsky et al. [38, Lemma 3.3(ii)]) Let Mn = (Mn
k )nk=0 be

a martingale with law Q̃n in PnD/n on Rn+1 and let M̂n be martingale with law

Qn on Ω, for each n ∈ N. Then, any cluster point Q of the sequence (Qn)n is an

element in PD.

Proof. Let Q be a cluster point. B (in Lemma 2.3.5) is Q-martingale as a result of

the uniform integrability condition by Lemma 2.3.3. Now, it remains to prove that

d〈B〉t/dt ∈ D holds Q ⊗ dt a.e. The main technique used here is the separating

hyperplane theorem which implies that for γ ∈ R>0,

γ ∈ D ⇐⇒ f(γ) ≤ sup
β∈D

f(β) =: Kf
D (2.10)

where f : R → R is an arbitrary linear function. Let ∆Yt = Yt − Ys for

fix 0 ≤ s ≤ t ≤ T . Consider an arbitrary continuous and adapted function

U : [0, T ]× Ω→ [0, 1]. We then introduce an arbitrary neighborhood D̃ of D.

Then we have for sufficiently large n,

EQ̃n [(∆M̂n
t )2 | σ(M̂n

u : 0 ≤ u ≤ s− ε)] ∈ (t− s)D̃ Q̃na.s.
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It follows from (2.10) that

EQn [U(s− ε, B){f((∆Bt)
2)−Kf

D(t− s)}]

=EQ̃n [U(s− ε, M̂n){f((∆M̂n
t )2)−Kf

D(t− s)}].

Then,

EQn [U(s− ε, B){f((∆Bt)
2)−Kf

D(t− s)}]

=EQ̃n [U(s− ε, M̂n){f((∆M̂n
t )2)−Kf

D(t− s)}]

=E[EQ̃n [U(s− ε, M̂n)(f((∆M̂n
t )2)−Kf

D(t− s))] | σ(M̂n
u : 0 ≤ u ≤ s− ε)]

=E[U(s− ε, M̂n) EQ̃n [(f((∆M̂n
t )2)−Kf

D(t− s))] | σ(M̂n
u : 0 ≤ u ≤ s− ε)]︸ ︷︷ ︸

= EQ̃n [f((∆M̂n
t )2) | σ(M̂n

u : 0 ≤ u ≤ s− ε)]−Kf
D(t− s)︸ ︷︷ ︸

t−s
= f(EQ̃n [|∆M̂n

t |2 | σ(M̂n
u : 0 ≤ u ≤ s− ε)])−Kf

D(t− s)︸ ︷︷ ︸
t−s
≤ (sup

D̃
f−Kf

D
)(t−s).

]

Since D̃ is an arbitrary neighborhood of D, supβ∈D̃ f(β) will be arbitrary close to

supβ∈D f(β) = Kf
D, thus,

sup
β∈D̃

f(β)−Kf
D

is arbitrary close to zero. Hence,

lim sup
n→∞

EQn [U(s− ε, B){f((∆Bt)
2)−Kf

D(t− s)}]

= lim sup
n→∞

EQ̃n [U(s− ε, M̂n){f((∆M̂n
t )2)−Kf

D(t− s)}] ≤ 0.

By the integrability condition of Lemma 2.3.3, these sequences of means converge,

whence the lim sup is actually a limit and in each case said to be

EQ[U(s− ε, B)f((∆Bt)
2)] ≤ EQ[U(s− ε, B)Kf

D(t− s)]. (2.11)

Since U(s − ε, B) is Fs-measurable and EQ[(∆Bt)
2) | Fs] = EQ[〈B〉t − 〈B〉s|Fs]

(note that B is square martingale, Q-martingale), (2.11) equals

EQ[U(s− ε, B)f(〈B〉t − 〈B〉s)] ≤ EQ[U(s− ε, B)Kf
D(t− s)]. (2.12)
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By the continuity condition of U and the dominated convergence theorem as ε→ 0,

(2.12) becomes

EQ[U(s, B)f(〈B〉t − 〈B〉s)] ≤ EQ[U(s, B)Kf
D(t− s)]

and then

EQ
[∫ T

0

U(s, B)f(d〈B〉t)
]
≤ EQ

[∫ T

0

U(s, B)Kf
Ddt

]
.

By Lemma 2.3.7 (see below for Ω′ = [0, T ]× Ω and µ = Q⊗ dt), it follows that

f(d〈B〉t/dt) ≤ Kf
D holds Q⊗ dt a.e.

Since f is arbitrary, (2.10) implies that

d〈B〉t
dt
∈ D holds Q⊗ dt a.e.

Lemma 2.3.7. If there exists some C ∈ R>0 and a measure µ on Ω′ such that for

all measurable f : Ω′ → [0, 1], ∫
Xfdµ ≤ C

∫
fdµ,

then X ≤ C µ a.s.

Proof. We prove by contradiction. Let assume that there exists some measurable

A ⊆ Ω′ such that µ(A) > 0 and X > C on A. Put f = 1A. Then,∫
X1Adµ ≥

∫
A

Xdµ > Cµ(A) = C

∫
1Adµ,

which contradicts the claim.

We can now prove Lemma 2.3.2.

Proof of Lemma 2.3.2. Let ξm = (ξ ∧m) ∨m. We want to show that the upper

expectation

ED(·) = sup
Q∈Q

EQ[·]
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is continuous along the decreasing sequence |ξ − ξm| where

Q := PD ∪ {P ◦ (X̂n)−1;P ∈ PnD/n, n ∈ N.}.

By the proof of Lemma 2.3.5 we can say that Q is tight and by the proof of Lemma

2.3.4, ‖ ξ ‖∗<∞. i.e.,

ED(·) = sup
Q∈Q

EQ[·] <∞.

For a decreasing sequence |ξ − ξm|,

sup
Q∈Q

EQ[|ξ − ξm|] = sup
Q∈Q

∫ ∞
0

Q(|ξ − ξm| ≥ t)dt.

For each fixed t > 0, the set {|ξ − ξm| ≥ t} is closed and {|ξ − ξm| ≥ t} ↓ ∅ as

m→∞. By Denis et al. [37, Lemma 7]: Q is relatively compact if and only if for

each sequence Yn ↓ ∅, we have supQ∈QQ(Yn) ↓ 0. Thus,

sup
Q∈Q

EQ[|ξ − ξm|] ↓ 0.

Finally, we can now prove the first inequality of Theorem 2.3.1.

Proof of Theorem 2.3.1 (for ≤ in (2.5)). Let ξ : Ω→ R be a continuous function

satisfying |ξ(ω)| ≤ a(1+ ‖ ω ‖∞)b for some constants a, b > 0 and let ε > 0. Let

there exists an ε-optimizer Qn ∈ PnD/n, that is, if Qn is the martingale law of X̂n

on Ω under Qn for each n ∈ N, then

EQn [ξ] = EQn [ξ(X̂n)] ≥ sup
Q∈Pn

D/n

EQ[ξ(X̂n)]− ε.

By Lemma 2.3.5 and Lemma 2.3.6, the sequence (Qn)n is tight and any cluster

point of (Qn)n is an element of PD. Since ξ is continuous and Lemma 2.3.4 implies

that supn EQ
n
[ξ] is finite, tightness yields that

sup
P∈PD

EP [ξ] ≥ lim sup
n→∞

EQn [ξ].

Thus,

sup
P∈PD

EP [ξ] + ε ≥ lim sup
n→∞

sup
Q∈Pn

D/n

EQ[ξ(X̂n)].
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For arbitrary ε > 0,

lim sup
n→∞

sup
Q∈Pn

D/n

EQ[ξ(X̂n)] ≤ sup
P∈PD

EP [ξ].

Proposition 2.3.8. (cf. Dolinsky et al. [38, Proposition 3.5]) The convex hull of

QD is a weakly dense subset of PD.

Proof. This proof is divided into three parts, discretization, randomization tech-

nique and the smoothing part.

• Discretization: First, let us recall that

PD = {P martingale law on Ω: d 〈B〉t /dt ∈ D, P ⊗ dt a.e.} .

Let M̄ be a martingale whose law lies in PD such that

M̄ =

∫
αtdWt with α :=

√
d〈M̄〉t/dt and W :=

∫
α−1
t dM̄t.

To see that W is a Brownian motion, it suffices to show that W is a local

martingale such that 〈W 〉t = t. From the definition of W , W is a local

martingale since M̄ is a martingale, and W0 = 0. Then,

〈W 〉t =

∫ t

0

ds

d〈M̄〉s
d〈M̄〉s =

∫ t

0

ds = t.

Thus, 〈W 〉t = t, and then W is a Brownian motion. Fix n ≥ 1, we consider

M̄ (n) =

∫
α

(n)
t dWt,

where α(n) is real-valued piecewise constant process that satisfies

(α
(n)
t )2 = λD(y2

t ),

for

yt =
n

T

∫ kT/n

(k−1)T/n

αsds, t ∈ (kT/n, (k + 1)T/n],
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k = 1, . . . , n− 1 and λD : R→ D the Euclidean projection. We can set, for

example, α(n) =
√
γ, for γ ∈ D on [0, T/n], then we have

lim
n→∞

EP [|〈M̄ (n) − M̄〉T |] = 0, lim
n→∞

EP
[∫ T

0

|α(n)
t − αt|2dt

]
= 0,

and thus M̄ (n) converges weakly to M̄ . Next, we want to show that for a

given measure, the measure is in the convex hull of measures of Brownian

martingales.

• Randomization technique: We fix a filtered probability space (Ω̄, F̄ , F̄, P̄)

where F̄ = (F̄t)0≤t≤T . Let M̄ be a F̄-martingale whose law belongs to PD

and is of the form:

M̄ =

∫
αtdWt,

where

αt =
n−1∑
k=0

1[tk,tk+1)α(k),

for some time discretization 0 = t0 < · · · < tn = T and W is a Brownian

motion on the filtered probability space. We consider another probability

space (Ω̃, F̃ , P̃) equipped with a Brownian motion W̃ and a sequence of i.i.d

uniformly distributed random variables (Ṽk)1≤k≤n which is independent of

W̃ . By the existence of regular conditional probability measures, we can

construct random variables α̃(k) which are

σ(W̃s, 0 ≤ s ≤ tk) ∨ σ(Ṽj, 1 ≤ j ≤ k)− measurable

and such that the law of (W̃s, (α̃(i))0≤i≤n−1) under P̃ equals the law of

(Ws, (α(i))0≤i≤n−1) under P̄. We can now consider the volatility correspond-

ing to a fixed realization of Ṽ1, · · · , Ṽn. Indeed, for v = (v1, · · · , vn) ∈ (0, 1)n,

let α̃(k; v) be a random variable which is

σ(W̃s, 0 ≤ s ≤ tk) ∨ σ(vj, 1 ≤ j ≤ k)− measurable (2.13)

and consider

M̃ v :=

∫ (n−1∑
k=0

1[tk,tk+1)α̃(k; v)

)
dW̃t.

Further, we denote P̃v = P̃ ◦ (M̃ v)−1. Consider a family of conditional prob-

ability measures (Pv)v∈(0,1)n of P̃ with respect to σ(Ṽk, 1 ≤ k ≤ n) and define



2.3 Results and proofs 30

P̃v = Pv ◦ (M̃ v)−1. For a given bounded continuous function F ,

EP̄[F (M̄)] = EP̃v [F (M̃ Ṽ1,··· ,Ṽn)]

=

∫
(0,1)n

EP̃v [F (M̃ v)]dv ≤ sup
v∈(0,1)n

EP̃v [F (M̃ v)].

Thus, by the Hahn-Banach theorem, the law of M̄ is contained in the weak

closure of the convex hull of the laws of S, where S = {M̃ v : v ∈ (0, 1)n}.
For each fixed v, we note that M̃ v =

∫
h(t, W̃ )dW̃t where h is a measurable,

adapted,
√

D-valued function. Next, we want to show that these Brown-

ian martingales can be approximated by Brownian martingales with some

regularity conditions.

• Smoothing: Recall

QD =

{
P0 ◦ (M)−1; M =

∫
f(t, B)dBt, and f ∈ C([0, T ]× Ω;

√
D) is adapted

}
.

Now, we want to approximate h by a continuous function f . Let

h : [0, T ]× Ω→
√

D be a measurable adapted function and ε > 0. Let

f̃ ∈ C([0, T ]× Ω;R) such that

E
[∫ T

0

|f̃(t, W̃ )− h(t, W̃ )|2dt
]
≤ ε.

Such f̃ exists, due to standard density arguments.

Let f(t, x) :=
√
λD(f̃(t, x)2). Then f ∈ C([0, T ]× Ω;

√
D) and

|f − h|2 ≤ |f 2 − h2| ≤ |f̃ 2 − h2| ≤ (|f̃ |+ |h|)|f̃ − h| ≤ 2
√
RD|f̃ − h|.

Using Jensen’s inequality, we can say that

E
[∫ T

0

|f(t, W̃ )− h(t, W̃ )|2dt
]
≤ 2
√
TRDε,

which, as a result of the above steps, completes the proof.

Remark 2.3.9. (cf. Dolinsky et al. [38, Remark 3.6 ]) For any bounded continuous

ξ : Ω→ R,

sup
P∈QD

EP [ξ] = sup
P∈PD

EP [ξ].
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This follows directly from Proposition 2.3.8. Denis et al. [37], Section 3, show

that the G-expectation as noted in Peng [87, 88] coincides with the mapping

ξ 7→ supP∈QD
EP [ξ] for a given set QD which satisfies QD ⊆ QD ⊆ PD.

Lemma 2.3.10. Let

QnD =
{
Pn ◦

(
M f,X)−1

; f : {0, . . . , n} × Rn+1 →
√

D is adapted.
}

where

M f,X =

(
k∑
l=1

f(l − 1,X)∆Xl

)n

k=0

.

Then QnD ⊆ PnD.

Proof. From the above equation, we can say that ∆M f
k = f(k,X)ξk. And by the

orthonormality property of ξk, we have

EPn [f(k,X)2ξ2
k|Fnk ] = EPn [f(k,X)2|Fnk ] ≤ EPn [(

√
RD)2|Fnk ] = RD Pn a.s.,

as |ξk| = 1, f(· · · )2 ∈ D implies

|(∆M f
k )2| = |f(k,X)|2 ∈ [rD, RD] Pn a.s.

Proposition 2.3.11. Let ξ : Ω→ R be a continuous function satisfying |ξ(ω)| ≤
a(1+ ‖ ω ‖∞)b for some constants a, b > 0. Then,

lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] = sup
P∈QD

EP [ξ]. (2.14)

Proof. To prove (2.14), we prove two separate inequalities together with a density

argument which imply (2.14).

First inequality (for ≤ in (2.14)):

lim sup
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] ≤ sup
P∈QD

EP [ξ]. (2.15)
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By Lemma 2.3.10, we know that QnD ⊆ PnD. For each n ≥ 1, the inequality (2.7)

implies that

lim sup
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≤ sup
P∈PD

EP [ξ].

Since the convex hull of QD is a weakly dense subset of PD, see Proposition 2.3.8,

lim sup
n→∞

sup
Q∈Qn

D/n

EQ[ξ(X̂n)] ≤ sup
P∈QD

EP [ξ].

For all n, trivially
√

D′n/n ⊆
√

D/n and Ln+1
n ⊆ Rn+1. Thus, QnD′n/n ⊆ Q

n
D/n.

Hence, (2.15) follows.

Second inequality (for ≥ in (2.14)):

It remains to show that

lim inf
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] ≥ sup
P∈QD

EP [ξ].

For arbitrary P ∈ QD, we construct a sequence (P n)n such that for all n,

P n ∈ QnD′n/n, (2.16)

and

EP [ξ] ≤ lim inf
n→∞

EPn [ξ(X̂n)]. (2.17)

Fix n and let ξ1, . . . , ξn be some i.i.d sequence of random variables on Ωn as defined

in Section 2.2, i.e., ξi : Ωn → {±1}, for i = 1, . . . , n. Now, we want to construct

martingales Mn whose laws are in QnD′n/n and the laws of their interpolations tend

to P. To achieve the above task, we introduce a scaled random walk with the

piecewise constant càdlàg property (right continuity with left limits),

W n
t :=

1√
n

bnt/T c∑
l=1

ξl =
1√
n
Zn
bnt/T c, 0 ≤ t ≤ T, (2.18)

and we denote the continuous version of (2.18) obtained by linear interpolation by

Ŵ n
t :=

1√
n
Ẑn
bnt/T c, 0 ≤ t ≤ T. (2.19)
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By the central limit theorem;

(W n, Ŵ n)⇒ (W,W )

as n → ∞ on D([0, T ];R2) (⇒ implies convergence in distribution). i.e., the law

(Pn) converges to the law P0 on the Skorohod space D([0, T ];R2) Billingsley [15,

Theorem 27.1]. Let g ∈ C([0, T ]× Ω,
√

D), such that

P = P0 ◦

∫ g(t,W )dWt︸ ︷︷ ︸
M


−1

.

Since g is continuous and Ŵ n
t is the interpolated version of (2.18), it turns out

that (
W n,

(
g
(
bnt/T cT/n, Ŵ n

t

))
t∈[0,T ]

)
⇒
(
W, (g(t,Wt))t∈[0,T ]

)
as n→∞ on D([0, T ];R2). We introduce martingales with discrete-time integrals,

Mn
k :=

k∑
l=1

g
(

(l − 1)T/n, Ŵ n
)
Ŵ n
lT/n − Ŵ n

(l−1)T/n. (2.20)

In order to construct a discretize martingale Mn which is “close” to M and also

is such that Pn ◦ (Mn)−1 ∈ QnD′n/n. We shall choose some

gn : {0, . . . , n} × Ln+1
n →

√
D′n/n,

such that,

Mn
k =

k∑
l=1

gn

(
l − 1,

1√
n
Zn

)
1√
n

∆Zn
l .

Let dJ1 be the Kolmogorov metric for the Skorohod J1 topology. We choose

h̃n : {0, · · · , n} × Ω→
√

D′n/n such that

dJ1

((
h̃n(bnt/T cT/n, Ŵ n

t )
)
t∈[0,T ]

,
(
g(bnt/T cT/n, Ŵ n

t )
)
t∈[0,T ]

)
is minimal (this is possible because there are only finitely many choices for(
h̃n(bnt/T cT/n, Ŵ n

t )
)
t∈[0,T ]

). This implies, due to the construction of D′n as a
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discretization of D that

dJ1

((
h̃n(bnt/T cT/n, Ŵ n

t )
)
t∈[0,T ]

,
(
g(bnt/T cT/n, Ŵ n

t )
)
t∈[0,T ]

)
→ 0

as n→∞ on D([0, T ];R). From Billingsley [16, Theorem 3.1 and Theorem 14.1],

it follows that(
W n,

(
h̃n

(
bnt/T cT/n, Ŵ n

t

))
t∈[0,T ]

)
⇒
(
W, g(t,Wt)t∈[0,T ]

)
as n→∞ on D([0, T ];R2). We then define gn : {0, . . . , n} × Ln+1

n →
√

D′n/n by

gn : (`, ~X) 7→ h̃n(`, ~̂X).

Let Mn be defined by

Mn
k =

k∑
l=1

gn

(
l − 1,

1√
n
Zn

)
1√
n

∆Zn
l , ∀k ∈ {0, · · · , n}.

By stability of stochastic integral (see Duffie and Protter [40, Theorem 4.3 and

Definition 4.1]),

(
Mn
bnt/T c

)
t∈[0,T ]

⇒M as n→∞ on D([0, T ];R)

because

Mn
bnt/T c =

bnt/T c∑
l=1

h̃n

(
(l − 1)T/n,

(
ŴkT/n

)n
k=0

)
∆ŴlT/n.

By Dolinsky et al. [38], the continuous version of (2.20) obtained by linear interpo-

lation M̂n converges in distribution to M on Ω endowed with the uniform metric

on the Skorohod space, i.e., M̂n ⇒M on Ω. Since ξ is bounded and continuous,

lim
n→∞

EPn◦(Mn)−1

[ξ(X̂n)] = EP0◦M−1

[ξ]. (2.21)

Therefore, (2.16) is satisfied for P n = Pn ◦ (Mn)−1 ∈ QnD′n/n. Trivially, (2.16)

implies

EPn [ξ(X̂n)] ≤ sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]. (2.22)
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Combining (2.21) and (2.22), and taking the lim inf as n tends to ∞, gives

EP [ξ] ≤ lim inf
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]. (2.23)

Taking the supremum of (2.23) over P ∈ QD, the equation becomes

sup
P∈QD

EP [ξ] ≤ lim inf
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]. (2.24)

Combining (2.15) and (2.24),

sup
P∈QD

EP [ξ] ≥ lim sup
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]

≥ lim inf
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]

≥ sup
P∈QD

EP [ξ].

Therefore,

lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)] = sup
P∈QD

EP [ξ]. (2.25)

Density argument: (2.14) is established for all ξ ∈ Cb(Ω,R) and also holds for all

ξ ∈ L1
∗ (see the density argument verification below).

Proposition 2.3.12. Let ξ : Ω→ R be a continuous function satisfying |ξ(ω)| ≤
a(1 + ‖ω‖∞)b for some constants a, b > 0 and QnD′n be the set of probability

measures as defined in (2.4), then

sup
Q∈Qn

D′n

EQ[ξ(X̂n)] = max
Q∈Qn

D′n

EQ[ξ(X̂n)]. (2.26)

Proof. The left-hand side of (2.26) can be written as

sup
Q∈Qn

D′n

EQ[ξ(X̂n)] = sup
f∈A

EPn◦(Mf,X)−1

[ξ(X̂n)],

where A =
{
f : {0, . . . , n} × Ln+1

n →
√

D′n
}

such that f is Fn-adapted. We shall

prove that A is a compact subset of a finite-dimensional vector space, and that

f 7→ EPn◦(Mf,X)−1
[ξ(X̂n)] is continuous.
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First part

Recall that for fixed n ∈ N, Xn = (Xn
k )nk=0 is the canonical process defined by

Xn
k (x) = xk for x = (x0, . . . , xn) ∈ Ln+1

n , and (Fnk )nk=0 = σ(Xn
l , l = 0, . . . , k) is the

filtration generated by Xn. We consider Ωn = {ω = (ω1, . . . , ωn) : ωi ∈ {±1}, i =

1, . . . , n} equipped with the power set. Let

Pn =
δ−1 + δ+1

2
⊗ · · · ⊗ δ−1 + δ+1

2︸ ︷︷ ︸
n times

where for all A ⊆ R,

δx(A) =

1, x ∈ A

0, x /∈ A
,

be the product probability associated with the uniform distribution. ξ1, . . . , ξn is

the i.i.d sequence of real-valued random variables such that ξk belongs to {±1}
and the components of ξk are orthonormal in L2(Pn). We denote the associated

random walk by Zn
k =

∑k
l=1 ξl.

A is closed1 and obviously bounded with respect to the norm ‖ · ‖∞ as D′n

is bounded2. By Heine-Borel theorem, A is a compact subset of a N(n, n)-

dimensional vector space equipped with the norm ‖ · ‖∞.

Second part

Here, we want to show that F : f 7→ EPn◦(Mf,X)−1
[ξ(X̂n)] is continuous.

QnD′n =
{
Pn ◦ (M f,X)−1; f : {0, . . . , n} × Ln+1

n →
√

D′n is Fn-adapted.
}

where

M f,X =

(
k∑
l=1

f(l − 1,X)∆Xl

)n

k=0

.

1The cardinality of Ln, #Ln = 2n + 1, #Ln+1
n = (2n + 1)n+1, and #({0, . . . , n} × Ln+1

n ) =
(n + 1)(2n + 1)n+1 = N(n, n). Let (fm)m ∈ AN(n,n) and f : {0, . . . , n} × Ln+1

n → R, such that
fm → f , as m→∞, with respect to the maximum norm ‖ · ‖∞ (or any norm as a result of norm
equivalency) on RN(n,n). We have to prove that f is adapted and

√
D′
n-valued (is obvious,

√
D′
n

is closed). For the first part, let j ∈ {0, . . . , n}. We want to show that f(j, ·) is Fnj -measurable.
This, however, follows from Billingsley [15, Theorem 13.4(ii)].

2If V ∈ R>0 such that D′
n ⊆ [0, V ], then obviously ‖f‖∞ = maxj∈{0,...,n}

ω∈Ln+1
n

|f(j, ω)| ≤
√
V .
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EPn◦(Mf,X)−1

[ξ(X̂n)] =

∫
Ln+1
n

ξ(X̂n)dPn ◦ (M f,X)−1,

=

∫
Ωn

ξ(X̂n(M f,X))dPn, (transforming measure)

=
∑
ωn∈Ωn

Pn{ωn}ξ ◦ (X̂n) ◦M f,X(ωn).

From Proposition 2.3.11 we know that ξ is continuous, X̂n is the interpolated

canonical process, i.e., X̂ : Ln+1
n → Ω, thus X̂n is continuous and Pn takes it values

from the set of real numbers. For F : f 7→ EPn◦(Mf,X)−1
[ξ(X̂n)] to be continuous,

ψ : f 7→M f,X has to be continuous. Since A = {f : {0, . . . , n} × Ln+1
n →√

D′n, where f is adapted with respect to the filtration generated by X} is a

compact subset of a N(n, n)-dimensional vector space for fixed n ∈ N and

M f,X : Ωn → Ln+1
n , for all f, g ∈ A,

|M f,X −M g,X| = |‖f‖∞ − ‖g‖∞| ≤ ‖f − g‖∞.

Thus, ψ is continuous with respect to the norm ‖ ·‖∞. Hence F is continuous with

respect to any norm3 on RN(n,n).

Theorem 2.3.13. Let ξ : Ω → R be a continuous function satisfying |ξ(ω)| ≤
a(1 + ‖ω‖∞)b for some constants a, b > 0. Then,

sup
P∈QD

EP [ξ] = lim
n→∞

max
Q∈Qn

D′n/n

EQ[ξ(X̂n)]. (2.27)

Proof. The proof follows directly from Proposition 2.3.11 and Proposition 2.3.12.

Density argument verification

Let

f : ξ 7→ sup
P∈QD

EP [ξ]

3For any two vector norms ‖ · ‖α, ‖ · ‖β , and C1, C2 > 0, we have C1‖A‖α ≤ ‖A‖β ≤ C2‖A‖α,
for all matrices A ∈ RN(n,n). i.e., all norms on RN(n,n) are equivalent because RN(n,n) has
N(n, n)-dimension for fixed n ∈ N.
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and

g : ξ 7→ lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)].

From (2.25), we know that for all ξ ∈ Cb(Ω,R), f(ξ) = g(ξ). Since L1
∗ is the

completion of Cb(Ω,R) under the norm ‖ · ‖∗, Cb(Ω,R) is dense in L1
∗; and we want

to prove for all ξ ∈ L1
∗, f(ξ) = g(ξ). To prove this, it is sufficient to show that f

and g are continuous with respect to the norm ‖ · ‖∗.

For continuity of f :

For all P ∈ QD and ξ, ξ
′ ∈ L1

∗,

sup
P∈QD

EP [ξ]− sup
P∈QD

EP [ξ
′
] ≤ sup

P∈QD

EP [ξ − ξ′ ]

and

sup
P∈QD

EP [ξ − ξ′ ] ≤ sup
P∈QD

EP [|ξ − ξ′|].

Since, QD ⊆ Q,

sup
P∈QD

EP [|ξ − ξ′|] ≤ sup
Q∈Q

EQ[|ξ − ξ′|] = ‖ξ − ξ′‖∗.

Then,

sup
P∈QD

EP [ξ]− sup
P∈QD

EP [ξ
′
] ≤ ‖ξ − ξ′‖∗. (2.28)

Interchanging ξ and ξ
′
,

sup
P∈QD

EP [ξ
′
]− sup

P∈QD

EP [ξ] ≤ ‖ξ′ − ξ‖∗. (2.29)

Adding (2.28) and (2.29), we have∣∣∣∣ sup
P∈QD

EP [ξ]− sup
P∈QD

EP [ξ
′
]

∣∣∣∣ ≤ ‖ξ − ξ′‖∗. (2.30)

Hence,

|f(ξ)− f(ξ
′
)| ≤ ‖ξ − ξ′‖∗.
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For continuity of g:

We can follow the same argument as above; for all Q ∈ QnD′n/n, ξ, ξ
′ ∈ L1

∗ and for

all n,

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]− sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)]

≤ sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)− ξ′(X̂n)]

≤ sup
Q∈Qn

D′n/n

EQ[|ξ(X̂n)− ξ′(X̂n)|].

Since, QnD′n/n ⊆ Q
n
D/n and QnD/n ⊆ Q, we can say that

sup
Q∈Qn

D′n/n

EQ[|ξ(X̂n)− ξ′(X̂n)|] ≤ sup
Q∈Q

EQ[|ξ − ξ′ |] = ‖ξ − ξ′‖∗,

then,

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]− sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)] ≤ ‖ξ − ξ′‖∗. (2.31)

Taking the limit when n goes to ∞, (2.31) becomes,

lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]− lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)] ≤ ‖ξ − ξ′‖∗. (2.32)

Interchanging ξ and ξ
′
,

lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)]− lim

n→∞
sup

Q∈Qn
D′n/n

EQ[ξ(X̂n)] ≤ ‖ξ′ − ξ‖∗. (2.33)

Adding (2.32) and (2.33), we have

∣∣∣∣ lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ(X̂n)]− lim
n→∞

sup
Q∈Qn

D′n/n

EQ[ξ
′
(X̂n)]

∣∣∣∣ ≤ ‖ξ − ξ′‖∗.
Hence, ∣∣∣g(ξ)− g(ξ

′
)
∣∣∣ ≤ ‖ξ − ξ′‖∗.



Chapter 3

A Simplified Approach to

Nonstandard Measure Theory

3.1 Introduction

We give a simplified introduction to nonstandard measure theory that does not

presuppose prior acquaintance with mathematical logic. This approach requires

no previous knowledge of nonstandard analysis. The methodology is presented in

terms of sequences, equivalence relations and equivalence classes with respect to

binary measures. The approach is based on Lindstrøm’s [73] work. However, our

approach is more simplified. We construct the extended nonstandard enlargement

in measure theoretic language and also show how the language of logic relates

to the mathematical discourse in probability theory. We provide an alternative

construction of the renowned Loeb measure using basic knowledge of real analysis.

Nonstandard analysis, or the theory of infinitesimals as some people prefer to call

it (see Robinson [94]), was introduced by Abraham Robinson in 1961. Robinson

in [94] introduced a mathematical foundation for infinitesimals. His work started

with a mathematical object such as the system of real numbers or some Banach

space. Being a mathematical logician, he used a formal language to express facts

about the mathematical structure he was working on, and called the structure a

standard model for the true statement expressed in the formal language. One can

think of the standard model as a universe in some sense, thus, it is also known as

the standard universe Hrbáček [55]. Robinson went further to prove that there also

40
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exists another mathematical structure called the nonstandard model such that in

the standard and the nonstandard models the same first-order statements are true,

and the nonstandard model for the system of real numbers may be constructed in

the form of ultrapowers as defined by  Loś [78]. This nonstandard model contains

infinitely small and infinitely large numbers in a well-defined sense.

One way to summarize Robinson’s [94] result is as follows: We have two universes,

the standard universe and the nonstandard universe, and every first-order state-

ment that is true in the standard universe is also true in the nonstandard universe

and the standard model can be embedded into the nonstandard model. This im-

plies that one can use the nonstandard model to analyze the standard model, thus,

Robinson called his method and results nonstandard analysis.

Many authors have introduced a more elementary and intuitive approach to non-

standard analysis. Schmieden and Laugwitz [98] introduced a nonstandard anal-

ysis that is more constructive, however their approach is much heavily based on

classical analysis without the use of model theory (mathematical logic). The work

of Schmieden and Laugwitz [98] was further developed in subsequent papers by

Laugwitz [66, 67, 68]. In their approach, one of the important properties of non-

standard analysis, the Transfer Principle (see Theorem 3.4.5), is lacking. Thus,

their nonstandard model cannot be related to the standard model as easily as

in Robinson’s result. Mycielski [83] introduced a locally constructive theory of

infinitesimals. In his theory, every proof can be interpreted in a finite model.

Lindstrøm’s [73] presentation of Robinson’s approach to nonstandard analysis is

far more intuitive and user friendly. His approach is presented in terms of se-

quences, equivalence relation and equivalence classes with respect to binary mea-

sures. There are other interesting approaches in the literature, see, for example,

Keisler [59]. Our approach to nonstandard analysis is based on Lindstrøm’s [73]

work. We present the nonstandard analysis in a language that is easily accessible

to a wider audience of mathematicians rather than only logicians.

One of the important features of nonstandard analysis is that it allows one to

embed a standard mathematical theory for instance, measure theory, probability

theory or algebra, in a standard universe into the nonstandard universe. Most

results in the nonstandard universe are profound and easy to follow, for instance,

there are several existence theorems whose only known proofs use nonstandard

analysis. For example, Perkins [90] proved a global characterization of (standard)

Brownian local time with nonstandard analysis. Anderson and Raimondo [5] use
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nonstandard analysis to prove the existence of equilibrium in a continuous time

financial model where the number of underlying assets is at least one more than

the number of independent source of risk.

The embeddment of a standard universe into a nonstandard universe enables one

to establish a two way interaction between a standard universe and a nonstandard

universe in the sense that a statement is true in the standard universe if and

only if the transfer of the statement into the nonstandard universe is true. This

mechanism is basically called the Transfer Principle. However, the strength of

nonstandard analysis is not limited to the Transfer Principle. As a matter of fact,

transfer is limited between the standard entities in the standard universe and the

so-called internal entities in the nonstandard universe. The nonstandard universe

that contains only these internal entities is called the internal universe.

Another important property of nonstandard analysis is the Internal Definition

Principle (see Theorem 3.4.8), which tells that the subsets of internal sets in

the internal universe are always internal. The Internal Definition Principle is a

consequence of the Transfer Principle.

The Saturation Principle (see Theorem 3.4.10), more precisely the Countable Sat-

uration Principle, is almost as important as the Transfer Principle and the Internal

Definition Principle. It asserts that the intersection of any decreasing countable

sequence of nonempty elements of the internal universe is always nonempty. A

nonstandard universe that is adequate for applications especially when the target

space satisfies some countability condition will satisfy the Countable Saturated

Principle. As an application of the Countable Saturated Principle, we discuss the

Loeb space, Loeb [76].

The Loeb space can be “seen” as the standard reduct of a nonstandard probability

space. The Countable Saturation Principle ensures that the measure (Loeb mea-

sure) defined on the Loeb space is countably additive. The richness of the Loeb

measures makes them applicable in a wide range of research: stochastic analysis

Müller [82], Anderson [3], Cutland et al. [31], financial economics Cutland et al.

[30], Duffie and Protter [40], control theory Berg [12], mathematical physics Al-

beverio et al. [2], (for recent overview, see Cutland [29]).

This chapter is organized as follows: In Section 3.2, we explain the construction

of the hyperreals by extending the real line to accommodate the infinitely small

and the infinitely large numbers. We begin Section 3.3 by defining the standard
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universe (superstructure) and its components and then show how the language

of logic relates to the mathematical discourse in probability theory. Section 3.4

explains the construction of the nonstandard universe (the image of the super-

structure under the nonstandard embedding ∗). Thereafter, we explain some basic

properties of the nonstandard enlargement. In Section 3.5, we provide an alterna-

tive construction of the Loeb measure using basic knowledge of real analysis. We

shall do this by establishing that an internal finitely additive measure induces a

premeasure and then extend the premeasure into a measure on the σ-algebra. We

conclude by proving the uniqueness of this measure.

3.2 Preliminaries

We begin by extending the real line to contain both the infinitely small and in-

finitely large. Recall: One way to construct the real line is to add new rational

points to represent limits of convergence of rationals. In this approach one has to

identify sequences converging to the same point in R. This runs as follows: Let ≡
be the equivalence relation on the set S of all rational Cauchy sequences defined

by

(fn)n ≡ (gn)n ⇐⇒ lim
n→∞

(fn − gn) = 0.

Then the reals are the set

R = S/ ≡

of all equivalence classes. In order to construct ∗R (hyperreals) from R, a well-

organized structure that does not entail only the limit of convergence but also the

mode of convergence is required. To achieve this, one needs to identify as few

sequences as possible. i.e., the trivial identification, (cf. Lindstrøm [73]);

(fn)n ∼ (gn)n ⇐⇒ (fn) = (gn),

where ∼ is the equivalence relation. But, if f = (fn)n is a sequence such that

fn = 0 if and only if n is even and g = (gn)n is a sequence such that gn = 0 if

and only if n is odd; then f · g = 0, although, both f and g are non-zero. Thus,

the trivial identification gives rise to a structure with zero divisors (cf. Lindstrøm

[73]). The task now is to make the equivalence relation ∼ strong enough to avoid

the problem of zero divisors. Thus, we have to fix a finitely additive measure on

N with the following properties.
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Definition 3.2.1. (cf. Lindstrøm [73, Definition 1.1.2 ]) Let µ be a {0, 1}-valued

finitely additive measure on the set N of positive integers such that:

(a) µ(E) is defined and it is either 1 or 0 for all E ⊂ N.

(b) If µ(E) = 1 and µ(F ) = 1, then µ(E ∩ F ) = 1 for all E,F ⊂ N.

(c) µ(N) = 1 and µ(E) = 0 for all finite E.

(d) For any E ⊂ N, either µ(E) = 1 or µ(Ec) = 1, (but not both).

The measure µ is a finitely additive measure means µ(E ∪ F ) = µ(E) + µ(F ) for

all disjoint sets E and F . It is important to note that µ divides the subsets of N
into two different classes; the “large ones” with measure one and the “small ones”

with measure zero, such that all finite sets are small because they have measure

zero (cf. Lindstrøm [73]).

Remark 3.2.2. If µ(E) = 1 and E ⊆ F ⊂ N, then µ(F ) = 1.

Definition 3.2.3. (cf. Lindstrøm [73, Definition 1.1.3]) Let RN (the direct product

of N copies of R) be the set of all sequences of real numbers and let ∼ be the

equivalence relation on RN defined by

(fn)n ∼ (gn)n ⇐⇒ µ{n : fn = gn} = 1.

That is (fn)n equal to (gn)n almost everywhere.

Definition 3.2.4. Let 〈(fn)n〉 denote the equivalence class of the sequence (fn)n in

RN. Addition, multiplication and absolute value (norm) is defined componentwise

by

〈(fn)n〉+ 〈(gn)n〉 := 〈(fn + gn)n〉; 〈(fn)n〉 · 〈(gn)n〉 := 〈(fn · gn)n〉,

and |〈(fn)n〉| := 〈(|fn|)n〉 respectively.

Definition 3.2.5. Let RN be the set of all sequences of real numbers and let ∼
be the equivalence relation. The hyperreal is given by

∗R = RN/ ∼ .

Thus, for every sequence (fn)n in RN, 〈(fn)n〉 denotes its image in ∗R. We then

have a natural embedding
∗ : R→ ∗R
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by taking ∗f = 〈f〉.

It is possible to extend the operations and relations of R to ∗R: for arbitrary

〈f〉 = 〈(fn)n〉 and 〈g〉 = 〈(gn)n〉 in ∗R,

〈f〉+ 〈g〉 = 〈h〉 ⇐⇒ µ{n : fn + gn = hn} = 1

and

〈f〉 · 〈g〉 = 〈h〉 ⇐⇒ µ{n : fn · gn = hn} = 1.

In a similar manner,

〈f〉 < 〈g〉 ⇐⇒ µ{n : fn < gn} = 1. (3.1)

By the definition of < in ∗R, one can easily see that ∗R is linearly ordered. For

example, let us prove the transitivity of ∗R.

Proof. Let 〈f〉 < 〈g〉 and 〈g〉 < 〈h〉. We want to show that 〈f〉 < 〈h〉. From

(3.1), we know that µ{n : fn < gn} = 1 and µ{n : gn < hn} = 1. It follows from

Definition 3.2.1-(b) that

µ{n : fn < gn ∩ gn < hn} = 1.

Thus, fn < gn and gn < hn, and by transitivity of < in R, fn < hn.

Hence,

µ{n : fn < hn} = 1.

By Definition 3.2.5, in ∗R, either the sequence f , where fn = 0 if and only if n is

even, or the sequence g where gn = 0 if and only if n is odd, will be identified with

the zero sequence 0 and the other one with 1 (cf. Lindstrøm [73]).

We identify γ ∈ R with 〈(γ)n〉 ∈ ∗R.

Definition 3.2.6. For every sequence (fn)n in RN and 〈f〉 = 〈(fn)n〉 in ∗R;

(a) We say that 〈f〉 is infinitesimal and write 〈f〉 ' 0 if and only if

∀r ∈ R>0, µ{n : |fn| ≤ r} = 1. (3.2)
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(b) 〈f〉 is limited if and only if

∃r ∈ R>0, µ{n : −r < fn < r} = 1. (3.3)

(c) For arbitrary 〈g〉 in ∗R, 〈f〉 is infinitely close to 〈g〉 if and only if 〈|f − g|〉 is

infinitesimal:

〈f〉 ' 〈g〉 ⇐⇒ 〈|f − g|〉 ' 0. (3.4)

(d) 〈f〉 is unlimited if and only if 〈f〉 is not limited.

3.3 The standard enlargement and its compo-

nents

The domain of reals is not large enough for development of contemporary mathe-

matics most especially in measure theory and probability theory. Thus, the non-

standard extension of reals is not sufficient for a fully fledged application of non-

standard analysis to problems in measure theory and probability theory. In order

to have an effective nonstandard framework, one needs an extended universe that

contains not only numbers and functions, but also mathematical objects such as

sets of functions, sets of spaces of functions, topological spaces, measure spaces

etc. In view of this, we introduce the superstructure (see below) over K. One

can assume K is large enough to contain all mathematical objects. These ob-

jects can be defined as sets in the superstructure of K. Every object of standard

mathematics lives in the superstructure.

Definition 3.3.1. For any set K (where K is regarded as a set of individuals, i.e.,

if x ∈ K then x has no elements.), V (K) is a superstructure if

V0(K) = K, Vk+1(K) = Vk(K) ∪ P(Vk(K)), and V (K) =
⋃
k∈N

Vk(K),

where P(A) denote the power set of A.

The elements of this superstructure are precisely the mathematical objects that can

be obtained by iterating the power set operator countably many times. For every

object a in V (K), a is either an element inK or a set that belongs to V (K)\K. The

rank of an object a in V (K) is the smallest k for which a is in Vk(K). It is important
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to note that K = V0(K) ⊂ V1(K) ⊂ · · · , and K = V0(K) ∈ V1(K) ∈ · · · . Thus,

when i is less than j, Vi(K) becomes an element in Vj(K), and objects with rank

greater than or equal to 1 in V (K) are precisely the sets in V (K). The objects in

V0(K) have rank 0 and the empty set ∅ has rank 1. If a is an object in V (K) with

rank greater than 1, and b is an element in a, then b is also an object in V (K) and

the rank of b is strictly less than the rank of a.

Definition 3.3.2. Let LV (K) be the language of V (K), having the set of symbols

given by {v̇n : n ∈ N} ∪ {ȧ : a ∈ V (K)} ∪ {∈̇, =̇, ∧̇, ¬̇, ∀̇, ∃̇, (̇, )̇}, in which

(a) v̇1, v̇2, v̇3, v̇4 · · · are variables;

(b) ȧ is a constant symbol for each a ∈ V (K);

(c) ∈̇, =̇ are relation symbols;

(d) ∧̇ (and), ¬̇ (not) are connectives;

(e) ∀̇, ∃̇ are bounded quantifiers;

(f) (̇, )̇ are parentheses.

A string of LV (K) is a finite sequence of symbols of LV (K). A string is an atomic

formula if and only if it is of the form v̇k=̇v̇l or v̇k∈̇v̇l where v̇k and v̇l are variables

for some k, l ∈ N. The set F of all formulas is the smallest subset of strings which

contains all the atomic formulas, and for all ψ, φ ∈ F and any variable v̇k, the

strings (̇∃̇v̇k∈̇v̇l)̇ψ, (̇∀̇v̇k∈̇v̇l)̇ψ, (̇∃̇v̇k∈̇ȧ)̇ψ, (∀̇v̇k∈̇ȧ)ψ, ¬̇ψ, (̇ψ∧̇φ)̇ are all in F.

For any variable v̇k, v̇k-quantifier means the string (̇∃̇v̇k∈̇ȧ)̇. When we refer to the

specific occurrence of the v̇k-quantifier of a given formula, we underline its position

in the formula. For every formula ψ, strings X, Y , and variable v̇l, the scope of an

occurrence of the v̇k-quantifier in a formula is defined recursively as follows:

• The scope of the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in (̇∃̇v̇k∈̇ȧ)̇ψ equals the formula

(̇∃̇v̇k∈̇ȧ)̇ψ.

• The scope of the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in ¬̇X (̇∃̇v̇k∈̇ȧ)̇Y equals the scope of

the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in X (̇∃̇v̇k∈̇ȧ)̇Y .

• The scope of the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in X (̇∃̇v̇k∈̇ȧ)̇Y ∧̇ψ equals the scope

of the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in X (̇∃̇v̇k∈̇ȧ)̇Y .
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• The scope of the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in ψ∧̇X (̇∃̇v̇k∈̇ȧ)̇Y also equals the

scope of the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in X (̇∃̇v̇k∈̇ȧ)̇Y .

• The scope of the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in (̇∃̇v̇l)̇X (̇∃̇v̇k∈̇ȧ)̇Y equals the scope

of the occurrence of (̇∃̇v̇k∈̇ȧ)̇ in X (̇∃̇v̇k∈̇ȧ)̇Y .

The occurrence of a variable v̇k in a formula is called a bound if and only if it

occurs in the scope of a v̇k-quantifier in the formula. Otherwise, the occurrence of

v̇k is said to be free. Thus, any particular occurrence is either free or bound, but

not both. However, a variable v̇k can have both free and bound occurrence in the

same formula. For a formula ψ, if the occurrence of v̇k in ψ is free, then we often

denote it as ψ(v̇k). And for any given ψ and any occurrence of v̇k in ψ, one can

tell if the occurrence of v̇k in ψ is free or bound by how ψ is constructed from the

atomic formulas. A formula ψ is called a sentence if and only if all the occurrences

of the variables in ψ are not free, Bell and Slomson [11].

Let {v̇n}n∈N be the sequence of all variables. An interpretation is a map

I : {v̇n}n∈N ∪ {ȧ : a ∈ V (K)} −→ V (K)

such that I(a) = a for all a ∈ V (K) and a map

α( · |V (K), I) : F→ {0, 1}.

The “interpretation” of a formula is the assignments of the truth values true or

false to the formula, relative to the interpretation (valuation) I of the variables.

Ultimately having recursively defined α (see below), we shall define the |= relation

as follows:

V (K) |=I ψ ⇐⇒ α(ψ|V (K), I) = 1.

The truth of a given formula is defined in terms of the components of the formula

as follows:

1. Suppose v̇k∈̇ȧ is a formula.

α(v̇k∈̇ȧ|V (K), I) =

1 if, I(v̇k) ∈ I(ȧ)

0 otherwise.
(3.5)
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2. Suppose v̇k=̇v̇l is a formula.

α(v̇k=̇v̇l|V (K), I) =

1 if, I(v̇k) = I(v̇l)

0 otherwise.
(3.6)

3. Suppose ψ∧̇φ is a formula. α(ψ∧̇φ|V (K), I) = 1 if and only if

α(ψ|V (K), I) = 1 and α(φ|V (K), I) = 1. Thus,

α(ψ∧̇φ|V (K), I) = min{α(ψ|V (K), I), α(φ|V (K), I)} (3.7)

4. Suppose ¬̇ψ is a formula. α(¬̇ψ|V (K), I) = 1 if and only if

α(ψ|V (K), I) = 0. Thus,

α(¬ψ|V (K), I) = 1− α(ψ|V (K), I). (3.8)

5. Let (∃̇v̇k∈̇ȧ)ψ be a formula where ∃̇v̇k∈̇ȧ does not occur in ψ for any variable

v̇k and constant ȧ. We denotes J as an interpretation.

α
(

(∃̇v̇k∈̇ȧ)ψ|V (K), I
)

= max
v̇k


α
(
ψ|V (K), J

)
: J(v̇k) ∈ I(ȧ)

and for all x ∈ {v̇n : n 6= k} ∪ {ȧ : a ∈ V (K)},
J(x) = I(x).

 .

(3.9)

3.3.1 Link between mathematical logic and probability

theory

It is important to note that formal expressions of these forms (as given above) are

frequently use in probability theory. Recall some elements of probability theory.

Let (Ω,F ,P) be a probability space, where Ω is the set of all possible event, F is

a σ-algebra, and P is the probability measure that assigns a probability P(B) to

every event B ∈ F such that P : F → [0, 1]. Let X and Y be real-valued random

variables and let (Xn)n be the sequence of real-valued random variables. The

following expressions in probability theory are treated as objects of mathematical

discourse:

1. Relation symbols (∈̇, =̇):
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• Consider P{X ∈ A}. X ∈ A is a well defined expression in probability

theory. The assignments of the truth values to the formula X∈̇A is

given in (3.5).

• Consider P{X = Y }. X = Y is a well defined expression in probability

theory. Thus, the assignments of the truth values to the formula X=̇Y

is given in (3.6).

2. Connectives (∧̇, ¬̇):

• Consider P{X ∈ [0, 1]&Y ≥ 0}. X ∈ [0, 1]&Y ≥ 0 is a well defined

expression in probability theory. The assignments of the truth values

to the formula “ψ = X ∈ [0, 1] and φ = Y ≥ 0” is given in (3.7).

• Recall P{X ∈ A}. The assignments of the truth values to the formula

“ not ψ”, where ψ = X∈̇A is given in (3.8).

3. Quantifier (∃): Consider P{∃n ∈ N, Xn ≥ 0}. ∃n ∈ N, Xn ≥ 0 is a well

defined expression in probability theory. The assignments of the truth values

to the formula (∃v̇k∈̇ȧ)ψ, assuming ∃v̇k∈̇ȧ does not occur in ψ, is given in

(3.9).

Other existing logical symbols, for example, disjunction ∨, implication →, equiv-

alence ↔ and universal quantifier ∀, can be abbreviated using the above cases.

They are used in the following ways:

1. ψ∨̇φ abbreviates ¬̇(̇¬̇ψ∧̇¬̇φ)̇.

2. ψ→̇φ abbreviates ¬̇(̇ψ∧̇¬̇φ)̇.

3. ψ↔̇φ abbreviates (̇ψ→̇φ)̇∧̇(̇φ→̇ψ)̇.

4. (̇∀̇v̇k ∈ ȧ)̇ψ = ¬̇(̇∃̇v̇k ∈ ȧ)̇¬̇ψ.

Lemma 3.3.3. If ψ contains no free variables, then for all interpretations I and

J ,

V (K) |=I ψ ⇐⇒ V (K) |=J ψ.

Proof. The proof is an induction on the complexity of ψ. For all k, l ∈ N, let v̇k, v̇l

be variables of an arbitrary set in V (K). Then

V (K) |=I v̇k = v̇l ⇐⇒ I(v̇k) = I(v̇l).
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Suppose ψ is a formula. For every k ∈ N, if v̇k occur free in ψ, then the truth or

falsity of

V (K) |=I ψ

depends only on the value of I(v̇k) for every variable v̇k that is free in ψ. That is,

for all interpretations I and J , I(v̇k) = J(v̇k). Then,

V (K) |=I ψ ⇐⇒ V (K) |=J ψ.

If ψ is a sentence, then the truth or falsity of

V (K) |=I ψ

is completely independent of I because ψ (as a sentence) contains no free variables.

Thus, for all interpretations I and J , we may suppress the interpretation and write

V (K) |= ψ.

Notation 3.3.4. We drop brackets and even dots where no notation ambiguity

can arise.

3.4 Construction and some properties of the

nonstandard enlargement

Here we explain the setting of nonstandard analysis introduced in Robinson

and Zakon [95]. The construction of the image of the classical superstructure

under the nonstandard embedding ∗ proceeds in two stages. Firstly, we construct

a bounded ultrapower of V (K) using bounded sequences of elements in V (K)

with measure one. Secondly, we map the bounded ultrapower into the super-

structure V (∗K) in such a way that the embedding satisfies the Transfer Principle.

A sequence (An)n is rank bounded if there is a fixed k ∈ N such that An ∈ Vk(K)

for all n. If (An)n is bounded,

N = {n : An has rank 0} ∪ · · · ∪ {n : An has rank k}
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and

µ{n : An has rank i} =

1 if, i ≤ k

0 if, i > k,

thus, the rank of (An)n is k. Let A = (An)n and B = (Bn)n be two bounded

sequences. A and B are equivalent if and only if (An)n = (Bn)n µ almost surely:

A ∼µ B ⇐⇒
(
µ{n : V (K) |= An=̇Bn} = 1

)
.

Let Aµ denote the equivalence class of a bounded sequence A and define the set

of all equivalence classes as

V (K)N/ ∼µ=
{
Aµ : (∃m ∈ N)

(
µ{n : V (K) |= An∈̇Vm(K)} = 1

)}
.

(We assume K ∩N = ∅; though, there may be a copy of N in K, for example, if R
is defined as a set of the equivalence classes of the sequence of rational numbers,

K = R). By definition, all the elements of V (K)N/ ∼µ are bounded with respect

to the rank of the superstructure with measure one. V (K)N/ ∼µ is called the

bounded ultrapower of V (K).

Claim 1. B
′ ∈ A′ ∈ Vk+1(K) implies B

′ ∈ Vk(K).

Proof of Claim 1. By definition of a superstructure, A
′ ∈ Vk+1(K) simply implies

A
′ ∈ Vk(K) or A

′ ⊆ Vk(K), and objects of Vk(K) are either elements of K or sets

of Vk(K) \K. Thus, A
′ ∈ Vk+1(K) is either A

′ ∈ K or A
′ ⊆ Vk(K). If B

′ ∈ A′ ,
then A

′
/∈ K (K is a set of individuals). Hence, B

′ ∈ A′ ∈ Vk+1(K) implies

B
′ ∈ A′ ⊆ Vk(K), that is, B

′ ∈ Vk(K). Since Vk(K) ∈ Vk+1(K) ⊂ V (K), each

Vk(K) is an element of V (K).

The membership relation ∈µ on V (K)N/ ∼µ is defined as follows:

∈µ:=
{

(Bµ, Aµ) :
(
µ{n : V (K) |= Bn∈̇An} = 1

)}
.

That is,

Bµ ∈µ Aµ ⇐⇒
(
µ{n : V (K) |= Bn∈̇An} = 1

)
.

Thus, there exist a canonical embedding of A 7→ Aµ and a natural proper embedding

i : V (K) −→ V (K)N/ ∼µ
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where i(A) is the equivalence class corresponding to the constant sequence A. Let
∗K = KN/ ∼µ. We need to construct an injective map

j : V (K)N/ ∼µ−→ V (∗K).

By definition, the bounded ultrapower is the union of the chain V0(K)N/ ∼µ⊆
· · · ⊆ Vk(K)N/ ∼µ⊆ · · · and we can define j by recursion. For k = 0, j must be

the identity on ∗K. i.e.,

j : x 7→ x on ∗K.

Claim 2. Bµ ∈ Aµ ∈ Vk+1(K)N/ ∼µ implies Bµ ∈ Vk(K)N/ ∼µ.

Proof of Claim 2. Aµ ∈ Vk+1(K)N/ ∼µ simply implies Aµ ∈ ∗K or

Aµ ⊆ Vk(K)N/ ∼µ. If Bµ ∈ Aµ, then Aµ /∈ ∗K. Thus, Aµ ∈ Vk+1(K)N/ ∼µ

means Aµ ⊆ Vk(K)N/ ∼µ. Hence, Bµ ∈ Aµ ∈ Vk+1(K)N/ ∼µ implies

Bµ ∈ Vk(K)N/ ∼µ.

For every Aµ ∈ Vk+1(K)N/ ∼µ and Aµ /∈ ∗K, we set

j(Aµ) =
{
j(Bµ) :

(
V (K)N/ ∼µ|= Bµ ∈µ Aµ

)}
.

This definition is possible if Claim 2 holds, that is, Bµ ∈ Vk(K)N/ ∼µ, which

means that j(Bµ) is defined at a previous stage of the recursive construction.

This property is known as the transitivity of j(V (K)N/ ∼µ). Hence every set in

j(V (K)N/ ∼µ) only consists of elements of j(V (K)N/ ∼µ).

Combining i and j;
∗A = j(i(A)) (3.10)

for all A ∈ V (K).

(3.10) is the bounded elementary embedding of the structure of V (K) into

V (∗K). The membership relation ∈µ in the bounded ultrapower is mapped by

j into the ordinary membership relation in V (∗K): For all Aµ, Bµ ∈ V (K)N/ ∼µ,

Bµ ∈µ Aµ ⇐⇒ j(Bµ) ∈ j(Aµ).

In this construction, V (K) and V (∗K) are connected by the Transfer Principle

(see Theorem (3.4.5)).
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3.4.1 Some basic properties of the nonstandard enlarge-

ment

Here we define some basic terms and introduce some basic properties of the Non-

standard framework.

Definition 3.4.1. For every A ∈ V (∗K) where A is either an element in ∗K or a

set that belongs to V (∗K):

(a) A is standard if A = ∗B for some B ∈ V (K).

(b) A is internal if A ∈ ∗B for some B ∈ V (K).

(c) A is external if A is not internal.

It is easy to see that every standard set is internal. Standard sets are crucial but

they are not very interesting. However, the internal sets and a special type of

internal set known as hyperfinite set are very useful for applications.

Recall: A subset A ⊆ N is said to be finite if

A ⊆ {n ∈ N | n ≤ m}

for some m ∈ N.

An internal subset A ⊆ ∗N is said to be hyperfinite or ∗-finite if

A ⊆ {n ∈ ∗N | n ≤ m}

for some m ∈ ∗N.

Definition 3.4.2. (cf. Albeverio et al. [2, Definition 3.2.1]) An internal set A ∈
V (∗K) is said to be hyperfinite if there is an internal one-to-one map g of some

proper initial segment {n ∈ ∗N | n ≤ m} of ∗N onto A, where m ∈ ∗N is called the

cardinality of A. i.e., |A| = m.

Informally, hyperfinite sets are infinite sets in the nonstandard framework with all

the properties and combinatorial structure of a finite set.

The next lemma is the characterization of the internal universe (see Herzberg [51]).
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Lemma 3.4.3. For any x ∈ V (∗K), x ∈ j(V (K)N/ ∼µ) if and only if there exist

some y ∈ V (K) \K such that x ∈ ∗y. Then,

j(V (K)N/ ∼µ) =
⋃

A∈V (K)\K

∗A =
⋃
m∈N

∗Vm(K).

Proof. For any bounded sequence A of (An)n where An ∈ Vk(K) for all n,

∗A = j(i(A)).

If x ∈ j(V (K)N/ ∼µ), then there exists some k ∈ N such that

x ∈ j(i(Vk(K))) = ∗Vk(K).

If y = Vk(K), then x ∈ j(i(y)) and we know that j(i(y)) = ∗y. Thus, x ∈ ∗y.

Conversely, suppose x ∈ ∗y for some y ∈ V (K). Since ∗ = j◦i, ∗y ∈ j(V (K)N/ ∼µ).

But we have shown the transitivity of j(V (K)N/ ∼µ) (see the construction of the
∗-embedding above). Thus, x ∈ ∗y implies that x ∈ j(V (K)N/ ∼µ).

Before we discuss the properties of the internal universe, we prove the Transfer

Principle which says that a sentence ψ holds in V (K) if and only if the ∗-image of

ψ holds in V (∗K). For convenience, in the proof the superstructure is fixed over

the reals: R ⊂ K.

Definition 3.4.4. Let ψ be a sentence in LV (R) that holds in V (R) with constants

a(1), · · · , a(k) ∈ V (R). For every a
∗(1), · · · , a∗(k) ∈ V (∗R), ∗ψ is the ∗-image of ψ in

V (∗R).

Theorem 3.4.5 (Transfer principle). Let ψ be a sentence in LV (R) with bounded

quantifier and suppose the constants occurring in ψ are a(1), · · · , a(k) (for some

a(1), . . . , a(k) ∈ V (R)). ψ holds in V (R) if and only if ∗ψ(a
∗(1), . . . , a

∗(k)) holds in

V (∗R), that is,

V (R) |= ψ ⇐⇒ V (∗R) |= ∗ψ

(
a
∗(1)

a(1)
, · · · , a

∗(k)

a(k)

)
.

Proof. The Transfer Principle is just the  Loś Theorem,  Loś [78], for sentences.

Thus, the proof is based on slight-modification of the proof of  Loś Theorem and is

done by induction on complexity of sentences that can be reduced to measure one.
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We shall comment on few cases of sentences, although other cases are abbreviations

of these sentences.

Case 1. Assuming that the sentence ψ is of the form ψ1 ∧ ψ2 where ψ1 and ψ2

satisfies the condition of the theorem. By using the fact that the intersection of

two sets with measure one has measure one (see Definition 3.2.1-(b)), and by the

induction hypothesis, we have

V (∗R) |= ∗ψ(a
∗(1), . . . , a

∗(k))

⇐⇒
(∗ψ1(a

∗(1), . . . , a
∗(k)) and ∗ψ2(a

∗(1), · · · , a∗(k))
)

⇐⇒

(
µ{n : V (R) |= ψ1(a(1), . . . , a(k))} = 1

and µ{n : V (R) |= ψ2(a(1), . . . , a(k))} = 1

)
⇐⇒ µ{n : V (R) |= ψ1(a(1), . . . , a(k)) ∧ ψ2(a(1), . . . , a(k))} = 1.

Case 2. Assume the sentence ψ is of the form ¬ψ1, and ψ1 satisfies the condition

of the theorem. By using the fact that for any given set, either the set has measure

one or its complement does, but not both (see Definition 3.2.1-(c)), and by the

induction hypothesis, we have

V (∗R) |= ∗ψ(a
∗(1), . . . , a

∗(k))

⇐⇒ V (∗R) 6|= ∗ψ1(a
∗(1), . . . , a

∗(k))

⇐⇒ (1− µ{n : V (R) |= ψ1(a(1), . . . , a(k))}) = 1

and

(1− µ{n : V (R) |= ψ1(a(1), . . . , a(k))}) = µ{n : V (R) |= ¬ψ1(a(1), . . . , a(k))}.

Thus,

V (∗R) |= ∗ψ(a
∗(1), . . . , a

∗(k)) ⇐⇒ µ{n : V (R) |= ¬ψ1(a(1), . . . , a(k))} = 1.

Case 3. Assuming the sentence ψ is of the form (∃x ∈ a(l))ψ1 where

ψ1 satisfies the condition of the theorem. Firstly, we note that

V (∗R) |= ∗ψ(a
∗(1), . . . , a

∗(k)) if and only if there exist an internal element a such
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that V (∗R) |= ∗ψ1(a, a
∗(1), . . . , a

∗(k)):

V (∗R) |= ∗ψ1(a, a
∗(1), . . . , a

∗(k)) (3.11)

⇐⇒ µ{n : V (R) |= ψ1(an, a
(1), . . . , a(k))} = 1.

We want to show that (3.11) is equivalent to

V (∗R) |= ∗ψ(a, a
∗(1), . . . , a

∗(k))

⇐⇒ µ{n : V (R) |= (∃x ∈ a(l))ψ1(x ∈ a(l), a(1), . . . , a(k))} = 1.

First we show there exists an a such that

µ{n : V (R) |= ψ1(an, a
(1), . . . , a(k))} = 1

implies

µ{n : V (R) |= (∃x ∈ a(l))ψ1(x ∈ a(l), a(1), . . . , a(k))} = 1.

To do this, it is sufficient to observe that

{n : V (R) |= ψ1(an, a
(1), . . . , a(k))}

⊆{n : V (R) |= (∃x ∈ a(l))ψ1(x ∈ a(l), a(1), . . . , a(k))}.

We know that for any set E, if µ(E) = 1 and E ⊆ F ⊂ N, then µ(F ) = 1.

Thus,

µ{n : V (R) |= (∃x ∈ a(l))ψ1(x ∈ a(l), a(1), . . . , a(k))} = 1.

Conversely, we show that

µ{n : V (R) |= (∃x ∈ a(l))ψ1(x ∈ a(l), a(1), . . . , a(k))} = 1

implies there exists an a such that µ{n : V (R) |= ψ1(an, a
(1), . . . , a(k))} = 1. For

each n in the set {n : V (R) |= (∃x ∈ a(l))ψ1(x, a(1), . . . , a(k))} select some element

an ∈ V (R) that oversees this, and choose an arbitrary otherwise. We have,

µ{n : V (R) |= ψ1(an, a
(1), . . . , a(k))}

=µ{n : V (R) |= (∃x ∈ a(l))ψ1(x ∈ a(l), a(1), . . . , a(k))}
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Hence, for every given sentence ψ,

V (∗R) |= ∗ψ(a
∗(1), . . . , a

∗(k)) ⇐⇒ µ{n : V (R) |= ψ(a(1), . . . , a(k))} = 1.

Lemma 3.4.6. For all k ∈ N, ∗Vk(K) is transitive, and thus, so is ∗V (K).

Proof. Obviously K is transitive. By induction, one can assume that Vk(K) is

transitive. By definition A ∈ Vk+1(K) is either A ∈ Vk(K) or A ⊆ Vk(K), and

A ∈ Vk(K) is either A ∈ K or A ⊆ Vk(K). Thus, Vk+1(K) is also transitive.

A ∈ V (K) simply implies A ∈ Vk(K), for some k ∈ N, and can be formalized by:

(A ∈ K ∨ A ⊆ Vk(K)) (3.12)

which holds in V (K). By the transitivity of Vk(K), it follows that V (K) is tran-

sitive. Thus, A ⊆ Vk(K) ⊂ V (K) implies A ⊂ V (K). Applying the Transfer

Principle on (3.12),

(A ∈ ∗K ∨ A ⊆ ∗Vk(K)) (3.13)

holds in V (∗K). Hence, ∗Vk(K) is transitive and V (∗K) is also transitive.

It is important to note that ∗Vk(K) ⊆ Vk(
∗K) for each k ∈ N. ∗Vk(K) only

contain the internal objects.

Remark 3.4.7. If A is an internal set, for every A′ ∈ A, A′ is internal.

Proof. This follows directly from the transitivity of ∗V (K).

Figure 3.1 summarizes the relation of the standard universe to its nonstandard

enlargement.

Because of the canonical nature of the ∗-embedding (in particular it is injec-

tive) we will often identify the class of standard objects with the class of the
∗-images of the standard objects. According to the ambiguous, yet commonly ac-

cepted terminology, the set of hyperreals is also a standard object in a formal sense.
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Figure 3.1: The standard universe and the nonstandard universe.

The next result which is the Internal Definition Principle is an important conse-

quence of the Transfer Principle, and is the main tool for identifying an internal

set.

Theorem 3.4.8 (Internal Definition Principle). Let ψ be a formula with free

variables x and X1, . . . , Xn. Let A1, . . . , An be internal sets in V (∗R). Then the

set

{y ∈ A1|ψ(y, A1, . . . , An)} is internal.

Proof. By definition, A1, . . . , An are internal implies A1, . . . , An ∈ ∗Vk(R) for some

k ∈ N. Then, for all X1, . . . Xn ∈ Vk(R), there is some z ∈ Vk+1(R) such that for

all y ∈ Vk(R)

y ∈ z ↔ y ∈ X1 ∧ ψ(y,X1, . . . Xn) (3.14)

holds and recall that z = {y ∈ X1|ψ(y,X1, . . . , Xn)} abbreviates for all y ∈ Vk(R),

y ∈ z ↔ y ∈ X1 ∧ ψ(y,X1, . . . Xn).

Applying the Transfer Principle to (3.14), one gets that for all X1, . . . Xn ∈ ∗Vk(R)

there is some z ∈ ∗Vk+1(R) such that for all y ∈ ∗Vk(R)

y ∈ z ↔ y ∈ X1 ∧ ψ(y,X1, . . . Xn). (3.15)
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By transitivity of ∗Vk+1(R) (see Lemma 3.4.6), even for all y ∈ V (∗R)

y ∈ z ↔ y ∈ X1 ∧ ψ(y,X1, . . . Xn)

holds. Since A1, . . . , An ∈ ∗Vk(R), we can substitute Aj for Xj for each n.

Thus, for all y ∈ V (∗R),

y ∈ z ↔ ψ(y, A1, . . . An).

Hence,

z = {y ∈ A1|ψ(y, A1, . . . , An)} is internal.

The application of Transfer Principle also gives useful characterizations to many

important mathematical concepts, for example, the convergence of a sequence.

Proposition 3.4.9. (cf. Albeverio et al. [2, Proposition 1.3.1]) Let (an)n be a

sequence of real numbers. Then

lim
n→∞

an = a ⇐⇒ ∗ak ' a ∀ k ∈ ∗N \ N.

Proof. We assume limn→∞ an = a. Fix k ∈ ∗N \ N, we want to show that

|∗ak − a| < ε, for all ε � 0. For any ε � 0, let there exists some n ∈ N such

that the following holds in V (R):

∀m ∈ N (m ≥ n→ |am − a| < ε). (3.16)

Applying the Transfer Principle on (3.16),

∀m ∈ ∗N (m ≥ n→ |∗am − a| < ε)

holds in V (∗R). If k ∈ ∗N \N, then |∗ak − a| < ε holds in V (∗R). Since this holds

for all standard ε� 0, it means that ∗ak ' a.

Conversely, suppose ∗ak ' a, for all k ∈ ∗N \ N. We fix ε in R. The set

S = {n ∈ ∗N | |∗am − a| < ε,∀m ≥ n,m ∈ ∗N}
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is internal by the Internal Definition Principle and contains all k ∈ ∗N \ N. By

Underspill (cf. Albeverio et al. [2, Proposition 1.2.7]), S must contain some finite

nε ∈ N. Thus, the convergence of the sequence (an)n in the standard sense.

Another important property of the nonstandard universe is the Countable Satu-

ration Principle.

Theorem 3.4.10 (Countable Saturated Principle). Let (Ai)i∈N be a decreasing

sequence of nonempty internal sets such that
⋂
i≤I

Ai 6= ∅ for all I ∈ N. Then,

⋂
i∈N

Ai 6= ∅.

Proof. Each Ai is internal simply implies Ai = j((Ain)µ) where (Ain)µ denote the

equivalence class of the sequence (Ain)n (see the construction of the bounded

ultrapower and Lemma 3.4.3). Obviously, Ai 6= ∅, thus, one may assume that

each Ain 6= ∅ for all n.

Claim 3. j
( ⋂
i≤I

Ain

)µ
=
⋂
i≤I

j
(

(Ain)µ
)

=
⋂
i≤I

Ai.

Proof of Claim 3. Let

A1
n ∩ A2

n ∩ · · · ∩ Amn = Bn for i = 1, . . . ,m,

where A1
n, A

2
n, . . . , A

m
n , Bn ∈ V (K). We want to show that

∗A1
n ∩ ∗A2

n ∩ · · · ∩ ∗Amn = ∗Bn.

By definition of V (K), A1
n, A

2
n, . . . , A

m
n , Bn ∈ Vk(K) for some k ∈ N and by tran-

sitivity of Vk(K), A1
n, A

2
n, . . . , A

m
n , Bn ⊆ Vk(K).

The expression

A1
n ∩ A2

n ∩ · · · ∩ Amn = Bn

can be formalized by:

∀x ∈ Vk(K)
(
x ∈ A1

n ∩ x ∈ A2
n ∩ · · · ∩ x ∈ Amn = x ∈ Bn

)
(3.17)
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holds in V (K). Applying Transfer Principle to (3.17), it becomes

∀x ∈ ∗Vk(K)
(
x ∈ ∗A1

n ∩ x ∈ ∗A2
n ∩ · · · ∩ x ∈ ∗Amn = x ∈ ∗Bn

)
(3.18)

holds in V (∗K). Thus,

∗A1
n ∩ ∗A2

n ∩ · · · ∩ ∗Amn = ∗Bn. (3.19)

From the construction of nonstandard enlargement and Lemma 3.4.3, (3.19) can

be written as

j((A1
n)µ) ∩ j((A2

n)µ) ∩ · · · ∩ j((Amn )µ) = j((Bn)µ).

Thus,

j((A1
n)µ) ∩ j((A2

n)µ) ∩ · · · ∩ j((Amn )µ) = j
(
(A1

n ∩ A2
n ∩ · · · ∩ Amn )µ

)
.

From Claim 3 and by the assumption
⋂
i≤I

Ai 6= ∅,

µ

{
n :
⋂
i≤I

Ain 6= ∅

}
= 1 for all I ∈ N. (3.20)

For each n, let

I ′ = max

{
I ∈ N :

⋂
i≤I

Ain 6= ∅ and I ′ ≤ n

}
;

since A1
n 6= ∅, I ′ exists. Assuming an element xn ∈

⋂
i≤I′

Ain for each n; since every

element of an internal set is internal, one can say that

j
(
(xn)µ

)
∈ AI

for all I, and this follows from Claim 3 and (3.20) since

{n : xn ∈ AIn} ⊃ {n : I ≤ I ′} = {n : I ≤ n}
⋂{

n :
⋂
i≤I

Ain 6= ∅

}
,
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where {n : I ≤ n} has the finite complement and thus measure one.

In the literature, a nonstandard universe that satisfies the Countable Saturation

Principle is also called ℵ1-saturated.

A quite useful consequence of the Countable Saturation Principle is the follow-

ing: Recall, an internal sequence (An)n∈∗N is the canonical extension of a sequence

(An)n∈N by Transfer Principle. The question is what happens if we have a count-

able sequence (An)n∈N in V (∗K). Can we extend this sequence to an internal

sequence (An)n∈∗N? The next proposition proves the useful extension principle.

Proposition 3.4.11. (cf. Albeverio et al. [2, Proposition 2.1.3]) Let (An)n∈N be

some bounded countable sequence of internal sets in V (∗K). Then (An)n∈N can

be extended to an internal sequence (An)n∈∗N in V (∗K).

Proof. The sequence (An)n∈∗N is internal simply implies there exists an internal

function

A : ∗N→ V (∗K)

such that A(n) = An for all n ∈ ∗N. Thus, the domain of A is ∗N (internal) since

the domain of an internal function is always internal. But the sequence (An)n∈N

is external, even though every element An of the sequence is internal because N
is external. Thus, Transfer Principle is of no use, but the countable saturation

principle does the work: Let N ∈ N be such that An ∈ ∗VN(K) for all n ∈ N.

A′n =
n⋂
i=1

{f : ∗N→ ∗VN(K) | f(i) = A(i)}

is internal. Using the Countable Saturation Principle, we know that
⋂
A′n 6= ∅.

Any f in this infinite intersection of all A′n is an extension of the sequence (An)n∈N

in V (∗K).

Claim 4. Let M be an internal family of internal sets that is closed under finite

unions. Then, M is closed under hyperfinite unions too.

Proof. Since M is internal, there must be some W ∈ V (K) such that M ∈ ∗W .

∀M ∈ W

(
(∀A,B ∈M A ∪B ∈M)→ ∀n ∈ N ∀ ~A ∈Mn

n⋃
k=1

Ak ∈M

)
.

(3.21)
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Applying the Transfer Principle on (3.21),

∀M ∈ ∗W

(
(∀A,B ∈M A ∪B ∈M)→ ∀n ∈ ∗N ∀ ~A ∈Mn

n⋃
k=1

Ak ∈M

)
.

Thus, M is closed under hyperfinite unions.

Proposition 3.4.12. (cf. Loeb [76, Proposition 1]) Let (An)n be a bounded

sequence of internal sets. If A0 ⊂
⋃∞
n=1 An, then there exists an m ∈ N such that

A0 ⊂
⋃m
n=1An.

Proof. Let (An)n∈∗N be an internal sequence extending (An)n∈N (see Proposition

3.4.11). Then,

S =

{
m ∈ ∗N | A0 ⊂

m⋃
n=1

An

}
is internal and contains ∗N \ N. This implies there exists some m ∈ N such that

m ∈ S. Otherwise, for all m ∈ N, m /∈ S and since S is internal, by Internal

Definition Principle, ∗N \N is internal. Thus, N = ∗N \ (∗N \N) is internal, which

is a contradiction.

However, a family of internal sets is generically not closed under countable unions.

The fact that a family of internal sets is only closed under finite set operations

and not under countable infinite set operations prevents immediate application

of nonstandard methods to measure theory and probability theory (a σ-algebra

on a set Ω is a collection of subsets of Ω that is closed under countably many set

operations). But an application of the Caratheodory extension theorem (see next

section for discussion) gives a definitive solution.

3.5 Nonstandard measure space to standard

measure space

The basic techniques for the conversion of a nonstandard measure space to a

standard measure space is the Loeb construction that mainly depends on the

application of the Caratheodory extension theorem: This takes the standard part

of the internal finitely additive measure, that is the finitely additive measure, and
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convert it into a real-valued σ-additive measure. We shall do this by establishing

that a finitely additive measure (Definition 3.5.4) can be seen as a premeasure

(Definition 3.5.3) and then extend the premeasure into a measure on the σ-algebra

as noted by Bauer [9, Theorem 5.1]. We conclude by proving the uniqueness of

this measure.

Let (Ω,A, ν) be a hyperfinite probability space. Ω is an internal set in some su-

perstructure V (∗K). A is an internal algebra on Ω, i.e., A is an internal set of

subsets of Ω which contains ∅ and Ω, and for every set A,B ∈ A,

A ∪B ∈ A,

thus, A is closed under finite unions. A being internal implies A is also closed

under hyperfinite unions. A is closed under complements, i.e.,

Ω \ A ∈ A, for every A ∈ A.

Let ν be an internal probability measure that is defined on A. We denote by ◦ν

the standard part of ν such that ◦ν is a finitely additive measure and takes its

values in R. Let σ(A) be the smallest collection of subsets of Ω, both internal

and external, i.e., is the σ-algebra in the standard sense containing A. A natural

question would be: under what condition does there exist a σ-algebra B in Ω and

a measure µ̃ on B such that ◦ν is the restriction of µ̃ to A? An obvious necessary

condition would be for ◦ν to be a premeasure on A. A finite additive measure oν

on the internal algebra A can be seen as a premeasure if the continuity property

holds:
oν(An)→ 0, as n→∞ if An ↓ ∅ as n→∞,

for any sequence A1, A2, . . . , An, . . . ∈ A. This property is trivially satisfied due to

the Countable Saturated Principle: if An ↓ ∅, then there exists some k ∈ N such

that Ak = ∅ for all k ≥ n. The extension theorem (Theorem 3.5.8) shows that

for every premeasure ◦ν on an internal algebra A, there exists a σ-algebra B in

Ω with A ⊂ B, and a measure µ̃ on B such that ◦ν is the restriction of µ̃ to A.

The completion of this measure is called the Loeb measure denoted by L(ν). The

σ-algebra σ(A) can be seen as the Borel-algebra of A and its completion L(A)

with respect to L(ν) is known as the Loeb-algebra of A. Thus, the probability
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space (Ω, L(A), L(ν)) is called the Loeb space of (Ω,A, ν). It suffices to say B is

the σ-algebra σ(A) generated in Ω by an internal algebra A.

Definition 3.5.1. Let A be a collection of subsets of some set Ω which contains

∅ and Ω. A is said to be an algebra if A is closed under complement and finite

union:

(a) A ∈ A ⇒ Ac ∈ A;

(b) A,B ∈ A ⇒ A ∪B ∈ A.

Definition 3.5.2. Let A be a collection of subsets of some set Ω. A is said to be

a σ-algebra in Ω if it satisfies the following properties:

(a) Ω ∈ A;

(b) A ∈ A ⇒ Ac ∈ A;

(c) (An)n∈N ⊂ A ⇒
⋃
n∈NAn ∈ A.

It is easy to see that P(Ω) (where P(·) denotes a power set) is always a σ-algebra.

Definition 3.5.3. Let A be an algebra. µ : A → R>0 ∪{+∞} is called a premea-

sure if

µ(∅) = 0 (3.22)

and for every disjoint countable sequence (An)n of elements from A whose union

lies in A

µ

(
∞⋃
n=1

An

)
=
∞∑
n=1

µ(An) holds. (3.23)

Definition 3.5.4. µ : A → R>0 ∪ {+∞} is said to be a finitely additive measure

if

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai) holds. (3.24)

Definition 3.5.5. Let A be an internal algebra. µ : A → ∗[0, 1] is an internal

probability measure if and only if

µ(Ω) = 1;

µ(∅) = 0;
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and for all disjoint A,B ∈ A,

µ(A ∪B) = µ(A) + µ(B).

Lemma 3.5.6. If ν is an internal probability measure, ◦ν is a premeasure.

Proof. If (An)n is a disjoint countable sequence of internal sets from an internal

algebra A such that
⋃
n∈N

An ∈ A, then we have to prove that

◦ν

(⋃
n∈N

An

)
=
∞∑
n=1

◦ν(An).

Claim 5.
⋃
n∈N

An is internal if and only if it equals
⋃
n≤k

An for some k ∈ N.

Proof of Claim 5. Assuming A =
⋃
An is internal. Consider the sequence (Bk)k ∈

A defined by

Bk = A \
⋃
n≤k

An ∀k ∈ N.

By De Morgan’s laws,

⋂
k

Bk = A \
⋃
k

⋃
n≤k

An = A \
⋃
n

An = ∅.

By the Countable Saturation Principle, this means that Bk = ∅ for some k. Thus,

A \
⋃
n

An = ∅ but
⋃
n≤k

An ⊆
⋃
n

An = A.

Therefore,

A =
⋃
n≤k

An.

Hence, we infer Ak+1 = Ak+2 = · · · = ∅ and from Definition 3.5.3

◦ν(∅) = 0.
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Notation 3.5.7. Let A be an algebra on Ω. Then σ(A) is the smallest σ-algebra

C such that A ⊆ C.

The reason we introduced the “premeasure” will be justified in the next theorem.

Theorem 3.5.8. Every premeasure µ on an algebra A on Ω can be extended to

a measure µ̃ on σ(A).

The measure µ̃ is in fact unique if µ(Ω) = 1.

Theorem 3.5.9. Let A be a collection of sets that is closed under finite intersec-

tion such that σ(A) = B and Ω ∈ A. Then any probability measures µ1 and µ2

on B which satisfy

µ1(E) = µ2(E) ∀E ∈ A (3.25)

must be identical.

Theorem 3.5.10. Let ν be an internal probability measure on A. Then there

exists a unique measure L(ν) on σ(A) such that for all A in A,

L(ν)(A) = ◦ν(A).

Proof. By Lemma 3.5.6, ◦ν is a premeasure and therefore, by Theorem 3.5.8 and

Theorem 3.5.9 can be uniquely extended to a measure on σ(A).

For the proof of Theorem 3.5.8 and Theorem 3.5.9, the following definitions and

theorems are required.

Definition 3.5.11. (Bauer [9, Definition 2.1]) The collection of subsets of a set Ω

is called a Dynkin system in Ω if it has the following properties:

(a) Ω ∈ D′;

(b) D ∈ D′ ⇒ Dc ∈ D′;

(c) For every pairwise disjoint sequence (Dn)n of elements from D′ given n ∈ N,

⋃
n∈N

Dn ∈ D′.

From (a) and (b), we can say that D′ contains the empty set. i.e., (∅ = Ωc) ∈ D′.
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Theorem 3.5.12. (Bauer [9, Theorem 2.3]) A Dynkin system D′ is a σ-algebra if

it is closed under finite intersection.

Proof. We want to show that every Dynkin system which is closed under finite

intersection is a σ-algebra. We shall confirm this with Definition 3.5.2-(c) prop-

erty of a σ-algebra. For any (An)n ⊂ D′, we have B0 = A0, B1 = A1 \ A0,

B2 = A2 \ (A1 ∪ A2), · · · , Bn = An \ (An−1∪, · · · ,∪A0). By Definition 3.5.11-(b)

and the condition of the theorem, we can easily see that B0, B1, B2 lies in D′.

Claim 6. ⋃
l≤m

Bl =
⋃
l≤m

Al

Proof of Claim 6. We already know that B0 = A0. Fix n and suppose that

⋃
l≤n

Bl =
⋃
l≤n

Al.

We want to show that ⋃
l≤n+1

Bl =
⋃

l≤n+1

Al. (3.26)

⋃
l≤n+1

Bl =

(⋃
l≤n

Bl

)⋃
Bn+1 =

(⋃
l≤n

Al

)⋃
Bn+1

=

(⋃
l≤n

Al

)⋃(
An+1 \

⋃
l≤n

Al

)

=

(⋃
l≤n

Al

)⋃
An+1 =

⋃
l≤n+1

Al.

Claim 6 implies that Bn+1 = An+1 \
⋃
l≤nBl. Now, we want to prove by induc-

tion that (Bn)n ⊂ D′. We know that B0 ∈ D′ by our construction. Suppose

B0, B1, · · · , Bn ∈ D′ for a given n. We want to show that Bn+1 ∈ D′. By in-

duction hypothesis, for all l ≤ n, Bl ∈ D′. By construction, (Bl)l∈N is a pairwise

disjoint sequence. Since D′ is a Dynkin system,
⋃
l≤nBl ∈ D′ lies in the Dynkin

system. Thus, An+1 \
⋃
l≤nBl is in the Dynkin system.

Remark 3.5.13. Every Dynkin system is always closed under finite intersection.
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Proof. Let A,B ∈ D′. By Definition 3.5.11-(b), Ac, Bc ∈ D′ and Bc \ Ac ∈ D′.
Thus, Ac ∪ (Bc \Ac) ∈ D′. Ac ∪ (Bc \Ac)⇒ Ac ∪Bc ⇒ (A ∩B)c ∈ D′. Again by

Definition 3.5.11-(b), A ∩B ∈ D′.

Let Γ be a collection of sets that is closed under finite intersections. We can easily

observe that P(Ω) is a Dynkin system that contains Γ and we can easily verify

that for an arbitrary given family of Dynkin systems Di,
⋂
i∈I Di is still a Dynkin

system. Thus, the intersection of the family of all Dynkin systems containing Γ is

still a Dynkin system that contains Γ.

Proof of Theorem 3.5.8. Let E ⊂ Ω, and let U(E) be the collection of all se-

quences (An)n of sets from A which satisfy E ⊂
⋃
n∈N

An. Define,

µ(E) = inf

{
∞∑
n=1

µ(An) : An ∈ U(E)

}
.

Then, µ satisfies the following properties:

(a) µ(∅) = 0;

(b) E1, E2 ⊂ Ω, E1 ⊂ E2 ⇒ µ(E1) ≤ µ(E2);

(c) (En)n ⊂ Ω⇒ µ

(
∞⋃
n=1

En

)
≤
∑∞

n=1 µ(En).

It is obvious that µ ≥ 0. We want to show that every A ∈ A is measurable. i.e.,

µ(E) ≥ µ(E ∩ A) + µ(E \ A) ∀E ⊆ Ω, (3.27)

and also show that

µ(A) = µ(A). (3.28)

First, we have
∞∑
n=1

µ(An) =
∞∑
n=1

µ(An ∩ A) +
∞∑
n=1

µ(An \ A)
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for every sequence (An)n from U(E) as a result of the finite additivity of µ. It is

easy to see that (An ∩ A)n lies in U(E ∩ A). i.e.,

(An)n ∈ U(E)⇒ E ⊂
⋃
n

An

⇒ E ∩ A ⊂
⋃
n

(An ∩ A)

⇒ (An ∩ A)n ∈ U(E ∩ A).

Similarly, we can show that (An \ A)n lies in U(E \ A). By the definition of µ(·),

∞∑
n=1

µ(An ∩ A) ≥ µ(E ∩ A) and
∞∑
n=1

µ(An \ A) ≥ µ(E \ A).

Thus,
∞∑
n=1

µ(An) ≥ µ(E ∩ A) + µ(E \ A)

for every sequence (An)n. Hence, (3.27) follows.

Claim 7. If µ is a premeasure on A, then for any sets A,A1, A2 . . . ∈ A,

A ⊂
∞⋃
n=1

An ⇒ µ(A) ≤
∑∞

n=1 µ(An).

Proof of Claim 7. Assuming Bn = A ∩ An \ (An−1 ∪ · · ·A1). Then Bn ∈ A and

Bn ⊂ An. But A is the disjoint union of the sequence (Bn)n, and by countable

additivity µ(A) ≤
∑∞

n=1 µ(Bn) ≤
∑∞

n=1 µ(An).

We remark that for a given A ∈ A,

µ(E) = µ(E ∩ A) + µ(E \ A) ∀E ⊆ Ω. (3.29)

This follows directly from (3.27) and from (c).

(3.28) follows on one hand from Claim 7 i.e., µ(A) ≤ µ(A), for A ∈ A, and on the

other hand by considering the sequence A, ∅, ∅, . . . from U(A), µ(A) ≤ µ(A).

Hence, we can conclude that every subset A of Ω satisfying (3.29) is µ-measurable.

Let A′ be the collection of all subsets A of Ω satisfying (3.29). i.e., A′ is the set

of all µ-measurable subsets of Ω. Now, we want to show that A′ is a σ-algebra.

From (3.29), it is easy to see that Ω ∈ A′ and whenever A lies in A′, Ac also lies
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in A′: A ∈ A′ implies

µ(E) = µ(E ∩ A) + µ(E \ A) ∀E ⊆ Ω

and Ac ∈ A′ implies

µ(E) = (E \ A) + µ(E ∩ A) ∀E ⊆ Ω.

To confirm the Definition 3.5.2-(c) property of a σ-algebra, we begin by proving

that the union of any two sets of A′ also lies in A′, and so A′ is an algebra. B ∈ A′

implies

µ(E) = µ(E ∩B) + µ(E \B) ∀E ⊆ Ω. (3.30)

Then we split (3.30) into two different equations. i.e.,

µ(E ∩B) = µ(E ∩B ∩ A) + µ(E ∩B ∩ Ac) ∀E ⊆ Ω.

and

µ(E \B) = µ(E ∩Bc ∩ A) + µ(E ∩Bc ∩ Ac) ∀E ⊆ Ω.

Thus,

µ(E) = µ(E ∩B ∩A) + µ(E ∩B ∩Ac) + µ(E ∩Bc ∩A) + µ(E ∩Bc ∩Ac). (3.31)

Replacing E by E ∩ (A ∪B) in (3.31), we have

µ(E ∩ (A ∪B)) = µ(E ∩B ∩ A) + µ(E ∩B ∩ Ac) + µ(E ∩ A ∩Bc) (3.32)

Substituting (3.32) into (3.31),

µ(E) = µ(E ∩ (A ∪B)) + µ(E ∩ Ac ∩Bc).

Thus, A ∪B ∈ A′ for all E ⊆ Ω.

Now, let (An)n be a sequence of pairwise disjoint sets fromA′ and let A =
⋃
n∈NAn.

Put A = A1 and B = A2 in (3.32), then (3.32) becomes

µ(E ∩ (A1 ∪ A2)) = µ(E ∩ A1 ∩ Ac2) + µ(E ∩ Ac1 ∩ A2) ∀E ⊆ Ω
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and

µ(E ∩ (A1 ∪ A2)) = µ(E ∩ A1) + µ(E ∩ A2). (3.33)

By induction, we can generalize (3.33):

µ(E ∩
n⋃
i=1

Ai) =
n∑
i=1

(E ∩ Ai)

for all E ⊆ Ω and for all n. Recall: we have already proved that A′ is closed under

finite union. i.e., Bn =
⋃
Ai lies inA′. E\Bn ⊃ E\A, so that µ(E\Bn) ≥ µ(E\A),

we obtain

µ(E) = µ(E ∩Bn) + µ(E \Bn) ≥
n∑
i=1

µ(E ∩ Ai) + µ(E \ A) (3.34)

for all n. From (3.34) and using (c),

µ(E) ≥
n∑
i=1

µ(E ∩ An) + µ(E \ A) ≥ µ(E ∩ A) + µ(E \ A)

holds for all E ⊆ Ω and then we have (using the equality condition as in (3.29))

µ(E) =
n∑
i=1

µ(E ∩ An) + µ(E \ A) = µ(E ∩ A) + µ(E \ A) (3.35)

for all E ⊆ Ω. Thus, A =
⋃
n∈NAn lies in A′. Hence, we can say that the algebra

A′ is a Dynkin system that is closed under intersection. By Theorem 3.5.12, A′ is

a σ-algebra. If we set E = A in (3.35),

µ(A) =
∞∑
n=1

µ(An).

We conclude that the restriction of µ to A′ is a measure.

The summary of what we have shown is that every subset A of Ω satisfying (3.29) is

µ-measurable. A′ is a σ-algebra. (3.29) has shown that A ⊂ A′, thus, σ(A) ⊂ A′.
(3.28) implies that µ̃ := µ given σ(A) is an extension of µ to a measure on σ(A).

Definition 3.5.14. Let Γ be a collection of set that is closed under finite inter-

section. Every Γ ⊂ P(Ω) lies in a smallest Dynkin system. This smallest Dynkin

system is called the Dynkin system generated by Γ, and it is denoted by δ(Γ).
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Theorem 3.5.15. Every A ⊂ P(Ω) which is closed under finite intersection sat-

isfies

δ(A) = σ(A).

Proof. By definition, every σ-algebra is a Dynkin system. Thus, σ(A) is a Dynkin

system that contain A. On the one hand, δ(A) ⊂ σ(A), since δ(A) is the smallest

Dynkin system containing A. On the other hand, σ(A) ⊂ δ(A). This follows

directly from Remark 3.5.13.

Proof of Theorem 3.5.9. Let E ∈ A such that µ1(E) = µ2(E). Consider the set

DE := {D ∈ B : µ1(E ∩D) = µ2(E ∩D)}. (3.36)

We want to show that DE is a Dynkin system. Obviously, Ω ∈ DE. If D ∈ DE,

then

µ1(E ∩D) = µ2(E ∩D).

We know that,

µ1(E ∩Dc) = µ1(E \ (E ∩D)) = µ1(E)− µ1(E ∩D)

= µ2(E)− µ2(E ∩D) = µ2(E ∩Dc)

which implies that Dc ∈ DE. This satisfies Definition 3.5.11-(b). Definition 3.5.11-

(c) follows from the σ-additivity of measures µ1 and µ2. Since A is closed under

finite intersections, A ⊂ DE follows from (3.25) and (3.36). But then δ(A) ⊂ DE
since δ(A) is the smallest Dynkin system generated by A. By Theorem 3.5.15,

we know that every A ⊂ P(Ω) which is closed under finite intersection satisfies

δ(A) = σ(A). This implies δ(A) = σ(A) = B. Therefore, δ(A) ⊂ DE ⊂ B implies

DE = B for all E ∈ A satisfying µ1(E) = µ2(E), in particular for E = Ω.



Chapter 4

Hyperfinite Construction of

G-expectation

4.1 Introduction

The hyperfinite G-expectation is a nonstandard discrete analogue of G-expectation

(in the sense of Robinsonian nonstandard analysis) which is infinitely close to the

continuous time G-expectation. We develop the basic theory for the hyperfinite

G-expectation. We prove a lifting theorem for the G-expectation. Herein, we use

an existing discretization theorem for the G-expectation from Chapter 2, The-

orem 2.3.13. Very roughly speaking, we extend the discrete time analogue of

G-expectation to a hyperfinite time analogue. Then, we use the characterization

of convergence in nonstandard analysis to prove that the hyperfinite discrete-time

analogue of the G-expectation is infinitely close to the standard G-expectation.

Nonstandard analysis makes consistent use of infinitesimals in mathematical anal-

ysis based on techniques from mathematical logic. This approach is very promising

because it also allows, for instance, to study continuous-time stochastic processes

as formally finite objects. Many authors have applied nonstandard analysis to

problems in measure theory, probability theory and mathematical economics (see

for example, Anderson and Raimondo [5] and the references therein or the con-

tribution in Berg [12]), especially after Loeb [76] converted nonstandard measures

(i.e. the images of standard measures under the nonstandard embedding ∗) into

real-valued, countably additive measures, by means of the standard part operator

75
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and Caratheodory ’s extension theorem. One of the main ideas behind these ap-

plications is the extension of the notion of a finite set known as hyperfinite set or

more causally, a formally finite set. Very roughly speaking, hyperfinite sets are

sets that can be formally enumerated with both standard and nonstandard natural

numbers up to a (standard or nonstandard, i.e. unlimited) natural number.

Anderson [3], Keisler [58], Lindstrøm [70], Hoover and Perkins [54], a few to men-

tion, used Loeb’s [76] approach to develop basic nonstandard stochastic analysis

and in particular, the nonstandard Itô calculus. Loeb [76] also presents the con-

struction of a Poisson processes using nonstandard analysis. Anderson [3] showed

that Brownian motion can be constructed from a hyperfinite number of coin tosses,

and provides a detailed proof using a special case of Donsker’s theorem. Anderson

[3] also gave a nonstandard construction of stochastic integration with respect to

his construction of Brownian motion. Keisler [58] uses Anderson’s [3] result to

obtain some results on stochastic differential equations. Lindstrøm [73] gave the

hyperfinite construction (lifting) of L2 standard martingales. Using nonstandard

stochastic analysis, Perkins [90] proved a global characterization of (standard)

Brownian local time. In this chapter, we do not work on the Loeb space because

the G-expectation and its corresponding G-Brownian motion is not based on a

classical probability measure, but on a set of martingale laws.

Dolinsky et al. [38] and Chapter 2 (Theorem 2.3.13) showed the standard weak

approximation of the G-expectation. Dolinsky et al. [38] introduced a notion of

volatility uncertainty in discrete time and defined a discrete version of Peng’s G-

expectation. In the continuous-time limit, it turns out that the resulting sublinear

expectation converges weakly to the G-expectation. To allow for the hyperfinite

construction of G-expectation which require a discretization of the state space,

in Chapter 2 we refine the discretization by Dolinsky et al. [38] and obtain a

discretization where the martingale laws are defined on a finite lattice rather than

the whole set of reals.

The aim of this chapter is to give an alternative, combinatorially inspired con-

struction of the G-expectation based on the aforementioned Theorem 2.3.13. We

hope that this result may eventually become useful for applications in financial

economics (especially existence of equilibrium on continuous-time financial mar-

kets with volatility uncertainty) and provides additional intuition for Shige Peng ’s

G-stochastic analysis. We begin the nonstandard treatment of the G-expectation
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by defining a notion of S-continuity, a standard part operator, and proving a cor-

responding lifting (and pushing down) theorem. Thereby, we show that our hyper-

finite construction is the appropriate nonstandard analogue of the G-expectation.

For details on nonstandard analysis, we refer the reader to Cutland [28], Albeverio

et al. [2], Loeb and Wolff [77] and Stroyan and Luxemburg [103].

The rest of this chapter is organised as follows: in Section 4.2, we introduce the

G-expectation, the continuous-time setting of the sublinear expectation and the

hyperfinite-time setting needed for our construction. In Section 4.3, we introduce

the notion of S-continuity and also define the appropriate lifting notion needed for

our construction. Finally, we prove that the hyperfinite G-expectation is infinitely

close to the standard G-expectation.

4.2 Framework

The G-expectation ξ 7→ EG(ξ) is a sublinear function that takes random vari-

ables on the canonical space Ω to the real numbers. The symbol G is a function

G : R→ R of the form

G(γ) =
1

2
sup
c∈D

cγ, (4.1)

where D = [rD, RD] and 0 ≤ rD ≤ RD < ∞. Let PG be the set of probabilities

on Ω such that for any P ∈ PG, B is a martingale with volatility d 〈B〉t /dt ∈ D

in P ⊗ dt a.e. Then, the dual view of the G-expectation via volatility uncertainty

(cf. Denis et al. [37]) can be denoted as

EG(ξ) = sup
P∈PG

EP [ξ].

The canonical process B under the G-expectation EG is called G-Brownian motion

(cf. Peng [89]).

4.2.1 Continuous-time construction of sublinear expecta-

tion

Let Ω = {ω ∈ C([0, T ];R) : ω0 = 0} be the canonical space of continuous paths

on [0, T ] endowed with the maximum norm ‖ω‖∞ = sup0≤t≤T |ωt|, where | · | is
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the Euclidean norm on R. B is the canonical process defined by Bt(ω) = ωt and

Ft = σ(Bs, 0 ≤ s ≤ t) is the filtration generated by B. PD is the set of all

martingale laws on Ω such that under any P ∈ PD, the coordinate process B is a

martingale with respect to Ft with volatility d 〈B〉t /dt taking values in D, P ⊗ dt
a.e., for D = [rD, RD] and 0 ≤ rD ≤ RD <∞.

PD = {P martingale law on Ω; d 〈B〉t /dt ∈ D, P ⊗ dt a.e.} .

Thus, the sublinear expectation is given by

ED(ξ) = sup
P∈PD

EP [ξ], (4.2)

for any ξ : Ω → R, ξ is FT -measurable and integrable for all P ∈ PD. Here EP

denotes the expectation under P . It is important to note that the continuous-time

sublinear expectation (4.2) coincides with the classical G-expectation (for every

ξ ∈ L1
G where L1

G is defined as the E[| · |]−norm completion of Cb(Ω;R)) provided

(4.1) is satisfied see Chapter 2.

4.2.2 Hyperfinite-time setting

Here we present the nonstandard version of the discrete-time setting of the sub-

linear expectation and the strong formulation of volatility uncertainty on the hy-

perfinite timeline. For the standard strong formulation of volatility uncertainty in

the discrete-time and continuous-time settings see Chapter 2.

Definition 4.2.1. ∗Ω is the ∗-image of Ω endowed with the ∗-extension of the

maximum norm ∗‖ · ‖∞.

∗D = ∗[rD, RD] is the ∗-image of D, and as such it is internal.

It is important to note that st : ∗Ω → Ω is the standard part map, and st(ω)

will be referred to as the standard part of ω, for every ω ∈ ∗Ω. ◦z denotes the

standard part of a hyperreal z.

Definition 4.2.2. ω̃ ∈ ∗Ω is a nearstandard point if there exists ω ∈ Ω such

that ∗‖ω̃ − ∗ω‖∞ ' 0. We denote the set of all nearstandard elements in ∗Ω with

ns(∗Ω).



4.2 Framework 79

For all hypernatural N, let

LN =

{
K

N
√
N
, −N2

√
RD ≤ K ≤ N2

√
RD, K ∈ ∗Z

}
(4.3)

and the hyperfinite timelime

T =

{
0,
T

N
, · · · ,− T

N
+ T, T

}
. (4.4)

We consider LT
N as the canonical space of paths on the hyperfinite timeline, and

XN = (XN
k )

N

k=0 as the canonical process denoted by XN
k (ω̄) = ω̄k for ω̄ ∈ LT

N . FN

is the internal filtration generated by XN . The linear interpolation operator can

be written as ˜ : ·̂ ◦ ι−1 → ∗Ω, for L̃T
N ⊆

∗Ω,

where

ω̂(t) := (bNt/T c+ 1−Nt/T )ωbNt/T c + (Nt/T − bNt/T c)ωbNt/T c+1,

for ω ∈ LN+1
N and for all t ∈ ∗[0, T ]. byc denotes the greatest integer less than or

equal to y and ι : T→ {0, · · · , N} for ι : t 7→ Nt/T .

For the hyperfinite strong formulation of the volatility uncertainty, fix N ∈ ∗N\N.

Consider
{
± 1√

N

}T
, and let PN be the uniform counting measure on

{
± 1√

N

}T
.

PN can also be seen as a measure on LT
N , concentrated on

{
± 1√

N

}T
. Let

ΩN = {ω = (ω1, · · · , ωN);ωi = {±1}, i = 1, · · · , N}, and let Ξ1, · · · ,ΞN be a ∗-

independent sequence of {±1}-valued random variables on ΩN and the compo-

nents of Ξk are orthonormal in L2(PN). We denote the hyperfinite random walk

by

Xt =
1√
N

Nt/T∑
l=1

Ξl for all t ∈ T.

The hyperfinite-time stochastic integral of some F : T×LT
N → ∗R with respect to

the hyperfinite random walk is given by

t∑
s=0

F (s,X)∆Xs : ΩN → ∗R, ω ∈ ΩN 7→
t∑

s=0

F (s,X(ω))∆Xs(ω).
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Thus, the hyperfinite set of martingale laws can be defined by

Q̄ND′N =
{
PN ◦ (MF,X)−1; F : T× LT

N →
√

D′N

}
where

D′N = ∗D ∩
(

1

N
∗N
)2

and

MF,X =

(
t∑

s=0

F (s,X)∆Xs

)
t∈T

.

Remark 4.2.3. Up to scaling, Q̄ND′N = QnD′n .

4.3 Results and proofs

Definition 4.3.1 (Uniform lifting of ξ). Let Ξ : LT
N → ∗R be an internal function,

and let ξ : Ω→ R be a continuous function. Ξ is said to be a uniform lifting of ξ

if and only if

∀ω̄ ∈ LT
N

(˜̄ω ∈ ns(∗Ω)⇒ ◦Ξ(ω̄) = ξ(st(˜̄ω))
)
,

where st(˜̄ω) is defined with respect to the topology of uniform convergence on Ω.

In order to construct the hyperfinite version of the G-expectation, we need to show

that the ∗-image of ξ, ∗ξ, with respect to ˜̄ω ∈ ns(∗Ω), is the canonical lifting of ξ

with respect to st(˜̄ω) ∈ Ω. i.e., for every ˜̄ω ∈ ns(∗Ω), ◦
(∗ξ(˜̄ω)

)
= ξ(st(˜̄ω)). To do

this, we need to show that ∗ξ is S-continuous in every nearstandard point ˜̄ω.

Remark 4.3.2. The following are equivalent for an internal function Φ : ∗Ω→ ∗R:

(1) ∀ω′ ∈ ∗Ω
(∗‖ω − ω′‖∞ ' 0⇒ ∗|Φ(ω)− Φ(ω

′
)| ' 0

)
.

(2) ∀ε� 0, ∃δ � 0 : ∀ω′ ∈ ∗Ω
(∗‖ω − ω′‖∞ < δ ⇒ ∗|Φ(ω)− Φ(ω

′
)| < ε

)
.

Proof. Let Φ be an internal function such that condition (1) holds. To show that

(1)⇒ (2), fix ε� 0. We shall show there exists a δ for this ε as in condition (2).

Since Φ is internal, the set

I =
{
δ ∈ ∗R>0 : ∀ω′ ∈ ∗Ω (∗‖ω − ω′‖∞ < δ ⇒ ∗|Φ(ω)− Φ(ω

′
)| < ε)

}
,
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is internal by the Internal Definition Principle (see Theorem 3.4.8) and also con-

tains every positive infinitesimal. By Underspill (cf. Albeverio et al. [2, Proposi-

tion 1.27]) I must then contain some positive δ ∈ R.

Conversely, suppose condition (1) does not hold, that is, there exists some ω
′ ∈ ∗Ω

such that

∗‖ω − ω′‖∞ ' 0 and ∗|Φ(ω)− Φ(ω
′
)| is not infinitesimal.

If ε = min(1, ∗|Φ(ω) − Φ(ω
′
)|/2), we know that for each standard δ > 0, there is

a point ω
′

within δ of ω at which Φ(ω
′
) is farther than ε from Φ(ω). This shows

that condition (2) cannot hold either.

(The case of Remark 4.3.2 where Ω = R is well known and proved in Stroyan and

Luxemburg [103, Theorem 5.1.1])

Definition 4.3.3. Let Φ : ∗Ω→ ∗R be an internal function. We say Φ is S-

continuous in ω ∈ ∗Ω, if and only if it satisfies one of the two equivalent conditions

of Remark 4.3.2.

Proposition 4.3.4. If ξ : Ω→ R is a continuous function satisfying

|ξ(ω)| ≤ a(1 + ‖ω‖∞)b, for a, b > 0, then, Ξ = ∗ξ ◦ ·̃ is a uniform lifting of

ξ.

Proof. Fix ω ∈ Ω. By definition, ξ is continuous on Ω. i.e., for all ω ∈ Ω, and for

every ε� 0, there is a δ � 0, such that for every ω
′ ∈ Ω, if

‖ω − ω′‖∞ < δ, then |ξ(ω)− ξ(ω′)| < ε. (4.5)

By the Transfer Principle (see Theorem 3.4.5): For all ω ∈ Ω, and for every ε� 0,

there is a δ � 0, such that for every ω
′ ∈ ∗Ω, (4.5) becomes,

∗‖∗ω − ω′‖∞ < δ, and ∗|∗ξ(∗ω)− ∗ξ(ω′)| < ε. (4.6)

So, ∗ξ is S-continuous in ∗ω for all ω ∈ Ω. Applying the equivalent characterization

of S-continuity, Remark 4.3.2, (4.6) can be written as

∗‖∗ω − ω′‖∞ ' 0, and ∗|∗ξ(∗ω)− ∗ξ(ω′)| ' 0.
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We assume ˜̄ω to be a nearstandard point. By Definition 4.2.2, this simply implies,

∀˜̄ω ∈ ns(∗Ω), ∃ω ∈ Ω : ∗‖˜̄ω − ∗ω‖∞ ' 0. (4.7)

Thus, by S-continuity of ∗ξ in ∗ω,

∗|∗ξ(˜̄ω)− ∗ξ(∗ω)| ' 0.

Using the triangle inequality, if ω
′ ∈ ∗Ω with ∗‖˜̄ω − ω′‖∞ ' 0,

∗‖∗ω − ω′‖∞ ≤ ∗‖∗ω − ˜̄ω‖∞ + ∗‖˜̄ω − ω′‖∞ ' 0

and therefore again by the S-continuity of ∗ξ in ∗ω,

∗|∗ξ(∗ω)− ∗ξ(ω′)| ' 0.

And so,

∗|∗ξ(˜̄ω)− ∗ξ(ω′)| ≤ ∗|∗ξ(˜̄ω)− ∗ξ(∗ω)|+ ∗|∗ξ(∗ω)− ∗ξ(ω′)| ' 0.

Thus, for all ˜̄ω ∈ ns(∗Ω) and ω
′ ∈ ∗Ω, if ∗‖˜̄ω − ω′‖∞ ' 0, then,

∗|∗ξ(˜̄ω)− ∗ξ(ω′)| ' 0.

Hence, ∗ξ is S-continuous in ˜̄ω. Equation (4.7) also implies

˜̄ω ∈ m(ω)
(
m(ω) =

⋂
{∗O;O is an open neighbourhood of ω}

)
such that ω is unique, and in this case st(˜̄ω) = ω.

Therefore,
◦
(
∗ξ(˜̄ω)

)
= ξ(st(˜̄ω)).

Definition 4.3.5. Let Ē : ∗RLTN → ∗R. We say that Ē lifts EG if and only if for

every ξ : Ω→ R that satisfies |ξ(ω)| ≤ a(1 + ‖ω‖∞)b for some a, b > 0,

Ē(∗ξ ◦ ·̃) ' EG(ξ).
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Theorem 4.3.6.

max
Q̄∈Q̄N

D′
N

EQ̄[·] lifts EG(ξ). (4.8)

Proof. From the standard approximation in Theorem 2.3.13,

max
Q∈Qn

D′n

EQ[ξ(X̂n)]→ EG(ξ), as n→∞. (4.9)

For all N ∈ ∗N \ N, we know that (4.9) holds if and only if

max
Q∈∗QN

D′
N

EQ[∗ξ(X̂N)] ' EG(ξ), (4.10)

see Proposition 3.4.9. Now, we want to express (4.10) in term of Q̄ND′N . i.e., to

show that

max
Q̄∈Q̄N

D′
N

EQ̄[∗ξ ◦ ·̃] ' EG(ξ).

To do this, use

EQ[∗ξ ◦ ·̂] = EQ[∗ξ ◦ ·̂ ◦ ι−1 ◦ ι]

and

EQ[∗ξ ◦ ·̂ ◦ ι−1 ◦ ι] = EQ[∗ξ ◦ ·̃ ◦ ι]

=

∫
∗RN+1

∗ξ ◦ ·̃ ◦ ιdQ, (transforming measure)

=

∫
∗RT

∗ξ ◦ ·̃d(Q ◦ j),

= EQ◦j[∗ξ ◦ ·̃]

for j : ∗RT → ∗RN+1, (xt)t∈T 7→
(
xNt
T

)
t∈RN+1 .

Thus,

Q̄ND′N = {Q ◦ j : Q ∈ ∗QND′N}.

This implies,

max
Q̄∈Q̄N

D′
N

EQ̄[∗ξ ◦ ·̃] = max
Q∈∗QN

D′
N

EQ[∗ξ ◦ ·̂].



Chapter 5

Conclusion

Some of the chapters in this thesis utilize nonstandard analysis (in the sense of

Robinsonian nonstandard analysis), some do not. Each chapter discusses its re-

spective topic in detail. We will now summarize our results and conclude with

potential extensions and applications.

First, in the spirit of Donsker’s theorem, we proved the weak convergence of a se-

quence of sublinear expectations defined on a discrete state-space to a continuous-

time G-expectation. Furthermore, we proved that for bounded continuous random

variables on Ω, a maximum in the representation of the G-expectation is attained.

Secondly, we gave an intuitive and simplified introduction to nonstandard mea-

sure theory. We constructed the extended nonstandard enlargement in terms of

sequences, equivalence relations and equivalence classes with respect to binary

measures. We also provided an alternative construction of the Loeb measure by

establishing that an internal finitely additive measure induces a premeasure. We

then extended the premeasure to a measure on the σ-algebra and we concluded

by proving the uniqueness of this measure.

Thirdly, very roughly speaking, we extended the discrete time analogue of the

G-expectation to a hyperfinite time analogue. Then, we used the characterization

of convergence in nonstandard analysis to prove that the hyperfinite discrete-time

analogue of the G-expectation is infinitely close to the standard G-expectation.

This proof gives an alternative, combinatorially inspired construction of the G-

expectation using nonstandard analysis and also ensures a stronger mode of con-

vergence.

84
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Thus, we have provided a mathematical foundation for the application of the

powerful tools of nonstandard analysis to G-stochastic calculus.

The result of this thesis motivates several related extensions and applications that

seem worth pursuing in future research:

• It would be interesting to introduce a nonstandard notion of the G-Itô in-

tegral in the context of the Stieltjes integral (hyperfinite sum) with respect

to the hyperfinite G-Brownian motion, to introduce the notion of a hyper-

finite G-martingale, and furthermore, to present an alternative proof of the

martingale representation theorem under the G-expectation, see Soner et al.

[99] and Song [102] for the formulation of the theorem in the standard G-

framework. A simplified alternative proof of the G-Itô formula (see Li and

Peng [69] for the conditions of the formula) for a G-Itô process ideally by

means of Taylor expansion, as in the nonstandard proof of the classical Itô

formula would be desired. Hu and Peng [56] developed the basic theory for

Lévy processes under G-expectation also known as G-Lévy processes. In the

spirit of Lindstrøm’s [74] theory for hyperfinite Lévy processes and Lind-

strøm’s [75] nonlinear stochastic integrals for hyperfinite Lévy processes, we

hope that the methodology in this thesis can be extended to the construc-

tion of hyperfinite G-Lévy processes and stochastic integrals with respect to

hyperfinite G-Lévy processes.

• It would also be desirable to find applications of this newly developed G-

stochastic nonstandard calculus to financial economics, especially general

equilibrium theory under volatility uncertainty. Since the existence results

by Radner [91] and Duffie and Shafer [41, 42] ensure that a hyperfinite incom-

plete financial markets economy has an equilibrium, this research enterprise

appears to hold some promise, provided one can combine the nonstandard

methodologies developed in Anderson and Raimondo [5] and Herzberg [53]

with the equilibrium theory for volatility uncertainty obtained by Epstein

and Ji [43] and Beissner [10].

Given the importance of the theory of hyperfinite Itô integration for the

equilibrium existence proof in Anderson and Raimondo [5], we hope that the

notion of a hyperfinite G-expectation developed in this thesis may ultimately

provide the mathematical foundation for both a fully-fledged nonstandard

theory of G-stochastic integrals and also an equilibrium existence proof for
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continuous-time models driven by G-Brownian stochasticity, ideally also for

the multi-agent case with trading. Another approach to this would be to

extend the work by Epstein and Ji [43] to multi-agent models with trading. It

would be worthwhile to reformulate and simplify Beissner’s [10] equilibrium

existence result using nonstandard analysis. It would also be desirable to

extend the work by Herzberg [53] to establish the existence of equilibrium

in a continuous-time model with a single agent (or multiple agents) in which

the dynamics of the dividends follows a G-Lévy process.
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Acta Mathematica Sinica. English Series, 24(2):241–252.

[85] Nutz, M. (2013). Random G-expectations. The Annals of Applied Probability,

23(5):1755–1777.
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