
Modeling of Movement Control Architectures based on Motion
Primitives using Domain-Specific Languages

Arne Nordmann Sebastian Wrede Jochen Steil

Abstract— This paper introduces a model-driven approach
for engineering complex movement control architectures based
on motion primitives, which in recent years have been a central
development towards adaptive and flexible control of complex
and compliant robots. We consider rich motor skills realized
through the composition of motion primitives as our domain.
In this domain we analyze the control architectures of rep-
resentative example systems to identify common abstractions.
It turns out that the introduced notion of motion primitives
implemented as dynamical systems with machine learning ca-
pabilities, provide the computational building block for a large
class of such control architectures. Building on the identified
concepts, we introduce domain-specific languages that allow
the compact specification of movement control architectures
based on motion primitives and their coordination respectively.
Using a proper tool chain, we show how to employ this model-
driven approach in a case study for the real world example of
automatic laundry grasping with the KUKA LWR-IV, where
executable source-code is automatically generated from the
domain-specific language specification.

I. INTRODUCTION

Model-driven and domain-specific development meth-
ods [1] are known to cope with the challenges of build-
ing complex heterogeneous systems in domains such as
aerospace, telecommunication and automotive [2], which
face similarly complex integration and modeling challenges
as advanced robotics. In recent years, this approach has been
adapted to the robotics domain [3], e.g. for specifying robot
structures and control [4], coordinate representations [5] and
task-level coordination [6]. The overarching goal of our
work is to establish a model-driven development process
focused on motion control architectures based on motion
primitives. To the best of our knowledge, no such process
or domain-specific language for motion control architectures
in advanced robotics exists so far.

Insights from biology suggest that complex motions in
animals and humans arise from the composition of so
called motion primitives. Research over the last years suc-
cessfully modeled motion primitives as the combination
of autonomous dynamical systems and machine learning
capabilities, e.g. Schaal et al. [7]. The domain of dynamical
systems-based motion generation in robotics, however, is
dominated by single, yet incompatible, experiments and
solutions [8]. This calls for a unifying conceptual framework
which allows the combination of different motion primitives
to explore the design space of motion control architectures.
This is challenging both because of the intrinsic complexity

A. Nordmann, S. Wrede and J. Steil are with the Research Institute for
Cognition and Robotics, Bielefeld University, P.O. Box 100131, Bielefeld,
Germany {anordman,swrede,jsteil}@cor-lab.de

Fig. 1: Case study: automated gripping of laundry with the
KUKA Lightweight Robot IV.

of the underlying control problems and due to the conceptual
fragmentation of the domain.

As an important first step, we introduce a conceptual
framework and a metamodel for motion control architectures
based on motion primitives. The metamodel serves as a
basis for two DSLs that model two orthogonal aspects
which we identified in the domain: i) structural aspects of
motion architectures focus on so called Adaptive Modules
that model motion primitives as dynamical systems with
machine learning capabilities and ii) behavioral aspects for
the coordination of motion control systems. We show how
the composition of these two DSLs provides support for
specifying motion control architectures.

Figure 2 shows our levels of modeling that map to the
standard of the Object Management Group [9] (OMG): M3,
the meta-meta-model provides the concepts and constraints
that a metamodel and the DSL has to satisfy, in our case
provided by the language workbench JetBrains MPS [10].
M2, the meta-model, provides abstractions to cover the do-
main of motion control architectures with motion primitives
(the DSLs we introduce in the course of this paper). M1, the
domain models, uses M2 to express applications or systems,
exemplified in our case study in Section VI. Level M0 is
the actual real-world robotics systems implementation, i.e.
executable general purpose language (GPL) code that can be
generated from M1. This contribution focuses on level M2
(Section III and Section V) and introduces the metamodel
for motion architectures with Adaptive Modules. Section VI
shows the levels M1 and M0 in a model-driven toolchain in
the use-case depicted in Figure 1.



M3

M2

M1

M0

MPS concepts

instance of

instance of

code generation

domain model

meta model
(DSL)

real-world systems

solution

meta model
(DSL)

domain model domain model

Fig. 2: Our four levels of model-driven engineering with
domain-specific languages, following OMG’s standard [9].

II. MOTION CONTROL ARCHITECTURES

This contribution targets the domain of control archi-
tectures for adaptive motion generation based on motion
primitives and presents a conceptual framework for this
domain. Typically, a robot is equipped with a set of pre-
defined movements, especially in industrial robotics, where
precision, speed and accuracy are important. Recent research,
however, aims to extend motion generation on robotics to the
biological richness of humans and animals.

The idea of the recent large-scale research project
AMARSi1 is to create a framework for rich motor skills by
combining simple, but flexible and adaptive motion prim-
itives to complex movements. The core idea is to model
point-to-point and periodic movements by autonomous dy-
namical systems. The flexibility to adapt motion primitives
to different situations and environments is accomplished by
means of machine learning techniques.

The architectural building blocks representing motion
primitives as the combination of dynamical systems and
machine learning for adaption are termed Adaptive Modules.
They resemble the computational building blocks to generate
primitive, composable motions that can generalize to new
situations or environments and are robust to perturbations.
We consider control and learning architectures based on a
hierarchy of Adaptive Modules as domain of our approach.
Higher-level aspects like goals, motivations, planning or
high-level perception are considered outside but adjacent to
this domain.

A. Domain Analysis

To assess the core concepts of our domain, we con-
ducted a Feature-Oriented Domain Analysis [11] (FODA)
on compliant robotics control among common robot control
frameworks, interfaces of compliant robots and their applica-
tions. The resulting feature models are accompanied with a
survey that we conducted together with the AMARSi project

1AMARSi Project: http://www.amarsi-project.eu/

partners, covering state-of-the-art motion architectures based
on motion primitives [8].

The domain analysis covered the following architectures
and their respective experiments/demonstrators:

a) Quadruped walking over unperceived rough ter-
rain [12]: A control architecture for walking and re-
balancing the overall pose of the robot. The architecture
is hierarchical and modular and couples together four basic
mechanisms: i) A network of coupled central pattern gen-
erators (CPGs) (one per end-effector) to generate a periodic
gait, ii) a reflex mechanism that modulates the shape of the
target trajectories emitted by the CPG system if a leg hits an
obstacle, iii) a proportional feedback controller for making
the 12 joint angles track the output of the reflex-modulated
CPG system, and iv) a higher-level, model-based control loop
that stabilizes this pose when perturbed.

b) Catching objects in flight [13]: Catching objects
with a catching point not located at the center of mass and
highly non-linear dynamics, e.g. a tennis racket or a half-
filled water bottle. This requires coordination between the
arm reaching motion toward the predicted catching location
and the hand/finger pose preparation for the actual catching,
which is done by coupling two dynamical systems that
have been trained individually using the coupled dynamical
systems method.

c) Mixture of controllers to learn inverse kinematics:
Control architecture inspired by the MOSAIC control ar-
chitecture [14], but different controllers specialize not on
different tasks, but on different regions in joint space [15].

d) Redundancy learning [16]: An approach utilizing
the physical interaction capabilities of compliant robots with
data-driven and model-free machine learning to allow fast
(re)configuration of redundant robots in kinesthetic teaching.
This approach facilitates a hybrid controller to join machine
learning capabilities with analytical control.

e) Humanoid upper body control [17]: Control archi-
tecture for the iCub for three different bi-manual motion
skills trained in physical human-robot interaction. Conver-
gence of a discrete primitive triggers execution of subsequent
primitives.

The analysis covered the range of point-to-point [12],
[13], [17] and periodic movements [12], [17] modeled by
autonomous dynamical systems and assessed functional and
non-functional properties of their diverse Adaptive Modules
and their implementations. Functional properties in this
survey covered parametrization, data representation, learn-
ing algorithms (e.g. online vs. offline learning, supervised
vs. unsupervised learning), required sensor feedback, etc.
Non-functional properties covered implementation language,
technical data representation, timing, software dependencies
and availability, etc.

Results from the survey and the feature models resulting
from the FODA led to the concepts and abstractions intro-
duced in the following sections.



Adaptive Module DSL Coordination DSL

DimensionLifecycle

Status

Status

Fig. 3: Reduced metamodel of our motion architecture with the structural aspects of the Adaptive Module DSL, and the
behavioral aspects of the Coordination DSL (gray, dashed). The main concepts are displayed as circles, and their has-a
relations indicated as arrows with annotated cardinality (references between concepts are left out for the sake of clarity).

III. ADAPTIVE MODULES

This section introduces a conceptual framework around
the essential concept of the Adaptive Module2, being the
architectural building block to represent motion primitives
and comprising dynamical systems and machine learning
capabilities. A more formal metamodel of the concepts of
a motion architecture in our framework is given in Figure 3.

The concept of Spaces in the Adaptive Module DSL
abstracts the communication between system components.
It is defined as a number of explicit variables that appear to
be jointly manipulated or sensed somewhere in our motion
control architecture, e.g. joint space commands for all joints
of a certain robot limb. The Space Type is determined by
its Data Type and Dimension. Possible data types are the
ones found in the domain analysis, such as Joint Angles,
Impedance, or end-effector Pose with their resprective
untis. Mappings map data between Spaces of different
Space Type. A derived concept of a Mapping is a Trans-
formation, defining the transformation of data between
Spaces of the same Space Type (e.g. coordinate trans-
formations), see figure 4. Mappings and Transformations
are a potential extension point for dedicated models, e.g.
geometric relations by Laet et al. [5]. Typical examples found
in the domain are forward and inverse kinematics. Another
specialization of Mappings are Adaptive Mappings that
can be learned, as it was found in the redundancy resolution
learning example [16] of the domain analysis.

2Domain concepts are denoted in typewriter font.

Adaptive
Mapping

Fig. 4: Specializations of Mappings and Transformations.

An Adaptive Module is the main functional building
block of the motion control architecture and represents a
motion primitive, for example the gait pattern generators or
reflexes used for the quadruped walking [12]. It contains one
or more Dynamical Systems which generate the output
dynamics. Dynamical Systems can either have periodic or
non-periodic (goal-directed) dynamics. To allow adaption to
new situations, new environments and additional learning
input, Adaptive Modules optionally contain one or more
Learners that adapt the Dynamical Systems. A common
case for adaption is to shape the dynamics as done with
kinesthetic teaching in the catching [13] and upper body
control [17] examples. The Adaptive Module concept has
ingoing connections from Spaces to receive goals during
execution, sensor values or learning data (optional). It also
has outputs to Spaces for its control output and status, and
has a specific lifecycle (e.g. for execution, online and offline
learning).

Fig. 5: Specializations of the Adaptive Component concept.

An Adaptive Component is an Adaptive Module
together with its inputs and outputs, basic semantics (control
logic) inside the component, and timing management. We
define several specializations of Adaptive Components
for the basic semantics found during the domain analysis,
shown in Figure 5: Reaching Controller for goal directed
movements, Tracking Controller to track changing targets
as done in the mixture of controllers example [15], Se-
quencer for simple coordination and a Pattern Generator.
Each with its specific logical wiring, determining the wiring
of the contained elements and the wiring to the Spaces
of their architectural context depending on its current state
(e.g. learning and execution). This concept is based on the
findings in our domain analysis that identified a limited



set of architectural structures that we found in the vicinity
of Adaptive Modules. For this, Adaptive Components
can be configured to have Mappings or Transformations
on the goal input, feedback input or control output of
the Adaptive Module. This allows integrating Adaptive
Modules into different systems and platforms by configuring
their containing Adaptive Components accordingly, if they
were otherwise incompatible.
Adaptive Components can optionally specify a Crite-

rion that indicates when the motion primitive is finished
or, in case of a periodic motion primitive, following its
attractor. A typical example is a Convergence Criterion
for a reaching movement.

IV. CONCEPT VALIDATION

The first means for validating our framework was to ex-
press the domain examples of the domain analysis introduced
in Section II-A in the chosen abstractions, which was a
continuous and iterative process while developing this frame-
work and which was supported by the respective authors as
part of the AMARSi project. Figure 6 shows two examples
from this process. These two examples, amongst others, are
re-formulated in the introduced conceptual framework in
order to validate its capability to express applications of the
domain.

Figure 6a shows the example of quadruped walking over
unperceived rough terrain [12]. It can be formulated as one
Pattern Generator (lightred) containing several coupled
CPGs as Adaptive Modules, and additional Adaptive
Modules for reflexes and posture control (red). An ad-
vantage over the native representation of the approaches
is additional expressiveness, e.g. explicit Spaces to allow
interfacing with other motion primitives. Figure 6b shows
the mixture of controllers to learn inverse kinematics [15]
as a second example. It is built of n Tracking Controllers,
including recurrent neural networks as Adaptive Modules
and a scaling Transformation. Superposition of the Track-
ing Controller outputs results in the intended mixture of
controllers.

This qualitative validation shows that our framework is
indeed capable to cover the functional variety of the sur-
veyed motion architectures regarding their structural aspects.
It also shows that behavioral aspects are missing in the
system representations we surveyed in our domain analysis.
Behavior is to a large extend not explicitly represented, but
often hidden in the code of sequencing components. This
comprises a major problem for our goal to formalize motion
architectures, because these aspects are equally important for
a comprehensive specification and for automatic generation
of executable systems.

V. COORDINATION

In order to express complex robotics systems, specification
of behavioral aspects is necessary. We therefore introduce
further abstractions and a further DSL dedicated to system
coordination, as shown in Figure 3 (dashed, gray). The Co-
ordination DSL is dedicated to express coordination aspects

of motion control systems and uses the concepts of Harel
state charts [18], which are common practice in coordination
of robotics systems. We use the SCXML [19] model and
provide additional extensions to integrate with the Adaptive
Module DSL.
State Machine is the top-level abstraction of the Coor-

dination DSL. It contains a number of States and the tran-
sitions between them. States define entry and exit Actions
and conditional Transitions to other States. Actions define
what is happening inside a state. As our language approach
allows extension and re-use across DSLs, this is a first
domain-specific extension point to the rather generic state
chart concepts. Apart from generic actions like log messages,
the language provides domain-specific actions like changing
the learning state of an Adaptive Module or triggering
execution of a motion primitive. Another action is to provide
data for a certain Space, which can be used for example to
provide goals for a motion primitive (resp. its corresponding
Adaptive Module).
Transitions between states allow to change between

states if certain Conditions are met. The Coordination DSL
comprises rather generic conditions like clicking a button
in the graphical user interface of the state machine or
waiting a certain duration. Since it is integrated with the
Adaptive Module DSL it can also use the domain-specific
(motion-specific) synchronization mechanisms found in the
domain analysis and provided by the Adaptive Module DSL
concepts: Adaptive Modules, for example, report their
status as either i) executing: it is not learning, but executing
a movement, ii) online learning: The Learner is training
the Dynamical Systems in online learning mode, allowing
the Adaptive Module to be executed in parallel, or iii)
offline learning: The Learner is training the Dynami-
cal Systems in offline learning mode and the Adaptive
Module is currently not available to perform a movement.

(a) Quadruped walking over unperceived rough terrain [12].

(b) Mixture of controllers to learn inverse kinematics [15].

Fig. 6: Two examples from the domain analysis, formulated
in the introduced conceptual framework and auto-generated
in a former version of our visual language.



Fig. 7: Example of the Coordination DSL realized in MPS
with domain-specific context help and model validation.

This is used for example to coordinate the different learning
states in the redundancy learning example [16]. The state
reported by Adaptive Components represents the status
of the performed movement: i) converged / tracking:
The reference of the movement is reached (in case of a
goal-directed movement) or tracked (in case of a periodic
movement) and ii) ongoing: Movement is still ongoing. This
can be used for goal directed movements as done in the
catching example [13].

These different status types are available in the Coordina-
tion DSL due to our domain-specific extensions and can be
used as conditions for state transitions. This allows system
coordination based on the movement and learning states of
motion primitives, as well as triggering the execution of
motions and learning steps. Coordination between the state
machine and components, often hidden in code, implemented
as state machine events and event-handlers, is now explicit
in the DSL specification.

VI. CASE STUDY: AUTOMATIC LAUNDRY GRIPPING

In addition to the conceptual validation of our approach
in Section IV, we evaluated the technical feasibility of our
framework in a model-driven development process and DSL
toolchain in an actual use-case. This section sketches our
toolchain, the specification of a robotics systems in our
DSLs, and generation of the executable experiment code.

The use-case comprises a complex robotics setup combin-
ing the redundant and compliant KUKA Lightweight Robot
IV, 3D perception and a number of calibration, human-robot
interaction, vision, and learning modules. It is used in a real
world application arising in the context of an innovation
project within it’s OWL 3, where the goal is to reduce time
and costs for large automatic laundry washing facilities. The
application requires to calibrate, interact, learn kinematics,
identify pleats, and safely move the robot into a grasping
position to feed the laundry into a further automatic process.
Although quite typical for robotics application domains, sys-
tems of this complexity are not seen often in practice because
manual programming and integration of such system would
already be very challenging for hand-crafted development.
It rather calls for systematic design methods as the one we
propose.

In a first system state, an Adaptive Module Calibra-
tionLearner is set into its learning state and learns the
6D transformation between a 3D camera and the KUKA
LWR IV during a kinesthetic teaching phase, where a human

3German national leading edge cluster “Intelligent Technical Systems
OstWestfalenLippe” – http://www.its-owl.de

samples the workspace in physical human-robot interaction
with the end-effector. In a second system state, the Adap-
tive Component RedundancyLearner containing an Extreme
Learning Machine (ELM) is configured to learn the desired
redundancy resolution in different parts of the workspace.
Coordination of the sub-states is done based on interaction
forces of the robot and based on the learning states of
the ELM Adaptive Module. The sub-states manage the
component states of the RedundancyLearner in the different
learning and interaction states.

The third system state is the actual execution where mainly
the Adaptive Component named HybridController is active,
moving the gripper to the grip poses given by the external 3D
perception component while complying to the redundancy
resolution learned previously by the RedundancyLearner.
Substates like approaching, gripping, and opening the gripper
are coordinated by using convergence of movements, which
can be directly used in the Coordination DSL, as shown in
the DSL snippet of an exemplary state in Figure 7.

We modeled the complete system involving physical
human-robot interaction for calibration and training, 3D
perception, and compliant robot control in our framework.
A detailed system visualization is shown in Figure 8, which
shows an auto-generated structural system view in Figure 8a
and the behavioral view as well as the connections between
the two views in Figure 8b.

A. DSL Implementation

We have prototyped and built the two introduced DSLs
in JetBrains MPS [10], a language workbench for build-
ing domain-specific languages and their projectional edi-
tors with explicit support for language modularization. We
followed the language modularization and composition ap-
proach (LME&C) proposed in [20], which led the following
two DSLs (among other DSLs [8]): the Adaptive Module
DSL covering the structural aspects introduced in Section III
and the behavioral aspects introduced in Section V covered
by the Coordination DSL.

Figure 7 shows a snippet of the Coordination DSL editor
of a system state being edited. Since both DSLs are inte-
grated we have a structural model including the abstractions
introduced in Section III and the behavioral model including
the abstractions introduced in Section V combined. This
allows to provide context help to the DSL user as well as
model verification and validation across both aspects. Two
examples are shown in Figure 7: i) (lower right) in the
domain-specific condition of the state transition (convergence
of a motion), only references to actual Adaptive Component
of the structural model are allowed that provide a conver-
gence criterion, ii) (top) within the action that provides a
goal for an Adaptive Module, a warning about data type
mismatch is raised due to the explicit Space specification.

B. Programming Model and Technology Mapping

The DSLs are integrated with our software architecture for
evaluation our approach in a vertical prototype covering all
aspects of a technical robotics system and eventually generate



(a) Structural system view with the Adaptive Components as white boxes, Adaptive Modules in dark-red, Criterion as grey box and Spaces
are shown as parallelograms. The green box on top shows the 3D perception.

(b) System states are shown in blue, black arrows represent state transitions, gray-dashed arrows indicate links to the structural model
(black-dashed), either as condition for state transitions, or triggering different component and learning states in the Adaptive Modules.

Fig. 8: Auto-generated system visualization of the industrial use-case, manually layouted and reduced for the sake of clarity.
The combination of the structural and behavioral models allows visualization of both aspects and their dependencies.



executable systems. Code generators of the DSLs target our
domain-specific programming model that provides software
abstractions for the concepts of our DSLs. Following best
practices in robotics software engineering [21], [22], our
programming model provides component-based software ab-
stractions. We implemented an exemplary technology map-
ping of the programming model, which is targeted by the
code generators. The C++ libraries Compliant Control Ar-
chitecture (CCA) and Robot Control Interface (RCI) provide
component-based software abstractions for compliant robot
platforms [23] and implement the programming model. Com-
munication is done via the robotics middleware RSB [24].

Note that this is just a reference technology mapping, as
the DSL approach explicitly allows integration with other
frameworks that are compatible with our programming model
by providing different code generators. Those could target
other frameworks and languages other than C++, e.g. UML
to make a large amount of standard tools accessible.

C. Code Generation and Experimentation

Code generators of the DSL environment target our
domain-specific programming model and generate code in
several general purpose languages (GPL). According to the
chosen technology mapping, the generators transform the
structural aspects of the specification of our use-case into
graph representations of different aspects of the system
for documentation (i.e. the rendered graphs shown in Fig-
ures 6 and 8), C++ code for the CCA components and
dynamical systems, the C++ main file with the component
configuration, the glue code for additional C++ components
loaded from a software repository based on their deploy-
ment descriptors, and three CMake configuration files for
software dependency handling and makefile generation. The
behavioral aspects are transformed into an additional graph
representation and SCXML [19] code that represents the
specified state machine logic.

Furthermore, we generate several C++ files for the connec-
tion between the state machine and the structural components
of the system. Note, how the cumbersome task of coordinat-
ing component state changes and state machine transitions
can be taken care of by the generation tool chain.

Code generation of this case study generated 1 SCXML
file, 4 GraphML [25] files, 12 C++ files with 1,248 source
lines of code (SLOC), and 3 CMake files from the system
specification done in 137 lines of Adaptive Module DSL
specifying the structural part and 112 lines of Coordination
DSL for coordination, a more compact and explicit spec-
ification of the system. See Table I for all numbers. The
auto-generated (and manually adjusted) graph representation
of the system, including its structural and behavioral aspects
as well as their dependencies, rendered from the generated
GraphML files is shown in Figure 8.

The generated C++ source code is compiled into two
executables, the component circuit and the state machine,
and was successfully executed and tested on the KUKA
Lightweight Robot IV in simulation and on the hardware.

language number of files SLOC
DSL Adaptive Module DSL 1 137

Coordination DSL 1 112
GPL SCXML 1 360

GraphML 4 4,455
CMake 4 260

C++ 12 1,248

TABLE I: Total numbers of SLOC of the DSLs (system
specification) and the generated GPL code.

VII. DISCUSSION AND RELATED WORK

In this section we discuss our approach with respect to
its conceptual differences and advantages and selected three
state-of-the-art approaches for modeling and implementa-
tion of motion control architectures: i) MoveIt! [26] as a
state-of-the-art motion planning framework, ii) MathWorks
SimulinkTM as an established tool for model-based design
usable also for composition of computational units and mod-
eling of dynamical systems, and iii) DSL-based approaches
by Klotzbücher et al. [6] for force-velocity control and
Vanthienen et al. [27] for constraint-based modeling and
execution. We discuss these approaches from the viewpoint
of the domain expert specifying a motion experiment to test
a specific hypothesis.

DSL-based methods similar to Klotzbücher et al., Van-
thienen et al. and the approach presented here explicitly
represent domain concepts in dedicated models and elicit
them from other platform-specific code. The integration of
domain-specific modeling with a generator-based toolchain
allows domain experts without software engineering back-
ground to formulate executable experiments in domain terms
without touching any line of GPL code.

Writing experiments in terms of the domain abstractions
using the projectional editing features of a DSL-IDE as
shown in this work additionally helps developers to design
models that are already largely correct by construction. The
domain models facilitate checks on a semantic level, e.g.
verifying compatibility of operations on Spaces or ensuring
correctness properties of the State Machines and their rela-
tion to Adaptive Components, as it is exemplified in Figure 7.
The language modularization approach which was briefly
introduced in Section VI-A allows researchers and engineers
from different sub-fields to focus on language abstractions
suitable to express their particular concern. It also allows
language re-use of certain concerns, as shown in this work by
re-using the SCXML models for coordination, or dedicated
coordinate transformation and mapping models as mentioned
in Section III.

While domain-specific software frameworks like MoveIt!
provide domain-specific abstractions, cf. MoveIt!’s way-
points and planners, those are usually in-language abstrac-
tions at code-level (in terms of object-oriented programming)
and therefore only allow native interfacing using the imple-
mentation languages of the given framework based on the
provided libraries. Verification and validation of experiments
at the time of writing is hardly possible, as lots of the domain
concepts are hidden in manually written code expressed with



the in-language abstractions lacking explicit semantics. The
lack of accessible syntax and semantics makes the domain
models also hardly accessible for analysis by additional tools.

General purpose languages and modeling environments
as Simulink and Matlab do not directly provide conceptual
abstractions for motion control architectures. Although quite
established in the control domain, the specification of com-
plete domain-specific experiments is a rather complex task
as many extensions will be required that are not present in
the rather general modeling languages of these tools. How-
ever, in the case of Simulink, domain-specific in-language
abstractions can be added with dedicated tool boxes (e.g.
for kinematics, machine vision, machine learning, etc.) that
provide tool support, like simulation and online validation.

VIII. CONCLUSION

This contribution introduces a conceptual framework
based on the idea of Adaptive Modules that model motion
primitives as dynamical systems with machine learning ca-
pabilities. The concepts are available in two domain-specific
languages (DSL), which we integrated into a development
process and toolchain that we evaluated in a case study. The
framework and the Adaptive Module DSL were validated
with a number of domain examples that showed that they
are indeed able to cover the structural aspects of the domain
and unify and express different research prototypes of for-
merly heterogeneous notation and semantics. Extensions to
a Coordination DSL were introduced to cover the required
behavioral aspects of complex systems and their integration
with the structural system specification. A case-study showed
a vertical prototype and demonstrated that we can use these
DSLs and the accompanying toolchain in a model-driven
development process. We specified a relevant, complex,
real-world industrial application and generated the required
source code to execute it on the KUKA LWR IV. While
further research is necessary to judge the base hypothesis of
motion primitives, we believe that the introduced concepts
and DSLs may help to harmonize and accelerate research in
the domain by supporting experimentation and evaluation.

REFERENCES

[1] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering. Computer, 39(2):25–31, 2006.

[2] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific
Languages: An Annotated Bibliography. ACM Sigplan Notices, 2000.

[3] Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. A
Survey on Domain-Specific Languages in Robotics. In Interna-
tional Conference on Simulation, Modeling and Programming for
Autonomous Robots, Bergamo, 2014.

[4] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell. Code gener-
ation of algebraic quantities for robot controllers. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
2346–2351. IEEE, October 2012.

[5] Tinne De Laet, Wouter Schaekers, Jonas de Greef, and Herman
Bruyninckx. Domain Specific Language for Geometric Relations
between Rigid Bodies targeted to Robotic Applications. In Workshop
on Domain-Specific Languages and models for Robotic systems, 2012.

[6] Markus Klotzbücher, Ruben Smits, Herman Bruyninckx, and Joris De
Schutter. Reusable Hybrid Force-Velocity controlled Motion Specifi-
cations with executable Domain Specific Languages. In International
Conference on Intelligent Robots and Systems, pages 4684–4689,
2011.

[7] Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. Learning
movement primitives. Robotics Research, pages 1–10, 2005.

[8] Arne Nordmann and Sebastian Wrede. A Domain-Specific Language
for Rich Motor Skill Architectures. In Workshop on Domain-Specific
Languages and models for Robotic systems, Tsukuba, 2012.

[9] OMG. Object Management Group. http://www.omg.org/.
[10] JetBrains. Meta Programming System. http://www.jetbrains.com/mps/.
[11] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,

and A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA)-
Feasibility Study. 1990.

[12] Mostafa Ajallooeian, Soha Pouya, Alexandre Tuleu, Alexander Sproe-
witz, and Auke J Ijspeert. Towards Modular Control for Moderately
Fast Locomotion over Unperceived Rough Terrain. Dynamic Walking,
(2008):2013, 2013.

[13] Ashwini Shukla and Aude Billard. Coupled dynamical system based
hand-arm grasp planning under real-time perturbations. Robotics:
Science and Systems, 2011.

[14] Masahiko Haruno, Daniel Wolpert, and Mitsuo Kawato. Mosaic model
for sensorimotor learning and control. Neural computation, 13:2201–
2220, 2001.

[15] Tim Waegeman, Michiel Hermans, and Benjamin Schrauwen. MA-
COP modular architecture with control primitives. Frontiers in
computational neuroscience, 7(July):99, 2013.

[16] Arne Nordmann, Christian Emmerich, Stefan Rüther, Andre Lemme,
Sebastian Wrede, and Jochen J. Steil. Teaching Nullspace Constraints
in Physical Human-Robot Interaction using Reservoir Computing. In
International Conference on Automation and Robotics, 2012.

[17] Rene Felix Reinhart and Jochen Jakob Steil. Learning whole upper
body control with dynamic redundancy resolution in coupled associa-
tive radial basis function networks. IEEE International Conference on
Intelligent Robots and Systems, pages 1487–1492, 2012.

[18] David Harel and Michal Politi. Modeling Reactive Systems with
Statecharts: The Statemate Approach. McGraw-Hill, Inc., New York,
NY, USA, 1998.

[19] W3C. State Chart XML (SCML): State Machine Notation for Control
Abstraction, 2014.

[20] Markus Völter. Language and IDE Modularization, Extension and
Composition with MPS. GTTSE, 2011.

[21] Davide Brugali, Alex Brooks, Anthony Cowley, Carle Côté, Anto-
nio Domínguez-Brito, Dominic Létourneau, Françis Michaud, and
Christian Schlegel. Software Engineering for Experimental Robotics,
volume 30 of Springer Tracts in Advanced Robotics. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[22] Markus Klotzbücher, Nico Hochgeschwender, Luca Gherardi, Her-
man Bruyninckx, Gerhard Kraetzschmar, Davide Brugali, Azamat
Shakhimardanov, Jan Paulus, Michael Reckhaus, Hugo Garcia, Davide
Faconti, and Peter Soetens. The BRICS Component Model: A
Model-Based Development Paradigm For Complex Robotics Software
Systems. In Symposium on Applied Computing (SAC), Coimbra,
Portugal, 2013.

[23] Arne Nordmann, Matthias Rolf, and Sebastian Wrede. Software
Abstractions for Simulation and Control of a Continuum Robot. In
Itsuki Noda, Noriaki Ando, Davide Brugali, and James J. Kuffner,
editors, Simulation, Modeling, and Programming for Autonomous
Robots, volume 7628 of Lecture Notes in Computer Science, pages
113–124, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[24] Johannes Wienke and Sebastian Wrede. A Middleware for Collabora-
tive Research in Experimental Robotics. In International Symposium
on System Integration, pages 1183–1190, Kyoto, 2011.

[25] GraphML. http://graphml.graphdrawing.org/.
[26] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit! [ROS Topics].

IEEE Robotics Automation Magazine, (March):18–19, 2012.
[27] Dominick Vanthienen, Markus Klotzbücher, Joris De Schutter,

Tinne De Laet, and Herman Bruyninckx. Rapid Application Devel-
opment of Constrained-Based Task Modelling and Execution using
Domain Specific Languages. In International Conference on Intelli-
gent Robots and Systems, 2013.


	Introduction
	Motion Control Architectures
	Domain Analysis

	Adaptive Modules
	Concept Validation
	Coordination
	Case Study: Automatic Laundry Gripping
	DSL Implementation
	Programming Model and Technology Mapping
	Code Generation and Experimentation

	Discussion and Related Work
	Conclusion
	References

