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ABSTRACT

Recent research in robotics focuses the attention on the control of compliant actuators
to improve safety and to make the interaction with humans more natural. Lightweight
construction, real elasticity directly integrated into the joint and control of joint com-
pliance seem to play the most important role for improving safety in human-machine
interaction. Humans are intrinsically elastic and the Central Nervous System (CNS)
takes advantage of the nonlinear muscle properties to modulate joint stiffness through
co-contraction of antagonistic muscles.
If alterable compliance in robotic systems is desirable, its introduction can be achieved
in two fundamentally different ways. The first way is a technical approach based on the
idea of impedance control as formulated by Hogan (1985). The second approach is bio-
inspired and introduces physiological control mechanisms, muscle models and virtual
antagonistic actuation into the control system of a robotics joint drive.

Recently, biological models for the control of muscles in vertebrates have been devel-
oped (Franklin et al., 2008; Yang et al., 2011). Still, the question remains, how a control
algorithm, acting on two or even more muscles, can be implemented in a technical joint.
With the objective to implement bio-inspired control strategies on a robotic joint drive,
in this thesis, musculoskeletal models, biological parameters and bio-inspired control
laws are analyzed and tested. A simplified model of the human elbow joint is used
to analyze muscle-like actuation and stiffness properties at the joint. Based on recent
results related to how the CNS controls antagonistic muscles, a biological control pat-
tern based on reciprocal activation and co-activation is tested for the control of torque
and stiffness at the joint. However, a closer analysis of the musculoskeletal parameters
reveals that, despite antagonistic co-activation, domains in the joint range of motion
might occur for which stiffness variation is limited (low stiffness variability) or even
impossible (stiffness nodes).
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The first part of this thesis presents novel strategies for simultaneous control of torque
and stiffness in a hinge joint actuated by two antagonistic muscle pairs. One strategy
handles stiffness nodes by shifting them away from the current joint position and thus re-
gaining stiffness controllability. To prevent domains of low stiffness variation, an optimal
biomechanical setup is sought and finally defined which allows for a maximal stiffness
variation across a wide angular joint range. Based on this optimal setup, four addi-
tional control approaches are designed and tested in simulation which deliver stiffnesses
and torques comparable to those obtained in the optimal case. The control approaches
combine biologically justified aspects, like reciprocal activation and co-activation, with
novel ideas like inverse dynamics model and activation overflow.

The second part of the thesis focuses on the design, test and validation of a bio-inspired
position and stiffness control strategy for a lightweight, intrinsically elastic, robotics
joint drive. Reciprocal activation and co-activation are used here as a starting point to
concurrently control stiffness and position (instead of torque). A stability analysis, per-
formed on the human elbow joint model, confirms that the co-activation level (and, as
a consequence, the stiffness level) affects the reaction of the joint to external perturba-
tions in terms of oscillations and settling time. To account for the stability aspects and
implement further mechanisms found in the CNS of vertebrates, models of the muscle
spindles, Golgi tendon organs, α-motor neurons and Renshaw cells, are added to the
control algorithm.

Nevertheless, while in many biological systems, antagonistic muscles generate the move-
ment of the joint, in simple robotic systems, the movement is generated by only one
actuator. Therefore, in order to transmit the desired bio-inspired movement to the tech-
nical elbow, the sum of all muscle-torques acting on the joint (i.e. the net-torque at
the joint), has to be transmitted to the lightweight, inherently elastic, joint drive and
controlled. A speed-torque control cascade is designed, implemented and tested on the
robotics joint drive.

The impedance range of the human elbow joint is evaluated in simulation and compared
to the range obtained when the technical joint drive is acting instead of its biological
counterpart. The bio-inspired controlled joint drive is able to reach the desired position
and modulate joint compliance according to the disturbance like humans do, both in
static cases and during movements, while keeping stability.

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Classical stiff actuators versus compliant robotics joints . . . . . . . . . . 4

1.2 From biological systems to safe robots . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Mechanical impedance properties of muscle-joint systems . . . . . . 11

2.1 Musculoskeletal joint setup . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Hill-type muscle model . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Antagonistic joint geometries with two muscles . . . . . . . . . . 15

2.1.3 Simplified model of the human elbow joint with a pulley . . . . . 16

2.2 Mechanical impedance in a pulley hinge joint geometry . . . . . . . . . . 21

2.2.1 Reciprocal activation and co-activation of muscles . . . . . . . . . 21

2.2.2 Joint stiffness computation . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Joint viscosity computation . . . . . . . . . . . . . . . . . . . . . 23

2.3 Stiffness nodes in the joint range of motion . . . . . . . . . . . . . . . . . 26

2.3.1 Regions in the joint range of motion resulting from overlap of the
force-length curves . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Stiffness nodes evaluation for a pulley hinge joint geometry . . . . 29

2.3.3 Active force-length function approximation: cubic spline interpo-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Stiffness nodes prediction for different force-length curve approx-
imations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.5 Integration of a compliant tendon in the muscle model . . . . . . 36

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



TABLE OF CONTENTS

3 Control approaches to increase the stiffness variability in multi-muscle
driven joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Concurrent torque/stiffness control in the presence of stiffness nodes . . . 42

3.2.1 Stiffness generated by two muscle pairs in a pulley joint . . . . . . 46

3.2.2 Control approach adopting reciprocal activation and co-activation
(dedicated muscles) . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Stiffness node control strategy . . . . . . . . . . . . . . . . . . . . 51

3.2.4 Simulation results for a fixed joint position . . . . . . . . . . . . . 51

3.3 Optimal stiffness variation across a wide joint range of motion . . . . . . 54

3.3.1 Muscle parameters optimization process . . . . . . . . . . . . . . 55

3.3.2 Analysis of the optimal muscle setup . . . . . . . . . . . . . . . . 56

3.4 Torque/stiffness control approaches adopting the optimal muscle setup . 58

3.4.1 Activation overflow strategy . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Open-loop strategy with inverse model and activation overflow . . 62

3.4.3 Closed-loop control with inverse model and activation overflow . . 65

3.4.4 Response time comparison . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Bio-inspired control laws adopting antagonistic muscle actuation in a
simplified elbow joint setup . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Stability analysis of an antagonistically actuated hinge joint setup with
a pulley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Bio-inspired control strategy for stable compliant joints . . . . . . . . . . 73

4.2.1 Basic concurrent position/stiffness control . . . . . . . . . . . . . 73

4.2.2 Biological feedback system for the control of a single muscle . . . 74

4.2.3 Bio-inspired position controller . . . . . . . . . . . . . . . . . . . 76

4.2.4 Bio-inspired stiffness controller . . . . . . . . . . . . . . . . . . . 79

4.3 Bio-inspired position/stiffness control and simulation results . . . . . . . 80

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



TABLE OF CONTENTS

5 Application of the bio-inspired control laws on a compliant rotatory
joint drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Compliant robotics joint drive: design and identification . . . . . . . . . 85

5.1.1 Mechatronic setup . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Elastomer coupling model . . . . . . . . . . . . . . . . . . . . . . 88

5.1.3 Mechanical model of the compliant joint drive . . . . . . . . . . . 89

5.2 Identification of the joint drive model parameters . . . . . . . . . . . . . 91

5.2.1 Moments of inertia and gearbox torsional stiffness . . . . . . . . . 91

5.2.2 Motor side friction . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 Parameters optimization through gray-box identification . . . . . 94

5.3 Control of the loaded joint with fast system dynamics . . . . . . . . . . . 96

5.3.1 Motor speed control and friction compensation . . . . . . . . . . . 99

5.3.2 Output torque control design . . . . . . . . . . . . . . . . . . . . 101

5.3.3 Output position control . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.4 Mechanical impedance analysis . . . . . . . . . . . . . . . . . . . 104

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 PD position control (as reference) . . . . . . . . . . . . . . . . . . 107

5.4.2 Bio-inspired interaction control . . . . . . . . . . . . . . . . . . . 108

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Bio-inspired control achievements . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Musculoskeletal model and its limitations . . . . . . . . . . . . . . . . . . 116

6.3 Implications of stiffness node analysis . . . . . . . . . . . . . . . . . . . . 117

6.4 Implications of a multi-muscle setup . . . . . . . . . . . . . . . . . . . . . 119

6.5 Implications of the stability analysis
for the muscle-driven hinge joint . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Advantages for other research and future work . . . . . . . . . . . . . . . 120

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

vii



Chapter 1

Introduction

Traditionally, the robotics community favors stiff joints for accurate and fast positioning
tasks in perfectly known environments. Stiff robots, however, present a danger for
humans when an interaction takes place. For robotics applications such as prostheses,
rehabilitation devices, domestic and entertainment robots, the classical stiff actuation
is inappropriate as it does not give or comply in a collision.
Biological systems are intrinsically elastic and are able to adjust the compliance (or its
inverse, the stiffness) at the joint through co-activation of antagonistic muscles, i.e. pairs
of muscles (or groups of muscles) that pull in opposite directions. With the objective
to supply robotic joints with a similar compliant behavior, in this thesis the biological
example is analyzed and biologically inspired control strategies are designed. Since the
field of assistive robotic arms is broad, in this work we concentrate on two fundamental
areas. The first is the area of joint control. Here the research is related to the control
of compliant rotatory robotics joints. Though, while the control of a single physical
parameter is simple (e.g. the joint position), the simultaneous control of torque (or
position) and stiffness at the joint needs a more accurate analysis, which leads to the
second fundamental area: muscle biomimetics. In this case the research is focused
on the design and implementation of bio-inspired control concepts that feature muscle-
like virtual antagonistic actuation. Starting from classical control approaches [such as
impedance control (Hogan, 1985)], novel bio-inspired strategies are evaluated, tested
and validated on a robotics joint prototype.

In many biological systems, antagonistic muscles generate the movement of the joint.
In simple robotic systems, the movement is generated by only one actuator. Therefore,
virtual muscles are integrated into the control system, to take advantage of their prop-
erties. Although biological models concerning the control of muscles in vertebrates have
been developed (Franklin et al., 2008; Yang et al., 2011), still, the question remains,
how a control algorithm acting on two or even more virtual muscles can be developed
in a technical joint in order to perform like in biological systems.

On the way to find such a control algorithm, in this thesis the following questions are
investigated:

� How can muscle-like actuation be achieved in a technical joint?

� What facets of the biological actuation system are of interest in order to accomplish
a control task?
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CHAPTER 1. INTRODUCTION

� How can the elasticity of an antagonistically driven joint based on virtual muscles
be tuned?

� How can a system of virtual muscles be integrated into the control system of a
robotic joint drive?

� What kind of technical control schemes can be adopted to control the virtual
antagonistic system?

Muscle-like actuation and stiffness properties at the joint are analyzed adopting a sim-
plified model of the musculoskeletal joint. Based on recent results related to how the
central nervous system (CNS) controls the muscles, a biological control pattern is imple-
mented for the activation of the virtual muscles. This pattern makes use of reciprocal
activation (i.e. only one muscle is activated at a time) and co-activation (i.e. all antago-
nistic muscles are activated at the same time) and is adopted as base for all simultaneous
torque (or position) and stiffness control presented in this work. It will be shown that
the implementation of such a biological control pattern, coupled with a model of a
musculoskeletal setup, allows the modulation of the stiffness at the joint. However,
some limitations related to the selection of muscle and joint model parameters affect
the behavior of the controller. In particular, the concept of stiffness nodes is intro-
duced for which, despite muscle co-contraction, the stiffness variability results limited.
Novel technical control schemes are designed and multi-muscle solutions are adopted
in order to solve the problem. Finally, stability analysis and interaction tests on the
robotics prototype demonstrate that the control strategy designed in this thesis fulfills
the requirements.

In this chapter, the contributions of this work are outlined. Afterwards, a literature
review of the different approaches which have been adopted over the past years to
improve safety in the interaction between humans and robotic systems is discussed.
Starting from classical stiff joint actuators, different solutions have been introduced for
increasing the safety performances and realizing a compliant interaction. A further
section is dedicated to the analysis of biological systems and to the recent research on
bio-inspired control approaches as a basis for safe robot construction. The last section
of this chapter illustrates the thesis organization.

Contributions of this work

People with upper and lower limb motor impairment and physical disabilities (e.g.,
caused by spinal cord injury or disease) and even elderly people with decreased move-
ment capability need assistance to perform their daily tasks. As a consequence, an
increasing number of caregivers are needed to help such people in their everyday life.
The adoption of assistive robotic systems might improve the independence and the qual-
ity of life of these people and at the same time reduce societal costs. Therefore, in the
last few years, the development of assistive robotic arms, prostheses and orthoses has
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been gaining more and more popularity in the robotics community. Examples of recent
artificial limbs are the Modular Prosthetic Limb (Johannes et al., 2011) and the Boston
Digital Arm (Liberating Technologies, Inc., 2012).
With the objective to provide control schemes that can be adopted in applications which
combine technical and biological systems in areas such as prosthetics and orthotics, in
this work, the mechanical impedance of a robotic joint is analyzed and bio-inspired solu-
tions for impedance control are evaluated. The use of these control approaches could be
advantageous not only to make human-machine interaction more intuitive, for example
when the actuators are used in prosthetic or orthetic devices, but also to make it safer.

The scientific results presented in this thesis contain material from already published
papers (Annunziata et al., 2010, 2011; Annunziata and Schneider, 2012).
The original contributions can be grouped in four topics: (1) characterization of joint
impedance in a biological system; (2) introduction of the stiffness node–concept; (3)
evaluation of control strategies to achieve an optimal joint stiffness variation; (4) appli-
cation of the bio-inspired impedance control on a robotic drive. A short comment on
each of the original contributions is presented below.

Characterization of joint impedance in a biological system:
The first contribution of this thesis is a methodology to analyze the stiffness and viscosity
at the joint of a biological system. It is based on the model of the musculoskeletal
setup. This description allows to examine the joint stability properties and evaluate the
mechanical impedance response of a virtual biological joint when coupled with a drive.

Introduction of stiffness nodes:
Generally, biological systems change joint stiffness through co-activation of antagonistic
muscles. The second contribution is the detection of angular positions in the joint range
of motion for which stiffness does not vary with co-activation. We called these points
stiffness nodes. A mathematical description of the conditions of existence, the formula-
tion of their position and their investigation for different musculoskeletal parameters is
performed.

Evaluation of control strategies to achieve an optimal joint stiffness variation:
A third important contribution is directly related to the former one and refers to the
evaluation of an optimal musculoskeletal setup to increase the joint stiffness variation
for a wide angular range and the testing of different control laws to realize an optimal
muscle activation pattern.

Application of the bio-inspired impedance control on a robotic drive:
With the objective to realize a robotics joint with improved safety characteristics for
human-machine interaction, a control approach which combines technical and biological
properties was implemented and tested in a real joint. The technical drive is a high-
performance lightweight system with inherent elasticity. The fourth contribution made
in this thesis is that the mechanical impedance at the joint is controlled by adopting
nonlinear muscle models, virtual antagonistic actuation models and control laws which
are found in the CNS of vertebrates. The output of the bio-inspired controller is the net-
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CHAPTER 1. INTRODUCTION

torque of all virtual antagonistic muscles pulling at the joint. This net-torque is used
as an input for the technical drive, which, controlled using cascade feedback control,
generates the desired torque and reproduces the biological behavior.

1.1 Classical stiff actuators versus compliant robotics

joints

Classical industrial robotics requires predominantly stiff actuators and rigid support
structures to achieve high position accuracy and repeatability. Known as an “the stiffer,
the better” approach, it guarantees high control bandwidth, reduced instability, high
precision and is appropriate for tasks in which well-defined work must be realized in
a known environment (i.e., pick-and-place procedures). For these setups, considerable
attention has to be payed to the mechanical construction, taking into account both
torsional and bending stiffness in joints and segments. As the movements are fixed
and the environment known, a simple position control is usually adequate to realize the
desired movement. In actual industrial production, robots are still confined to operate
in cages. However, there are already some applications like polishing, welding and gen-
eral peg-in-hole problems (Mason, 1981) in which robots are subject to external forces
such as disturbances, collisions and interactions. In these situations, the performance
of the controller is critical. For example, for robots that have to interact with unknown
environments in order to complete a desired task, it would be necessary to have an ac-
curate model of the environment for the development of the controller, which is actually
difficult to obtain. Therefore, much of current robotic research has shifted its focus to
robots which can be employed as interaction partners for humans e.g., in assistance,
rehabilitation, domestic or entertainment (Honda, 2008; Vallery et al., 2008; Virk and
Nyoman, 2013). Robots that share an environment with humans must fulfill different
requirements from those typically found in industry. Especially with the objective to
increase safety in the interaction between robots and humans, in the last thirty years,
new control approaches referred to as interaction control (Chiaverini et al., 1999) have
been developed, in which the robot’s dynamic behavior can be selected according to the
situation or kind of interaction.

Traditionally, safety in human-robot interaction was guaranteed by increasing the sen-
sorization on the basis of real-time obstacle avoidance or prevention of collisions. An
example is proposed by Cheung and Lumelsky (1989) in which proximity-sensitive skin
sensors were adopted. Other approaches are based on the implementation of stiffness
control strategies to change the compliance at the joint, and are based on the concept of
impedance as formulated by Hogan (1985). In impedance control, the desired interaction
with the environment of the robot Tool Center Point (TCP) is modified according to a
mass-spring-damper equation until the desired dynamic behavior between end-effector
and the external force acting on the link is reached. Therefore, it is necessary to sense
external forces in the environment in order to develop a control law that facilitates a
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1.1. CLASSICAL STIFF ACTUATORS VERSUS COMPLIANT ROBOTICS
JOINTS

(a) (b)

Fig. 1.1: Examples of first attempts to obtain compliant robots [figures
from (Siciliano and Khatib, 2008), p. 288-289; reproduced with permission
of the publisher]. (a) The cable-driven anthropomorphic robot arm Dexter,
manufactured by Scienza Machinale s.r.l. (Pisa, Italy) and designed for
applications of assistance robotics. (b) The DLR LWR-III mounts torque
sensors to close the torque control loop and to control the compliance at
the joint.

desired interaction behavior. A simple approach to estimate the torque could be to
measure the motor current, taking advantage of the torque-current proportional rela-
tionship of DC-motors. Figure 1.1(a) shows an example of a robot manipulator in which
the compliance at the joints is controlled using the measurement of the motor current
(Zollo et al., 2003). However, motor torque is not the same as joint torque as the first
does not take into account the nonlinearity in the gearbox. A better way to control
the joint torque is its direct measurement using a torque sensor (Readman, 1994). In
the last fifteen years, many robots have been equipped with a torque sensor. Integrated
between the gearbox output and the load, the torque sensor allows the implementation
of joint torque–feedback control laws and feedback–linearization strategies in order to
compensate for the nonlinearity and friction effects present in the drive and in the gear-
box. Moreover, the feedback of the torque measured on the output side of the joint
improves the rejection of disturbances. This method is used mostly in systems where an
actuator is driving a joint using a large gear ratio. An example is the DLR lightweight
robot LWR-III [shown in fig. 1.1(b)] (Albu-Schäffer et al., 2007) in which the controller
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CHAPTER 1. INTRODUCTION

allows desired position and stiffness to be set while robot operation remains stable at all
times. Aside from the additional weight of the sensor and its electronics, the drawback
of such a strategy is that the compliance is mimicked by control. An exclusively feed-
back based controlled elasticity (called active compliance) could represent still a danger
during interactions in cases of outage, control errors, etc. Furthermore, it provides the
desired compliance characteristics only in a limited frequency range: the control band-
width (i.e. the range of frequencies for which controllable compliance can be achieved
with rigid joints), is limited due to control loop delay and time delay in the sensor data
acquisition. These types of actuators are therefore intrinsically stiff and not suitable for
human-robot interaction.
Ensuring safe interaction is extremely important in the construction and control of a
robot. However, safe behavior is not a unit that is directly measurable. In the absence
of such a quantity, several safety criteria have been defined in literature. An example is
the Head-Injury-Criteria (HIC) index. Developed by the automotive industry to corre-
late head acceleration to injury severity, the HIC-index has been adopted since 2004 in
the field of robotics and is used to provide an estimation of the resulting injury, should
a human head come into contact with a robotic manipulator, and to asses safety prop-
erties (Zinn et al., 2004). Taking into account the robotics arm effective inertia and its
covering material (interface stiffness), the HIC-index indicates that a lightweight con-
struction and the introduction of real elasticity (or passive compliance) into the joint are
good candidates for improving safety (see fig. 1.2). Passive compliant actuators with at
least one physical elastic element integrated into the joint provide intrinsic compliance
and reduce the risk for the user when an impact takes place, at a cost of lower high-
speed positioning accuracy and lower control bandwidth. Different technical actuation
systems and control approaches have been proposed and developed which realize joint
compliance with the integration of elastic elements.
Pratt and Williamson (Pratt and Williamson, 1995), with their Serial Elastic Actuator
(SEA), were among the first to introduce real serial elastic elements into a robotics
joint drive for generating passive compliance. In SEAs, the elastic element limits the
high-frequency impedance of the actuator to the stiffness of the elastic coupling. Fur-
thermore, the spring stiffness is constant, and as a consequence, the mechanical output
position of the joint drive cannot be independently controlled. Variable Stiffness Ac-
tuators (VSAs) were developed with the objective to control the position and stiffness
separately. They use two actuators, typically mounted in an antagonistic configuration,
in combination with an elastic element. Numerous VSAs have been proposed by the
robotics community. For example, Tonietti and co-workers adopted two DC motors
and a belt tensioned by springs (Tonietti et al., 2005). Hurst et al. (2004) proposed an
actuator with adjustable serial compliance by using an additional actuator in the joint
drive mounted in an antagonistic setup. Migliore et al. (2005) used a nonlinear spring
mechanism to mimic muscle behavior and to realize independent control of joint angle
and stiffness. In the area of technical, antagonistic actuation, also pneumatic actuators
were used to implement variable compliance based on their inherent nonlinear elasticity
(Daerden and Lefeber, 2001). An example of simultaneous torque and stiffness con-
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1.1. CLASSICAL STIFF ACTUATORS VERSUS COMPLIANT ROBOTICS
JOINTS
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Fig. 1.2: Head-Injury-Criteria index as found by Zinn, 2004 [figure from
(Zinn et al., 2004), used with author’s permission]. As example an impact
velocity of 1 m/s for the robot PUMA 560 produces a maximum HIC
greater than 500 which corresponds to a serious injury.

trol for pneumatic actuators is provided by Sardellitti et al. (2010). Recently, further
design solutions have been proposed to change the intrinsic stiffness of the elastic (or
passive) element. Some designs are based on the adjustment of its fixation point into the
drive, like in the Actuator With Adjustable Stiffness (AWAS) (Sardellitti et al., 2012).
Groothuis et al. (2012), presented a novel mechanism based on mechanical springs, in
which the spring-stiffness can be varied by setting its effective lever arm length. Nev-
ertheless, these solutions are difficult to miniaturize as they require at least a second
actuator and the construction of complex mechanisms. Furthermore, the introduction
of passive compliance into the joint could induce oscillations of the output link. In order
to actively modulate the impedance of the drive and reduce those oscillations, Laffranchi
and co-workers introduced an actuation system (CompaAct�) which integrates passive
compliance and a novel Variable Physical Damping Actuator (VPDA) unit (Laffranchi
et al., 2011). A robotic arm (CompAct Arm) was recently developed based on this
actuator (Laffranchi et al., 2012).
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CHAPTER 1. INTRODUCTION

1.2 From biological systems to safe robots

Many biological systems present three important properties: (1) they are antagonisti-
cally actuated; (2) they integrate intrinsic elastic elements, the muscles; (3) and they
are able to modulate joint impedance with respect to the task requirements, e.g., during
interactions with unknown environments.
Integrated into the antagonistic setup, each muscle is connected to the skeletal appara-
tus via tendons and is embedded within soft tissue, thus acting both as actuator and
as passive compliance. The muscles and the skeletal structure form the musculoskele-
tal setup, which results in a high order nonlinear elastic actuation system with many
parameters and degrees of freedom even at the joint level for a potential controller.
The combination of feedback signals such as interaction forces, joint position and ve-
locity, together with the neural commands to the muscles play a fundamental role for
the regulation of joint mechanical impedance. Antagonistic actuation by at least two
muscles leads to an additional degree of freedom for the control of the joint i.e. the
same joint torque can be achieved by different muscle activations. The CNS uses the
additional degree of freedom to set the joint torque and the stiffness independently in
a certain parameter range by co-activation of the antagonistic muscles (Hogan, 1984).
To be able to change joint stiffness by means of co-activation, the antagonistic actu-
ators must act as nonlinear springs, since the stretching of antagonistically operating
linear springs in a rotatory joint does not change the joint stiffness (Migliore et al.,
2007). Biological muscles represent such an actuator. Humans, for example, are able
to shift their operational mode from stiff (e.g. when performing delicate brain surgery)
to fully backdriveable (e.g. while throwing a ball or to prevent muscle damage due
to overload). Furthermore, studies on humans interacting with the environment (e.g.,
when using tools) have shown that instabilities might arise. In these cases, the CNS is
responsible both for controlling the movement and adequately stiffening the joint (thus
reaching robust stability). Again, this performance is achieved through co-activation of
antagonistic muscles (Gribble et al., 2003; Suzuki et al., 2001).

In the last fifteen years, an interdisciplinary science called biomechatronics has seen
rapid growth. In biomechatronics, the objective is to improve the construction and
control of mechatronics systems through the implementation of bio-inspired control
approaches and the adoption of construction principles as found in biological examples.
The fundamental idea in this thesis is that the observation of the biological example
and the adoption of physiological control mechanisms based on muscle models can lead
to successful solutions in the area of mechatronics. Chou and Hannaford (1997) were
among the first to apply knowledge of human physiological motion control in robotics.
Their antagonistic pneumatic actuators acted as elbow flexor and extensor and were
controlled by artificial neural networks that were based on physiological laws. Over the
last few years, many studies have focused on the implementation of impedance control
strategies based on neuromuscular models with optimization algorithms and learning
processes to improve safety in human-machine interaction. Burdet et al. (2006) and
Hoult and Cole (2008) proposed an algorithm to estimate feed-forward signals due to
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1.3. THESIS ORGANIZATION

external forces adopting internal models of human motor control. Franklin et al. (2008)
introduced a motor learning algorithm that made deductions based on observations in
psychophysical experiments. Using feedback loops and feed-forward signals, the motor
commands were iteratively adjusted based on a V-shaped learning function. Mitrovic
et al. (2009) adopted an antagonistic setup where the control of the joint impedance
during reaching tasks was achieved through optimization of a cost function based on
the position error. The result was a formalization of internal models for minimization
of energy consumption. In all these works, the muscles were modeled as linear spring-
damper systems in which the stiffness and damping vary as a function of activation.
In this thesis we adopt a different approach to realize a bio-equivalent technical actuation
system, by using nonlinear muscle models and models of physiological properties of
biological systems.

1.3 Thesis organization

This thesis is divided into six chapters and is organized as follows.

Chapter 2 presents the musculoskeletal joint setup and its mathematical model. Fur-
thermore, the relevant concepts related to muscle actuation such as co-activation, recip-
rocal activation, joint stiffness, torque generation and mechanical impedance properties
are illustrated. With the objective to control torque (or position) and stiffness at the
joint, a mathematical analysis of the stiffness provides the basis for the choice of relevant
control schemes.

In Chapter 3 several concurrent torque/stiffness control strategies are developed and
their effectiveness is tested in numerical simulations in Matlab/Simulink. An optimiza-
tion is performed to find the muscle configuration which results in the maximal stiffness
variation across the angular working range of motion.

Chapter 4 is dedicated to the design of a novel position and stiffness control strategy
that takes advantage of virtual antagonistic actuation using nonlinear muscle models
and physiologically based control laws. This strategy features antagonistic muscle co-
activation and adaptive regulation of joint compliance. Section 4.1 provides the analysis
of the stability properties of the joint for increasing co-activation. The proposed control
schema is able to adapt impedance to the interaction task with the objective to increase
stability (Section 4.2).

In Chapter 5 a lightweight rotatory robotics joint drive is presented. The integrated
passive elasticity with inherent damping characteristic, in the form of an elastomer
coupling, ensures intrinsic joint compliance. The measure of its torsion allows the es-
timation of the load torque, which in turn, is used for control purposes. A cascade
feedback control strategy is designed by modeling the drive in Matlab/Simulink and is
then tested on the robotics joint prototype. The bio-inspired control approach is applied
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CHAPTER 1. INTRODUCTION

to the drive. Its effectiveness is tested first in simulation and then validated on the real
drive.

This thesis is concluded in Chapter 6 with a summary of the main results achieved
in this thesis and by extending them with a discussion of their possible implications.
Finally we discuss possible future avenues for research in this area.
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Chapter 2

Mechanical impedance properties of
muscle-joint systems

This thesis concentrates on the design of bio-inspired control concepts for the modu-
lation of the impedance in robotic joints. The mechanical impedance is a measure of
how much a system resists to movement when subjected to an external force. This
chapter deals specifically with the analysis of the mechanical impedance properties re-
lated to musculoskeletal joint setups. A musculoskeletal setup is composed of a joint
geometry and at least two antagonistic muscles pulling at the joint. The mechanical
impedance at the joint is analyzed and concepts such as stiffness and viscosity are sep-
arately considered. Starting from studies which revealed that biological systems are
able to change joint stiffness by co-activation of antagonistic muscles, we show that in
dependence of certain muscle and joint parameters, positions in the angular joint space
can be found for which different levels of co-activation do not generate any change in
stiffness (stiffness nodes). Consequently, for joint positions in the vicinity of such nodes,
any stiffness controller would be expected to fail. After a mathematical analysis of the
conditions for which stiffness nodes occur, we show that it is possible to predict the node
positions. The musculoskeletal model proposed here captures the key complexities of
biological systems while preserving a framework that is sufficiently abstract to facilitate
computational studies of the overall control problem. The implications of more detailed
biological joint models, more realistic joint geometries and additional muscles charac-
teristics (Gaussian force-length curve and compliant tendons) are also investigated.

2.1 Musculoskeletal joint setup

A musculoskeletal system is made up of pairs of muscles, a skeletal structure (or ge-
ometry), tendons, ligaments, joints and other tissues that support and bind the organs
together. Muscles exist in pairs because each single muscle, by contracting, generates
a pulling force on the structure at which is connected but can not exert a pushing
force. Therefore, a second muscle which pulls in opposite direction is needed. This
framework composed by muscles arranged in opposing groups around a joint is called
antagonistic muscle-joint setup. With the objective to obtain a mathematical model
of an antagonistic muscle-joint setup, first the Hill-type muscle model is revisited and
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its mathematical description is provided, then different antagonistically actuated joint
geometries are evaluated. In order to model a human elbow joint, a hinge geometry
with a pulley, driven by two antagonistic muscles, is adopted.

2.1.1 Hill-type muscle model

activation
dynamics

neural
excitation

a

F-V curve

V

FV

1

1.8

0

�

Fmax

muscle

activation a

muscle

force FM

muscle velocity V

FV(V)

��

F-L curve

FLa

L

L0

1

0

muscle length L

FLa(L)

passive
elasticity (L)FLp

0

Fig. 2.1: Hill-type muscle model.

The force generated by a muscle can be estimated by using the Hill-type muscle model
(Hill, 1938; Zajac, 1989), which is widely used in the context of experimental movement
science [see e.g. Geyer et al. (2003)]. In this model, shown in fig. 2.1, the force produced
by a muscle depends on the muscle activation a, and varies with muscle sarcomere
length L and with the velocity V at which the muscle contracts or lengthens. Simpler
linear muscle models such as those proposed by Hogan (1984) are not suited since they
omit important details (like muscle nonlinear force-length relationship) that lead to the
effects described in this study. Models such as the λ-model (Feldman, 2008) take a
whole-system approach by observing the complete functionality of a limb with reflexes
and control overhead included. This perspective again disguises the low-level effects
discussed in this thesis.

In biological systems, muscle activation is a low-pass filtered neural input to the muscles
(activation dynamics). However, in this work, this phenomenon is omitted. Instead, the
activation is considered to be a normalized value in the range [0...1] corresponding to the
output of a simultaneous torque (or position) and stiffness control process described in
Chapter 3 and Chapter 4. The addition of a first-order excitation-activation dynamics
would have the effect of delaying the muscle contraction slightly, thus prolonging the
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2.1. MUSCULOSKELETAL JOINT SETUP

Table 2.1: Overall muscle force and force functions as adopted in the Hill-
type muscle model.

Description Unit

FM overall force output of the muscle model N
FLa(L) norm. active force-length function dimensionless
FLp(L) norm. passive force-length function dimensionless
FV(V ) norm. force-velocity function dimensionless
Fmax maximum muscle force N

time it takes to occur and lowering the muscle shortening velocity (Buchanan et al.,
2004). For the tasks analyzed in this study, these effects can be neglected with little
loss of accuracy. Furthermore, for simplification purposes, in this study, the nonlinear
behavior of tendons is not considered. Instead, a serial elastic element of high stiffness
is assumed as tendon (Gribble et al., 1998; Zajac, 1989). The consequences of this
assumption are discussed in Section 2.3.5.

For the mathematical description of the muscle model, the muscle force-length depen-
dency is divided into an active and a passive component.

Therefore, the overall time varying muscle force FM can be mathematically described as

FM = [FLa(L)FV(V ) a(t) + FLp(L)] Fmax (2.1)

where FLa(L) is the active length-dependent force component, FV(V ) is the velocity-
dependent force component and FLp(L) is the passive length-dependent force compo-
nent. All functions are normalized to a maximum isometric muscle force Fmax (see
Table 2.1), optimal muscle length L0 (length at which the active muscle force reaches
its maximum) and maximum shortening velocity Vmax.

The analytical expressions of the functions are approximations of the dimensionless
curves adopted by Zajac (1989). The active length dependent force, FLa, generated by
the contractile elements of muscle fibers can be approximated with several mathemati-
cal expressions1. In this thesis, a Gaussian (subscript G) and a quadratic (subscript q)
version of the active force-length relationship are used. The Gaussian version guaran-
tees a smooth transition to zero forces whereas the quadratic version shows an abrupt
transition. Both versions are commonly used to represent the force-length relationship
of a muscle and their expressions are

FLaG(L) = exp

[
c

∣∣∣∣L− L0

w L0

∣∣∣∣3
]

, and (2.2)

FLaq(L) =

{
1−

(
L−L0

w L0

)2

|L− L0| < w L0

0 otherwise
, (2.3)

1This curve is often modeled as a second-order polynomial (Woittiez et al., 1984) or Gaussian
(Geyer et al., 2003), although it is actually a bit more complex than those.
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Fig. 2.2: (a) Active muscle force generated with a Gaussian force-length
curve for different activations. The passive curve is depicted as a dashed
line. For the maximum activation, the sum of passive and active forces
(topmost curve) is shown. (b) Same as (a) but using a quadratic force-
length curve.

where c = ln(0.05) [fulfilling FLaG (L0 (1 ± w)) = 0.05] and 2 w L0 is the width of the
active muscle curve (Geyer et al., 2003). The region in which active muscle force is
generated is often assumed to range from∼ 0.5 L0 to∼ 1.5 L0 (corresponding to w ∼= 0.5)
(Burkholder and Lieber, 2001).

The passive force component, related to titin molecules, generates a nonlinear, length-
dependent restoring force independent of the muscle activation and is described by the
following equation

FLp(L) =

{
Kp (L− L0)2 L ≥ L0

0 otherwise
, (2.4)

where the parameter Kp changes the curvature of the curve (Zajac, 1989).

Figure 2.2 depicts the active force-length curve modeled with the Gaussian (a) and
quadratic (b) relations respectively, for different activations. In gray the active muscle
force along with the passive component for maximum activation (a=1) is depicted. The
active force follows the tension-length behavior of the sarcomere and scales with muscle
activation. The passive force is negligible for lengths less that the normal resting length
L0 and then starts to rise for growing muscle lengths.

The force-velocity dependency is approximated with the following function

FV(V ) =

{
Vmax−V

Vmax+Kv V
V > 0

Nn + (Nn − 1) Vmax+V
7.56 Kv V−Vmax

V ≤ 0
(2.5)

where the constant Kv regulates the curvature and Nn corresponds to the normalized
force value reached for V = −Vmax (Geyer et al., 2003). For V=0 the force FV is 1.

Figure 2.3 depicts the normalized muscle force as a function of normalized muscle length
and shortening velocity for maximum activation. The passive force component is re-
sponsible for high restoring forces when the muscle is stretched. In the main operative
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Fig. 2.3: Normalized muscle force FM generated for maximum activation
(a = 1) plotted over different normalized shortening velocity and normal-
ized muscle length. As example, the normalized force-velocity curve plotted
against the muscle resting length is depicted in red. The force-length curve
for V/Vmax=−0.5 is depicted in blue.

muscle range, the greatest force is produced when the lengthening is close to the resting
length. In addition, force is greater during lengthening (increasing negative velocities)
than shortening contractions (increasing positive velocities). Any movement in the fig-
ure corresponds to a “walk” on that surface. In red the force-velocity curve plotted
against the muscle resting length (length/L0=1) is depicted. The blue line represents
the force-length curve for V/Vmax = −0.5.

2.1.2 Antagonistic joint geometries with two muscles

The mechanical action of a muscle at joint level depends on its anatomical orientation
with respect to the center of rotation of the joint. Each muscle produces a torque,
product of the force FM and its moment arm, i.e. the distance from the point of force
application to the axis of rotation. For some joint setups this moment arm is constant,
in others the moment arm varies as a function of the skeletal configuration or geometry.
The simplest joint geometry is a one-degree-of-freedom (DoF) rotational hinge joint, like
the elbow and interphalangeal joints. These joints allow movements back and forth in
only one plane. Since the contraction of muscles develops unidirectional pulling forces,
to move a lever around the joint in opposite directions, at least two antagonistic muscles
are necessary. Figure 2.4(a) shows a simple hinge joint setup with a pulley. In this case,
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the radius r of the pulley is the lever arm at which the muscles pull and it remains
constant during joint rotation.
A closer approximation to biological musculoskeletal setups is depicted in fig. 2.4(b).
The distances r1 and r2 between the attachment points of the muscles to the skeletal
structure and the center of rotation are fixed but the moment arms at which the muscles
pull are a function of the joint angle.

2.1.3 Simplified model of the human elbow joint with a pulley

In this work, a simplified version of the human elbow joint is used as a biological
reference. We assume that the forearm is moved by only two antagonistic muscles
which are pulling upon the elbow joint. Figure 2.5(a) shows the simplified human arm
with the elbow joint that is moved by two antagonistic muscles (muscle 1 is the extensor
and muscle 2 is the flexor). The joint range of motion is depicted with a dashed arc. In
order to characterize stiffness and viscosity at the joint and later to test a concurrent
control of position and stiffness, a model of the biological system has to be defined. A
suitable model of the human elbow can be described by a hinge joint with a lever and two
muscles. A simple hinge joint geometry with a pulley [as shown in fig. 2.4(a)] is used for
the arm. Therefore, the moment arm for all the muscles acting on the joint corresponds
to the radius r of the pulley. The use of constant moment arms is a simplification
that allows a closed mathematical description of stiffness and is consistent with the
assumptions made by, e.g., the models of Gribble et al. (1998). For parameter fitting of
muscle data it can be assumed that this assumption degrades by 30% over a movement
range of 1.66 rad (Murray et al., 1995). However, in this thesis the simple constant
moment arm is used in the interest of simplicity. Figure 2.5(b) shows the antagonistic
pulley wheel actuated by two muscles. The joint angle α is defined as α0 = 0 when the

muscle 1

muscle 2

muscle 1

muscle 2

�

�

r
r1

pulley hinge joint extended hinge joint

r2

(a) (b)

Fig. 2.4: (a) Simplified antagonistic hinge joint geometry with two muscles
acting on a pulley. The moment arm is the same for both muscles and re-
mains constant during the lever arm movement. (b) Extended antagonistic
hinge joint geometry. The muscle attachment points to the structure are
such that the two moment arms are different and vary as a function of the
joint angle.
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Fig. 2.5: (a) Simplified depiction of a human arm with the elbow joint
moved by two muscles. (b) Two muscles in a simple hinge joint setup
which uses a pulley. L1 and L2 are the muscle lengths. The values Loff,1

and Loff,2 indicate the possible pre-stretch that can be set for the muscles
when integrated into the setup.

forearm is in the vertical position and the joint range of motion is limited to:

αmin ≤ α(t) ≤ αmax

with αmin = −π
3

rad and αmax = π
4

rad. L1 and L2 are the muscle lengths. The region
in which active muscle force is generated depends on the sarcomere length operating
range, which varies according to the species. Loff,1 and Loff,2 represent offset lengths
of the two muscles that allow the muscle insertion into the joint in a pre-stretched or
loosened way. Therefore, these offset parameters can be used to adjust the operating
range of the muscles with respect to the angular range of the joint.
The muscles are modeled based on the Hill-type model. When the lever arm moves,
whether due to the action of the contracting muscle, the action of the other muscle, or
to external forces, the muscles connected to that joint are subject to a change in length
∆L which depends on the joint angle α. In addition, each muscle is subjected to the pre-
stretch value Loff. Both length changes are deviations from the muscle resting length L0.
Therefore, for each muscle, the effective deviation ∆Leff of the muscle length from the
resting length L0 can be written as (positive direction of movement is counterclockwise):

∆Leff,1 = ∆L1 + Loff,1 with ∆L1 = rα
∆Leff,2 = ∆L2 + Loff,2 with ∆L2 = −rα .

(2.6)

Furthermore, for the given setup, the following relations between shortening velocity of
muscle 1 and muscle 2 and the joint angular velocity ω = α̇ hold:

V1 = −rω
V2 = rω .

(2.7)

17



CHAPTER 2. MECHANICAL IMPEDANCE PROPERTIES OF MUSCLE-JOINT
SYSTEMS

The hinge joint setup presented above, along with the muscle model introduced in
Section 2.1.1, is used for the analysis of the joint stiffness and its dependence on different
parameters of the joint-muscle setup.

The product w L0 in Equations (2.2) and (2.3) will always turn up as a pair. For the
sake of simplicity, this product is therefore rewritten as one parameter wL0. The same
holds true for the difference L−L0 in Equations (2.2), (2.3) and (2.4) which is replaced
by ∆Leff. As a consequence, the force-length relationship in Gaussian and quadratic
form can be rewritten as:

FLaG(∆Leff) = exp

[
c

∣∣∣∣∆Leff

wL0

∣∣∣∣3
]

(2.8)

FLaq(∆Leff) =

{
1−

(
∆Leff

wL0

)2

|∆Leff| < wL0

0 otherwise ,
(2.9)

and similarly the passive curve can be written as:

FLp(∆Leff) =

{
Kp (∆Leff)2 ∆Leff ≥ 0
0 otherwise .

(2.10)

For the simplified bio-inspired elbow joint model, several physiological parameters have
to be selected. In this thesis, the parameters for both the arm model and the muscle
model are obtained either directly from the literature or selected in order to match
empirical data (as in the case of joint stiffness and viscosity). The physical parameters
of the setup have been obtained from Katayama and Kawato (1993), Bennett et al.
(1992) and Lacquaniti et al. (1982) and are reported in Table 2.2 (where the length of
the moment arm r corresponds to the average value of anatomical data).
Referring to fig. 2.5(b), the lever is considered to be a uniform stick so that its center
of mass is at the geometrical center. M is the mass of the lever arm concentrated in the
center of gravity and l is the distance from the end of the lever to the axis of rotation

Table 2.2: Joint parameters for the antagonistic setup.

Variable Description Value Unit

r pulley radius 0.03 m
Jarm,model moment of inertia 0.06125 kg m2

M mass lever arm 1.5 kg
l length lever arm 0.35 m
Kmax max joint stiffness 351 Nm/rad
Bmax max joint viscosity 42 Nms/rad

1 for max co-activation
2 for low velocity

18



2.1. MUSCULOSKELETAL JOINT SETUP

of the pulley. Jarm,model is the moment of inertia of the lever and r is the radius of the
pulley. The axis of rotation for the lever passes through the center of the pulley which
corresponds to one end of the stick. The moment of inertia of the forearm about the
axis is calculated by applying the Parallel Axis Theorem:

Jarm,model = JCM + M d2

where JCM is the moment of inertia of the forearm if the rotation axis were to pass
through its center of mass, and d is the displacement of the axis from the center of
mass, which is 1

2
l. Therefore, this means that:

Jarm,model =
1

12
M l2 + M d2 =

1

12
(1.5 kg)(0.35 m)2 +

(1.5 kg)(
1

2
0.35 m)2 = 0.06125 kg m2 .

The rotational inertia of the forearm about the axis is 0.06125 kg m2.

The dynamics model equations of the setup shown in fig. 2.5(b) are:{
α̇ = ω
Jarm,model

∂ω
∂t

= τnet − τG − τL ,
(2.11)

where τnet is the joint net-torque, which is the sum of the torques of all the muscles
crossing the joint. The antagonistic muscles produce torques in opposite directions,
resulting in the net-torque being the difference between the torques produced by each
muscle:

τnet = τ2 − τ1 . (2.12)

τL is the load torque
τL = FL l

and τG is the gravitational torque about the joint

τG = M g d sin(α) ,

where g is the acceleration due to gravity. The muscle parameters adopted in this
thesis are based on measurements of the elbow muscles performed by Murray et al.
(2000). The values for maximum isometric force, maximum shortening velocity and the
curvature constant in the force-velocity curve are selected based on the values of elbow
joint stiffness and viscosity, experimentally measured by Lacquaniti et al. (1982) and
Bennett et al. (1992) (and reported in Table 2.2). The parameters for muscle 1 (M1,
extensor muscle) and muscle 2 (M2, flexor muscle) are given in Table 2.3.

The forces generated by the antagonistic muscles integrated into the model can be
depicted over the joint range of motion (joint angle α). Due to the joint setup, the
muscles are coupled by the skeletal framework and therefore their force-length curves
are superimposed. Figure 2.6 depicts the force-angle relationship of muscle 1 and muscle
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Table 2.3: Muscle parameters hinge joint.

Variable Description M1 M2 Unit

Loff pre-stretch 0.0 -0.035 m
wL0 half width F-L curve·optimal length 0.08 0.06 m
Fmax maximum isometric force 800 1200 N
Kp passive curve constant 2 2
Vmax max short. velocity 150 150 m/s
Nn max F/Fmax at −Vmax 1.8 1.8
Kv curvature constant F-V curve 5 5

2 for the pulley joint system, for the static case (ω = 0, i.e. the force contribution of the
force-velocity curve for both muscles is 1) and for maximum activations (a1 = a2 = 1)
when the quadratic force-length muscle function is adopted. The red curve depicts the
normalized force generated by muscle 1 and the blue curve shows the normalized force
(mirrored due to antagonistic setup) for muscle 2.
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Fig. 2.6: Forces in a hinge joint generated by two antagonistic muscles
plotted over joint angle for maximal activation and in the static case when
the quadratic force-length muscle function is adopted. The dashed lines
indicate force contributions corresponding to three different joint positions.
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2.2. MECHANICAL IMPEDANCE IN A PULLEY HINGE JOINT GEOMETRY

2.2 Mechanical impedance in a pulley hinge joint

geometry

An important function of the activity of antagonistic muscle groups is the modulation
of the mechanical impedance (Hogan, 1984). The mechanical impedance of biological
systems is often described using spring-damper-inertia (KBI) models (Popescu et al.,
2003). A KBI-model consists of a stiffness element (K), a damping element (B), and
an inertia element (I), where stiffness and damping parameters are typically identified
experimentally (through an optimization to obtain a best fit with experimental data).
Recent results suggest that the use of such models to investigate the dynamical proper-
ties of the musculoskeletal system under the control of the CNS is problematic because
a KBI-model neglects important properties of real musculoskeletal systems (Kistemaker
and Rozendaal, 2011). In this thesis the mechanical impedance about a joint is analyzed
by studying separately stiffness and viscosity properties. We illustrate those properties
in a mathematical framework adopting the Hill-type muscle model and the pulley joint
geometry introduced in Section 2.1.

2.2.1 Reciprocal activation and co-activation of muscles

Biological systems are elastic and are able to modulate the compliance at the joint
according to the task. The CNS is responsible for the muscle activation. Over the
last thirty years experimental observations of biological systems have shown that dur-
ing movements a superposition of two central commands to antagonistic motorneurons
takes place: reciprocal activation (i.e. a net activation difference) and co-activation
(i.e. the activation is the same for all muscles) of antagonistic muscle groups (Feld-
man, 1980; Franklin et al., 2008; Humphrey and Reed, 1983; Yamazaki et al., 1994).
Reciprocal activation controls the net joint torque while, due to the intrinsic muscle non-
linear elasticity, joint compliance modulation is achieved through antagonistic muscle
co-activation (Hogan, 1984). Research in biomechanics has suggested that co-activation
and movement of a limb can be controlled separately. For example subjects are able to
keep the net joint torque at a zero level, while the stiffness can be varied over a wide
range (Kearney and Hunter, 1990; Milner and Cloutier, 1998; Serres and Milner, 1991).
Other studies, however, suggest that joint stiffness and movements are closely connected
(Gribble et al., 1998; Suzuki et al., 2001) because the CNS adequately co-activates the
muscles and thus stiffens the joint during movements or when a disturbance is acting
on the limb to achieve robust stability (Gribble et al., 2003; Suzuki et al., 2001). The
price of co-activation is an increased level of energy consumption as opposing muscles
do not generate mechanical work (Carter et al., 1993; Hogan, 1984).

In this thesis, a novel bio-inspired control strategy is designed which adopts this biologi-
cal control pattern based on the superposition of reciprocal activation and co-activation.
With the objective of realizing a simultaneous control of position and stiffness for the
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simplified model of the human elbow joint with a pulley, joint stiffness has to be char-
acterized and analyzed.

2.2.2 Joint stiffness computation

The notion of stiffness as it is used in this thesis is related to the derivative of the force-
length relation (the slope) of the muscle model with respect to the muscle displacement.
This definition of stiffness (or its inverse, elasticity) complies with the notion of active
compliance or active stiffness in robotics which defines an actively controlled displace-
ment of a robot limb based on a force sensor signal without storing and releasing elastic
energy [see e.g. (Siciliano and Khatib, 2008)]. In cases where the physical nature of
a restoring force is neglected, it has been suggested that the term apparent stiffness
should be used instead (Latash and Zatsiorsky, 1993). In this work, tendons as serial
stiffness elements in the muscle model are omitted because in most cases the contractile
element in the muscle appears more elastic and therefore dominates the overall stiffness
[for tendon strain see Crisp (1972); for muscle strain see Burkholder and Lieber (2001)].
Also, Short Range Stiffness (SRS), which represents the ability of a muscle to compen-
sate perturbations before active voluntary or reflex action sets in (Cui et al., 2008) is
omitted in this study. SRS seems to acquire more importance in dynamic movements.
However, its overall significance has not yet been broadly evaluated (Hu et al., 2011).
For the analysis of the stiffness, the Gaussian expression causes numerical complications
due to its exponential formulation. Therefore, in this thesis we will adopt the quadratic
approximation (2.9). The expression of the stiffness generated by the antagonistically
actuated system described above can be obtained by calculating the first derivative of
the net joint torque τnet with respect to the joint angle α where

τnet = [FM,2(∆Leff,2, V2, a2(t))− FM,1(∆Leff,1, V1, a1(t))] r . (2.13)

Therefore the stiffness, K, about the joint is

K = −∂τnet

∂α
= −∂ (FM,2 r− FM,1 r)

∂α
=

− ∂[(FLaq(∆Leff,2)FV(V2) a2 + FLp(∆Leff,2)) Fmax,2 r]

∂α

+
∂[(FLaq(∆Leff,1)FV(V1) a1 + FLp(∆Leff,1))Fmax,1 r]

∂α
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and inserting (2.6), (2.9), (2.10), (2.5) and (2.7) this yields

K(α, ω, a1, a2) = 2 r2·({
−Fmax,1 a1 (Loff,1+rα)

w2
L01

if wL01 > |Loff,1 + rα|
0 otherwise

·


rω+Vmax

−Kv rω+Vmax
if ω ≤ 0

Nn + (Nn−1) (Vmax−rω)
−7.56 Kv rω−Vmax

otherwise

+

{
Fmax,1 Kp,1 (Loff,1 + rα) if α > −Loff,1

r

0 otherwise

−

{
Fmax,2 a2 (Loff,2−rα)

w2
L02

if wL02 > |Loff,2 − rα|
0 otherwise

·


−rω+Vmax

Kv rω+Vmax
if ω ≥ 0

Nn + (Nn−1) (Vmax+rω)
7.56 Kv rω−Vmax

otherwise

+

{
Fmax,2 Kp,2 (Loff,2 − rα) if α <

Loff,2

r

0 otherwise

)
. (2.14)

It can be seen that once the geometrical and muscle parameters are fixed the stiffness is
a function of the joint angle, its derivative and the two activations. The joint stiffness
can be plotted against the joint angle, α, for the cases of co-activation and zero joint
velocity (ω = 0) (see fig. 2.7). As the joint velocity is assumed to be zero, only force-
length curves are responsible for stiffness changes. The force-length curve is a quadratic
approximation and as such causes a discontinuity at α ≈ 0.8 rad corresponding to the
shortest muscle length in M2 for which active force is generated [see fig. 2.6].

For two muscles, acting in opposition around a joint, there exist an equilibrium position
at which the net-torque [equation (2.13)] is zero. This net-torque is function, among
others, of the two muscle activations. For each combination of muscle activations, a
certain equilibrium position is reached. Figure 2.8 shows the net-torque against the
joint angle for the setup introduced in fig. 2.6 and for perfect co-activation. The joint
stiffness plotted against the joint angle of fig. 2.7 is valid in general and not only at the
equilibrium position (e.g. the lower arm can be forced to a certain joint position by an
external force). At that joint position, a stiffness value, as reported in the figure, can
be measured.

2.2.3 Joint viscosity computation

During movement, the joint is subject to the force-velocity dependency of muscles, which
leads to the concepts of dynamic stiffness and viscosity. Milner and Cloutier (1998)
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Fig. 2.7: Joint stiffness plotted against joint angle for the setup introduced
in fig. 2.6 for perfect co-activation (a1 = a2).

investigated damping in a musculoskeletal system and found that the velocity-dependent
properties at the joint may play an important role in reducing the destabilizing effect due
to reflex delays. Furthermore, muscle viscosity depends on the steepness of the force-
velocity relationship (Stroeve, 1999) and increases with increasing muscle activation.
Therefore, in this thesis, the derivation of the dynamic joint stiffness during movement
(or viscosity) is obtained by calculating the first derivative of the net joint torque, τnet,
with respect to the joint velocity, ω, (Katayama and Kawato, 1993). As a consequence,
joint viscosity depends on the joint angle, its velocity and the muscle activations. The
expression of the viscosity, B, for the antagonistic hinge joint in this work is

B = −∂τ
∂ω

= −∂ (FM,2 r− FM,1 r)

∂ω
=

− ∂[(FLa(∆Leff,2)FV(V2) a2 + FLp(∆Leff,2)) Fmax,2 r]

∂ω

+
∂[(FLa(∆Leff,1)FV(V1) a1 + FLp(∆Leff,1)) Fmax,1 r]

∂ω
,
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Fig. 2.8: Net-torque plotted against joint angle for the setup introduced in
fig. 2.6 for perfect co-activation (a1 = a2).

and by incorporating (2.6), (2.9), (2.10), (2.5) and (2.7) this yields

B(α, ω, a1, a2) =

a1 Fmax,1 r ·({
1− (Loff,1+rα)2

w2
L01

if wL01 > |Loff,1 + rα|
0 otherwise

·


Kv (rω+Vmax)

(−Kv rω+Vmax)2 + 1
−Kv rω+Vmax

if ω < 0

1−Nn−7.56 Kv Nn

−7.56 Kv rω−Vmax
+ 7.56 Kv (rω−Nn rω−7.56 Kv Nn rω−Vmax)

(−7.56 Kv rω−Vmax)2 otherwise

)

−a2 Fmax,2 r ·({
1− (Loff,2−rα)2

w2
L02

if wL02 > |Loff,2 − rα|
0 otherwise

·


−1+Nn+7.56 Kv Nn

7.56 Kv rω−Vmax
− 7.56 Kv (−rω+Nn rω+7.56 Kv Nn rω−Vmax)

(7.56 Kv rω−Vmax)2 if ω < 0

−Kv (−rω+Vmax)
(Kv rω+Vmax)2 − 1

Kv rω+Vmax
otherwise

)
.

(2.15)
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Fig. 2.9: Joint viscosity plotted against joint angle for the setup introduced
in fig. 2.6 for perfect co-activation (a1 = a2) and slow movements.

Figure 2.9 shows the joint viscosity plotted against the joint angle, α, for slow movements
given equal levels of activation in both muscles (co-activation).

2.3 Stiffness nodes in the joint range of motion

Generally, co-contraction of antagonistic muscles allows the joint stiffness to be varied
independently of the torque (Hogan, 1984). However, in this section it will be shown that
situations can occur for which the ability to control joint stiffness through co-contraction
is limited.

While bio-inspiration is drawn from the antagonistic muscle setup and from the nonlin-
ear muscle characteristics, it has to be emphasized that in this section no experimental
data from a specific biological reference system has been used for the models. Parame-
ters are either chosen exemplarily to underline particular system behaviors or they are
normalized (arbitrary units, cmp. Table 2.4 and Table 2.7) and could be adapted to
specific biological data later. Nevertheless, the problem statements and the drawn con-
clusions in this study remain valid when adjusted to realistic parameters. In Section 6.3
an example will be shown that adopts a locust geometry and real biological data in
which the effects discussed here actually occur.
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2.3.1 Regions in the joint range of motion resulting from over-
lap of the force-length curves
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Fig. 2.10: (a) Force curves generated by two antagonistic muscles in a
pulley joint plotted over the joint angle for maximum activation of both
muscles. The curve for muscle 1 is depicted in red and for muscle 2 in
blue (mirrored due to antagonistic setup). Dotted lines indicate the course
of the active force curves. The overlaps of the active curves define three
regions. The mathematical expressions for region borders are given at the
top. The dashed vertical lines indicate the maximum of the force-length
curves (the mathematical expressions are given at the bottom). (b) same
as (a) but with the Gaussian force-length relation for the active muscle
forces. Region borders are adopted from the quadratic case.

In this section, the pulley joint setup is used together with the Hill-type muscle imple-
mentation and the biological control pattern strategy, to evaluate how muscle parameters
influence the stiffness properties.
The forces generated by two antagonistic muscles used in a pulley joint setup can be
depicted with respect to the angle of joint rotation α (see fig. 2.10). Figure 2.10(a)
depicts the force-angle relationship using the quadratic force-length expression and for
ω=0 (i.e. the force-velocity function contribution for both muscles is 1). The red curve
depicts the overall muscle force of muscle 1 and the blue curve shows the same for mus-
cle 2. The dotted lines indicate the course of the active muscle forces. The origins of the
two active force-angle functions are highlighted with circles. For zero forces, the active
muscle force curves indicate the natural borders of three regions. These three regions
occur when the muscle workspaces of the two antagonistic muscles overlap (which is
normally the case). Each region is bounded by two joint angles defined by the origins of
the active force-angle curves of a muscle. For two muscles, a maximum number of three
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regions may occur2. The middle region (region 1) represents the main working range of
the joint since both antagonistic muscles can actively influence the joint behavior. It has
to be emphasized that these regions are not a special case due to the piecewise definition
of the quadratic force length dependency but rather natural regions3. Hence, also in
the Gaussian case, which is depicted in fig. 2.10(b), three regions are depicted over the
joint angular range4. We therefore use the same region descriptions that were derived
from the quadratic case in both contexts. In order to evaluate stiffness properties in
the static case, the stiffness equation (2.14) is considered. For the special case ω = 0, it
reduces to:

K(α, a1, a2) = 2 r2·({
−Fmax,1 a1 (Loff,1+rα)

w2
L01

if wL01 > |Loff,1 + rα|
0 otherwise

−

{
Fmax,2 a2 (Loff,2−rα)

w2
L02

if wL02 > |Loff,2 − rα|
0 otherwise

+

{
Fmax,1 Kp,1 (Loff,1 + rα) if α > −Loff,1

r

0 otherwise

+

{
Fmax,2 Kp,2 (Loff,2 − rα) if α <

Loff,2

r

0 otherwise

)
. (2.16)

The first two lines of equation (2.16) represent the stiffness contribution due to the
active force-length relationship. The superposition of these active regions defines region
1. On either side of this superimposed region, two regions may exist in which only one
muscle is able to produce an active force (region 2 and region 3). Figure 2.11(a) shows
the joint stiffness for a quadratic force-length relation plotted against the joint angle α
in the case of co-activation. As expected, the stiffness in region 1 can be varied from a
minimum to a maximum value while increasing co-activation levels.
Using a numerical simulation, the stiffness-angle plot for the Gaussian force-length ex-
pression can be generated [see fig. 2.11(b)]. The principal ability to change the stiffness
by means of co-activation is the same as in fig. 2.11(a). The muscle parameters adopted
for the plots in fig. 2.10 are listed in Table 2.4 (column: No node occurrence). The
radius r of the pulley is assumed to be 1.

2Three regions occur when the two active curves partially overlap. Two regions occur when the
curves do not overlap. Only one region occurs when the two curves are completely overlapped.

3Active muscle force-length curves are actually limited.
4Although the Gaussian formulation presents unlimited borders, which would lead to ∞ wide

regions, in this thesis, the regions formulation as obtained for the quadratic force-length curves, is
adopted.
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Fig. 2.11: (a) Joint stiffness plotted against the joint angle for the setup
in fig. 2.10 for perfect co-activation. The highest activation (a1 = a2 = 1)
is depicted in green. (b) same as (a) but with the Gaussian force-length
relation for the active muscle forces.

Table 2.4: Muscle parameters of the antagonistic pulley joint setup.

No node occurrence Node occurrence

Parameter Description M1 M2 M1 M2

Loff pre-stretch 0.0 −0.3 0.0 −0.025
wL0 half width F-L curve 0.5 0.5 0.5 0.5
Fmax max. isometric force 1 1 1 1
Kp passive curve const. 2 2 2 2

2.3.2 Stiffness nodes evaluation for a pulley hinge joint geom-
etry

In a concurrent torque-stiffness control system, along with joint stiffness, joint torque
can be varied and therefore the activation levels to the antagonistic muscles cannot
remain the same. A certain offset and proportionality between the two activations
should be expected. In this context, dependent on the geometrical joint parameters,
one can find angular joint positions for which the joint stiffness does not change when
varying the activation levels of the muscles. Such points will be called “stiffness nodes”.
Figure 2.12(a) shows the occurrence of a stiffness node in the region 1 for an activation
ratio of a1/a2 = 1.5 and for a muscle pre-stretch, Loff,2, slightly changed5 with respect
to the situation in fig. 2.11 (to view the muscle parameters see Table 2.4, column:
Node occurrence). At this joint angle, the system loses its ability to choose a certain
stiffness as long as the activation ratio remains the same. Figure 2.12(b) shows a similar

5The pre-stretch Loff,2 was changed such that the stiffness node occurred in the middle.
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Fig. 2.12: (a) Joint stiffness plotted over the joint angle using the activation
scheme a1/a2=1.5) and, in order to have a better visualization of the node
position, the muscle pre-stretch Loff,2 is slightly changed with respect to
the situation in fig. 2.11. The highest activation (a1 = 1) is depicted in
green. For a certain joint angle, a stiffness node occurs. (b) same as (a)
but with the Gaussian force-length relation for the active muscle forces.

behavior when using a Gaussian force-length expression. Besides a small deviation of
the stiffness node position due to the different force-length function approximation, the
main characteristics are maintained (a comparison of the stiffness node positions in the
Gaussian and quadratic case is provided in Section 2.3.4).

In order to derive an analytical expression for the positions of stiffness nodes, the stiffness
expression has to be inspected more closely in terms of activations. For combinations
of α, a1 and a2 for which a change of a1 and a2 results in a minimal stiffness change
(stiffness node), the total differential of the function K with respect to a1 and a2 is zero.

dK(α, a1, a2) =
∂[K(α, a1, a2)]

∂a1

da1 +
∂[K(α, a1, a2)]

∂a2

da2
def
= 0 , (2.17)

where da1 and da2 are the differential changes in a1 and a2.
For the combination of the pulley geometry (2.6) and the quadratic force length expres-
sion (2.9), this results in

da1 r ·

({
−2 r

Fmax,1 (Loff,1+rα)

w2
L01

if wL01 > |Loff,1 + rα|
0 otherwise

)
−

da2 r ·

({
2 r

Fmax,2 (Loff,2−rα)

w2
L02

if wL02 > |Loff,2 − rα|
0 otherwise

)
def
= 0 ,
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that, in piecewise notation, corresponds to

−2 Fmax,1 da1 r2 (Loff,1+rα)

wL01
2 +

−2 Fmax,2 da2 r2 (Loff,2−rα)

wL02
2 = 0 if wL01 > |Loff,1 + rα| ∧ wL02 > |Loff,2 − rα|

−2 Fmax,1 da1 r2 (Loff,1+rα)

wL01
2 = 0 if wL01 > |Loff,1 + rα| ∧ wL02 ≤ |Loff,2 − rα|

−2 Fmax,2 da2 r2 (Loff,2−rα)

wL02
2 = 0 if wL01 ≤ |Loff,1 + rα| ∧ wL02 > |Loff,2 − rα| .

By solving these equations for α and assuming da1 6= 0 and da2 6= 0, the positions of
the stiffness nodes are defined:

α =
Loff,2 + Loff,1

da1 Fmax,1 wL02
2

da2 Fmax,2 wL01
2

r (1− da1 Fmax,1 wL02
2

da2 Fmax,2 wL01
2 )

if wL01 > |Loff,1 + rα| ∧ wL02 > |Loff,2 − rα| (2.18)

α =− Loff,1

r
if wL01 > |Loff,1 + rα| ∧ wL02 ≤ |Loff,2 − rα| (2.19)

α =
Loff,2

r
if wL01 ≤ |Loff,1 + rα| ∧ wL02 > |Loff,2 − rα| . (2.20)

Equation (2.18) is only dependent on the ratio of da1 and da2 and since in this study
the assumption a1

a2
= const. is made (i.e. the activations are in a linear relation), the

ratio da1

da2
can be replaced by a1

a2
:

α =
Loff,2 + Loff,1

a1 Fmax,1 wL02
2

a2 Fmax,2 wL01
2

r (1− a1 Fmax,1 wL02
2

a2 Fmax,2 wL01
2 )

if wL01 > |Loff,1 + rα| ∧ wL02 > |Loff,2 − rα| . (2.21)

Inserting the solutions for α into the respective region results in the conditions for the
existence of a node in each region. For the region 1, a node therefore exists if[

a1 Fmax,1

a2 Fmax,2

<
wL01

2

wL02
2
∧
(
|Loff,1 + Loff,2| <

∣∣∣∣∣
a2 Fmax,2

a1 Fmax,1
wL01

2 − wL02
2

wL02

∣∣∣∣∣
)]
∧[

a1 Fmax,1

a2 Fmax,2

>
wL01

2

wL02
2
∧
(
|Loff,1 + Loff,2| <

∣∣∣∣∣
a1 Fmax,1

a2 Fmax,2
wL02

2 − wL01
2

wL01

∣∣∣∣∣
)]

. (2.22)

The nodes in the side regions (region 2 and region 3) will exist if they satisfy the following
conditions, respectively:

wL01 > 0 ∧ wL02 ≤ |Loff,1 + Loff,2| (2.23)

wL02 > 0 ∧ wL01 ≤ |Loff,1 + Loff,2| . (2.24)

A closer inspection of the node position in the region 1, as expressed in equation (2.21),
shows that the node is absent if one of the two factors in the denominator is zero
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(given that the numerator is positive and not equal to zero). The first factor r is the
radius of the pulley which cannot be smaller than zero to allow torque generation.

The second factor (1 − a1 Fmax,1 wL02
2

a2 Fmax,2 wL01
2 ) is zero in the special case of equal muscles and

activations (wL01 = wL02, Fmax,1 = Fmax,2, a1=a2). In the general case this factor has to
be inspected more closely.

2.3.3 Active force-length function approximation: cubic spline
interpolation

In the previous section it was shown that in a hinge joint setup with two muscles
pulling upon a pulley, the superposition of the two force-length curves generate up
to three regions in the joint angle space and up to three stiffness nodes could occur
in the stiffness function. The active length-dependent force function, FLa, plays the
most important role in the stiffness evaluation. It was shown that this function can
be approximated with a quadratic or Gaussian expression. However, while for the
quadratic approximation it was possible to get a closed expression for the regions, the
node positions and the conditions of existence, the same mathematical formulation gives
numerical complications when performed with the Gaussian expression. On the other
hand, despite the fact that the quadratic approximation has the quality that it is easy
to manipulate, it leads to problems in the differential operations as can be seen by the
sharp discontinuities and abrupt transition to a zero force [see fig. 2.6 and fig. 2.11(a)].
Therefore, a function with a smoother shape than the quadratic function but simpler
than the Gaussian is desired. A good candidate would be a third order polynomial.
Moreover since in the stiffness analysis differential operations are required, there is
the need to have at least C2 functions6. Cubic splines satisfy the above requirements.
Therefore, in this section, a cubic spline interpolation for the Gaussian force-length
function (2.8) is performed.

For interpolation purposes, the function domain has to be selected and divided into a
discrete set of known data points. Since the active region of the force-length function is
assumed to range from ∼ 0.5 L0 to ∼ 1.5 L0, the domain extremes of the interpolation
function are set to 0.25 L0 and 1.75 L0. Since interpolation over uniform spaced intervals
does not guarantee the best approximation, an optimization scheme is introduced in
order to find the subset of intervals that delivers the best fit. L0 is kept in the middle
of the domain on purpose, thus dividing it in two halves. For symmetrical reasons, only
even numbers of subintervals are evaluated.
Given x0 = 0.25 L0 and xm = 1.75 L0, (where m is the number of subintervals) the
optimization algorithm has to find the vector β of parameters xj with j=1:m-1 such
that the spline interpolation model function f(x, β) best fits the data set (xi, yi) with
i=1:n and yi = FLaG(xi) (n is the number of points for which the error is evaluated and
in our case corresponds to 1000). A residual ri is defined as the difference between the

6First and second derivatives are continuous.
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Table 2.5: Least Mean Square interpolation error and sub-intervals.

m LMS error xj L0, (j = 1 : m− 1)

4 0.040926 0.446, 1, 1.56
6 0.0056325 0.624, 0.777, 1, 1.195, 1.404
8 0.00371426 0.607, 0.833, 1, 1.17, 1.237, 1.416, 1.584
10 0.00198698 0.396, 0.583, 0.807, 1, 1.188, 1.345, 1.4, 1.545, 1.729

actual value of the dependent variable yi and the value predicted by the model function:

ri = yi − f(xi, β) . (2.25)

The least squares method finds its optimum when the sum S of squared residuals is at
a minimum:

min
x∈(0.25 L0,1.75 L0)

S = min
x∈(0.25 L0,1.75 L0)

n∑
i=1

ri
2 (2.26)

The results of the optimization process are shown in Table 2.5 for different numbers of
subintervals m. As could be expected, the bigger m, the smaller the Least Mean Square
(LMS) error. Each subinterval corresponds to a piecewise cubic polynomial interpolation
of the Gaussian function. For simplification purposes, the number of polynomials that
are needed to interpolate the function should be kept small. The best compromise
between LMS error and number of intervals corresponds to the selection m = 67. Given
six subintervals along the length axis of the force-length function, the corresponding
spline interpolation composed by six polynomials has the form:

f(x) =



a0 + a1 x+ a2 x
2 + a3 x

3, 0.25 L0 ≤ x ≤ x1 L0

b0 + b1 x+ b2 x
2 + b3 x

3, x1 L0 ≤ x ≤ x2 L0

c0 + c1 x+ c2 x
2 + c3 x

3, x2 L0 ≤ x ≤ x3 L0

d0 + d1 x+ d2 x
2 + d3 x

3, x3 L0 ≤ x ≤ x4 L0

e0 + e1 x+ e2 x
2 + e3 x

3, x4 L0 ≤ x ≤ x5 L0

f0 + f1 x+ f2 x
2 + f3 x

3, x5 L0 ≤ x ≤ 1.75 L0 .

(2.27)

By using the length L instead of x and by recalling the positions made in Section 2.1.3
(w L0 = wL0 and L−L0 = ∆Leff), the general form for each of the six polynomials (2.27)
is:

Pi(L) = p0 + p1
∆Leff + 2 wL0

2 wL0

+ p2
(∆Leff + 2 wL0)2

(2 wL0)2
+ p3

(∆Leff + 2 wL0)3

(2 wL0)3
,

for 2 wL0 (xi − 1) ≤ ∆Leff ≤ 2 wL0 (xi+1 − 1) and i=1:6 . (2.28)

7Criterion of selection: the combination that delivers the minimum LMS error weighted for the
square of m is selected.
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The six polynomials in (2.28) present 24 unknowns and for achieving the spline inter-
polation, an equal number of conditions have to be set. Beyond the requirements of
interpolation (6 conditions) and continuity (6 conditions), for each internal point, first
derivative continuity (5 conditions) and second derivative continuity (5 conditions) are
required. In order to have a system with the same number of equations and unknowns,
as last two conditions the clamped convention has been selected for which end slopes
are prescribed. In our case this means the following conditions,

dP1(x)

dx
= 0 at x = x0

dP6(x)

dx
= 0 at x = x6 ,

are imposed.

Table 2.6 reports the numerical values of the 24 unknowns (a0, ..., f3) obtained as a result
of the spline interpolation. Figure 2.13 depicts the force-length function approximation
obtained adopting the spline interpolation. For comparison purposes, the Gaussian and
quadratic curves are also plotted.

Similar to the quadratic approximation (Section 2.1.3), the spline interpolation case
allows an expression of the stiffness as well as the stiffness node positions and the
conditions of existence to be derived.

2.3.4 Stiffness nodes prediction for different force-length curve
approximations

As it was pointed out in Section 2.3.2, the stiffness node positions predicted adopting
the quadratic approximation of the force-length function might differ from the positions
obtained when the Gaussian approximation is used. With the objective to evaluate the
ability to provide a good estimation for the node positions in the angular range of mo-
tion when using quadratic and spline interpolation, in this section a comparison with the
stiffness node positions obtained numerically adopting the Gaussian force-length curve

Table 2.6: Spline interpolation–polynomials parameters.

parameter p0 p1 p2 p3

a −0.23 2.43 −8.29 9.15
b 11.89 −55.81 85.01 −40.67
c −12.79 39.45 −37.59 11.93
d 13.15 −38.35 40.2 −14
e −62.57 151.72 −118.83 30.35
f 50.95 −90.76 53.82 −10.62

34



2.3. STIFFNESS NODES IN THE JOINT RANGE OF MOTION

muscle length
L -w0 L0 L0 L +0 wL0

fo
rc

e
/F

F
m

a
x

M

x1 x2 x5 x6x3 x4x0

Fig. 2.13: Force-length approximation for Gaussian, quadratic and spline
interpolation.

will be evaluated. The stiffness node estimation is pursued for all the possible combi-
nations of the parameters [wL0,1, wL0,2, Loff,1, Loff,2] varied in a certain range and for
different activation ratios c1 = a1/a2. Table 2.7 reports the parameters and their range
of variation. 4356 combinations have been evaluated and for each of them a maximum
of three stiffness nodes have been obtained. A prediction error for each stiffness node,
εnode, can be calculated comparing the positions in the quadratic and spline interpola-
tion with respect to the Gaussian case. Figure 2.14(a) depicts the prediction error for
each of the three possible nodes when the quadratic curve is used (Gaussian-quadratic
error εGq,node). Figure 2.14(b) shows the prediction error when the cubic spline interpo-
lation is adopted (Gaussian-spline error εGs,node). The average prediction error adopting
the spline interpolation is four times smaller than that obtained by using the quadratic
approximation.
In most of the cases, out of the three conditions of node existence [equations (2.22), (2.23)
and (2.24)] only two were satisfied (i.e., out of the three possible nodes, only two turned
up). Therefore, for most of the parameter combinations the prediction error for node 3
(εnode,3) does not exist (missing bars in fig. 2.14).
In the Gaussian-quadratic error evaluation, the biggest prediction error for node 1 and
2 is obtained when the pre-stretches parameters Loff,1 and Loff,2 are at the range limit
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and increases for increasing activation ratio c1. This is not the case when the spline
interpolation is adopted. Furthermore, parameters wL0,1 and wL0,2 slightly influence the
prediction error for both cases.
Finally, the adoption of the cubic spline interpolation generates a prediction error which,
in most of the cases, is lower than 0.1 rad. This result confirms that such an approxi-
mation might be adopted instead of the Gaussian representation delivering a negligible
prediction error.

2.3.5 Integration of a compliant tendon in the muscle model

In biological systems muscles are a source of force. It is well known that muscles
practically do not store a significant amount of elastic energy. Some energy is stored
in the titin molecules, which are represented by the passive force-length curve in the
Hill-model. Tendons, however, are able to store and return almost all of the deforma-
tion energy with little energy dissipation (Alexander, 1988). In current models of the
muscle-tendon complex, the tendons are connected in series with the contractile element
(muscle model). The physiological range of tendon strain lies below 4% (Crisp, 1972)
whereas many muscles show elongation and shortening of more than ±50% (Burkholder
and Lieber, 2001). Because of the serial connection, tendon and contractile element
experience the same force which results in a domination of the contractile element over
the tendon with respect to the general compliant behavior in these cases (assuming that
the tendon length is approximately the same as the muscle length or shorter). For this
reason and because tendon stiffness does not depend on the activation of the respective
muscle, in Section 2.1.1 a simplification assumption was adopted and the tendon was
considered to be very stiff. In this section we want to show that the stiffness properties
obtained so far are valid even when more compliant tendons are included into the muscle
model.

The tendon can be modeled as an elastic element where its compliance is proportional
to the tendon slack length (Lts). In the model proposed by Zajac the tendon is modeled

Table 2.7: Parameters used in the stiffness nodes prediction error evalua-
tion process. Each parameter is defined with a starting value and a range
in which it can vary during the process.

Range of variability

Parameter Description starting value Xi,low Xi,upp

c1 activation ratio 0.1 0.1 1.5
wL0,1 half width F-L curve M1 0.3 0.3 1
wL0,2 half width F-L curve M2 0.3 0.3 1
Loff,1 pre-stretch M1 −1.5 −1.5 1.5
Loff,2 pre-stretch M2 −1.5 −1.5 1.5
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Fig. 2.14: (a) Prediction error of the node positions when adopting the
quadratic force-length function with respect to the Gaussian case. Missing
bars: node does not exist. (b) Same as (a) but when the cubic spline
interpolation is used.

as a nonlinear function, normalized to slack length and maximum muscle force Fmax

(Zajac, 1989). This model has been integrated in series to the muscle model and sim-
ulations were performed adopting the Gaussian approximation and muscle parameters
as in Section 2.3.2. Three different values of the tendon slack length were evaluated.
Figure 2.15 shows the simulation results in terms of stiffness over the joint angle when
a very stiff tendon is introduced into the model [compare with fig. 2.12(b)].
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Fig. 2.15: Stiffness against the joint angle for different activations when a
very stiff tendon is inserted in series with the muscle. Higher activation is
shown in green. In the insets, two details, “detail 1” and “detail 2”, of the
stiffness plot are shown which illustrate that no nodes turn up.
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Fig. 2.16: Stiffness over the joint angle for two different tendon slack lengths
and for different activations. Higher activation is in green. (a) Joint stiff-
ness obtained when a stiff tendon (Lts = 1) is integrated in series with the
muscle model. (b) Same as (a) but for a compliant tendon (Lts = 2).

In fig. 2.16(a) the situation is depicted in which the tendon is less stiff while fig. 2.16(b)
shows the stiffness over the joint angle for a compliant tendon. The more compliant the
tendon is, the more the stiffness node turns to a region of low stiffness variation.
An important effect due to the introduction of a compliant tendon into the muscle model
is that the stiffness range becomes larger for increasing co-activation. This effect can be
expected as the muscle generates higher force, which pulls at the serial nonlinear spring
thus increasing the overall stiffness magnitude.
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2.4 Summary

This chapter has presented the different implications of muscle actuation such as joint
stiffness control, torque generation and mechanical impedance properties. Muscles are
modeled using a Hill-type model and a simple joint geometry – a hinge joint with a
pulley – is assumed to model a simplified version of the human elbow. Two muscles are
integrated in an antagonistic setup and the mechanical impedance of the muscle-driven
hinge joint was analyzed (Section 2.1). In Section 2.2, joint stiffness and damping
generated by a pair of antagonistic muscles driving a hinge joint with a pulley were
examined for different activations. It was shown that, in principle, in an antagonistic
co-activated muscle pair it is possible to achieve simultaneous control of joint torque and
stiffness. A careful analysis of the stiffness shows that dependent on some parameters
of the musculoskeletal setup (length of muscles, width of the force-length curves, pre-
stretched arrangement of the muscles, lever arm), positions in the angular joint range
of motion can be found for which co-contraction does not lead to a change of the joint
stiffness. For this property, the notion of “stiffness nodes” was introduced and its math-
ematical formulation was provided (Section 2.3). The force-length muscle curve was
approximated with a quadratic and a Gaussian expression. The stiffness node position
evaluation results in differential operation difficulties for the quadratic representation
and numerical complications for the Gaussian expression. To overcome these issues, a
cubic spline interpolation was sought (Section 2.3.3). A comparison of stiffness nodes
position prediction adopting the quadratic approximation and the spline interpolation
with respect to the Gaussian case shows that the spline interpolation is four times more
precise than the quadratic case. The chapter ended with an evaluation of the joint
stiffness with a tendon integrated into the muscle model (Section 2.3.5).
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Chapter 3

Control approaches to increase the
stiffness variability in multi-muscle
driven joints

The scientific results of this chapter were published in the journal Bioinspiration &
Biomimetics (Annunziata et al., 2011). This manuscript includes Jan Paskarbeit and
Axel Schneider as co-authors. The author carried out the simulations for the concurrent
torque/stiffness control with two and four muscles and the design/implementation of the
stiffness node controller of Section 3.2. The optimization process of Section 3.3 and the
design and simulation of different control approaches as proposed in Section 3.4 were
carried out in collaboration with the co-authors.

3.1 Introduction

In Chapter 2 it was shown that depending on the muscle and joint parameters, domains
might occur in the joint angular range for which stiffness variability is limited (low
stiffness variation) or even impossible (stiffness nodes). In order to design novel control
strategies for simultaneous control of torque and stiffness in a hinge joint actuated
by antagonistic muscles, a pure concurrent torque/stiffness control implementing co-
activation is tested (Section 3.2). Since it is expected that such an approach will fail
when a stiffness node is nearby, an additional pair of muscles is added to the joint which
results in additional DoFs that can be used for the control problem. One control strategy
that takes advantage of the additional muscle pair, handles stiffness nodes by shifting
them away from the current joint position and thus regaining stiffness controllability.
To prevent domains of low stiffness variation, an optimal muscle configuration is sought
and finally defined which allows for a maximal stiffness variation across a wide joint
angular range (Section 3.3). Based on this optimal configuration, four additional control
strategies are proposed and tested which deliver stiffnesses and torques comparable to
those obtained in the optimal case. The strategies combine torque control and stiffness
control by co-activation with novel ideas such as activation overflow and an inverse model
approach. All strategies are tested in simulation and the results are compared with
those of the optimal setup (Section 3.4). In this study, no specific biological example is
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Fig. 3.1: Concurrent torque and stiffness control for an antagonistic joint
setup with a pulley. On the right side, two muscles (M1 and M2) are
integrated in the antagonistic hinge joint setup. Forces F1 and F2 are
generated by muscle functions based on the activation levels a1 and a2.
The torque control on the left side activates either the agonistic (aτ,1)
or antagonistic (aτ,2) muscle in dependence of the desired joint torque.
The stiffness control on the top generates the same activation (ak) for
both muscles. Both controllers are of the proportional type. The muscle
activations are limited to 1.

simulated. Therefore, the values of variables used in all models are expressed as relative
and thus dimensionless numbers (arbitrary units, cmp. Tables 3.1, 3.2, 3.3, 3.4, 3.5).
Dimensionless force-length relationship and values for the parameters have been selected
such that the maximum muscle force and torque at the pulley wheel is one for maximum
activation (e.g. also the pulley radius is one) to simplify the analysis. Nevertheless, the
problem statements and conclusions remain valid when adjusted to realistic parameters.
It must be emphasized that also time responses are dimensionless. Real time responses
scale e.g. in dependence of maximum muscle force Fmax, etc.

3.2 Concurrent torque/stiffness control in the pres-

ence of stiffness nodes

Based on the stiffness node examination carried out in Chapter 2, in this section the
design of a concurrent torque and stiffness control will be introduced for the special case
in which the lever arm is fixed. It will be shown that in the absence of a stiffness node,
torque and stiffness can be set independently. However, if the stiffness node is present,
the controller cannot set the desired stiffness around the node position. The concurrent
torque and stiffness control is shown in fig. 3.1. The torque controller (on the left side) is
of the proportional type and activates either muscle 1 (M1) or muscle 2 (M2) depending
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Table 3.1: Simulation parameters.

Parameter Description Value

r pulley radius 1
Jarm,model pulley moment of inertia 1000

cτ,1 prop. gain torque cont.1 30
cτ,2 prop. gain torque cont.2 30
ck prop. gain stiffness cont. 5

on the desired joint torque (reciprocal activation). The activation output is converted
into a torque by an antagonistic joint setup (right side). This torque is used to close
the feedback loop. In order to change the stiffness of the joint setup, the co-activation
strategy is adopted. Therefore, another controller is needed that activates both muscles
at the same time. For this purpose, a stiffness control is added to the system (top
box). Using the activation levels of the two muscles and the actual angular position of
the joint, the stiffness of the system can be computed through equation (2.16). This
computed stiffness value is compared with the desired stiffness and the error is then
converted into equal activation levels for both muscles by a proportional controller.
Two simulations are performed. The first in absence of a stiffness node and the second
when a stiffness node is close to the joint position. Joint and control parameters adopted
in the simulations are listed in Table 3.1. The muscle parameters for the first simulation
are listed in Table 2.4 (column: No node occurrence), which corresponds to the joint
stiffness configuration plotted in fig. 2.11(a). The controllers and the antagonistic joint
are modeled using Matlab/Simulink 7.5 (The MathWorks Inc., Natick, MA, USA). To
held the angular position constant at α = 0.05, in an experimental setup, the lever
arm would be clamped. In simulation, a high inertia of the lever arm is assumed1 (see
Table 3.1). This strategy was chosen to set the values of the system parameters and to
study quasi-static situations. The results are also valid for other quasi-static situations
in which the inertia of the lever is lower. Figure 3.2 depicts the simulation results of the
concurrent torque/stiffness control for a fixed position and for the No node occurrence.
The torque and the stiffness are changed in the absence of a stiffness node. The torque
controller is activated at t = 1, the stiffness controller at t = 3. Beside a small error
due to the usage of proportional controllers, both desired stiffness and desired torque
are reached. The torque output is only insignificantly influenced by the change of the
stiffness.
In the second simulation, all parameters are the same as those adopted for the first one
except the pre-stretch Loff,2 which is changed in such a way that a stiffness node occurs
close to the joint angular position [the muscle parameters are listed in Table 2.4 (column:
Node occurrence)] and correspond to the joint stiffness configuration plotted in 2.12(a).
In this case a stiffness node at α=0.05 occurs. Figure 3.3 shows the torque/stiffness

1Assuming a high inertia of the lever arm, a deviation of the angular position of 0.001 rad at t=6
is obtained in simulation.
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Fig. 3.2: Simulation results of the concurrent torque/stiffness control for
an antagonistic muscle pair in a hinge joint setup for the case in which
no node is present around the angular joint position. At t=1 the torque
controller is switched on; torques are shown in (a). At t=3 the stiffness
controller is switched on. Stiffnesses are shown in (b). Beside a small error
due to the usage of proportional controllers, the desired values for torque
and stiffness are reached. Total activation 1 and activation 2 are shown as
black curves in (c). The only torque controller activation contributions are
shown as dashed gray curves.
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Fig. 3.3: Simulation results of the concurrent torque/stiffness control for
an antagonistic muscle pair in a hinge joint setup for the case in which a
node is present around the angular joint position. The lever arm is kept at
a joint angle α = 0.05 assuming high inertia. At t=1 the torque controller
is switched on; torques are shown in (a). At t=3 the stiffness controller is
switched on [stiffnesses are shown in (b)] but this time the desired stiffness
cannot be reached although both activations are driven to their limits (c).

control simulation results. Due to the change of the pre-stretch, the stiffness of the
system is non-zero during the first second of the simulation although both activations
are set to zero. This is caused by the passive force-length function. At t = 1 the torque
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controller is turned on and the desired torque, beside a small error due to the usage of
a proportional controller, is reached. At t = 3, the stiffness controller is also switched
on but in contrast to the No node occurrence the ability to reach higher stiffnesses
is reduced significantly although both activation signals are at their maximum value
[fig. 3.3(c)]. Moreover, since the activation level is maximal for both muscles, the actual
torque deviates considerably from the desired value [fig. 3.3(a)]. This result shows that
for the simultaneous control of torque and stiffness the setup with two muscles is coupled
and therefore not fully controllable. The conclusion is that, given a fixed set of joint and
muscle parameters, the number of DoFs available to control the system is not enough for
designing a control strategy able to overcome the presence of a stiffness node. Therefore,
any concurrent torque/stiffness controller is bound to fail.

3.2.1 Stiffness generated by two muscle pairs in a pulley joint

With the objective of decoupling the control of torque and stiffness, at least one further
DoF has to be added to the joint system. The introduction of a third muscle in the setup
adds an additional DoF that can be used to decouple the control of torque and stiffness
in cases in which controllability is reduced and to cope with the potential occurrence
of a stiffness node. In this study, two instead of one additional muscles are introduced
to allow symmetric joint operation. Figure 3.4(a) shows the antagonistic setup with
four muscles pulling at the hinge joint. Similar to the two-muscles setup, also for this
configuration the joint stiffness can be obtained in a closed formula. The region borders
can be explicitly found, too. The borderlines of these regions occur at those positions
in the angular space of the joint where the active force-angle curves have their root.
Figure 3.4(b) depicts regions and force-angle relations adopting the values reported in
Table 3.2 (column: No node occurrence). The configuration with four muscles allows
the design of a suitable control strategy to get rid of the influence of stiffness nodes. For
example, the stiffness controller can adopt co-contraction of two antagonistic muscles
while the torque control could be realized by differential actuation of the remaining two
muscles. In this way, the control problem could be decoupled. Despite the decoupling, it
can still be expected that the interplay of control strategies generates combinations of the

Table 3.2: Muscle parameters for the analysis of the stiffness for a four-
muscles hinge joint setup with a pulley wheel.

No node occurrence Node occurrence

Par. Description M1 M2 M3 M4 M1 M2 M3 M4

Loff pre-stretch 0.0 −0.025 0.0 0.0 0.0 0.0 −0.025 0.0
wL0 half width F-L curve 0.5 0.5 0.8 1 0.5 0.8 0.5 1
Fmax max. isometric force 1 1 1 1 1 1 1 1
Kp passive curve const. 2 2 2 2 2 2 2 2
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Fig. 3.4: (a) Four muscles integrated in a hinge joint setup using a pulley
wheel. L1, L2, L3 and L4 are the muscle lengths. The values Loff,1, Loff,2,
Loff,3 and Loff,4 represent the muscle pre-stretch. α indicates the joint angle.
(b) Active force-length curves in a hinge joint generated by two antagonistic
muscle pairs plotted over the joint angle. The force contribution for each
muscle is depicted in red (muscle 1), blue (muscle 2), black (muscle 3)
and green (muscle 4), respectively. Their overlap in the joint angle space
defines different regions. The region in the middle is called region 1 in
the figure. The mathematical expressions for the angular positions of the
region borders are given at the top.

four activations a1, a2, a3 and a4 for which stiffness nodes can occur. For 4 muscles, all
possible combinations of the active force-length curves overlap, deliver up to 15 regions

47



CHAPTER 3. CONTROL APPROACHES TO INCREASE THE STIFFNESS
VARIABILITY IN MULTI-MUSCLE DRIVEN JOINTS

joint angle �

s
ti
ff
n

e
s
s
 K

a a1 2= in [ 0...1], =0, =0.2a a3 4

(b)(a)

stiffness
node

region 1

joint angle �

s
ti
ff
n

e
s
s
 K

a a1 2= in [ 0...1], =0, =0.2a a3 4

region 1

Fig. 3.5: (a) Stiffness generated by the setup of fig. 3.4(b) when using a co-
activation strategy for M1 and M2. In this case no stiffness nodes occur but
the range of stiffness change is limited. (b) Same as (a) but exchanging the
muscle parameters among M2 and M3 leads to the appearance of a stiffness
node.

at which correspond a maximum of 15 possible stiffness nodes. Figure 3.5(a) shows the
joint stiffness generated at the hinge joint for increasing co-activation of muscle 1 and 2
and a constant differential activation among muscle 3 and 4. The plot shows that even
though no stiffness nodes occur, the possible stiffness variation might still be limited.
Therefore, later in this study the question is posed what an optimal muscle setup might
look like (Section 3.3). Optimal in this case refers to the ability to generate a maximal
stiffness variation across a given angular joint range of motion. Figure 3.5(b) shows the
stiffnesses for the same configuration as in (a) but with exchanged parameters between
M2 and M3 [see Table 3.2 (column: Node occurrence)]. In this case a stiffness node in
region 1 occurs. The position of the stiffness node αnode,1 occurring in region 1 is given
by the following expression obtained with the quadratic force-length approximation:

αnode,1(a1, a2, a3, a4) =

a1 Fmax,1 Loff,1 r2

w2
L0,1

+
a2 Fmax,2 Loff,2 r2

w2
L0,2

−a1 Fmax,1 r3

w2
L0,1

+ a2 Fmax,2 r3

w2
L0,2

− a3 Fmax,3 r3

w2
L0,3

+ a4 Fmax,4 r3

w2
L0,4

+

a3 Fmax,3 Loff,3 r2

w2
L0,3

+
a4 Fmax,4 Loff,4 r2

w2
L0,4

−a1 Fmax,1 r3

w2
L0,1

+ a2 Fmax,2 r3

w2
L0,2

− a3 Fmax,3 r3

w2
L0,3

+ a4 Fmax,4 r3

w2
L0,4

(3.1)

and the region of existence is:

wL01 > |Loff,1 + r · α| ∧ wL02 > |Loff,2 − r · α| ∧
wL03 > |Loff,3 + r · α| ∧ wL04 > |Loff,4 − r · α| . (3.2)
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In the following, the attention will be focused on the design of a control approach for
the joint setup with four muscles which is able to shift the node αnode,1 away when it
occurs.

3.2.2 Control approach adopting reciprocal activation and co-
activation (dedicated muscles)

The use of two pairs of antagonistic muscles for driving the hinge joint adds additional
DoFs that can be used in the control strategy for shifting the node and therefore enabling
the torque and stiffness controllers to reach the desired values. In the following, a
separate torque and stiffness control scheme for the joint setup with four muscles is
combined with an additional controller that shifts the node away when the angular
position of the joint approaches the node position. According to the function principle,
the control strategy is called stiffness node control. Equation (3.1) gives the position of
the stiffness node in region 1. A change in any activation influences the node position.
With the objective to find out the activation that influences the node position the most,
the partial derivatives of equation (3.1) with respect to all four activations have to be
analyzed: {

∂αnode,1

∂a1

,
∂αnode,1

∂a2

,
∂αnode,1

∂a3

,
∂αnode,1

∂a4

}
. (3.3)

The activation with the strongest influence on the stiffness node position corresponds to
the biggest absolute partial derivative in (3.3). This idea will be used for the development
of a node control strategy. Figure 3.6 shows the simultaneous torque/stiffness control
with the additional stiffness node control. A dedicated muscle pair is adopted by the
stiffness control which acts on M1 and M2 implementing co-activation. The torque
control acts on one of the remaining two muscles M3 or M4 in dependence of the desired
torque direction (reciprocal activation). As it is explained below, the stiffness node
control chooses one out of the four activations to shift away the node position.
The torque controller is of PI type and provides the activations for the muscles to set
the joint torque. With the torque error eτ , the control strategy can be written as

aτ,3 =

(
cp,τ · |eτ |+ ci,τ ·

∫
|eτ | dt

)
· φ

aτ,4 =

(
cp,τ · |eτ |+ ci,τ ·

∫
|eτ | dt

)
· φ

with cp,τ and ci,τ being the proportional and integral controller gains, respectively. The
activations can only be positive, therefore the absolute value of the torque error is
considered. The variable φ is used to generate the torque in the desired angular direction
and here is adopted to activate either M3 or M4 in this way:

φ =

{
1 eτ < 0
0 eτ ≥ 0 .
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Fig. 3.6: Simultaneous torque/stiffness control for the antagonistic setup
composed by two muscle pairs in a pulley joint. On the right side, four
muscles (M1–M4) are integrated in the antagonistic setup. Based on the
activation a1–a4, the muscle forces F1–F4 are generated. The torque control
(on the left side) acts on M3 and M4 activating either the agonistic (aτ,3)
or the antagonistic (aτ,4) muscle in dependence of the joint torque error
(eτ ). The stiffness control (at the top) activates M1 and M2 with the same
value (ak) (co-activation). If a node is close to the angular joint position,
the stiffness node control (at the bottom, enclosed in a rectangular dashed
line) adds an offset to the activation which influences the node position the
most with the objective to shift the stiffness node away. All activations are
limited to 1.

The stiffness controller is also of PI type and provides the activations to the muscles
to reach the desired stiffness Kdes. The computed stiffness Kcomp is calculated in the
stiffness computation box (on the top of fig. 3.6).

Therefore, starting from the stiffness error

ek = Kdes −Kcomp,

the stiffness controller generates the control value

ak = cp,k · ek + ci,k ·
∫

ek dt

with the proportional and integral controller gains cp,k and ci,k. The stiffness activation
can also be negative; therefore here the signed error is considered.
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3.2.3 Stiffness node control strategy

A node in the vicinity of the actual joint position decreases the ability to control the
stiffness. In this section, a stiffness node control is introduced which is able to shift
a potential node away. The stiffness node control is designed such that one among
the four available activations is modified to accomplish the goal. The main idea is
based on the addition or subtraction of a certain offset activation an to/from a selected
activation. The activation is selected based on the stiffness error ek. The offset sign
(addition/subtraction) depends on the direction of the desired node shifting movement
(with respect to the actual joint position). The procedure for selecting the activation
and the sign is realized according to the following strategy. First, the muscle with the
strongest influence on the node position is selected [biggest absolute value of (3.3)].
Second, the sign variable εnode,j (see below) is set according to the partial derivative of
the node function and the relative position of node and joint i.e. it determines whether
the activation has to be increased or decreased. If the activation an,j (with j indicating
the muscle, j in [1,2,3,4]) of the selected muscle is already saturated at 1 and an increase
is desired or if the activation is 0 and a decrease is desired, the second best muscle is
selected. In this case, both torque and stiffness will present jumps which lead to a longer
transient in the control response. The direction of the node controller activation depends
on the slope of the gradient: If it is negative, an increase of the activation an,j pushes
the node to the left, while if it is positive, an increase of the activation an,j pushes the
node to the right. The sign εnode,j of the activation contribution an,j, is mathematical
defined as follows:

εnode,j =


−1 slope > 0 ∧ (α− αnode,1) < 0
−1 slope < 0 ∧ (α− αnode,1) < 0
−1 slope < 0 ∧ (α− αnode,1) ≥ 0
−1 slope > 0 ∧ (α− αnode,1) ≥ 0 .

As example, if the node αnode,1 is on the left side of the actual joint position α, it has to
be pushed more to the left to avoid an occurrence in the joint working range. According
to the slope of the gradient, the activation an,j has to increase (εnode,j = 1) if the slope
is negative and decrease (εnode,j = −1) if the slope is positive (cmp. fig. 3.7). The node
controller contribution an,j for the selected activation can be expressed as:

an,j = ( cp,n · |ek|+ ci,n ·
∫
|ek| dt ) · εnode,j .

3.2.4 Simulation results for a fixed joint position

The effect of the stiffness node control on the performance of a simultaneously work-
ing torque/stiffness control when the joint angle is close to a stiffness node is shown in
fig. 3.8. Subplots (a)-(b) show the torque and the stiffness with the stiffness node control
switched off. The torque controller is turned on at t = 1, the stiffness controller at t = 2.
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Fig. 3.7: A node is close to the actual joint angle and lies on its left hand
side. In order to push it away, the node controller has to push it further
to the left. Therefore, the activation contribution an,j has to be positive if
the gradient has a negative slope or negative if the gradient has a positive
slope.

The desired torque is reached while the desired stiffness cannot be reached although ac-
tivations a1 and a2 are saturated [subplot (c)] indicating highest possible co-contraction.
The controllers and the four muscles joint setup were modeled in Matlab/Simulink 7.11
(The MathWorks Inc., Natick, MA, USA). To held the angular position constant at
α = 0, in an experimental setup, the limb segment would be clamped. In simulation,
a high inertia of the limb segment is assumed2. Table 3.3 reports the joint and control
parameters used in the simulation. Also in this case the results presented are valid for
other quasi-static situations in which the inertia of the limb is lower.
Figure 3.9(a)-(d) depicts the simulation results for the case in which the stiffness node

Table 3.3: Simulation parameters for the torque/stiffness/node controller
for a setup with four muscles driving a pulley wheel hinge joint [muscle
parameters are given in Table 3.2 (column: Node occurrence)].

Parameter Description Value

r pulley radius 1
Jarm,model pulley moment of inertia 1000

cp,τ prop. gain torque contr. 0.8
ci,τ integ. gain torque contr. 20
cp,k prop. gain stiffness contr. 1
ci,k integ. gain stiffness contr. 5
cp,n prop. gain node contr. 0.2
ci,n integ. gain node contr. 5

2The angular position shows a deviation of 0.002 rad at t=6 in simulation.
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Fig. 3.8: Simulation results of the concurrent torque/stiffness control for
two antagonistic muscle pairs in a hinge joint setup when the stiffness node
controller is not operating. The joint is fixed at a joint angle α = 0. At
t = 1 the torque controller is turned on (a). At t = 2 the stiffness controller
is also turned on (b). The desired torque is reached (a), while the desired
stiffness is not (b), although both activations a1 and a2 responsible for the
control of the stiffness are driven to the maximum values (c, top). The node
controller activation is zero over the complete test as it was left switched off
(d, top). The joint position corresponds to the node position (d, bottom).

controller is switched on. Both desired stiffness and desired torque are reached [cmp.
fig. 3.9(a) and (b)] because the stiffness node control has shifted the node away [cmp.
joint and node position in fig. 3.9(d)]. At t = 2 the net-torque is disturbed by the node
controller action (an activation offset is added to activation a3) but the torque controller
compensates this disturbance by increasing a4 [cmp. fig. 3.9(c)].
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Fig. 3.9: Simulation results of the concurrent torque/stiffness control for
two antagonistic muscle pairs in a hinge joint setup with a stiffness node
controller. The joint is fixed at a joint angle α = 0 which corresponds to
the node position. At t = 1 the torque controller is turned on (a). At
t = 2 the stiffness controller (b) and the stiffness node controller (d, top)
are also turned on. Both desired torque and stiffness values are reached
(a-b) because the node is shifted away from the joint position (d, bottom).

3.3 Optimal stiffness variation across a wide joint

range of motion

It has been mentioned before that even without the occurrence of a stiffness node the
range of possible joint stiffness variation can be small [cmp. fig. 3.5(a)]. In the following,
the question is answered what is the maximal and minimal joint stiffness at a given joint
angle and torque that can be reached when any combination of all four activations is
allowed? Furthermore, how does an optimal hinge joint setup with two antagonistic
muscle pairs look like? Optimal in this case means maximal stiffness variation over a
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given interval of joint angles. In the following, the hinge joint with a pulley and two
antagonistic muscle pairs will be used to answer these questions. The results of this
optimization are used in subsequent sections to derive control strategies which generate
activation patterns with a stiffness variability that comes close to this optimum.

3.3.1 Muscle parameters optimization process

In this section a set of optimal muscle parameters is sought. The optimization algo-
rithm follows a brute-force approach3 since the number of parameters is quite small and
simulation time for one trial is short. The optimization goal is to find a set of muscle
parameters for which region 1 has a symmetric domain of [−π

2
, π

2
] rad in the angular

range of motion. For each set of muscle parameters under analysis, the process collects
all the torques and stiffnesses generated at each angular position when varying the four
activations in the interval [0, 1] with steps of 0.1. Then, the generated torques are sorted
into bins of width 0.1 within the interval [−2, 2]. After that, for each torque group, the
maximum and minimum stiffness are selected. In this way, two stiffness surfaces over the
angular and torque ranges can be created corresponding to the maximal and minimal
possible stiffness that can be reached.

The process started with a set of muscle parameters xi (i = 1...m) the range of which
was constrained by the lower boundary Xi,low and the upper boundary Xi,upp as reported
in Table 3.4. m corresponds to the number of parameters (in our case is 3) times the
number of muscles (in our case is 4), which gives m = 12. The optimization algorithm
finds the set of parameters such that the stiffness variability in the angular working
range [−π

2
, π

2
] rad is maximized given that the activations span the interval [0, 1] with

steps of 0.1. For each set of muscle parameters, n activation patterns are analyzed
corresponding to all possible combinations of the four activations4.

Table 3.4: Muscle parameters used in the optimization process. For each
muscle, the muscle parameters are defined with a starting value and a range
in which they can vary during the optimization.

Range of parameter variability

xi Description starting value Xi,low Xi,upp

Loff pre-stretch 0 −π π
wL0 half width F-L curve 1 0.5 2π
Kp passive curve const. 1 0 2

3The algorithm goes through all possible combinations of parameters.
4Each activation starts at 0 and increases stepwise of 0.1 till the maximum activation, a=1, is

reached.
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The objective function E(xi) to be minimized is defined as the sum of two terms

E(xi) =
n∑
k=1

[|Smax,k − 1|+ (Smin,k − 0)] with Smax,k , Smin,k ∈ [0, 1]

where the first is the absolute difference between the maximum stiffness generated in
bin k (denoted as Smax,k) and a reference value which was 1. The second is the difference
between the minimum stiffness generated in bin k (denoted as Smin,k) and a reference
value which was 0. Smax,k and Smin,k were limited to the interval [0, 1] to favor equally
distributed stiffnesses as opposed to high stiffness peaks. The optimization process finds
a minimum for E(xi) solving the following problem:

min
xi

E(xi) such that Xi,low ≤ xi ≤ Xi,upp .

The Matlab function fmincon was used for the constrained nonlinear optimization (Cole-
man and Li, 1992).

3.3.2 Analysis of the optimal muscle setup

Table 3.5 lists the muscle parameters that resulted from the above described optimiza-
tion process (for completeness, Fmax is also listed even if it was not part of the opti-
mization). Figure 3.10(a) shows the torque curves generated by the four muscles in
the case of maximum activation (a1=a2=a3=a4=1), when the muscle parameters of the
optimization process are used. As desired, the main working range covers the angular
joint range of motion from −π

2
to π

2
rad and is denoted as region 1. As a result of

the optimization, the passive muscle forces do not play a role in region 1 (cmp. Kp in
Table 3.5). As a consequence, the passive curves are left out for the following consid-
erations. A closer inspection of the resulting muscle setup shows that the optimization
algorithm introduced two different types of muscles. One type can be denoted as short
muscles (corresponding to M1 and M2), the other type as long muscles (corresponding
to M3 and M4). Short muscles have an increased slope of the torque curves which results
in a big change of stiffness for activation changes. Long muscles have a decreased slope.
Therefore, an activation change has a stronger influence on the torque generation than
on the joint stiffness. Figure 3.10(b) depicts the joint stiffness generated by the optimal

Table 3.5: Set of muscle parameters as a result of the optimization process.

xj Description M1 M2 M3 M4

Loff pre-stretch −π
2
−π

2
−π

2
−π

2

wL0 half width F-L curve π π 2π 2 π
Kp passive curve const. 0 0 0 0
Fmax max. isometric force 1 1 1 1
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Fig. 3.10: (a) Result of the optimization process. Torque curves in a hinge
joint generated by two antagonistic muscle pairs in the optimal configura-
tion plotted against the joint angle. The curves are drawn in red (muscle
1), blue (muscle 2), black (muscle 3) and green (muscle 4). The width of
the active parts of the force-length curves and their overlap in the joint an-
gle space define different regions. The middle region – which is seen as the
main working range of the joint – is denoted as region 1. (b) Joint stiffness
plotted against the joint angle for the setup in (a) for co-activation of M1

and M2 (a1 = a2) and constant differential activation among M3 and M4.
Maximum co-activation is depicted in dark green.

muscle setup when co-activation for M1 and M2 is applied and a constant activation
offset is present among a3 and a4. In fig. 3.11, the maximum (a-b) and minimum (d-e)
stiffness surfaces are plotted over joint angle and torque. Figures 3.11(c) and (f) show
section views of the maximum and minimum surfaces for three selected net-torque val-
ues in region 1. For zero net-torque, the maximum stiffness reaches a value of almost
0.8 over the complete angular range. Figure 3.12 shows the optimal muscle activations
resulting from the optimization process. These activations are responsible for generating
the maximum and minimum stiffness surfaces shown in fig. 3.11 [subplots (a)-(d) for the
maximum and subplots (e)-(h) for the minimum]. As expected, a1 and a2 are related
to the generation of joint stiffness. Along the angular range of the joint they reach high
values whenever high stiffness is generated and low values for low stiffness [cmp.(a,b)
with (e,f)]. This seems to imply already some kind of co-activation. The activations
a3 and a4 have a different behavior: When a low stiffness is generated [see (g,h)], these
values can be high to generate high desired torques without strongly impairing the joint
stiffness. This analysis shows that short muscles (M1 and M2) can be seen as stiffness
muscles and long muscles (M3 and M4) as torque muscles.
The analysis of the condition (3.2) for the occurrence of the stiffness node in the region
1 when adopting the optimal muscle setup, shows that in general a solution exists (i.e.
a stiffness node occurs). However, an important result is that co-activation for M1 and
M2, i.e. the constraint a1 = a2, leads to a node free region 1 (i.e. the condition for the
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Fig. 3.11: Stiffness surfaces generated adopting the optimal muscle setup
when the optimal activations resulting from the optimization process are
applied. (a) Max stiffness plotted against joint angle and torque. (b) same
as (a) in top view. (c) Section view of the maximum stiffness surface (a)
for three selected torques (0.5, 0, −0.5) plotted against region 1. (d)-(f)
same as (a)-(c) but for minimum stiffness.

occurrence of the stiffness node is never satisfied).

3.4 Torque/stiffness control approaches adopting the

optimal muscle setup

As described in Section 3.3, for the optimal muscle setup, an algorithm tested all com-
binations of the four activations to get maximal stiffness variations across a desired
angular range of motion and desired torque range. This approach delivered the activa-
tions able to provide the required maximal variation. However, the question remains,
how a suitable control strategy might look like that delivers a torque and stiffness
variability similar to the optimal one. In the following, the optimal muscle setup intro-
duced in Section 3.3 is adopted and four different control strategies for the concurrent
torque/stiffness control are described. In order to test and compare these control strate-
gies, pairs of torque/stiffness values taken from the optimal stiffness surfaces shown in
fig. 3.11(a,d) served as desired values. Figures 3.13(a1-d1) depict again the optimal stiff-
ness surfaces and the corresponding section views. A dash-dotted rectangle indicates
the main working range ([−π

2
, π

2
] rad on the joint axis and +/-1 on the torque axis).

For comparison with the optimal stiffness surfaces (min and max), for each of the four
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Fig. 3.12: Optimal activation values for the four muscles in the optimal
setup for the maximum and minimum stiffness depicted in fig. 3.11. A
dash-dotted rectangle indicates the main working range ([−π

2
, π

2
] rad on

the joint axis and +/-1 on the torque axis). Max activation (a = 1) is
represented in dark red while min activation (a = 0) is shown in dark
blue. (a) Activation of M1 for max stiffness plotted against joint angle
and torque.(b)-(d) same as (a) but for M2, M3 and M4, respectively. (e)
Activation of M1 for min stiffness plotted against joint angle and torque.
(f)-(h) same as (e) but for M2, M3 and M4, respectively.
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control strategies, a stiffness surface is also produced. As in the simulations before, a
high inertia of the lever arm is assumed so that the joint angle is held constant.

3.4.1 Activation overflow strategy

The first control approach that is used for the optimal joint setup is based on a basic
torque/stiffness control. The setup is the same as depicted in fig. 3.6 but without the
stiffness node control. The controllers act on dedicated muscles. The torque controller
generates the activations for the torque muscles (M3 and M4) and the stiffness controller
the activations for the stiffness muscles (M1 and M2). All four activations are saturated
at 0 and 1. One drawback of this basic torque/stiffness control is its missing ability
to recruit the second muscle on one side if, for example, a higher torque and a lower
stiffness is needed. This led to the second control approach which adds an activation
overflow strategy to the first control strategy. In this case the activation overflow of one
muscle is distributed to the other with the same torque direction when the activation
reaches saturation level. The torque/stiffness control strategy including the activation
overflow block (enclosed in a rectangular dashed line) is shown in fig. 3.14. The overflow
mechanism is active if activation is above 1 and additional activation is required by a
controller and also if activation is below 0 and a reduction is commanded. Both torque
and stiffness controller in the simulations are of PI type. The parameters of both
controllers were tuned in an iterative simulation process5. In a first sweep for all joint
angles [−π

2
, π

2
], torque [−2, 2] and stiffness (taken from max and min surface of the

optimal case) step inputs were used as desired values for the controllers. The iteration
intervals for one sweep were partitioned in 40 steps for both angles and torques. The
P-part was increased from a small initial value as long as no oscillations occurred within
the test intervals. If oscillations occurred the P-part was decreased and the sweep was
repeated until all simulations in the sweep were valid, i.e. no oscillations occurred for the
complete sweep. In addition, the P-part was also decreased if the activation commands
at the input of the saturation blocks were bigger than 1 which is the upper limit of
valid muscle activations in this study. In a second phase, also the I-part was increased
stepwise and torque and stiffness tests were carried out for valid joint angles unless the
control signals saturated at 1. The controller parameters obtained as a result of the
iterative process are listed in Table 3.6 (columns: Torque/stiffness and Torque/stiffness
plus act. overflow).
Both cases, without and with overflow strategy were tested. Figures 3.13(a2-d2) show
the stiffness surfaces obtained for the basic torque/stiffness control. Comparison of these
surfaces with the optimal stiffness surfaces depicted in fig. 3.13(a1-d1) shows that this
control strategy does not generate net-torques comparable to the optimal case. The
maximum stiffness surface reaches maximum values of 0.68 as opposed to 0.8 in the

5The tuning approach is similar to the Ziegler-Nichols tuning method. An important difference is
that, in this case, the parameters are selected in order to avoid any torque and stiffness oscillations at
t=6.
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Fig. 3.13: (a1),(b1) Maximum and minimum stiffness surfaces generated for
the optimal setup. (c1),(d1) Section views of the maximum and minimum
stiffness surfaces for three selected torques (τ = 0.5, 0.0 and −0.5) plotted
against the angular range of the joint. (a2-a5) and (b2-b5) Maximum and
minimum stiffnesses for four different control approaches. (c2-c5) and (d2-
d5) Section views of maximum and minimum stiffnesses at torque values
of 0.5, 0.0 and −0.5. Simulation parameters are given in Table 3.6.

optimal case. For easier comparison, dash-dotted rectangles in fig. 3.13(a1-a5) and (b1-
b5) indicate the intended, basic workspace of the joint spanning region 1 on the joint
axis and values of ±1 on the torque axis. Figures 3.13(a3-d3) depict the maximum and
minimum stiffness surfaces obtained with the additional activation overflow strategy.
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Fig. 3.14: Concurrent torque/stiffness control with activation overflow
strategy for the optimal antagonistic muscle setup. The torque control
activates either the agonistic or the antagonistic muscle in dependence of
the desired torque. The stiffness control adopts a co-activation strategy.
In the dashed line block the activation overflow strategy is depicted. When
the conditions for the overflow strategy are verified the activations are re-
distributed, saturated to 0 or 1 and then sent to the muscles.

This control strategy leads to a larger coverage of the basic workspace for the minimal
and maximal stiffness surface. Figure 3.13(c3) shows high stiffness values for the whole
region 1. Also the minimum stiffness which is reached [see fig. 3.13(d3)] is comparable
to the optimal case.

3.4.2 Open-loop strategy with inverse model and activation
overflow

On the way to find control strategies which deliver stiffnesses and torques comparable to
those shown in fig. 3.13(a1-d1), it seems plausible to look for a system which compensates
the effects of the nonlinear muscles. Feeding in open-loop a pair composed by the torque
and stiffness values found for the optimal setup into the inverse formulation of the
musculoskeletal setup would ideally deliver the optimal activations. In the following,
the steps to get the inverse model of the musculoskeletal system are described6.
The net-torque τnet which is generated by the four muscles in the hinge joint is:

τnet = r Fmax (−a1 FLaq,1 + a2 FLaq,2 − a3 FLaq,3 + a4 FLaq,4) (3.4)

6The proposed inverse model strategy for torque and stiffness is an extension of the classical inverse
dynamics approach (Bayo, 1987).
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Table 3.6: Control parameters adopted in the simulation for the
torque/stiffness control strategies of the antagonistic pulley joint setup.

Control strategies

Par. Description Torque/ Torque/ Torque/stiffness
stiffness stiffness plus plus inverse model

act. overflow and act. overflow

cp,τ prop. gain torque contr. 0.5 0.5 0.5
ci,τ integ. gain torque contr. 0.2 2 2
cp,k prop. gain stiffness contr. 0.9 1 1
ci,k integ. gain stiffness contr. 1 3 3
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Fig. 3.15: Open-loop approach using the inverse model and activation over-
flow. The desired torque and stiffness are transformed in desired activations
through an inverse matrix containing the system. The overflow strategy is
then used to adjust the desired activations that are finally saturated.

with FLaq corresponding to the quadratic version of the active force-length muscle func-
tion (2.3). The joint stiffness is:

K = −2 r2 Fmax ·

(
a1 ·

{
(Loff,1+rα)

w2
L0,1

if wL0,1 − |Loff,1 + rα| > 0

0 otherwise

+a2 ·

{
(Loff,2−rα)

w2
L0,2

if wL0,2 − |Loff,2 − rα| > 0

0 otherwise

+a3 ·

{
(Loff,3+rα)

w2
L0,3

if wL0,3 − |Loff,3 + rα| > 0

0 otherwise

+a4 ·

{
(Loff,4−rα)

w2
L0,4

if wL0,4 − |Loff,4 − rα| > 0

0 otherwise

)
=

= −2 r2 Fmax

(
a1 ka,1 + a2 ka,2 + a3 ka,3 + a4 ka,4

)
. (3.5)
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Equations (3.4) and (3.5) represent the system that has to be inverted. By setting
τ = τdes and K = Kdes it is not yet possible to obtain an explicit formulation of the four
activations since this problem is not invertible. However, two constraints can be used
to reduce the number of variables from four to two thus making the problem invertible.
The first constraint introduces the co-activation idea for the two stiffness muscles7. The
second constraint makes sure that only one of the two torque muscles is activated at a
time depending on the desired torque. For the case:

τdes ≥ 0⇒


a1,des = a2,des = ak,des

a3,des = 0
a4,des = aτ,des .

(3.6)

From (3.4) and (3.5) follows:

Kdes = −2 r2 Fmax

[
ak,des (ka,1 + ka,2) + aτ,des ka,4

]
(3.7)

τdes = r Fmax

[
ak,des (FLaq,2 − FLaq,1) + aτ,des FLaq,4

]
(3.8)

That can be rearranged as:

Q1 ·

 ak,des

aτ,des

 =

 Kdes

−2 r2 Fmax

τdes

r Fmax

 (3.9)

with the 2× 2 matrix Q1:

Q1 =

 ka,1 + ka,2 ka,4

FLaq,2 − FLaq,1 FLaq,4 .

 (3.10)

The desired activations can be derived by inverting the matrix Q1 ak,des

aτ,des

 = Q−1
1 ·

 Kdes

−2 r2 Fmax

τdes

r Fmax
.

 (3.11)

It can be shown that Q1 has full rank in the joint angle range (−3
2
π, 3

2
π) rad.

When τdes < 0, a3 is used by the controller and a4 is set to 0. By using the same
approach as before, the following result is obtained: ak,des

aτ,des

 = Q−1
2 ·

 Kdes

−2 r2 Fmax

τdes

r Fmax

 (3.12)

with

Q2 =

 ka,1 + ka2 ka,3

FLaq,2 − FLaq,1 −FLaq,3 .

 (3.13)

7Considering the way the CNS activates antagonistic muscles to vary the stiffness at the joint.
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It can be shown that Q2 has full rank in the joint angle range (−3
2
π, 3

2
π) rad.

It cannot be guaranteed that the activations that are generated by the inverse model
approach lie in the interval [0, 1]. To handle those activations above 1 and below 0, the
activation overflow strategy is also employed. The complete control strategy is shown
in fig. 3.15. Figures 3.13(a4-d4) depict the maximum and minimum stiffness surfaces
with the inverse model control strategy. It can be seen that this strategy delivers results
which do not completely reach the level of the optimal approach.

3.4.3 Closed-loop control with inverse model and activation
overflow
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Fig. 3.16: Torque/stiffness closed-loop control combined with the inverse
model strategy and the activation overflow. Apart from the desired acti-
vations coming from the inverse model strategy, the generated torque and
stiffness are fed back to close the control loop. The control signals from
the controllers are summed up to the values coming from the inverse model
strategy and then re-distributed through the overflow strategy.

The inverse model strategy delivers feed-forward values based on the model and the
desired signals. To improve its performance, closed loops for torque and stiffness would
be desirable. For this purpose, the torque and stiffness controllers as introduced earlier
in this study are combined with the inverse model strategy. The overall setup is shown
in fig. 3.16. Figures 3.13(a5-d5) depict the maximum and minimum stiffness surfaces
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achieved with this control strategy. The results obtained with this last scheme are close
to those of the optimal case.

3.4.4 Response time comparison

Among the different control schemes proposed in this section, the torque/stiffness plus
activation overflow and the torque/stiffness plus inverse model and activation overflow
are the ones that perform best compared to the optimal setup (see fig. 3.13). However,
the latter strategy with the inverse model is computationally more expensive. The
question arises whether this effort is rewarded with a shorter time for reaching the
desired torque and stiffness.
Figure 3.17 shows a comparison of the stiffness and torque response over time for the

two control strategies under analysis: torque/stiffness plus activation overflow (a-c) and
torque/stiffness control strategy with inverse model and activation overflow (d-f). In
the simulation the desired values are τdes = 0.5 and Kdes = 0.8 while the lever is kept
at α = 0. The torque responses are identical [cmp. fig. 3.17(a) and (d)]. The stiffness
response of the strategy with the inverse model is faster because of the additional feed-
forward branch [cmp. fig. 3.17(b) and (e)]. In both cases the desired stiffness cannot be
reached despite the maximum activation sent to the stiffness muscles and the overflow
strategy [cmp. fig. 3.17(c) and (f)].
Further simulations for different fixed joint positions (α = −π/4 and α = π/4) as
well as for different desired values (τdes = 0 and Kdes = 0.8) were analyzed. The
resulting response time behavior is similar to that shown here thus confirming that the
employment of the inverse model repays with a faster stiffness response time.

3.5 Summary

With the objective to control the torque and the stiffness at the joint, in this chapter a
concurrent torque/stiffness control was introduced and tested in a numerical simulation
in Matlab/Simulink. As a result, it was shown that concurrent control of torque and
stiffness works if no stiffness node is in the vicinity of the operation angle but that the
controller is bound to fail if a node is close by. To address this problem, an additional
pair of muscles was added to the joint. The use of two pairs of antagonistic muscles
for driving the hinge joint adds additional degrees of freedom which can be used in
the control strategy for shifting the node away when the angular position of the joint
approaches the node. This new control strategy was called stiffness node control and
was tested in a numerical simulation using Matlab/Simulink. The introduction of this
new controller enabled the joint to reach the desired torque and stiffness values even if
a node was close by (Section 3.2). Even without the occurrence of a stiffness node, the
ability to control the stiffness across the whole range of the joint angular range of motion
could be limited due to the joint and muscle configuration. Therefore, in Section 3.3 an
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Fig. 3.17: Response time comparison for the two control strategies
that best perform: torque/stiffness plus activation overflow [(a)-(c)] and
torque/stiffness plus inverse model and activation overflow [(d)-(f)]. The
simulation results are shown for α = 0. The feed-forward strategy based on
the inverse model of the joint in combination with activation overflow has
the ability to reach the desired joint stiffness faster than other strategies.

optimization approach was performed to identify a muscle configuration which resulted
in the maximal stiffness variation across the angular workspace of the joint. This op-
timization process delivered activation patterns for all four muscles which resulted in
an optimal stiffness variation. However, an appropriate control setup to generate such
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a stiffness variation was still unknown. For that reason, based on the optimal muscle
parameters, in Section 3.4 several control approaches for the simultaneous control of
torque and stiffness were introduced. Torque and stiffness results were compared with
the optimal example and it was shown that a concurrent torque/stiffness controller with
dedicated muscle pairs for the separate control of torque and stiffness with an additional
activation overflow strategy was able to produce maximum and minimum stiffness sur-
faces comparable to the optimal case. Since the complete joint and muscle models were
known, an inverse model approach was tested in order to produce feed-forward control
values. This strategy in combination with activation overflow had the ability to control
the joint stiffness faster than the other strategies. All strategies were implemented in a
dynamics simulation of a hinge joint based on Matlab/Simulink.
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Chapter 4

Bio-inspired control laws adopting
antagonistic muscle actuation in a
simplified elbow joint setup

In Chapter 2 it was shown that a simplified human elbow joint can be modeled with a
pulley hinge joint and two antagonistic muscles. The antagonistic musculoskeletal setup
was introduced in Section 2.1.3. Adopting biological data, the mechanical impedance
properties for such a setup were analyzed (Section 2.2) and it was shown that co-
activation for antagonistic muscles is the key to vary stiffness in the angular range of
the joint. In Chapter 3 several control schemes were discussed which use co-activation
and reciprocal activation for the concurrent control of torque and stiffness. Additionally,
an inverse model together with an activation overflow strategy was used to investigate
the maximum range of stiffness and torque variation (Section 3.4.3). Although inverse
model as well as overflow strategy seems to be plausible approaches to maximize stiff-
ness and torque variation, there is no direct biological justification that the CNS uses
such approaches in the control of muscle activation. Therefore, the control schemes
of Chapter 3 represent optimal but yet theoretical strategies for stiffness and torque
variation.

As in Chapter 3 also this chapter uses a biomechanical setup without stiffness nodes
in the nominal working region. However, in the present chapter, only the basic and
biologically justified aspects of Chapter 3 (co-activation and reciprocal activation) are
used as a starting point to concurrently control stiffness and position (instead of torque).
The goal of this chapter is to extend the biologically plausible aspects of Chapter 3 by
adding models of the muscle spindles, Golgi tendon organs (GTOs), α-motor neurons
(α-MNs) and Renshaw cells, which are known to play a major role in the immediate
control of a vertebrate muscle. The control scheme and the biological details are ex-
plained in Section 4.2. As preparation for the controller design, in Section 4.1, the
stability aspect of muscle-driven joints is briefly revisited. Based on the results of this
analysis, an adaptive mechanism for the control of stability during interactions is inte-
grated in the stiffness controller. This chapter concludes with simulation results which
demonstrate the ability of the controller to simultaneously regulate position and adapt
joint compliance to different external perturbations (Section 4.3).

The scientific results of this chapter were published in the journal Applied Bionics and
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Biomechanics (Annunziata and Schneider, 2012). The manuscript includes Axel Schnei-
der as co-author.

4.1 Stability analysis of an antagonistically actuated

hinge joint setup with a pulley

It was shown that muscles alone mounted in an antagonistic setup provide an intrin-
sic stability effect at joint level (Giesl et al., 2004; Richardson et al., 2005). In fact,
spring-like and viscous-like muscle properties produce zero-delay resistive forces against
external perturbations (Raphael et al., 2010). Only for strong perturbations, additional
control mechanisms might be required to damp the oscillations and reduce the settling
time (Chou and Hannaford, 1997). In particular, as it was pointed out by Giesl and
Wagner (2007), although energetically expensive, high co-activations have a stabilizing
effect on the joint. The stiffness control scheme presented in this thesis also integrates
this aspect and, with the objective to show its effectiveness on the antagonistic joint
described above, the stability properties are analyzed when the system is subject to per-
turbations. First of all, the mathematical condition for finding the equilibrium position
is discussed. Then, different cases adopting constant activation levels to the muscles
are studied. Simulation results are shown for two situations: low and high muscle
activations.

Consider the nonlinear system:

ẋ = f(x, t) , x(t0) = x0 ∈ <n (4.1)

where x is the state of the system, x0 is its initial condition and t ≥ 0. x∗ is said to be
an equilibrium point of (4.1) if f(x∗, t) ≡ 0 for all t ≥ 0.
For the system composed by two antagonistic muscles in a pulley hinge joint of equa-
tion (2.11), the unperturbed equilibrium points can be obtained by studying its solutions
which correspond to the study of the following system:{

ω = 0
τnet(a1, a2, α

∗, ω)− τG(α∗)− τL = 0
(4.2)

where α∗ is the equilibrium position. It is important to notice that, once the activation
a1 is selected and the load torque τL is defined, the system (4.2) can be solved with
respect to the only unknown a2 with the constraint

0 ≤ a2 ≤ 1 .

For the antagonistic joint adopted, let us assume as unperturbed equilibrium position
α∗ = −0.4 rad. Two simulations with increasing values of a1 (a1 = 0, a1 = 1) are per-
formed while a mass (ML) is attached to the lever to increase the inertia and an external
load force (FL) is applied at its end (see fig. 4.1). Table 4.1 reports the activations
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muscle 2

muscle 1
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Fig. 4.1: Model of the antagonistic joint setup with the mass attached at
the extremity of the lever arm.

Table 4.1: Simulation parameters for the stability analysis of the antago-
nistic pulley joint setup.

Parameter Description Value Unit

α0 initial position 0.5 rad
ω0 initial velocity 5 rad/s
α∗ equilibrium position −0.4 rad
ML load mass 3 kg
FL load force −15 N
τL impulsive load torque 20 Nm

Activation Description Low act. High act.

a1 activation 1 0 1
a2 activation 2 0.21 0.98

and the simulation parameters used in the analysis. Joint parameters are taken from
Table 2.2 and muscle parameters from Table 2.3. It can be shown through linearization
around the equilibrium point that α∗ corresponds to a stable equilibrium in both an-
alyzed cases. Each simulation runs for 5 seconds and starts from the initial condition
(α0, ω0) ≡ (0.5, 5). Furthermore, at t = 2 s the joint is subjected to an impulsive
torque τL (amplitude 20 Nm and duration 20 ms) which simulates a disturbance. By
solving the system (4.2) for each value a1, a corresponding value for a2 is obtained such
that the equilibrium position is kept at α∗. Figure 4.2 depicts the simulation results
in the following two cases: low activations (a) and high activations (b). The plots at
the top of the figure show the trajectory of the lever over time and the corresponding
stiffness computed using equation (2.14). The plots at the bottom of fig. 4.2 show the
vector field together with the trajectory of the lever from the starting value (α0, ω0) to
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Fig. 4.2: Stability analysis of the musculoskeletal antagonistic hinge joint
loaded by external forces for two different activation levels. In the top
of the figure, the lever trajectory and the stiffness computed are plotted
against time. In the bottom the vector field and the lever trajectory are
depicted. (a) depicts the simulation results in the case of muscles with low
activations. The equilibrium position is stable but oscillations are high.
At t = 2 s an impulsive torque is applied to the lever which increases limb
oscillations. (b) same as (a) but for higher activations. Oscillations are
more damped and the impulsive torque has a less perturbing effect on the
limb. High joint stiffness provides a stabilizing effect at joint level.

the final value reached after 5 seconds of simulation. For low activations a low stiffness
is generated and the lever, although stable, is only slightly damped and oscillates around
the asymptotic equilibrium position [see fig. 4.2(a)]. At t = 2 s the impulsive torque is
applied and the system keeps a stable behavior although oscillations around the equi-
librium position become higher. In the case of high activations, the stiffness is higher
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and oscillations are more damped around the equilibrium with respect to the former
case [see fig. 4.2(b)]. The system reaches the equilibrium position after 2 seconds. The
application of the impulsive torque at t = 2 s has an almost insignificant effect on the
lever as the higher stiffness produces a stabilizing effect on the joint which, in turn, is
stronger against external disturbances.

4.2 Bio-inspired control strategy for stable compli-

ant joints

In this section, a bio-inspired concurrent control of position and stiffness for the an-
tagonistically actuated hinge joint with two muscles, as described in Section 2.1.3, is
designed. With respect to the control schemes presented in Chapter 3, here only the bio-
logically justified aspects of co-activation and reciprocal activation are adopted. This ap-
proach provides a basic bio-inspired controller similar to the concurrent torque/stiffness
control presented in Section 3.2. This basic controller is then completed with physiolog-
ical properties and biological models of muscle spindles, GTOs, α-MNs and Renshaw
cells, which play a major role in the control of antagonistic vertebrate muscles (Kandel
et al., 2000). The objective is to integrate, among others, mechanisms to account for the
stability properties shown in Section 4.1 thus providing the mechanical system with the
ability to execute tasks also with perturbing loads. In order to verify the performance
of the bio-inspired control scheme, simulations are performed in Matlab/Simulink.
The parameters for muscle 1 (M1) and muscle 2 (M2) are listed in Table 2.3 and are
based on measurements of the elbow muscles performed by Murray et al. (2000). This
setup does not present stiffness nodes in the main working region (see fig. 2.7 for the
case of co-activation).

4.2.1 Basic concurrent position/stiffness control

The basic concurrent control of position and stiffness can be divided in two separate
mechanisms. A position controller, which is responsible for generating the necessary
torque in order to reach the desired position, and a stiffness controller which has the
task to reach the desired stiffness and adequately compensate changes in stiffness due
to the position controller action. The position controller relies on reciprocal activation
of antagonistic muscles. The stiffness controller integrates a stiffness-computation block
which implements equation (2.14) and adopts a co-activation strategy. Figure 4.3 depicts
the basic position/stiffness control for the antagonistic joint setup. αdes is the desired
joint position and Kdes is the desired stiffness.
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Fig. 4.3: Schematic view of the basic concurrent position/stiffness control
acting on the antagonistic joint. On the right side, two muscles (M1 and
M2) are placed in an antagonistic joint setup (arm model). Forces F1 and F2

are generated based on the actual activation levels (a1 and a2) and muscle
lengths/velocities (L1, V1, L2, V2). The position controller on the left side
activates either the agonistic or the antagonistic muscle in dependence of
the joint position error eα. The stiffness controller at the top generates the
same activation (ak) for both muscles (co-activation).

4.2.2 Biological feedback system for the control of a single
muscle

In order to add to the basic concurrent position/stiffness controller further biological
mechanisms for the regulation of the joint movement, in this section, the main aspects of
a biological feedback system for the control of an antagonistic joint setup are described.
It has to be emphasized that this section has no pretensions of being able to present
an exhaustive analysis of the biological details related to the movements of vertebrates.
Furthermore, to simplify the modeling stage, the total effect of the motor units and
receptors for each muscle is embodied in only one unit.

In Section 2.1 the muscle was modeled only as a force generator (Hill-type muscle model).
In this section, the analysis is focused not only on the force generation capability of a
muscle but also on the embedded sensory cells involved in muscle regulation.
Figure 4.4 shows a simplified depiction of the biological regulation system for a single
muscle. The components involved in the sensory transduction are the muscle spindles.
These are specialized muscle receptors that lie in parallel with the muscle fibers. The
muscle spindle is depicted as a block with a red frame in fig. 4.4. Each muscle spindle
is innervated by a small-diameter motor neuron, the γ-motor neuron (MN) to distin-
guish it from the large-diameter α-MN (depicted with a blue frame in fig. 4.4) that
innervates the muscle fibers. The muscle spindle consists of two parts. A muscular
part, whose state of contraction is controlled by the γ-MN, and a central, elastic part,
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Fig. 4.4: Simplified illustration of a biological regulation strategy for the
activation of a muscle in an antagonistic joint setup. The force genera-
tion aspect of the muscle is modeled adopting the Hill-type model (on the
right). The muscle spindle is modeled as position controller and sensor.
The command γdes, from the γ-motor neuron, is responsible for producing
a shortening in the muscle spindle which corresponds to the desired trajec-
tory at joint level. The α-motor neuron, like the muscle spindle, receives
an input from the brain as a feed-forward position signal αdes (αdes and
γdes co-activation). The α-motor neuron, together with the muscle spin-
dle and Renshaw cell, forms a feedback system for the joint position and
stiffness. The Renshaw cell stabilizes the α-motor neuron’s firing rate aα
and produces an inhibitory signal for the Ia-IN, to regulate the strength of
reciprocal inhibition thus enabling co-activation of antagonistic muscles.

which contains the muscle spindle receptor. The main function of the muscle spindle
receptor is to signal changes in the length of the muscle. Since changes in the length of
muscles are closely associated with changes in the angles of the joints that the muscles
cross, muscle spindles can be used by the CNS to sense relative positions of the limb.
Furthermore, the muscle spindle reacts to any muscle stretch by increasing the firing
rate Ia to the α-motor neuron (stretch-reflex loop). The bigger the length-change, the
higher the firing rate. The faster the rate of change, the higher the firing rate. When
an external load is applied to the joint, the muscle is stretched and, as a consequence,
the muscle spindle increases the firing rate to the α-MN thus counteracting the load
(position controller, depicted as a block with a green frame in fig. 4.4).
The muscle spindle does not directly cause the muscle to contract [its firing rate is too
small to produce a muscle contraction (Hoult and Cole, 2008)]. Instead, it causes acti-
vation of the α-MN which in turn is responsible for direct muscle activation aα. During
voluntary control of muscle length, the α-MN and the γ-MN receive from the brain a
reference value corresponding to the expected shortening of the muscle during the move-
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ment. Therefore, the fibers that activate the α and γ-MNs undergo parallel stimulation
(αdes and γdes co-activation) (Kandel et al., 2000; Shadmehr and Wise, 2005) where αdes

represents a feed-forward position signal from the brain.
In an antagonistic setup, depending on the desired direction of motion, the CNS acti-
vates either the agonistic or the antagonistic muscle (reciprocal activation). The acti-
vated muscle shortens while the other relaxes. This mechanism is controlled through
modulation of reciprocal inhibition by the Renshaw cell. The Renshaw cell, depicted as
a block with an orange frame in fig. 4.4, is an inhibitory interneuron (IN) that plays two
important roles. Firstly, it stabilizes the α-MN’s firing rate aα thus acting as limiter
(Latash, 2008). Secondly, it regulates the strength of reciprocal inhibition to antago-
nistic motor neurons thus enabling co-contraction (recurrent inhibition) (Graham and
Redman, 1993). In this case the Renshaw cell inhibits the Ia-IN, which decreases its
activity and as a consequence the co-activation of antagonistic muscles is obtained.
The system composed by muscle spindle, α-MN and Renshaw cell can be described as a
feedback system for the joint position with feed-forward connection of reference input.
Additional sensors are the Golgi tendon organs (not shown). They are mechanorecep-
tors located between muscle and tendon and measure the tension occurring there.

4.2.3 Bio-inspired position controller

In this section, a novel position control strategy that uses antagonistic muscles in com-
bination with bio-inspired control concepts such as reciprocal activation is presented.
This strategy integrates also the model of physiological properties and motor neurons
(MNs) as described above. The bio-inspired position controller of a single muscle (mus-
cle 2 ) is depicted in fig. 4.5 in form of a block diagram.
Figure 4.5 adopts the same color code of fig. 4.4, thus pointing out the modeling of
biological mechanisms in a technical framework. In the following subsections, the de-
scription of each block is provided.

Block diagram of the muscle spindle

The muscle spindle is modeled in this thesis as transducer, comparator and controller
for the angular position. The receptor part of the muscle spindle measures the actual
muscle length (L) and its rate of change (V ). The muscle spindle is also a transducer
as it transmits these measures to the CNS. Furthermore, it is a controller of the muscle
length thus working as position controller. The firing rate depends on the muscle-length
and also on the change of the muscle-length. Therefore, the muscle spindle and the
reflex connections form a PD feedback control system for the joint position (stretch-
reflex loop). In order to implement the spring-like muscle behavior when a load is
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Fig. 4.5: Schematic depiction of the bio-inspired position controller for
muscle 2. A reference value is sent to both muscle spindle (through the
γ-MN, not shown) and α-motor neuron (αdes and γdes co-activation). A
position offset (∆α) is generated when a load (τL) is applied to the output
and added to the set point. The muscle spindle (red frame) works as
transducer, comparator and controller for the joint position. The control
signal, that is generated in the muscle spindle, is amplified by the α-motor
neuron (blue frame) and added to a feed-forward position signal. The
resulting activation aα,2 is then summed to the activation coming from the
stiffness controller (ak), saturated to 1 (Renshaw cell, orange frame) and
sent to the muscle. The signal Ia,inhibit is generated by the Ia inhibitory
interneuron (Ia-IN block) that, together with the Renshaw cell activity,
implements the reciprocal inhibition.

applied to the system (McIntyre and Bizzi, 1993), a position offset (∆α), defined as

∆α =
τL

Kdes

(4.3)

is added to the position set point αdes (where τL is the load torque and Kdes is the
desired stiffness). Those mechanisms are modeled in fig. 4.5 as a feedback control loop
with a proportional-derivative (PD) controller (blue frame).
When the joint position error eα is defined as the difference between compliant desired
position (αdes + ∆α) and actual position (α), i.e.

eα = αdes + ∆α− α, (4.4)

the firing rate of the muscle spindle is

ams,1 = cp,1 · eα(t) + cd,1 · d
dt

eα(t)

ams,2 = cp,2 · eα(t) + cd,2 · d
dt

eα(t)
(4.5)
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with cp and cd being the proportional and derivative gains of the position controller
(PD-controller in the muscle spindle box, the index refers to the muscle).

Block diagram of the α-motor neuron

The muscle spindle does not directly cause the muscle to contract. The α-MN is re-
sponsible for direct muscle activation. The activation ams from the muscle spindle is
amplified in the block cp,α of the α-MN. An additional input of the α-MN is the feed-
forward position signal αdes. This signal is multiplied by a scaling factor (cff block) and
added to the activation due to the stretch-reflex loop.

Based on the mechanisms described above, the firing rate of each α-MN is

aα,1 = |cff,α αdes|+ |cp,α ams,1| Ia,inhibit

aα,2 = |cff,α αdes|+ |cp,α ams,2| Ia,inhibit

(4.6)

for which either M1 or M2 is activated to generate a torque in the desired angular direc-
tion and with cff,α being the feed-forward scaling gain and cp,α being the proportional
(amplification) gain of the position controller. The variable Ia,inhibit indicates the Ia
inhibitory signal and is defined in the next subsection.

Block diagram of Ia-interneuron and Golgi tendon organ

In dependence of the joint position error (eα) the reciprocal inhibition mechanism, ac-
tivates through the Ia-interneuron (Ia-IN), either the position controller of M1 or the
position controller of M2. The variable Ia,inhibit is defined as

Ia,inhibit =

{
1 eα < 0
0 eα ≥ 0 .

The force feedback is realized with the measure provided by the Golgi tendon organ
(not shown). In the block diagram of fig. 4.5, all GTOs are assumed to provide the total
force at joint level as a feedback signal τL to the CNS (Mileusnic and Loeb, 2006).

Block diagram of the Renshaw cell

The Renshaw cell is responsible, firstly, for limiting the total activation to the muscle
(activation saturation block). Therefore, it is depicted in fig. 4.5 with an activation
saturation block. Secondly, it regulates the strength of reciprocal inhibition to antag-
onistic motor neurons thus allowing co-activation. This aspect is depicted in fig. 4.5
as additional activation of the muscles provided by a stiffness controller (which is de-
scribed later). The contribution of the stiffness controller is added through a sum block
in the Renshaw cell box. The description of the stiffness controller is given in the next
subsection.
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4.2.4 Bio-inspired stiffness controller

As it was observed by Smith (1996), so far, no real stiffness controller could be found in
biological systems. However, in this thesis, an explicit stiffness controller is proposed and
its possible connection to the bio-inspired position control mechanism (as introduced
before) is explained. The stiffness controller described here implements the balance
of excitatory and inhibitory inputs onto the interneurons described in Section 4.2.2.
Figure 4.6 depicts the bio-inspired stiffness controller. With respect to the basic stiffness
control scheme of fig. 4.3(top box), this controller also integrates the stability aspects
described in Section 4.1.

As shown in Section 4.1, when controlling the position, the stiffness is the key to con-
currently control stability. For this purpose, the position error eα is used as a stability
measure (Burdet et al., 2006) in an adaptive scheme. The adaptive control block (adapt.)
receives eα and τL and has the goal to increase the desired stiffness coming from the
CNS when an external load is applied. Therefore, the desired stiffness is composed of
two parts:

Kdes = KCNS,des + KS,des (4.7)

where KCNS,des is the reference stiffness “coming from the brain” while KS,des is the
additional stiffness coming from the adaptive block, defined as

KS,des =

{
cS

∫ t

t−T
|eα(t)| dt if τL 6= 0

0 otherwise
(4.8)

with cS defining the speed of adaptation and T the integration time. In this way, when
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the position error becomes high, the desired stiffness increases and as a consequence
muscles are more co-activated ensuring a higher stability and accuracy with respect to
external perturbations for the joint (Chou and Hannaford, 1997). The stiffness controller
is of the proportional-integral type (PI). From the stiffness error

ek = Kdes −Kcomp , (4.9)

the controller generates the stiffness control value

ak = cp,k · ek + ci,k ·
∫

ek dt (4.10)

with the proportional and integral controller gains cp,k and ci,k. Both muscles receive
the same activation value ak (co-activation).

4.3 Bio-inspired position/stiffness control and sim-

ulation results
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Fig. 4.7: Bio-inspired position/stiffness control scheme adopting the color
code of fig. 4.4 and fig. 4.5. In orange are depicted the blocks related to
the Renshaw cell. The PD position controller corresponds to the muscle
spindle stretch-reflex loop (green) and α-MN (blue). The feed-forward in
position refers to the α-MN. The block for the spring-like muscle behavior
when a load is applied corresponds to the muscle-spindle position controller
(green).

Figure 4.7 depicts the bio-inspired position/stiffness controller as a result of the modeling
of biological components and physiological properties shown in Section 4.2. The colors
adopted in the figure refer to the blocks described above. The position controller (on
the left side) is of the proportional-derivative (PD) type and activates either muscle 1
(M1) or muscle 2 (M2) depending on the desired joint position αdes. The PD controller
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Table 4.2: Simulation parameters for the simulation of the bio-inspired
position/stiffness control strategy of the antagonistic pulley joint setup.

Parameter Description Value Unit

cp,1 = cp,2 proportional gain position contr. 0.05
cd,1 = cd,2 derivative gain position contr. 0.001
cp,α proportional gain pos. contr. (α-MN) 50
cff,α scaling gain feed-forward (α-MN) 0.005
cp,K proportional gain stiffness contr. 0.05
ci,K integral gain stiffness contr. 6
cS proportional gain adaptive contr. 0.25
T integration time 500 ms

implements the feedback regulation of muscles realized by muscle spindle, α-MN and
Renshaw cell. The spring like behavior when an external load is applied as well as
the feed-forward for the position are also included. The stiffness controller (top box)
activates both muscles at the same time and includes the adaptive mechanism for the
stability issues discussed in Section 4.1.

For the hinge joint described in Section 2.1.3, a simulation is performed in order to
verify the performances of the bio-inspired position/stiffness control scheme and to
show that the results comply with those obtained in biological experiments (Milner,
1993; Suzuki et al., 2001). The control scheme is tested in the case of a a contact with
an obstacle, which is equivalent to a stiff spring mechanically coupled with the tip of
the lever [fig. 4.8(a,b)] and in the presence of different perturbing forces [fig. 4.8(c,d)].
Depending on the frequency of the perturbation, the stiffness is adjusted by the adaptive
control mechanism. For low frequency perturbations the joint is compliant, while for
rapid perturbations joint stiffness increases and the effect of the external force is reduced
(Humphrey and Reed, 1983). A medium level of stiffness is desired as it is considered
an optimal value during joint movement (Hasan, 1986). The control scheme and the
musculoskeletal joint setup were modeled in Matlab/Simulink® 7.11 (The MathWorks
Inc., Natick, MA, USA). Simulation parameters for the controllers are given in Table 4.2.

The test results are depicted in fig. 4.9. The lever arm was commanded to follow a
sinusoidal trajectory till t = 6 s and then to keep a constant position (αdes = −0.3 rad).
The desired stiffness is constant (Kdes = 3 Nm/rad). From t = 2 s to t = 4 s, an obstacle
(“collision”) in the form of a stiff spring (Kx = 10 · 103 N/m), which is mechanically
coupled with the tip of the lever, forces the arm to remain at α = −0.1 rad. Stiffness
increases as the “collision” takes place and grows until the obstacle is removed, then
it goes back to the desired value. At t = 4 s the obstacle is removed and the lever
returns to the desired trajectory. From t = 8 s to t = 12 s, a low frequency sinusoidal
load τL (amplitude 2 Nm and frequency 4 rad/s) is applied to the extremity of the lever
arm. The generated compliant behavior (stiffness remains low) makes sure that the
link follows the external load. From t = 12 s to t = 16 s, a high frequency sinusoidal
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Fig. 4.8: Disturbance produced in simulation to test the bio-inspired con-
trol scheme for the antagonistic musculoskeletal setup. In (a) the presence
of an obstacle in the desired path is equivalent to a stiff spring connected
to the tip of the lever, which does not allow the lever to reach the desired
position αdes (the potential lever for α = αdes is shown in dashed line). The
disturbance in (a) is equivalent to the presence of an obstacle in the desired
path [cmp. (b)]. (c) sinusoidal disturbance of low and high frequency, as
shown in the inset, are applied to the lever arm. (d) same as (c) but for
impulsive disturbances.

perturbation τL (amplitude 2 Nm and frequency 40 rad/s) is applied to the extremity
of the lever arm. In this case, the adaptive controller increases the desired stiffness in
order to stabilize the system and to reduce the disturbance on the position due to τL.
From t = 16 s to t = 20 s, two torque pulses load τL (amplitude -5 Nm and duration
20 ms) are applied to the extremity of the lever arm. Also in this case, desired joint
stiffness increases which produces a stabilizing effect for the limb.
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Fig. 4.9: Simulation results of the bio-inspired position control scheme
with compliance adaptation in presence of different perturbing torques.
According to the perturbation, joint stiffness adapts producing a stabilizing
effect at joint level.

4.4 Summary

Different studies on biological systems give evidence that movement and joint impedance
can be regulated separately. Reciprocal activation among antagonistic muscles pulling
at the same joint results in a net joint torque which is used to control the position. An-
tagonistic muscle co-activation is used by the nervous system to control the impedance
at the joint and to affect the stability of the limb. In this chapter, after a stability
analysis performed for increasing muscle co-activations (Section 4.1), a novel position
and stiffness control strategy that uses virtual muscles in combination with bio-inspired
control concepts such as co-contraction is presented. The novelty of this controller lies
in the adoption of nonlinear muscle actuation in an antagonistic arrangement and in
the implementation of an adaptive regulation mechanism which models physiological
properties (Section 4.2). Simulation results for different disturbances demonstrate that
the bio-inspired control approach is able to follow the desired position and adapt joint
stiffness according to the perturbation thus producing a stabilizing effect at the joint
(Section 4.3). These results are in line with experimental results shown for the human
behavior (Milner, 1993; Suzuki et al., 2001).
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Chapter 5

Application of the bio-inspired
control laws on a compliant rotatory
joint drive

In Chapter 4, a novel bio-inspired scheme for controlling position and stiffness of an
elbow joint was designed and evaluated in simulation. In this chapter, a rotatory joint
drive, developed in our working group, is adopted to test and validate this bio-inspired
control strategy. First, the robotics joint drive is introduced (Section 5.1) showing that
its design fulfills the safety characteristics addressed by Bicchi and Tonietti (2004) as
it presents a lightweight construction and integrates a real elasticity. Then, a dynamics
model of the actuator is obtained and its parameters are identified (Section 5.2). Based
on the identified model, a cascade control of motor speed and output torque is designed.
Finally, the controlled drive is tested, first, using a classic interaction control approach
(PD position control), then using the novel bio-inspired scheme (Section 5.3). Experi-
mental results for different external perturbations are shown in Section 5.4.

5.1 Compliant robotics joint drive: design and iden-

tification

A simplified human elbow joint with two muscles is shown in fig. 5.1(a, left). α is
the joint angle and τnet is the net-torque produced by the virtual muscles pulling at
the elbow joint. Jarm,model is the inertia of the forearm. In Chapter 2, a mathematical
model of the elbow joint was discussed and different muscle activation schemes were
tested to study its dynamic behavior and mechanical impedance. Based on this model,
in Chapter 4 a bio-inspired control scheme was designed to activate the muscles with
mechanisms found in the CNS of vertebrates, to reach the desired joint position and
stiffness.
With the objective to test and validate this bio-inspired control strategy in real exper-
iments, a rotatory lightweight joint drive with inherent elasticity, designed and built
by Paskarbeit et al. (2013), was used in this thesis. Figure 5.1(a, right) depicts the
robotics joint drive with a lever arm mounted on the output side. Table 5.1 reports the
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Fig. 5.1: (a) Simplified human elbow joint with two muscles (left) and
robotic joint drive with a lever arm (right). (b) Section view of the joint
drive in (a). The electronics is shown in green.

technical data of the drive. ϑL is the joint angle and τdrive is the torque generated at
the drive-output. Jtot,L,drive is the total load side inertia of the joint drive.

The objective is to control the robotics drive such that an equivalent behavior with
the simplified model of the human elbow joint is realized. The illustration in fig. 5.2
exemplifies the control strategy idea. Two masses M and m are driven by two forces, F
and f , respectively that produce a displacement of the masses X and x. The Newton’s
equations for the masses are:

mẍ = f

M Ẍ = F .

Assuming that M is the mass of the model that has to be reproduced (subject to
a certain force F ) and m is the mass of the drive (with f being the force that the
controller has to generate), two cases can be considered such that the condition ẍ = Ẍ
is realized. If m = M , the control force f has to equal the force F . If m 6= M , the force
f has to be f = m

M
F , i.e. the difference of masses is considered for the evaluation of

the control force f .

Table 5.1: Technical data of the rotatory joint drive.

Parameter Value Unit

length ∼ 90 mm
diameter ∼ 52 mm
max torque ∼ 15 Nm
weight ∼ 0.390 kg
power/weight ∼ 130a W/kg

a upgradable to 350 W/kg
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Fig. 5.2: Exemplification of the control strategy idea. On the top, a cart
of mass m is subject to a control force f. On the bottom, the cart of mass
M is subject to the force F. In order to have ẍ = Ẍ two cases can be
considered. In CASE 1, the two masses are the same and as a consequence
the control forces have to be the same. When the two masses are different
(CASE 2 ), the control force f has to be modified accordingly.

Referring to fig. 5.1(a, left), for ease of exposition, and without loss of generality, in
the following, Jarm,model = Jtot,L,drive is considered and therefore, to realize an equivalent
behavior between the simplified human elbow joint and the robotics drive, the torque
τdrive has to equal the net-torque τnet.

Figure 5.1(b) shows a section view of the compliant joint drive. Motor, gearbox, elas-
tomer coupling and electronics are pointed out. In the following section, first the mecha-
tronics components of the actuator will be shortly described. Then, the integrated elas-
ticity in form of an elastomer coupling will be presented together with its torque/torsion
model. Finally, the dynamics model of the complete joint drive will be derived.

5.1.1 Mechatronic setup

The compliant robotics joint drive consists of a flat brushless DC motor with external
rotor (DC Maxon EC45-flat, 24 V, 50 W), a lightweight harmonic drive gearbox (CPL-
2A, size 14, with reduction ratio of 100) and a serial elastic element (elastomer coupling)
placed in the output. Absolute rotatory encoders are used to measure the axis angle
at different positions. An absolute rotatory encoder iC-MH (from iC-Haus) with high
resolution (12 bits) is coupled to the motor and is used for the commutation and speed
control. Another absolute rotatory encoder (Austria Microsystems, Model AS5245, 12
bit resolution, absolute) is mounted between the gearbox flexspline and the load and
measures the elastomer torsion. A third encoder (AS5245) measures the output shaft
position. A miniaturized power- and control-electronics is integrated into the back of the

87



CHAPTER 5. APPLICATION OF THE BIO-INSPIRED CONTROL LAWS ON A
COMPLIANT ROTATORY JOINT DRIVE

actuator. The control electronics board utilizes a microcontroller (Atmel ATXMEGA
128A1) which is responsible for processing the multiple sensory inputs and on which the
joint control schemes are implemented.

5.1.2 Elastomer coupling model

As it was pointed out in Chapter 1, passive elasticity in the form of a serial elastic ele-
ment within the robotic joint drive has multiple benefits. First, it protects the gearbox
from torque peaks which might occur during collisions with the environment. Second,
in a certain bandwidth it is possible to actively control the compliances. For higher
frequency contacts (higher than the bandwidth of the controller), the real elastic ele-
ment reacts in real time with its inherent elastic properties thus attenuating the stroke.
Third, it is possible to estimate the torque applied at the output if its torque/torsion
model is available. For the elastomer coupling integrated in the joint drive, a complete
explanation of its design and its identification procedure is given by Paskarbeit et al.
(2013). It needs to be pointed out that, due to the high damping characteristics of the
elastomer material used, an hysteresis effect is observable in the torque/torsion curve.
The approach for identification and modeling of the elastomer coupling was based on
test data. Although the system to identify presented nonlinearities, due to the limited
computational capacity of the drive’s embedded microcontroller, a linear model of the
elastomer coupling was sought1. The obtained torque/torsion model was a second order
transfer function, and consisted of two parallel spring-damper-subsystems in series and
a serial spring. Called ECM(s), the elastomer coupling model in the Laplace transform,
the following relation holds true

TS(s) = ECM(s) ·ΘS(s) , (5.1)

with ΘS(s) Laplace transform of the elastomer torsion angle and TS(s) the corresponding
transmitted torque.

To test the estimation performances of the elastomer coupling model implemented in
the microcontroller, Paskarbeit et al. (2013) performed the following experiment: At the
extremity of the lever arm attached at the output shaft of the drive a mass was attached.
Rotations of the lever arm with the mass were performed. Ten cycles were carried out
for low and high frequency movements. The output torque of the model was compared
with the calculated torque around the pivot point. Figure 5.3 depicts the hysteresis
curves of the estimated torque plotted over the torsion for low (a) and high frequency
(b) load changes, respectively. The gray line represents the calculated torque, while the
black line represents the output of the model. As it can be seen, the torque/torsion
lumped model is able to account for the hysteresis effect for both high and low load
changes frequencies. The identified model is able to reproduce the measured data in a
range of ± 8 Nm. Tests in a higher torque range have not been performed.

1With a linear model the complexity of the required calculations is reduced.
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Fig. 5.3: Hysteresis curves of the estimated and calculated torque plotted
against the torsion as obtained by Paskarbeit et al. (2013). (a) for low
frequency load changes. (b) for high frequency load changes. The insets
show a section of the calculated and estimated load plotted over time.

5.1.3 Mechanical model of the compliant joint drive
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Fig. 5.4: Mechanical model of the compliant joint drive containing the
elastomer coupling lumped model.

In this section, the dynamic model of the compliant actuator will be derived. Figure 5.4
shows a schematic depiction of the mechanical parts composing the joint. The motor
is connected to the gearbox whose compliant behavior is approximated with a spring-
damper model (Taghirad and Bélanger, 1998). The elastomer coupling is integrated
between the gearbox and the load and its model is adopted to estimate the transmitted
torque in dependence of the elastomer torsion angle (Paskarbeit et al., 2013). Values of
the physical parameters in the elastomer coupling model as obtained through identifi-
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Table 5.2: Elastomer coupling lumped model parameters.

Parameter Value Unit

d1 124.42 N m s / rad
d2 771.19 N m s / rad
k1 217.89 N m / rad
k2 32.30 N m / rad
k3 99.52 N m / rad

cation are listed in Table 5.2. The other parameters shown in the mechanical model are
described in Table 5.3.

Some assumptions can be made in order to reduce the number of model parameters.
The shaft connecting the inertias JM and JWG is rigid. Therefore, only one total inertia,
Jtot,M, (motor side inertia) which includes motor and wave generator inertias, can be
considered in the model. The same holds true for the inertias JG and JSI, and for JSO and
JL for which the total inertias (gear-elastomer side and load side) Jtot,G and Jtot,L,drive

are adopted, respectively. The resulting system can be divided in a three-mass model
(Wernholt and Gunnarsson, 2005). Figure 5.5(a) shows the decomposed model and
points out all torques acting on each of the three masses. On the motor side, dF is the
friction parameter which takes into account motor friction (dM), wave generator friction
(dF,1) and gear meshing friction (dF,2). τDF is the corresponding friction torque. τMG is
the transmitted torque to the gearbox. On the gear-elastomer side, τGL is the torque
on the low speed-high torque side and τS is the torque transmitted by the elastomer
coupling from the load. On the load side, τDL is the friction torque at the load.

For a 1-DoF robotics joint not affected by gravity, the dynamics model of the three-mass
model is:


Jtot,M · ϑ̈M = τM − τMG − τDF(ϑ̇M)

Jtot,G · ϑ̈G = τGL − τS(ϑS, ϑ̇S)

Jtot,L,drive · ϑ̈L = τS(ϑS, ϑ̇S)− τDL(ϑ̇L)− τL

(5.2)

with ϑS elastomer coupling torsion angle and

τGL = τd,FS

(
ϑ̇M

N
, ϑ̇G

)
+ τk,FS

(
ϑM

N
, ϑG

)
, (5.3)

τMG =
τGL

N
. (5.4)
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Table 5.3: Mechanical model parameters of the compliant joint drive.

Parameter Description Unit

JM motor moment of inertia (rotor) kg m2

JWG gearbox moment of inertia (wave generator) kg m2

JFS gearbox moment of inertia (flexspline) kg m2

JSI elast. coupling moment of inertia (input side) kg m2

JSO elast. coupling moment of inertia (output side) kg m2

JL moment of inertia of the load kg m2

ϑM motor position rad
ϑG gearbox output position rad
ϑL load position rad
dM friction of the motor N m s / rad
dF,1 wave generator friction N m s / rad
dF,2 gear meshing friction N m s / rad
dL friction of the link N m s / rad
dFS flexspline structural damping N m s / rad
kFS gearbox coefficient of elastic torsion N m / rad
N gearbox reduction ratio
τM motor torque N m
τL load torque N m

5.2 Identification of the joint drive model parame-

ters

In this section, the model parameters of equations (5.2) are evaluated. Some parameters
are directly provided by the manufacturers. Other parameters are obtained from the
CAD drawing. Finally, some more parameters have to be directly identified. Different
identification procedures could be used. In this work, the identification is performed
in time domain and adopting the physical model. In this process, linear and nonlin-
ear optimization techniques are run on measured data. In a later stage, a gray-box
identification is performed to fine-tune those parameters in the dynamics model.

5.2.1 Moments of inertia and gearbox torsional stiffness

The total moments of inertias of the three main bodies in the joint drive model are
obtained partly from the 3D CAD drawing in SolidWorks® (Dassault Systèmes Solid-
Works Corporation) and partly from the knowledge of the values directly specified by
the manufacturers (like for the BLDC rotor and gearbox wave generator). The final
values are reported in Table 5.4.
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Fig. 5.5: (a) Decomposition scheme of the mechanical model (three-mass
model). (b) Same as (a) but for the case of rigid gearbox (two-mass-model).

The gearbox compliance, usually called torsional stiffness, is typically modeled with a
piecewise linear function [see Harmonic Drive catalog (Harmonic Drive AG, 2012)]. In
this work, it was preferred to adopt a cubic (subscript C) and a liner (subscript L)
model:

τk,FS,C = kFS,1 ·
(
ϑM

N
− ϑG

)
+ kFS,3 ·

(
ϑM

N
− ϑG

)3

τk,FS,L = kFS ·
(
ϑM

N
− ϑG

)
.

Experimental tests were performed with the drive containing only motor and gearbox.
Torque measurements were obtained mounting a torque sensor at the gearbox output
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Table 5.4: Total moments of inertia evaluation as obtained from the CAD
model and catalogs (Harmonic Drive AG, 2012; Maxon Motor AG, 2012).

Parameter Description Value·10−6 Unit

Jtot,M motor side inertia 15.8 kg m2

Jtot,G gear-elastomer side inertia 3.7 kg m2

Jtot,L,drive load side inertia 4.3 kg m2

while the other side of the sensor was clamped. Torques in the range of ±8 Nm were
measured and nonlinear and linear regressions were applied on measured data to esti-
mate the unknown coefficients of the models. Table 5.5 reports the results from the
identification procedure for the cubic and linear model.
The equivalent stiffness of the gearbox flexspline is fifty times higher than the elastic
properties of the elastomer coupling (where the equivalent stiffness was ≈ 100 [N m/rad],
see Table 5.2). Therefore, for modeling purpose, the elastic properties of the flexspline
can be neglected. Similarly, the flexspline damping, dFS, can be neglected too and the
gearbox can be considered rigidly coupled to the motor side. As a consequence, the joint
model can be further simplified [see fig. 5.5(b)] and the dynamics model of the joint can
be reduced to a two-mass-model: (Jtot,M +

Jtot,G

N2 ) · ϑ̈M = τM − τS
N
− τDF

Jtot,L,drive · ϑ̈L = τS − τDL − τL .

(5.5)

5.2.2 Motor side friction

In the mechanical model of the compliant joint drive, the overall motor side torque
friction, τDF, is composed of three components:

τDF(ϑ̇M) = τDM + τF,1 + τF,2 ,

where τDM is the motor torque friction, τF,1 is the gearbox input torque friction and τF,2

is the gear meshing torque friction.

Table 5.5: Torsional stiffness parameters as obtained after the identification
process.

Parameter Value Unit

kFS,1 4834 N m / rad
kFS,3 4710·105 N m / rad3

kFS 5718 N m / rad
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The Rigid Body Dynamics (RBD) method (Tsai, 1999) is adopted for its identification
and two models (linear and nonlinear) are evaluated in this process. The experimental
setup is composed of motor and gearbox. A commercially available controller (Elmo
Motion Control®) is used to control the motor and collect the experimental data. Inner
current and speed controllers are assumed to be very fast compared to the mechanical
dynamics2. Therefore, the motor speed is assumed to equal the reference speed. For
the actuator composed of only a motor and gearbox, the following equation holds true:

(Jtot,M +
Jtot,G

N2 ) · ϑ̈M = τM − τDF . (5.6)

According to the RBD methodology, the input speed has to be constant. Therefore, in
the experiment, the reference speed is a piecewise constant function (step function) [see
fig. 5.6(a, top)]. Each step lasts 2.5 s. Speed amplitudes range from -30 rad/s to 30
rad/s. From ϑ̇M ≈ const follows that ϑ̈M ≈ 0 and equation (5.6) yields:

τM ≈ τDF . (5.7)

Equation (5.7) forms a regression model in which the parameters in τDF are unknown,
while the motor torque, τM, can be measured3. Two friction models are adopted in the
identification process. One is a linear model (subscript L) while the other is the classical
nonlinear friction model with static and dynamic viscosity [Coulomb plus viscous friction
(Townsend and Salisbury, 1987), subscript V]:

τDF,L = Fvl · ϑ̇M (5.8)

τDF,V = Fvd · ϑ̇M + Fvs · sign(ϑ̇M) . (5.9)

Using an iterative least squares algorithm for the regression model, the parameters that
best describe the measured data are obtained. Figure 5.6(a) shows the identification
data (motor speed and motor torque over time). Figure 5.6(b) depicts the friction
characteristic obtained through interpolation of identification data (dashed line) and
the friction characteristics of the two identified models (light gray and black line, re-
spectively). Table 5.6 reports the values of the friction coefficients obtained in the
identification process. Since the model that describes the measured data best is the
nonlinear one, in the following, this model will be adopted.

5.2.3 Parameters optimization through gray-box identification

The model parameters obtained so far are used in this section as starting values for
a gray-box identification which runs on the two-mass model of equation (5.5). The

2The current loop runs with a sampling time of 70 µs. The velocity loop runs with a sampling time
of 140 µs. The motor mechanical time constant is 11.8 ms, which is 84 times higher than the velocity
loop time.

3The measurement of the motor torque is based on the value of the motor current, directly provided
by the controller Elmo Motion Control®.
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Fig. 5.6: (a) Motor side friction identification data: The reference speed
(input signal) is shown on top while the measured motor torque is depicted
on the bottom. (b) Star-shaped markers connected by the dashed line
represent the data points from (a) assuming that equation (5.7) is valid.
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model.

differential equations from the model are implemented in Matlab/Simulink® and the
identification is run using the Parameter Estimation Tool�. In order to find the pa-
rameters of the system in the model, a data-driven modeling approach is pursued. In
the experimental phase, the speed controller receives as input a series of periodic speed
reference signals while motor current, position and speed values are recorded. In the
identification process, these signals are provided to the joint model. For identification
purpose, the model is considered to be a 1-input (motor torque), 2-outputs (motor posi-
tion and speed) system. The objective of the gray-box identification is to find the vector
of unknown parameters

λ = [Jtot,M, Jtot,G, Jtot,L,drive,Fvd,Fvs] ,

that minimizes the function

V (λ) =
1

n

n∑
t=1

ε(t,λ)2 ,

Table 5.6: Values for the friction model parameters.

Parameter Description Value Unit

Fvd dynamic viscous friction coefficient 1.49 · 10−4 N m s / rad
Fvs static viscous friction coefficient 3.65 · 10−3 N m

Fvl viscous friction coefficient 3.47 · 10−4 N m s / rad
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Table 5.7: Model parameters values after gray-box identification.

Parameter Value Unit

Jtot,M 18.64 · 10−6 kg m2

Jtot,G 4.35 · 10−6 kg m2

Jtot,L,drive 5.21 · 10−6 kg m2

Fvd 1.49 · 10−4 N m s / rad
Fvs 4.3 · 10−3 N m

where ε(t,λ) is the prediction error of the model between the measured output y and
the predicted model output ŷ:

ε(t,λ) = y(t)− ŷ(t,λ) .

The parameters in λ were constrained to vary in a range of 20% with respect to the
starting values. Table 5.7 reports the values of the parameters after the identification
process. The identified model parameters were validated adopting two arrays of data:
validation data 1 and validation data 2. The following results in terms of best fit (BF)
were obtained:

BF (validation data 1) = 73.86 %

BF (validation data 2) = 75.74 % .

Figure 5.7 shows motor position and speed for the two validation data sets. Measured
data is in gray while the values from the model are shown in dashed black line.

5.3 Control of the loaded joint with fast system dy-

namics

In this section, two control strategies for the control of the interaction of a robotic joint
with external forces are analyzed.
The first strategy is the classical compliance control approach in which the elasticity is
mimicked by control (i.e. the control is designed to achieve a desired compliant behavior
in the interaction with the environment) (Chiaverini et al., 1999; Hogan, 1985). The
second is the approach presented in Chapter 4 in which the control of the interaction
is based on the use of muscle models and virtual antagonistic joint geometries. The
controller implements control strategies as found in the Central Nervous System of
vertebrates for the achievement of a bio-inspired position/stiffness control. In the first
case, the interaction is typically modulated via position control: a position control loop is
closed in order to provide the joint with the desired stiffness and damping. Figure 5.8(a)
depicts a classical position control based on a virtual spring-damper desired behavior.
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Fig. 5.7: (a) Results of the gray-box identification run for the model of the
joint drive on the validation data 1. The gray solid line shows the measured
data (motor position and velocity) while the black dashed line depicts the
data as obtained from the simulation of the dynamics model. (b) Same as
(a) but for validation data 2.

Given a desired spring constant (kdes) and damping constant (ddes), the control loop is
closed on the joint drive position, ϑL, in order to reach the desired position, ϑL,des. The
classical approach will be implemented and used as reference and for comparison in the
analysis of the experimental results with the second control approach.

The schematic of the second approach is depicted in fig. 5.8(b). In either case, the
output value of the controller is a desired torque τdes.

Both interaction control approaches are tested in this section on the compliant joint
drive presented in Section 5.1 and Section 5.2. Figure 5.8(c) depicts a schematic rep-
resentation of the joint drive (on the top) and the control scheme implemented in this
thesis (on the bottom).
The top of the figure shows the mechanical components: the brushless DC motor
(BLDC), the harmonic drive gearbox (HD), the elastomer coupling and the lever arm.
High resolution rotary encoders for measuring the position of the motor shaft ϑM, the
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as presented in Chapter 4. (c) Schematic view of the mechatronics system:
the compliant actuator (on the top) and the control setup (on the bottom).

torsion ϑS of the elastomer and the output position ϑL are also included. The control
and power electronics are responsible for the control of the motor, for the acquisition
of the sensors signals (positions, motor temperature, phase currents, etc.) and for the
communication with external controllers via a differential bus system.

A microcontroller (µC), shown at the bottom of the figure, contains the actuator control
strategy. A cascade control approach was implemented. The innermost control loop (PI-
controller) is closed on the motor speed thus realizing a velocity sourced - Serial Elastic
Actuator whose reliability was shown by Wyeth (2006).
A motor side friction model takes advantage of the identification results described in
Section 5.2.2 and generates a feed-forward control signal to compensate the friction at
the motor side.
The elastomer coupling model block implements the torque/torsion behavior of the
elastomer coupling. Based on the torsion angle, ϑS, a torque estimation, τ̂L, of the
actual torque applied at the load can be obtained. A torque control loop is then closed
on the estimated torque (PI-controller). The desired torque, τdes, for the controller,
could be provided either by a classical position control or by a bio-inspired control
approach as explained above.

For the description of the control strategy, it is referred to a classical generic control
architecture with negative feedback, as depicted in fig. 5.9. C is the control system and
G is the plant to control. r is the reference, u is the control signal, y is the plant output
and e is the error between the reference and the feedback signal.
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Fig. 5.9: Generic control architecture with negative feedback.

Assuming the nonlinearity on the motor side friction completely compensated4 in the
following, the system to control is LTI5 and therefore the description in terms of trans-
fer functions (t.f.) and Laplace transforms can be considered. As a consequence, G(s)
indicates the t.f. of the system to control and C(s) refers to the controller t.f.. Fur-
thermore, the open loop t.f. is indicated with F (s) = C(s) · G(s), the t.f. from the

reference signal to the control signal with Q(s) = C(s)
1+F (s)

and the closed-loop t.f. with

W (s) = F (s)
1+F (s)

. For each of them, the subscript indicates to which loop they refer: ω is
the velocity loop, τ is the torque loop and p is the position loop.

5.3.1 Motor speed control and friction compensation

The control of the motor speed is realized adopting the Pulse-Width Modulation (PWM)
strategy. The control loop runs with a frequency of 20 kHz while the commutation of
the electronics with a frequency of 10 kHz. The duty cycles to the power electronics are
scaled with the output of the rotor speed controller Sv [see fig. 5.8(c)]. Aside from a
feedback loop, a feed-forward control contribution is based on the identification of the
motor side friction obtained in Section 5.2.2. The feed-forward control signal for friction
compensation is [cmp. to equation (5.9) and refer to fig. 5.8(c)]:

Sv,ff = Fvd · ϑ̇M + Fvs · sign(ϑ̇M) .

Figure 5.10 shows a schematic depiction of the innermost control loop (motor speed
loop), that uses the transfer function names as introduced above. Gω(s) is the system
between the torque control and the motor speed. Cω(s) is the motor speed controller.
Fω(s) is the open-loop transfer function between the reference ϑ̇M,des and the control
variable ϑ̇M.

The desired performances for the motor speed feedback control loop are, for a step input,
a zero steady-state error and an overshoot Mp ≤ 20 % with a settling time6 ts ≤ 100 ms.
A controller that satisfies the specification on the steady-state error is a PI-controller

4See Section 5.3.1 for details.
5Linear Time Invariant.
6The settling time, ts, here is defined as the time the motor speed takes to get within 5% of the

steady-state value, or to 95% of the steady-state value and stay within that 5%.
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Fig. 5.10: Block diagram of the motor speed control loop with motor side
friction compensation.

with the following t.f.:

Cω(s) = kω +
iω
s

=
kω
s

(s +
iω
kω

) (5.10)

which has a pole in the origin and a zero in iω
kω

. The rotor speed error is:

eω = ϑ̇M,des − ϑ̇M .

The objective is to find the control parameters in Cω(s) such that the requirements
are fulfilled. The conditions on overshoot and settling time result in a damping ratio
ζ = 0.45 which corresponds to a phase margin7 ϕM ≈ 45◦ and a closed-loop bandwidth
lower than 200 rad/s. Based on these requirements, the zero iω

kω
of equation (5.10)

was placed at 100 rad/s. For the selection of the controller gain kω, a condition on
the maximum value of the control signal was taken into consideration. Referring to
fig. 5.8(c), the output of the motor speed controller is the PI contribution Sv,pi. The
signal Sv,pi, together with Sv,ff, is the scaling factor for the duty cycles in the power
electronics that controls the motor. The maximum value should be selected such that
the maximum motor torque, τM,max, is not exceeded. This condition reflects on the
design of the t.f. Qω(s) and can be evaluated applying the Initial and Final Value
Theorems.

Figure 5.11 depicts the Bode diagram for the rotor speed control design. Since the
dominant behavior of the motor side dynamics system Gω(s) is one of a first order
system, for a desired speed ϑ̇M,des, the control signal τM at start and at steady-state can
be approximated as:

lim
ω→∞

Q(j ω) = kω ϑ̇M,des and lim
ω→0

Q(j ω) =
ϑ̇M,des

Gω(jω)

7For phase margins below 70◦, the approximation ζ = ϕM

100 holds true.
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for which, given the maximum8 ϑ̇M,des and taken into consideration that 1/Gω(j 0) ≈
−60 dB (see dashed black line in fig. 5.11), the conditions above set limits on the value
of kω.

Table 5.8 reports the values of the control parameters. The discrete version of the
motor speed controller was implemented in the microcontroller with a control loop time
of 1 ms. Figure 5.12(a) shows the measured control signal τM and the fulfillment of
the design requirements. Figure 5.12(b) depicts the step response of the motor speed
controller in simulation (dashed black line) and in the experiment (solid gray line).

5.3.2 Output torque control design

An outer feedback control loop is closed on the estimation of the load torque, τ̂L, coming
from the elastomer coupling model block. Indicating the desired torque with τdes, the

Table 5.8: Parameters for the cascade control strategy of the compliant
joint drive.

Parameter Description Value

kω proportional gain 0.00312
iω integral gain 0.312

kτ proportional gain 10
iτ integral gain 300

kp proportional gain 0.001 . . . 200
dp derivative gain 0.001 . . . 10

8From the Maxon Motors catalogue (Maxon Motor AG, 2012) results: max ϑ̇M=700 rad/s.
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torque error is:
eτ = τdes − τ̂L .

The torque controller is also of PI-type and the t.f. is:

Cτ (s) = kτ +
iτ
s

=
kτ
s

(s +
iτ
kτ

) . (5.11)

The parameters of the controller were selected in order to have a bandwidth around
30 rad/s and for a step response a settling time ts ≤ 0.5 s without overshoot. An
important condition for the selection of the control parameters was the stability of the
closed-loop t.f. Wτ (s). The seventh order denominator of the t.f. between τdes and
τ̂L was analyzed and the Routh-Hurwitz stability criterion was adopted to check the
stability conditions for different torque control parameters. Results show that for a
given controller gain kτ , the stability criterion sets limits on the integral parameter
iτ . A graphical evaluation of the stability conditions is shown for two different sets
of parameters (stable and unstable set) with the root locus and the Bode diagram of
the open loop t.f. Fτ (s) in fig. 5.13. The constraint on the settling time turns into a
forbidden area in the imaginary plane (light gray area). The stable case is depicted in
black. The bandwidth is 27 rad/s and the phase margin is ϕM > 100 ◦. For increasing
integral gain, the bandwidth increases but the phase margin reduces till the system
reaches the stability limits. The second set of parameters presents the integral part
which is double (gray lines). In this case the Routh-Hurwitz stability criterion is not
satisfied (ϕM <0 ◦) and the system is unstable. The control parameters corresponding
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to the stable case in the figure, are reported in Table 5.8. In order to separate the
dynamic response times between this loop and the inner control loop so that they do
not interact with each other, the torque control loop is implemented four times slower
than the rotor speed loop.

5.3.3 Output position control

The outermost control loop in the cascade control strategy generates the desired torque,
τdes, for the output torque controller. Typically, the outermost controller works on the
output shaft position of the drive and therefore is directly related to the interaction of
the joint with the environment. Indicating the position error as

ep = ϑL,des − ϑ̇L

and adopting a PD position controller, the desired torque is:

τdes = kp · ep − dp · ϑ̇L . (5.12)

The control parameters can be selected based on a second order mass-spring-damper
system. The proportional factor, kp, corresponds to the desired spring stiffness kdes and
the derivative part, dp, to the desired damping ddes. In the interaction of the robot joint
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drive with the environment, the controller can be designed to have either fast and stiff
responses or slow and compliant behaviors based on the desired requirements. Table 5.8
reports the range of stable values for the two parameters in the controller.

The interaction with the environment can be also controlled with the bio-inspired posi-
tion/stiffness control strategy as presented in Chapter 4. The generation of activations
to the virtual antagonistic muscles allows joint position and stiffness to be independently
controlled. The desired torque is a nonlinear function of the muscle lengths, velocities
and activations and corresponds to [cmp. to equation (2.13)]:

τdes = [FM,2(∆Leff,2, V2, a2(t))− FM,1(∆Leff,1, V1, a1(t))] r . (5.13)

In either case the position controller is implemented in the microcontroller with a loop
time of 6 ms.

Both interaction control approaches guarantee an active control of the mechanical
impedance. However, the question does arise as to how the bandwidth of the impedance
controller looks like in the two cases. In the following, the mechanical impedance is an-
alyzed first, when the bio-inspired approach is used and then when the PD control
approach is adopted.

5.3.4 Mechanical impedance analysis

Real elasticity directly integrated into the joint and the ability to actively control the
joint compliance are considered to be the key elements for safe interaction (Albu-Schäffer
et al., 2007; Bicchi and Tonietti, 2004). In order to analyze the interaction of the drive
with external perturbations, the study has to concentrate on the output mechanical
impedance, i.e. the measure of how much the system resists to movements when an
external force is acting on it. The analysis of the mechanical impedance is typically
performed in the frequency domain and is defined as (Lobontiu, 2010):

ZL(s) = − TL

s ·ΘL

∣∣∣∣
s=jω

(5.14)

which states that the impedance magnitude at a certain frequency is provided by
the disturbance, normalized by angular displacement and disturbance frequency. Low
impedance corresponds to a compliant behavior. High impedance refers to a higher
stiffness of the system under perturbation. While for low frequencies an impedance con-
troller can be designed to produce the desired behavior, for high frequencies this ability
reduces due to bandwidth limitations.

In this section the objective is to analyze the mechanical impedance and deduce in
which frequency range the impedance can be controlled. The intrinsic joint impedance
can be evaluated first. In this case it is assumed that the joint is not controlled i.e., the
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motor is not powered. Therefore, only the output side equation in system (5.5) has to
be considered:

−τL = Jtot,L,drive · ϑ̈L + τDL − τS . (5.15)

Using a linear friction model for τDL and applying the Laplace transform, equation (5.15)
becomes:

−TL = Jtot,L,drive · s2 ·ΘL + dL · s ·ΘL − TS .

Substituting the result above in equation (5.14), the intrinsic joint impedance results

ZL(s) =
Jtot,L,drive · s2 ·ΘL + dL · s ·ΘL − TS

s ·ΘL

.

Taking into account equation (5.1) with ΘS = −ΘL (the motor is assumed to remain
steady) the impedance is:

ZL(s) =

(
Jtot,L,drive · s+ dL +

ECM(s)

s

)∣∣∣∣
s=jω

. (5.16)

The joint mechanical impedance exhibited at the output when the motor is not con-
trolled is a combination of three components: output inertia, output friction and elas-
tomer coupling compliance. The friction component does not change with the frequency
and therefore its contribution sets limits on the minimal obtainable impedance. The
inertia is directly proportional to ω and therefore its contribution increases with the
frequency. A high inertia reduces the impedance bandwidth. This result shows how
important is to have low inertia and friction. The integrated elasticity limits the high-
frequency impedance to its intrinsic stiffness: a very compliant passive element protects
the gearbox over a wide frequency range; a stiff one increases the intrinsic impedance
but contributes to a higher active control bandwidth (Zinn et al., 2004).

When the motor is controlled, the impedance transfer function is a 8th order system.
Instead of examining the poles and zeros of the 8th order t.f., in this thesis, for ease
of exposition, it has been preferred to estimate the obtainable impedance range in
simulation adopting Matlab/Simulink. With this objective, the cascade control strategy
and the model of the joint drive were implemented in Simulink. Following the definition
of impedance, in the simulation, the load torque is set as input and the joint speed as
output. The impedance range is evaluated both for the bio-inspired strategy and for
the PD control strategy.

Figure 5.14(a) depicts the impedance range obtained when the bio-inspired control
strategy is adopted for the control of the compliant joint drive (dark gray area). The
minimum impedance is determined by the friction load. The maximum impedance is
obtained for maximum co-activation. A higher impedance would be achieved adopting
higher maximum muscle forces and removing the torque saturation. The light gray area
shows the impedance range that would be obtained if the drive system with its friction,
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Fig. 5.14: (a) The area filled with triangles indicates the obtainable
impedance range when the bio-inspired control strategy is adopted as out-
ermost control loop of the compliant joint drive. The gray area shows the
impedance range obtained in simulation with the model of the human el-
bow joint without the drive. (b) The area filled with triangles indicates
the obtainable impedance range when the PD position control approach is
adopted to control the joint impedance.

inertia and control delays was not present.
Figure 5.14(b) shows the achievable impedance range (dark gray area) when the PD
position control strategy is adopted. The impedance behavior can be modulated by
changing the controller parameters kp and dp. The minimum impedance is limited by
the friction load. The maximum impedance is achieved in correspondence of the highest
kp for which the system remains stable. For low frequencies the actuator is able to
generate the desired stiffness. For higher frequencies the impedance matches the output
inertia (gray dashed line).
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The PD based approach reaches a Max impedance higher than that using the Bio-
inspired strategy till 60 rad/s. The impedance controlled with the Bio-inspired strategy
is controllable till 300 rad/s. The minimum impedance is comparable. In both diagrams,
the impedance of the integrated elastomer coupling is depicted as black dashed line. It
can be shown that as long as the generated impedance lies below the elastomer coupling
impedance, the system is passive and therefore stable9 (Vallery et al., 2007). This
means that if passivity is desired, the robotics joint drive should not produce a stiffness
higher than that integrated (passive elastic element). According to this result, a very
stiff elastic element should be favored. However, as discussed above, a more compliant
element would ensure a safer interaction. This result shows how the choice of the elastic
element is always a trade-off.

5.4 Experimental results

This section shows the experimental results obtained by adopting first the PD position
control strategy for the interaction of the lever arm with external forces, and then
the results in the case the interaction is controlled based on a bio-inspired simultaneous
control of position and stiffness. In all the experiments, a user generates the disturbances
on the lever arm [see fig. 5.15].

5.4.1 PD position control (as reference)

A classical PD position control is implemented on the technical joint drive to evaluate
its interaction performances and will be used as reference to compare its results with
the bio-inspired approach. In this case the modulation of the impedance is realized by
changing the control parameters.
Three experimental tests have been realized. Figure 5.16 shows the experimental results
when the system is not disturbed and it is commanded to track an alternating desired
position. At start kp is set to 10, which corresponds to a very compliant system. At
t=5 s, kp is increased to 100 (gray background). The damping parameter kd is set
to 0.1. The top of the figure shows the desired torque obtained as output from the
PD control scheme (dashed gray line) and the estimated load torque at the joint (solid
black line). On the bottom of the figure, the position results are shown. For low stiffness
and for every alternating desired positions, the torque reaches the desired one with a
long transitory and the arm goes slowly to the desired alternating positions. For high
stiffness the torque saturation (at ± 8 Nm) is reached, which reduces the response time.

9An important characteristic of passive systems is that they are phase bounded, i.e. the phase shift
is always within (-90, 90.). The phase shift of a stable SISO passive system in response to a sinusoidal
input is always within [-90, 90]. As long as the generated impedance lies below the elastomer coupling
impedance, the phase of the impedance frequency response has values within (-90, 90)
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ROTATORY JOINT DRIVE

LEVER ARM

USER DISTURBANCE

Fig. 5.15: Hand-drawn sketch of the rotatory robotics joint drive with a
lever arm and a user interacting with it. In order to test the control schemes
presented in this thesis, the user generates disturbances at the lever. The
drive is controlled to display a desired stiffness while keeping a certain joint
position.

Nevertheless, the system reacts faster in torque and the desired alternating positions
are also reached faster.

In fig. 5.17 the situation is shown in which the lever arm tracks a constant desired
position ϑL,des=-0.3 rad while a low frequency disturbance is applied to the lever. At
start the lever is compliant. At t=5 s the proportional parameter becomes higher and
the system performs stiffer: although higher load torque is applied, the lever arm keeps
the desired position.

In the experimental results shown in fig. 5.18, the system is subject to high frequency
disturbances. At start (low kp), the control bandwidth is too low and the output inertia
dominates the system behavior [cmp. fig. 5.14(b)]. For higher kp, the control band-
width increases and the system exhibits the desired stiff behavior (the lever is slightly
perturbed).

5.4.2 Bio-inspired interaction control

In this section the experimental results of a concurrent control of position and stiffness
adopting the bio-inspired control approach acting on two antagonistic virtual muscles
and working in combination with the technical joint drive is analyzed. Four different

108



5.4. EXPERIMENTAL RESULTS

position desired
position measured

�
L

[r
a

d
]

to
rq

u
e

 [
N

m
]

load torque est
torque desired

no system disturbance

Fig. 5.16: Experimental results adopting the PD position control in ab-
sence of external disturbances. At start kp=10. At t=5 s the proportional
parameter is increased to kp=100 (gray background). The torque controller
behavior is depicted on the top of the figure. On the bottom are shown
the desired and measured joint positions.
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Fig. 5.17: Experimental results adopting the PD position control in pres-
ence of a low frequency disturbance applied at the lever arm. At start
kp=10. At t=5 s the proportional parameter is increased to kp=100 (gray
background).
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Fig. 5.18: Experimental results adopting the PD position control for a high
frequency disturbance applied at the lever arm. At start kp=10. At t=5 s
the proportional parameter is increased to kp=100 (gray background).
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Fig. 5.19: Experimental results adopting the bio-inspired position/stiffness
control when the system is required to track a desired alternating step
position and no external disturbances are applied at the joint. At start
the desired stiffness is 3 Nm/rad. At t=5 s it turns to 25 Nm/rad (gray
background).

experimental situations are evaluated. It will be shown that the experimental results
are comparable with the simulation results shown in fig. 4.9.

Figure 5.19 shows the first experiment. Like in fig. 5.16, the desired stiffness at start
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Fig. 5.20: Experimental results adopting the bio-inspired position/stiffness
control approach for a low frequency disturbance applied to the arm. The
system reacts elastically and follows the desired compliant position.

is low (kdes=3 Nm); at t=5 s it increases (kdes=25 Nm). The lever arm is required
to track a desired alternating position ϑL,des of magnitude -0.4 rad and 0.4 rad. No
disturbances are applied at the extremity of the lever arm. For low desired stiffness,
the desired position ϑL,des=-0.4 rad is reached successfully while position ϑL,des=0.4 rad
cannot be reached. The asymmetric behavior in -0.4 rad and 0.4 rad is a consequence
of the non-symmetric stiffness–joint angle characteristic (see fig. 2.7). At t=5 s, the
desired stiffness increases. The system successfully reaches both desired position and
stiffness and the lever reacts faster in position. The behavior here is similar to the one
obtained with the PD-control approach (cmp. fig. 5.16).

In the following experiments, the interaction behavior of the robotics joint drive for
different disturbances will be shown. The main difference with the PD control schema
proposed above is that the bio-inspired approach is able to adapt its behavior according
to the disturbance: The control system regulates the position and, in dependence of the
perturbation frequency, adapts the joint impedance automatically.

Like in the simulation test of Section 4.3, in these experiments, a low constant desired
stiffness (kdes=3 Nm) is considered.

In fig. 5.20 low frequency perturbations are applied to the extremity of the lever and
the desired position is modified (compliant desired position: αdes+∆α, cmp. fig. 4.7)
such that the link follows the trajectory imposed by the external load. As the position
error increases due to the applied load, the adaptive block (of the bio-inspired control)
increases the desired stiffness as long as the error remains high. When the error reduces,
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Fig. 5.21: Experimental results adopting the bio-inspired position/stiffness
control approach for high frequency disturbances applied at the lever arm.
The desired stiffness automatically increases thus reducing the compliance
of the system with respect to the load.

the stiffness decreases back to the desired value. The same behavior was obtained in
simulation [see fig. 4.9 (low frequency load)].

Figure 5.21 shows the results for high frequency perturbations. The adaptive control,
acting on the stiffness set-point, automatically modulates the desired impedance: it
makes sure that the desired stiffness increases thus providing higher stability to the
joint and reducing the disturbance effects. In this case too, the obtained result is in
line with the simulation [see fig. 4.9 (high frequency load)]. Humans show the same
behavior as we increase voluntary muscle activation to move faster or to move against
a load (Milner, 1993). Therefore, the bio-inspired control mechanism is able to regulate
the position and, in dependence of the perturbation frequency, simultaneously adapt the
joint impedance. For rapid perturbations, stiffness increases thus reducing the effect of
the external torque on the lever. For low frequency perturbations, the joint is compliant.

Figure 5.22 depicts the test results when impulsive disturbances are applied at the lever
arm. Also in this case, desired joint stiffness increases when the disturbance is applied
thus producing a stabilizing effect for the link [compare with fig. 4.9 (impulsive load)].
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Fig. 5.22: Experimental results of the bio-inspired position/stiffness control
approach for impulsive disturbances. The system reacts elastically and
automatically increases the desired stiffness thus providing the joint with
higher stability.

5.5 Summary

A lightweight, intrinsically compliant rotatory joint drive was adopted in this chap-
ter to validate the bio-inspired control scheme introduced in Chapter 4. Besides the
lightweight construction, the novelty of the drive lies is the integration into the joint of
a sensorized elastomer between the gearbox and the output link. An absolute rotary
position encoder is incorporated into the coupling and used to measure its torsion when
an external load is applied. This measurement can be supplied to its model to have an
estimation of the load torque which, in turn, can be used to implement a torque control
scheme. The complete compliant robotics drive was described as a two-mass model
(Section 5.1) and a system identification approach was pursued to obtain the values of
the mechanical model parameters (Section 5.2). A cascade speed-torque control scheme
for the drive was designed in Section 5.3. To control the joint drive interaction with
the environment, either a classical PD position controller or the bio-inspired strategy as
proposed in Section 4.2 could be adopted. Experimental results for both control schemes
were reported in Section 5.4 under different perturbation conditions. Results showed
that stiff and compliant interactions could be generated for different external perturba-
tions. Due to the selection of maximum muscle forces, the maximum impedance with
the bio-inspired control approach was lower than that achieved with the PD strategy.
Nevertheless, in order to have an intrinsically stable system, the generated impedance
has to lie below the elastomer coupling impedance (passivity property). Assuming this
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condition, a comparison of the impedance ranges (fig. 5.14) showed that the two ranges
are comparable for frequencies up to 60 rad/s. Furthermore, the joint drive controlled
with the bio-inspired scheme was able to reach the desired position and automatically
adapt joint compliance according to the disturbance like humans do.
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Chapter 6

Discussion

In the coming years, the interaction of robots with humans, especially in collaborative
and co-work operations, is expected to grow. Also in social applications ranging from
elderly care to entertainment, the use of robotic arms is increasingly likely foreseeable.
Furthermore, the construction of robotics devices in fields like prosthetics and orthotics
is expanding too. In all these applications, the robots are required to interact with an
unknown environment. Safe behavior is the most important feature during interaction
(Groothuis et al., 2013). This basically means to protect the robot as well as its envi-
ronment in case of collisions. It goes without saying that stiff systems or robots in which
the control implementation presents limitations such as instability or physical failure,
cannot be adopted for the interaction with an unknown environment.
In this thesis, it was investigated the design, test and validation of biologically inspired
control concepts for robotics applications interacting with unknown environments. The
achievements, possible limitations, and possible future works are summarized in the
following sections.

6.1 Bio-inspired control achievements

The objective of this work was to control a compliant rotatory joint drive for orthotics
and prosthetics applications thus reproducing the human arm behavior. Starting from
Hogan’s claim (Hogan, 1984), for which co-activation of antagonistic muscles is used by
the CNS to adapt the mechanical impedance at the joint, we designed and implemented
the active control of the mechanical impedance on a lightweight, inherently compliant
actuator, adopting bio-inspired control concepts like antagonistic muscle co-activation
and reciprocal activation.

The CNS-like control laws were designed based on physiological models and properties
of biological systems. Virtual antagonistic muscles based on the Hill-type model and a
simplified pulley joint geometry were adopted for the design of the antagonistic muscu-
loskeletal setup resembling the human elbow joint. Muscle and joint parameters for the
model were adopted based on real measurements.
The level of abstraction pursued in this thesis for the modeling design, corresponded
to a reasonable compromise between biological details and simplified mechanism and it
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allowed to examine physiologically control strategies in simulation for position control
and compliance regulation.

Our simulation results suggest that the bio-inspired control scheme is able to successfully
regulate joint position and compliance simultaneously in an antagonistically actuated
joint setup. Additionally, the control of compliance is achieved through stiffness adap-
tation for different external perturbations and ensures stability.

The technical actuator adopted for the experiments integrates passive elasticity in form
of a sensorized elastomer coupling, which provides intrinsical compliance at the joint
and the ability to attenuate shocks due to unexpected impacts.

In order to reach a bio-equivalent behavior, the actuator that was actually used in the
experiments was completely hidden to the impedance control process by canceling out
the drive specific dynamic effects, thus equipping the joint with the intended muscle
dynamics.

The bio-inspired controlled drive was tested for different load situations. Experimental
outcomes confirmed the results obtained in simulation. The system successfully reaches
the desired position while modulating the impedance. Furthermore, as long as the
rendered impedance lies below the intrinsic stiffness of the pure elastomer coupling, the
system is stable due to its passivity properties.

The results of this work can be compared to the findings obtained by Yang et al. (2011).
Important differences lie in the implementation of the muscle models, the computa-
tion of joint stiffness and the resulting control scheme with adaptive modulation of
joint impedance. Furthermore, our findings are based on the expression of the stiffness
produced by antagonistic muscles driving a hinge joint and on the intrinsic properties
determined by the nonlinear spring-like behavior of muscles.

6.2 Musculoskeletal model and its limitations

The model of the human elbow presented in this thesis is composed by two antagonistic
muscles and a joint geometry. For the design of such a musculoskeletal setup, some
assumptions have been made which are addressed in the following.
Each muscle was implemented adopting the Hill-type muscle model. In this model, the
active force-length relation was approximated with a quadratic function which allowed
a closed mathematical description of the stiffness at the joint. The quadratic approxi-
mation is inadequate if elongation of fibers above 130% of their optimum length occurs
(Woittiez et al., 1984). Nevertheless, it was shown in Section 2.3.1 that the simplified
expressions as used for the stiffness computation in this work can be easily replaced by
Gaussian relations without loss of the stiffness characteristics and controllers abilities
discussed here (Annunziata et al., 2010). Alternatively, the Gaussian representation
could be approximated more closely e.g. by using splines or piecewise linear functions
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which, however, would increase the number of cases in the mathematical description of
regions, node positions etc. (Section 2.3.3).

The muscle model used in this thesis does not include the contribution of tendon com-
pliance. In fact, it is assumed that the tendon is a serial elastic element of high stiffness.
Certainly, as it was shown in Section 2.3.5, the introduction of a compliant tendon in-
creases the stiffness range for increasing co-activation. However, properties and results
discussed in this work like stiffness nodes and regions of low stiffness variation are still
valid.

The muscle was modeled as a force generator which produces a force according to its level
of activation. If integrated into a joint setup within a skeletal configuration, the muscle
force acts on the joint as a torque via an effective lever arm. The joint configuration
can have different levels of complexity regarding the changes of the effective lever arms.
In this study, the angle-dependent variations of the lever arm were neglected which was
equivalent to the introduction of a hinge joint with a pulley (Section 2.1.2).

Aside from the derivation of the joint stiffness in a closed form, the simplification as-
sumptions discussed above allowed to simplify the stiffness analysis. This achievement
played a crucial role for the evaluation of the stability issues discussed in Section 4.1 as
well as for the implementation of the stiffness control loop according to actual muscle
activations, joint position and velocity, shown in Chapter 3 and Chapter 4.

6.3 Implications of stiffness node analysis

Co-activation of antagonistic muscles pulling at a joint, allow, in general, the ability
to change the joint stiffness. Nevertheless, it was shown in Section 2.3 that depending
on the parameters of the joint and muscles, joint positions can be found for which the
stiffness can not be changed (stiffness nodes). In that study, parameters were selected
on purpose to illustrate the problem and show that situations can be generated for
which stiffness nodes occur. On the way to finding real biological examples in which
stiffness nodes exist, in this section, the femoral-tibia (FT) joint of a locust adopting
real biological data is investigated. It will be shown that when the antagonistic muscles
are co-activated, a stiffness node occurs in the main working range.

Figure 6.1(a) depicts a FT joint. The lines connecting the muscles to the skeletal ap-
paratus represent the extensor (top) and flexor (bottom) tendons. The flexor tendon
rides on top of a lump. The dark gray stick in the middle represents the femur. As the
joint rotates, the extensor and flexor remain parallel to each other and the femur. The
moment arms vary as a function of the joint angle α. The musculoskeletal parameters
adopted for the stiffness analysis are taken from measured data as reported by Zakotnik
et al. (2006) and derived by Heitler (1974). The main operating FT joint range of mo-
tion is approximately [-1,1] rad. Figure 6.1(b) shows the stiffness at the FT joint when
the antagonistic muscles are co-activated plotted over the main joint range of motion.

117



CHAPTER 6. DISCUSSION

joint angle ��� �rad

muscle 2

muscle 1
�

locust joint

a1 = in [0...1]a2

nodenodes
ti
ff
n

e
s
s
 K

0

-1 0 1
(a) (b)

Fig. 6.1: (a) Locust femoral-tibia joint. (b) Joint stiffness plotted against
the joint angle adopting the locust joint geometry as in (a) and for perfect
co-activation. Highest co-activation is depicted in green. For two joint
angles stiffness nodes occur.

Two stiffness nodes occur. While the stiffness node at α=-0.87 rad is almost at the
extremity of the joint working range thus not influencing the locust operation, the other
node, at α=0.13 rad, is almost in the middle of the joint working range. Between the
two nodes, the stiffness increases for increasing co-activation (in green is depicted the
stiffness for highest co-activation).
It has to be investigated if reflexes serve as compensation mechanisms for stiffness nodes
or if stiffness nodes are integrated in the movement strategies of animals instead. For
instance, simulations using the locust joint geometry and recorded data during aimed
limb movements, such as reaching and grooming (Zakotnik et al., 2006), have shown
that, while during unloaded cases the FT joint angle crosses the angular value for which
the stiffness node occurs, in the loaded case, in which stiffness variability is required,
the locust movement is such that the FT joint angle is confined between the two nodes
thus taking advantage of full stiffness range variability.
In addition to reflexes, friction and damping effects due to connective tissue also in-
fluence the force and movement generation in biological systems. Especially in insects,
passive joint damping can dominate the overall movement capabilities (Garcia et al.,
2000; Zakotnik et al., 2006) up to a complete maintenance of a given body posture
without muscle activation. These bio-mechanical factors, however, could only impair
the active change of joint stiffness if they were – at least partly – depending on muscle
activation, e.g. stiffness change due to muscle bulging.
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6.4 Implications of a multi-muscle setup

It was shown that stiffness variability of muscle-driven antagonistic hinge joints is asso-
ciated with co-contraction. This ability, however, if combined with a torque controller,
could be limited due to the occurrence of stiffness nodes. Since the generation of torque
and stiffness is always coupled for joints with only two antagonistic muscles, additional
degrees of freedom must be added to decouple the control of torque and stiffness. There-
fore, two more antagonistic muscles were added to the setup. Though, even without
stiffness nodes, muscle and joint configurations exist which allow only small variations of
stiffness across the working range (Section 3.2.1). This led to the more general question
what an optimal joint setup based on four muscles would have to look like to maximize
the stiffness variability across a defined working range. To answer this question, a brute-
force optimization algorithm was run in Section 3.3. The goal of this optimization was
to seek a musculoskeletal setup able to generate high stiffness variability in a certain
angular region and a defined torque range. Optimization results showed that out of the
four muscles, two short antagonistic muscles and two long antagonistic muscles satisfied
the requirements. The short muscles, due to their increased slope of the torque curve,
which results in a big change of stiffness for activation changes, can be related to the
stiffness control while the long muscles to the torque control. Based on this optimal
setup, different control approaches were tested and compared to the maximal and mini-
mal stiffness that could be reached in principle by a perfect controller. The introduction
of an overflow strategy could vastly increase the performance of a very basic torque and
co-activation based stiffness controller combination. This combined control approach
exceeds even the results of an inverse model controller. However, by joining the sim-
ple stiffness and torque controllers with the inverse model and overflow strategies, the
response time could be decreased due to the feed-forward nature of the inverse model.

In biological systems, joints are often driven by more than two muscles. It can be
assumed that controllers in the nervous system have to cope both with the actuator re-
dundancy and with the nonlinear muscle dynamics. Therefore, in a bio-mimetic transfer
to technical systems the implementation of multi-muscle configurations seems to be ad-
visable.

The four-muscle setup as used in this study for an optimal stiffness variation over a
defined joint angular and torque range as well as for concurrent prevention of stiffness
nodes, could be implemented following different strategies. One strategy is to generate
the net-torque of all muscles by means of a single technical actuator as it was proposed
in Chapter 5. In this case, muscles would be emulated within the controller framework
of the actuator. Another strategy could aim at merging subgroups of muscles (e.g. the
long muscles) in a shared actuator which for example could make use of a push-pull
mode if suitable. This approach however, would decrease the level of independence
gained through the proposed optimal setup with several muscles.
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6.5 Implications of the stability analysis

for the muscle-driven hinge joint

The adaptive tuning of impedance parameters subject to unknown dynamically chang-
ing environments is an important research topic in the robotics community. Biological
systems, physically interacting with environments, simultaneously control impedance
and movement during the interaction. This hypothesis is the basis for the stiffness
modulation scheme and adaptive approach as presented in this work. Compared to
impedance learning strategies (Kadiallah et al., 2012), in which algorithms are imple-
mented with the objective to learn to perform a certain task, impedance adaptation
schemes have some advantages although might be more difficult to implement. The
main advantage lies in the fact that the robot does not need to repeat the operation
in order to learn what is the desired impedance. Though, the difficulty is in the de-
velopment of an adaptive algorithm which is based on a variable acting as a measure
of the interaction performance. In most cases the selection of such variable is difficult,
especially in the case of dynamically changing environments.

The stability analysis performed through simulations (Section 4.1) showed that, even for
a stable equilibrium, the co-activation level affects the reaction of the joint to external
perturbations in terms of oscillations and settling time. This concept leads to the more
general question what an optimal joint stiffness should be with respect to different
external task conditions. With the objective to modulate joint compliance with respect
to unknown external perturbations, in this thesis, a stability measure based on the
position error was adopted for the implementation of the adaptive block in the stiffness
control scheme (Section 4.2.3).

Adaptation of joint stiffness during perturbations made sure that the system was able
to counter-act external forces, keep its stability and reduce the perturbing effects on the
joint. For low frequency perturbations the joint is compliant, while for rapid perturba-
tions stiffness increases so as reducing the unstabilizing effect of the external torque on
the lever. This result is in line with the human behavior as it was shown that humans
stiffen the joint to increase stability, to move faster or to move against a load (Milner,
1993; Suzuki et al., 2001).

6.6 Advantages for other research and future work

In this thesis different aspects of control theory as well as biology have been presented.
Each of these aspects might induce further research in both the design of control concepts
and in the biological field.

The first interesting aspect that would be nice to further analyze concerns the occur-
rence of stiffness nodes in biological systems. It can be expected that animals have not
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optimized their stiffness variability across the full working range of a joint but rather
specialized their joint dynamics to specific tasks as it was discussed in Section 6.3.

A closely related aspect is that of the optimization approach to reach an optimal mus-
culoskeletal joint setup and a node free joint range of motion (Section 3.3). The simple
optimization approach shown in this study could also be used to adjust the working
range to that of a certain biological example if necessary. The performance of the
control approaches of this study could then be compared with the performance of the
animal.

Besides for physiological research, the control schemes presented in this thesis are rel-
evant for technical actuation if nonlinear, antagonistically acting, compliant actuators
are used for joint control. This might for example be the case in limb actuation with
pneumatic, McKibben or fluidic muscles (Boblan et al., 2004; Sardellitti et al., 2010).
In such systems – for example in an arm setup – the occurrence of stiffness nodes at
those joint positions where object interactions or collisions occur would enforce one
specific stiffness which could be unpleasantly high. The conditions for the existence of
stiffness nodes and their position in the main working range are associated with muscle
activation, which for pneumatic muscles would correspond to the input pressure to the
actuators.

Solutions to the stiffness nodes problem have been proposed in Chapter 3. A node
controller, able to manipulate the muscle activations and thus shift the stiffness nodes
was designed in Section 3.2.3. With this controller, it is possible to reach a desired
stiffness and a desired torque simultaneously for situations in which a pure co-activation
approach fails due to stiffness nodes. Besides the node controller, also a suitable choice
of muscle length and other joint parameters can be used to constrain the occurrence of
stiffness nodes (Section 3.3).

A further aspect is that in the future, the use of bio-inspired control approaches could
be advantageous not only to make human-machine interaction safer but also to make it
more intuitive; for example, applications which combine technical and biological systems
in fields like prosthetics and orthotics may take advantage of the control schemes mod-
eled in this thesis thanks to the mutual embodiment of drive oriented control signals
and user oriented biological commands. Also in these cases, a bio-equivalent actua-
tion system is desirable which presumably would have to cope with inadequate stiffness
regulation due to nodes.
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