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Abstract. For solving tasks cooperatively in close interaction with hu-
mans, robots need to have timely updated spatial representations. How-
ever, perceptual information about the current position of interaction
partners is often late. If robots could anticipate the targets of upcoming
manual actions, such as pointing gestures, they would have more time
to physically react to human movements and could consider prospective
space allocations in their planning.
Many findings support a close eye-hand coordination in humans which
could be used to predict gestures by observing eye gaze. However, effects
vary strongly with the context of the interaction. We collect evidence of
eye-hand coordination in a natural route planning scenario in which two
agents interact over a map on a table. In particular, we are interested if
fixations can predict pointing targets and how target distances affect the
interlocutor’s pointing behavior. We present an automatic method com-
bining marker tracking and 3D modeling that provides eye and gesture
measurements in real-time.

Keywords: shared space, human-human experiment, gaze tracking, ges-
ture prediction, automatic interaction analysis

1 Motivation and Overview

The way we interact with robots changes more and more from simple task in-
structions to cooperative settings with a close interaction between humans and
robots in a shared space. If the peripersonal spaces of the interaction partners
overlap, they form an interaction space [19] in which actions need to be well
coordinated to avoid harm and to ensure a successful and swift task completion.
This raises completely new requirements regarding a robot’s skills in interacting,
especially considering the timing of actions and space allocations.

For interaction in shared space, a robot needs to be aware of its immediate
surroundings. A dynamic representation of the robot’s peripersonal space can be
used to detect human arm movements (e.g. [12]) and thus prevent collisions by
stopping the robot’s movement, e.g. when both human and robot want to point
to a certain target.
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There are several levels on which interaction with a robot could be improved
if the robot were able to follow human eye gaze and to predict upcoming hu-
man gestures: First, current action executions could be slowed down or halted
if the robot notices that the human’s intended movements would conflict with
its current target. Second, in a more proactive manner, the robot could turn
its head towards the predicted target, which would serve several functions: It
would communicate the robot’s interpretation of the human’s movements to the
human interlocutor and by this means facilitate communication robustness and
increase the confidence of the human in the grounding of the current target [5].
In addition, sensors attached to the robot’s head could be timely oriented to-
wards the expected target to collect optimal data on the human gesture and
its interaction with the target. Third, anticipated gesture trajectories could be
considered during action planning to avoid potentially occupied areas.

So long, the focus has been on the interpretation and anticipation of human
actions by the robot. For a successful interaction, the robot should also be en-
abled to provide signals that can in turn be used by the human interlocutor to
make similar anticipations. Staudte and Crocker [28] showed that a human-like
gaze behavior of a robot can positively influence human comprehension of robot
speech and thus improve the interaction.

Hence, a better understanding of human skills for anticipating movements
could help robots to increase robustness and smoothness of shared-space inter-
actions. As a starting point for this idea, we investigated the coordination of
gaze and gesture (see e.g. Fig. 2) in a human-human study using a complex
task. In addition, we assessed the coordination of pointing gestures and upper
body movements. For example, to reach far targets, humans will need to lean
forward. A prediction model considering both gaze and gestures could enable
the robot to have a detailed concept of a starting human pointing movement.

In the study reported in this paper, gaze and pointing directions as well as
the head positions of the participants were recorded in a route planning sce-
nario (motivated by former work of Holthaus et al. [11], see Fig. 1). Analyzing
mobile eye tracking data usually requires manual annotation which would ren-
der a human-human study tedious if not unfeasible due to the needed effort in
time. In addition to that, manual annotations are less precise and thus do not
provide sufficient data for model generation. Therefore, an automatic method
was developed combining fiducial marker tracking and 3D-modeling of stimuli
in virtual reality as proxies for intersection testing between the calculated line of
sight and the real objects (see also [23]). The method merely relies on the scene
camera video of the mobile eye tracking device for mapping eye gaze on targets
in the 3D environment. For the study, this set-up was extended with an external
tracking system for recording pointing gestures. In the future target scenario of
human-robot interaction, tracking of the hands could be done with the tracking
sensors mounted on the robot.

The remainder of this paper is organized as follows: After discussing related
work in section 2, an experiment on spatial references with gaze and pointing
in a route planning scenario is reported in section 3. A novel method for auto-
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Fig. 1. The route planning task of
the present study is motivated by
a receptionist scenario [11, p. 4].

Fig. 2. Example for a fixation
(highlighted by the ring) anticipat-
ing the pointing target.

matic analysis of the acquired data is proposed in section 4. The results of the
experiment are presented in section 5 and discussed in section 6.

2 Related work

The prediction strategies investigated in this paper focus on non-verbal behavior
in shared space. We will thus first discuss representations of peripersonal and
shared space before we attend to different strategies making use of such repre-
sentations that have already been implemented on robots. We will finally present
findings on human-human interactions regarding the coordination of gaze and
pointing gestures depicting insights which motivate our approach to predicting
pointing targets in particular and target areas of movements in general.

2.1 Human representation of space

If we want to reach an object, we instinctively know if we are able to do so
without moving our torso and we know how far to reach. There are different
explanations for these skills. Rizzolatti et al. [27] and follow-up research on hu-
mans [25] suggest that the space immediately around oneself has an own, specific
neural representation. This space is called peripersonal space. Objects in periper-
sonal space can be reached without moving the torso. The neural representation
of peripersonal space integrates visual, tactile and even auditory signals [10][7].
It allows for constant monitoring of the position of objects in that space relative
to the body. Clinical studies by Làdavas [15] show that peripersonal space can
adjust with the position of the body parts. It is even possible to enlarge it by
grasping objects and using them as tools [3].
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For the conceptualization of shared space, Kendon [14] proposes an activity
space for each partner, similar to the peripersonal space. The overlap of the part-
ners’ activity spaces then forms a common space for interacting: the O-space.
Nguyen and Wachsmuth [20] combined Kendon’s O-space with the peripersonal
space, defining interaction space as the overlap of two peripersonal spaces. More-
over, they propose a process of spatial perspective taking for estimating the
extent of the partner’s peripersonal space in a virtual human.

Humans are well capable of estimating if targets are in reach, by taking into
account not only the plain distance to a target, but also the surface layout on
which it is located [6]. Hadjidimikratis et al. [9] found evidence for a neural
process to evaluate the 3D distance between the eyes and objects: According to
their findings, a neural representation of the peripersonal space related to the
eye position is used to compute if objects are reachable.

Mark et al. [16] found that people do not try to reach an object without
bending the torso until absolutely necessary (the absolute critical boundary),
but instead have a preferred critical boundary for starting to lean forward. The
preferred critical boundary is thus the point from which reaching is more com-
fortable when supported by bending the torso. It appears to occur from 85%
of an absolute critical boundary. Leaning-forward is also an often used strategy
when pointing to distant objects to increase pointing accuracy [22]. Based on
these findings, Nguyen and Wachsmuth [20] introduce the lean-forward space to
model the gradual transition between peripersonal and extrapersonal space.

Some of these principles have already been implemented to improve robots’
capability to flawlessly interact with humans in shared space, as we discuss in
the following section.

2.2 Human-robot interaction in shared space

Humanoid robots can be assumed to be anthropomorphized by humans. Thus, it
is meaningful for a robot to understand and make use of human behaviors and ex-
pectations. Hüttenrauch et al. [13] compared distances participants maintained
from a robot in accordance with Hall’s theory of proxemics and Kendon’s F-for-
mations [14]. In a Wizard-of-Oz study where participants had to show around
the robot in a home-like environment, they found that the personal distance
is predominant and the vis-a-vis formation is preferred in most interactions.
Mumm and Mutlu [17] observed humans’ proxemic behavior when interacting
with a robot. They manipulated likeability and gaze behavior of the robot. In
the dislikeable condition, participants increased their distance to the robot when
the robot showed increased eye contact. This suggests a coupling between those
different factors for proxemic behavior. Spatial prompting is another proxemic
behavior which robots may use in the gaps between two consecutive interac-
tions [8]: By giving subtle cues, a robot can positively influence the spatial po-
sitioning of the user.

Concerning interaction in shared space, Antonelli et al. [2] propose an implicit
representation of peripersonal space by experiments of gazing and reaching. This
way, the robot learns a visuomotor awareness of its surrounding without making
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the representation explicit. An explicit approach was developed for the virtual
agent Max [19]: After learning the body structure utilizing virtual touch and pro-
prioception sensors, the dimensions of Max’s peripersonal space are calculated. It
is divided into a touch space, a lean-forward space and a visual attention space.
The interaction space is established by spatial perspective taking, i.e. project-
ing the agent’s own body structure onto the partner. Using the findings of an
experiment conducting humans’ expectations of grasping decisions of the iCub
robot, Holthaus et al. [12] proposed the active peripersonal space, a spatial model
covering handedness, distance-awareness, awareness of the interlocutor’s actions
and moreover accounting for attention and occupancy. The active peripersonal
space is represented by a body-centered spherical coordinate system. The model
allows for monitoring the overlap with the partner’s peripersonal space. Thus,
an interaction space can be formed.

If such a model could be extended to include predictions about human ac-
tions, the robot could include these in its own planning and thus execute actions
in a foresighted way. Therefore, the use of gaze and pointing in human interaction
has to be taken into consideration.

2.3 Gaze and pointing in human-human interaction

The eyes are our fastest moving body parts. Due to their dual use as sensor
and communication device, they often rest on objects we are planning to use
or to refer to. When conducting manual interactions, we need to have a spatial
representation of the target and thus gaze is quite naturally linked to hand
movements, such as pointing gestures. Once a spatial representation has been
built, gaze might no longer be needed to control movements towards a target, but
it is still relevant for fine controlled end positioning [1]. In our own work, we found
that pointing directions can be determined most precisely when considering the
dominant eye aiming over the pointing finger tip [21].

There is evidence for a temporal coordination between gaze and gestures. For
example, Prablanc et al. [24] found that hand movements are initiated about
100 ms after the first saccade to the target in a pointing task. However, as for
example Abrams et al. [1] argue, such findings are likely to depend on the task
and the way stimuli are presented. Thus findings in laboratory conditions might
not scale to situations found in natural interaction.

Neggers and Bekkering [18] report a close coupling of gaze and gesture move-
ments. In their study, participants had to point at a first target and then as soon
as possible look at a second one, which was presented a bit later. Their partici-
pants were not able to fixate the second target while still reaching towards the
first and they explain that by a neural inhibition of saccades during manual
pointing.

Several contextual factors may influence the interaction between gaze and
gesture. Biguer and Prablanc [4] investigated latency shifts depending on target
distances: With increasing distance, the first saccade to the target was produced
significantly later. However, the corresponding head movement started earlier.
Interestingly, the timing of arm movements was not affected by target distance.
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3 An experiment on the interaction of gaze and pointing

Following our goal of improving the precision of the spatial representations of
current and future actions, we conducted an experiment on eye-hand coordi-
nation. We aim at improving the prediction of pointing targets, and thereby
the prediction of areas which might be entered by a pointing hand in the near
future. The selection of pointing gestures is due to our scenario, but similar ef-
fects are expected and have been shown, e.g., for grasping movements. Our main
hypothesis and follow-up questions are as follows:

1. Given the onset of a hand movement, the target of a pointing gesture can
be predicted by looking at the location of preceding fixations.

2. How accurate and how precise can the target area be predicted?
3. How large is the advantage in timing that can be gained?
4. What influence does the distance of the target have on the performance of

the pointing gesture?

As argued above, we use a relatively natural interaction scenario of two inter-
acting, non-confederate participants, instead of a rigid experimental design with
a high level of control. In our route planning scenario, the two interlocutors are
sitting at a table facing each other. Placed between them is a map on which they
perform several joint planning tasks. To record eye movements, we equipped one
participant with a mobile eye tracker. This participant is in the following called
P1, the interlocutor without the eye tracking system is called P2.

To elicit spatial references to their own peripersonal space as well as to the
space shared by both participants, we use three different floor plans (Fig. 3):
ground floor, first and second floor. They are placed between the participants so
that there is one within each peripersonal space. The middle floor plan is placed
in the interaction space. The scenario is designed to yield a lively interaction
facilitating frequent pointing gestures to enable joint planning of routes. It has
been verified in a small pilot study.

Fig. 3. The figure shows the arrangement of the two participants (left and right, facing
each other, sitting) and the three floor plans of the target building on the table between
them. The legend shows the relative distances of the different maps to the participants.
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3.1 Setup

The three floor plans are printed on a DIN A0 format poster (84.1x118.9 cm),
each plan with a size of 32x32 cm. The gap between two plans is 3.5 cm. The
poster lies on a table of 130 cm length. Fig. 3 shows the distances to the ends
of each floor plan, assuming participants are sitting about 25 cm away from the
closest floor plan, in a comfortable position at the smaller sides of the table.
By our design, the closest floor plan and the beginning of the middle plan are
located in the peripersonal space of the interaction partners. The end of the
middle floor plan and the beginning of the far plan can only be reached by more
or less articulately leaning forward, depending on the height of the participant.
However, the end of the far floor plan cannot be reached while sitting by partic-
ipants of normal height. The shared space hence comprises the middle plan and
the adjacent beginnings of the other two plans.

3.2 Task

In general, the participants’ task is to plan routes from a point A to a point
B distributed over the three floor plans. Instructions for individual routes are
printed on cards with miniature floor plans the participants draw for each stage.
Fig. 4 shows the four important steps of the first task type: (a) The task begins
with P1 drawing a card where starting point and target room are marked.

1

a)

d) c)

b)

c)

Fig. 4. The main steps of the first task type: (a) Drawing a subtask card, (b) explaining
the route, (c) placing blockages and (d) jointly planning the remaining route.
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Fig. 5. SMI Eye Tracking Glasses,
a binocular mobile eye tracker.

Fig. 6. Gloves with tracking
markers attached.

(b) P1 then demonstrates these to the interlocutor and describes the fastest
route. (c) The interlocutor P2 then draws a card with blockages and indicates
them on the floor plans using gaming tokens. (d) Finally, P1 and P2 jointly plan
the remaining route.

This basic task is followed by a second type of task in which complexity is
increased: Participants have to plan the fastest route to three rooms at a time.
In addition to that, the number of blockages is also increased. In total, each pair
of participants had to perform eight repetitions of the first type of task and two
repetitions of the second type. The roles of P1 and P2 in the tasks were switched
every second repetition.

3.3 Recorded data

During the experiments we collected multimodal data: Two video cameras ob-
served the participants during their interactions. As already explained above,
Participant P1 was equipped with mobile eye tracking glasses (SMI Eye Track-
ing Glasses Version 1.0, 30 Hz gaze data resolution, Fig. 5) to record binocular
eye movements and the field of view of P1 using the HD scene camera. This par-
ticular eye tracker has parallax compensation and is thus accurate at all relevant
distances.

For a precise tracking of the index finger positions of both hands of both par-
ticipants, an optical tracking system (Advanced Realtime Tracking TrackPack 2)
was used. Based on experiences from previous studies we attached the tracking
markers for the index fingers to soft golfing gloves which do not compromise the
hands’ freedom of action (Fig. 6).

4 Method of Analysis

For analysing the temporal sequences of P1’s visual attention on the objects of
interest while at the same time providing as much freedom to move as possible,
mobile eye tracking was used instead of remote eye tracking systems. This choice,
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Fig. 7. The 3D representation of the
scenario including three floor plans, the
fiducial markers, participants’ hands with
highlighted pointing direction as well as
the positions of the interlocutors’ faces.

Fig. 8. Overlay of the virtual represen-
tation over the scene camera image of
the eye tracking device. The position of
the participant’s face is calculated by a
face detection algorithm and automati-
cally masked.

however, normally comes along with time-consuming manual annotation of gaze
videos: In the present study, the duration of a recorded sessions ranged within
20-30 min, which would have to be annotated frame-by-frame.

For a different previous study, we designed the EyeSee3D approach [23].
It allows us to automatically assign fixations to stimuli based solely on the
scene camera video and the 3D gaze vector provided by the eye tracker. This
is done by tracking simple fiducial markers in the video. If the scene camera is
calibrated, i.e. its intrinsic parameters are determined, marker positions found
in the 2D images can be correctly transformed to 3D with respect to position
and orientation. In other words: We can calculate the pose of the scene camera,
and thus the head of participant P1, with respect to the stimuli. By re-modeling
the complete scenario using virtual reality technology and representing the 3D
gaze vector as a 3D ray in space, fixations can be automatically assigned to the
stimuli by geometric intersection testing. The 3D model can be inspected from
all perspectives (Fig. 7), or it can be aligned to the scene camera video (Fig. 8).
This way, the experimenter can use EyeSee3D to monitor the recording process
and validate data quality during runtime.

For the present study, we had to extend the EyeSee3D approach in several
ways: In addition to using gaze directions, the external tracking system was inte-
grated to accurately detect pointing gestures. The link between marker tracking
and external tracking is established by placing a tracking target with known
position and orientation relative to the fiducial markers (see Fig. 9(a), next to
the middle floor plan). This way, both inputs can be fused in a multimodal 3D
representation of the interaction scenario.

The floor plans contain a high number of rooms. Instead of modeling each of
these separately (which normally would be necessary as each room is a stimulus)
as 3D objects, a technique from web design was made use of: The plans were
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represented as webpages with HTML image maps mapped on the surface of the
3D table model. Each annotated area of the image map represents a room or
floor and can be tagged with a specific text that is output when the user fixates
the area on the floor plan. This approach reduces modeling effort and increases
system performance.

We are also interested in fixations on the interlocutor’s face, but in this free
kind of interaction the partners show large head movements. A static represen-
tation is thus not reliable. To overcome this issue, we adapt dynamic position
changes by detecting faces in the scene camera images of the mobile eye tracker
using the Viola/Jones algorithm [30]. To complete the 3D model, the face posi-
tion is approximated in 3D as well, which can be seen in Fig. 7 and 8.

5 Results

The study was conducted with pairs of 18 (9 male, 9 female) participants of an
age between 18 and 27 (23.5 years on average; standard deviation 2.9 years).
From these, seven male and two female participants took the role of P1 by wear-
ing the eye tracker. Which participant of a pair got to wear the device was chosen
with regard to visual disorders: The utilized eye tracker is difficult to calibrate
with participants wearing glasses, thus usually participants without glasses were
preferred for wearing the eye tracker. The arm length (measured from the head
to the fingertip) of the participants P1 ranged between approximately 65 cm to
70 cm. In total, 338.8 minutes (or 5.65 hours) of interaction were recorded during
the experiments.

After the first five pairs of participants, the setup was mirror-inverted to
prevent possible influences of the different floor plans on the results. So, the
ground floor was located in front of P1 for the pairs one to five, and in front of
P2 for pairs six to nine. For abbreviation, the first pairs will be called NT, the
pairs with mirrored setup MT.

In the course of the complex tasks, participants had to visit all three floor
plans. Fig. 9 shows a typical course of interaction of task 2: Both participants
point to locations near themselves and to the middle floor plan. Communicative
fixations – fixations longer than 500 ms [29] – occur in areas near the pointing
targets. In total, 642 pointing gestures were conducted by P1 and 681 by P2.
In the NT, more gestures were performed by P1 which changed in the MT.
Thus there is a slight shift of focus to the ground floor. For pointing, the average
coordinates (in meters) over all targets on the table were (0.002,−0.007), close to
the center of the plan, which testifies that our targets were well distributed over
the area. As Fig. 9 shows, from the view of a participant, the x-axis describes left
and right, the y-axis the distance to the middle of the table (coordinates (0, 0)).
For placing blockage tokens the average coordinates were (0.007,−0.009). Thus,
regarding both, the targets of pointing and of placing tokens, interaction on the
floor plans was symmetrical between interlocutors.
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Fig. 9. A typical interaction in a route planning task: Communicative fixations are
inscribed in black, pointing directions of P1 in red and yellow, those of P2 in blue and
purple. The lines represent events that occurred after one another.

5.1 Gaze-pointing coordination

We first measured when and where fixations were made before the apex of a
pointing gesture (stroke). In particular we measured whether these fixations
targeted the area around the pointing target. For describing the area we used
a circle with a radius of 10 cm. For each participant P1, Fig. 10 shows the
percentage of pointing gestures in which at least one fixation hit the target
area starting from 10 seconds before the apex onwards in bins of 1 second. As
expected, fixations preceding one’s own pointing gestures were likely to occur
in a small area around the pointing target. For all except two participants we
observed an increased percentage of fixations on the target from 2.5 s before the
apex of the gesture on; one second before the apex, the percentage of fixations on
the target was already higher than 50%. A similar trend can be seen for fixations
of P1 on pointing targets of P2 (Fig. 11). In both cases two pairs of participants
did not adhere to this scheme. As performing a pointing gesture took on average
511 ms (sd: 225 ms) from onset to stroke, gaze could be a hint for the target
as soon as the hand starts moving. When averaging over the fixations during
the last 200 ms before the gesture onset, at the time of the onset, the target
area could be predicted in 47.7% of all pointing gestures performed; 51.1% when
taking into consideration the 200 ms around (i.e. from 100 ms before to 100 ms
after) the onset. Extending the target radius to 20 cm around the pointing target,
74.2% of pointing targets could be predicted about 500 ms in advance of the apex
of the gesture.

Also the probability of fixating the target of a pointing gesture of the in-
terlocutor raised when closer to the onset of the gesture. However, it is not
sure whether participants actually predicted pointing targets of their interaction
partner, or if this finding is due to context from e.g. the spoken conversation.

Fig. 12 illustrates the observed fixations on the pointing target of participants
P1 before the stroke of the gesture. While fixations were widely spread around
the target 2000 ms before the apex, 500 ms before the apex the target area was
most frequently fixated.
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Fig. 10. The probability of fixations hit-
ting the target area of one’s pointing ges-
ture increases the closer to the gesture’s
apex.
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Fig. 11. This also holds when observing
the pointing gesture of an interlocutor
but not as strongly.

5.2 Characteristics of pointing gestures

By considering the head positions of P1 (the 3D head position of P2 was not
acquired) during the stroke of the pointing gestures, body movements could be
measured as well. In particular, leaning forward was investigated. Fig. 13 shows
the y-position (i.e. the position in direction of the interlocutor) of the fingertip
during the apex of a pointing gesture in relation to the head position in y-
direction. The red curve is the approximation of the points by locally weighted
polynomial regression. When the fingertip in a pointing gesture was not moved
further than to the middle of the table, head movements were barely observed.
Beyond that distance, leaning forward was performed for pointing. This might be
due the distance of 65 cm from the edge to the middle of the table, which could
mark the critical boundary from where leaning forward is preferred according
to Mark et al. [16]. A trend to leaning forward was already observable from the
beginning of the middle floor plan. The same trend, but less distinct, was found
in the correlation of head position and the pointing targets (Fig. 14). Fig. 15
shows that, depending on how far the pointing target was away, there was a trend
of not directly touching the target but rather pointing from a higher position in
distance.

Summing up, most pointing gestures were performed close to the participant
pointing. Thus, participants preferred pointing in their own peripersonal space,
but the overall distribution of pointing targets of both interaction partners was
similar over all floor plans.
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2000 ms 1000 ms 500 ms

Fig. 12. Focussing the pointing target: From left to right, the distribution of all fixa-
tions (relative to the pointing target) up to the pointing gesture apex are shown for
2000 ms, 1000 ms and 500 ms (each for an interval of the next 1000 ms), averaged over
all participants.
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Fig. 13. Correlation be-
tween the apex position of
the fingertip and the head
position in pointing ges-
tures.
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tween the target position
of pointing gestures and
the head position.
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Fig. 15. The height of
pointing gestures depen-
dent on the target on the
floor plans.

Measuring the target position during the apex of pointing gestures, 66-73%
of all gestures targeted locations in the closer half of the table, 44%-52% to
the closest plan and only 10-15% to the most distant floor plan. Fig. 16 shows
the estimated kernel densities for the fingertip positions at the apex of pointing
gestures and the locations pointed at. The gaps between the floor plans are
reflected in the graphs. There is a continuous decrease of gestures to targets
beyond the middle of the table. The percentages for the position of the finger tip
at the apex of pointing gestures were as well similar in all trials and conditions.
Here, the NT and MT are combined. In 83% (82.5% for P1 and 82.6% for P2)
of all pointing gestures, the hand remained in the own half of the table, i.e. in
peripersonal space. In 64.2% (P1) and 59.2% it was within the extent of the
nearest floor plan, in 96.4% (P1) and 93.7%, it was located not farther than the
end of the middle floor plan.

Thus, a distribution can be observed where pointing movements were per-
formed: A high percentage of pointing targets were located in near space, thus
the first floor plan. From the middle of the table, when leaning forward had to
be used, there was a continuous decrease of conducted pointing gestures.
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Fig. 16. Kernel densities of the pointing gestures for the fingertip positions (left) and
the pointing target (right).

6 Discussion and Conclusion

For achieving robust and smooth human-robot interaction in shared space by
anticipating upcoming gesture targets, the aim of this work was to study human
gaze and pointing behavior in a face-to-face route planning scenario.

The experiments revealed that – when a pointing gesture is started – it is
indeed possible to predict the target area by considering the fixations that hap-
pened directly before the gesture’s onset. About one half of the target areas
could be predicted when examining fixations 200 ms before the onset of the ges-
tures. This provides a 500 ms (duration of common pointing gestures) advantage
for interpretation, planning and reacting. With a probability of about 75%, it is
possible to predict if a human hand just about starting to move will enter the
robot’s peripersonal space. We also examined the distribution of gesture targets:
In the experiment, participants succeeded in partitioning their space equally,
but for each participant, the percentage of pointing targets decreased relatively
linear with distance. This suggests that the probability of conducting gestures
decreases with the distance in face-to-face interactions. Reaching distant ges-
ture targets was mostly handled by leaning forward. If the human partner starts
leaning forward, it can safely be assumed that the target of the gesture will be
distant (to the human). Thus, the gesture is likely to enter the robot’s periper-
sonal space. In some cases, the pointing gesture was conducted from a higher
position in some distance to the target.

Based on these findings, the robot’s shared-space representation of Holthaus
et al. [11] could now be extended by including such predictions. On the produc-
tion side, the observed human skills can additionally be used to improve robot
behavior. Fixating the target of a planned gesture shortly before conducting it
could signal that the robot is going to occupy that area. Whether humans will
use that information in this scenario remains to be tested.

Our method for automatically analyzing interactions facilitates follow-up
studies with increased participant counts. Moreover, as our method can operate
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in real-time, it can also be used in the human-robot interaction to make the
robot aware of the interlocutor’s gaze behavior. Future work will focus on cre-
ating models based on the presented findings to improve speed and robustness
of the robot’s spatial interaction.
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