
Volume 4 • Issue 1 • 1000167
J Biotechnol Biomater
ISSN: 2155-952X JBTBM, an open access journal 

Research Article Open Access

Biotechnology & Biomaterials
Meiswinkel et al., J Biotechnol Biomater 2014, 4:1

http://dx.doi.org/10.4172/2155-952X.1000167

*Corresponding author: Volker F Wendisch, Chair of Genetics of Prokaryotes, 
Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr 25, D-33615 
Bielefeld, Germany, Tel: 00495211065611; E-mail: volker.wendisch@uni-bielefeld.de 

Received August 19, 2014; Accepted October 06, 2014; Published November 
15, 2014

Citation: Meiswinkel TM, Lindner SN, Wendisch VF (2014) Thick Juice-Based 
Production of Amino Acids and Putrescine by Corynebacterium glutamicum. J 
Biotechnol Biomater 4: 167. doi:10.4172/2155-952X.1000167

Copyright: © 2014 Meiswinkel TM, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Thick Juice-Based Production of Amino Acids and Putrescine by 
Corynebacterium glutamicum
Tobias M Meiswinkel, Steffen N Lindner and Volker F Wendisch*
Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Germany

Abstract
Thick juice (also regarded as syrup) is an intermediate product of sugar processing. It is cheaper than processed 

sugar and is mainly composed of sucrose. Sucrose is a preferred carbon source of Corynebacterium glutamicum, 
a workhorse of biotechnology used for million-ton-scale amino acid production. Here, it is shown for C. glutamicum 
that sugar beet thick juice led to higher growth rates and faster carbon source consumption than pure sucrose. 
Comparative DNA microarray analysis revealed differential expression of genes for butyrate and citrate catabolism 
and of NAD and biotin biosynthesis suggesting provision of these compounds by the thick juice. Thick juice was 
also shown to be superior to sucrose in production of the amino acids L-lysine, L-glutamate and L-arginine as well 
as of the diamine putrescine since higher volumetric productivities than with pure sucrose could be achieved. Taken 
together, sugar beet thick juice was shown to be a carbon source for growth and amino acid and diamine production 
of C. glutamicum superior to pure sucrose.

Keywords: Thick juice; L-lysine; L-glutamate; L-arginine; Putrescine; 
Corynebacterium glutamicum

Introduction 
With resources of fossil oil becoming limiting, biotechnological 

production is getting more and more attractive [1,2]. Regarding the 
production of bulk chemicals the use of alternative carbon source for 
fermentation has become highly interesting to allow competing prices. 
One prospect is the use of thick juice, an intermediate product from 
sugar industry. 

While production of table sugar involves many steps starting with 
e.g. sugar beet or sugar cane and ending in white crystalline sugar. 
First sugar beet is washed thoroughly and cut into chips. Out of these 
chips a crude juice is extracted by hot water treatment. This crude juice 
contains about 150g l-1 sugar as well as several contaminants. These 
contaminants are removed by filtration resulting in light yellow colored 
thin juice. Using low temperature and high vacuum conditions water 
is reduced and thick juice is generated with a sugar content of 650–700 
g l-1. In order to get white crystalline sugar further concentration and 
cleaning steps like crystallization and centrifugation are required [3]. 
By using thick juice instead of fully processed sugar these steps are 
saved and thereby also the associated costs.

Until now thick juice has received only little attention as a carbon 
source in biotechnology. Conservation of thick juice and its microbial 
degradation have been studied [4-7]. Other sugar beet based substrates 
like beet sugar molasses [8] have been used to produce fructose and 
ethanol. In food biotechnology, sugar beet thick juice in combination 
with beet sugar molasses have been used for the production of fructo-
oligosaccharides [9].

The Gram-positive soil bacterium Corynebacterium glutamicum 
is generally recognized as safe (GRAS) and used for the million-ton-
scale production of amino acids. Besides being used for L-glutamate 
and L-lysine production, C. glutamicum has been engineered for the 
production of diamines like putrescine (1,4-diaminobutane) [10,11] 
and cadaverine (1,5-diaminopentane) [12-14], ketoacids such as 
pyruvate [15] and 2-ketoisovalerate [16], diacids such as succinate 
[17-20], the alcohols ethanol [21] and iso-butanol [22], and further 
amino acids, e.g. L-arginine, L-ornithine [23] and L-proline [24] or 
carotenoids [25] as well as gamma-amino butyric acid [26]. 

Amino acid production by C. glutamicum is typically based on 
glucose from starch hydrolysates and fructose and sucrose from 
molasses. These sugars are imported and phosphorylated by the 
phospho-transferase system (PTS) [27]. While fructose and sucrose 
are transported via the PTS only, PTS-independent glucose uptake has 
been reported and characterized [28,29]. For access to further carbon 
sources C. glutamicum has been metabolically engineered: e.g. for 
access to xylose and arabinose, which can be found in hydrolysates of 
agricultural wastes [23,30-33], starch [34,35], cellobiose [36], as well 
as lactose and galactose, which are present in whey [37,38] or the 
chitin monomer glucosamine [39]. To the best of our knowledge, the 
use of thick juices or syrups for biotechnological processes with C. 
glutamicum has not yet been reported. Therefore, the genetic response 
of C. glutamicum to thick juice has been analyzed by transcriptomics 
and the performance of thick juice-based production by C. glutamicum 
has been compared production with sucrose.

Methods
Strains and culturing conditions

All C. glutamicum strains used are listed in Table 1. For growth and 
production experiments CgXII medium [40] in 500 ml baffled shaking 
flasks was inoculated from LB overnight cultures and cultivated 
at 30°C and 120 rpm. Production of L-glutamate was triggered by 
500 µg ml-1ethambutol[41]. Media for C. glutamicum ORN1 were 
supplemented with 500 µM L-arginine. Growth was followed by the 
determination of OD600, which was measured using a UV-1650 PC 
photometer (Shimadzu, Duisburg, Germany). When appropriate 100 
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used for this experiment. Growth conditions were CgXII minimal 
medium with 100 mM of either pure sucrose or the equivalent thick 
juice as carbon source.

Results
Utilization of thick juice by C. glutamicum

C. glutamicum WT which is able to utilize sucrose as sole carbon 
source via PTSS was used for growth experiments with thick juice. The 
sucrose concentration in the thick juice used was determined by HPLC 
as 642 g l-1. Growth experiments were carried out using CgXII minimal 
medium containing a final sucrose concentration of 34 g l-1 either from 
thick juice or from pure sucrose. C. glutamicum WT was inoculated 
to a starting biomass of 0.25 g CDW l-1 and growth was followed. As 
depicted in Figure 1A, growth with thick juice was slightly faster (0.56 ± 
0.00 h-1) than with pure sucrose (0.49 ± 0.02 h-1) and the carbon source 
was depleted faster (after 9.5 h and 10.8 h, respectively). However, the 
final biomass concentrations were comparable (13.6 ± 0.5 g CDW l-1 

with thick juice and 13.1 ± 1.3 g CDW l-1 with pure sucrose).

µg ml-1spectinomycin, 25 µg ml-1 kanamycin, and 1 mM isopropyl-β-
D-thiogalactopyranosid (IPTG) were added to the medium to select 
and induce the plasmids listed in Table 1. Biomasses in g cell dry weight 
per liter (g CDW l-1) were calculated from OD600 as described previously 
by using a factor of 0.25 g CDW l-1 per OD600 [42].

Thick juice

Thick juice was obtained from Pfeifer and Langen Company, Jülich, 
Germany. Sucrose concentration in thick juice was 642 g l-1.

Determination of amino acid, diamine, and sucrose 
concentrations

Amino acids, putrescine and sucrose concentrations were 
quantified by HPLC as described previously [10, 44,45]. 

Global gene expression analysis

Preparation of total RNA, cDNA synthesis, DNA microarray 
hybridization, and gene expression analysis were performed as 
described before [46-48]. C. glutamicum WT strain ATCC 13032 was 

Strain Relevant characteristics Reference
WT Wild type; ATCC13032 [43]

DM1729 L-lysine overproducing strain, pycP458S, homV59A, lysCT311I [44]
PUT21 Putrescine producing strain, ORN1 carrying pVWEx1-speC5‘21-argF [11]
ARG1 L-arginine producing strain, ∆argR(pEKEx3-argBA26V,M31V) [23]

Table 1: C. glutamicum strains used.

Gene relative mRNA levels 
thick juice/sucrose 

designation name operon function
cg0095 bioB OP_cg0095 biotinsynthase 2.6
cg0096 - OP_cg0095 hypothetical protein 2.5
cg0566 gabT OP_cg0566 4-aminobutyrate aminotransferase 5.3
cg0567 gabD OP_cg0566 succinate-semialdehydedehydrogenase 8.3
cg0568 gabP OP_cg0566 permease for amino acids 2.4
cg0793 - - secreted protein 2.2
cg1745 - - putative signal recognition particle GTPase 2.6
cg3105 - OP_cg3106 hypothetical protein 2.2
cg3125 tctA OP_cg3127 citrate uptake system, subunit A 3.0
cg3126 tctB OP_cg3127 citrate uptake system, subunit B 5.1
cg3127 tctC OP_cg3127 citrate uptake system, subunit C 7.6
cg3226 - - permease of the major facilitator superfamily 7.1
cg0156 cysR - Bacterial regulatory proteins, Crp family 0.4
cg0160 - OP_cg0160 hypothetical protein 0.2
cg0654 rpsD OP_cg0651 ribosomal protein S4 0.5
cg0759 prpD2 OP_cg0759 methylaconitase 0.4
cg0762 prpC2 OP_cg0759 methylcitratesynthase 0.5
cg0771 - OP_cg0771 DtxR/iron regulated lipoprotein precursor 0.5
cg0924 - - ABC-type iron siderophore transport subunit 0.4
cg0926 - OP_cg0926 ABC-type iron siderophore transport subunit 0.4
cg1214 nadS OP_cg1218 cysteine sulfinate desulfinase 0.4
cg1215 nadC OP_cg1218 nicotinate-nucleotidepyrophosphorylase 0.4
cg1216 nadA OP_cg1218 quinolinatesynthetase 0.3
cg1287 - - hypothetical protein 0.5
cg1765 sufR OP_cg1765 predicted transcriptional regulator 0.4
cg1855 hisS OP_cg1856 histidyl-tRNA synthetase 0.4
cg2055 - - putative membrane protein 0.4
cg3119 fpr2 - probable sulfitereductase (flavoprotein) 0.4
cg3185 - - hypothetical protein 0.5

Table 2: DNA Microarray.
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DNA Microarray analysis of thick juice-specific gene 
expression changes 

In order to characterize growth of C. glutamicum with thick juice 
on the gene expression level, C. glutamicum WT was grown in Cg XII 
minimal medium with pure sucrose or thick juice as carbon source. 
At a biomass of 1 g CDW l-1 cells were harvested, total RNA isolated 
and cDNA synthesized using Cye Dyes to label the different pools of 
cDNA. After DNA microarray hybridization and scanning, different 
expression levels were analyzed using Genepix software.

Table 2 lists statistically significant expression differences for 29 
genes in the transcriptome comparison of sucrose- and thick juice-
grown C. glutamicum WT cells. Of the 17 genes that showed lower 
mRNA levels on thick juice as compared to pure sucrose, five genes 
code for proteins which are organized in two operon structures (prpD2 
and prpC2 of OP_cg0759; nadS, nadC and nadA of OP_cg1218). 
Furthermore, two genes show lower mRNA levels which code for 
proteins involved in iron uptake (cg0924, cg0926). 

Increased gene expression during growth on thick juice was 
observed for twelve genes. Among these were eight genes of three 
operons, namely bioB and cg0096 (OP_cg0095; involved in biotin 
synthesis), gabTDP (OP_cg0566; involved in butyrate utilization) as 
well as tctABC (OP_cg3127; for citrate uptake). 

Taken together, growth of C. glutamicum on thick juice differed 
from growth on pure sucrose by increased expression of genes 
for butyrate and citrate utilization and for biotin synthesis and by 
decreased expression of genes for iron uptake, NAD synthesis and 
propionate catabolism (Table 2).

Comparative global gene expression analysis of C. glutamicum WT 
grown in minimal medium with thick juice or pure sucrose as carbon 
source.

Amino acid and putrescine production on sucrose and thick 
juice

To characterize production of C. glutamicum with thick juice, 
various engineered C. glutamicum strains were used. Besides production 
of the amino acids L-lysine, L-glutamate and L-arginine, production 
of the diamine putrescine, which is synthesized from an intermediate 
of arginine biosynthesis, was done comparing pure sucrose and thick 
juice. All strains were inoculated to a final biomass concentration of 
0.25 g CDW l-1 into Cg XII minimal medium containing 34 g l-1 sucrose 
either from thick juice or from pure sucrose. Figure 1 shows growth and 
carbon source depletion during the respective production experiments. 
The maximal amino acids or diamine concentrations are summarized 
in Table 3. Specific productivities are given in Figure 2.

Strains and the respective growth and carbon source consumption 
charts are given in Figure 1. Product concentrations are given as 
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Figure 1: Growth (circles) and sucrose consumption (triangles) of various C. 
glutamicum strains. 
With thick juice (closed symbols) or pure sucrose (open symbols), C. 
glutamicum WT (A), the L-lysine producing DM1729 (B), L-glutamate producing 
WT (C), putrescine producing PUT21 (D) and L-arginine producing ARG1 (E) 
were cultivated on Cg XII minimal medium. When appropriate IPTG antibiotics 
or ethambutol was added. Data are means and standard deviations of three (A, 
D, E) or two (B, C) replicates.
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Figure 2: Volumetric productivities for L-lysine, L-glutamate, putrescine and 
L-arginine. 
Production in Cg XII medium containing thick juice (black bars) or sucrose 
(white bars). Production conditions were as described in Methods and as 
in Figure 1. Data are means and standard deviations of three (putrescine, 
L-arginine) or two (L-lysine, L-glutamate) replicates.

product concentration [mM]
substrate L-glutamate L-lysine L-arginine putrescine
thick juice 56.5 ± 1.0 33.0 ± 0.2 43.9 ± 1.3 46.6 ± 1.3
sucrose 45.3 ± 2.3 14.4 ± 1.4 50.3 ± 1.4 49.4 ± 3.6

Table 3: Maximal titers of produced amino acids and putrescine with thick juice 
or sucrose.
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means and standard deviations of three (putrescine, L-arginine) or two 
(L-lysine, l-glutamate) replicates are given after sucrose was depleted.

L-lysine production

L-lysine production experiments were carried out with C. 
glutamicum DM1729 [44]. Samples for the determination of L-lysine 
concentrations were taken when sucrose was depleted. L-lysine 
accumulated to a concentration of 14.4 ± 1.4 mM with pure sucrose. 
When thick juice was used the final L-lysine concentration doubled to 
33.0 ± 0.2 mM (Figure 1B). Comparable growth rates were observed 
for both conditions (0.46 ± 0.01 h-1 with thick juice and 0.46 ± 0.01 h-1 
with pure sucrose). Sucrose from thick juice was depleted after 10.1 
h and after 20.3 h in the experiment with pure sucrose. The resulting 
volumetric productivity was almost three times higher with thick juice 
(0.26 ± 0.01 g l-1 h-1) than with pure sucrose (0.10 ± 0.01 g l-1 h-1; Figure 
2). 

L-glutamate production

L-glutamate production experiments were carried out with C. 
glutamicum WT [49]. Production of L-glutamate by C. glutamicum 
WT needs to be triggered e.g. by addition of ethambutol [50] which 
was added during inoculation to a concentration of 500 µg ml-1. When 
sucrose was depleted, 45.3 ± 2.3 mM L-glutamate had accumulated 
with pure sucrose while around 25% more L-glutamate (56.5 ± 1.0 
mM) accumulated with thick juice (Figure 1C). The use of thick juice 
resulted in an increased growth rate (0.44 ± 0.01 h-1 as compared to 0.31 
± 0.01 h-1 with pure sucrose) and faster depletion of the carbon source 
(after 13 h with thick juice as compared to 20.3 h with pure sucrose). 
An about twofold higher volumetric productivity with thick juice (0.64 
± 0.01 as compared to 0.33 ± 0.02 g l-1 h-1 with pure sucrose) entailed 
(Figure 2). 

L-arginine production

C. glutamicum strain ARG1 [23] was used to demonstrate the use 
of thick juice for the production of L-arginine (Figure 1D). Growth 
with pure sucrose was twofold slower (0.18 ± 0.00 h-1) than with thick 
juice (0.35 ± 0.00 h-1). With pure sucrose 50.3 ± 1.4 mM L-arginine 
accumulated after sucrose depletion (24.5 h), which corresponds to a 
volumetric productivity of 0.36 ± 0.01 g l-1 h-1. With thick juice 43.9 ± 
1.3 mM L-arginine accumulated, but sucrose was depleted already after 
15.6 h. The corresponding volumetric productivity on thick juice was 
increased by about one third to 0.49 ± 0.01 g l-1 h-1 (Figure 2).

Putrescine production

Putrescine production by C. glutamicum [10,11]is based on over 
expression of the E. coli ornithine decarboxylase gene speC in the 
ornithine production strain ORN1 [23] via pVWEx1-speC-5‘21-
argF, which also renders the respective strain PUT21 prototrophic 
for L-arginine due to leaky expression of argF from the addiction 
plasmid [11]. When 34 g l-1 pure sucrose were provided 49.4 ± 3.6mM 
of putrescine were produced, which corresponds to a volumetric 
productivity of 0.17 ± 0.03 g l-1 h-1since sucrose was depleted after 22.6 
h. When thick juice was used put rescine accumulated to comparable 
concentrations (46.6 ± 1.3 mM), but productivity increased significantly 
to 0.28 ± 0.01 g l-1 h-1 as sucrose was depleted already after 13.3 h and 
growth with thick juice was clearly faster (0.36 ± 0.00 as compared to 
0.19 ± 0.01 h-1 with pure sucrose).

Discussion

Sugar beet thick juice-based production of amino acids L-glutamate, 
L-lysine and L-arginine and of the diamine putrescine by C. glutamicum 
is described here for the first time. While most crude substrates like 
technical grade glycerol [51] or hemi cellulosic hydrolysates [30,33] 
inhibit growth, thick juice was shown here to be beneficial for growth, 
carbon source utilization and amino acid and diamine production with 
C. glutamicum. Thick juice is an intermediate of the sugar production 
process with already high sucrose concentration, but there are still some 
sugar beet ingredients present, which can have advantageous effects.

Regarding the results obtained from global gene expression analysis 
higher expression levels for bioB and adjacent cg0096 were detected 
under thick juice conditions. C. glutamicum is biotin auxotroph due 
to an incomplete biotin synthesis pathway and therefore is dependent 
on biotin import via BioYMN [52]. Subsequently, biotin protein ligase 
BirA [53] catalyzes covalent attachment of biotin to the two biotin-
dependent enzymes of C. glutamicum, acetyl-CoA carboxylase [54] 
and pyruvate carboxylase [55]. Despite being biotin auxotrophic, genes 
of the incomplete biotin pathway are transcriptionally repressed by 
BioQ in C. glutamicum [56]. Higher RNA-levels of tctABC, which code 
for the citrate uptake system of C. glutamicum [57] might be due to 
citrate present in thick juice as citrate can be used as carbon source by 
C. glutamicum [58]. Cg3226 is adjacent to lldD, which is essential for 
lactate utilization in C. glutamicum [41] and both are regulated by LldR 
[59,60]. Cg3226 is suggested to be a lactate transporter [41] and lactate 
can be found in small amounts in thick juice (data not shown).

Reduced expression levels on thick juice were found for NAD 
synthesis genes nadACS. NAD biosynthesis involves three enzymatic 
reactions starting with aspartate which is converted to nicotinate 
mononucleotide via iminoaspartate and quinolinate usually catalyzed 
by Nad-ABC. In C. glutamicum the enzyme catalyzing the reaction 
from aspartate to iminoaspartate is unknown as there is no nadB [61]. 
From nicotinate mononucleotide NAD is build and this can be further 
phosphorylated by PpnK [62] to the reduced NADP. Furthermore 
prpCD showed lower expression which are part of propionate 
metabolism consisting of prpDBC in C. glutamicum and is regulated 
by PrpR [63]. With cg0924 and cg0926 two genes involved in iron 
uptake show lower expression levels, suggesting good iron conditions 
in thick juice. Supporting this also SufR regulated suf genes, which 
are important for assembly of iron-sulfur cluster, and cysR, involved 
in regulation of sulfur metabolism [64], are found to be differentially 
expressed.

For the production of amino acids and diamines thick juice was 
superior to pure sucrose since in each case the volumetric production 
rate was higher (Figure 2). In the case of L-glutamate and L-lysine 
significantly higher concentrations accumulated with thick juice 
than with pure sucrose (Table 3). In addition, growth and sucrose 
utilization was faster (Figure 1). Thus, thick juice had a beneficial 
effect on both, product yields and the carbon source uptake rates. By 
contrast, production of L-arginine and putrescine, which is derived 
from L-ornithine, an intermediate of L-arginine biosynthesis, was 
characterized by comparable final product concentrations on pure 
sucrose and on thick juice (Table 3). Apparently, L-arginine and 
putrescine product yields were limited by factors other than by 
compounds provided by thick juice. These factors remain unknown at 
least for C. glutamicum, however in higher plants like tobacco it is known 
that high putrescine concentrations can decrease ATP synthesis [65]. 
For L-arginine and putrescine production, the increased volumetric 
productivities as compared to pure sucrose were only due to faster 
growth and carbon source uptake, and thus, increased by to a lesser 
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extent as those for L-lysine and L-glutamate (Figure 2). It is interesting 
to note that growth of the L-arginine and putrescine producing strains 
was about twofold faster with thick juice than with pure sucrose, while 
the growth rates of the L-glutamate producing strain only increased by 
about one third and that of the L-lysine producer was comparable on 
thick juice and on pure sucrose.

Conclusion
In this study it was shown that sugar beet thick juice is a suitable 

carbon source for the industrial heavily used C. glutamicum. Microarray 
data revealed beneficial influence of some remaining ingredients 
in sugar beet thick juice. Growth as well as L-glutamate, L-lysine, 
L-arginine and putrescine production with thick juice was accelerated 
and/or increased. Therefore thick juice as carbon source for amino acid 
or diamine production is superior sucrose. 
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